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Abstract

This paper studies the problem of joint edge cache placement and content delivery in cache-enabled

small cell networks in the presence of spatio-temporal content dynamics unknown a priori, where small

base stations (SBSs) satisfy users’ content requests either directly from their local caches, or by retrieving

from other SBSs’ caches or from the content server. In contrast to previous approaches that assume a

static content library at the server, this paper considers a more realistic non-stationary content library,

where new contents may emerge over time at different locations. To keep track of spatio-temporal content
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dynamics, we propose that the new contents cached at users can be exploited by the SBSs to timely

update their flexible cache memories in addition to their routine off-peak main cache updates from the

content server. To take into account the variations in traffic demands as well as the limited caching space

at the SBSs, a user-assisted caching strategy is proposed based on reinforcement learning principles to

progressively optimize the caching policy with the target of maximizing the weighted network utility

in the long run. Simulation results verify the superior performance of the proposed caching strategy

against various benchmark designs.

Index Terms

non-stationary bandit; cache placement; content delivery; time-varying popularity; dynamic content

library

I. INTRODUCTION

Global mobile data traffic is growing at an unprecedented rate and is predicted to account for

more than 63 percent of total data traffic, reaching 48.3 Exabytes per month by 2021 [1]. The

content delivery network (CDN) that has been widely adopted for traffic congestion reduction,

is expected to carry 71 percent of all internet traffic by 2021, of which 82 percent will be

video traffic. However, the backhaul data rate demand between the base stations (BSs) and the

core network incurred by such rapid traffic growth has become the major revenue and technical

bottlenecks for the network operators, especially during peak traffic periods [3]. Due to the fact

that a large portion of backhaul traffic is contributed by transmitting duplicate data from the core

network to multiple users [4], caching popular contents, e.g., video, social media, news and maps,

that are repeatedly requested by a large number of users in local memories installed at BSs to

eliminate duplicate data transmission, has recently attracted significant attention of researchers

[5]. The integration of content caching with small base stations (SBSs) that provide short-

range and low-cost transmission underlaying the existing macrocell cellular networks, allows

popular mobile data to be prefetched from the core network during off-peak traffic hours and
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to be delivered to edge users at peak times. Such integration provides opportunities not only

to offload the backhaul traffic load, but also to improve system performance such as energy

efficiency and transmission delay, and hence, significantly alleviates the backhaul and latency

bottlenecks in conventional wireless CDN [6]. Considering the fact that the capacity of cache

storage is highly limited at the individual SBSs as compared to the massive content library at

the content server, efficient caching mechanisms are advocated to be developed for the network

operators to maximally benefit from caching techniques. Recently, cooperative caching with

joint optimization of different caching locations, e.g., central cloud caching and SBSs caching,

has been proposed as a potential solution to the enhancement of content caching performance

in dynamic mobile networks [3]. By coordinating content caching at different locations, the

individual SBSs may cache differentiated contents and retrieve the requested content from other

cache locations, rather than from the content server, at a lower cost. However, provided that the

individual SBSs can only observe the instantaneous content requests of their users, the content

popularity distribution and/or users’ preference may be unknown a priori and may vary with time

and locations. Hence, a timely estimation of users’ content requests is challenging but essential

for the effective caching policy design as well as for the reliable and cost-efficient operation of

networks under the uncertainty of traffic demands.

A. Related Works

Most approaches in the literature assume finite cache storage with time-invariant content

popularity distribution perfectly known at the BSs [5]–[15], and design either content placement

strategies [6]–[11] or content delivery strategies [12]–[15] in various network scenarios. Joint

consideration of content placement and delivery strategies have been studied in recent years based

on either coded [16]–[19] or uncoded [20]–[23] data. The assumption of a priori knownledge of

content popularity distribution, nevertheless, is not realistic in practical scenarios. In recent years,

using machine learning techniques to predict the unknown content popularity, and proactively
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cache the popular contents at the BSs in advance of users’ requests, has attracted the attention

of the researchers [24]. In [25], the authors propose a Lyapunov optimization approach to hybrid

content caching design to tackle spatial dynamics in traffic demands, where the content popularity

is not required. The authors in [3] and [26] relax this assumption and introduce the multi-armed

bandit (MAB) based learning approaches to estimate the content popularity distribution over time

horizon. However, [3] only considers spatial diversity of the static content popularity, whilst [26]

assumes unknown and time-invariant content popularity. The authors in [27] model the cache

replacement problem as a Markov decision process and propose a Q-learning algorithm to trade-

off the global and local popularity demands in heterogeneous networks. Assuming a Poisson

request model, [28] develops a transfer learning based approach with a finite training time to

improve the estimation of the content popularity in a heterogenous network based on a training

set of ratings. The work in [28], nevertheless, deals with content caching only in a single BS for

one period in time, while an online learning approach may be more suitable for the estimation

of content popularity over the time horizon. The authors in [29] propose a regret learning based

per-BS caching strategy to learn the spatio-temporal traffic demands and to capture the trade-off

of the local and the global content popularity. However, the aforementioned works simply ignore

the fact that the contents can be dynamic over time: new contents are constantly introduced to

the content library and their popularity distribution may change over time. For instance, the

popularity of some contents such as news vanishes within a limited time whilst others such

as music and movies may attract sustained requests for a long period of time. Hence, those

works without considering the dynamic content library in the nature of their designs, may not

be able to catch up with the rapid variations of the content demands in practice. The authors

in [30] propose an ON-OFF traffic model to capture the impact of dynamic contents on cache

performance based on Che’s approximation, whereas, they have sacrificed the key fact that the

request processes at different caches are independent.
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B. Contributions

This paper focuses on joint design of edge cache placement and content delivery in small

cell networks. In contrast to the existing caching designs that assume stationary content library

and/or time-invariant content popularity, we consider a non-stationary content library with s-

patiotemporal content dynamics unknown a priori. The novel contribution of this paper is the

development of a reinforcement learning (RL) based user-assisted caching algorithm that aims

to keep track of the spatio-temporal content dynamics and maximize an average weighted utility

of the network in the long run. The main contributions of this paper are summarized as follows:

• We propose to exploit users’ caches to improve caching performance at the SBSs during

peak hours. This is inspired by the fact that some users may have cached new contents

through other networks, for example wireless local area networks (WLAN). To be specific,

a portion of the cache unit at each SBS is allocated as the flexible cache memory, which

can be timely updated with the new contents cached at the users in addition to the routine

off-peak main cache update from the content server.

• A user-assisted caching algorithm is proposed based on a non-stationary bandit model to

adaptively track the spatio-temporal variations of users’ content demands and sequentially

optimize the content caching and delivery policies over a long time horizon.

