Calcium Homeostasis in Rat Sympathetic Neurones:
A Primary Role for the
Plasma Membrane Calcium ATPase

by

Nicolas Jean Wanaverbecq

2001

A thesis submitted for the Degree of
Doctor of Philosophy
University of London
Pour

Angie, Jo et Christiane
Abstract

Patch-clamp experiments combined with indo-1 measurement of free intracellular Ca^{2+} concentration ([Ca^{2+}]) were used to determine the homeostatic systems involved in the maintenance of resting [Ca^{2+}], and the clearance of Ca^{2+} transients following activation of voltage-gated Ca^{2+} channels in neurones from rat superior cervical ganglion (SCG).

In these neurones, the Ca^{2+} buffering capacity was estimated to be ≈ 1000 at [Ca^{2+}]_{i} close to rest and ≈ 250 at [Ca^{2+}]_{i} ≈ 1 μM and to involve at least two buffering systems with different affinities for Ca^{2+}.

Removal of extracellular Ca^{2+} led to a decrease in [Ca^{2+}]_{i} that was mimicked by the addition of La^{3+}. This decrease in [Ca^{2+}]_{i} was more pronounced after inhibition of the endoplasmic reticulum Ca^{2+} uptake system (SERCA) and subsequent depletion of the intracellular stores. Inhibition of the plasma membrane Ca^{2+} pump (PMCA) by intracellular carboxyeosin or extracellular alkalisation (pH 9) both increased resting [Ca^{2+}]_{i} and prolonged the recovery of Ca^{2+} transients at peak [Ca^{2+}]_{i} < 500 nM.

For [Ca^{2+}]_{i} loads > 500 nM, recovery showed an additional plateau phase that was abolished in carbonyl cyanide m-chlorohydrazone (CCCP) or on omitting Na^+ from the intracellular solution. Inhibition of the plasma membrane Na^+/Ca^{2+} exchanger (NCX) and of SERCA had a small but significant effect on the rate of decay of these larger Ca^{2+} transients. However, neither of these mechanisms appeared to contribute substantially to the recovery from rises in [Ca^{2+}]_{i} below 1 μM.

In conclusion, resting [Ca^{2+}]_{i} is maintained as the result of a passive Ca^{2+} influx regulated by a large Ca^{2+} buffering system, Ca^{2+} extrusion via a PMCA and Ca^{2+} transport from the intracellular stores. PMCA is also the principal Ca^{2+} extrusion system at low Ca^{2+} loads, with additional participation of the NCX and intracellular organelles at high [Ca^{2+}]_{i}.
Acknowledgements

The submission of the PhD thesis represents both the fulfilment of one's study and the first step into the scientific world. In my case the journey has been rather long (1996-2001) and complicated. It would have been certainly even more difficult without the help and assistance of several people to whom I am grateful and that I would like to thank.

My recognition goes first to Professor Paul Feltz who welcomed me in his laboratory and, unlike other members of University Louis Pasteur in Strasbourg, trusted my ability to succeed in research. My thanks go also to members of Paul's lab (Dr. Pascale Pigue, Professor Remy Schlichter and Dr. Jerome Trouslard) who helped me during my Master degree that, in other circumstances, would have led to the PhD.

I would also like to thank Dr. Malcolm P. Caulfield formerly at the Neurosciences institute in the University of Dundee and now enjoying the sunny weather in Australia! Malcolm offered me a fresh start after the loss of Paul Feltz and more importantly gave me the possibility to join University College of London.

I am finally particularly grateful to Professor David A. Brown to have accepted my transfer from Dundee and to have given me the possibility to reach the final stage of my PhD in his group. I would like to thank Dr. Steve J. Marsh for his help, advice, patience and many other things during the last three years. I wish also to acknowledge all the members of David's lab past and present that I met during my stay at UCL with a particular attention to Alex (Dr. Alexander A. Selyanko) who died at the end of September 2001.

Of course, I could not have accomplished any of this without the continuous support and attention of my parents and family and some close friends here in United Kingdom, in Italy and back in France.
Publications and Communications

CHAPTER I GENERAL INTRODUCTION 16
1. Why is intracellular calcium so precisely controlled? 17
2. Calcium enters the cytosol through specialised channels 18
 2.1. Voltage-activated calcium channels .. 18
 2.2. Ligand-operated calcium-permeable channels 21
 2.2.1. Calcium influx through ionotropic receptors 21
 2.2.2. Capacitative and store-operated calcium influx 22
3. Intracellular calcium buffering ... 24
 3.1. Some general aspects about calcium buffering 25
 3.2. Calcium binding proteins with a 'EF-hand' motif 25
 3.2.1. Calmodulin ... 26
 3.2.2. Parvalbumin .. 27
 3.2.3. Calbindin D_{28k} ... 28
 3.3. Endogenous calcium buffering properties 28
4. Intracellular organelles and calcium regulation 31
 4.1. The mitochondria ... 32
 4.1.1. Some general aspects about mitochondria 32
 4.1.2. Mitochondrial calcium transport mechanisms 32
 4.1.2.1. Mitochondrial calcium uniporter 33
 4.1.2.2. Calcium efflux mechanisms 35
4.1.2.3. The mitochondrial permeability transition pore .. 36
4.1.3. Physiological role of the mitochondrial calcium transport 37
 4.1.3.1. Calcium cycling in mitochondria ... 37
 4.1.3.2. Mitochondrial role in calcium homeostasis .. 37
4.2. The endoplasmic reticulum .. 40
 4.2.1. Some general aspects about the endoplasmic reticulum 40
 4.2.2. Calcium sequestration into intracellular stores .. 41
 4.2.2.1. Structure of the sarco/endoplasmic calcium ATPase 41
 4.2.2.2. SERCA isoforms and tissue specific expression 42
 4.2.2.3. Regulation of SERCA activity .. 42
 4.2.3. Calcium binding proteins of the endoplasmic reticulum 43
 4.2.4. Main routes for calcium release into the cytosol 44
 4.2.4.1. Inositol triphosphate receptors ... 44
 4.2.4.2. Ryanodine receptors .. 45
 4.2.4.3. New calcium-releasing messenger ... 48
 4.2.5. Role of intracellular stores in shaping calcium signals 49
4.3. Interactions between mitochondria and calcium store 52
5. Calcium extrusion through the plasma membrane ... 53
 5.1. The plasma membrane calcium ATPase ... 53
 5.1.1. PMCA function ... 53
 5.1.2. PMCA structure .. 55
 5.1.3. Isoform specific regulation and tissue distribution of PMCA 56
 5.2. The sodium/calcium exchanger ... 59
 5.2.1. NCX structure ... 60
 5.2.2. NCX function ... 61
 5.2.3. NCX regulation of intracellular calcium in neurones 62
6. Rat sympathetic neurones and intracellular calcium ... 63

CHAPTER II MATERIALS AND METHODS ... 66
1. Tissue Culture ... 67
 1.1. Dissection of rat superior cervical ganglion ... 67
 1.2. Culture of rat sympathetic neurones ... 67
 1.3. Culture solutions and growth medium ... 68
2. Electrophysiological recordings ... 68
 2.1. Recording apparatus .. 68
 2.2. Recording configurations ... 69
 2.2.1. Perforated patch configuration ... 69
 2.2.2. The whole-cell configuration ... 71
2.3. Voltage protocols .. 71
2.4. Perfusion media and intracellular solutions ... 72
 2.4.1. Composition of the extracellular solutions 72
 2.4.2. Perfusion system and fast application ... 73
 2.4.3. Composition of the intracellular solutions 73

3. Monitoring free intracellular calcium concentration 74
 3.1. Indo-1 as a calcium indicator ... 74
 3.2. Experimental apparatus ... 75
 3.3. Measurement of intracellular calcium .. 77
 3.3.1. The ratiometric method for calcium measurements 77
 3.3.2. Indo-1 calibration ... 78
 3.3.3. Calculation of free intracellular calcium 80
 3.3.4. Cell loading with indo-1 .. 80
 3.3.5. Recording of free intracellular calcium 81

4. Monitoring intracellular pH ... 81
 4.1. Experimental apparatus ... 82
 4.2. Measurement of intracellular pH .. 82
 4.2.1. The ratiometric method for intracellular pH measurements 82
 4.2.2. BCECF calibration for intracellular pH measurements 84
 4.2.3. Cell loading with BCECF .. 86
 4.2.4. Recording of intracellular pH ... 86

5. Drugs and chemicals ... 88

6. Data analysis ... 88
 6.1. Calibration curves ... 88
 6.2. Decay time constants ... 88
 6.3. Statistics ... 89

7. Immunocytochemistry .. 91
 7.1. Procedure for immunocytochemistry ... 92
 7.2. Image acquisition and analysis ... 92
 7.2.1. Image acquisition ... 92
 7.2.2. Image analysis ... 93

8. Molecular biology ... 96
 8.1. mRNA Extraction ... 97
 8.2. Reverse transcription ... 97
 8.3. Polymerase chain reaction .. 98
CHAPTER III RESULTS.. 100

1. Calcium currents and changes in intracellular calcium 101
 1.1. Activation of voltage-dependent calcium channels 101
 1.2. Changes in the free intracellular calcium concentration 103
 1.3. Discussion ... 112

2. Endogenous calcium buffering capacity .. 118
 2.1. Free calcium concentration versus calcium charge transfer 118
 2.2. Calculation of the total calcium entering the cytosol 121
 2.3. The endogenous calcium binding ratio in SCG neurones 123
 2.4. Discussion ... 126

3. Mitochondrial regulation of the intracellular calcium 133
 3.1. Mitochondrial calcium sequestration and release mechanisms 133
 3.2. Sodium dependence of the mitochondrial calcium release 137
 3.3. Discussion ... 142

4. Intracellular calcium regulation and endoplasmic reticulum 147
 4.1. Intracellular stores release and sequester calcium 147
 4.2. Role of the intracellular stores in the clearance of calcium transients 150
 4.2.1. SERCA inhibition with cyclopiazonic acid 150
 4.2.2. SERCA inhibition with thapsigargin 152
 4.3. Calcium clearance following SERCA activation 154
 4.4. SCG neurones mainly express the SERCA-3 isoform 157
 4.5. Discussion ... 159

5. Plasma membrane calcium ATPase and intracellular calcium 165
 5.1. Calcium extrusion through PMCA .. 165
 5.2. PMCA inhibition with carboxyeosin 169
 5.3. Intracellular acidification following PMCA activation 171
 5.4. PMCA expression in SCG neurones 173
 5.4.1. In SCG mRNA transcripts for all PMCA isoforms are found 173
 5.4.2. All four PMCA isoforms are present in SCG neurones 175
 5.5. Discussion ... 178

6. Sodium/calcium exchanger and intracellular calcium 183
 6.1. Calcium extrusion through NCX .. 183
 6.2. Reverse mode of NCX ... 185
 6.3. NCX expression in SCG neurones .. 188
 6.3.1. The three NCX isoforms are expressed in whole SCG 188
 6.3.2. NCX is expressed at a low level in SCG neurones 190
6.4. Discussion ...191

7. Control of resting calcium concentration ... 194
 7.1. Passive calcium influx and active extrusion ... 194
 7.2. Intracellular stores and maintenance of resting calcium .. 197
 7.3. Nature of the passive calcium influx .. 197
 7.4. Discussion ... 206

CHAPTER IV GENERAL DISCUSSION ... 210
1. Calcium homeostasis in rat sympathetic neurones .. 211
2. Regulation of resting intracellular calcium ... 212
3. Mechanisms involved in the clearance of calcium .. 216
4. Clearance of depolarisation-induced calcium transients 220
 4.1. Calcium clearance from small rises in intracellular calcium............................... 220
 4.2. Calcium clearance from large rises in intracellular calcium............................... 221
5. Conclusion ... 225
6. Future directions ... 226

CHAPTER V REFERENCES ... 229
List of Figures

CHAPTER II MATERIALS AND METHODS

2. Electrophysiological recordings
 Figure 1: Patch-clamp recording configurations .. 70

3. Monitoring free intracellular calcium concentration
 Figure 2: Experimental apparatus for calcium imaging with indo-1 76
 Figure 3: Indo-1 calibration curve for the determination of [Ca^{2+}] 79

4. Monitoring intracellular pH
 Figure 4: Experimental apparatus for intracellular pH imaging with BCECF 83
 Figure 5: BCECF calibration curve for the determination of [H^+] 85
 Figure 6: Intracellular pH recording .. 87

6. Data analysis
 Figure 7: Fitting procedure and clearance rate determination 90

7. Immunocytochemistry
 Figure 8: Principle of the digital deconvolution ... 94
 Figure 9: Validity of the digital deconvolution method for image analysis 95

CHAPTER III RESULTS

1. Calcium currents and changes in intracellular calcium
 Figure 10: Somatic activation of high voltage-activated Ca^{2+} channels 102
 Figure 11: The N-type Ca^{2+} current is predominant in the soma of SCG neurones 104
 Figure 12: Variations in [Ca^{2+}], recorded from the changes in the fluorescence properties of indo-1 ... 105
 Figure 13: The kinetics of Ca^{2+} transients' recovery depends on the amplitude of the rise in [Ca^{2+}]. ... 107
 Figure 14: Changes in the kinetics of the Ca^{2+} transients' recovery phase with the increase in [Ca^{2+}] ... 108
 Figure 15: Plot of the decay time constant and amplitude for each component of the exponential recovery versus the net rise in [Ca^{2+}] 109
 Figure 16: Plot of the fast component contribution to the overall recovery phase and clearance rate for biexponential decays ... 111
 Figure 17: Small and Large Ca^{2+} transients and the corresponding Ca^{2+} current 116

2. Endogenous calcium buffering capacity
 Figure 18: Rise in [Ca^{2+}], and the corresponding I_{Ca} induced by depolarising steps of increasing duration ... 119
 Figure 19: Net variation in the Ca^{2+} charge transfer as a function of the depolarisation duration ... 120
Figure 20: Net variation in $[Ca^{2+}]$, as a function of the Ca^{2+} charge transfer and the estimated $[Ca^{2+}]_{total}$...122
Figure 21: Endogenous calcium buffering capacity ..125
Figure 22: Properties of the calcium binding to EGTA ...128
Figure 23: Comparison of the Ca^{2+} binding ratios calculated for EGTA and determined in situ ...130

3. Mitochondrial regulation of the intracellular calcium

Figure 24: Mitochondrial inhibition with CCCP affects the regulation of $[Ca^{2+}]$134
Figure 25: CCCP delays the initial phase from large Ca^{2+} transients but also abolishes the plateau phase ...136
Figure 26: In the presence of CCCP the recovery phase of small calcium transients is accelerated ...138
Figure 27: Sodium dependence of the mitochondrial Ca^{2+} release during large Ca^{2+} transients ..139
Figure 28: The recovery of small Ca^{2+} transients is not affected by the removal of intracellular sodium ...141

4. Endoplasmic reticulum and regulation of intracellular calcium

Figure 29: Calcium release from and sequestration into the endoplasmic reticulum ...148
Figure 30: Thapsigargin inhibits Ca^{2+} sequestration into the endoplasmic reticulum and activates a Ca^{2+} influx through the plasma membrane149
Figure 31: CPA is without effect on the recovery of small Ca^{2+} transients but prolongs the decay of large Ca^{2+} transients ...151
Figure 32: Thapsigargin is without effect on the recovery of small Ca^{2+} transients but prolongs the decay of large Ca^{2+} transients ...153
Figure 33: Caffeine effects on calcium uptake into the reticulum endoplasmic and on the recovery of depolarisation-induced calcium transients156
Figure 34: SERCA-3 is the predominant isoform expressed in SCG neurones and is primarily localised close to the somatic plasma membrane158

5. Plasma membrane calcium ATPase and intracellular calcium

Figure 35: Effects of extracellular alkalisation on resting $[Ca^{2+}]$, and on the clearance of small depolarisation-induced Ca^{2+} transients ..166
Figure 36: Effects of extracellular alkalisation on the clearance of large depolarisation-induced Ca^{2+} transients ...168
Figure 37: Effects of intracellular carboxyeosin on resting $[Ca^{2+}]$, and on the clearance of large depolarisation-induced Ca^{2+} transients ..170
Figure 38: Intracellular carboxyeosin prolongs the Ca^{2+} transients' recovery172
Figure 39: Intracellular acidification following Ca^{2+} extrusion through PMCA174
Figure 40: Superior cervical ganglia express mRNA for all PMCA isoforms and the PMCA protein is present in the plasma membrane of neurones176
6. Sodium/calcium exchanger and intracellular calcium

Figure 41: Neurones in SCG express all four PMCA isoforms at the level of the plasma membrane ...177

Figure 42: Sodium-dependent extrusion of large but not small rises in \([\text{Ca}^{2+}]_i\)184

Figure 43: NCX regulates low \([\text{Ca}^{2+}]_i\), when PMCA is inhibited and induces \(\text{Ca}^{2+}\) influx in the reverse transport mode ..186

Figure 44: NCX is expressed at a low level on the soma of SCG neurones189

7. Control of resting calcium concentration at rest

Figure 45: Resting \([\text{Ca}^{2+}]_i\) is maintained through a passive influx and an active extrusion of \(\text{Ca}^{2+}\) ..195

Figure 46: Effect of extracellular \(\text{Ca}^{2+}\) removal and/or extracellular alkalisation on resting \([\text{Ca}^{2+}]_i\) ...196

Figure 47: SERCA inhibition induces larger and faster decrease in \([\text{Ca}^{2+}]_i\), when the extracellular \(\text{Ca}^{2+}\) is removed ...198

Figure 48: The passive \(\text{Ca}^{2+}\) influx is lanthanum-sensitive ..199

Figure 49: Effects of lanthanum on resting \([\text{Ca}^{2+}]_i\), and on the rise in \([\text{Ca}^{2+}]_i\) induced after PMCA inhibition ...200

Figure 50: Lanthanum completely blocks the rise in \([\text{Ca}^{2+}]_i\), induced at pH 9202

Figure 51: Cadmium is without effect on resting \([\text{Ca}^{2+}]_i\), and does not block the pH-induced rise in \([\text{Ca}^{2+}]_i\) ...203

Figure 52: Extracellular alkalisation and lanthanum are without effect on the spectral properties of indo-1 ...204

CHAPTER IV GENERAL DISCUSSION AND CONCLUSION

2. Regulation of resting intracellular calcium

Figure 53: A model for the maintenance of resting \([\text{Ca}^{2+}]_i\) ..213

3. Mechanisms involved in the clearance of calcium

Figure 54: Summary of the \(\text{Ca}^{2+}\) clearance in rat SCG neurones217

4. Clearance of depolarisation-induced calcium transients

Figure 55: A model for \(\text{Ca}^{2+}\) clearance from small rises in \([\text{Ca}^{2+}]_i\)222

Figure 56: A model for \(\text{Ca}^{2+}\) clearance from large rises in \([\text{Ca}^{2+}]_i\)224

13
List of Tables

CHAPTER II MATERIALS AND METHODS

2. Electrophysiological recordings
 Table 1: Composition of the extracellular solutions .. 72
 Table 2: Composition of the intracellular solutions .. 74

3. Monitoring free intracellular calcium concentration
 Table 3: Indo-1 407/480 emission ratio obtained for various [Ca\(^{2+}\)] 79

4. Monitoring intracellular pH
 Table 4: BCECF 445/470 excitation ratio obtained for various [H\(^+\)] 84

7. Immunocytochemistry
 Table 5: List of the primary antibodies used for immunocytochemistry 91
 Table 6: Characteristics of the secondary antibodies 92

8. Molecular biology
 Table 7: Forward and reverse primer sequences used for PCR reactions 99

CHAPTER III RESULTS

2. Endogenous calcium buffering capacity
 Table 8: Ca\(^{2+}\) binding ratio at representative \(\Delta[Ca^{2+}]\), and corresponding [Ca\(^{2+}\)] local ... 126

3. Mitochondrial regulation of the intracellular calcium
 Table 9: Effect of CCCP on the properties of Ca\(^{2+}\) transients 135
 Table 10: Effect of intracellular Na\(^+\) removal on the properties of Ca\(^{2+}\) transients 140

4. Endoplasmic reticulum and regulation of intracellular calcium
 Table 11: Effect of CPA on the properties of Ca\(^{2+}\) transients 152
 Table 12: Effect of thapsigargin on the properties of Ca\(^{2+}\) transients 154

5. Plasma membrane calcium ATPase and intracellular calcium
 Table 13: Effect of extracellular alkalisation on the properties of Ca\(^{2+}\) transients 167
 Table 14: Effect of intracellular carboxy eosin on the properties of Ca\(^{2+}\) transients 171

6. Sodium/calcium exchanger and intracellular calcium
 Table 15: Effect of extracellular Na\(^+\) removal on the properties of Ca\(^{2+}\) transients 183
List of Abbreviations

\[[\text{Ca}^{2+}]_i \]: intracellular free \(\text{Ca}^{2+} \) concentration
\[[\text{Ca}^{2+}]_L \]: free \(\text{Ca}^{2+} \) concentration of the ER lumen
\[[\text{Ca}^{2+}]_m \]: free \(\text{Ca}^{2+} \) concentration of the mitochondrial matrix
BCECF: \(2',7'\)-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein
CaBP: Ca\(^{2+}\) binding protein
cADPr: cyclic adenosine diphosphate ribose
CaM: calmodulin
CCCP: carbonyl cyanide \(m \)-chlorophenyl hydrazone
CE: 5,6-succinylmidyl carboxyeosin
CGP: benzothiazepine CGP-37157
CICR: \(\text{Ca}^{2+} \)-induced \(\text{Ca}^{2+} \) release
CPA: cyclopiazonic acid
CRAC: \(\text{Ca}^{2+} \) release activated \(\text{Ca}^{2+} \) (channel)
ER: endoplasmic reticulum
FCCP: carbonyl cyanide \(p \)-trifluromethoxy-phenylhydrazone
IP\(_3\): inositol 1,4,5-triphosphate
IP\(_3\)R: inositol 1,4,5-triphosphate receptor
\(m \)CU: mitochondrial \(\text{Ca}^{2+} \) uniporter
\(m \)NCX: mitochondrial \(\text{Na}^{+}/\text{Ca}^{2+} \) exchanger
MPTP: mitochondrial permeability transition pore
NAADP: nicotinic acid adenine dinucleotide phosphate
nAChR: nicotinic cholinergic receptor
NCX: \(\text{Na}^{+}/\text{Ca}^{2+} \) exchanger
NMDG: N-methyl D glucamine
PKA: protein kinase A
PKC: protein kinase C
PLC: phospholipase C
PMCA: plasma membrane \(\text{Ca}^{2+} \)-ATPase
RuR: ruthenium red
RyR: ryanodine receptor
SCG: superior cervical ganglion
SERCA: sarco/endoplasmic \(\text{Ca}^{2+} \)-ATPase
SOCC: store operated \(\text{Ca}^{2+} \) channels
TG: thapsigargin
TRP: transient receptor potential
VACC: voltage-activated \(\text{Ca}^{2+} \) channel
Publications and Communications

CHAPTER I GENERAL INTRODUCTION ... 16

1. Why is intracellular calcium so precisely controlled? 17

2. Calcium enters the cytosol through specialised channels 18

 2.1. Voltage-activated calcium channels .. 18

 2.2. Ligand-operated calcium-permeable channels 21

 2.2.1. Calcium influx through ionotropic receptors 21

 2.2.2. Capacitative and store-operated calcium influx 22

3. Intracellular calcium buffering .. 24

 3.1. Some general aspects about calcium buffering 25

 3.2. Calcium binding proteins with a 'EF-hand' motif 25

 3.2.1. Calmodulin ... 26

 3.2.2. Parvalbumin .. 27

 3.2.3. Calbindin D_{28} ... 28

 3.3. Endogenous calcium buffering properties 28

4. Intracellular organelles and calcium regulation 31

 4.1. The mitochondria ... 32

 4.1.1. Some general aspects about mitochondria 32

 4.1.2. Mitochondrial calcium transport mechanisms 32

 4.1.2.1. Mitochondrial calcium uniporter 33

 4.1.2.2. Calcium efflux mechanisms 35
4.1.2.3. The mitochondrial permeability transition pore .. 36
4.1.3. Physiological role of the mitochondrial calcium transport 37
 4.1.3.1. Calcium cycling in mitochondria .. 37
 4.1.3.2. Mitochondrial role in calcium homeostasis ... 37

4.2. The endoplasmic reticulum ... 40
 4.2.1. Some general aspects about the endoplasmic reticulum 40
 4.2.2. Calcium sequestration into intracellular stores 41
 4.2.2.1. Structure of the sarco/endoplasmic calcium ATPase 41
 4.2.2.2. SERCA isoforms and tissue specific expression 42
 4.2.2.3. Regulation of SERCA activity .. 42
 4.2.3. Calcium binding proteins of the endoplasmic reticulum 43
 4.2.4. Main routes for calcium release into the cytosol 44
 4.2.4.1. Inositol triphosphate receptors .. 44
 4.2.4.2. Ryanodine receptors ... 45
 4.2.4.3. New calcium-releasing messenger ... 48
 4.2.5. Role of intracellular stores in shaping calcium signals 49

4.3. Interactions between mitochondria and calcium store 52

5. Calcium extrusion through the plasma membrane .. 53
 5.1. The plasma membrane calcium ATPase .. 53
 5.1.1. PMCA function ... 53
 5.1.2. PMCA structure ... 55
 5.1.3. Isoform specific regulation and tissue distribution of PMCA 56
 5.2. The sodium/calcium exchanger .. 59
 5.2.1. NCX structure .. 60
 5.2.2. NCX function .. 61
 5.2.3. NCX regulation of intracellular calcium in neurones 62

6. Rat sympathetic neurones and intracellular calcium 63

CHAPTER II MATERIALS AND METHODS 66
1. Tissue Culture ... 67
 1.1. Dissection of rat superior cervical ganglion ... 67
 1.2. Culture of rat sympathetic neurones ... 67
 1.3. Culture solutions and growth medium .. 68
2. Electrophysiological recordings .. 68
 2.1. Recording apparatus ... 68
 2.2. Recording configurations ... 69
 2.2.1. Perforated patch configuration ... 69
 2.2.2. The whole-cell configuration ... 71
2.3. Voltage protocols ... 71
2.4. Perfusion media and intracellular solutions 72
 2.4.1. Composition of the extracellular solutions 72
 2.4.2. Perfusion system and fast application 73
 2.4.3. Composition of the intracellular solutions 73
3. Monitoring free intracellular calcium concentration 74
 3.1. Indo-1 as a calcium indicator ... 74
 3.2. Experimental apparatus ... 75
 3.3. Measurement of intracellular calcium 77
 3.3.1. The ratiometric method for calcium measurements 77
 3.3.2. Indo-1 calibration .. 78
 3.3.3. Calculation of free intracellular calcium 80
 3.3.4. Cell loading with indo-1 .. 80
 3.3.5. Recording of free intracellular calcium 81
4. Monitoring intracellular pH ... 81
 4.1. Experimental apparatus ... 82
 4.2. Measurement of intracellular pH 82
 4.2.1. The ratiometric method for intracellular pH measurements 82
 4.2.2. BCECF calibration for intracellular pH measurements 84
 4.2.3. Cell loading with BCECF ... 86
 4.2.4. Recording of intracellular pH 86
5. Drugs and chemicals .. 88
6. Data analysis ... 88
 6.1. Calibration curves .. 88
 6.2. Decay time constants ... 88
 6.3. Statistics ... 89
7. Immunocytochemistry .. 91
 7.1. Procedure for immunocytochemistry 92
 7.2. Image acquisition and analysis .. 92
 7.2.1. Image acquisition .. 92
 7.2.2. Image analysis ... 93
8. Molecular biology .. 96
 8.1. mRNA Extraction .. 97
 8.2. Reverse transcription .. 97
 8.3. Polymerase chain reaction .. 98
Chapter III Results

1. Calcium currents and changes in intracellular calcium 101
 1.1. Activation of voltage-dependent calcium channels 101
 1.2. Changes in the free intracellular calcium concentration 103
 1.3. Discussion ... 112

2. Endogenous calcium buffering capacity 118
 2.1. Free calcium concentration versus calcium charge transfer 118
 2.2. Calculation of the total calcium entering the cytosol 121
 2.3. The endogenous calcium binding ratio in SCG neurones 123
 2.4. Discussion ... 126

3. Mitochondrial regulation of the intracellular calcium 133
 3.1. Mitochondrial calcium sequestration and release mechanisms 133
 3.2. Sodium dependence of the mitochondrial calcium release 137
 3.3. Discussion ... 142

4. Intracellular calcium regulation and endoplasmic reticulum 147
 4.1. Intracellular stores release and sequester calcium 147
 4.2. Role of the intracellular stores in the clearance of calcium transients 150
 4.2.1. SERCA inhibition with cyclopiazonic acid 150
 4.2.2. SERCA inhibition with thapsigargin 152
 4.3. Calcium clearance following SERCA activation 154
 4.4. SCG neurones mainly express the SERCA-3 isoform 157
 4.5. Discussion ... 159

5. Plasma membrane calcium ATPase and intracellular calcium 165
 5.1. Calcium extrusion through PMCA ... 165
 5.2. PMCA inhibition with carboxyeosin 169
 5.3. Intracellular acidification following PMCA activation 171
 5.4. PMCA expression in SCG neurones 173
 5.4.1. In SCG mRNA transcripts for all PMCA isoforms are found 173
 5.4.2. All four PMCA isoforms are present in SCG neurones 175
 5.5. Discussion ... 178

6. Sodium/calcium exchanger and intracellular calcium 183
 6.1. Calcium extrusion through NCX ... 183
 6.2. Reverse mode of NCX ... 185
 6.3. NCX expression in SCG neurones .. 188
 6.3.1. The three NCX isoforms are expressed in whole SCG 188
 6.3.2. NCX is expressed at a low level in SCG neurones 190
List of Figures

CHAPTER II MATERIALS AND METHODS

2. Electrophysiological recordings
 Figure 1: Patch-clamp recording configurations ...70

3. Monitoring free intracellular calcium concentration
 Figure 2: Experimental apparatus for calcium imaging with indo-176
 Figure 3: Indo-1 calibration curve for the determination of [Ca^{2+}]79

4. Monitoring intracellular pH
 Figure 4: Experimental apparatus for intracellular pH imaging with BCECF83
 Figure 5: BCECF calibration curve for the determination of [H^+]85
 Figure 6: Intracellular pH recording ...87

6. Data analysis
 Figure 7: Fitting procedure and clearance rate determination ...90

7. Immunocytochemistry
 Figure 8: Principle of the digital deconvolution ...94
 Figure 9: Validity of the digital deconvolution method for image analysis95

CHAPTER III RESULTS

1. Calcium currents and changes in intracellular calcium
 Figure 10: Somatic activation of high voltage-activated Ca^{2+} channels102
 Figure 11: The N-type Ca^{2+} current is predominant in the soma of SCG neurones104
 Figure 12: Variations in [Ca^{2+}], recorded from the changes in the fluorescence properties of indo-1 ...105
 Figure 13: The kinetics of Ca^{2+} transients' recovery depends on the amplitude of the rise in [Ca^{2+}] ...107
 Figure 14: Changes in the kinetics of the Ca^{2+} transients' recovery phase with the increase in [Ca^{2+}] ...108
 Figure 15: Plot of the decay time constant and amplitude for each component of the exponential recovery versus the net rise in [Ca^{2+}] ...109
 Figure 16: Plot of the fast component contribution to the overall recovery phase and clearance rate for biexponential decays ...111
 Figure 17: Small and Large Ca^{2+} transients and the corresponding Ca^{2+} current116

