Figure 1

a) Proton exchange between pool s (agent) and pool w (water) with exchange rates k_{sw} and k_{ws}.

b) Saturation pulse affecting the water peak amplitude.

c) Water peak amplitude decreases after saturation.

d) Enhanced signal in Z-spectrum or CEST effect and direct saturation or spill-over effect.

$\Delta \omega_{sw}$ saturation-frequency offset
Figure 2

a.

b.

c.

d.

e.
Figure 3

The figure illustrates the timescales of different processes:

- **Macroscopic diffusion**
- **Chemical exchange**
- **Molecular rotations**
- **Molecular vibrations**

The timescales are represented as follows:

- Slow: s, ms, μs
- Fast: ns, ps, fs

The distinction is made between relaxation timescales, spectral timescales, and larmor timescales.
Figure 4

The figure shows a graph with frequency offset (ppm) on the x-axis and M/M₀ on the y-axis. The graph illustrates the effects of APT and Direct water NOE effect on M/M₀. The red arrow indicates the location of the APT effect, while the green curve represents the Direct water NOE effect.
Figure 5

(a) $P_A = \frac{K_{WS}}{K_{SW} + K_{WS}}$ \quad $P_B = \frac{K_{SW}}{K_{SW} + K_{WS}}$

(b) $P_A = 75\%$ \quad $P_B = 25\%$

- **Slow exchange**
 $K_{SW} \ll \Delta\omega$

- **Intermediate exchange**
 $K_{SW} \approx \Delta\omega$

- **Fast exchange**
 $K_{SW} \gg \Delta\omega$

$\Delta\omega = 100\text{ Hz} = 100\text{ /sec}$
Figure 6

Pool s

M_{os}
R_{1s}

Pool w

M_{ow}
R_{1w}

k_{sw}
k_{ws}
Figure 7
Figure 8

a) RF preparation, EPI acquisition

b) Magnetic field directions and angles
Figure 11

a) 180° Water Suppression
 Mixed (Tm) Water Excitation
 WATERGATE pulse
 90° 90° 90° 90°

b) 180° Water Suppression
 Mixed (Tm) Water Suppression
 WATERGATE pulse
 90° 90° 90° 90°
Figure 12

a) Saturation

RF

G2

Gp

Gr

\[\frac{\pi}{2} \]

\[\Delta/2 + TE/2 \]

\[\pi \]

\[\Delta/2 + TE/2 \]

b) Saturation

RF

G2

Gp

Gr

\[\frac{\pi}{2} \]

\[e \]

\[\frac{2\pi}{3} \]

\[2e + \Delta/2 + TE/2 \]

\[\Delta/2 + TE/2 \]

c) Saturation

RF

G2

Gp

Gr

\[\frac{\pi}{2} \]

\[e/2 \]

\[e/2 \]

\[\Delta/2n \]

\[\Delta/2n \]

\[\Delta \]

\[TE/2 \]

\[\pi \]

\[TE/2 \]
Figure 13
Figure 19

(a) P^+

(b) P^-

(c) P_1^-

(d) P_2^-

(e) $P^+ - P^-$

(f) $P^+ - P^-$

(g) $P^+ - P^-$

(h) $P^+ - P^-$

Frequency Offset (Hz)
Figure 20

Frequency offsets [ppm]
Figure 21
Figure 23
Figure 26

a) Radiative 90° CESt saturation pulse small flip angle (β)

b) a)

adiabatic 90°

CESt saturation pulse

small flip angle (β)

Radiative 90° delay small flip angle (β)

Slice loop

Ny lines

TR

Radiative 90°

CESt saturation pulse

small flip angle (β)

Radiative 90° delay small flip angle (β)

Slice loop

Ny lines

TR
Figure 27
Figure 29

RF

\[\theta \]

Irradiation pulse

Excitation pulse

\[90^\circ \]

Acq.

Spoil Gradient
Figure 31

a)
RF($\omega_+_+')$

b)
RF(SAFARI)

c)
RF($\omega_0_+')$

d)
RF(SAFARI')

Crusher Gradient

$\frac{\text{TR}_{\text{ref}}}{\text{TR}_{\text{ref}}}$

$3s$

[EPi acq]
Figure 34