• We introduce a three-phase procedure at different time scales for joint cache placement

and content delivery in small cell networks. Phase I is the content delivery phase at the

individual time slots, where the content demand of each user is satisfied from one of the

caching locations with different serving rewards. Phase II is the SBSs’ flexible cache update

phase, where the flexible caches of the SBSs can be more frequently updated with users’

cached new contents. Phase III is the SBSs’ main cache update phase at off-peak times,

where the cache units of the SBSs are updated from the content server.

• To take into account the limited caching space at the SBSs, content caching coordination
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is employed among SBSs and a near-optimal constrained cross-entropy (CCE) method is

adopted in Phase III to solve the cache placement optimization problem with low-complexity.

C. Organization and Notations

The rest of this paper is organized as follows. Section II introduces the system model. In section

III, the joint cache placement and content delivery problem is formulated and then decomposed

into RL assisted content placement optimization problems that can be solved via the near-optimal

CCE method. In section IV, a non-stationary bandit-inspired user-assisted caching algorithm is

proposed to cope with the spatio-temporal content dynamics. Numerical simulation results are

presented and analyzed in section V. Finally, section VI concludes the paper.

Notations: Throughout the paper, w and w, respectively, indicate a scalar w and a vector w.

E(·) is the expected value, Bn×m denotes the binary space of n-by-m matrices and CN(0, 1)

is the zero-mean complex Gaussian random variables with unit variance. ‖.‖0 is the l0-norm

indicating the number of non-zero entries in the vector, and I{�} is an indicator function that

returns one if {�} holds true and zero otherwise.

II. SYSTEM MODEL

A. System Scenario

As illustrated in Fig. 1, we consider a time-slotted downlink small cell network consists of

Nb SBSs serving K users over a shared frequency band. Let us denote by Lb = {1, · · · , Nb},

Lu = {1, · · · , K} and T = {1, · · · , T}, respectively, the index sets of the SBSs, the users and

the discrete time slots. The individual SBSs have a circular coverage area with communication

radius of Rb. Each user may identify and communicate with its neighboring SBSs, whilst only

one SBS will serve the user. Let us denote by Lbu = {1, · · · , Kb} the index set of users associated

with SBS b. Featuring cache units, the individual SBSs are connected with each other via inter-

SBS links, to the central processing unit (CU) via capacity-limited fronthaul links and to the
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TABLE I

NOTATION

Symbol Definition

Lb and Lu Index sets of SBSs and users

Lbu Index set of users associated with SBS b

T Index set of discrete time slots in Phase I

τ [flex] and τ [main] Respective time scales of Phase II and Phase III

F Index set of finite content library at the server

F t Index set of current content library at time t

Sf Size of content f

N [new] Number of new contents added to the content server in Phase II

{∆u}u∈Lu The spatial shifts of content popularity among individual users

{θtu,f}f∈Ft The unknown content popularities of user u at time t

dtu Binary content demand vector of user u at time t

dtuf ∈ {0, 1} Whether the content f is requested by user u at time t

π[local] Gross gain per unit content size of an SBS serving users from its local cache

π[SBS] Gross gain per unit content size of an SBS serving users by fetching content from other SBSs’ caches

π[server] Gross gain per unit content size of an SBS serving users by fetching content from the content server

κ[user] Per-unit average discount rate for users’ uploading incentives offered by an SBS

Mb Capacity of cache unit at SBS b with a portion ξMb being allocated for flexible cache memory

ctp Content caching placement policy at time t

ctb,f ∈ {0, 1} Whether content f is cached at SBS b at time t

ctr Content retrieving policy at time t

ctb,b′,f ∈ {0, 1} Whether content f is retrieved by SBS b from SBS b′ at time t

ctb,s,f ∈ {0, 1} Whether content f is retrieved by SBS b from the content server at time t

ctu Content uploading policy at time t

ctb,u,f ∈ {0, 1} Whether content f is uploaded from user u to SBS b at time t

Gu,tb,f Net gain for SBS b serving user u with content f directly from its local cache at time t

Gu,tb,s,f Net gain for SBS b serving user u by fetching content f from the content server at time t

Gu,tb,b′,f Net gain for SBS b serving user u by fetching content f from SBS b′ at time t

Rb(d
t
uf ) Instantaneous serving reward for SBS b serving user u with content f at time t

Ῡt = {ῡtb,f} Estimated joint reward distribution of contents at individual SBSs at time t
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Fig. 1. Illustration of system scenario and three-phase procedure at different time scales for joint cache placement and content

delivery.

content server via backhaul links. The CU coordinates all content caching and delivery strategies

for the SBSs. A three-phase procedure at different time scales of t ∈ T , τ [flex] and τ [main], is

proposed for joint cache placement and content delivery, namely, Phase I: the content delivery

phase; Phase II: the SBSs’ flexible cache update phase; and Phase III: the SBSs’ main cache

update phase. The notations in this paper are listed in Table I.

1) Non-stationary Content Library: Let us consider a realistic scenario, where the new con-

tents are constantly introduced into the system and the finite content library at the content server

is thus non-stationary. Let us denote by F = {1, · · · , F, · · · , F [max]} the finite content library

with individual content sizes of {Sf}f∈F , where F and F [max], respectively, denote the initial and

the maximum numbers of contents in the content library. Let us denote by F t = {1, · · · , F ′} the

content library at the t-th time slot, t ∈ T , where F ′ indicates the current number of contents
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in the library and it is evident that F ≤ F ′ ≤ F [max]. Once the content library is full, i.e.,

F ′ = F [max], the least recently used contents at the content server will be evicted and replaced

by the newly emerged contents. Note that the content refreshment at the content server takes into

consideration the content lifetime, and the dynamic content library adopted in the considered

scenario naturally results in the time-varying content popularities, which are unknown a priori.

2) New Contents at Users: Each individual user is equipped with a capacity-limited local

cache memory and can only cache one content at each time. At the end of time slot t, t ∈ T ,

each user updates its cache memory with its requested content. In addition, the newly emerged

contents may be cached at some random users either via being generated by the local users

themselves, or by being brought in through other networks such as WLAN or due to users’

mobility. The users are motivated to upload these potentially popular new contents to their

neighboring SBSs for the incentive payments. The incentives for users to upload new contents

can be earning extra data rate, extra bandwidth, and some discounts on their mobile data charges.

Let us denote by κ[user] the per-unit average discount rate offered by an SBS for users’ uploading

incentives. For simplicity, an identical κ[user] ∈ [0, 1] at all SBSs is assumed.