2. Endogenous calcium buffering capacity
 Figure 18: Rise in [Ca^{2+}], and the corresponding I_{Ca} induced by depolarising steps of increasing duration ...119
 Figure 19: Net variation in the Ca^{2+} charge transfer as a function of the depolarisation duration ...120
Figure 20: Net variation in $[\text{Ca}^{2+}]$ as a function of the Ca^{2+} charge transfer and the estimated $[\text{Ca}^{2+}]_{\text{total}}$..122

Figure 21: Endogenous calcium buffering capacity ..125

Figure 22: Properties of the calcium binding to EGTA ...128

Figure 23: Comparison of the Ca^{2+} binding ratios calculated for EGTA and determined in situ130

3. Mitochondrial regulation of the intracellular calcium

Figure 24: Mitochondrial inhibition with CCCP affects the regulation of $[\text{Ca}^{2+}]$..134

Figure 25: CCCP delays the initial phase from large Ca^{2+} transients but also abolishes the plateau phase136

Figure 26: In the presence of CCCP the recovery phase of small calcium transients is accelerated ..138

Figure 27: Sodium dependence of the mitochondrial Ca^{2+} release during large Ca^{2+} transients139

Figure 28: The recovery of small Ca^{2+} transients is not affected by the removal of intracellular sodium141

4. Endoplasmic reticulum and regulation of intracellular calcium

Figure 29: Calcium release from and sequestration into the endoplasmic reticulum ..148

Figure 30: Thapsigargin inhibits Ca^{2+} sequestration into the endoplasmic reticulum and activates a Ca^{2+} influx through the plasma membrane ...149

Figure 31: CPA is without effect on the recovery of small Ca^{2+} transients but prolongs the decay of large Ca^{2+} transients ..151

Figure 32: Thapsigargin is without effect on the recovery of small Ca^{2+} transients but prolongs the decay of large Ca^{2+} transients ..153

Figure 33: Caffeine effects on calcium uptake into the reticulum endoplasmic and on the recovery of depolarisation-induced calcium transients ..156

Figure 34: SERCA-3 is the predominant isoform expressed in SCG neurones and is primarily localised close to the somatic plasma membrane ...158

5. Plasma membrane calcium ATPase and intracellular calcium

Figure 35: Effects of extracellular alkalisation on resting $[\text{Ca}^{2+}]$, and on the clearance of small depolarisation-induced Ca^{2+} transients ...166

Figure 36: Effects of extracellular alkalisation on the clearance of large depolarisation-induced Ca^{2+} transients168

Figure 37: Effects of intracellular carboxyeosin on resting $[\text{Ca}^{2+}]$, and on the clearance of large depolarisation-induced Ca^{2+} transients ...170

Figure 38: Intracellular carboxyeosin prolongs the Ca^{2+} transients' recovery ..172

Figure 39: Intracellular acidification following Ca^{2+} extrusion through PMCA ...174

Figure 40: Superior cervical ganglia express mRNA for all PMCA isoforms and the PMCA protein is present in the plasma membrane of neurones ...176
Figure 41: Neurones in SCG express all four PMCA isoforms at the level of the plasma membrane ... 177

6. Sodium/calcium exchanger and intracellular calcium

Figure 42: Sodium-dependent extrusion of large but not small rises in $[Ca^{2+}]$ 184

Figure 43: NCX regulates low $[Ca^{2+}]$, when PMCA is inhibited and induces Ca^{2+} influx in the reverse transport mode .. 186

Figure 44: NCX is expressed at a low level on the soma of SCG neurones 189

7. Control of resting calcium concentration at rest

Figure 45: Resting $[Ca^{2+}]_i$ is maintained through a passive influx and an active extrusion of Ca^{2+} .. 195

Figure 46: Effect of extracellular Ca$^{2+}$ removal and/or extracellular alkalisation on resting $[Ca^{2+}]$.. 196

Figure 47: SERCA inhibition induces larger and faster decrease in $[Ca^{2+}]$, when the extracellular Ca$^{2+}$ is removed .. 198

Figure 48: The passive Ca$^{2+}$ influx is lanthanum-sensitive ... 199

Figure 49: Effects of lanthanum on resting $[Ca^{2+}]_i$ and on the rise in $[Ca^{2+}]_i$ induced after PMCA inhibition .. 200

Figure 50: Lanthanum completely blocks the rise in $[Ca^{2+}]_i$ induced at pH 9 202

Figure 51: Cadmium is without effect on resting $[Ca^{2+}]_i$ and does not block the pH-induced rise in $[Ca^{2+}]_i$... 203

Figure 52: Extracellular alkalisation and lanthanum are without effect on the spectral properties of indo-1 ... 204

CHAPTER IV GENERAL DISCUSSION AND CONCLUSION

2. Regulation of resting intracellular calcium

Figure 53: A model for the maintenance of resting $[Ca^{2+}]$... 213

3. Mechanisms involved in the clearance of calcium

Figure 54: Summary of the Ca^{2+} clearance in rat SCG neurones 217

4. Clearance of depolarisation-induced calcium transients

Figure 55: A model for Ca^{2+} clearance from small rises in $[Ca^{2+}]$ 222

Figure 56: A model for Ca^{2+} clearance from large rises in $[Ca^{2+}]$ 224
List of Tables

CHAPTER II MATERIALS AND METHODS

2. Electrophysiological recordings
 Table 1: Composition of the extracellular solutions ...72
 Table 2: Composition of the intracellular solutions ..74

3. Monitoring free intracellular calcium concentration
 Table 3: Indo-1 407/480 emission ratio obtained for various [Ca^{2+}]79

4. Monitoring intracellular pH
 Table 4: BCECF 445/470 excitation ratio obtained for various [H^+]84

7. Immunocytochemistry
 Table 5: List of the primary antibodies used for immunocytochemistry91
 Table 6: Characteristics of the secondary antibodies ...92

8. Molecular biology
 Table 7: Forward and reverse primer sequences used for PCR reactions99

CHAPTER III RESULTS

2. Endogenous calcium buffering capacity
 Table 8: Ca^{2+} binding ratio at representative Δ[Ca^{2+}] and corresponding [Ca^{2+}]_{inot} ...126

3. Mitochondrial regulation of the intracellular calcium
 Table 9: Effect of CCCP on the properties of Ca^{2+} transients135
 Table 10: Effect of intracellular Na^{+} removal on the properties of Ca^{2+} transients ...140

4. Endoplasmic reticulum and regulation of intracellular calcium
 Table 11: Effect of CPA on the properties of Ca^{2+} transients152
 Table 12: Effect of thapsigargin on the properties of Ca^{2+} transients154

5. Plasma membrane calcium ATPase and intracellular calcium
 Table 13: Effect of extracellular alkalisation on the properties of Ca^{2+} transients ...167
 Table 14: Effect of intracellular carboxyeosin on the properties of Ca^{2+} transients ...171

6. Sodium/calcium exchanger and intracellular calcium
 Table 15: Effect of extracellular Na^{+} removal on the properties of Ca^{2+} transients ...183
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{Ca}^{2+}]_i$</td>
<td>intracellular free Ca^{2+} concentration</td>
</tr>
<tr>
<td>$[\text{Ca}^{2+}]_{\text{ER}}$</td>
<td>free Ca^{2+} concentration of the ER lumen</td>
</tr>
<tr>
<td>$[\text{Ca}^{2+}]_{\text{m}}$</td>
<td>free Ca^{2+} concentration of the mitochondrial matrix</td>
</tr>
<tr>
<td>BCECF</td>
<td>2',7'-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein</td>
</tr>
<tr>
<td>CaBP</td>
<td>Ca^{2+} binding protein</td>
</tr>
<tr>
<td>cADPr</td>
<td>cyclic adenosine diphosphate ribose</td>
</tr>
<tr>
<td>CaM</td>
<td>calmodulin</td>
</tr>
<tr>
<td>CCCP</td>
<td>carbonyl cyanide m-chlorophenyl hydrazone</td>
</tr>
<tr>
<td>CE</td>
<td>5,6-suconnylmldyl carboyeosin</td>
</tr>
<tr>
<td>CGP</td>
<td>benzothiazepine CGP-37157</td>
</tr>
<tr>
<td>CICR</td>
<td>Ca^{2+}-induced Ca^{2+} release</td>
</tr>
<tr>
<td>CPA</td>
<td>cyclopiazonic acid</td>
</tr>
<tr>
<td>CRAC</td>
<td>Ca^{2+} release activated Ca^{2+} (channel)</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>FCCP</td>
<td>carbonyl cyanide p-trifluromethoxy-phenylhydrazone</td>
</tr>
<tr>
<td>IP$_3$</td>
<td>inositol 1,4,5-triphosphate</td>
</tr>
<tr>
<td>IP$_3$R</td>
<td>inositol 1,4,5-triphosphate receptor</td>
</tr>
<tr>
<td>mCU</td>
<td>mitochondrial Ca^{2+} uniporter</td>
</tr>
<tr>
<td>mNCX</td>
<td>mitochondrial $\text{Na}^+/\text{Ca}^{2+}$ exchanger</td>
</tr>
<tr>
<td>MPTP</td>
<td>mitochondrial permeability transition pore</td>
</tr>
<tr>
<td>NAADP</td>
<td>nicotinic acid adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>nAChR</td>
<td>nicotinic cholinergic receptor</td>
</tr>
<tr>
<td>NCX</td>
<td>Na^+/Ca$^{2+}$ exchanger</td>
</tr>
<tr>
<td>NMDG</td>
<td>N-methyl D glucamine</td>
</tr>
<tr>
<td>PKA</td>
<td>protein kinase A</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>PMCA</td>
<td>plasma membrane Ca^{2+}-ATPase</td>
</tr>
<tr>
<td>RuR</td>
<td>ruthenium red</td>
</tr>
<tr>
<td>RyR</td>
<td>ryanodine receptor</td>
</tr>
<tr>
<td>SCG</td>
<td>superior cervical ganglion</td>
</tr>
<tr>
<td>SERCA</td>
<td>sarco/endoplasmic Ca^{2+}-ATPase</td>
</tr>
<tr>
<td>SOCC</td>
<td>store operated Ca^{2+} channels</td>
</tr>
<tr>
<td>TG</td>
<td>thapsigargin</td>
</tr>
<tr>
<td>TRP</td>
<td>transient receptor potential</td>
</tr>
<tr>
<td>VACC</td>
<td>voltage-activated Ca^{2+} channel</td>
</tr>
</tbody>
</table>
Chapter I

General

Introduction
1. **Why is intracellular calcium so precisely controlled?**

An abundance of calcium-containing minerals are present in the earth’s crust and, because of their high solubility in water, Ca\(^{2+}\) is also present in high concentrations in the biological environment (see Kretsinger, 1990 for review). One of the possible ways to control Ca\(^{2+}\) and protect arising life would have been to develop biological systems and macromolecules insensitive to all Ca\(^{2+}\) sources. Instead, the omnipresence of this metal ion has been used to the benefit of biological processes and has been integrated to relay signals between the extracellular environment and the intracellular machinery.

Several arguments offer an explanation to why Ca\(^{2+}\) was preferred as an intracellular messenger over other ions such as Na\(^{+}\), K\(^{+}\) or Mg\(^{2+}\). Firstly, to enable the role of an ionic messenger, intracellular systems capable of detection, control and regulation had to be developed. All these processes required a selective and tight binding with the intracellular ligand and that could only be provided by protein macromolecules because of the specialisation and diversity required. Monovalent cations and polyatomic anions have large ionic radii and low charge that therefore makes them unsuitable for forming stable complexes with proteins. Since the protein backbones are generally insufficiently flexible to offer regular and small cavities, small ions like Mg\(^{2+}\) often need to form complexes with the oxygen atoms of water molecules to successfully bind to proteins. These oxygen bonds weaken the binding strength and tend to make small ions unsuited for tight binding (see Carafoli, 1987 and Kretsinger, 1990 for review). In contrast, the larger ionic radius and the greater versatility of Ca\(^{2+}\) ions (flexible coordination geometry, lower charge density and slow dissociation rate - see Kretsinger, 1990 for review) make this metal ion more adapted than other ions to complex tightly to protein while imposing smaller physical constraints to the protein.

Secondly, cellular metabolism relies on phosphate-containing compounds to provide the necessary energy to cellular activity. As these compounds are continuously degraded to liberate energy and re-synthesised to store it, large amounts of inorganic phosphate are present in cells. A high concentration of free Ca\(^{2+}\) would be incompatible with a phosphate-based metabolism as Ca\(^{2+}\) would bind to phosphate and form insoluble complexes (see Carafoli, 1987 and Kretsinger, 1990 for review).
In all animal cells, intracellular Ca\(^{2+}\) is maintained at a low concentration (50-100 nM) and therefore a large Ca\(^{2+}\) gradient exists across the plasma membrane. In response to depolarisation or receptor activation, Ca\(^{2+}\) enters the cytoplasm through Ca\(^{2+}\) permeable channels located in the plasma membrane and/or on intracellular organelles. As a consequence, the intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) is rapidly increased and triggers numerous and various biological responses depending on the cell type. Thus, a rise in [Ca\(^{2+}\)]\(_i\) leads to muscle contraction, to disaggregation of microtubules, exocytosis in exocrine and endocrine cells and neurotransmitter release in nerve terminals (see Verkhratsky & Toescu, 1998 for review). Changes in [Ca\(^{2+}\)]\(_i\) also modulate DNA replication and protein synthesis, stimulate metabolic pathways and activate specific enzymes (see Verkhratsky & Toescu, 1998 for review). On the other hand, long exposure to high [Ca\(^{2+}\)]\(_i\) has been shown to be cytotoxic and to induce apoptosis and cell death. Therefore cells need efficient systems to sequester, buffer and/or extrude Ca\(^{2+}\) and restore resting [Ca\(^{2+}\)]\(_i\) after a period of cellular activity.

2. Calcium enters the cytosol through specialised channels

In excitable cells, voltage-activated Ca\(^{2+}\) channels (VACC) represent the most important Ca\(^{2+}\) influx pathway and, following depolarisation of the plasma membrane, they induce a rapid and large rise in [Ca\(^{2+}\)]\(_i\) (see Hille, 1992 and Kostyuk & Verkhratsky, 1995a for review). Ligand-operated receptors are an alternative pathway allowing Ca\(^{2+}\) entry. These receptors incorporate cationic channels that are permeable to Ca\(^{2+}\) and open following the binding of a specific ligand (see Miller, 1991 and Kostyuk & Verkhratsky, 1995a for review). Intracellular messengers following the activation of membrane receptors and/or depletion of intracellular stores activate an additional set of channels, which is generally described as capacitative or store-operated Ca\(^{2+}\) channels (SOCC - see Miller, 1991; Kostyuk & Verkhratsky, 1995a and Putney & McKay, 1999 for review).

2.1. Voltage-activated calcium channels

The VACC are heteroligomeric complexes formed by 5 subunits (\(\alpha_1, \beta, \alpha_2-\delta \) and \(\gamma\)) and the channel properties mainly depend on the pore forming \(\alpha_1\)-subunit (De
Ten different isoforms of the α_1-subunit have been cloned and lead to the formation of channels with different biophysical and pharmacological properties as well as different tissue distribution (Snutch & Reiner, 1992 and Birnbaumer et al., 1994; Ertel et al., 2000 for review).

Traditionally the VACC were divided in two groups based on their voltage dependency: the low voltage activated (LVA) and the high voltage activated (HVA) Ca^{2+} channels (see Bean, 1989; Carbone & Swandulla, 1989 and Dunlap et al., 1995). More recently, a new nomenclature for VACC has been introduced both to regroup channels formed by α_1-subunit with structural similarities under a same class and to avoid the confusion of the former alphabetical nomenclature (see Ertel et al., 2000 for review). By analogy with the voltage-gated potassium channels, the VACC have been renamed Ca_{V} where Ca and the subscript V represent the permeating ion and the principal physiological regulator (voltage), respectively. Three main groups have therefore been proposed: (1) Ca_{V}1.1 to 1.4 corresponding to the former L-type VACC comprising of α_{1S}-, α_{1C}-, α_{1D}-, and α_{1F}-subunit, respectively; (2) Ca_{V}2.1 to 2.3 corresponding to the former P/Q- (α_{1A}), N- (α_{1B}) and R-type (α_{1E}) VACC, respectively and (3) Ca_{V}3.1 to 3.3 representing the former T-type VACCs with three different α_{1}-subunits (G, H and I) (see Ertel et al., 2000 for review).

The different members of the HVA or Ca_{V}1 and 2 groups are characterised by the variety of the α_{1}-subunit isoforms that form channels with different electrophysiological and pharmacological properties. However, the common property of these channels is a selective block by cadmium at low concentrations (≈ 100 μM, see Bean, 1989; Carbone & Swandulla, 1989; Scott et al., 1991 and Hille, 1992 for review).

The first HVA channel type that was isolated on the basis of its sensitivity to dihydropyridines (DHP) was the L-type channel (Ca_{V}1) which specificity was further confirmed by the cloning of particular α_{1}-subunits (see above and Birnbaumer et al., 1994; Ertel et al., 2000 for review). Channels of the Ca_{V}1 group are characterised by a long lasting current, which slowly inactivates in a Ca^{2+}-dependent manner (see Bean, 1989; Scott et al., 1991 and Hille, 1992 for review). A major role attributed to L-type channels is the involvement in the excitation-contraction coupling in muscle cells, in the secretion mechanism of endocrine cells and some neurones (see Bean, 1989 for review).
and the stimulation of Ca2+-activated potassium channels (e.g. BK channels see Marrion et al., 1987; Smart, 1987; Davies et al., 1996 and Selyanko, 1996).

In cerebellar Purkinje cells, a VACC largely insensitive to both DHP and \(\omega\)-Conotoxin GVIA has been characterised: the P/Q-type Ca2+ channel or Cav\textsubscript{2.1} (Mintz et al., 1991 and see Birnbaumer et al., 1994; Ertel et al., 2000 for review). This channel is formed by a \(\alpha_{1A}\)-subunit and is selectively blocked by \(\omega\)-Agatoxin IVA (see Tsien et al., 1991; Birnbaumer et al., 1994 and Dunlap et al., 1995 for review). The Q-type channel, which exhibits similar properties to the P-type, is thought to have a lower sensitivity to \(\omega\)-Agatoxin IVA and to be more potently blocked by \(\omega\)-Conotoxin MVIIC (EC\textsubscript{50} below 500 nM - see Nooney et al., 1997 for review). The activation of P/Q-type channels by depolarisations above -50 mV elicits a sustained current that exhibits little inactivation during long depolarising pulse (see Nooney et al., 1997 for review).

The Cav\textsubscript{2.2} (formerly N-type Ca2+) channel is characterised by a selective irreversible block by \(\omega\)-Conotoxin GVIA (see Bean, 1989; Scott et al., 1991; Hille, 1992 and Williams et al., 1992 for review) and is activated by depolarisation above -20 mV. The elicited current exhibit a moderate inactivation rate during the depolarising pulse (see Scott et al., 1991; Hille, 1992 and Nooney et al., 1997 for review).

Calcium channels of the N- and P/Q-type are mostly expressed in neurones and although they display different properties, their main function is the regulation of neurotransmitter release at the nerve terminal (see Dunlap et al., 1995; Nooney et al., 1997 for review) as well as the modulation of ionic conductances in the soma (Ca2+-activated chloride or potassium currents – see Hille, 1992 for review).

The last member of the Cav\textsubscript{2} group corresponds to the former R-type (Cav\textsubscript{2.3}) channel, which is mainly expressed in brain and heart and selectively blocked by nickel at a concentration of 100 \(\mu\)M (see Ertel et al., 2000 for review). Although, R-type channels have specific characteristics, they also exhibit biophysical properties similar to both LVA (voltage range for steady-state inactivation) and HVA channels (selective block by cadmium).

Calcium channels of T-type currently represent the only member of the LVA or Cav\textsubscript{3} group and three different isoforms of the \(\alpha_{1}\)-subunit have been cloned (see above and Ertel et al., 2000). The activation of channels from the Cav\textsubscript{3} group elicits a transient current for membrane potentials more positive than -70 mV.
characterised by a rapid voltage-dependent inactivation and an efficient block by nickel ($\approx 30 \mu M$ - see Bean, 1989; Carbone & Swandulla, 1989; Scott et al., 1991 and Hille, 1992 for review). The low threshold of T-type channel activation makes them well suited for participating in pacemaker activity and in repetitive firing of neurones (see Bean, 1989 for review). The T-type VACC is largely distributed in neuronal as well as non-neuronal cells, especially in embryonic and immature cells raising the possibility of a role in developmental functions (see Bean, 1989).

2.2. Ligand-operated calcium-permeable channels

Ligand-operated receptors are divided, from a conceptual point of view, into 'ionotropic' (coupled with the activation of ionic transport) and 'metabotropic' (leading to the formation of an intracellular messenger) receptors and belong to several gene families, which encode glutamate, acetylcholine, adenosine nucleotide, serotonine, glycine and γ-aminobutyric acid receptors. The ionotropic receptors of excitatory neurotransmitters (e.g. glutamate, adenosine nucleotides and acetylcholine) represent an important additional pathway for Ca^{2+} entry into nerve cells and this section will focus on the cholinergic subtype (nicotinic receptors), which is functionally expressed in rat sympathetic neurones (Trouslard et al., 1993). On the other hand, following activation of metabotropic receptors, intracellular messengers can also induce changes in $[Ca^{2+}]$, either by acting on Ca^{2+} permeable channels in the plasma membrane or by stimulating Ca^{2+} release from intracellular stores.

2.2.1. Calcium influx through ionotropic receptors

The ionotropic form of acetylcholine receptors, which is selectively activated by nicotine (nicotinic receptor - nAChR), was extensively studied in the peripheric nervous system (neuro-muscular junction and synapses between neurones throughout the autonomic system). Molecular cloning has shown that nAChR are formed by the association of four subunits (α, β, γ and δ) organised in a pentamere and numerous nAChR subunits have been characterised. The different combinations of nAChR subunits lead to receptors functionally distinct with mainly one muscular and two neuronal types. The muscular nAChR is composed by $\alpha 2$, β, γ and δ subunits (see Karlin, 1993 for review). Seven different α subunits ($\alpha 2$ to $\alpha 9$) and three β subunits ($\beta 2$
to β4) are thought to be involved in the formation of the neuronal nAChR but the precise molecular composition of the neuronal pentamer is not certain (Luetje & Patrick, 1991; Vernallis et al., 1993; Covernton et al., 1994; McGehee & Role, 1995 and Sivilotti et al., 1997). The activation of nAChR generates a cationic current carried by the flux of K^+ Na^+ and Ca^{2+} ions and induces a rapid plasma membrane depolarisation (Fieber & Adams, 1991; Trouslard et al., 1993 and Rogers & Dani, 1995). The nAChR are Ca^{2+} permeant with 4.4% of the nicotinic inward current carried by Ca^{2+} ions (at 2.5 mM external [Ca^{2+}], Fieber & Adams, 1991; Trouslard et al., 1993 and Rogers & Dani, 1995) and therefore the activation of nAChR induces a substantial Ca^{2+} influx. However, it is unlikely that sufficient Ca^{2+} enters during a single excitatory post-synaptic potential to raise [Ca^{2+}]_i by more than a few nanomolar, which is probably negligible compared with that entering through VACC. Nevertheless, experiments on frog sympathetic neurones suggested that the sub-membrane rise in [Ca^{2+}]_i might be sufficient to activate Ca^{2+}-dependent K^+ channels and accelerate recovery of the depolarisation (Tokimasa et al., 1983 and Tokimasa & North, 1984).

In the brain, the major excitatory neurotransmission is mediated through glutamate receptors (GluRs) and numerous studies have demonstrated the Ca^{2+} permeability of their ionotropic subtypes (e.g. Westbrook & Mayer, 1984; Keinanen et al., 1990; Pellegrini-Giampietro et al., 1992; Jonas et al., 1994 and see Kohler et al., 1993; Wisden & Seeburg, 1993; Kostyuk & Verkhratsky, 1995a for review). The Ca^{2+} influx through GluRs will depend on the subunit composition of a particular receptor isoform which in turn will depend on the stage of the development and on the neuronal subpopulation (see Kohler et al., 1993; Wisden & Seeburg, 1993 and Kostyuk & Verkhratsky, 1995a for review). Another source of Ca^{2+} influx is through ionotropic ATP or ‘purinergic’ receptors (P2 subtype - see Dubyak & el-Moatassim, 1993 and Edwards, 1994 for review). These receptors were shown to display a substantial permeability to Ca^{2+} and to induce membrane depolarisation and VACC activation (Dubyak & el-Moatassim, 1993 and see Edwards, 1994 for review).

2.2.2. Capacitative and store-operated calcium influx

The activation of membrane receptor from a variety of hormones, growth factors and neurotransmitters produces intracellular second messenger that have been
shown to induce a Ca2+ influx either through the activation of Ca2+ permeable channels in the plasma membrane or as a result of Ca2+ release from intracellular stores (see also below section 4.2.4). In this section, the attention will be focused on the activation of membrane conductance following Ca2+ release from intracellular stores.

Several experiments suggested that depletion of the intracellular stores by phospholipase C (PLC)-linked agonist (Putney, 1986 and see Putney, 1997 for review) or inhibition of the Ca2+ uptake into the endoplasmic reticulum induced a sustained elevation of the [Ca2+], due to a Ca2+ influx that could be block by lanthanum (La3+) (see Putney, 1997 for review). In fact, the PLC activation induces the formation of inositol (1,4,5)-triphosphate (IP\textsubscript{3}) and diacylglycerol (DAG). The liberation of IP\textsubscript{3} in turn activates Ca2+ release from intracellular stores (see below section 4.2.4.1) and a subsequent Ca2+ influx across the plasma membrane (see Putney & Bird, 1993; Putney & McKay, 1999; Putney, 1999a and Berridge et al., 2000 for review). It was suggested that the secondary Ca2+ influx through the plasma membrane was not due to the activation of the receptor or the associated G-protein nor from the IP\textsubscript{3} liberation but was a consequence of the intracellular store depletion (Putney, 1986 and see Putney & McKay, 1999; Putney, 1999a and Berridge et al., 2000 for review). As a result, the induced Ca2+ influx was termed Ca2+ release activated Ca2+ (CRAC) influx or capacitative Ca2+ influx (see Putney & McKay, 1999; Putney, 1999a and Berridge et al., 2000 for review).

To explain the activation of the capacitative Ca2+ influx, three main processes have been proposed: liberation of a diffusible intracellular messenger (Ca2+ influx factor, CIF), conformational coupling between intracellular Ca2+ store and plasma membrane channels (Kiselyov et al., 1999, 2000 and Yue et al., 2001) and through vesicular fusion with the plasma membrane (see Putney & McKay, 1999; Putney, 1999b and Berridge et al., 2000 for review).

The nature of the channel mediating the Ca2+ influx is still unclear however much interest has been focused on the transient receptor potential (TRP) channel first described in Drosophila photoreceptors. Subsequently, TRP channels were found in mammalian cells and they now represent a family of at least 20 different members (see Clapham et al., 2001 for review). The TRP channels are permeable to cations including Ca2+, blocked by La3+ and activated by various signals such as DAG, IP\textsubscript{3},
phosphorylation, changes in temperature or osmolarity, cyclic nucleotide and also
depletion of the intracellular Ca\(^{2+}\) stores (see Clapham et al., 2001 for review). Among
these channels, the TRP3-type appears to be the most promising candidate for
capacitative Ca\(^{2+}\) entry (see Putney, 1999b; Putney & McKay, 1999 and Berridge et al.,
2000 for review). Thus, when expressed in cell lines, TRP3 is activated by store
depletion but is also gated by direct physical connection to either IP\(_3\)R (Kiselyov et al.,
1998; Boulay et al., 1999 and Ma et al., 2000) or ryanodine receptors (RyR - Kiselyov
et al., 2000 and see Putney, 1999b; Putney & McKay, 1999; Berridge et al., 2000 for
review). Furthermore, Boulay and colleagues demonstrated that in native HEK-293T
cells Ca\(^{2+}\) influx after stores depletion involved a TRP channel (see Boulay et al., 1999
and see Putney, 1999b; Berridge et al., 2000 for review). These authors, in agreement
with Irvine (1990), suggested that the simplest mechanism by which depleted Ca\(^{2+}\)
stores might activate the TRP channels was through a Ca\(^{2+}\)-dependent conformational
change of the IP\(_3\)R. This concept was further supported by the fact that depletion of
intracellular stores has been shown to modulate IP\(_3\)R (Missiaen et al., 1994; Taylor,
1998 and see Putney, 1999b for review).

Although, the mechanism of the capacitative Ca\(^{2+}\) influx activation has recently
become clearer, there are still several unresolved issues (see Putney, 1999b and
Berridge et al., 2000). Firstly, the exact role of IP\(_3\) is still unclear, as TRP channels
require IP\(_3\) to be activated (Vaca & Kunze, 1994; Kiselyov et al., 1998, 1999 and Zubov
et al., 1999) whereas there is clear evidence for a PLC-independent (i.e. without IP\(_3\)
production) activation of capacitative Ca\(^{2+}\) influx (see Putney, 1997 for review).
Secondly, none of the members of the TRP family is \textit{stricto sensu} a SOCC because they
are activated not only by store depletion but also by several other messengers (see
Clapham et al., 2001 for review).

3. \textbf{Intracellular calcium buffering}

After entering the cell through Ca\(^{2+}\)-permeable channels, Ca\(^{2+}\) ions are
immediately confronted by a complexity of mechanisms that will bind or try to exclude
them from their physiological activity. As a consequence the major part of Ca\(^{2+}\) ions
entering the cells is rapidly buffered by intracellular Ca\(^{2+}\) binding protein (CaBPs) and
only a small fraction remains in the free ionic form.
3.1. Some general aspects about calcium buffering

The plasma membrane, which is formed by a phospholipid bilayer with inserted or associated proteins, has long been known to extensively bind Ca\(^{2+}\) (Guillemette et al., 1988). Several elements of the cytoskeleton have been shown to also bind Ca\(^{2+}\) and to acquire their function in a Ca\(^{2+}\)-dependent manner (Keith et al., 1983). Furthermore, microfilaments are often associated to subcortical regions of the plasma membrane and may be anchored through annexins or calpactins, which become active following Ca\(^{2+}\) binding (Glenney & Glenney, 1985). The CaBPs are found in a variety of tissues, have affinities for Ca\(^{2+}\) ranging from micromolar (e.g. calpain) to submicromolar (e.g. parvalbumin) and have been shown to play various roles in cell physiology (e.g. cell migration, neurites outgrowth, vesicles movement and cytoskeleton reorganisation - see van Rossum, 1998 for review).

According to the similarities in the structure of their binding domains, three main groups of CaBPs have been identified (Baimbridge et al., 1992). The first group, which includes annexins, spectrin and fodrin, is characterised by repeat domains enabling the CaBPs to bind to phospholipids and to connect cytoskeletal elements in a Ca\(^{2+}\)-dependent manner (see Heizmann & Hunziker, 1990 for review). The second group contains sequences homologous to the C2-domain of the protein kinase C (PKC). This C2-domain is involved in a Ca\(^{2+}\)-dependent enzyme activation and translocation from the cytosol to the membrane (see Heizmann & Hunziker, 1990 for review). The third group, which will be detailed below, is characterised by EF-hand regions and exhibit high affinity for Ca\(^{2+}\) (see Chin & Means, 2000 and Toutenhoofd & Strehler, 2000 for review). Finally, in addition to these CaBPs, inorganic compounds like ATP have been shown to bind Ca\(^{2+}\) (Zhou & Neher, 1993).