3) Users’ Content Demands: We assume that the users’ content request arrival processes are

independent homogenous Poisson point processes with request rate of 1, i.e., each individual

user on average may request one content that is not cached by itself from its neighboring

SBSs at each time slot. Let the content demands of user u, u ∈ Lu, at time t be denoted by

dtu = {dtu1, · · · , dtuf , · · · , dtuF ′}, where the binary scalar dtuf ∈ {0, 1} indicates whether or not

the content f is requested by user u at time t. Let us denote by {θtu,f}f∈Ft the actual content

popularities of user u that is unknown to the SBSs or the CU at time t. In addition to the temporal

variability, we further consider the spatial diversity of the content popularity distributions among

individual users, i.e., the users at different geographical locations may have diverse preferences

for the contents. To this end, we model the spatial diversity by circularly shifting the content

popularity distribution at user u by ∆u with respect to user u − 1. We further assume that the
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number of contents at the content library is usually much higher than the number of locally

served users, hence the averaging effect over aggregated local users is an unlikely event in our

considered caching problem. Without loss of generality, it is assumed that the longest delay for

retrieving the largest content from the content server does not exceed a prescribed slot duration.

If multiple content requests have been raised by a user at a time slot, those requests that can

not be served within the given time slot will be dropped. The instantaneous content demands of

the users at time slot t, i.e., {dtu}, can be satisfied directly from the local cache of the serving

SBS, or by retrieving from one of the caches of the other SBSs or from the content server with

different gross gains per unit content size of π[local], π[SBS] and π[server], respectively. Given the

fact that the corresponding latency is the longest for retrieving content from the content server

while the shortest for fetching data from SBSs’ local caches, the per-unit gross gains are set

to be inversely proportional to the latency, i.e., π[server] � π[SBS] < π[local]. For simplicity, let us

assume identical π[local], π[SBS] and π[server] ∈ [0, 1] at all SBSs.

4) Cache Units at the SBSs: Each individual SBS is equipped with a cache unit with capacity

of Mb, b ∈ Lb. To fully exploit the contents cached at the local users, a portion with capacity of

ξMb of each cache unit is allocated as the flexible cache memory. The flexible cache memory

that is made up of expensive and high-speed static random access memory (RAM), can be timely

updated from the caches of the local users, whilst the remainder of the cache unit that is made

up of cheaper and slower RAM, will be updated at a more infrequent pace, for instance, from

the content server during off-peak traffic hours.

5) Three Phases of Different Time Scales: Recall that we consider a three-phase procedure at

different time scales of t ∈ T , τ [flex] and τ [main], for joint cache placement and content delivery.

• In Phase I, i.e., at each time slot t, t ∈ T , the SBS associated with the highest serving

reward will be chosen by the CU as the serving SBS. The individual serving SBSs then

satisfy the instantaneous content requests of their scheduled users.

• In Phase II, i.e., for every τ [flex] time slots, N [new] number of new contents are added to
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the content server and might be cached by some random users. Each user broadcasts its

cached content directory to its neighboring SBSs, and the CU will then make a decision on

whether or not to update SBS’s flexible cache with the user’s cached content.

• In Phase III, i.e., for every τ [main] time slots, the CU designs cache placement policy for

the SBSs based on the reward information. The main cache replacements are executed

accordingly from the content server to the SBSs via backhaul links.

B. Downlink Transmission

Let us denote by Ψt
bu the channel gain between SBS b and user u at the t-th time slot, t ∈ T ,

and denote by P
[Tx]
b the transmit power of SBS b. The signal-to-interference-plus-noise ratio

(SINR) for user u served by SBS b at time slot t, t ∈ T , can be expressed as

SINRt
bu =

P
[Tx]
b Ψt

bu∑
b′∈Lb,b′ 6=b

P
[Tx]
b′ Ψt

b′u + σ2
u

, (1)

where σ2
u is the variance of the additive white Gaussian noise at user u. With the normalized

bandwidth, the instantaneous data rate for user u served by SBS b at time slot t, is given by

Rt
bu = log2(1 + SINRt

bu). (2)

C. Content Caching and Retrieving

Let us define the binary vector ctp = {ctb,f ∈ {0, 1}, ∀b ∈ Lb, f ∈ F t} as the content caching

policy at time t, t ∈ T , where ctb,f = 1 and ctb,f = 0 indicate that the content f is cached and is

not cached at SBS b, respectively. This caching policy will be designed every τ [main] time slots

in Phase III for SBSs’ main cache update, and, might be updated every τ [flex] time slots in Phase

II for the portion of flexible cache memory. Let us denote by ctr = {ctb,b′,f , ctb,s,f ∈ {0, 1}, ∀b′ 6=

b, b ∈ Lb, b′ ∈ Lb, f ∈ F t} the content retrieving policy at time t, where ctb,b′,f = 1 and ctb,b′,f = 0

indicate that the content f is fetched and is not fetched by SBS b from SBS b′, respectively.

ctb,s,f ∈ {0, 1} denotes whether or not the content f is retrieved from the content server by SBS
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b at time t. The user demand of content f, f ∈ F t at each time slot t, t ∈ T , will either be

satisfied by serving from the content server or from one of the SBSs, or be dropped, as

ctb,s,f +
∑
b′∈Lb

ctb,b′,f ≤ 1. (3)

Let us denote the content uploading policy at time t as ctu = {ctb,u,f ∈ {0, 1}, ∀b ∈ Lb, u ∈

Lbu, f ∈ F t}, where ctb,u,f = 1 and ctb,u,f = 0, respectively, represent that the content f is

uploaded and is not uploaded from user u to SBS b. Then, the net gain of SBS b storing content

f and serving user u at time slot t, can be defined as

Gu,t
b,f = (π[local] − κ[user]

∑
u′∈Lbu,u′ 6=u

ctb,u′,f )Sfd
t
ufc

t
b,f , ∀t ∈ T , u ∈ Lbu, b ∈ Lb, f ∈ F t, (4)

which indicates that the discount rate offered by SBS b need to be subtracted from the gross

gain if SBS b serves user u with content f directly from its local cache and its cached content

f is uploaded from the other local users. The net gain of SBS b for serving user u by retrieving

content f from SBS b′ at time slot t, is given by

Gu,t
b,b′,f = (π[SBS] − κ[user]

∑
u′∈Lb′u

ctb′,u′,f )Sfd
t
ufc

t
b,b′,f , ∀b′ 6= b, b ∈ Lb, b′ ∈ Lb, u ∈ Lbu, t ∈ T , f ∈ F t,

(5)

which denotes that if the content f cached at SBS b′ and retrieved by SBS b is uploaded from

the local users of SBS b′, the corresponding discount rate need to be subtracted. The net gain of

SBS b for serving user u by retrieving content f from the content server at time slot t, is given

by

Gu,t
b,s,f = π[server]Sfd

t
ufc

t
b,s,f ,∀t ∈ T , u ∈ Lbu, b ∈ Lb, f ∈ F t. (6)

Per time slot t, t ∈ T , the content demand f of user u is either dropped or satisfied from one

of the locations with one of the net gains of {Gu,t
b,f , G

u,t
b,b′,f , G

u,t
b,s,f}. Recall that the gross gains are

inversely proportional to the latency of content fetching. By assigning different net gains with

no units, i.e., Gu,t
b,f , Gu,t

b,b′,f , or Gu,t
b,s,f , as the weighting factors to the transmission data rate, the

backhaul traffic offloading, the cache hits as well as the content retrieving and content delivery
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can be jointly considered. Let us define the instantaneous serving reward, i.e., the weighted data

rate, of SBS b for serving user u with content f at time slot t, t ∈ T , as

Rb(d
t
uf ) =



Gu,t
b,fR

t
bu, if ctb,f = 1,

Gu,t
b,b′,fR

t
bu, if ctb,b′,f = 1,

Gu,t
b,s,fR

t
bu, if ctb,s,f = 1,

0, if ctb,s,f +
∑

b′∈Lb c
t
b,b′,f = 0,

∀b′ 6= b, b ∈ Lb, b′ ∈ Lb, u ∈ Lbu, f ∈ F t, t ∈ T .

(7)

This serving reward can be regarded as the equivalent or effective data rate and will be useful in

designing cache placement policy as well as content delivery policy in the subsequent sections.

III. PROBLEM FORMULATION AND DECOMPOSITION

A. Problem Formulation

Let us denote by wt = {ctp, ctr, ctu} the joint content caching, retrieving and delivery policy

of the SBSs at time slot t, t ∈ T . The objective of the CU is to design this policy {wt} with

joint consideration of backhaul traffic offloading, cache hit ratio, as well as content retrieving

and delivery in the presence of the non-stationary content library. Hence, the problem of interest

can be formulated as the maximization of the long-term average reward of the network, i.e., the
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average weighted network utility, as

max
{wt}

 1

T

∑
t∈T

∑
b∈Lb

∑
f∈Ft

∑
u∈Lbu

Rb(d
t
uf )

 (8)

s.t. C1 :
∑
f∈Ft

Sfc
t
b,f ≤Mb, ∀b ∈ Lb, t ∈ T ,

C2 : ctb,s,f +
∑
b′∈Lb

ctb,b′,f ≤ 1,∀b ∈ Lb, f ∈ F t, t ∈ T ,

C3 : ctb,b′,f ≤ ctb′,f , ∀b 6= b′, b ∈ Lb, b′ ∈ Lb, f ∈ F t, t ∈ T ,

C4 : ctb,s,f ∈ {0, 1},∀b ∈ Lb, f ∈ F t, t ∈ T .

C5 : ctb,b′,f ∈ {0, 1},∀b 6= b′, b ∈ Lb, b′ ∈ Lb, f ∈ F t, t ∈ T .

C6 : ctb,u,f ∈ {0, 1},∀b ∈ Lb, f ∈ F t, u ∈ Lbu, t ∈ T ,

C7 : ctb,f ∈ {0, 1},∀b ∈ Lb, f ∈ F t, t ∈ T .

where the constraint C1 guarantees that the total size of the cached contents cannot exceed the

capacity of cache units at the individual SBSs. C2 indicates that the content demands of the

users will either be dropped or be satisfied from one of the SBSs’ caches or from the content

server. C3 denotes that SBS b can only retrieve content f from SBS b′ if b′ caches the requested

content. C4 - C7 specify that the joint content caching, retrieving and delivery policy wt is a

binary vector.

1) Problem Analysis: The cross-time scale optimization problem in (8) is difficult to solve

directly since we aim to maximize the long-term weighted network utility while the statistics of

the system dynamics are unknown in advance. In general, the difficulties raised by the considered

scenario are: the spatio-temporal unknown dynamics in users’ content demands and channel

conditions; the limited knowledge of new changes in the environment, e.g. limited samples of

users’ content requests, and the constrained caching space at the SBSs. In other words, at different

time scales, the CU has to make decisions on which contents to cache as well as when and where

to cache them, based on limited information of new changes in the presence of non-stationary
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environment. Hence, we are motivated to use RL technique to cope with these spatio-temporal

uncertainties as it aims to maximize the cumulative reward via continually interacting with

the environment and making sequential decisions of actions based on the reward (and state)

information through the trial-and-error procedure.

2) Explanation of Non-Stationary MAB: The MAB problem that is regarded as a stateless

RL problem [33], models a system of multiple arms (content library), each is associated with an

unknown and stationary reward distribution. The agent (CU, on behalf of SBSs) makes sequential

decisions on which contents to cache and aims to maximize the accumulated reward over time

via exploring the environment by caching not frequently cached but potentially popular contents,

while exploiting the current knowledge by caching contents associated with the highest rewards

so far [33]. Here we consider a non-stationary variant of the MAB problem for our considered

scenario with non-stationary content library, where the reward distributions of arms may vary

across time.

B. Problem Decomposition and the Constrained Cross-Entropy Method

In the sequel, the cross-time scale optimization problem in (8) will be decomposed into RL-

assisted optimization problems, and the joint cache placement, content retrieving and delivery

policy {wt} will be gradually optimized at different time scales through the proposed three-phase

procedure in Section IV. More specifically, the content retrieving and delivery policy, i.e., {ctr}

in constraints C2 - C5 of problem (8), will be satisfied at each individual time slot t, t ∈ T , in

Phase I of our proposed caching algorithm. The learning processes in Phase II and Phase III of

the proposed algorithm, on the other hand, aim at tracking as much as possible the variations

in user demands in order to design {ctu} in constraint C6 at every τ [flex] time slots, and design

{ctp} at every τ [main] time slots, respectively.