3.2. Calcium binding proteins with a 'E-F hand' motif

This group of CaBPs share a common structural motif, the EF-hand, which consists of a pair of \(\alpha\) helices joined by a Ca\(^{2+}\) binding loop (Heizmann & Berchtold, 1987; Kretsinger, 1987 and Persechini et al., 1989). A CaBP can contain up to 6 Ca\(^{2+}\) binding loops, which bind Ca\(^{2+}\) with a high affinity (10\(^{-8}\) to 10\(^{-5}\) M) generally in a cooperative way (Heizmann & Berchtold, 1987; Baker & Umbach, 1987; Donahue &
Abercrombie, 1987 and Persechini et al., 1989). These proteins are thought to rapidly bind Ca\(^{2+}\) and therefore to be capable of terminating the Ca\(^{2+}\) response by acting as a buffering system. However, the major role of CaBPs does not appear to be the buffering of Ca\(^{2+}\) but the processing of its signal. In fact, intracellular Ca\(^{2+}\) mostly acts as a second messenger when bound to an effector. Thus, Ca\(^{2+}\) binding to CaBPs induces a conformational change of the protein, which then acquire the ability to interact with target enzymes and therefore to induce a cellular response (Dedman et al., 1977; Richman & Klee, 1978; Kretsinger, 1980 and see Carafoli, 1987; Heizmann & Hunziker, 1990; Miller, 1991; Chin & Means, 2000 for review). The CaBPs represent a superfamily of over 150 members including calmodulin, parvalbumin, and calbindin (Heizmann & Berchtold, 1987; Persechini et al., 1989 and see Carafoli, 1987; Heizmann & Hunziker, 1990; Miller, 1991 for review).

3.2.1. Calmodulin

Calmodulin (CaM) is a highly acidic protein (16.5 kDa) and represents the prototypical Ca\(^{2+}\)-sensor containing four Ca\(^{2+}\) binding sites. The C-terminal pair of E-F hands exhibits a three- to five-fold higher affinity for Ca\(^{2+}\) than the N-terminal pair of sites (\(K_d\) for CaM ranging from \(5 \times 10^{-7}\) to \(5 \times 10^{-6}\) M). The binding of a target protein by CaM raises its affinity for Ca\(^{2+}\) by approximately 10-fold and sensitises the CaM-effector complex to changes in \([Ca^{2+}]_i\) (Peersen et al., 1997). Calmodulin was originally described as an activator of brain cAMP phosphodiesterase (Kakiuchi & Yamazaki, 1970 and Cheung, 1970). It was subsequently shown to belong to the CaBPs family and to have multiple roles in the cellular activity (England, 1986; Heizmann & Berchtold, 1987 and see Chin & Means, 2000; Toutenhoofd & Strehler, 2000 for review). Calmodulin was shown to activate adenylcyclases, phosphodiesterases, protein kinases and the protein phosphatase calcineurin. All of these enzymes have been shown to be involved directly or indirectly in protein phosphorylation (see Chin & Means, 2000 for review). Calmodulin also regulates the activity of various ionic channels such as the ryanodine and inositol (1,4,5)-triphosphate (IP\(_3\)) receptors and also the plasma membrane Ca\(^{2+}\)-ATPase (see below section 5.1.3 and Carafoli, 1987; Carafoli & Stauffer, 1994 and Chin & Means, 2000 for review).
3.2.2. **Parvalbumin**

Parvalbumins are a family of acidic proteins (MW ≈ 11.5 kDa) that bind 2 Ca$^{2+}$ ions with a high affinity ($K_d \approx 10^{-8}$ M). Effects of Ca$^{2+}$ buffers are determined by their affinity for Ca$^{2+}$ ions and by the kinetics (on and off rates) of Ca$^{2+}$ binding and release. In this regard, parvalbumin is an interesting molecule because it has a slow dissociation rate (≈ 1 s$^{-1}$) and a slow apparent association constant ($\approx 10^7$ M$^{-1}$ s$^{-1}$), due to Mg$^{2+}$ competition with Ca$^{2+}$ for the binding sites (Heizmann, 1984 and England, 1986). For these reasons, parvalbumin is considered as a slow Ca$^{2+}$ buffer and it has been suggested to be able to affect the characteristics of transient rise in [Ca$^{2+}$], (Celio, 1990 and Chard et al., 1993). Parvalbumin was first described in fast-twitch skeletal muscles where it is thought to play a role in the relaxation of muscle fibres by temporarily binding Ca$^{2+}$ before it is pumped back into the sarcoplasmic reticulum (Gerday & Gillis, 1976; Thatcher & Pechere, 1977 and Birdsall et al., 1979). Similarly, parvalbumin is thought to buffer Ca$^{2+}$ entering neurones and to play a role in some form of synaptic plasticity (Blaustein, 1988a; Caillard et al., 2000 and see Miller, 1991 for review). Parvalbumin was also suggested to have a tissue-specific distribution. Thus, this CaBP was found to be largely expressed in GABAergic neurones from the central nervous system particularly in the cerebellum and the hippocampus (Kawaguchi et al., 1987; Sloviter, 1989; Celio, 1990; and Yoshida et al., 1990). However, other authors found that parvalbumin was also present in non-GABAergic neurones (Jones & Hendry, 1990 and Nitsch et al., 1990). Furthermore, neuronal excitability is often regulated by Ca$^{2+}$ activated conductance such as Ca$^{2+}$-dependent potassium currents (e.g. $I_{\text{K(Ca)}}$). It was proposed that the presence of parvalbumin could underlie particular electrophysiological properties of neurones. Thus, parvalbumin was suggested to strongly buffer rises in [Ca$^{2+}$], during neuronal activity and therefore to reduce the level of activation of $I_{\text{K(Ca)}}$ resulting in a lower spike accommodation (Kawaguchi et al., 1987). The fact that parvalbumin-containing neurones in the hippocampus have been found to be ‘fast spiking’ while neurones without parvalbumin had a different firing pattern supported this idea. So far, the only well agreed role for parvalbumin is Ca$^{2+}$ buffering as no definitive evidence has been provided to link its expression to a particular cell function.
3.2.3. **Calbindin D\textsubscript{28k}**

Calbindin D\textsubscript{28k} is present in many vertebrate tissues where it was shown to be \(\alpha,25\)-dihydroxyvitamin-D\textsubscript{3}-dependent in several tissues including kidney and pancreas (Norman \textit{et al.}, 1982 and Bruns \textit{et al.}, 1989) but not in neurones (Hall & Norman, 1991). Calbindin D\textsubscript{28k} is unique among CaBPs because it has a larger molecular weight (\(\approx 30\) kDa) and 6 Ca2+ binding sites (Fullmer & Wasserman, 1987; Hunziker & Schrickel, 1988 and Minghetti \textit{et al.}, 1988). Although the precise role of calbindin D\textsubscript{28k} is poorly understood, several observations are consistent with a protective role of this CaBP in neurotoxicity and neurodegenerative diseases. Calbindin D\textsubscript{28k} expression and mRNA levels are decreased in brain area affected in ageing (Iacopino & Christakos, 1990; Krzywkowski \textit{et al.}, 1996; Molinari \textit{et al.}, 1996; Potier \textit{et al.}, 1994) and Parkinson's, Huntington's and Alzheimer's diseases (Ichimiya \textit{et al.}, 1989 and Iacopino & Christakos, 1990). Finally, calbindin D\textsubscript{28k} is strongly expressed in cerebellar Purkinje neurones where it acts as a strong Ca2+ buffering system (Baimbridge \textit{et al.}, 1992; de Talamoni \textit{et al.}, 1993 and Fierro & Llano, 1996). A similar role in Ca2+ buffering was observed in hippocampal neurones in culture (Mattson \textit{et al.}, 1991).

3.3. Endogenous calcium buffering properties

A comparison of the Ca2+ entry and the subsequent elevation in [Ca2+], suggest that more than 99% of the Ca2+ that enters a neurone does not remain in the free ionic form in the cytoplasm (Neher & Augustine, 1992; Belan \textit{et al.}, 1993a, b; Muller \textit{et al.}, 1993; Tse \textit{et al.}, 1994 and Vanselow & Keller, 2000). The exact nature of the cellular components that are responsible for the Ca2+ buffering has not been conclusively identified. However, it appears reasonable to suggest that proteins binding Ca2+ with a high affinity would have the ability to act, at least temporarily, as endogenous buffer systems and therefore shape Ca2+ responses (Neher & Augustine, 1992 and Neher, 1995). The sum of all Ca2+ binding sites in the cytoplasm has been defined as 'endogenous Ca2+ buffer' and has led to the concept of endogenous buffering capacity (Neher & Augustine, 1992 and Neher, 1995). The Ca2+ buffering capacity
represents the cell’s ability to bind Ca\(^{2+}\) ions entering the cytosol during the activation of Ca\(^{2+}\) channels and therefore to limit the extent of the increase in [Ca\(^{2+}\)].

In living cells, several approaches were used to determine the Ca\(^{2+}\) binding ratio or the Ca\(^{2+}\) buffering capacity. The first one, is the ‘buffer added’ method whereby an exogenous buffer (fluorescent Ca\(^{2+}\) dye), with a high affinity for Ca\(^{2+}\) and at a known maximal concentration, is dialysed through a patch pipette into the cell and Ca\(^{2+}\) transients are elicited by depolarisation-induced activation of VACC. With dialysis, the buffering capacity of the exogenous buffer increases and causes concentration-dependent changes in the properties of depolarisation-induced Ca\(^{2+}\) transients i.e. decreasing their amplitude and slowing their recovery time. Since both the endogenous and exogenous buffers compete for Ca\(^{2+}\), the changes in the Ca\(^{2+}\) transients’ properties represent the buffering effects of the added exogenous buffer (Neher & Augustine, 1992; Neher, 1995 and Palecek et al., 1999). Therefore, the endogenous Ca\(^{2+}\) binding ratio can be estimated in terms of added buffer from the changes in the Ca\(^{2+}\) transient’s amplitude as well as from the changes in its recovery time and extrapolated to a situation without exogenous buffer (Neher & Augustine, 1992; Neher, 1995 and Palecek et al., 1999).

Another method is the ‘Ca\(^{2+}\)-clamp’ technique (Ahmed & Connor, 1988 and Belan et al., 1993a, b) and consists of measuring the changes in [Ca\(^{2+}\)]\(_i\) induced by injection through a iontophoresis electrode of a known concentration of Ca\(^{2+}\). The injection of Ca\(^{2+}\) will induce a transient rise in [Ca\(^{2+}\)]\(_i\), which represents the filling of a fast cytosolic buffer, before reaching a new increased level of [Ca\(^{2+}\)]\(_i\). The Ca\(^{2+}\) binding ratio can then be calculated as the ratio between the change in total [Ca\(^{2+}\)] over the change in [Ca\(^{2+}\)]\(_i\). A variation of this method consists of injecting increasing concentration of Ca\(^{2+}\) indicator (fura-2) and inducing changes in [Ca\(^{2+}\)]\(_i\), either by iontophoretic injection of Ca\(^{2+}\) (Muller et al., 1993) or by depolarisation and activation of VACC (Tse et al., 1994). The Ca\(^{2+}\) binding ratio was calculated at different concentrations of the exogenous buffer and the endogenous buffer was then determined by extrapolating the Ca\(^{2+}\) binding ratio to a situation without dye (Tse et al., 1994).

Finally, the last method consists of a direct measurement of the Ca\(^{2+}\) buffering properties in cell loaded with a low concentration of the Ca\(^{2+}\) indicator. The changes in the total Ca\(^{2+}\) are calculated from the integral of the Ca\(^{2+}\) current or from a calibrated
flash photolysis of caged Ca\(^{2+}\) and the changes in free intracellular Ca\(^{2+}\) measured using
the fluorescent probe (Maeda et al., 1999). Knowing the total amount of Ca\(^{2+}\) entering a
cell or released in the cytoplasm upon photolysis as well as the amount of free Ca\(^{2+}\), it is
possible to determine the amount of Ca\(^{2+}\) bound to the buffer and to subsequently
calculate the endogenous Ca\(^{2+}\) binding ratio (Ca\(^{2+}\) bound over Ca\(^{2+}\) free).

All the methods presented above have advantages and disadvantages. With the
‘added buffer’ technique, it is only possible to estimate Ca\(^{2+}\) buffering ratio but not the
‘apparent’ affinity and concentration of the endogenous buffer. Such parameters could
be obtained from measurements of free Ca\(^{2+}\) changes with a low affinity dye, providing
that [Ca\(^{2+}\)]\(_i\) can be increased sufficiently to produce at least partial saturation of the
buffer (Maeda et al., 1999). However, the comparison of changes in free Ca\(^{2+}\) with
changes in total Ca\(^{2+}\) requires knowledge of the accessible volume, which is not easy to
measure precisely.

Measurements of the Ca\(^{2+}\) binding ratio have demonstrated notable
heterogeneity in excitable cells ranging from 40 in adrenal chromaffin cells (Zhou &
Neher, 1993) to 100-130 in other preparations such as gonadotrophs (Tse et al., 1994)
and GH3 cells (Lledo et al., 1992) and up to \(\approx 2000\) in rat and mouse cerebellar
Purkinje neurones (Fierro & Llano, 1996 and Maeda et al., 1999, respectively).
Evidence for low Ca\(^{2+}\) binding ratio values in neurones were obtained for recordings
from the soma, dendrites and presynaptic terminals in a variety of preparations (see
Regehr & Tank, 1994; Borst et al., 1995 and Regehr & Atluri, 1995 for review). Using
the ‘added buffer’ approach, Ca\(^{2+}\) binding ratio values of \(\approx 174\) were obtained for
neurohypophysal nerve ending (Stuenkel, 1994), of \(\approx 126\) for neurones from the nucleus
basalis (Tatsumi & Katayama, 1993). Helmchen and colleagues reported Ca\(^{2+}\) binding
ratio values in the range of 100-135 for cortical layer V pyramidal cells and of 168-207
for hippocampal CA1 pyramidal cells (Helmchen et al., 1996).

The large variations in the Ca\(^{2+}\) buffering properties observed among different cell
types may be the result of the properties of the expressed CaBPs as well as of their level
of expression. Firstly, the nature of CaBPs expressed in different neuronal population is
highly variable and correlates with the variability in the observed Ca\(^{2+}\) binding ratio (see
Baimbridge et al., 1992; Regehr & Tank, 1994; Borst et al., 1995 and Regehr & Atluri,
1995 for review). Secondly, changes in the buffering properties have been reported
during cell development and ageing. A substantial reduction in the expression level of calbindin D\textsubscript{28k} and calretinin was accompanied by a decrease in the buffering capacity in hippocampal neurones (Villa \textit{et al.}, 1994). In contrast, in cerebellar Purkinje neurones an increase in the buffering capacity was observed during neuronal maturation (Ca2+ binding ratio of \approx 900 for 6-day-old and \approx 2000 for 15-day-old rat – Fierro & Llano, 1996). Finally, the endogenous Ca2+ buffering capacity was proposed to have a protective role against pathology and neurodegenerative diseases. Thus, in mice, oculomotor neurones have a higher Ca2+ binding ratio (\approx 265 – Vanselow & Keller, 2000) than motoneurones from the spinal cord (\approx 50 Palecek \textit{et al.}, 1999) and oculomotor neurones are particularly resistant during amyotrophic lateral sclerosis-related motoneurone disease (Palecek \textit{et al.}, 1999 and Vanselow & Keller, 2000).

4. Intracellular organelles and calcium regulation

Although CaBPs efficiently buffer Ca2+ and take part in the regulation of the Ca2+ signal, they correspond to a temporary buffering system, which is limited and saturable (see General Introduction section 3). Therefore, intracellular organelles are required to sequester Ca2+ until it can be extruded across the plasma membrane (see below section 5). The early studies on the mitochondrial role in the regulation of [Ca2+], were carried out on isolated mitochondria in the presence of high extra-mitochondrial [Ca2+] and therefore the physiological relevance of Ca2+ handling by mitochondria was questioned. However, in the last two decades data have been produced that now support the idea of mitochondrial Ca2+ uptake and release during physiological cellular activity (see below section 4.1). The endoplasmic reticulum (ER) has been shown to contain specialised structures that enable it to act both as a Ca2+ sink and a Ca2+ source (see below section 4.2). Depending on its Ca2+ content, the ER was also proposed to stimulate Ca2+ influx through the plasma membrane (see above General Introduction section 2.2.2 and section 4.2).
4.1. The mitochondria

4.1.1. Some general aspects about mitochondria

Mitochondria are thought to be derived from prokaryotic micro organisms, which have developed a symbiotic relationship with their eukaryotic host (see Margulis et al., 1996 and Gray & Lang, 1998 for review). The intra-mitochondrial matrix is isolated from the cytoplasm by two membranes, an outer membrane, which is permeable to most cations and small molecules (≤ 1 kDa), and an inner membrane mainly permeable to Ca$^{2+}$ (see Frey & Mannella, 2000 for review). The major role of mitochondria is the production of the ATP necessary for cellular activity (tricarboxylic acid cycle and respiratory chain). During this process protons are translocated across the inner mitochondrial membrane generating a membrane potential of ≈ -150 to -200 mV (Mitchell & Moyle, 1967 and see Duchen, 1999 for review). According to the chemiosmotic model (Mitchell & Moyle, 1967), this 'protonmotive force' is used to drive, via protons re-uptake, the ATP-synthase (a proton channel associated to an ATP synthase) (see Duchen, 1999 for review). Several pharmacological agents are currently used to block one of the complexes of the respiratory chain (rotenone, cyanide), to inhibit the ATP synthesis (oligomycin) or to short-circuit the membrane potential and uncouple respiration from phosphorylation (protonophores such as carbonyl cyanide m-chlorophenyl hydrazone, CCCP and carbonyl cyanide p-trifluromethoxy-phenylhydrazone, FCCP). Although, these inhibitors have different functional consequences, their action results in the uncoupling of mitochondria, which are then unable to function normally.

4.1.2. Mitochondrial calcium transport mechanisms

In 1955, Chance demonstrated that mitochondria were able to sequester large amount of Ca$^{2+}$ in parallel with their better-known role in ATP synthesis (Chance, 1955 and see Carafoli, 1982, 2002 for review). Moreover, it was suggested that Ca$^{2+}$ accumulation by mitochondria might take precedence over ATP synthesis and uncouple oxidative phosphorylation (see Carafoli, 1982, 2002 and Duchen, 1999 for review). Calcium influx was shown to be mediated through a Ca$^{2+}$ uniporter (see below section 4.1.2.1), whereas Na$^+$-dependent and independent mechanisms were proposed to
underlie the Ca2+ efflux (see below section 4.1.2.2; Lehninger et al., 1967 and see Carafoli, 1982, 1987 and Duchen, 1999 for review). Finally, recent studies now support the involvement of a mitochondrial permeability transition pore (MPTP see below section 4.1.2.3) in Ca2+ efflux (Babcock et al., 1998; Duchen, 1999; Murchison & Griffith, 2000 and Montero et al., 2000).

4.1.2.1. Mitochondrial calcium uniporter

Evidence that Ca2+ was transported into the mitochondrial matrix through a mitochondrial Ca2+ uniporter (mCU) came from the demonstration that Ca2+ influx was driven by the mitochondrial membrane potential (-150 to -200 mV, mainly set by the proton gradient), that it followed the Ca2+ electrochemical gradient and that it was not coupled to the transport of any other ion (see Carafoli, 1982, 1987; Gunter & Pfeiffer, 1990; Budd, 1998 and Duchen, 1999 for review). It was therefore suggested that Ca2+ influx was a ‘simple’ electrophoretic process and was mediated through a specialised structure, the mitochondrial Ca2+ uniporter (mCU), which was activated by an increase in [Ca2+]\textsubscript{i} (see Carafoli, 1982, 1987; Gunter & Pfeiffer, 1990; Budd, 1998 and Duchen, 1999 for review). Finally, the Ca2+ uptake through the mCU (K_d \approx 1-5 \mu M) was shown to vary with the 3rd power of [Ca2+]\textsubscript{i}, a characteristic that would allow for amplification of mitochondrial Ca2+ uptake at higher cytoplasmic [Ca2+]\textsubscript{i} (Zoccarato & Nicholls, 1982; Hansford, 1985; Nicholls, 1986; Crompton & Roos, 1985 and Crompton & Costi, 1990).

Calcium uptake strictly depends on the Ca2+ electrochemical gradient (see above) and therefore if Ca2+ could reach equilibrium, the amount of free Ca2+ sequestered into the mitochondria would be \(10^5 - 10^6\) (0.1-1 M at 25\textdegree C) higher than in the cytosol. This Ca2+ uptake would lead to a depolarisation of the mitochondrial membrane potential because of the difference in net charges transfer (accumulation of positive charge into the mitochondria). In turn, an alkalinisation of the mitochondrial matrix would be observed as protons are translocated through the respiratory chain process to maintain the mitochondrial membrane potential constant. The changes in pH and in the net charge in the mitochondrial matrix would, in the long term, impair mitochondrial function and therefore they need to be compensated. The symport of anions, such as phosphate (HPO\textsubscript{4}2-), with Ca2+ will serve both to dissipate the Ca2+-induced alkalinisation
and to allow the restoration of the mitochondrial membrane potential (see Nicholls & Ferguson, 1992 for review). Besides compensating pH changes and net charge accumulation in the mitochondrial matrix, phosphate uptake appears to have another important role. Thus phosphate was shown both to accelerate Ca^{2+} uptake and to allow larger Ca^{2+} amount to be sequestered (see Carafoli, 1982, 2002 for review). In fact, Ca^{2+} was shown to precipitate with phosphate and to form hydroxyapatite (Ca_3(PO_4)_2) an insoluble but osmotically inactive complex (see Carafoli, 1982, 2002 for review). Therefore, the formation of hydroxyapatite would enable the mitochondria to sequester larger amount of Ca^{2+} without perturbation of their normal activity.

Ruthenium red (RuR) and its analogues have been shown to block with some specificity the mCU (K_i \approx 30 \text{ nM} – Moore, 1971; Reed & Bygrave, 1974a and Crompton & Andreeva, 1994). Unfortunately, although these compounds are the most commonly used mCU inhibitors, they are membrane non-permeant and, at higher concentrations, they also inhibit the VACC and Ca^{2+} release from the ER. Lanthanum has been shown to inhibit the mCU but in a less specific manner as it also affects the Na^{+}-dependent and independent Ca^{2+} efflux (Reed & Bygrave, 1974b). On the other hand, polyamines such as spermine are known to activate mCU; however they may also act as inhibitor at higher concentrations (\approx 500 \text{ \mu M} – Jensen et al., 1990 and Lenzen et al., 1992).

Attempts to isolate the mCU produced a variety of protein fractions binding Ca^{2+} with a high affinity. One of these fractions is a 30 kDa glycoprotein, which was found inserted in both the outer and inner mitochondrial membranes but was not present in the matrix (Sottocasa et al., 1972 and Carafoli & Sottocasa, 1974a). This molecule binds Ca^{2+} at two sites with different affinities for Ca^{2+} and is inhibited by both La^{3+} and RuR (see Carafoli, 1982 and Carafoli, 1987 for review). A second fraction was found to be a 3 kDa protein termed calciphorin that also binds Ca^{2+} with a high affinity and is inhibited with low concentration of RuR (Jeng & Shamoo, 1980a, b and see Carafoli, 1982, 1987 for review). It was suggested that these two proteins might interact to form the mCU. However for the moment no evidence is available to confirm this hypothesis (Carafoli, 1975 and see Carafoli, 1982, 1987 for review).
4.1.2.2. Calcium efflux mechanisms

In 1974, Carafoli and colleagues showed that, following Ca\(^{2+}\) uptake into energised heart mitochondria, addition of Na\(^+\) induced a rapid Ca\(^{2+}\) efflux that was RuR-insensitive. This observation was confirmed by later experiments, which showed that the rate of Ca\(^{2+}\) efflux from the mitochondria exhibits a strong dependence on [Na\(^+\)] (Carafoli et al., 1974b; Crompton et al., 1976 and see Carafoli, 1982, 1987; Gunter & Pfeiffer, 1990; Pozzan et al., 1994; Duchen, 1999 for review). It was therefore suggested that Ca\(^{2+}\) would be released from the mitochondria via a Na\(^+\)-dependent mechanism that was independent and separated from the one used for the electrophoretic uptake. This Na\(^+\)-dependent Ca\(^{2+}\) release system has been observed in mitochondria from most tissues and proposed to be mediated via a specific Na\(^+\)/Ca\(^{2+}\) exchanger (mNCX, Mitchell & Moyle, 1967; Crompton et al., 1976, Crompton et al., 1978a, b; Nicholls, 1978b; Al Shaikhaly et al., 1979 and see Carafoli, 1982, 1987; Gunter & Pfeiffer, 1990 for review). By contrast, in mitochondria from liver and part of the kidney, the Ca\(^{2+}\) efflux was found to be practically Na\(^+\)-independent, and it was suggested to be mediated through a Ca\(^{2+}\)/H\(^+\) exchanger with 1Ca\(^{2+}\) being transported in exchange of 2H\(^+\) (Puskin et al., 1976; Crompton et al., 1978a, b; Akerman, 1978; Fiskum & Cockrell, 1978; Brand, 1985 and Fiskum & Lehninger, 1979). However, even if a Ca\(^{2+}\) efflux through a Na\(^+\)-independent mechanism cannot be ruled out, the Na\(^+\)-dependent system appears to be the major mitochondrial extrusion system, particularly in excitable cells, and as such has retained the most attention. (Bernardi & Azzone, 1979; Beatrice et al., 1982; Gunter et al., 1983; Jurkowitz et al., 1983; Saris, 1987 and see Carafoli, 1982, 1987; Gunter & Pfeiffer, 1990 for review).

The Na\(^+\)/Ca\(^{2+}\) exchanger (mNCX) has been shown to be different from that present in the plasma membrane and to exhibit a sigmoidal dependence on the logarithm of cytoplasmic [Na\(^+\)] with a half maximal activity at 4-5 mM Na\(^+\) and a Hill coefficient of 2-3 (Crompton & Heid, 1978; Nicholls, 1978a, b and see Carafoli, 1982, 1987; Gunter & Pfeiffer, 1990; Pozzan et al., 1994; Duchen, 1999 for review). It was proposed that the exchanger works in an asymmetric way to optimise Ca\(^{2+}\) efflux with a high affinity for Ca\(^{2+}\) at the matrix side (≈ 3 to 6 μM see Hansford & Castro, 1981; Coll et al., 1982 and Jung et al., 1995) and a higher affinity for Na\(^+\) at the external side
(Crompton & Roos, 1985 and see Carafoli, 1982, 1987; Gunter & Pfeiffer, 1990 for review).

Several antagonists of the VACC, such as diltiazem, clonazepam or diazepam exhibit an inhibitory effect on mNCX. The benzothiazepine CGP-37157 (CGP) has been shown to selectively and reversibly inhibit the mNCX in isolated cardiac mitochondria with a K_i in the range of 360 to 800 nM (Chiesi et al., 1988 and Cox et al., 1993) and is commonly used to inhibit mitochondrial Ca$^{2+}$ release (Colegrove et al., 2000 and Montero et al., 2000). Finally, because of the high Na$^+$ dependence of mNCX another efficient way to inhibit the exchanger is to remove intracellular Na$^+$ (see Gunter & Pfeiffer, 1990 and Colegrove et al., 2000).

4.1.2.3. Mitochondrial permeability transition pore

From studies on the swelling of isolated mitochondria, it was shown that the permeability of the mitochondrial inner membrane could suddenly increase. This phenomenon, which was termed 'permeability transition', allows fluxes of small ions and molecules up to 1.5 kDa and subsequently the collapse of the mitochondrial membrane potential (Massari et al., 1972, Haworth & Hunter, 1979; Hunter & Haworth, 1979a, b and see Crompton et al., 1999; Bernardi, 1999 for review). First thought to be the consequence of 'unspecific membrane damage', this phenomenon was then shown to be mediated through a channel: the mitochondrial permeability transition pore (MPTP). The MPTP can be defined as a Ca$^{2+}$- and voltage-dependent channel of the inner mitochondrial membrane that is blocked by cyclosporine A (see Zoratti & Szabo, 1995; Crompton et al., 1999 and Bernardi, 1999 for review). Although the exact nature of this channel is still controversial it was proposed to be part of or associated with the mitochondrial ATP/ADP carrier (Brustovetsky & Klingenberg, 1996) and functionally reminiscent of the ryanodine-receptor channel of the endoplasmic reticulum (Bernardi & Petronilli, 1996). Electrophysiological recordings suggested that MPTP has a maximal conductance \approx 1.5 nS and would operate under two main modes (Crompton & Costi, 1990 and see Zoratti & Szabo, 1995; Crompton et al., 1999 and Bernardi, 1999 for review). Firstly, a high conductance state was proposed to be associated with a persistent pore opening and thought to be involved in the intracellular cascade leading to oxidative cell death (Crompton & Costi, 1990; Griffiths & Halestrap, 1995;
Niemenen et al., 1995 and see Kroemer et al., 1998 for review). Secondly, a low conductance state associated with transitory pore openings has also been observed but its functional significance remains unclear. Nevertheless, in non-excitile cells, the MPTP has been implicated in the release of Ca\(^{2+}\) under non-toxic conditions (Cassarino et al., 1998) and increasing evidence is available for excitable cells suggesting its involvement under physiological conditions (Petronilli et al., 1999; Murchison & Griffith, 2000 and Montero et al., 2000).

4.1.3. Physiological role of the mitochondrial calcium transport

4.1.3.1. Calcium cycling in mitochondria

Since Ca\(^{2+}\) uptake and release systems are mediated through two separate processes both operative under physiological conditions, the concept of Ca\(^{2+}\) cycling across the inner mitochondrial membrane was proposed (Carafoli, 1979). While the Ca\(^{2+}\) efflux is essentially constant, the Ca\(^{2+}\) uptake is determined by the cytosolic [Ca\(^{2+}\)]. Therefore, for high cytosolic [Ca\(^{2+}\)], Ca\(^{2+}\) will be predominantly transported into the mitochondria and when [Ca\(^{2+}\)] decreases to a value where Ca\(^{2+}\) efflux and influx balance each other the net mitochondrial Ca\(^{2+}\) flux will be equal to zero (Nicholls, 1978a). Having reached this steady-state, the mitochondria would be able to respond to any [Ca\(^{2+}\)] changes by either taking up or releasing Ca\(^{2+}\). This [Ca\(^{2+}\)], has been defined as the ‘set-point’ of the Ca\(^{2+}\) cycle and will determined the direction of the net Ca\(^{2+}\) flux. Values for the set-point have been reported between 0.3 and 3 \(\mu\)M that would depend on the level of activation of Ca\(^{2+}\) uptake and/or Ca\(^{2+}\) release systems (Nicholls, 1978a; Nicholls & Scott, 1980 and Brand & de Selincourt, 1980). Thus, above the set-point there will be a net Ca\(^{2+}\) uptake whereas below the set-point a net Ca\(^{2+}\) efflux will be observed. Under these conditions, if [Ca\(^{2+}\)], remains below the set-point value, then a depletion of the total matrix Ca\(^{2+}\) is expected.