Next, let us focus on Phase III for cache placement policy design, i.e., {ctp}, at every τ [main]

time slots. As per (7), it is obvious that in order to maximize the long-term average reward
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of the network, the user will be served from the local cache of its serving SBS with the top

priority, and by retrieving from the content server with the least priority. Hence, we can rewrite

ctb,s,f ≤ 1 −max
b∈Lb

ctb,f , ctb,b′,f = ctb′,f (1 − ctb,f ), and the objective function of problem (8) as the

expected overall reward among all SBSs, as

S(ctp) = E
[∑
b∈Lb

∑
f∈Ft

∑
u∈Lbu

Rb(d
t
uf )

]
≤
∑
b∈Lb

∑
f∈Ft

Sfυ
t
b,f

[
(π[local] − κ[user]

∑
u′∈Lbu,u′ 6=u

ctb,u′,f )c
t
b,f

+ π[server](1−max
b∈Lb

ctb,f ) + max
b′∈Lb,b′ 6=b

(π[SBS] − κ[user]
∑
u′∈Lb′u

ctb′,u′,f )c
t
b′,f (1− ctb,f )

],
(9)

where υtb,f is the expected value of {dtufRt
bu}u∈Lbu for content f at SBS b.

Due to the fact that {υtb,f} is unknown and involves temporal dynamics, the non-stationary ban-

dit technique will be employed in the following section to progressively improve the estimation of

this value in Phase III of our proposed strategy. Let us denote by Ῡt = {ῡtb,f , ∀b ∈ Lb, f ∈ F t}

the estimated joint reward distribution of the SBSs over the non-stationary library of contents,

and denote by S̄(ctp) the corresponding estimated expected overall reward among all SBSs, where

S̄(ctp) can be obtained by replacing the unknown actual value υtb,f in the right hand side of (9)

with the estimated value of ῡtb,f . As will be introduced in Section IV, Ῡt will be estimated at

every τ [main] time slots in Phase III of our proposed strategy, based on the past observations of

the content demands and the transmission data rates. Then, with the estimated (learned) value

of Ῡt, the main content caching policy, i.e., {ctp}, will be designed via the following content

placement optimization problem, as

max
ctp
S̄(ctp) (10)

s.t. C1 :
∑
f∈Ft

Sfc
t
b,f ≤Mb, ∀b ∈ Lb,

C2 : ctb,f ∈ {0, 1}, ∀b ∈ Lb, f ∈ F t.

The problem in (10) can be regarded as a 0-1 knapsack problem with weights of {Sf}f∈Ft .
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The 0-1 knapsack problem is a well-known NP-complete combinatorial optimization problem

and the constraints satisfy monotonic property. Solving problem in (10) via either the branching

algorithms such as the branch and bound (B&B) algorithm, or the semidefinite relaxation (SDR)

approach [3] will generally require high computational complexity. Hence, we propose to solve

problem in (10) with a near-optimal solution ct∗p via the low-complexity CCE method. The cross-

entropy (CE) method solves the maximization problem to the optimal or near-optimal solution

by alternating between generating samples of random data according to a specified mechanism,

and updating the parameters of the random mechanism based on the data in order to produce

better samples in the next iteration [34]. However, the original CE method for unconstrained

optimization cannot be applied directly to (10) in the presence of constraints, as many sample

points might not be in the feasible region. Given the monotonic property of the constraints, we

adopt the CCE method with the penalty approach1 to solve the constrained problem in (10).

The penalty approach relaxes the constraints in (10) in a similar fashion of the Lagrangian

relaxation and artificially penalizes the evaluation of infeasible solutions via modifying the

objective function in (10) as follows:

z∗ = max
ctp∈C

S̃(ctp) = max
ctp

S̄(ctp)−
∑
b∈Lb

Hb max(
∑
f∈Ft

Sfc
t
b,f −Mb, 0)

 , (11)

where the penalty parameter Hb � 0 indicates the importance of the penalty function and

C ⊂ BNbF ′ denotes the feasible region. The CCE method associates a stochastic estimation

problem, i.e.,

P(S̃(ctp) ≥ z) =
∑
ctp∈C

I{S̃(ctp)≥z}f(ctp,p), (12)

where z is the worst value of S̃(ctp) among N elite elite (good-performing) samples in the previous

iteration and is used as a threshold in the current iteration in order to generate better samples,

1By empirically adjusting the penalty parameter, the samples associated with infeasible solutions will be discarded accordingly

in each iteration. The elite samples that violate the constraints can simply be projected onto the feasible region [35].
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and f(ctp,p) is a Bernoulli distribution characterized by a parameter vector p, as

f(x,p) =
n∏
j=1

(pj)
xj(1− pj)1−xj , xj ∈ {0, 1}, j = 1, · · · , n. (13)

Hence, with increasing threshold value of z and via importance sampling, the estimated P(S̃(ctp) ≥

z) converges either to the global optimum z∗ or a value close to it. The steps and the computa-

tional complexity of each step of the CCE method are detailed in Algorithm 1. To be specific,

Algorithm 1 CCE method for solving problem in (10) given the estimated Ῡt [35]
1: Initialize: Stopping criteria δ, iteration index n = 1, number of random samples Ns (Ns <

NbF
′), number of elite samples N elite (N elite � Ns, typically 5%-10%), smoothing parameter

α (0.4 ≤ α ≤ 0.9), initial probabilities p[0] = {p[0]
j }j ∈ (0, 1). L99 O(NbF

′)

2: REPEAT

3: Sample: Generate Ns random samples {x1, · · ·xj, · · ·xNs} from probability density

function f(·,p[n−1]). L99 O(NbF
′Ns)

4: Penalty Approach: Modify the objective function in (10) as per (11).

5: Select: Sort samples in descending order with respect to values of S̃(ctp). L99 O(NslogNs)

Select N elite elite (best-performing) samples that yield the top greatest values of S̃(ctp).

6: Update: For j = 1 : NbF
′, compute p[n] as follows L99 O(N elite)

p
[n]
j =

∑Ns
j=1 I{S̃(xj)≥z}xij∑Ns
j=1 I{S̃(xj)≥z}

=
∑
i∈I

xij/N
elite, where I is the index of N elite elite samples.

7: Smooth: Update parameter vector p[n], as p[n] = αp[n] + (1− α) p[n−1]. L99 O(N elite)

8: Update n = n+ 1.

9: UNTIL max
f∈Ft

(|p[n] − p[n−1]|) < δ

10: Output: Optimal main caching policy ct∗p = p[n].

at each iteration n, the new value of z obtained from iteration n − 1 is used to update p[n],

whilst the updated vector p[n] in turn, is used for generating better samples in iteration n + 1

as per steps 6 and 3 of Algorithm 1, respectively. The application of the smoothing parameter
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α in step 7 is to prevent the occurrences of all zeros or all ones sub-optimal solutions, and the

convergence in step 9 of Algorithm 1 can be achieved at a polynomial speed [35].

IV. THE PROPOSED FORESIGHTED CACHING STRATEGY

In this section, the proposed RL-based user-assisted caching strategy is introduced to take

joint consideration of the backhaul traffic offloading, the cache hits, as well as the content

retrieving and content delivery, with the aims of keeping track of the dynamic content library

and maximizing the long-term average reward as much as possible. Recall that the considered

scenario raises challenges of the spatio-temporal unknown dynamics in user demands and channel

conditions; the limited knowledge of new changes in the environment, and the constrained

caching space at the SBSs. These difficulties involving temporal dynamics are handled in the

following way. First of all, the caching problem is modelled as a non-stationary bandit problem,

where the CU (on behalf of the SBSs) can be regarded as the agent, F ′ arms correspond to

the current library of F ′ contents at the content server, and the associated reward of playing

(requesting) the f -th arm can be defined as the aggregated content delivery rate for satisfying

users’ content demand of f . The standard upper confidence bound (UCB) algorithm [33] is

modified to emphasize more on the recent observations. Secondly, we propose that SBSs’ flexible

cache memory can be updated by implementing a trade-off between caching new content from

user cache directly (exploration), and updating flexible cache based on the knowledge of recent

content demands (exploitation). Finally, content caching coordination among SBSs is enabled and

the caching policy of SBSs is jointly designed at the CU to take full advantage of the capacity-

constrained SBS cache units. The details of the proposed caching strategy are described in

Algorithm 2 and Fig. 2, where a three-phase procedure at different time scales for joint content

caching and delivery is proposed and explained below:

1) Phase I: At each time slot t, t ∈ T , the users request contents from their neighboring SBSs.

The SBS with the highest serving reward will be chosen as the serving SBS and the instantaneous

December 26, 2019 DRAFT



20 IEEE TRANSACTIONS ON COMMUNICATIONS

Algorithm 2 User-assisted foresighted caching algorithm
1: Initialize: T time slots, temporary reward matrix rb = {rtb,f ,∀f ∈ F t, t ∈ T } = 0, estimated mean reward

r̄tb = {r̄tb,f ,∀f ∈ F t} = 0, Ῡt = {ῡtb,f ,∀b ∈ Lb, f ∈ F t} = 0, exploration/exploiation trade-off εt,

global/local trade-off µt, discount factor β, weighting factor ρt=1
b = 1.

2: For t = 1 : T

3: If t = τ [main], Phase III. Main Cache Placement

4: CU updates Ῡt as ῡtb,f = r̄tb,f +ρtb

√
2log nt

Tb,f
, where ρtb ∝

t∑
t′=1

∑
u∈Lb

u

β(t−t′)Sfd
[t′]
uf , Tb,f =

t∑
t′=1

β(t−t′)I{c[t′]b,f=1}

is the discounted number of times content f has been cached so far and nt =
∑
f∈Ft Tb,f .

5: Design cache placement policy via Algorithm 1 based on Ῡt and update SBSs’ cache units in a sorted order.

6: End If

7: If t = τ [flex], Phase II. Flexible Cache Update

8: If A new content f ′ is cached by the local user u within the coverage area of SBS b

9: -with probability εt, update SBS b’s flexible cache with content f ′ directly;

10: -with probability 1 − εt, update Φ̄b as per (14), and replace the flexible cache only if Φ′b(f
′) is larger than

that of the contents in the flexible cache of SBS b.

11: End if

12: End If

13: Phase I. Content Delivery at Each Time Slot t

14: Users request contents {dtu}u∈Lu from their neighboring SBSs.

15: If no SBS caches the requested content f

-The SBS with the highest data rate serves the user by fetching content f from the content server.

Else If the requested content f is cached at the SBS associated with the highest data rate

-The SBS serves the user directly from its local cache.

Else

-The SBS associated with the highest weighted data rate (serving reward) serves the user.

End if

16: Update {rb} as rtb,f =
∑
u∈Lb

u

Rtbud
t
uf , ∀f ∈ F t, b ∈ Lb.

17: Update {r̄tb} as r̄tb,f =
∑t

t′=1
rt
′

b,fβ
(t−t′)∑t

t′=1
β(t−t′) ,∀f ∈ F t, b ∈ Lb.

18: End For
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Fig. 2. Flowchart of the proposed RL-based user-assisted caching algorithm.

content demands are satisfied according to the delivery policy in step 15 of Algorithm 2. Then,

the estimated mean rewards of the individual requested contents are updated as per step 17

of Algorithm 2. To be specific, step 17 calculates the average discounted accumulated content

delivery rate for satisfying users’ content demands of f at SBS b, which jointly considers user

demand of content f as well as channel quality and user scheduling at SBS b.

2) Phase II: For every τ [flex] time slots, the contents in SBSs’ flexible caches will be replaced

by the potentially more popular new contents cached at the users. More specifically, with the

probability of 1− εt, the flexible cache will be updated accordingly as per step 10 of Algorithm

2, based on the following content demand vector:

Φ̄b = (1− µt)Φc + µtΦb, ∀b ∈ Lb, (14)

where Φb denotes the recent local content demand vector at SBS b and Φc =
∑

b∈Lb Φb is the

network wide recent content demand vector accumulated at the CU. The global/local trade-off

µt, 0 ≤ µt ≤ 1, is employed to capture the spatial diversity of the content demands, such

that the content caching coordination among SBSs can be capitalized. With the probability of

εt, we explore new contents cached by local users and update SBSs’ flexible caches directly.
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The exploration/exploiation trade-off εt is tunable with respect to the temporal evolution rate

of contents. More specifically, with a larger value of N [new] and the limited knowledge of new

changes, a larger value of εt will be adopted to cache (explore) the new contents that may yield

a better accumulated reward.

3) Phase III: For every τ [main] time slots, a perturbation procedure is applied to the estimated

mean reward r̄tb according to step 4 in Algorithm 2. Such adjustment implements a trade-off

between exploring the contents that are not frequently cached and may yield a better accumulated

reward in the future by artificially increasing their estimated mean reward, and exploiting the

contents associated with the highest mean reward so far based on the past observations. Due to the

fact that the content library is massive and evolving, the standard soft-max and UCB algorithms

that are designed based on the assumption of stationary and unknown reward distribution of

individual arms may not be able to catch up with such rapid variations [36]. Hence, we modified

the UCB-1 algorithm by adding a discount factor β [36] as well as a weighting factor ρtb that

is proportional to the long-term discounted content demands. Such modification will encourage

the SBSs to cache those contents that are frequently requested in recent times but are not cached

that often. Specifically, a smaller value of β will be applied to emphasize more on the recent

observations when content evolution rate increases.