4.1.3.2. Mitochondrial role in calcium homeostasis

The development of fluorescent Ca\(^{2+}\) probes enabled the measurement of [Ca\(^{2+}\)], in most cells, including neurones, with minimum disruption of the plasma membrane. Cytoplasmic Ca\(^{2+}\) could be monitored and when cells were depolarised with KCl, activation of VACC or by neurotransmitters, a rise in [Ca\(^{2+}\)], in the micromolar
range was observed. Typically, the rise in \([Ca^{2+}]\) is transient and shows a multiphasic recovery with a fast initial decay followed by a characteristic secondary slow phase that could last for tens of seconds (e.g. Thayer & Miller, 1990; Werth & Thayer, 1994; Friel & Tsien, 1994; Herrington et al., 1996; Babcock et al., 1997 and Colegrove et al., 2000). The inhibition of the mitochondrial \(Ca^{2+}\) uptake, with protonophores or RuR, generally induced a prolongation of the initial recovery sometimes associated with an increase in the amplitude of the \(Ca^{2+}\) transient and abolished the slow secondary phase. Similar results were obtained from smooth muscle cells (Drummond & Fay, 1996), chromaffin cells (Herrington et al., 1996 and Babcock et al., 1997), anterior pituitary cells (Hehl et al., 1996) and neurones (Thayer & Miller, 1990; Werth & Thayer, 1994; Friel & Tsien, 1994 and Colegrove et al., 2000). A major argument against the direct involvement of the mitochondria in the regulation of \([Ca^{2+}]\) was the possibility that mitochondrial inhibition would cause ATP depletion impairing the activity of ATP-dependent \(Ca^{2+}\) clearance mechanisms (endoplasmic reticulum and plasma membrane \(Ca^{2+}\)-ATPases see below section 4.2.2 and 5.1, respectively). However, three experimental observations argued against that possibility and confirmed a mitochondrial role in the regulation of \([Ca^{2+}]\). Firstly, the effects of protonophores were evident in less than 5s, before any substantial ATP depletion could occur. Secondly, prolongation of the early \(Ca^{2+}\) clearance phase could still be induced by protonophores in the presence of oligomycin to minimise mitochondrial ATP consumption of cytosolic ATP. Finally, the same results were observed in voltage-clamped experiments where patch-clamp electrodes, filled with an intracellular solution containing ATP, would provide a supply of energy (see Babcock et al., 1997).

Uncoupling of the mitochondria during the slow secondary phase of a \(Ca^{2+}\) transient causes a large rise in \([Ca^{2+}]\), suggesting \(Ca^{2+}\) release from \(Ca^{2+}\) loaded mitochondria (Hehl et al., 1996; Herrington et al., 1996 and Babcock et al., 1997). On the other hand, the slow secondary phase could also be abolished using selective inhibitor of the \(mNCX\) such as diltiazem and CGP (White & Reynolds, 1997; Babcock et al., 1997 and Colegrove et al., 2000). The effect of CGP was shown to be concentration-dependent and consistent with a single binding site model and an IC\(_{50}\) ≈ 560 nM (Colegrove et al., 2000 and see above section 4.1.2.2). Similarly, in voltage-clamped cells, the removal of intracellular \(Na^+\) was shown to abolish the slow secondary
recovery phase and to occlude the CGP effect (Colegrove et al., 2000 and see above section 4.1.2.2). It was generally believed that mitochondria only participate in the regulation of large rises in [Ca^{2+}] because of the properties of the mitochondrial Ca^{2+} cycling and the set-point value (see above section 4.1.3.1). However, several observations suggested that mitochondria could play a role in [Ca^{2+}] regulation at [Ca^{2+}] as low as 200-300 nM (Zhou et al., 1998 and Colegrove et al., 2000). Thus, mitochondrial Ca^{2+} transport was shown to occur in neurones and cardiac cells during 'weak' depolarisation and rise of [Ca^{2+}] to low levels (≈ 300 nM).

Miyata and colleagues (1991) suggested that Ca^{2+} uptake into mitochondria is rapid and followed by a slow re-equilibration of [Ca^{2+}]_{m}. However, direct measurements of the Ca^{2+} content of the mitochondrial matrix using site-directed aequorin or rhod-2, a fluorescent Ca^{2+} indicator selectively targeted into the mitochondria, demonstrated that in fact both the Ca^{2+} uptake and release processes were fast (< 5 seconds and tens of seconds, respectively - Rizzuto et al., 1992, 1994; Babcock et al., 1997 and Robb-Gaspers et al., 1998). These same experiments also suggested several important new features of the mitochondrial regulation of [Ca^{2+}]_{i}. Firstly, they showed that the resting mitochondrial free Ca^{2+} concentration ([Ca^{2+}]_{m}) was around 80-200 nM suggesting that under resting condition the mitochondria are in a steady state where Ca^{2+} influx and efflux balance each other (Rizzuto et al., 1992, 1994 and Babcock et al., 1997). Secondly, following Ca^{2+} influx through the plasma membrane or release from intracellular stores, the [Ca^{2+}]_{i} is increased to micromolar range (1-2 μM) and [Ca^{2+}]_{m} increases in parallel to concentration generally higher (1-5 μM measured with targeted Ca^{2+} probes - Rizzuto et al., 1992, 1994 and Babcock et al., 1997). Finally, because mitochondrial Ca^{2+} uptake is large and fast, these organelles have been suggested to act as a fixed buffering system that would play an important role in the endogenous Ca^{2+} buffering capacity and as such would shape the overall Ca^{2+} signal (Coll et al., 1982; Lukacs & Kapus, 1987 and Babcock et al., 1997). Babcock and colleagues (1997) suggested that in chromaffin cells the Ca^{2+} taken up into the mitochondria would bind quickly and reversibly to Ca^{2+} binding sites in the matrix and these authors estimated a Ca^{2+} binding ratio of ≈ 4000 (see also Coll et al., 1982; Lukacs & Kapus, 1987), which is about 100 times higher than the cytoplasmic Ca^{2+} binding ratio (see General Introduction section 3.3).
Over the years, evidence has been collected that supports the idea of an important mitochondrial role in the regulation of \([\text{Ca}^{2+}]\), under physiological conditions. Firstly, mitochondria are the ‘energy factory’ of the cell and key rate-limiting enzymes of the tricarboxylic acid cycle have been shown to be upregulated by \(\text{Ca}^{2+}\) either directly or through \(\text{Ca}^{2+}\)-dependent phosphorylation (Fein & Tsacopoulos, 1988; Duchen, 1992; Di Lisa et al., 1993; Hajnoczky et al., 1995 and Robb-Gaspers et al., 1998). Therefore, it appears likely that mitochondrial \(\text{Ca}^{2+}\) uptake serves not only to upregulate ATP synthesis in anticipation to an increased energy demand during cellular activity, but also to actively regulate and propagate \(\text{Ca}^{2+}\) signal (Ichas et al., 1994, 1997; Jouaville et al., 1995; Tang & Zucker, 1997; Hoth et al., 1997; David et al., 1998; Rizzuto et al., 1998 and Montero et al., 2000).

4.2. The endoplasmic reticulum

4.2.1. Some general aspects about the endoplasmic reticulum

The endoplasmic reticulum (ER) is present in all eukaryotic cells as a vast network of cistern-like stacks and primarily acts as a factory for storage, folding and transport of proteins (see Ashby & Tepikin, 2001 for review) but also as an important \(\text{Ca}^{2+}\) store. This dual role of the ER is reflected in the functions of individual proteins of the ER such as CaBPs (ER-CaBPs), which firstly handle and buffer \(\text{Ca}^{2+}\) but, more importantly, act as molecular chaperones for the folding and quality control of proteins (see Ashby & Tepikin, 2001 for review). Interestingly, many processes involved in protein synthesis have been shown to be \(\text{Ca}^{2+}\)-dependent (e.g. protein synthesis, folding and maturation are affected by \(\text{Ca}^{2+}\) depletion of the ER – see Ashby & Tepikin, 2001 for review).

In neurones, the endoplasmic reticulum has been shown to spread throughout the cell and to represent a highly structurally organised system of tubules and cisternae with regional specialisation (see Pozzan et al., 1994 and Berridge, 1998 for review). Originating around the nucleus with the nuclear envelope, the ER network extends up into the dendrites and down the axon. In the soma and the proximal dendrites, portions of the ER have been shown to be in the vicinity of the plasma membrane and to form sub-surface cisternae classified as type I, II and III depending on how close to the plasma membrane they are located (see Berridge, 1998 for review). Along the axon, the
ER can form structures similar to sub-surface cisternae and ends in the synapse where it can be found associated to mitochondria (see Berridge, 1998 for review). On the dendritic side, the ER follows the dendritic tree and terminates as a stack of tubules sometimes in the vicinity of the postsynaptic density (see Berridge, 1998 for review). Along all this network of cisternae and tubules, sarco/endoplasmic Ca\(^{2+}\)-ATPases (SERCA) are expressed next to clusters of inositol (1,4,5) triphosphate (IP\(_3\)R) and/or ryanodine receptors (RyR). This particular organisation of the Ca\(^{2+}\) stores and of their different components enable a highly localised and precise Ca\(^{2+}\) handling as well as the propagation of Ca\(^{2+}\) signal throughout the neurones (see Berridge, 1998 and Usachev & Thayer, 1999a for review).

4.2.2. **Calcium sequestration into intracellular stores**

4.2.2.1. Structure of the sarco/endoplasmic calcium ATPase

The observation, in the early 1960s, that vesicles isolated from the sarcoplasmic reticulum were able to sequester Ca\(^{2+}\) via an ATP-dependent mechanism represented the first step in the demonstration of the role of the ER as Ca\(^{2+}\) store (Ebashi, 1961; Hasselbach & Makinose, 1961 and Ebashi & Lipmann, 1962). About 10 years later, McLennan purified a 110 kDa protein (McLennan, 1970) that was shown to belong to the P-type ATPases family characterised by the formation of a phosphoenzyme intermediate. This Ca\(^{2+}\)-ATPase represents a large asymmetrical protein inserted in the membrane of the ER this protein was therefore named the sarco/endoplasmic Ca\(^{2+}\)-ATPase or SERCA (see Lee & East, 2001 for review). Following the cloning of the skeletal muscle Ca\(^{2+}\)-ATPase (McLennan et al., 1985 and see Lee & East, 2001) and more recently, the determination of the crystal structure of SERCA it has been shown that this protein is formed by three cytoplasmic domains (A, P and N) connected to 10 transmembrane \(\alpha\)-helices (M1-M10) and terminated by a small luminal region (Toyoshima et al., 2000 and see Lee & East, 2001 for review).

Several pharmacological agents that inhibit SERCA have been isolated. The most commonly used is thapsigargin (TG), which has proved to be a highly selective and potent inhibitor (EC\(_{50}\) between 0.2 and 50 nM – Lytton et al., 1991 and see Treiman et al., 1998; Andersen & Vilsen, 1998; Taylor & Broad, 1998 for review). Cyclopiazonic acid (CPA) and 2,5-di-\(t\)-butyl-hydroquinone also selectively inhibit SERCA but they
appear less potent than thapsigargin (Demarex et al., 1992; Wictome et al., 1992 and see Pozzan et al., 1994; Taylor & Broad, 1998 for review).

4.2.2.2. SERCA isoforms and tissue specific expression

Three main isoforms of SERCA have been characterised who share a common overall structure and sensitivity to inhibitors but differ in their tissue distribution and biochemical properties (see Pozzan et al., 1994 for review). The expression of distinct isoforms with different properties (rate of Ca\(^{2+}\) transport, regulatory pathways) would enable a fine modulation of the Ca\(^{2+}\) uptake in different cell types or even in different region of a cell. SERCA-1 exist as two isoforms (SERCA-1a and 1b) and has been shown to be exclusively present in fast twitch skeletal muscle (Brandl et al., 1986 and see Pozzan et al., 1994 for review). The isoform 2 of SERCA (≈ 84 % homology with SERCA-1) also exists as two splice variants (SERCA-2a and 2b) and differ from the other SERCA pumps by its lower turnover rate and a longer C-terminal tail (Guenteski-Hamblin et al., 1988; Lytton & McLennan, 1988 and see Pozzan et al., 1994 for review). Finally, SERCA-3, which is mainly found in intestine, lymphatic tissues and neuronal cells (Burk et al., 1989 and see Pozzan et al., 1994; Treiman et al., 1998 for review), only shares ≈ 75% homology with SERCA-1 or SERCA-2 and has been shown to have a lower affinity for Ca\(^{2+}\) (K\(_d\) of 1.1 vs. 0.4 μM) than the other members (see Pozzan et al., 1994 for review).

4.2.2.3. Regulation of SERCA activity

The SERCA are characterised by a high affinity for Ca\(^{2+}\) with a half maximal rate of transport at [Ca\(^{2+}\)]\(_i\) ≈ 0.1-1 μM and it was suggested that at rest SERCA would pump Ca\(^{2+}\) at 50% of their maximal rate (Pozzan et al., 1994). The activity of SERCA is regulated by several mechanisms among them are the regulation by Ca\(^{2+}\) itself, by phosphorylation and by ER-CaBPs (Pozzan et al., 1994). Following an increase in [Ca\(^{2+}\)]\(_i\) after membrane depolarisation or receptor activation and Ca\(^{2+}\) release from the ER, Ca\(^{2+}\) uptake into the stores is activated. Thus, it has been shown that SERCA activation depends on the [Ca\(^{2+}\)]\(_i\) and that the rate of Ca\(^{2+}\) uptake increases with [Ca\(^{2+}\)]\(_i\) (Favre et al., 1996 and Mogami et al., 1998). However, although Ca\(^{2+}\) uptake into the ER is activated by a rise in [Ca\(^{2+}\)]\(_i\), the Ca\(^{2+}\) transport itself does not need
elevated [Ca2+] as when [Ca2+] is clamped close to its resting value, Ca2+ transport into the ER is still observed (Mogami \textit{et al.}, 1998). More interestingly, the free luminal Ca2+ concentration ([Ca2+]\textsubscript{l}) acts as a negative feedback and the rate of Ca2+ uptake decreases with the rise in [Ca2+]\textsubscript{l} (Inesi & de Meis, 1989; Favre \textit{et al.}, 1996 and Mogami \textit{et al.}, 1998). The mechanism by which this feedback inhibition occurs is unclear but it was suggested that it could be mediated by direct interaction between SERCA and ER-CaBP\textsc{s} such as calreticulin (John \textit{et al.}, 1998) or the phosphorylated form of calnexin (Roderick \textit{et al.}, 2000) as both proteins have been shown to interact with SERCA-2 and to inhibit its activity.

Another regulatory pathway of the SERCA activity occurs by direct phosphorylation of the SERCA protein and appears to be isoform specific (see Pozzan \textit{et al.}, 1994 for review). This phosphorylation process can involve CaM-dependent protein kinase, which was suggested to stimulate Ca2+ uptake and to accelerate the relaxation of cardiac and skeletal muscle (Narayan\textsc{a}n & Xu, 1997).

Phospholamban (PLB) is coexpressed (1:1 ratio) and interacts with SERCA (Wegener \textit{et al.}, 1989 and Pozzan \textit{et al.}, 1994). The PLB is the substrate of two protein kinases, a cAMP-dependent protein kinase (PKA) and a CaM-activated one (CaM-kinase). It was suggested that in its unphosphorylated form, PLB is attached to SERCA and inhibits the Ca2+ pump (Simmerman \textit{et al.}, 1986 and Toyofuku \textit{et al.}, 1993). The phosphorylation of PLB, which appears to be Ca2+-dependent, induces a conformational change of the protein and relieves SERCA inhibition (see Carafoli, 1987 and Pozzan \textit{et al.}, 1994 for review). A similar process has been characterised for PMCA where the activation of CaM leads to the activation of the Ca2+-ATPase by unmasking the active site (see below General Introduction section 5.1.3). The PLB phosphorylation was shown to occur following activation of \(\beta\)-adrenergic receptors in cardiac myocytes and to participate in muscle relaxation by stimulating SERCA (see Pozzan \textit{et al.}, 1994 for review).

4.2.3. Calcium binding proteins of the endoplasmic reticulum

From measurements with Ca2+ microelectrodes or targeted Ca2+ probes, the ER Ca2+ content was estimated in the millimolar range (2-10 mM) of which \(\approx 100-300 \mu\text{M}\) is in the free ionic form ([Ca2+]\textsubscript{l}, \textit{e.g.} see Pozzan \textit{et al.}, 1994 and Mogami \textit{et al.}, 1998).
1998). Therefore, by analogy with the cytosol, the ER exhibits a large buffering capacity mediated by ER-CaPBs that can be divided into two groups. The first ER-CaBP group (e.g. reticuloplasmins - see Pozzan et al., 1994 for review) possess a high affinity for Ca\(^{2+}\) and because of the high Ca\(^{2+}\) content of the lumen they are thought to be permanently occupied and to have a minor role in Ca\(^{2+}\) storage. In contrast, the other group is thought to correspond to a high capacity Ca\(^{2+}\) storage system as well as a rapidly releasable Ca\(^{2+}\) pool. Calsequestrin and calreticulin are two well-studied examples. These proteins are expressed at high level, exhibit a large binding capacity (≈ 25-50 mol of Ca\(^{2+}\)/mol of protein) and low Ca\(^{2+}\) affinity (K\(_d\) ≈ 1 mM) (see Pozzan et al., 1994).

4.2.4. Main routes for calcium release into the cytosol

Calcium release is mediated through specialised channels inserted in the ER membrane that belong to the ligand-operated Ca\(^{2+}\) permeable channels: the inositol (1,4,5)-triphosphate (IP\(_3\)) receptors (IP\(_3\)R) and the Ca\(^{2+}\) activated or ryanodine receptors (RyR). Although these two receptors are activated by different agonist and through different pathways, they share a homologous general structure and a coincidental activation by Ca\(^{2+}\) and a second messenger, which leads to Ca\(^{2+}\)-dependent stimulation of the release (Ca\(^{2+}\) induced Ca\(^{2+}\) release, CICR see below section 4.2.5 - see Pozzan et al., 1994 and Kostyuk & Verkhratsky, 1995b for review).

4.2.4.1. Inositol triphosphate receptors

Inositol (1,4,5)-triphosphate receptors (IP\(_3\)R) are characterised by a N-terminal IP\(_3\) binding site and a C-terminal Ca\(^{2+}\) binding site separated by a transmembrane region (see Pozzan et al., 1994 and Kostyuk & Verkhratsky, 1995b for review). The transmembrane region carries several key features for the activity of the IP\(_3\)R as it forms the channel of the receptor but also corresponds to the coupling region between IP\(_3\) binding and channel opening (Mignery et al., 1990; Miyawaki et al., 1991 and see Pozzan et al., 1994 and Kostyuk & Verkhratsky, 1995b for review). This same domain contains also the modulatory sites of the receptor (phosphorylation sites, ATP, CaM and Ca\(^{2+}\) binding sites - see Pozzan et al., 1994 and Kostyuk & Verkhratsky, 1995b for review). The C-terminal region binds Ca\(^{2+}\) and is thought to be involved in
the modulation of the channel opening (Nakade et al., 1991; Miyawaki et al., 1991 and see Pozzan et al., 1994; Kostyuk & Verkhratsky, 1995b for review).

At least three main IP₃R isoforms, referred as type 1, 2 and 3 IP₃R, have been isolated and found to share ≈ 60-70% sequence homology (see Pozzan et al., 1994 and Kostyuk & Verkhratsky, 1995b for review). Apart from cerebellar Purkinje cells, which almost exclusively express IP₃R-1, most of the other cell types express at least two different isoforms of the IP₃R (Bush et al., 1994 and see Pozzan et al., 1994 and Kostyuk & Verkhratsky, 1995b for review). It was suggested that IP₃R could be formed by the association of subunits from different isoforms, which would increase the diversity of the expressed receptors (Joseph et al., 1995 and Monkawa et al., 1998).

The IP₃Rs were found to be synergistically activated by IP₃ and low [Ca²⁺]ᵢ (< 1 μM) and to exhibit a 'bell-shaped' dependence on [Ca²⁺]ᵢ (Bezprozvanny et al., 1991; Iino & Tsukioka, 1994 and Adkins & Taylor, 1999). Recently, Adkins & Taylor (1999) suggested that the effect of [Ca²⁺]ᵢ would depend on the concentration of IP₃ and, more importantly, on the order of application of Ca²⁺ and IP₃. Thus, the binding of IP₃ to the receptor was suggested to occlude an inhibitory Ca²⁺ binding site and at the same time to unmask the activatory Ca²⁺ binding site (Adkins & Taylor, 1999; Taylor, 1998; Bootman & Lipp, 1999). Several studies have indicated that IP₃R activity is regulated by [Ca²⁺]ᵢ (Nunn & Taylor, 1992; Taylor & Marshall, 1992; Oldershaw & Taylor, 1993 and Missiaen et al., 1992), by phosphorylation processes through cAMP-dependent protein kinase (PKA) (Berridge, 1993; Joseph & Ryan, 1993 and Haug et al., 1999), via PKC (Mironov & Hermann, 1996 and Haug et al., 1999) and by CaM-dependent protein kinase (Ferris & Snyder, 1992; Marshall & Taylor, 1993 and see Pozzan et al., 1994; Kostyuk & Verkhratsky, 1995b; Berridge, 1998 for review). Finally, heparin represents the most commonly used but not specific antagonist of IP₃R (Hill et al., 1987; Ehrlich et al., 1994 and see Kostyuk & Verkhratsky, 1995b for review).

4.2.4.2. Ryanodine receptors

The ryanodine receptor (RyR), which resembles in many respects the IP₃R, has been shown to belong to a receptor family with three main members (≈ 65% homology): skeletal type 1 (RyR-1), cardiac type 2 (RyR-2), which is also considered as the major neuronal subtype and brain type 3 (RyR-3) (Takeshima et al., 1989; Zorzato
et al., 1990; McPherson & Campbell, 1993 and see Pozzan et al., 1994; Kostyuk & Verkhratsky, 1995b for review). These receptors share a general common tetrameric structure consisting of a transmembrane region, yielding the channel pore, a small C-terminal domain that anchors the receptor into the ER membrane and a large N-terminal cytoplasmic loop (Otsu et al., 1990; Chen et al., 1992 and see Pozzan et al., 1994; Kostyuk & Verkhratsky, 1995b for review). Regulatory and binding sites for CaM, ATP and Ca\(^{2+}\) have been describe in this N-terminal region (Otsu et al., 1990; Chen et al., 1992 and see Pozzan et al., 1994; Kostyuk & Verkhratsky, 1995b for review). Although RyR are typically gated by Ca\(^{2+}\), in skeletal muscle, RyR-1 are activated by the membrane depolarisation transmitted through a direct coupling to L-type VACC (Rios & Pizarro, 1991; Rios et al., 1992 and see Pozzan et al., 1994 for review).

Ryanodine receptors are cation-selective channels characterised by a high conductance for Ca\(^{2+}\) and recordings in the single-channel configuration have indicated that RyR can be opened as single event or as burst of openings (Rousseau et al., 1987; Stein & Palade, 1988; Ashley, 1989 and Liu et al., 1989). The activation of RyR exhibits a bell-shaped dependence on [Ca\(^{2+}\)]\(_i\) (Bezprozvanny, 1994 and see Kostyuk & Verkhratsky, 1995b for review). Similarly to IP\(_3\)Rs, RyRs are modulated by the state of filling of the Ca\(^{2+}\) stores and it was suggested that calsequestrin might interact with the channel (Gilchrist et al., 1992). On the other hand, depletion of the Ca\(^{2+}\) stores was suggested to reduce the sensitivity of the RyR to [Ca\(^{2+}\)]\(_i\), and therefore to increase the threshold for their activation (Valdivia et al., 1995; Usachev & Thayer, 1997 and see Sitsapesan & Williams, 1997; Usachev & Thayer, 1999a and Sitsapesan & Williams, 2000 for review).

Adenosine nucleotides (e.g. AMP, ADP and ATP) have been shown to strongly potentiate the Ca\(^{2+}\)-dependent activation of RyRs presumably through binding to a specific regulatory site located in the N-terminal region (Otsu et al., 1990; Meissner, 1994 and see Pozzan et al., 1994; Kostyuk & Verkhratsky, 1995b; Sitsapesan & Williams, 1997, 2000 for review). In addition, CaM was shown to bind to RyR and to exhibit an activatory effect in its Ca\(^{2+}\)-free form while CaM-Ca\(^{2+}\) had an inhibitory effect on RyR-1 and RyR-2 (Yamaguchi et al., 2001 and Balshaw et al., 2001). It was further suggested that CaM would inhibit Ca\(^{2+}\) release by decreasing the open probability of the RyR (Suko et al., 2000). Finally, CaM has been proposed to activate
the RyR-2 through phosphorylation via a CaM-dependent kinase (see Henzi & McDermott, 1992 and Sorrentino & Volpe, 1993).

Until recently, RyR were thought to be exclusively activated by Ca2+. However, the newly discovered endogenous cyclic ADP ribose (cADPr) has been suggested to be the counterpart of IP\textsubscript{3} for the activation of RyR (see Sitsapesan et al., 1995a, b for review). There is evidence for a cADPr-dependent and ryanodine-sensitive Ca2+ release in urchin eggs and similar results were observed in neurones, heart, pancreatic and pituitary cells (Currie et al., 1992; Meszaros et al., 1993; Hua et al., 1994; White et al., 1993; Galione, 1994; Lee et al., 1994 and see Pozzan et al., 1994; Sitsapesan & Williams, 1995a, b for review). Many cells contain cADPr and the enzymes capable of producing and hydrolysing cADPr were found in neurones (Verkhratsky & Shmigol, 1996). Moreover, injection of cADPr in neurones failed to elicit Ca2+ release by itself but appeared to increase the Ca2+ sensitivity of RyR (Hua et al., 1994). However, evidence for a direct binding of cADPr to RyR is still missing, there are only few reports for a cADPr production in response to the stimulation of physiological pathways and so far only the RyR-2 was shown to respond to the cADPr activation (Galione et al., 1993; Takasawa et al., 1993 and see Pozzan et al., 1994; Sitsapesan & Williams, 1995a, b for review).

Caffeine (< 5 mM) was shown to activate RyR by shifting the RyR activation curve towards lower [Ca2+], and therefore sensitising RyR to [Ca2+], (see Kostyuk & Verkhratsky, 1995b and Zucchi & Ronca-Testoni, 1997 for review). At higher concentrations (>5 mM), caffeine was shown to activate RyR in a Ca2+-independent manner and to induce Ca2+ release in several cell types (e.g. Thayer et al., 1988; Sitsapesan & Williams, 1990; Usachev et al., 1993; Shmigol et al., 1994a, b and Hernandez-Cruz et al., 1995).

Ryanodine, which was the first described selective agonist for RyR, is well known to activate the channel at low concentrations (< < 10 \mu M see Pozzan et al., 1994 for review). Ryanodine increases the channel open probability to \approx 1 and also potentiates the Ca2+-dependent release (Rousseau et al., 1987; Nagasaki & Fleischer, 1988). However, at higher concentrations (>10 \mu M), ryanodine locks the RyR into a low conductance open state and causes inhibition of both Ca2+- and caffeine-induced Ca2+ release (Rousseau et al., 1987 and Nagasaki & Fleischer, 1988 and McPherson et al.,
1991). This dual effect of ryanodine was suggested to be due to two different binding sites: a high affinity ($K_d \approx 5-10$ nM) that promotes channel opening and a low affinity ($K_d \approx 3$ μM) that inhibits the receptor (McGrew et al., 1989 and see Kostyuk & Verkhratsky, 1995b for review). Finally, other compounds like dantrolene, procaine and RuR were also shown to inhibit RyR and the Ca^{2+} release from intracellular stores (see Kostyuk & Verkhratsky, 1995b for review).

4.2.4.3. New calcium-releasing messenger

Until the late 1980s, the general idea was that Ca^{2+} could be released via the activation of either IP$_3$R or RYR. However, an important experiment carried out by Lee and colleagues in 1987 demonstrated that a substrate of β-nicotinamide adenine dinucleotide (β-NAD$^+$), now identified as cADPr (Lee et al., 1989), had Ca^{2+}-releasing activity by sensitising RyR to Ca^{2+} (see above section 4.2.4.2 and Galione, 1992; Patel et al., 2001 for review). It was later demonstrated that nicotinic acid adenine dinucleotide phosphate (NAADP) is also able to induce Ca^{2+} release in a wide range of cell types (see Table 1 in Patel et al., 2001). The NAADP-dependent Ca^{2+} release is thought to be mediated by a release mechanism distinct from both IP$_3$ and ryanodine (or cADPr) stores and several arguments support this observation (see Genazzani & Galione, 1997 and Patel et al., 2001 for review). Firstly, the NAADP-induced Ca^{2+} release undergoes homologous desensitisation but does not affect Ca^{2+} release induced by either IP$_3$ or ryanodine/cADPr (Lee & Aarhus, 1995; Chini et al., 1995; Genazzani et al., 1996a and see Genazzani & Galione, 1997; Patel et al., 2001 for review). Secondly, NAADP-induced Ca^{2+} release is insensitive to inhibitor of both IP$_3$ and ryanodine channels (Lee & Aarhus, 1995; Chini et al., 1995; Lee et al., 1996 and see Genazzani & Galione, 1997; Patel et al., 2001 for review). On the other hand, the phenomenon of Ca^{2+}-induced Ca^{2+}-release (CICR) does not appear to be activated by NAADP, NAADP-dependent Ca^{2+} release is not sensitive to divalent cations (Ca^{2+}, Mg^{2+} or Sr^{2+} - Graeff et al., 1995; Chini et al., 1996; Genazzani & Galione, 1996) but was mostly inhibited by thio-NADP and L-type channel blockers (Genazzani et al., 1996a and see Genazzani & Galione, 1997; Patel et al., 2001 for review). Finally, in contrast to the IP$_3$- and ryanodine-induced Ca^{2+} responses, the NAADP-dependent Ca^{2+} release is not
modulated by Ca\(^{2+}\) and does not show a biphasic activation relationship (Chini et al., 1996; Genazzani et al., 1996b and see above section 4.2.4.1 and 4.2.4.2).

Although increasing evidence supporting a role for NAADP as a new Ca\(^{2+}\) releasing mechanism have been collected in recent years, some important issues are still unresolved. Thus, it has been demonstrated that low sub-threshold concentration of NAADP are able to inactivate a subsequent Ca\(^{2+}\) release that would normally be observed in the presence of a high NAADP concentration (Genazzani et al., 1996a; Navazio et al., 2000; Aarhus et al., 1996 and see Patel et al., 2001 for review). This observation therefore suggests that NAADP has to be synthesised or liberated in a high concentration very quickly in order to be able to activate Ca\(^{2+}\) release before it becomes inactivated. Moreover, although NAADP has been shown to be synthesised and to induce Ca\(^{2+}\) release in numerous tissues neither the localisation of the NAADP-sensitive store nor the NAADP receptor have been clearly identified (see Patel et al., 2001 for review).

4.2.5. Role of intracellular stores in shaping calcium signals

The ER acts as a Ca\(^{2+}\) sequestration system through SERCA activation and accelerates the recovery from rises in [Ca\(^{2+}\)]\(_i\), following Ca\(^{2+}\) influx through the plasma membrane (Kuba, 1980; Neering & McBurney, 1984; Thayer et al., 1988 and Usachev et al., 1993). However, the main role for Ca\(^{2+}\) stores appears to be the CICR process (see Usachev & Thayer, 1999a and Bootman et al., 2001 for review). This phenomenon involves the amplification of a modest rise in [Ca\(^{2+}\)]\(_i\) into a secondary larger Ca\(^{2+}\) release from the intracellular stores. The level of activation and the characteristics of the Ca\(^{2+}\) release system(s) will determine the shape of the overall Ca\(^{2+}\) signal, which could remain localised or spread throughout the cell as a regenerative Ca\(^{2+}\) wave. Calcium induced Ca\(^{2+}\) release can be generated by both IP\(_3\) (see Berridge, 1998; Taylor, 1998 and Bootman et al., 2001; for review) and ryanodine (Usachev & Thayer, 1999a for review) systems following related activation mechanisms.