A. Computational Complexity Analysis

The computational burden of the proposed algorithm mainly lies in optimizing the cache

placement policy in step 5 of Algorithm 2 via Algorithm 1. As stated in the previous section,

the optimal or near optimal solution of problem in (10) can be found via the B&B algorithm,

the SDR approach [3] or the CCE method. The worst case complexity of the B&B algorithm is

O(F ′
∑
b∈Lb

Mb), which is the same as that of the exhaustive search [26]. The SDR approach

relaxes problem in (10) as a semidefinite programming problem, which can be solved via

the interior-point algorithm with a worst-case computational complexity of O(max{τs, Nb(F
′ +

1)}4τ 0.5
s log( 1

σ
)) [3], where σ is the solution accuracy and τs denotes the problem size of (10).
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In addition, a recovery approach is necessary to recover the rank-one solution and to reconstruct

the optimal caching decisions ctp, which will further increase the computational complexity

of the problem. The overall computational complexity of the CCE method in Algorithm 1 is

O(NbF
′MbNslogNs), and the main complexity lies in the performance evaluation of Ns samples

for the modified objective function S̃(ctp) as per step 5 of Algorithm 1. Thus, the complexity is

low and can be further reduced through a trade-off between the complexity and solution accuracy.

B. Signalling Overhead Analysis

Recall that the CU coordinates all content caching and delivery strategies based on channel

gain and user content demand information uploaded at each individual time slot from the SBSs.

In general, the signalling overhead of the proposed design consists of the following information

exchanges between the CU and the SBSs at each time slot t: (1) channel gain information {Ψt
bu}

uploaded from the SBSs to the CU; (2) user content demand information uploaded from the SBSs

to the CU; and (3) decisions on serving SBSs for the individual users dispatched from the CU

to the SBSs. The average signalling overheads incurred by the above information exchanges

at each time slot are, respectively, O(NbK), O(K) and O(K). In addition, the users’ cached

content directory is updated from the SBSs to the CU at every τ [flex] time slots, and the CU will

then send control commands on flexible cache update to the corresponding SBSs. The resulting

signalling overheads are, respectively, O(K) and O(2ξMbNb) at the most.

C. Performance Discussion and Future Directions

The dynamic regret analysis [31] of the standard discounted UCB algorithm has been con-

ducted in [36], where the upper-bound of the expected regret is established by upper-bounding

the expected number of times the suboptimal arms are selected. However, the regret analysis

is more challenging for our considered scenario, due to the fact that we consider multiple time

scales for main cache update from the content server, flexible cache update from the user caches,

and content delivery. Unlike standard MAB problem where one arm is played at each time, we
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cache multiple (differentiated) contents at multiple SBSs via content caching coordination among

SBSs during Phase III and replace some of the cached content with user cache during Phase II.

Hence, the regret analysis and/or performance guarantee is beyond what can be covered in this

paper, and we would like to leave it for our future work.

V. SIMULATION RESULTS

Consider a downlink small cell network comprising 3 neighbouring SBSs that serve K = 12

randomly deployed users. The non-stationary content library has an initial library of F = 200

contents and a finite capacity of F [max] = 250. The Phase III for SBSs’ main cache update occurs

every τ [main] = 8 time slots, where the capacity of caching unit at each SBS is Mb = 15 with

ξ = 0.2. The Phase II for flexible cache update takes place every τ [flex] = 3 time slots, where

N [new] = 2 new contents will be added to the content server and might be cached by at most 2

random users. The per-unit gross gains for SBSs to serve users directly from their local caches,

by fetching contents from caches of the other SBSs and by retrieving contents from the content

server are, respectively, π[local] = 1, π[SBS] = 0.5 and π[server] = 0.1, whilst the per-unit average

discount rate for users’ uploading incentives is κ[user] = 0.1. The users’ content request arrival

processes are modeled as independent homogenous Poisson point processes with request rate of

1 [32]. We adopt a classical independent reference model, i.e., the commonly used power-law

Zipf distribution [7], given by

θtu→∆u,f =
f−γ

t∑F ′

f=1 f
−γt

, f ∈ F t, u ∈ Lu, (15)

to model the actual content popularities of the users at time t that are unknown to the SBSs,

where γt = 2.5 is the Zipf exponent indicating the popularity skewness. The shift of content

popularity distribution at user u with respect to user u − 1, i.e., ∆u, is randomly drawn from

{0, 1, 2}. Note that we employ the Zipf distribution in the simulation just as an illustration to

evaluate our proposed caching algorithm, and the choice of the content popularity distribution
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model will not affect the effectiveness of our proposed algorithm. The channel gain is modelled

as Ψt
bu = ht

2

buGaLbue
−0.5

(σsln10)2

100 , where htbu ∼ CN(0, 1), Lbu(dB) = 128.1 + 37.6log10(`) [37] is

the path loss model over a distance of ` km between SBS b and user u, Ga = 15 dBi and σs = 10

dB denote, respectively, the antenna gain and the log-normal shadowing standard deviation. The

other simulation parameters are described, unless otherwise stated, as follows: coverage radius

Rb = 500 m, transmit power P [Tx]
b = 20 dBm, N = 100 random samples, N elite = 10 elite

samples, smoothing parameter α = 0.9, exploration/exploitation trade-off εt = 0.6, discount

factor β = 0.93 and global/local trade-off µt = 0.7. The proposed strategy is evaluated with

T = 1000 time slots for each set of parameter setting. Five designs that consider no user cache

are chosen as the benchmark designs, namely, the algorithm in [3], the algorithm in [26], the

EXP3-based caching design, the local popularity-based caching design and the random caching

design. All benchmark designs follow similar procedures of main cache update (Phase III) and

content delivery (Phase I) as for our proposed strategy, whereas, no user cache exploitation

(Phase II) is considered in the benchmark designs. For fair comparison, identical constraints

have been applied and the performance metrics, i.e., the average weighted network utility, are

the same for all strategies.

1) Benchmark design in [3]: The content popularity distribution is estimated via the standard

UCB-1 algorithm [33]. The estimated mean reward is set as the estimated popularity distribution,

given by Θ̄t
b,f =

Otb,f
Nt
b,f
, where Ot

b,f and N t
b,f denote, respectively, the long-term observation of

the request number of content f in SBS b, and the total number of time slots the requests of

content f are satisfied by local SBSs’ caches.

2) Benchmark design in [26]: The content popularity distribution is learned via the combi-

natorial UCB algorithm based on the past observation of user content demands. The estimated

mean reward is given by Θ̄t
b,f =

∑t
t′=1

∑
u∈Lbu

Sfd
t′
uf

Tb,f
.