Evidence for CICR in neurones came from the observations that caffeine could induce Ca\(^{2+}\) release from the ER and that this release was inhibited by ryanodine and dantrolene (Kuba, 1980; Neering & McBurney, 1984; Thayer et al., 1988 and Usachev et al., 1993). Later, CICR was directly demonstrated in voltage-clamped neurones from
both the central (Llano et al., 1994) and peripheral (Hua et al., 1993 and Shmigol et al., 1995) nervous system. Following depolarisation of the plasma membrane, the increase in \([Ca^{2+}]_i\) was larger than predicted from the transmembrane \(Ca^{2+}\) current (Llano et al., 1994) and both ryanodine or dantrolene could inhibit the amplification of the \(Ca^{2+}\) response (Shmigol et al., 1995).

Calcium-induced \(Ca^{2+}\) release was proposed to be a all-or-none process in that \([Ca^{2+}]_i\) needed to reach a threshold value to successfully stimulate the release from the stores. However, the \(Ca^{2+}\) influx was suggested to only act as a trigger for the CICR but not to be required for the regenerative process (Friel & Tsien, 1992; Usachev & Thayer, 1997 and see Usachev & Thayer, 1999a for review). Generally a refractory phase followed CICR that was suggested to be primarily caused by the depletion of the stores and the increase in the activation threshold of RyR (Usachev & Thayer, 1997). The bell-shaped \(Ca^{2+}\) dependence of the RyR was also proposed to underlie this refractory phase presumably due to \(Ca^{2+}\) binding to a low affinity inhibitory binding site present on RyR. This site would require the \([Ca^{2+}]_i\), to return close to rest in order to remove the \(Ca^{2+}\)-dependent inhibition (Fabiato, 1983; Bezprozvanny et al., 1991 and Hernandez-Cruz et al., 1995). Finally, a phenomenon of \(Ca^{2+}\)-dependent desensitisation of the RyR was described in cardiac muscles (Gyorke & Fill, 1993) and was supported by experiments where a rapid time-dependent decrease in the open probability of RyR-2 was observed in the presence of activating \([Ca^{2+}]_i\) (Valdivia et al., 1995). Since the \(Ca^{2+}\)-bound form of CaM was shown to inhibit the activity of RyR, this mechanism was also proposed to underlie the inhibition of \(Ca^{2+}\) release from the ER (Rousseau et al., 1987 and Suko et al., 2000).

The elaborate organisation of the \(Ca^{2+}\) stores and the distribution of \(Ca^{2+}\) uptake and release systems will determine the complex spatio-temporal pattern of cytosolic \(Ca^{2+}\) responses known as \(Ca^{2+}\) sparks, puffs, and \(Ca^{2+}\) waves (see Berridge, 1993 and Clapham & Sneyd, 1995 for review). These complex \(Ca^{2+}\) signals are mainly the results of the \(Ca^{2+}\) uptake systems being stimulated by a rise in \([Ca^{2+}]_i\), and located next to \(Ca^{2+}\) release pathways that exhibit a ‘bell-shape’ \(Ca^{2+}\) dependence (see Berridge, 1993 and Clapham & Sneyd, 1995 for review). In fact, if one considers a moderate stimulation of a neurone, the \([Ca^{2+}]_i\) elevation will be strongly attenuated by the buffering and extrusion mechanisms and therefore remains localised under the plasma membrane.
(Hemandez-Cruz et a l , 1990). In contrast, with the increase o f the Ca^^ influx, the rise
in [Ca^^]/ may reach threshold and trigger a chain reaction that generates a saltatory
activation o f RyR deeper into the cytoplasm leading to a more global response
(Kuwajima et a l , 1992 and Korkotian & Segal, 1998). As RyR are distributed in the
whole somata and in neurites, for large enough rise in [Ca^^]/, this saltatory activation o f
RyR could generate a Ca^^ wave that would propagate throughout the cell (Lechleiter &
Clapham, 1992; Usachev & Thayer, 1997 and Berridge, 1998). In this situation the
cytoplasm could act as an ‘excitable medium’ and Ca^^ waves might travel considerable
distance from the soma to distal parts o f the apical dendrites (Jaffe & Brown, 1994) or
from the growth cone back into the soma (Gomez et a l , 1995).
The induction o f CICR would depend on the amplitude and duration o f the Ca^^
influx and on the nature o f the Ca^^ channels, which are highly regulated by
phosphorylation processes and the activation o f G protein-coupled receptors {e.g. Llano
et a l , 1994; Dolphin, 1996; Moore et a l , 1998 and see Hille, 1994; Usachev & Thayer,
1997 for review). Since, co-agonists, protein-protein interactions and phosphorylation/
dephosphorylation processes as well as the Ca^^ content o f the ER have been shown to
modulate RyR, all these regulatory mechanisms would activate or inhibit RyR as well as
determine the sensitivity o f the RyR to Ca^^ and therefore determine the development or
not o f CICR (Thayer et a l , 1988 and Hua et a l , 1993 and Usachev et a l , 1993 and see
Pozzan et a l , 1994; Usachev & Thayer, 1997 for review).
One o f the major questions that arise from the demonstration o f a CICR
mechanism is certainly the physiological significance o f such a phenomenon. Voltageactivated Ca^^ channels are well suited to induce Ca^^ influx into the cytosol and
therefore to link changes in cell excitability to changes in [Ca^^]/. However, because o f
the regulation o f [Ca^^], mainly through buffering and extrusion system the response
induced by VACC is proposed to be localised and limited. Therefore, the major role o f
CICR is thought to act as a relay and amplification system o f the Ca^^ influx and to
transform a localised rise in [Ca^^]/ into a cellular global response. Thus the induction o f
CICR was shown to promote gene transcription and protein synthesis (Kuwajima et a l ,
was also suggested that CICR might enhance neurotransmitter release (Peng, 1996;
Reyes & Stanton, 1996; Smith & Cunnane, 1996; Wang et a l , 1997 and Cochilla &

51


Alford, 1998) and might modulate neuronal excitability by acting on several Ca\(^{2+}\)-dependent channels (Kuba, 1980; Nishimura et al., 1991; Sah, 1996 and Sah & Bekkers, 1996).

4.3. Interactions between mitochondria and calcium stores

In recent years, evidence has suggested that there may be cross-talk between mitochondria and the ER (Rizzuto et al., 1993, 1998 and see Rutter & Rizzuto, 2000 for review). Thus three-dimensional reconstruction suggested that mitochondria could form a network of interlinked structures and close contacts with the ER cisternae and mitochondria were also observed (Bakeeva et al., 1978; Mannella et al., 1998; Rizzuto et al., 1998 and see Rutter & Rizzuto, 2000 for review). Furthermore, using aequorin, a fluorescent Ca\(^{2+}\) indicator, targeted to the mitochondrial matrix or intermembrane space, Rizzuto and colleagues (1993, 1998) showed that mitochondria were also functionally ‘connected’ to the ER and that both organelles rapidly exchanged Ca\(^{2+}\) (see Rizzuto et al., 1999 and Rutter & Rizzuto, 2000 for review). Thus, in HeLa cells histamine or ATP-dependent Ca\(^{2+}\) release from 'IP\(_3\)-Ca\(^{2+}\) stores' induced a strong increase in the [Ca\(^{2+}\)]\(_{m}\) and the rise in [Ca\(^{2+}\)]\(_{i}\) was far larger in the vicinity of the mitochondria than in the rest of the cytoplasm (Rizzuto et al., 1993, 1998; Wang et al., 2000 and see Rutter & Rizzuto, 2000 for review). These results suggested that mitochondria and ER might be both physically and functionally interconnected and that Ca\(^{2+}\) released from the ER would locally expose mitochondria to microdomains of high [Ca\(^{2+}\)]\(_{i}\) (Rizzuto et al., 1993, 1998; Csordas et al., 1999 and Wang et al., 2000). These close contacts and rapid exchanges of Ca\(^{2+}\) between ER and mitochondria could serve several purposes. Firstly, they would enable localised increase in [Ca\(^{2+}\)]\(_{i}\), and site targeted stimulation of the mitochondrial function therefore locally priming the organelle to increased metabolic demand. Secondly, this interaction between ER and mitochondria would also influence the shape and velocity of Ca\(^{2+}\) waves as mitochondrial Ca\(^{2+}\) uptake could promote Ca\(^{2+}\) release from the stores by buffering Ca\(^{2+}\) close to the channel mouth and reducing the Ca\(^{2+}\)-dependent channel inhibition (Jouaville et al., 1995). On the other hand, mitochondria could take part in the propagation of Ca\(^{2+}\) waves (see Kostyuk & Verkhratsky, 1995b and Rutter & Rizzuto, 2000 for review).
5. Calcium extrusion through the plasma membrane

Two major systems for Ca\(^{2+}\) extrusion are present in most eukaryotic cells. The first one is the plasma membrane Ca\(^{2+}\)-ATPase (PMCA, see below section 5.1), which hydrolyses ATP to transport Ca\(^{2+}\), and the second one is the Na\(^{+}/Ca\(^{2+}\) exchanger (NCX, see below section 5.2) that uses the energy of the inwardly directed Na\(^{+}\) gradient to export Ca\(^{2+}\).

5.1. The plasma membrane calcium ATPase

The earlier works, mainly on red blood cells and dialysed squid giant axon, suggested the involvement of an ATP-dependent Ca\(^{2+}\) extrusion mechanism especially at low [Ca\(^{2+}\)]\(_i\) (Schatzmann, 1966; Schatzmann & Vincenzi, 1969; Sarkadi et al., 1978; Baker & DiPolo, 1984 and see Schatzmann, 1982; Carafoli, 1987 for review). This result was confirmed with the isolation of the plasma membrane Ca\(^{2+}\)-ATPase (PMCA, Schatzmann, 1966; Schatzmann & Vincenzi, 1969; Baker & Glitsch, 1973; DiPolo, 1974, DiPolo, 1978; Baker & DiPolo, 1984 and see Schatzmann, 1982; Garraham & Rega, 1990; Carafoli, 1994 for review). Since its discovery, PMCA has been shown to belong to a large family of proteins encoded by four main isogenes and to be expressed in almost all cell types, where it plays a major role in Ca\(^{2+}\) homeostasis (see Schatzmann, 1982; Miller, 1991, Carafoli, 1994 and Guerini et al., 1998 for review).

5.1.1. PMCA function

The PMCA, which is related to SERCA pumps (see above section 4.2.2.1 and Carafoli, 1994; Carafoli & Stauffer, 1994; Guerini et al., 1998 for review), is activated by an elevation in [Ca\(^{2+}\)]\(_i\) (apparent K\(_{Ca}\) \(\leq\) 1\(\mu\)M, see Downes & Michell, 1981) and extrudes Ca\(^{2+}\) out of the cytosol upon ATP hydrolysis with a stoichiometry of 1:1 (see Schatzmann, 1982 for review). The rate of Ca\(^{2+}\) transport through PMCA is a saturable function of [Ca\(^{2+}\)]\(_i\), with an EC\(_{50}\) between 0.1 and 30 \(\mu\)M depending on the cell type, the pH and the CaM content (see Table I in Garraham & Rega, 1990). An excess of extracellular Ca\(^{2+}\) has been shown to have an inhibitory effect on PMCA activity presumably through a low affinity binding to the site where Ca\(^{2+}\) leaves the pump after translocation (see Schatzmann, 1982 and Garraham & Rega, 1990 for review). Among the P-type pumps, PMCA exhibits a unique feature in that multiple pathways,
particularly a direct interaction with CaM (see below section 5.1.3), regulate its activity (see Carafoli, 1994 and Carafoli & Stauffer, 1994 for review).

Experiments using purified PMCA inserted in liposome and whole erythrocytes demonstrated that the pump is an obligatory exchanger for proton (Waisman et al., 1981a, b, c; Rossi & Schatzmann, 1982; Niggli et al., 1982; Smallwood et al., 1983 and Milanick, 1990). Although early results suggested that the transport was electroneutral (exchange ratio of 1Ca\(^{2+}\):2H\(^+\) - Niggli et al., 1982) further experiments demonstrated that in fact the exchange was electrogenic i.e. 1 proton was transported in exchange of 1 Ca\(^{2+}\) (Rossi & Schatzmann, 1982; Gassner et al., 1988; Romero & Ortiz, 1988; Salvador et al., 1998 and see Carafoli, 1994 for review). The necessity for proton as counter-ions in the Ca\(^{2+}\) transport was further supported by experiments where the activity of PMCA was tested against the extracellular pH (e.g. DiPolo & Beauge, 1982; Niggli et al., 1982; Yu et al., 1994 and Xu et al., 2000). These experiments suggested that extracellular alkalisation decreases the rate of Ca\(^{2+}\) transport through PMCA with a half maximal inhibition for a pH value of 8.5-8.8 (Niggli et al., 1982 and Xu et al., 2000). More recently, direct measurements of the proton concentration either at the surface of the plasma membrane or in the cytoplasm confirmed the involvement of protons as counter-ions in the Ca\(^{2+}\) extrusion and suggested that PMCA activation resulted in an acidification of the cytosol (Chesler & Kaila, 1992; Schwiening et al., 1993; Daugirdas et al., 1995; Khodorov et al., 1995 and Trapp et al., 1996).

Following its activation by CaM (see below section 5.1.3), PMCA exhibits a high affinity for Ca\(^{2+}\), which enables it to work efficiently at low [Ca\(^{2+}\)], and therefore most authors agree that PMCA plays a role in the regulation of resting [Ca\(^{2+}\)], and the extrusion of small rises in [Ca\(^{2+}\)]; (DiPolo & Beauge, 1982, 1983, 1984; Benham et al., 1992; Schwiening et al., 1993; Trapp et al., 1996; Fierro et al., 1998 and see Carafoli, 1987, 1994; Miller, 1991 for review). It was suggested that Ca\(^{2+}\) extrusion via PMCA would start in parallel with the rise in [Ca\(^{2+}\)], and that during [Ca\(^{2+}\)], rises from 0.2 to 0.5 \(\mu\)M, the extrusion rate would increase from \(\approx 0.3\) to 5 \(\mu\)M s\(^{-1}\) per cell volume (see Tepikin et al., 1991 and see Kostyuk & Verkhratsky, 1995c for review). In most neurones, because of its high affinity for Ca\(^{2+}\) and saturable transport capacity, PMCA was suggested to play only a minor role in the clearance of Ca\(^{2+}\) and to be inoperative in the extrusion of micromolar rise in [Ca\(^{2+}\)]; (DiPolo & Beauge, 1983, 1984; Benham et al., 1992).
Finally, it was proposed that Ca\(^{2+}\) extrusion through PMCA was fast with kinetics comparable to those of the Ca\(^{2+}\) transient suggesting that PMCA activation could substantially influence the characteristics of a Ca\(^{2+}\) response.

5.1.2. PMCA structure

The primary structure of PMCA (130 to 150 kDa) was originally deduced from the cDNA isolated from rat brain (Shull & Greeb, 1988 and Greeb & Shull, 1989) and human teratoma cell (Verma et al., 1988). From the cloning studies, PMCA was predicted to contain 10 transmembrane domains, three main cytosolic regions representing the major part of the protein (80%) and C- and N-terminal regions oriented in the cytosol (see Carafoli, 1994; Carafoli & Stauffer, 1994; Guerini et al., 1998 for review). The first cytosolic domain contains one of the two sequences that bind acidic phospholipids (Zvaritch et al., 1990), however its function remains unclear. The second cytosolic region represents the largest domain of the protein and consists of an ATP/FITC binding site and the active site with the aspartic residue involved in the phosphoenzyme formation (see Carafoli, 1994 and Carafoli & Stauffer, 1994 for review). The third region, the C-terminal tail, is characteristic of PMCA and corresponds to the major ‘regulatory domain’. It consists of consensus sites for phosphorylation by PKA and PKC and contains binding sites for Ca\(^{2+}\), phospholipids and CaM (see Carafoli, 1994; Carafoli & Stauffer, 1994; Guerini et al., 1998 for review). The CaM binding region, which consists of two domains (A and B), was shown to interact with a region close to the active site in the large central loop and to be involved in the autoinhibition of the protein (see below section 5.1.3 and Carafoli, 1994; Carafoli & Stauffer, 1994 and Guerini et al., 1998 for review). Several sites of proteolysis by calpain have also been identified in the C-terminal region and were linked to the cleavage, in a CaM-dependent and independent manner, of part of the C-terminal tail. The C-terminal region contains several acidic residues that have been shown to retain PMCA in the ER when they are exposed by proteolysis of the protein (Zvaritch et al., 1995 and see Carafoli, 1994; Guerini et al., 1998 for review). Finally, there are several reports suggesting that PMCA can form oligomers that might be of relevance for PMCA function in vivo (Cavieres, 1984; Kosk-Kosicka & Bzdega, 1988;
Vorherr et al., 1991) and more recent studies suggested that PMCA might be found as a CaM-dependent monomer or as a CaM-independent oligomer (Sackett & Kosk-Kosicka, 1996).

5.1.3. Isoform specific regulation and tissue distribution of PMCA

Molecular studies have demonstrated that PMCA is encoded by four main isogenes (pmca-1 to -4) (Verma et al., 1988; Shull & Greeb, 1988; Greeb & Shull, 1989; Strehler et al., 1990; Burk & Shull, 1992; Keeton et al., 1993 and see Carafoli, 1994, 1996; Guerini et al., 1998 for review). Through alternative splicing of the primary transcripts, these isogenes produce more than 20 additional isoforms resulting in a complex nomenclature (see Carafoli, 1994 for review). A comparison of the isoform sequences has demonstrated that PMCA isoforms are highly homologous (≈ 75 %) except in their N- and C-terminal regions.

The site in the central domain interacting with the CaM binding site has been shown to differ between isoforms resulting in variations in the interaction with the ‘inhibitory’ domain and therefore in an isoform-specific level of activation (Falchetto et al., 1991 and see Carafoli, 1994; Carafoli & Stauffer, 1994; Guerini et al., 1998 for review).

The most important feature of PMCA activity is its regulation by CaM, which has formal similarities with the SERCA-phosholamban interaction (see above section 4.2.2.3 and see Schatzmann, 1982; Carafoli, 1987, 1994; Garraham & Rega, 1990 for review). In the resting state PMCA is characterised by a low affinity for Ca\(^{2+}\) (K\(_m\) ≈ 10-20 μM). In contrast, PMCA activation by CaM has been shown to increase both the Ca\(^{2+}\) affinity (K\(_m\) ≈ 0.5 μM) and the maximal velocity of the Ca\(^{2+}\) transport (≈ 10-fold - Gopinath & Vincenzi, 1977; Jarrett & Penniston, 1977; Gmaj et al., 1982 and see Schatzmann, 1982; Carafoli, 1987, 1994 and Garraham & Rega, 1990 for review). In fact, CaM activates PMCA by direct interaction with a stoichiometry of 1:1 and in a Ca\(^{2+}\)-dependent way (Ca\(^{2+}\)-CaM, K\(_d\) ≈ 1 nM - Niggli et al., 1979 ; Graf & Penniston, 1981; Hinds & Andreasen, 1981 and see Schatzmann, 1982; Carafoli, 1987, 1994 and Strehler et al., 1991 for review). Extensive studies have suggested that in the resting state (low [Ca\(^{2+}\)]\(_i\)) the CaM binding site interacts with the active site and reduces PMCA activity (see Carafoli, 1994 for review). When [Ca\(^{2+}\)]\(_i\) is increased, CaM binds Ca\(^{2+}\) and...
subsequently interact with its binding site on the Ca\(^{2+}\) pump. The Ca\(^{2+}\)-CaM/PMCA complex will induce a conformational change of the protein and the C-terminal tail will swing away from the centre of the protein, unmask the active site and therefore relieve the autoinhibition (see Carafoli, 1994 for review).

This CaM binding site corresponds to a region of high isoform variability and following alternative splicing the subdomain B (see above section 5.1.2) has either a different sequence or is absent (Strehler et al., 1989 and Heim et al., 1992). The variability in the CaM binding site would result in changes of PMCA affinity for CaM and therefore different level of modulation could be observed. Thus, some isoforms exhibit a very high affinity (e.g. PMCA-2) for CaM and are thought to be permanently associated to CaM and constitutively active (see Carafoli, 1994 for review). The activation of calpain, an intracellular protease, has been shown to cleave at several sites the CaM binding domain and therefore to affect the CaM-dependent activity of PMCA (Wang et al., 1988 and see Carafoli & Stauffer, 1994 and Carafoli, 1994). At least in the erythrocytes, calpain was shown to selectively target PMCA and was therefore suggested to be an irreversible PMCA activator (Salamino et al., 1994 and see Carafoli & Stauffer, 1994 for review).

The Ca\(^{2+}\) pump also contains amino acid residues (in the central cytosolic domain and next to the CaM binding site - see Strehler et al., 1991 for review) that are phosphorylated by PKA (Caroni & Carafoli, 1981 and see Carafoli & Stauffer, 1994 and Carafoli, 1994 for review). The phosphorylation sites for PKA have been shown to be differently located or even absent depending on the isoform resulting in a differential regulation of the protein isoforms (James et al., 1989 and Strehler et al., 1989). Protein kinase C activates PMCA in a similar way to CaM with the only difference that the removal of the autoinhibition results from the phosphorylation of amino acid residues within the CaM binding site (Wang et al., 1991 and see Carafoli, 1994 for review). The effect of PKC was suggested to be smaller, competitive to that of CaM and more importantly to dependent on the PKC isoform and on the lipids associated with the pump (Wang et al., 1991 and see Carafoli, 1994 for review). Although, PKA or PKC appear to have different sites of action and mechanisms of activation, they both induce an increase of the Ca\(^{2+}\) affinity and of the maximal rate of Ca\(^{2+}\) transport but to a lower extent than CaM (see Carafoli, 1994 for review).
The N-terminal region is poorly conserved and of different length among PMCA isoforms. This region was suggested to be implicated in the phospholipid sensitivity of the Ca\(^{2+}\) pump (Zvaritch et al., 1990 and see Carafoli, 1994). In the absence of CaM, PMCA is activated (increase in Ca\(^{2+}\) affinity and pump rate) by acidic phospholipids and long-chain polyunsaturated fatty acid (Ronner et al., 1977 and see Carafoli, 1987, 1994; Carafoli & Stauffer, 1994 for review). Since PMCA is embedded in the plasma membrane, which contains high concentrations of acidic phospholipids, the Ca\(^{2+}\) pump would be, at least partially, in a permanent active state. In fact, experiments on the reconstituted pump have suggested that the phospholipid environment would account for 50% of the enzyme maximal stimulation (Niggli et al., 1981 and see Carafoli, 1987, 1994 and Carafoli & Stauffer, 1994 for review). The phospholipid composition of the plasma membrane varies between cell types and during cellular activity. One can therefore suppose that such variations in the phospholipid content would have an effect on the PMCA activity. However, so far the exact mechanism by which phospholipids activate the Ca\(^{2+}\) pump remains unclear (see Carafoli, 1987, Carafoli, 1994 and Carafoli & Stauffer, 1994 for review).

The different isoforms were shown to have a tissue-specific expression. Thus, PMCA-1 and 4 are thought to be expressed in almost all tissues in equivalent amount whereas isoform 2 and 3 expression was only observed in specialised tissues (muscle and brain - Stauffer et al., 1993 and see Carafoli, 1994 and Carafoli & Stauffer, 1994; Guerini et al., 1998 for review). Therefore PMCA-1 and 4 are often considered as the 'house-keeping' isoforms for general Ca\(^{2+}\) pumping functions and PMCA-2 and 3 as specialised Ca\(^{2+}\) pumps. Moreover, the expression pattern in neuronal and non-neuronal cells shows remarkable differences. Firstly, while neurones express almost all splice forms in non-neuronal cells only the main splice variants are expressed (see Carafoli & Stauffer, 1994 for review). Secondly, along with the 'house-keeping' isoform, specific regions of the brain express either PMCA-2 or PMCA-3 (Borke et al., 1989; Brandt & Neve, 1992; Stauffer et al., 1995, Stauffer et al., 1997; Filoteo et al., 1997). Finally, in neurones, PMCA isoforms are not only expressed in the soma, but also in the dendrites and nerve terminals (Stauffer et al., 1997 and Juhaszova et al., 2000).

Although no selective inhibitor for PMCA has been isolated, several pharmacological tools are available to inhibit its activity. Similarly to all P-type pumps,
orthovanadate and lanthanides inhibit PMCA (Karlish et al., 1979; Luterbacher & Schatzmann, 1983 and Garraham & Rega, 1990 for review). Fluorescein and its analogues (e.g. eosin, carboxyeosin) have been shown to be potent inhibitors of PMCA (Bassani et al., 1995; Park et al., 1996 and Fierro et al., 1998) by interacting with the ATP/FITC binding site of the protein (Gatto & Milanick, 1993, 1995 and see Schatzmann, 1982; Garraham & Rega, 1990 for review). Unfortunately, the inhibition of the ATPase activity with vanadate or lanthanum is not selective and fluorescein analogues have been shown to also inhibit SERCA (Bassani et al., 1995). Calmodulin inhibitors (e.g. calmidazolium, trifluoperazine) have also been proposed to inhibit PMCA but only partially and with numerous secondary effects (Vincenzi et al., 1982; Adunyah et al., 1982; Gietzen, 1983 and Benham et al., 1992). Finally, another commonly used way to inhibit the Ca\(^{2+}\) pump is extracellular alkalisation (i.e. reduction in the availability of protons - IC\(_{50}\) = 2 nM - Xu et al., 2000). This process takes advantage of the obligatory counter-transport of proton during Ca\(^{2+}\) extrusion (see above section 5.1.1 and Niggli et al., 1982; Carafoli, 1988; Benham et al., 1992; Park et al., 1996 and Xu et al., 2000). In most of the cell types where the role of PMCA in [Ca\(^{2+}\)]\(_i\) regulation was tested, the inhibition of the Ca\(^{2+}\) pump resulted in delays in the recovery of induced Ca\(^{2+}\) transients (e.g. Benham et al., 1992; Schwiening et al., 1993; Daugirdas et al., 1995; Park et al., 1996; Herrington et al., 1996; Khodorov et al., 1995; Trapp et al., 1996 and Fierro et al., 1998) and some authors also reported a rise in resting [Ca\(^{2+}\)]\(_i\) (e.g. Benham et al., 1992).

5.2. The sodium/calcium exchanger

The Na\(^+\)/Ca\(^{2+}\) exchanger (NCX) represents another major Ca\(^{2+}\) extrusion system and was first described in cardiomyocytes (Reuter & Seitz, 1968) and shortly after in squid giant axon (Baker et al., 1969 and see Blaustein & Lederer, 1999; Philipson & Nicoll, 2000 for review). Following the cloning of NCX (Nicoll et al., 1990), extensive studies, mainly in excitable cell, have determined the structure of the protein, identified several isoforms with various tissue distribution and characterised different regulatory pathways of NCX activity (see Blaustein & Lederer, 1999 for review).
5.2.1. **NCX structure**

The primary structure of NCX (≈ 110 kDa) has been deduced based on the hydropathy profile of the protein sequence and was initially thought to have 11 transmembrane domains (TM) with short extracellular N-terminal and intracellular C-terminal domains and a large cytoplasmic loop representing about half of the whole protein (Nicoll et al., 1990 and see Blaustein & Lederer, 1999 for review). However, more recent experiments using cysteine mutation suggested that NCX would rather consist of 9 TM with a large intracellular loop between TM 5 and 6 (Cook et al., 1998; Iwamoto et al., 1999; Nicoll et al., 1999 and see Philipson & Nicoll, 2000; Shigekawa & Iwamoto, 2001 for review). Both the C- and N-terminal halves of the membrane domains contain repeat sequences (α1 and α2, respectively) conserved in all NCX isoforms and forming reentrant membrane loops (Schwarz & Benzer, 1997 and see Shigekawa & Iwamoto, 2001 for review). The intracellular loop contains the regulatory sites for NCX, particularly the Na⁺-dependent inactivation site, the Ca²⁺ regulatory site and consensus phosphorylation sequences (see Blaustein & Lederer, 1999; Philipson & Nicoll, 2000; Shigekawa & Iwamoto, 2001 for review). Finally, NCX has been proposed to contain a binding site for an ‘exchanger inhibitory peptide’ (XIP), which is thought to induce a conformational change of the protein and the inhibition of the Ca²⁺ transport (see Blaustein & Lederer, 1999 and Philipson & Nicoll, 2000 for review).

To date, three isoforms of NCX (NCX-1 to -3) with different tissue distribution and high sequence homology have been isolated and cloned (Philipson et al., 1988; Nicoll et al., 1990, Li et al., 1994 and Nicoll et al., 1996). The main region of divergence is the regulatory intracellular loop suggesting that the different isoforms will exhibit differential modulation. The NCX-1 isoform was first cloned from canine cardiac myocytes (Philipson et al., 1988 and Nicoll et al., 1990). The NCX-2 and NCX-3 isoforms are more ubiquitously expressed with the isoform 2 being mainly neuronal (Nicoll et al., 1990; Li et al., 1994; Nicoll et al., 1996 and see Blaustein & Lederer, 1999 for review). More recently, a new protein involved in the transport of Ca²⁺ has been isolated from retinal and brain tissues and was shown to depend on both the Na⁺ and K⁺ gradient (Schnetkamp et al., 1989; Reilander et al., 1992; Tsoi et al., 1998 and see Blaustein & Lederer, 1999; Philipson & Nicoll, 2000 for review).
The NCX has been shown to be as largely expressed in muscular cells and in neurones however these two tissues exhibit very different Ca\(^{2+}\) signalling. Regarding NCX, the explanation for these differences in the \([\text{Ca}^{2+}]\) regulation might arise from the expression of different isoforms especially if one considers that, so far, more than 30 members of the NCX family have been identified and that these differ mainly in the structure of their regulatory intracellular loop (see Blaustein & Lederer, 1999 for review).

5.2.2. NCX function

The NCX transports \(\text{Ca}^{2+}\) in exchange of \(\text{Na}^{+}\) using the energy of the \(\text{Na}^{+}\) gradient set by the ATP-dependent \(\text{Na}^{+}/\text{K}^{+}\)-pump and transports 1 \(\text{Ca}^{2+}\) for at least 3 \(\text{Na}^{+}\) (Baker & DiPolo, 1984; Reeves & Sutko, 1983; Reeves & Hale, 1984; Wier, 1990 and see Blaustein & Lederer, 1999 for review). The activity of NCX is thought to be determined by the transmembrane \(\text{Na}^{+}\) and \(\text{Ca}^{2+}\) gradients and the membrane potential of the cell (Baker & DiPolo, 1984; Reeves & Sutko, 1983; Reeves & Hale, 1984; Wier, 1990 and see Blaustein & Lederer, 1999 for review). Since, \(\text{Ca}^{2+}\) transport through NCX is thought to induce the net movement of one positive charge (+ve), NCX was proposed to be electrogenic (Baker & DiPolo, 1984; Reeves & Sutko, 1983; Reeves & Hale, 1984; Wier, 1990 and see Blaustein & Lederer, 1999 for review). Finally, another key feature of NCX is its ability to transport \(\text{Ca}^{2+}\) either out of or into a cell depending on the ionic gradients and the membrane potential.

From the earlier studies (Baker & Glitsch, 1973 and DiPolo, 1973, 1974), it has been suggested that NCX activity is regulated by ATP through a \(\text{Ca}^{2+}\)-dependent phosphorylation (DiPolo & Beauge, 1987) resulting in an increase in the affinity for internal \(\text{Ca}^{2+}\) and external \(\text{Na}^{+}\) (Blaustein & Santiago, 1977 and see Blaustein & Lederer, 1999; Philipson & Nicoll, 2000 for review). Thus in the presence of ATP, the half maximal activity of NCX was observed for a \([\text{Ca}^{2+}]_i\) ≈ 0.75 \(\mu\text{M}\) instead of 8 \(\mu\text{M}\) and for 50 mM instead of ≈ 140 mM extracellular \(\text{Na}^{+}\). It was further suggested that \(\text{Ca}^{2+}\) itself could also regulate NCX activity by binding (not transport) to a high affinity regulatory site and that this binding was necessary for the \(\text{Ca}^{2+}\) transport and resulted in an increased turn-over of the exchanger (DiPolo, 1979; Allen & Baker, 1985; Condrescu et al., 1995 and see Blaustein & Lederer, 1999 for review). NCX exhibits a
strict dependence on [Na\(^+\)] and especially on the Na\(^+\) gradient. Thus a decrease in the extracellular [Na\(^+\)] impairs Ca\(^{2+}\) extrusion while an increase in intracellular [Na\(^+\)] would induce Ca\(^{2+}\) influx (see Blaustein & Lederer, 1999 and Philipson & Nicoll, 2000 for review). Intracellular sodium was proposed to elicit dual effects either Ca\(^{2+}\) extrusion (i.e. Na\(^+\) influx) or time dependent-inactivation of NCX depending on the intracellular [Na\(^+\)] and the level of regulatory Ca\(^{2+}\) (Hilgemann et al., 1992; Matsuoka & Hilgemann, 1994 and see Blaustein & Lederer, 1999; Philipson & Nicoll, 2000 for review). This difference in the effects of intracellular Na\(^+\) was suggested to underlie two different Na\(^+\) binding sites. Thus, Na\(^+\) binding to its transport site on NCX would initiate the Na\(^+\)/Ca\(^{2+}\) exchange whose direction will depend on the respective [Ca\(^{2+}\)] and [Na\(^+\)] whereas, Na\(^+\) has been suggested to bind to a site on the large intracellular loop and thereby to induce an inhibitory conformational change of the protein structure (see Blaustein & Lederer, 1999 and Philipson & Nicoll, 2000 for review). Finally, the activity of NCX is also modulated by phosphorylation processes involving protein kinases (DiPolo & Beauge, 1991; DiPolo & Beauge, 1998; Iwamoto et al., 1995, 1996; Fan et al., 1996 and see Blaustein & Lederer, 1999 for review).

So far no specific inhibitor for NCX has been isolated, although compounds known to affect the activity of other proteins have been shown to possess inhibitory activity (e.g. amilorides analogues, general anaesthetics and verapamil). However, because of the high dependence of the Ca\(^{2+}\) transport on [Na\(^+\)] (K\(_d\) = 2-50 mM - Allen & Baker, 1986 and DiPolo & Beauge, 1988) the most effective way to inhibit NCX is the substitution of extracellular Na\(^+\) with non transported ions like lithium, choline or N-methyl D-glucamine (NMDG).

5.2.3. NCX regulation of intracellular calcium in neurones

The importance of NCX, as a regulatory mechanism for resting [Ca\(^{2+}\)], and for Ca\(^{2+}\) extrusion after neuronal excitation, appears to vary depending on the cell type. Thus, in peripheral neurones, Na\(^+\) removal from the extracellular medium did not appreciably affect the regulation of [Ca\(^{2+}\)], (dorsal root ganglion neurones - Thayer & Miller, 1990; Duchen et al., 1990 and Benham et al., 1992), whereas in central neurones it was shown both to significantly perturb the recovery phase from depolarisation-induced Ca\(^{2+}\) transient and sometimes to increase resting [Ca\(^{2+}\)], (rat brain synaptosomes...
- Taglialatela et al., 1990a, b; cultured hippocampal neurones - Segal & Manor, 1992; cultured cerebellar granule cells - Kiedrowski et al., 1994). Most authors agree that, because of its low affinity for Ca\(^{2+}\), NCX would mainly be active in the Ca\(^{2+}\) extrusion of large rise in [Ca\(^{2+}\)]\(_i\) (>1\,\mu M - Benham et al., 1992 and Fierro et al., 1998) and it was suggested that NCX and PMCA might work in a complementary way. Thus, PMCA would control resting [Ca\(^{2+}\)]\(_i\) and extrude Ca\(^{2+}\) during rises in [Ca\(^{2+}\)]\(_i\) too low to activate NCX, while NCX would be responsible for the extrusion of larger [Ca\(^{2+}\)]\(_i\) when PMCA is saturated. Some interesting aspects of NCX activity were observed in cerebellar granule cells where the inhibition of NCX was shown to potentiate glutamate-induced neurotoxicity (Mattson et al., 1989 and Andreeva et al., 1991). On the other hand, because of the reversibility of the Na\(^+\)/Ca\(^{2+}\) exchange, NCX could transiently amplify the rise in [Ca\(^{2+}\)]\(_i\). Thus, during glutamate exposure, Na\(^+\) influx through NMDA receptor was suggested to increase the intracellular [Na\(^+\)] to value as high as 60 mM close to the membrane at which concentration NCX could function in the reverse mode (Kiedrowski et al., 1994). Finally, Blaustein (1988b) suggested that, in nerve terminals, NCX could potentiate Ca\(^{2+}\) influx during the rising phase of an action potential while it would promote Ca\(^{2+}\) extrusion during the repolarisation and afterhyperpolarisation phase (Blaustein, 1988b and see Miller, 1991 for review).

6. Rat sympathetic neurones and intracellular calcium

The superior cervical ganglion (SCG) is part of the sympathetic chain of paravertebral ganglia. Neurones within SCG receive cholinergic inputs from the cervical region of the spinal cord and the noradrenergic postganglionic fibres inervate viscera such as the heart, abdominal organs and structures in the head such as eyes, salivary glands and blood vessels. In rat sympathetic neurones, the stimulation of nAChR following synaptic input would generate excitatory postsynaptic potential that in turn might induce plasma membrane depolarisation and lead to the activation of VACC.

In rat SCG neurones, nAChR have been demonstrated to be permeable to Ca\(^{2+}\) (Trouslard et al., 1993; Rogers & Dani, 1995 and Rogers et al., 1997) and their activation was shown to induce a substantial rise in [Ca\(^{2+}\)]\(_i\) (Trouslard et al., 1993). On
the other hand, SCG neurones express both on the soma and dendrites mainly N-type Ca^{2+} channels (Regan et al., 1991; Plummer et al., 1989; Hirning et al., 1988 and Delmas et al., 2000) but L-type Ca^{2+} channels along with other channel subtypes (P-, Q- and R-types) have also been shown to be present (Delmas et al., 2000). Numerous studies carried out on SCG neurones have demonstrated that N-type Ca^{2+} channels are modulated by G-protein coupled receptors such as mACh and α2-adrenergic receptors (see Hille, 1994; Dolphin et al., 1998 for review). Both the characteristics of N-type Ca^{2+} channels and their modulation have been shown to be different in the soma and dendrites of SCG neurones (Delmas et al., 2000) and one would expect different Ca^{2+} signals depending on the site of the Ca^{2+} entry.

An elevation of [Ca^{2+}]_i in SCG neurones was shown to activate two classes of Ca^{2+}-dependent K^+ channels (large ‘BK’ and small ‘SK’ conductances, Smart, 1987 and Selyanko, 1996, respectively), a Ca^{2+}/PKC-dependent Cl^− channels (Marsh et al., 1995) and to inhibit the M-type voltage-activated K^+ channels (Selyanko & Brown, 1996). By modulating these ionic conductances, intracellular Ca^{2+} was shown to have significant effects on the excitability of SCG neurones (Tokimasa & North, 1984; Smart, 1987; Brown, 1990; Davies et al., 1996; Selyanko, 1996 and see Marsh et al., 2000 for review). Although, the mechanisms underlying neuronal excitability in SCG have been extensively studied and the involvement of intracellular Ca^{2+} as a regulatory factor demonstrated, little is known about the processes responsible for the control of [Ca^{2+}]_i in these neurones. The few studies on the regulation of [Ca^{2+}]_i focused on the role of the ER and it has been demonstrated that SCG neurones posses Ca^{2+} stores that were both sensitive to caffeine and selectively blocked by high ryanodine concentrations (Thayer & Miller, 1988 and Hernandez-Cruz et al., 1995). It was further demonstrated that Ca^{2+} influx through VACC was not amplified or at least to a low degree by Ca^{2+} release from ryanodine stores (Thayer & Miller, 1988 and Hernandez-Cruz et al., 1995, 1997).

Since Ca^{2+} represents a key element in cellular physiology and particularly appears to modulate the excitability of SCG neurones, it was important to understand how [Ca^{2+}]_i is controlled and which systems are involved in its regulation. The aim of the present study was to determine which Ca^{2+} homeostatic systems are functional in SCG neurones and how they might interact to regulate [Ca^{2+}]_i.
Variations in $[Ca^{2+}]_i$ were mainly induced by membrane depolarisation and the activation of VACC. The first step was therefore to determine the type of VACC responsible for the Ca^{2+} influx (see Results section 1). The properties of the depolarisation-induced Ca^{2+} transients, including their dependence on Ca^{2+} influx and the kinetics of their recovery, were then determined (see Results section 1) along with the Ca^{2+} buffering capacity in the soma of sympathetic neurones (see Results section 2). Since in most cell types, intracellular stores have been shown to participate in the control of $[Ca^{2+}]_i$, the next step was to investigate the role of mitochondria (see Results section 3) and the of ER (see Results section 4) as regulatory systems for $[Ca^{2+}]_i$. Ultimately, Ca^{2+} is extruded from the cytoplasm and PMCA and NCX, the two major Ca^{2+} extrusion systems, have been shown to be involved in this process. Thus, the role of PMCA (see Results section 5) and of NCX (see Results section 6) in the clearance of Ca^{2+} transients was determined. Finally, between periods of cellular activity, $[Ca^{2+}]_i$ is tightly maintained at a low level (50-100 nM). Therefore, the last section of the work presented here investigates which mechanisms are involved in the maintenance of resting $[Ca^{2+}]_i$ (see Results section 7).
Chapter II

Materials and Methods
1. **Tissue Culture**

Superior cervical ganglion (SCG) neurones were isolated from Sprague-Dawley rats and cultured following a method described by Fernandez-Fernandez *et al.* (1999).

1.1. **Dissection of rat superior cervical ganglion**

15- to 17-day-old male Sprague-Dawley rats were killed by CO$_2$ asphyxiation and decapitated. The SCG were removed and bathed in Leibovitz L15 medium. The ganglia, cleaned from the conjunctive tissue, were washed several times in modified Hank's balanced salt solution (mHBSS; see Methods section 1.3 for details) and chopped into \approx 1mm2 pieces.

The ganglion fragments were then incubated at 37°C initially with collagenase (500 U ml$^{-1}$ for 15 min) and, after several washes in mHBSS, with trypsin type XIIa (1 mg ml$^{-1}$ for 30 min). The enzymes were dissolved in mHBSS supplemented with bovine serum albumin (BSA, 6 mg ml$^{-1}$).

The digested tissue fragments were transferred into a modified L15 medium (m-L15; see Methods section 1.3 for details), washed several times with m-L15 to stop the enzymatic digestion, and mechanically dissociated using a fire-polished Pasteur pipette (internal diameter \approx1 mm) until the medium appeared cloudy. The cell suspension was finally centrifuged at 800-1000 rpm at room temperature for 5 minutes. The supernatant was decanted and the pellet re-suspended in fresh SCG growth medium (\approx 250 µl m-L15 per ganglion).

1.2. **Culture of rat sympathetic neurones**

Sterile culture chambers were coated with a laminin substrate (10 µg ml$^{-1}$ in mHBSS; see Methods section 1.3 for details) and incubated at 37°C until plating the cell suspension. These chambers, which were also used as recording chambers, consisted of glass rings (diameter 16 mm; height 3 mm; \approx volume 500 µl) attached to borosilicate glass coverslips (BDH, 22 x 22 mm, thickness 0.13-0.17 mm) with silicone elastomer (Sylgard®, *Dow Corning*; cured at 180°C for 2 hours). Just before use, the laminin was washed with m-L15 and the cell suspension plated on to the coverslips. The chambers

67
were then placed into 35 mm Petri dishes and incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 4 hours to allow the cells to adhere to the coverslip. After this time, fresh growth medium was added to the dishes up to 500 μl. The day after the culture, the growth medium was replaced with fresh medium and, generally, the cultures were used for recordings within 3 days.

1.3. Culture solutions and growth medium

The modified Hank's balanced salt solution (mHBSS) consisted of a Ca2+ and Mg2+-free solution supplemented with 10 mM HEPES. The laminin substrate was stored at -20°C in stock aliquots (50 μg ml⁻¹) and diluted with mHBSS to the final concentration (10 μg ml⁻¹) the day of the culture. The SCG growth medium, or modified L-15 medium (m-L15), was prepared from Leibovitz L-15 medium supplemented with 2 mM L-glutamine, 38 mM glucose, 24 mM NaHCO3, 10% heat inactivated foetal calf serum, 50 ng ml⁻¹ nerve growth factor (NGF), and 50 U ml⁻¹ penicillin/streptomycin. All culture reagents were supplied from Gibco BRL except laminin, collagenase, trypsin (Sigma) and NGF (Tocris).

2. Electrophysiological recordings

2.1. Recording apparatus

The recording chamber was transferred on to the microscope stage and superfused with external solution (see Methods section 2.4.1, Table 1). Electrophysiological experiments were conducted under voltage-clamp conditions, using an axopatch 200A patch-clamp amplifier (Axon Instruments), both in the perforated patch configuration (Horn & Marty, 1988; Methods section 2.2.1 and figure 1) and in the whole-cell recording mode (Hamill et al., 1981; Methods section 2.2.2 and figure 1). Electrophysiological experiments were carried out simultaneously with measurements of the intracellular Ca2+ concentration ([Ca2+]i, see Methods section 3) unless otherwise stated.

Recording electrodes were pulled on a vertical pipette puller (PC-10, Narishige) using thin-walled filaments borosilicate glass (TF150, Clark Biomedical). The electrode tips were fire-polished with a microforge (MF-830, Narishige) and, when
filled with the internal pipette solution (see Methods section 2.4.3, Table 2), had a 2-3 MΩ nominal resistance. The series resistance and cell capacitance were compensated prior to the recordings.

For the study of whole-cell currents, experiments were carried out in the whole-cell configuration and no Ca²⁺ indicator was added to the intracellular solution. Whole-cell currents were filtered at 1 kHz and sampled at 40 kHz using a Digidata 1200 interface (analogue-to-digital converter; Axon Instruments) driven by the pClamp 8 software package (Axon Instruments) installed on a pentium II DELL personal computer. Data were acquired using the pClampex 8 software and recorded on to the computer as well as with an analogue chart recorder (Gould 2400S).

2.2. Recording configurations

2.2.1. Perforated patch configuration

Using the whole-cell recording mode (see figure 1), it was not possible to carry out stable recording of [Ca²⁺]ᵢ for more than 15-20 minutes. In this configuration, resting [Ca²⁺]ᵢ increased and the recovery time of any changes in [Ca²⁺]ᵢ became slower over this recording duration (see Results section 5.2). This phenomenon was certainly due to the characteristics of the whole-cell recording i.e. dialysis of the intracellular compartment with the pipette solution and loss of soluble components. Therefore recordings were preferably carried out in the perforated patch mode where the antibiotic amphotericin B (Rae et al., 1991 and see figure 1) was added to the pipette solution. This compound forms pores in the plasma membrane enabling the flow of monovalent ions and therefore electrical continuity between the recording pipette and the intracellular environment. A stock solution at a concentration of 100 mg ml⁻¹ was prepared daily by dissolving, through sonication (20-40 seconds), the amphotericin B in dimethylsulphoxide (DMSO). Amphotericin B was added (final concentration of 0.1-0.15 mg ml⁻¹) to the filtered (Gelman, 0.2 μm) pipette solution and dissolved through sonication. As DMSO perturbs the seal formation, the electrode’s tip was first dipped in an antibiotic-free solution for 15-20 seconds and then the electrode was back-filled with the pipette solution containing the amphotericin B. After the formation of a ‘giga-ohm seal’ (>1 GΩ), the cell was kept in the cell-attached configuration (figure 1)
Patch pipette
Cell
Backfill with Amphotericin B
'Dip fill' no Amphotericin B

‘Giga-ohm’ seal formation

-10 mV Voltage pulse, V

\[V = R_g I_f \]

Current flow, I_f

Cell-attached mode

Increase in R_{scal}

Perforated configuration
Perforation

Whole-cell configuration
Patch rupture

Figure 1: Patch-clamp recording configurations

A patch electrode (resistance R_e) filled with the intracellular solution is approached in contact with a cell (top panel). To follow the formation of a tight seal, a 10 mV hyperpolarising pulse (V - top panel, right) is applied using the patch amplifier and the current flowing through the electrode’s tip monitored (I_f in pA - top panel, right). The current is visualised as a square signal and is based on the Ohm’s law (I_f = V / R_e). As the contact between the cell and the electrode’s tip become stronger (middle panel), the seal resistance increases and therefore I_f decreases (middle panel, right). A tight seal is achieved when the seal resistance reaches at least 1 giga-ohm (>1 GΩ, ‘giga-ohm seal’) and the recording is in the cell-attached configuration (middle panel). In the perforated patch mode (bottom panel, left), amphotericin B is added to the intracellular solution and, by the time the cell-attached mode is obtained, has diffused to the tip of the electrode. The amphotericin B molecules get progressively inserted in the membrane patch and form pores enabling electrical continuity. With time, the number of formed amphotericin pores increases and the electrical access improves (i.e. the resistance decreases) resulting in a larger current flow (Perforation, left panel, bottom). At the perforation equilibrium, the current flow is maximal and constant generally ≈ 1000 pA (i.e. the resistance is ≈ 10 MΩ). In the whole-cell configuration (bottom panel, right), a strong and short suction is applied in the cell-attached mode and the membrane patch ruptured. The electrical access is obtained by the sudden drop in the resistance (<5 MΩ) and visualised by the increase in the current flow (>1000 pA). In this configuration, there is a complete dialysis of the cell content with the intracellular solution and equilibrium is generally reached in less than 10 minutes. When relevant, the recording configuration will be illustrated by an inset in the figures of the Results Chapter.
and the membrane potential hold at -60 mV until the permeabilization reached a steady state (figure 1). The progress in the perforation was monitored by the slow increase in the amplitude of the transient capacity current in response to a 10 mV hyperpolarizing voltage step (figure 1). Usually after 10-20 minutes, a final access resistance of 10-15 MΩ was obtained. A sudden change in the size of the capacity transients normally represented the rupture of the cell membrane and therefore such cells were discarded.

2.2.2. The whole-cell configuration

After the formation of a 'giga-ohm seal' in the cell-attached mode (figure 1), the whole-cell configuration was obtained by applying a short and strong suction to rupture the membrane patch (figure 1). With this method, low resistance pathway was obtained (access resistance ≈ 5 MΩ), and therefore an improved voltage-clamp and a nearly complete dialysis of the intracellular compartment could be achieved. However, this meant also that soluble endogenous components could be lost due to dialysis. Therefore, this recording configuration was rarely used except for whole-cell currents recordings, when it was necessary to apply membrane non-permeant pharmacological agents (buffers or blockers) or to carry out the Ca²⁺ indicator calibration (see Methods section 3). In order to allow full equilibration of the intracellular content, experiments in the whole-cell mode were always started 10-15 minutes after rupture of the membrane patch.

2.3. Voltage protocols

SCG neurones were voltage-clamped at -60 mV and specific voltage protocols were designed to induce Ca²⁺ influx of different amplitude and duration. Typically, Ca²⁺ currents were elicited with a single depolarising step from the holding potential of -60 mV to +0 mV for 60 and 500 ms. Calcium currents were also elicited from -60 mV to various test potentials (between -40 and +30 mV in 10 mV increments), to determine the voltage dependence of the Ca²⁺ influx (current/voltage relationship). Depolarisation steps from -60 mV to +0mV of various durations were used as well, to induce increasing Ca²⁺ influx.

In the whole-cell configuration, the same voltage protocols as in the perforated patch-clamp mode were used. For the experiments where an accurate measurement of
the Ca2+ charges transfer was necessary, the amplitude of the generated Ca2+ currents were measured after digital subtraction of the outward current remaining during the same voltage protocol in the presence of 100 \(\mu \)M cadmium (a blocker VACCs).

2.4. Perfusion media and intracellular solutions

2.4.1. Composition of the extracellular solutions

Experiments were performed at 33°C and cells were continuously superfused with the extracellular medium. The standard perfusion solution (A) was a modified Krebs’ solution, whose pH was buffered with HEPES and adjusted to 7.4 with sodium hydroxide (NaOH). The osmolarity of the extracellular solution was determined by the freezing point depression method using an automatic osmometer (CamLab) and set at \(\approx 285 \) mosmol l\(^{-1}\) by adding mannitol when necessary (see Table 1).

Table 1: Composition of the extracellular solutions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+</td>
<td>140</td>
<td>0</td>
<td>0</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>90</td>
</tr>
<tr>
<td>NMDG</td>
<td>0</td>
<td>130</td>
<td>130</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K+</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Mg2+</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>6</td>
<td>6</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Ca2+</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Cl-</td>
<td>137</td>
<td>139</td>
<td>139</td>
<td>142</td>
<td>142</td>
<td>137</td>
<td>134</td>
</tr>
<tr>
<td>Cs+</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Mannitol</td>
<td>0</td>
<td>14</td>
<td>26</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EGTA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

All solutions contained 11 mM glucose, 10 mM HEPES, the pH and osmolarity were adjusted as mentioned in the text. The concentrations mentioned in mM take into account the ionic addition due to pH adjustment.

Generally, tetrodotoxin (TTX, Tocris) was added at 0.5 \(\mu \)M (final concentration) to eliminate the sodium currents. For the sodium-free solution (B and C), the extracellular sodium chloride (NaCl) was replaced by N-methyl D-glucamine (NMDG) and the pH adjusted with hydrochloride acid (HCl). For the Ca2+-free solutions (D and E), the extracellular Ca2+ was omitted and the extracellular magnesium chloride (MgCl\textsubscript{2}) added increased from 1.5 to 6 mM. To buffer any Ca2+ contamination, 200 \(\mu \)M EGTA was
added to the solution. For the alkaline solutions (C, E and F), the pH was adjusted to 7.4 with NaOH and then to pH 9 using caesium hydroxide (CsOH) except in solution C where the pH was adjusted to 9 with HCl. The addition of extracellular Cs⁺ was without effect on membrane currents since most of the potassium currents were already blocked by the caesium-based intracellular solutions (see below Methods section 2.4.3 and Table 2). In solution G, used to depolarised neurones in experiments monitoring the variations in intracellular pH (see Results section 5.3), the KCl concentration was increased from 3 mM to 50 mM and the NaCl concentration reduced accordingly. The extracellular solutions were prepared to maintain as much as possible equivalent ionic concentrations. The detailed composition of the perfusion solutions is listed in Table 1 (see previous page).

2.4.2. Perfusion system and fast application

The recording chamber was gravity fed at 10-15 ml min⁻¹ with the extracellular solutions contained in 50 ml syringes. The perfusion solution was preheated to 35°C with a heating device (thermistor probe and temperature controller; Mr. C. Courtice, School of Pharmacy, University of London) prior to entering the recording chamber. With this system, the temperature of the bath was maintained constant at 33 ± 0.5°C. Generally, changes of the extracellular medium and drug applications were realised by switching between syringes. Thus, because of the small volume of the recording chamber (≈ 500 μl), the bath solution could be completely exchanged within 15-20 seconds. However, in some experiments a pressure ejection system or puffer (Neurophore BH-2, Medical System Corporation) was used to accelerate drug application or medium changes and limit the exposure to the recorded cell. Under these conditions, the perfusion medium was not recycled.

2.4.3. Composition of the intracellular solutions

The intracellular solutions were mainly caesium-based to block most of the potassium currents and therefore unmask Ca²⁺ currents and improve the space-clamp. The pH of the pipette solutions was adjusted to 7.3 with CsOH and the osmolarity set at ≈ 280 mosm l⁻¹ with caesium acetate (CsAc). In the perforated patch configuration, two solutions were used with (H) or without (I) sodium to investigate the role of the
intracellular sodium in Ca\(^{2+}\) homeostasis. For the experiments carried out in the whole-cell configuration, a NMDG-based intracellular solution (J) was used and supplemented with ATP, GTP and phosphocreatine (see Table 2 below). In this mode, 100 μM indo-1 acid (see Methods section 3.3.4 for details) was added to the pipette solution to perform measurement of [Ca\(^{2+}\)]\(_i\) (see Methods section 3). Some experiments were carried out with a solution containing high intracellular Na\(^+\) (solution K, see Table 2) to study the Na\(^+\)/Ca\(^{2+}\) exchanger properties and its involvement in the regulation of [Ca\(^{2+}\)]\(_i\). The composition of the intracellular solutions used in the different experiments is described in more detail in Table 2:

<table>
<thead>
<tr>
<th>Table 2: Composition of the intracellular solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>Standard Cs(^+)-based</td>
</tr>
<tr>
<td>Na(^+)</td>
</tr>
<tr>
<td>NMDG</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
</tr>
<tr>
<td>Cl(^-)</td>
</tr>
<tr>
<td>Cs(^+)</td>
</tr>
<tr>
<td>Ac(^-)</td>
</tr>
</tbody>
</table>

All solutions contained 10 mM HEPES, the pH and osmolarity were adjusted as mentioned in the text. The concentrations are mentioned in mM. * Final sodium concentration after addition of (mM) 3 Na\(_2\)ATP, 0.15 Na\(_2\)GTP and 0.15 Na\(_2\)Phosphocreatine.

3. Monitoring free intracellular calcium concentration

Most of the work presented in this thesis was carried out using electrophysiological technique combined with simultaneous photometric measurements of [Ca\(^{2+}\)]\(_i\). This type of experiments was carried out using indo-1 as Ca\(^{2+}\) indicator (see Methods section 3.1) and the ratiometric method (see Methods section 3.3.1) described by Grynkiewicz et al. (1985).

3.1. Indo-1 as a calcium indicator

Indo-1 is a dual emission fluorescent Ca\(^{2+}\) indicator, which is excited at 349 nm (peak excitation wavelength) and whose emission wavelength is dependent on the
binding of Ca\(^{2+}\). Thus the peak emission wavelengths are 410 nm when indo-1 is saturated with Ca\(^{2+}\) and 485 nm in the absence of Ca\(^{2+}\) (Gryniewicz et al., 1985). As both the Ca\(^{2+}\)-free and Ca\(^{2+}\)-bound forms of the fluorophore emit fluorescence at different wavelengths, it is possible to use a ratiometric method to monitor [Ca\(^{2+}\)], independently from the dye concentration and any instrumental or optical factors (see Methods section 3.3.1).

3.2. Experimental apparatus

The apparatus used to monitor intracellular Ca\(^{2+}\) is illustrated in figure 2. Briefly, an inverted microscope (Nikon Diaphot) was fitted with ultraviolet (UV) epifluorescence illumination system (75 W xenon arc lamp, Osram). The emitted light travelled through a quartz collector lens and a 360 nm filter (330-380 nm bandwidth). A manual shutter (Sh.) was inserted in the light path to limit the excitation of the dye to the recording periods and a field aperture (FA.) was set to reduce the excitation field to a single cell (diameter of 20 μm). Neutral density (ND.) filters were also positioned in the light pathway to reduce the intensity of the excitation light. All these precautions were taken to limit the photobleaching or denaturation of the fluorescent probe upon too long exposure to UV light and therefore to maximise the duration of the experiments. The excitation light was reflected by a 400 nm dichroic mirror (DM.) and passed through an oil-immersion fluorescent objective (UV fluor x40, numerical aperture, NA. 1.3; Nikon) on to the cell. The light emitted from the cell travelled back through the 400 nm dichroic mirror before being reflected by a normal mirror to the side port of the microscope where a x1 relay lens and a diaphragm, with a pinhole just greater than the cell area, were positioned. An additional 430 nm dichroic mirror split the emitted light on to two photomultipliers (PMT, Thorn EMI QL 30) with input filter at 407 (396-414 nm bandwidth) and 480 nm (474-487 nm bandwidth). The 407 and 480 output currents from each photomultiplier tube were converted into voltage by a home-build ratiometric amplifier (Mr. N. Gill, UCL), filtered at 1.6 Hz and then the 407/480 emission ratio was generated. The 407/480 ratio output (1 ratio per Volt) was acquired on to a computer using the Digidata 1200 interface (200 Hz acquisition rate) and the pClampex 8 software. However, to evaluate possible artefacts due to dye quenching, the 407 and 480 nm emission fluorescence could also be acquired.
Figure 2: Experimental apparatus for calcium imaging with indo-1

Fluorescence at 407 nm and 480 nm was monitored using photomultiplier tubes. The ratiometric amplifier converted the output currents from each photomultiplier tube into voltage and subsequently into the 407/480 ratio. This fluorescence ratio was then directly recorded onto the computer and converted into [Ca$^{2+}$], using the calibration parameters (full detail in the text).
The 407/480 ratio was converted online into \([\text{Ca}^{2+}]_i\), using the parameters obtained from the \textit{in situ} calibration and the built-in equation of the Camplex 8 'Math channel' (see Methods section 3.3.1, \textit{Equation 4}).