3) EXP3-based caching design: The Exponential-weight algorithm for Exploration and Ex-

ploitation (EXP3)-based caching design caches contents via softmax action selection policy [38].
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More specifically, a list of weights are assigned to the individual contents and are adjusted

based on the instantaneous reward rtb,f . These weights are then utilized in a softmax-weighted

manner to decide randomly which contents to cache during the main cache update phase. For

fair comparison, the above three benchmark designs are embedded with a sliding-window [36],

which emphasizes more on the local empirical average of the recent observed rewards, so as to

better adapt to our considered scenario.

4) Local popularity-based caching design: It estimates the content popularity distribution at

the individual SBSs in a distributed way without any signalling with the CU, and caches contents

merely based on recent local content demand observations.

5) Random caching design: It randomly caches contents at the individual SBSs without con-

sidering any content caching coordination among SBSs. This design is employed to indicate the

lower bound and to demonstrate the advantage of the cooperative caching and joint optimization

of different caching locations.

6) Optimal caching design: For better evaluation of the proposed caching strategy, we further

adopt a user-aided optimal caching design to show the performance upper bound. The opti-

mal caching design has perfect prior knowledge of the actual content popularity distributions

{θtu,f}f∈Ft , and allows the SBSs to update their cache units in Phase III from the content server

as well as their flexible caches in Phase II with local users’ cached contents based on {θtu,f}f∈Ft .

Fig. 3 illustrates the comparison of average reward, i.e., the weighted network utility, of the

proposed caching strategy against various benchmark designs at the individual time slots. As can

be observed from the figure, the proposed strategy outperforms all of the five benchmark designs

due to the negligence of both the evolution of the content library and the potentiality of user

caches in the nature of their designs. To be specific, the benchmark designs in [3], [26] and the

EXP3-based caching design, respectively, employ standard UCB and EXP3 algorithms, which are

originally designed for stationary reward distributions, thus provide poorer adaptation to the non-

stationary content library. Furthermore, they merely focus on designing the content placement
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Fig. 3. Comparison of average weighted network utility for

different strategies at individual time slots.
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Fig. 4. Evolution of content placement policy via the CCE

method.

policies, whilst ignoring the network utility for content delivery, thus have worse performance

than our proposed design under the performance metric of average weighted network utility.

Meanwhile, the local popularity based caching design and the random caching design have the

worst performance among all designs. The reason is that they do not involve any signalling

with the CU hence have no centralized content caching coordination among SBSs. The former

caches contents merely based on recent local content demand observations, whilst the latter

simply caches contents randomly at the SBSs without any learning process to estimate the

unknown variations in user demands. In contrast, our proposed strategy, at the cost of light

signalling overhead, takes into account the spatio-temporal variations in users’ content demands,

and maximally benefits from the user caches through timely updating the SBS’s flexible cache

in addition to the main cache update from the server, thus provides a better adaptation to the

user demand variations.

Fig. 4 provides an illustration of the evolution of content placement policy of SBS 1 at the 1st,

the 8th, the 15th, the 25th and the 30th iterations of Algorithm 1 at the 9th time slot. It is clear from

the figure that by updating and smoothing the parameter vector p[n] as per step 6 and step 7 in
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Algorithm 1, respectively, better random samples can be produced in the subsequent iterations.

Furthermore, the CCE method in Algorithm 1 converges within approximately 30 iterations and

the outputs at the 25th iteration are close to the converged solutions, which indicates a much

lower complexity and a faster convergence speed as compared to the B&B algorithm.
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Fig. 5. Comparison of average overall reward for (a) various number of initial contents, (b) different capacity of individual

cache units at the SBSs.

Fig. 5(a) and Fig. 5(b) respectively, compares the average overall reward, i.e., the overall

weighted network utility averaged over T = 1000 time slots, of the proposed strategy against all

benchmark designs for different initial sizes of content library and for various storage capacity

at the SBSs. The initial size of library ranges from F = 50 to F = 400, with the finite content

library capacity set to be F [max] = F + 50, and the storage capacity at the SBSs ranges from 5

to 40. As can be observed from Fig. 5, the proposed strategy has a better average overall reward

as compared to the benchmark designs, since neither the time-varying content popularity nor the

non-stationary content library has been taken into consideration in their designs. Furthermore,

one may conclude from Fig. 5(a) that the average performance of all strategies degrades with

the increasing number of initial contents, due to the fact that larger content library naturally

results in more users’ content requests being satisfied by the content server. On the other hand,
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the performance of all strategies improves with the increasing capacity of the individual SBSs’

cache units in Fig. 5(b). The reason is that with larger caching space, the SBSs can cache more

(differentiated) popular contents locally and reduce duplicate data transmission from the content

server, and thus, offload more traffic from the content server to the edge.
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Fig. 6. Comparison of average overall reward for different (a) content popularity variations, (b) number of new contents.

Fig. 6(a) and Fig. 6(b) present the average overall rewards of all strategies for various actual

content popularity variations and different number of emerged new contents N [new], respectively.

It is evident from Fig. 6(a) that both the proposed strategy and the learning based benchmark

designs have improved performance with the increasing value of γt, whilst less influence is

observed for the random caching design under different values of γt. More specifically, with

larger value of γt and more diverse content popularities, the majority of the content demands of

the users are occupied by fewer most frequently requested contents, hence is more favourable

for the learning based caching designs. As can be concluded from Fig. 6(b), though having

better performance as compared to the random caching design, the average overall rewards of

the proposed strategy as well as other benchmark designs decrease with the increasing number

of N [new]. This is due to the fact that with a larger value of N [new], it is more challenging for the

learning process to catch up with such rapid changes in users’ content demands, especially when
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the knowledge of new changes is limited, e.g. limited samples of users’ new content requests,

and when the local caching space is constrained. However, the proposed strategy, as compared

to the benchmark designs, is more robust in coping with the spatio-temporal variations of user

demands. On the contrary, the variations in N [new] have less impacts on the random caching

design as it fails to satisfy users’ content requests for most of the time.

VI. CONCLUSION

The joint cache placement and content delivery problem in small cell networks is studied

in this paper, where the spatio-temporal dynamic content popularity is unknown a priori and

the content library evolves over time. To take the capacity-constrained cache units at the SBSs

into account, content caching coordination among SBSs is adopted to improve the caching

performance. To keep track of the dynamic content library, a portion of each cache unit is

assigned as the flexible cache that can be timely updated with the contents cached by users in

addition to the routine off-peak main cache update from the content server. Considering three

phases of different time scales for the content delivery, the flexible cache update and the main

cache update, the problem of interest is modelled as a RL-assisted optimization problem and a

user-assisted caching algorithm is proposed to maximize the long-term average weighted utility

of the network. Simulation results confirm the superiority of the proposed caching strategy in

achieving a significant performance improvement over various benchmark designs.
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