3.3. Measurement of intracellular calcium

3.3.1. The ratiometric method for calcium measurement

Due to the properties of indo-1 (see Methods section 3.1), it is possible to convert an emission fluorescence ratio into a \([\text{Ca}^{2+}]_i\), using the equation described by Grynkiewicz \textit{et al.} (1985):

\[
[\text{Ca}^{2+}]_i = K_d \times \left(\frac{F_o}{F_s} \right) \times \left(\frac{R - R_{\text{min}}}{R_{\text{max}} - R} \right) \quad \text{\textit{Equation 1}}
\]

where \(R\) is the measured 407/480 fluorescence ratio, \(R_{\text{min}}\) is the ratio at zero \(\text{Ca}^{2+}\), \(R_{\text{max}}\) is the ratio for a saturating \([\text{Ca}^{2+}]\), \(K_d\) is the dissociation constant for \(\text{Ca}^{2+}\) binding to indo-1 and \(F_o / F_s\) is the maximal excursion measured at 480 nm. In fact:

\[
K_d \times \left(\frac{F_o}{F_s} \right) = K^*_d \quad \text{\textit{Equation 2}}
\]

and \textit{Equation 1} can be simplified as follow:

\[
[\text{Ca}^{2+}]_i = K^*_d \times \left(\frac{R - R_{\text{min}}}{R_{\text{max}} - R} \right) \quad \text{\textit{Equation 3}}
\]

where \(K^*_d\) represents the apparent dissociation constant for \(\text{Ca}^{2+}\) binding to indo-1. To be able to estimate \([\text{Ca}^{2+}]_i\), the free \([\text{Ca}^{2+}]\) needs to be related to a value of the 407/480 fluorescence ratio. To do so, it is necessary to undergo a calibration procedure (see Methods section 3.3.2) in order to determine the parameters of \textit{Equation 3}. In the protocol designed with pClampex 8, a modified version of \textit{Equation 3} was used and enabled the online conversion of ratio values into \([\text{Ca}^{2+}]_i\):
\[\left[\text{Ca}^{2+} \right] = \frac{\left(K_d^* \times R + K_f \right)}{\left(K_2 \times R + R_{\max} \right)} \quad \text{Equation 4} \]

with \(K_f = -R_{\min} \times K_d^* \) and \(K_2 = -1 \)

3.3.2. Indo-1 calibration

It is easy to calibrate indo-1 in vitro, but as the biochemical environment may affect the properties of fluorophores, especially the ionic strength (Williams and Fay, 1990) and the protein binding characteristics (Baker et al., 1994), an in situ calibration is far more accurate. Thus, the indo-1 fluorescence ratios were calibrated in cells using a modified “calcium calibration kit” (Molecular Probes). It consisted of 12 solutions of 100 mM KCl, 10 mM 3-[N-Morpholino]propane sulfonic acid (MOPS) to buffer the pH, and 0-10 mM Ca-EGTA so that the total free [Ca\(^{2+}\)] ranged between 0 and 1 mM. The free [Ca\(^{2+}\)] in these solutions was estimated using the published dissociation constants of H\(^+\) and Ca\(^{2+}\) binding to EGTA (see Methods section 3.3.3). The pH and the osmolarity were adjusted to 7.2 with KOH and to 280 mosm l\(^{-1}\) with KAc, respectively. Solutions, supplemented with 100 \(\mu\)M indo-1 acid, were introduced into single cell under whole-cell patch-clamp configuration via dialysis of the cytoplasm. The cells were bathed in a Ca\(^{2+}\)-free extracellular solution (see Methods section 2.4.1, Table 1 - solution D) at 33°C and voltage-clamped at -60 mV. For each of the 12 ‘Ca\(^{2+}\) solutions’, the 407/480 ratio was monitored every 5 minutes until no further change was observed (30-50 minutes). The final ratio values are summarised in Table 3 and were plotted versus [Ca\(^{2+}\)], in figure 3 (with [Ca\(^{2+}\)], calculated in Methods section 3.3.3). The parameters \(R_{\min}, R_{\max}, \) and \(K_d^* \) from Equation 3 were determined by fitting the following curve to the data points:

\[
R = \left[\frac{R_{\min} - R_{\max}}{1 + \left(\frac{[\text{Ca}^{2+}]}{K_d^*} \right)^n} \right] + R_{\max} \quad \text{Equation 5}
\]
with \(R, R_{\text{min}}, R_{\text{max}}, [\text{Ca}^{2+}]_{i} \) and \(K_d^* \) as defined for \(\text{Equation 3} \) and \(n \), the Hill slope, constrained to 1 (i.e. binding ratio of 1:1).

Table 3: Indo-1 407/480 emission ratio obtained for various \([\text{Ca}^{2+}]_{i}\)

<table>
<thead>
<tr>
<th>Free ([\text{Ca}^{2+}]_{i}) ((\mu\text{M}))</th>
<th>Mean Ratio</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.23 ± 0.025</td>
<td>5</td>
</tr>
<tr>
<td>0.015</td>
<td>0.26 ± 0.032</td>
<td>6</td>
</tr>
<tr>
<td>0.034</td>
<td>0.29 ± 0.015</td>
<td>4</td>
</tr>
<tr>
<td>0.058</td>
<td>0.35 ± 0.031</td>
<td>6</td>
</tr>
<tr>
<td>0.090</td>
<td>0.40 ± 0.024</td>
<td>5</td>
</tr>
<tr>
<td>0.134</td>
<td>0.48 ± 0.030</td>
<td>7</td>
</tr>
<tr>
<td>0.2</td>
<td>0.50 ± 0.020</td>
<td>4</td>
</tr>
<tr>
<td>0.32</td>
<td>0.65 ± 0.035</td>
<td>5</td>
</tr>
<tr>
<td>0.52</td>
<td>0.95 ± 0.030</td>
<td>5</td>
</tr>
<tr>
<td>1.12</td>
<td>1.52 ± 0.030</td>
<td>6</td>
</tr>
<tr>
<td>12.2</td>
<td>3.30 ± 0.023</td>
<td>6</td>
</tr>
<tr>
<td>901.5</td>
<td>3.45 ± 0.032</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 3: Calibration curve for the determination of the free intracellular \(\text{Ca}^{2+} \) concentration (\([\text{Ca}^{2+}]_{i} \)) using the indo-1 fluorescence ratio (data as mean ± S.E.M included in the data points, see Table 3).
The fitted curve is illustrated in figure 3 (previous page) and the best fit is obtained with the following parameters:

\[R_{\text{min}} = 0.23, \quad R_{\text{max}} = 3.45 \quad \text{and} \quad K^*_{d} = 1400 \text{ nM} \]

3.3.3. Calculation of free intracellular calcium

The calibration solutions contained 10 mM EGTA and increasing concentration of Ca\(^{2+}\) to produce calculated [Ca\(^{2+}\)]. These concentrations were determined using the dissociation constant of Ca\(^{2+}\) binding to EGTA (\(K_{d(\text{EGTA})} = 55.8 \text{ nM}\)) at the temperature, pH and ionic strength of the experimental conditions. The free [Ca\(^{2+}\)] could then be calculated using the equation:

\[
[\text{Ca}^{2+}]_{\text{free}} = K_{d(\text{EGTA})} \times \frac{[\text{Ca} - \text{EGTA}]}{[\text{EGTA}]_{\text{free}}}
\]

Equation 6

Indo-1 also binds Ca\(^{2+}\) and can act as a Ca\(^{2+}\) buffer, especially at [Ca\(^{2+}\)] where EGTA starts to be saturated. The [Ca\(^{2+}\)] are then overestimated and therefore, these concentrations have to be re-calculated taking into account the presence of 100 µM indo-1. The calibration curve presented in figure 3 uses the re-calculated values for [Ca\(^{2+}\)].

3.3.4. Cell loading with indo-1

Indo-1 is a charged molecule and is therefore membrane non-permeant. Thus, in the whole-cell configuration, indo-1 was simply added to the intracellular solution at a concentration of 100 µM (see Methods section 2.4.3 and Table 2 - solution J). However, indo-1 is also available as an acetoxymethyl (AM) ester form (indo-1-AM), which is able to cross the plasma membrane. Once in the cytoplasm, the ester moiety is cleaved by endogenous esterases into the anionic form, which is then retained in the cell. Indo-1-AM was prepared in a solution of pluronic acid F127/20% DMSO (Molecular Probes) at a concentration of 5 mM and used to load the cells for experiments in the perforated patch configuration. Thus 0.5 µl of the stock solution (final concentration at 5 µM) was added to the culture medium (≈ 500 µl) directly in the
recording chamber and incubated for 30-40 minutes at 37°C. The chamber was then transferred on to the microscope’s stage, and superfused for ≈ 20 minutes at 33°C with the standard perfusion medium to remove any excess of indo-1-AM and allow the ester to hydrolyse.

3.3.5. Recording of the free intracellular calcium

Cells contain many substances that are fluorescent when excited within the UV spectrum (e.g. NADH). However, under the experimental condition the cell autofluorescence is negligible compared to the fluorescence emitted by indo-1.

Prior to recording of indo-1 fluorescence the background light had to be subtracted. In the whole-cell configuration, with indo-1 included in the patch solution, the amplifier outputs were adjusted to zero whilst in the cell-attached mode. In the perforated patch mode, the amplifier outputs were reset to zero over a ‘cell-free’ field of view. Then, the chosen cell (≈ 20 μm diameter) was placed in the centre of the view field and the field aperture (see Methods section 3.2) closed around its soma before being patch-clamped. To ensure the quality of the seal and the healthiness of the cell during recordings in the perforated patch configuration, resting [Ca^{2+}] was always monitored before and after the seal formation. Only cells with similar resting ratio values (± 0.01 ratio units) were used for the rest of the experiment.

4. Monitoring the intracellular pH

Experiments to monitor variations in the intracellular pH (pHf) were carried out using 2’,7’-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein (BCECF) a dual excitation fluorophore (Rink et al., 1982). Thus, at 470 nm the absorbance of BCECF is decreased upon the binding of H^{+} (i.e. acidification) whilst at 445 nm (isosbestic point) it is not affected. The emitted fluorescence was monitored at 535 nm. These characteristics of BCECF are taken advantage of in the ratiometric method and allow a calibration of the pH indicator (see Methods section 4.2.1).
4.1. Experimental apparatus

The apparatus used to monitor the pH of single cells is illustrated in figure 4. Briefly, an inverted fluorescent microscope (Nikon Diaphot 200) was used and excitation light provided by a monochromator (Polychrome II, T.I.L.L. Photonics GmbH.). This device was attached to the microscope through an epifluorescence condenser (T.I.L.L. Photonics GmbH.) via a light guide (quartz fibre optic, 1.5 mm diameter; T.I.L.L. Photonics GmbH.). The monochromator system allowed computer-controlled regulation of the excitation wavelength and a fast switching between wavelengths. A set of neutral density filters (ND.) and an electronically controlled shutter (Sh.) were placed in the light pathway to limit photobleaching of the fluorophore by controlling light intensity and exposure duration, respectively. The excitation wavelengths (445 and 470 nm) were reflected by a 510 nm dichroic mirror (DM.) and passed through a glycerine-immersion fluorescent objective (UV fluor x100, NA. 1.3, Nikon) on to the cell. The emitted light was then passed through a 535 nm DF35 bandpass filter (Omega) before being captured on to a 12-bit grey-scale computer-controlled digital (CCD) camera (Hamamatsu 4880). The Openlab 2.2.4 software (Improvision), installed on a G4 Apple Macintosh computer, controlled all the hardware (shutter, monochromator and camera) and the ‘in house’ designed automations (software routines).

4.2. Measurement of intracellular pH

4.2.1. The ratiometric method for intracellular pH measurement

For BCECF, the ratiometric method was used and based on the following equation:

\[
\left[H^+ \right] = K_a^* \times \left(\frac{R - R_A}{R_B - R} \right) \]

Equation 7

where \([H^+]\) is the concentration of proton, \(R\) the measured 445/470 fluorescence ratio. \(R_A\) and \(R_B\) represent the limiting values at the acidic and basic endpoints of the
Figure 4: Experimental apparatus for intracellular pH (pH_i) imaging with BCECF

Fluorescence emitted (535 nm) after excitation at 445 nm and 470 nm was acquired using a CCD camera. From the recorded images the 445/470 fluorescence ratio was calculated using the Openlab 2.2.4 software. This ratio was subsequently displayed as pH_i values using the calibration parameters (full details in the text).
calibration, respectively and K^* corresponds to the apparent dissociation constant for proton binding to BCECF. As the pH corresponds to the logarithm of $[H^+]$, Equation 7 can be expressed as follow:

$$pH = pK^* + \log \left(\frac{R - R_A}{R_B - R} \right)$$

Equation 8

4.2.2. BCECF calibration for intracellular pH measurement

The calibration was carried out *in situ* using BCECF-AM (see Methods section 4.2.3) to load the cells. Cells were then superfused at 33°C with Ca$^{2+}$-free and symmetric KCl solutions (in mM: 130 KCl, 4 MgCl$_2$, 20 HEPES adjusted to \approx 285 mosm l$^{-1}$ with KAc and to the various pH values with either KOH or HCl) containing the protonophore *m*-chlorophenylhydrazone (CCCP, 20 µM). The 445/470 fluorescence ratio was then measured at 5 different pH values. The final ratio values obtained at each pH are summarised below in *Table 4*:

Table 4: BCECF 445/470 excitation ratio obtained for various [H$^+$]

<table>
<thead>
<tr>
<th>Free H$^+$ (M)</th>
<th>pH</th>
<th>Mean Ratio</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x10$^{-12}$</td>
<td>11.3</td>
<td>3.92 ± 0.02</td>
<td>7</td>
</tr>
<tr>
<td>5x10$^{-9}$</td>
<td>8.3</td>
<td>3.66 ± 0.02</td>
<td>6</td>
</tr>
<tr>
<td>6.3x10$^{-8}$</td>
<td>7.2</td>
<td>2.83 ± 0.02</td>
<td>6</td>
</tr>
<tr>
<td>6.3x10$^{-6}$</td>
<td>5.2</td>
<td>1.77 ± 0.02</td>
<td>5</td>
</tr>
<tr>
<td>6.3x10$^{-5}$</td>
<td>4.2</td>
<td>1.64 ± 0.02</td>
<td>5</td>
</tr>
</tbody>
</table>

The plots of the ratio values *versus* [H$^+$] and pH, are illustrated in *figure 5-A and 5-B*, respectively. The parameters R_A, R_B, and K_a^* (*i.e.* pK_a^*) from *Equation 7 and 8* were determined by fitting a curve to the data points using the equation below.
Figure 5: Calibration curve for the determination of the free intracellular H⁺ concentration ([H⁺], A) and intracellular pH (pH, B) using the BCECF fluorescence ratio (data as mean S.E.M. included in the data points, see Table 4).
\begin{align*}
R &= \left[\frac{R_A - R_B}{1 + \left(\frac{[\text{H}^+]}{K_a^*} \right)^n} \right] + R_b \quad \text{Equation 9}
\end{align*}

with R, R_A, R_B, [H^+] and K_a^* as defined for Equation 7 and the Hill slope (n) constrained to 1 (*i.e.* binding ratio 1:1). The fitted calibration curves are illustrated in figure 5-A and 5-B (previous page) and the best fit is obtained with the following parameters:

\[R_A = 1.69 \pm 0.02, \quad R_B = 3.89 \pm 0.02 \quad \text{and} \quad K_a^* = 61 \pm 7 \text{nM} \]

\[\text{with } pK_a^* = - \log K_a^* = 7.21 \pm 0.05 \]

\section*{4.2.3. Cell loading with BCECF}

The loading procedure used the AM-ester form of BCECF at a final concentration of 5 μM (see Methods section 3.3.4 for details).

\section*{4.2.4. Recording of the intracellular pH}

At the start of the experiment, the chosen cell was alternatively excited at 445 and 470 nm and 12-bit grey-scale images of the fluorescence emitted at 535 nm were taken with the CCD camera for each excitation wavelength. The acquired images were optimised by adjustment of the camera exposure time, binning and digital gain at the excitation wavelength of 470 nm. Two regions of interest (ROI) were drawn on the acquisition frame, one in an area outside the cell (*i.e.* the background) and another on the cell's soma ('cell ROI') (445 and 470 nm *figure 6-A* and 6-B respectively, see next page). The mean intensity of the pixels within the background ROI was then digitally subtracted from each pixel of the acquired frames. The resultant images was then
Figure 6: Intracellular pH recording
Images of the fluorescence emitted at 535 nm after excitation at 445 nm (A) and 470 nm (B) were acquired using a CCD camera. The background was removed by subtracting the mean intensity of the pixels in the 'background region of interest (ROI)' from each pixel in the acquired frames. The fluorescence ratio (C) was subsequently obtained by dividing pixel by pixel the frame (A) by the frame (B) and using the parameter of the BCECF calibration converted online in pH, values. The region of interest drawn in the cell soma ('cell ROI') was subsequently used to plot online the time course of pH, variations.
subjected to a ‘ratioing’ procedure, which divides the digital intensity values of the ‘445 image’ by those found within the ‘470 image’, on a pixel by pixel basis. An image of the 445/470 fluorescence ratio was then obtained and displayed in pseudo colour (figure 6-C). The ratio image was then subjected to a density calibration allowing an online estimate of pH values, using the parameters from the calibration curve (see Methods section 4.2.2). A graph of the pH variations versus time was then obtained from the mean of the ‘cell ROI’ ratio. Ratio images were normally acquired at 1Hz – 0.2 Hz.

5. Drugs and chemicals

All drugs and chemicals were purchased from Sigma except indo-1 acid, indo-1-AM, BCECF-AM, 5,6-succinylmimidyl carboxyeosine (CE) (Molecular Probes) and cyclopiazonic acid (CPA) (Calbiochem). Indo-1-AM, BCECF-AM, CPA, thapsigargin, m-chlorophenylhydrazone (CCCP) and amphotericin B were dissolved in DMSO (final concentration <0.01%). For the experiments in immunocytochemistry (see Methods section 7) and molecular biology (see Methods section 8) the suppliers of solutions, enzymes and other compounds are mentioned in the text.

6. Data analysis

6.1. Calibration curves

The calibration curves for the fluorescent dyes were obtained within the Prism 3 software and fitted with equations mentioned in the Methods sections 3.3.2 and 4.2.2 for indo-1 and BCECF, respectively. The values of the fluorescence ratio at each [Ca2+]/pH were considered as replicates and their mean used for the fit. The goodness of the fit was assessed from χ^2 and the non-linear least square method (i.e. best fit obtained for χ^2 close to 0).

6.2. Decay time constants

The recovery phase of each Ca2+ transient was fitted using exponential decay functions of the first (monoexponential, Equation 10) or second order (biexponential, Equation 11):
\[y = y_o + A_1 \times e^{-\frac{(x-x_o)}{\tau_1}} \quad \text{Equation 10} \]

\[y = y_o + A_1 \times e^{-\frac{(x-x_o)}{\tau_1}} + A_2 \times e^{-\frac{(x-x_o)}{\tau_2}} \quad \text{Equation 11} \]

where \(x_o \) is the time at the peak and \(y_o \) resting \([\text{Ca}^{2+}]_i\). \(A_1 \) and \(A_2 \) represent the amplitudes of each exponential component and \(\tau_1, \tau_2 \) are the corresponding decay time constants. The fitting procedure was realised using the Origin 5 (Microcal software) and statistical weighting was applied. The goodness of the fit was assessed using the non-linear least squares methods (correlation coefficient close to 1 and \(\chi^2 \) value close to 0) and visualised from the residue plot (see figure 7-A). From the fit (figure 7-B), the derivative function \(\left(\frac{d[\text{Ca}^{2+}]}{dt}, \text{figure 7-C} \right) \) was calculated. Finally, by plotting the negative of the derivative \(\left(-\frac{d[\text{Ca}^{2+}]}{dt} \right) \) against \([\text{Ca}^{2+}]_i\) obtained from the exponential fit, the clearance rate (see figure 7-D) could be determined for the recovery of each \(\text{Ca}^{2+} \) transient. The clearance rates were pooled from all the \(\text{Ca}^{2+} \) transients recorded in each condition (control versus inhibitor) and were then fitted with a linear regression (monoexponential decay) or a polynomial function of the second order (biexponential decay). The best fit in the presence of an inhibitor was subsequently subtracted from the best fit in control to generate the inhibitor-sensitive component. For more clarity, apart in the Results section 1.2 (see Results figure 16-B), only the best fit of the data is presented. When the fit of the decay phase was not possible, the time necessary to reach 50\% (\(t_{50} \)) of the peak amplitude \((A_{\text{max}}) \) was measured and the average values compared before and after the application of an inhibitor.

6.3. Statistics

All averaged data are expressed as mean ± S.E.M. and the statistical significance was determined by paired Student \(t \)-test (\(P<0.05 \)) unless otherwise stated.
Figure 7: Fitting procedure and clearance rate determination for the Ca^{2+} transient's recovery (see text for details).
7. Immunocytochemistry

The nature and localisation of several proteins involved in Ca\(^{2+}\) homeostasis were determined with the immunocytochemical technique using the double labelling method. A primary antibody (see Table 5) directed against a specific antigenic epitope was subsequently labelled with a secondary antibody conjugated to a fluorescent marker (Table 6) visualised on to an inverted fluorescent microscope. The study was carried out to determine which SERCA and PMCA isoform(s) are expressed and if NCX is present in SCG neurones.

Table 5: List of the primary antibodies used in the immunocytochemical experiments

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Concentration and Animal Host</th>
<th>Antigenic peptide</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMCA-1</td>
<td>1/50 Rabbit polyclonal</td>
<td>NO</td>
<td>SWant® Swiss Antibodies</td>
</tr>
<tr>
<td>PMCA-2</td>
<td>1/50 Rabbit polyclonal</td>
<td>NO</td>
<td>SWant® Swiss Antibodies</td>
</tr>
<tr>
<td>PMCA-3</td>
<td>1/50 Rabbit polyclonal</td>
<td>NO</td>
<td>SWant® Swiss Antibodies</td>
</tr>
<tr>
<td>PMCA-4</td>
<td>1/50 Rabbit polyclonal</td>
<td>NO</td>
<td>SWant® Swiss Antibodies</td>
</tr>
<tr>
<td>NCX</td>
<td>1/50 Rabbit polyclonal</td>
<td>NO</td>
<td>Research Diagnostics Inc.</td>
</tr>
<tr>
<td>SERCA-1</td>
<td>1/50 Goat polyclonal</td>
<td>sc-8093-P</td>
<td>Santa Cruz Biotechnology Inc.</td>
</tr>
<tr>
<td>SERCA-2</td>
<td>1/50 Goat polyclonal</td>
<td>sc-8095-P</td>
<td>Santa Cruz Biotechnology Inc.</td>
</tr>
<tr>
<td>SERCA-3</td>
<td>1/50 Goat polyclonal</td>
<td>sc-8097-P</td>
<td>Santa Cruz Biotechnology Inc.</td>
</tr>
<tr>
<td>Plasma Membrane</td>
<td>F-143 25 μM</td>
<td>Specific PM marker</td>
<td>Molecular Probes</td>
</tr>
<tr>
<td>Endoplasmic Reticulum</td>
<td>DP-1 1/200</td>
<td>specific ER marker</td>
<td>Gift from Prof. Moss</td>
</tr>
</tbody>
</table>

7.1. Procedure for immunocytochemistry

Cell cultured on glass coverslips for 1-3 days were fixed with 0.2% glutaraldehyde/2% paraformaldehyde (in phosphate buffer saline, PBS; Sigma) for 20 minutes at room temperature and subsequently permeabilised with 0.1% triton X100 (Sigma) in PBS for 15 minutes. After several washes in PBS, cells were incubated at room temperature for 1 hour in a blocking buffer (PBS with 10 mg ml\(^{-1}\) bovine serum albumin, BSA; Sigma) and then for 1 hour at room temperature or overnight at 4°C with the primary antibodies (see Table 5 for details). Secondary antibodies conjugated either to tetramethylrhodamine B isothiocyanate (TRITC) or fluorescein isothiocyanate (FITC) (1/50, DAKO, see Table 6 for details) were used for fluorescent immunolabelling. After several 5 minutes washes in PBS, the coverslips were then mounted on to a slide using a mounting medium (DAKO) and then refrigerated until examination. To estimate the level of auto-fluorescence under the examination conditions, control experiments without antibodies were carried out. Specificity of primary antibody binding was determined by pre-incubating overnight the primary antibody with its corresponding antigenic peptide (see Table 5). When no antigenic peptide was available, the staining was compared against a staining with the secondary antibody alone.

Table 6: Characteristic of the secondary antibodies

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Secondary Antibody</th>
<th>Conjugates</th>
<th>Nature</th>
<th>Emission Wavelength</th>
<th>Excitation Wavelength</th>
<th>Dichroic Mirror</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Swine anti- mouse IgG</td>
<td>FITC</td>
<td>495 nm</td>
<td>510 nm</td>
<td>XF34 Omega</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit Swine anti-rabbit IgG</td>
<td>TRITC</td>
<td>555 nm</td>
<td>580 nm</td>
<td>XF14 Omega</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.2. Image acquisition and analysis

7.2.1. Image acquisition

The results of the immunocytochemical experiments were examined with the experimental apparatus illustrated in figure 4 using either a x40 (Oil, NA. 1.3) or
x100 (Glycerine, NA. 1.3) objective. The excitation and emission wavelengths as well as the dichroic mirrors used to visualise either the FITC or TRITC fluorescence are listed in Table 6. Images were acquired with a 12-bit grey-scale CCD camera and hardware controlled using the Openlab 2.2.4 software. The images were optimised by adjusting the camera exposure, digital gain and camera binning. A FITC or TRITC pseudo colour palette was subsequently applied to the acquired pictures.

7.2.2. Image analysis

The limitations of conventional optical microscopy implies that the digital images acquired will be subjected to a degree of ‘blurring’, as light emitted below and above the plane of focus invades the point at which the objective is focused. This phenomenon adds to the picture an out-of-focus haze, reduces the resolution and therefore the accuracy of any measurements taken. The development of laser confocal microscopy allowed high-resolution images to be obtained by using a series of apertures to removes this out-of-focus haze, leaving only a thin and highly focused plane or optical slice.

Another way to improve the acquisition of images and their resolution uses deconvolution algorithms (Agard et al., 1989; Casteleman, 1996). These processes consist of correcting and removing the noise and haze originating from images in other focal planes using mathematical algorithms. The simplest of these algorithms is the Nearest neighbour algorithm (Agard et al., 1989; Casteleman 1996), which yields reasonably good results. This method assumes that all contributors to a particular image plane come from the plane in the object and its nearest neighbours and uses a minimum of three optical slices (i.e. the image just below the plane of focus, the plane of focus itself and the image above the plane of focus) for the correction. With the Openlab 2.2.4 software and using the experimental apparatus illustrated in figure 4, it is possible to undertake this type of analysis to examine the results of immunocytochemical experiments. An automation for the Openlab 2.2.4 software was designed in our laboratory, which enables the acquisition of optical slices through a stained specimen (see figure 8-A). Briefly, the microscope was automatically focused to the bottom of the cell and then several optical slices (generally ≈ 30) were acquired in 0.5 μm steps up
Figure 8: Principle of the digital deconvolution

From the bottom to the top of a cell, optical slices (A) were acquired using a CCD camera with 0.5 μm step. Then, the image (B) at a chosen plane of focus (i) was digitally deconvolved using the Nearest Neighbour algorithm. Generally, 5 images above the plane of focus (i + 5) and 5 under (i - 5) were used to obtain the deconvolved image (C). This process enabled an improvement of the image resolution similar to the image obtained with a laser confocal microscope (see figure 9-A).
Figure 9: Determination of the validity of the digital deconvolution method to analyse the results of immunocytochemical experiments

(A) 5F10, an antibody that recognises the plasma membrane Ca\(^{2+}\)-ATPase (1/50, mouse monoclonal isoform non-specific antibody), was used to stain dissociated SCG neurones. The primary antibody was immunolabelled with a secondary antibody raised against mouse IgG and conjugated with TRITC (1/50). The same immunocytochemical experiment was then acquired using either a laser confocal microscope (A\(_1\)) or a CCD camera with digital deconvolution (A\(_2\)). (B) Cell transfected with cDNA for the green fluorescent protein (GFP) with a cytoplasmic distribution. Images were acquired with a CCD camera (B\(_1\)) before being analysed with the digital deconvolution (B\(_2\)). As expected from a cytoplasmic marker after deconvolution the fluorescence is homogeneously distributed in the cytosol. (C) Cells were superfused with an extracellular medium containing 25 \(\mu\)M of F-143. This compound is inserted into plasma membrane bilayer by endocytosis before acquiring fluorescent properties. Images were acquired with a CCD camera (C\(_1\)) before being analysed with the digital deconvolution (C\(_2\)). As expected from a plasma membrane marker after deconvolution the fluorescence is localised in the plasma membrane.
through the cell. Then, the image obtained from a particular focal plane (see figure 8-B) was deconvolved using the nearest 5 neighbours algorithm (i.e. 5 above and 5 below, figure 8-A). For the correct settings of this analysis it was necessary to estimate the point spread function (P.S.F.) of the microscope. This required that the objective, immersion solution, camera resolution and binning are all known. The deconvolution procedure generated an image with reduced blur and improved clarity (see figure 8-C). This technique was particularly useful in experiments where the presence of plasma membrane associated proteins were being investigated, as it enables the precise localisation of the staining. To make sure that the images generated with this technique were real and not artefacts of the deconvolution, two control image analysis experiments were carried out. The first consisted of using a laser confocal microscope to double-check the experimental result (see figure 9-A). The second involved the overexpression of a fluorescent protein with a cytoplasmic distribution (e.g. green fluorescent protein, figure 9-B) or a fluorescent marker localised in the plasma membrane (e.g. F-143, figure 9-C). The acquired data were then subjected to the same deconvolution parameters and algorithm (see figure 9-2) and compared to the results of the immunocytochemical experiments.

8. Molecular biology

The proteins involved in the Ca^{2+} extrusion processes (i.e. SERCA, PMCA and NCX, see General Introduction sections 4.2, 5.1 and 5.2) exist as different isoforms with numerous alternative splice variants. In order to determine the nature of the isoform(s) expressed in SCG neurones and also to confirm results obtained in immunocytochemistry, molecular biological experiments were carried out. These experiments consisted initially of messenger RNA\(^1\) (mRNA) extraction from fresh tissue (see Methods section 8.1), subsequent reverse transcription into cDNA\(^2\) (see Methods section 8.2) and finally a polymerase chain reaction (PCR) analysis (see Methods section 8.3).

\(^1\) RNA: ribonucleic acid.
\(^2\) cDNA: complementary DNA (deoxyribonucleic acid) synthesised in vitro as opposed to genomic DNA.
8.1. **mRNA extraction**

Although SCG tissues were mainly used in these experiments, comparisons were made with tissues isolated from cerebellar cortex, heart and skeletal muscles. All the tissues were freshly dissected from 15- to 17-day-old male Sprague-Dawley rats and stored on ice in RNAzol™ B (1 ml per 50-100 mg of tissue, Biotecx Laboratories, Inc.) in a closed 1.5 ml tube until the mRNA extraction procedure. The tissues were dissociated in RNAzol™ B by strong trituration using a needle (0.6 x 25 mm, Sherwood) attached to a 5 ml syringe until homogenisation and then stored on ice for 5 minutes. After adding 0.2 ml chloroform per ml of RNAzol™ B, the sample was vigorously shaken, allowed to stand for 5 minutes, then quickly ‘vortexed’ and finally centrifuged (12,000 g at 4°C for 15 minutes). The centrifugation separated the contents of the tube into three phases: a red organic phase containing proteins, an interphase containing DNA and a colourless upper aqueous phase containing the RNA. To isolate the RNA, the aqueous phase was transferred into a fresh tube and 0.5 ml isopropanol per ml of RNAzol™ B was added. Again the tube was vigorously shaken, allowed to stand for 5 minutes, quickly ‘vortexed’ and centrifuged (12,000 g at 4°C for 15 minutes) to precipitate the RNA at the bottom of the tube. The extracted RNA was then washed in 1 ml 75% ethanol and centrifuged at 12,000 g and 4°C for 15 minutes. The supernatant was then disposed off and the RNA left to air dry for ≈ 5 minutes before being resuspended in 10 µl of ultra-pure distilled water. One microliter of the suspension was then added to 500 µl of distilled water and the optical density (OD) measured at 260 nm and 280 nm using a spectrophotometer (SmartSpec™ 3000, Biorad). The OD obtained at 260 nm was then used to determine the RNA concentration of the sample (1 unit of OD per mg of RNA) and the 260/280 ratio used to determine the quality of the extraction (260/280 ratio ≈ 1.8 for a solution containing only RNA). At this stage, the isolated RNA was reverse transcribed into cDNA.

8.2. **Reverse transcription**

To remove traces of possible genomic DNA contamination, 10 µg of total RNA was incubated with 10 units (1 µl) of RNase-free-DNase I (Boehringer Mannheim) at 37°C for 30 minutes in 1x transcription buffer (Boehringer Mannheim).
The DNase-treated RNA was then extracted with phenol/chloroform and precipitated by centrifugation at 12,000 g for 2 minutes at room temperature. Finally, the RNA was resuspended in 5 μl of water and stored at -20°C until use. To further ensure the absence of any genomic DNA contamination, two parallel reverse transcriptions (RT) were carried out where in one of the reactions the reverse transcriptase was omitted and replaced by distilled water i.e. no cDNA would be synthesised. For the ‘normal’ RT, 2 μl (≈ 4 μg) of DNase-treated RNA was added to 8 μl of ultra-pure distilled water containing 250 ng oligo d(T)$_{15}$ primer3 (Promega), denatured at 65°C for 2 minutes and then immediately cooled on ice. First strand cDNA synthesis was carried out in 1x Superscript II buffer (Life Technologies) containing 10 mM DTT, 0.5 mM dGTP4, 0.5 mM dCTP4, 0.5 mM dATP4 and 0.5 mM dTTP4, 1 μl RNAse Inhibitor (Boehringer Mannheim) and 200 units (1 μl) M-MLV reverse transcriptase (Promega). The mix was then incubated for 1 hour at 37°C. Finally, 2 μl of cDNA template was subjected to a PCR analysis.

8.3. Polymerase chain reaction

The PCR reactions were performed in 20 μl of 1x Taq Extender buffer (Stratagene) containing 2 μl of cDNA template, 250 nM dGTP, 250 nM dCTP, 250 nM dTTP, and 250 nM dATP, 5 nM of each of the forward and reverse primers (see Table 7), 1.25 unit Taq polymeraseTM (Promega) and 1.25 unit Taq Extender5 PCR additive (Stratagene). The forward (sense, s) and reverse (antisense, a) primers were designed (see details in Table 7 and figures legend) to bind specific regions of the sequence of the studied gene so that only a fragment of this particular cDNA would be amplified. The selectivity of each primer was then controlled by sequence alignment against a DNA databank (server of the National Center for Biotechnology Information at www.ncbi.nlm.nih.org, National Institute of Health, New York USA). The designed primers were then obtained from Sigma-Genosys. The standard cycling conditions were

3 oligo d(T)$_{15}$ primers: nucleotide sequence composed by 15 thymine deoxyribonucleoside 5'-triphosphate. Most mRNA are terminated by a tail composed by several adenosine nucleotides or poly-A tail, the oligo dT primers bind to the poly-A tail and help the initiation of the reverse transcription.

4 dGTP, dCTP, dATP, and dTTP: guanine, cytosine, adenine and thymine deoxyribonucleoside 5'-triphosphate.

5 Taq Extender: during the amplification of cDNA sequences some errors may occur (insertion of the wrong nucleotide, gap). The Taq Extender enzyme helps to correct these errors.
94°C for 2 minutes and 35 cycles of 94°C for 30 seconds, 60°C for 30 seconds and 70°C for 1 minute followed by a final step of 72°C for 10 minutes. The amplified products were electrophoresed through a 2% MetaPhor® agarose gel (FMC BioProducts) and their sized determined against a DNA molecular ladder (1 Kb plus, Gibco BRL).

<table>
<thead>
<tr>
<th>Isoforms</th>
<th>Forward Primers 5'-3'</th>
<th>Reverse primers 5'-3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCA-1 gi: J03753*</td>
<td>CTTCTATCCTAAACTCGGGGTG<sup>b</sup> pmca1/3878a</td>
<td></td>
</tr>
<tr>
<td>PMCA-2 gi: J03754</td>
<td>TGGGGAACCTTCCAGCTGA<sup>a</sup> pmca1/3342s pmca2/3721s pmca4/3208s</td>
<td></td>
</tr>
<tr>
<td>PMCA-3 gi: J05087</td>
<td>GTCAGGGATCCCGCTTGC<sup>b</sup> pmca2/4076a</td>
<td></td>
</tr>
<tr>
<td>PMCA-4 gi: U15408</td>
<td>GAGCTACGGAAATGCTTTCAC<sup>b</sup> pmca3/34178a pmca4/3844a</td>
<td></td>
</tr>
<tr>
<td>NCX-1 gi: U04933</td>
<td>TAAACCATTGAAGGCACAGC<sup>c</sup> ncx1/1713s</td>
<td></td>
</tr>
<tr>
<td>NCX-2 gi: U08141</td>
<td>CACCTCAGCTTGGTGTTTT<sup>e</sup> ncx1/2120a</td>
<td></td>
</tr>
<tr>
<td>NCX-3 gi: U53420</td>
<td>TCGATGCTCTGGCGGGTCT<sup>e</sup> ncx2/863a</td>
<td></td>
</tr>
</tbody>
</table>

* Accession number of the cDNA sequence submitted to GenBank. The forward or sense (s) and reverse or antisense (a) primers are termed after the gene isoform and the first and last nucleotides, respectively of the corresponding mRNA sequence. ^a Forward primer common to all 4 PMCA isoforms and designed to amplify a sequence coding for a region between transmembrane domains 9 and 10. ^b From Keeton <i>et al.</i> (1993). ^c Forward and reverse primers flanking the alternative splicing region on the NCX-1 gene, from Lee <i>et al.</i> (1994). ^d Forward primers selective to NCX-2 and NCX-3 designed to amplify a sequence coding for a region in transmembrane domain 4. ^e Reverse primers selective to NCX-2 and NCX-3 designed to amplify a sequence coding for a region in the large intracellular loop.
Chapter III

Results
1. Calcium currents and changes in intracellular calcium

In neurones, following depolarisation, changes in $[\text{Ca}^{2+}]_i$ can be induced. The main Ca^{2+} influx is through VACC (see General Introduction section 2.1) and the immediate role is to trigger neurotransmitter release at the synapses. However, rises in $[\text{Ca}^{2+}]_i$ can also regulate the neuronal activity (e.g. enzyme activation, second messenger production and gene expression) and the cellular excitability (activation of ionic channels). The size of the variation in $[\text{Ca}^{2+}]_i$ as a consequence of the induced Ca^{2+} influx, will depend on the properties of the Ca^{2+} channels, the duration and amplitude of the Ca^{2+} current, the site at which Ca^{2+} entry occurs and on the characteristics of the cell. Several VACC subtypes with different electrophysiological properties, molecular structure and tissue distribution have been identified (see Bean, 1989; Birnbaumer et al., 1994 and Dunlap et al., 1995 for review). Therefore, in this section, the nature of the somatic VACC present in SCG neurones and responsible for the rise in $[\text{Ca}^{2+}]_i$ was investigated. Furthermore, the properties of the depolarisation-induced Ca^{2+} transients were determined. In later sections, membrane voltage protocols were designed to investigate under which conditions a particular system might be activated for returning $[\text{Ca}^{2+}]_i$ back to its resting level.

1.1. Activation of voltage-dependent calcium channels

Neurones were voltage-clamped in the whole-cell configuration (see Methods section 2.2.2, figure 1) with a Cs$^+$-based intracellular solution, to block most of the potassium currents (see Methods section 2.4.3, Table 2 - solution J), and with 500 nM extracellular TTX to block sodium currents. Currents were induced using depolarising steps from a holding potential of -60 mV to between -40 and +30 mV in 10 mV increments for 20 ms (figure 10-A). The calcium current (I_{Ca}) was defined as the current remaining after digital subtraction of the current recorded with the same voltage protocol in the presence of 100 μM Cd$^{2+}$, a selective blocker of VACC (Fox et al., 1987). Typically, this voltage protocol elicited a Ca^{2+} current that began to activate around -30 mV, its amplitude peaked at 0 mV (700 ± 95 pA; n=5 - figure 10-B) and then progressively decreased at more depolarised potentials.
Figure 10: Somatic activation of high voltage-activated Ca\(^{2+}\) channels

(A) Representative Ca\(^{2+}\) currents recorded from the soma of a SCG neurone voltage-clamped in the whole-cell configuration (see inset) with a Cs\(^{+}\)-based intracellular solution and 500 nM extracellular TTX. Currents were elicited by 20 ms voltage steps (ΔV) from a holding potential of -60 mV to between -30 and +40 mV in 10 mV increments. The Ca\(^{2+}\) currents are defined as the currents remaining after digital subtraction of the currents elicited with the same protocol in the presence of 100 μM Cd\(^{2+}\). (B) Corresponding current-voltage relationship from 5 different cells (data as mean ± S.E.M.).
In order to characterise further the nature of the Ca\(^{2+}\) current recorded from the soma of SCG neurones, selective Ca\(^{2+}\) channels inhibitors were used (figure 11). The Ca\(^{2+}\) current was elicited with a depolarising step from -60 mV to 0 mV (Ca\(^{2+}\) current peak as determined in figure 10-B) for 20 ms and the channel inhibitors were added cumulatively. Typically, a Ca\(^{2+}\) current was elicited in control (figure 11-A) and then \(\omega\)-conotoxin GVIA (\(\omega\)-CgTx GVIA, 500 nM) was added to the bath (figure 11-A). At the steady state inhibition, 10 \(\mu\)M nimodipine, a selective inhibitor of L-type Ca\(^{2+}\) channels, was then applied and finally the residual Ca\(^{2+}\) current was determined using 100 \(\mu\)M Cd\(^{2+}\) (figure 11-A). Most of the Ca\(^{2+}\) current was inhibited by \(\omega\)-conotoxin GVIA, the remaining current was further inhibited by nimodipine and completely blocked with Cd\(^{2+}\) (84 \pm 4\% inhibition, 7 \pm 3\% and 9 \pm 3\% inhibition, respectively n = 7 - figure 11-B). As no selective inhibitors for the P/Q- and R-type Ca\(^{2+}\) channels were used, after \(\omega\)-conotoxin GVIA and nimodipine inhibition, the remaining Ca\(^{2+}\) currents were regrouped under the denomination of residual current (P/Q/R- current in figure 11-B).

1.2. Changes in the free intracellular calcium concentration

Neurones were voltage-clamped in the perforated patch configuration (see Methods section 2.2.1, figure 1 and Methods section 2.4.3, Table 2 - solution I) and rise in [Ca\(^{2+}\)]\(_i\), induced by depolarising steps from -60 mV to 0 mV. Figure 12 illustrates a Ca\(^{2+}\) transient induced by a depolarising step for 60 ms and the top trace shows the actual changes in [Ca\(^{2+}\)]\(_i\), calculated from the 407/480 nm emission ratio (blue trace and see Methods section 3.3.2 for details on the calibration procedure). The two traces in the bottom panels represent the corresponding changes in the indo-1 fluorescence emitted both at 407 (Ca\(^{2+}\)-bound form, green trace) and 480 nm (Ca\(^{2+}\)-free form, red trace). As expected, the rise in [Ca\(^{2+}\)]\(_i\) induced a small increase in the fluorescence emitted at 407 nm and a larger decrease in the fluorescence emitted at 480 nm (figure 12, bottom panels).

Cells were depolarised from -60 mV to 0 mV for increasing length of time (from 15 to 210 ms in 15 ms increments for the first 4 traces and then in 30 ms increments) and the elicited Ca\(^{2+}\) transients analysed to determine the relationship between the depolarisation's duration and the characteristics of Ca\(^{2+}\) transients (figure 13). To make
Figure 11: The N-type Ca\(^{2+}\) current is predominant in the soma of SCG neurones

(A) Representative macroscopic Ca\(^{2+}\) current in control and after application of \(\omega\)-conotoxin GVIA (\(\omega\)-CgTx GVIA, 500 nM), nimodipine (10 \(\mu\)M) and Cd\(^{2+}\) (100 \(\mu\)M) in an additive manner. Currents were generated by a single voltage step to 0 mV from a holding potential of -60 mV for 20 ms (see above recording). (B) Percentage inhibition of the different components of the somatic Ca\(^{2+}\) current as determined in (A) (n=7; data as mean ± S.E.M.).
Figure 12: Variations in $[\text{Ca}^{2+}]$, recorded from the changes in the fluorescence properties of indo-1. Changes in $[\text{Ca}^{2+}]$, were induced by a 60 ms depolarising pulse (top panel). In this and subsequent figures, unless otherwise stated, neurones were voltage-clamped at a holding potential of -60 mV in the perforated patch configuration and the plasma membrane depolarised to 0 mV. When relevant, an inset in the top right corner of each figure illustrates the recording configuration. The middle panel represents the recording of the corresponding 407/480 fluorescence ratio (blue trace) and the two panels at the bottom show the changes in the intensity of the indo-1 fluorescence emitted at 407 nm (green trace) and 480 nm (red trace) following the binding of Ca^{2+} to indo-1.
the analysis of the recovery kinetics easier, intracellular Na\(^+\) was omitted (see inset in figure 13 and Results section 3.2 for further details on this particular aspect). Typically, the amplitude of the elicited Ca\(^{2+}\) transient increased linearly with the duration of the depolarisation until a plateau where any further increase in the depolarisation’s duration only induced small additional rises in [Ca\(^{2+}\)], but prolonged the recovery phase of the Ca\(^{2+}\) transients (figure 13). Moreover, it appears that the time course of the Ca\(^{2+}\) transients was dependent on the amplitude of the rise in [Ca\(^{2+}\)], with a secondary phase developing for rises in [Ca\(^{2+}\)], above 500 nM (see figure 13 and 15-A). In figure 14, three Ca\(^{2+}\) transients of increasing amplitude with the corresponding fit of their recovery phase and the analysis are represented. The Ca\(^{2+}\) transient on the left was elicited by a 60 ms depolarisation step and the amplitude of its peak was around 350 nM (± 250 nM net increase, Δ[Ca\(^{2+}\)]). The recovery of the Ca\(^{2+}\) transient was best fitted (see red line on top trace in figure 14, left) with a monoexponential function as can be seen from the residual plot (flat red line bottom trace in figure 14, left) and from the value of \(\chi^2\) close to zero (see inset in figure 14, left). The Ca\(^{2+}\) transient in the centre was elicited by the same voltage protocol but for 120 ms and its peak amplitude was above 500 nM. In this condition, the decay was no longer best fitted with a monoexponential function (large residual plot and \(\chi^2 = 0.54\) - red lines in figure 14, centre). A better fit was obtained with a biexponential function (flat residual plot and \(\chi^2 = 0.08\) - green lines in figure 14, centre). The trace on the right represents a rise in [Ca\(^{2+}\)], elicited by a 500 ms depolarisation (figure 14, right). The recovery of such a large Ca\(^{2+}\) transient (> > 500 nM) was also best fitted with a biexponential decay function (flat residual plot and \(\chi^2 = 0.08\) - green lines in figure 14, right). Therefore, it appears that the amplitude of the Ca\(^{2+}\) transients increased with the duration of the depolarisation and more importantly that the characteristics of the Ca\(^{2+}\) transient’s recovery depended on the peak amplitude (A) associated with the exponential component (see Methods section 6.2 for more details). As shown in figure 15-A, for [Ca\(^{2+}\)] below 500 nM (dashed line), the decay of Ca\(^{2+}\) transients was monophasic with a single decay time constant of 3.9 ± 0.2 s (τ, blue circles; n = 121) and an amplitude (A) that represented Δ[Ca\(^{2+}\)]\(_0\), (i.e. the peak amplitude minus resting [Ca\(^{2+}\)]). For Δ[Ca\(^{2+}\)] above 500 nM, the recovery phase of Ca\(^{2+}\) transients was biphasic and characterised by two decay time constants (τ\(_1\) and τ\(_2\)) representing a
Figure 13: The kinetics of Ca2+ transients' recovery depends on the amplitude of the rise in [Ca2+]\textsubscript{i}. Representative recording of the changes in [Ca2+]\textsubscript{i}, induced by depolarising steps from -60 mV to 0 mV for increasing duration ranging from 15 to 210 ms (first 4 traces, 15 ms increments and next 5 traces, 30 ms increments - as shown under the recording).
Figure 14: Changes in the kinetics of the Ca2+ transients' recovery phase with the increase in [Ca2+]\textsubscript{i}

Representative Ca2+ transients induced by depolarising steps of 60, 120 and 500 ms (top panel from left to right, respectively). The recovery phase of each Ca2+ transient has been fitted with an exponential decay function of the first and/or second order and the fits are superimposed on the traces (coloured line). For each fit, the value of the decay time constant(s) (τ, τ\textsubscript{1} and τ\textsubscript{2}) and the amplitude(s) of the exponential component(s) (A, A\textsubscript{1} and A\textsubscript{2}) are mentioned above the traces. The goodness of the fit was assessed from the value of χ2 (close to 0 for the best fit) and from the residual plot (μM, lower panel) calculated as the difference between the fit and the experimental points (flat residual plot for the best fit).
Figure 15: Plot of the decay time constant and amplitude for each component of the exponential recovery versus the net rise in [Ca^{2+}].

(A) For each Ca^{2+} transient the time constant(s) of the recovery phase has(have) been plotted against the net increase in [Ca^{2+}], (Δ[Ca^{2+}]), i.e. the difference between the peak amplitude and resting [Ca^{2+}], (τ, blue circles for monoexponential recoveries; n=121 - τ, solid squares and τ, open squares for the fast and slow component of biexponential recoveries, respectively; n = 52). (B) Equivalent plot to (A) but with the amplitude(s) of each component(s) of the exponential recoveries (A, blue circles amplitude for monoexponential recoveries; n=121 - A, solid squares and A, open squares for the amplitude of the fast and slow component of biexponential recoveries, respectively; n = 52). The vertical dashed line at 0.5 μM represents the critical threshold concentration above which the recovery becomes biexponential.
fast and slow component of the recovery ($\tau_1 = 2.3 \pm 0.1$ s and $\tau_2 = 23.2 \pm 2.2$ s, solid and open squares, respectively; $n = 52$). The plot of the decay time constants against $\Delta[Ca^{2+}]$, indicated little dependence of the fast time constants on the peak $[Ca^{2+}]$, while there was no correlation between the slow time constant and the rise in $[Ca^{2+}]$, ($R^2 = 0.3$, figure 15-A).

The amplitude (A, A_1 and A_2) associated with each of the exponential decay component represents their respective contribution to the whole recovery process. When the amplitude of each exponential component of the fit was plotted against $\Delta[Ca^{2+}]$, (figure 15-B), the amplitudes of the monoexponential decays and of the fast component of the biexponential decays increased linearly with the rise in $\Delta[Ca^{2+}]$ (figure 15-B, blue circle and solid squares; $n=121$ and $n=52$, respectively). In contrast, the amplitude of the slow component of the biexponential decays appeared constant (122 ± 7 nM; $n = 52$) suggesting a contribution to the overall recovery process independent of variations in $\Delta[Ca^{2+}]$. (figure 15). This result suggested that different systems might be involved in the Ca^{2+} clearance process. The contribution of the fast component to the overall recovery can be estimated by calculating the ratio ($A_1/[A_1+A_2]$) of the fast component’s amplitude over the sum of the amplitudes, as illustrated in figure 16-A. The data presented show that the contribution of the fast component for $\Delta[Ca^{2+}], \approx 500$ nM represented $\approx 75\%$ of the whole recovery process and increased with the rise in $\Delta[Ca^{2+}]$, ($\approx 90\%$ at 1 μM).

Finally, for each recovery phase, the clearance rate (-d$[Ca^{2+}]/dt$) can be calculated by differentiating the exponential fit (see Methods section 6.2 for more details) and plotted against the $[Ca^{2+}]$. For monoexponential decays, the clearance rate is linear ($y = A + Bx$). The slope of the line represents the rate of recovery (s^{-1}) and the intercept with the x-axis (i.e. for an apparent rate equal to 0) represents resting $[Ca^{2+}]$. Biexponential recovery have a clearance rate defined by a polynomial function of the second order ($y = A + Bx + Cx^2$) with two slopes representing the rate of at least two processes involved in the recovery. Figure 16-B illustrates the clearance rate for the recovery of Ca^{2+} transients for rises in $[Ca^{2+}], > 500$ nM obtained for 60 Ca^{2+} transients. For more clarity, in the following sections (see Results sections 3 to 6) only the fit of the clearance rate obtained from the pooled data will be represented.
Figure 16: Plot of the fast component contribution to the overall recovery phase and clearance rate for biexponential decays

(A) For each biexponential recovery, the relative contribution of the fast component of the recovery phase has been determined and plotted against the net rise in $[\text{Ca}^{2+}]$ (n=52). This contribution has been calculated as the ratio $(A_1/(A_1+A_2))$ between the amplitude of the fast component (A_1) divided by the sum of the amplitude of the two components (A_1+A_2). (B) Clearance rate for Ca^{2+} transients above 500 nM obtained from 60 Ca^{2+} transients. For each Ca^{2+} transient, the clearance rate was obtained from the differentiate of the recovery fit and plotted against $[\text{Ca}^{2+}]$. The experimental data were then fitted with a polynomial function of the second order and the line represents the best fit.
Taken together, these results suggest that the changes in $[\text{Ca}^{2+}]_i$ were mainly due to the activation of somatic N-type Ca^{2+} channels and that the amplitude of the rise in $[\text{Ca}^{2+}]_i$ was proportional to the duration of the Ca^{2+} influx. Furthermore, the Ca^{2+} transient's recovery was exponential and switched from a monoexponential to a biexponential decay above a $[\text{Ca}^{2+}]_i$ of 500 nM. The biexponential recoveries were characterised by a fast component, whose amplitude became more predominant with the rise in $[\text{Ca}^{2+}]_i$ and a slow component independent of $[\text{Ca}^{2+}]_i$. Finally, the results suggested that there might be different mechanisms and/or different activation states of the Ca^{2+} clearance systems for rises in $[\text{Ca}^{2+}]_i$ below and above 500 nM.

1.3. Discussion

Rat sympathetic neurones have been shown to express N-type Ca^{2+} channels both on their soma and dendrites where they represent the predominant Ca^{2+} influx pathway (Hirning et al., 1988; Plummer et al., 1989; Regan et al., 1991; Lin & Bennett, 1998 and Delmas et al., 2000). Calcium influx through somatic N-type Ca^{2+} channels has been demonstrated to contribute to spike-frequency adaptation via activation of a Ca^{2+}-dependent potassium currents (Brown, 1990 and Davies et al., 1996) whereas at the nerve terminals they are thought to induce neurotransmitter release. These Ca^{2+} channels are modulated by G protein-coupled receptors activated by hormones and neurotransmitters, particularly acetylcholine and noradrenaline (Marrion et al., 1987; Plummer et al., 1989; Ikeda & Schofield, 1989 and Delmas, 1998a, b, 2000). A comparison of somatic and dendritic N-type Ca^{2+} channels suggested that these channels exhibit different properties, are modulated differently and therefore the elicited Ca^{2+} signal would be site-specific (Delmas et al., 2000).

The present study focuses on changes in $[\text{Ca}^{2+}]_i$ induced by activation of somatic N-type channels and the analysis of the depolarisation-induced Ca^{2+} transients showed that variations in $[\text{Ca}^{2+}]_i$ were proportional to the Ca^{2+} influx. In fact, there was a direct correlation between the amplitude of the rise in $[\text{Ca}^{2+}]_i$ and the duration and/or the amplitude of the Ca^{2+} current (see figure 13 in this study and Trouslard et al., 1993) and similar results were obtained in several other cell types (rat clonal pituitary cells, GH3 - Benham, 1989; pancreatic β cells - Rorsman et al., 1992; sensory DRG neurones - Benham et al., 1992; nerve ending - Stuenkel, 1994 and spinal cord motoneurones -
Palecek et al., 1999). However, it is difficult to compare quantitatively the characteristics of the Ca^{2+} transients' recovery between different studies because of the different properties of the cells, the type of the Ca^{2+} dye and the recording conditions used. The recovery of Ca^{2+} transients is defined by an exponential decay function, whose characteristics, in most neuronal cell types, depend on the amplitude of the rise in [Ca^{2+}]_i. Thus for low [Ca^{2+}]_i (< 500 nM) the recovery is generally monoexponential (this study and see Benham et al., 1992; Park et al., 1996; Fierro et al., 1998; Lin & Bennett, 1998 and Maeda et al., 1999) whereas for higher [Ca^{2+}]_i the recovery becomes biexponential (Park et al., 1996; Fierro et al., 1998 and Maeda et al., 1999).

In most neurones during biexponential recoveries, there is a slow component at low [Ca^{2+}]_i whose decay time constant is about 10-times slower than that of the fast component of the recovery (0.5 s versus 4 s in synaptic boutons of SCG neurones - Lin & Bennett, 1998; 2.5 s versus 35 s in mouse Purkinje neurones - Maeda et al., 1999 and 0.6 s versus 3 s in rat Purkinje neurones - Fierro et al., 1998). The data obtained from SCG neurones followed the same general pattern (2.5 s for the fast component versus 25 s for the slow component - this study) as that observed in other cell types (e.g. Park et al., 1996; Fierro et al., 1998 and Maeda et al., 1999) and it appears that a [Ca^{2+}]_i ≈ 500 nM represents a critical value where the recovery switched from a monoexponential to a biexponential recovery. These results also suggest that the time constant of monoexponential recoveries accelerated with the increase in [Ca^{2+}]_i and tended to the value of the fast decay time constant of biexponential recoveries (see figure 14 and 15-A). Moreover, the amplitude associated with the fast component (monoexponential and biexponential recoveries) of the recovery increased linearly with the rise in Δ[Ca^{2+}] (see figure 15-B). Such behaviour would suggest that the Ca^{2+} extrusion process might result from a progressive Ca^{2+}-dependent acceleration of the clearance mechanisms and the activation of clearance processes with low Ca^{2+} affinity when [Ca^{2+}]_i rises above 500 nM.

Calcium transients (in the absence of intracellular Ca^{2+}) with peak amplitudes above 500 nM exhibited a secondary slow component that appears to be mediated by an independent mechanism. Thus, this slow component was only observed following increase in [Ca^{2+}]_i above 500 nM. Secondly, in contrast to the monoexponential and to the fast component of biexponential recoveries, the amplitude associated to this slow
component was constant and independent from the rise in $\Delta[Ca^{2+}]_i$ (≈ 120 nM - see figure 15-B). Similarly, the decay time constant of this slow component appeared independent from the amplitude of the Ca^{2+} transient since no correlation was observed. Although the amplitude of this slow component was in a similar $[Ca^{2+}]_i$ range than that of monoexponential recoveries (see figures 15-A and -B) its decay time was ≈ 10-times slower (3.9 ± 0.2 s for monoexponential recoveries versus 23.2 ± 0.1 s for the slow component of biexponential recoveries). One could therefore consider that large rises in $[Ca^{2+}]_i$ might induce a secondary recovery phase that would compete with and delay the extrusion process. On the other hand, one could consider that the recovery from small rises in $[Ca^{2+}]_i$ would also be biexponential with the secondary slow phase not detectable with the analysis procedure.

Some authors (Neher & Augustine, 1992 and Neher, 1995) have suggested that the slow component of biexponential recoveries might correspond to the slow dissociation of Ca^{2+} from endogenous buffers acting as the limiting step in Ca^{2+} extrusion (Helmchen et al., 1996; Airaksinen et al., 1997; Lee et al., 2000). However, such a biexponential recovery induced by the Ca^{2+} buffering system was observed for rises in $[Ca^{2+}]_i$ close to rest ($< < 500$ nM in chromaffin cells, Neher & Augustine, 1992; in cerebellar Purkinje neurones, Airaksinen et al., 1997; CA1 hippocampal neurones, Lee et al., 2000) whereas, in the present study at low $[Ca^{2+}]_i$, the recovery appeared monoexponential. Therefore, the slow component of biexponential recovery is unlikely to be solely due to a slow Ca^{2+} dissociation from CaBPs but could also be attributed to Ca^{2+} release from intracellular organelles. Thus, the rise in $[Ca^{2+}]_i$ would activate Ca^{2+} uptake mechanisms and subsequently Ca^{2+} would be slowly released when $[Ca^{2+}]_i$ decreased to ≈ 120 nM resulting in a delay of the recovery time course (see also Park et al., 1996). Nevertheless, it is important to consider that this situation does not reflect physiological condition since intracellular Na^+ was omitted in the intracellular solution and therefore Ca^{2+} release from the mitochondria is mostly inhibited (see Results section 3).

The results presented in this section demonstrated a clear difference in the properties of the Ca^{2+} transients' recovery depending on their peak amplitude with a threshold $[Ca^{2+}]_i \approx 500$ nM (see figures 14 and 15). Therefore, voltage protocols were designed to elicit Ca^{2+} transients with peak amplitude below or above this threshold.
Figure 17 illustrates recording of Ca\(^{2+}\) transients elicited by either 60 or 500 ms depolarising steps to 0 mV that exhibited monoexponential (figure 17-A) and biexponential recovery (figure 17-B), respectively. The induced rise in [Ca\(^{2+}\)] continued beyond the end of the Ca\(^{2+}\) current pulse (see figures 17 and 18). The recordings corresponded to spatially averaged Ca\(^{2+}\) transients and therefore the delay observed between the peak of the Ca\(^{2+}\) current and the peak of the Ca\(^{2+}\) transient might reflect the Ca\(^{2+}\) diffusion and equilibration within the soma. Thus, in mouse Purkinje neurones, equilibration of the Ca\(^{2+}\) gradient was observed in 0.2-0.3 second and 1 second after depolarisation steps for 50 ms and 500 ms, respectively (Maeda et al., 1999). An alternative explanation could be an amplification process through Ca\(^{2+}\) release from intracellular stores. However in SCG neurones no evidence to support such a mechanism was observed (see Results section 4). Finally, it is important to emphasise that indo-1 is a high affinity Ca\(^{2+}\) indicator that can act as a Ca\(^{2+}\) buffer (Grynkiewicz, 1985; Neher & Augustine, 1992; Neher, 1995 and see also Results section 2.2) and that the kinetics of the variations in [Ca\(^{2+}\)] would be limited by the kinetics of Ca\(^{2+}\) binding to indo-1. High concentrations of indo-1 would affect the characteristics of the Ca\(^{2+}\) transients by attenuating their amplitude and slowing their recovery phase (Neher & Augustine, 1992). However, Benham (1989), using 100 \(\mu\)M indo-1 in GH3 cells, suggested that at this concentration the Ca\(^{2+}\) indicator did not significantly affect neither the Ca\(^{2+}\) buffering capacity nor the properties of the Ca\(^{2+}\) transients. A similar observation was made in rat Purkinje cerebellar neurones by Fierro et al. (1998), who showed that increasing the fura-2 concentration from 25 to 250 \(\mu\)M did not significantly perturb the recovery phase of depolarisation-induced Ca\(^{2+}\) transients. Under the recording conditions used in the present study and after 35 minutes loading period, the indo-1 concentration was estimated around 50 \(\mu\)M by comparison with the fluorescence intensity observed in whole-cell recordings where 50 \(\mu\)M was added to the intracellular solution. With shorter loading duration and up to 45 minutes, no significant variations in the properties of the Ca\(^{2+}\) transient were observed suggesting that indo-1 had minimal effect on the Ca\(^{2+}\) signal. However, since the Ca\(^{2+}\) response recorded corresponded to the somatic averaged Ca\(^{2+}\) transient and because of the Indo-1 binding kinetics, the amplitude of the Ca\(^{2+}\) transient and the recovery time stated may be underestimated and
Figure 17: Small and Large Ca2+ transients and the corresponding Ca2+ current

Recording of Ca2+ transients induced by a 60 ms (A) and a 500 ms (B) depolarising pulse with the corresponding recording of the elicited Ca2+ currents. The recordings were carried out in the absence of intracellular Na+ (see inset and Results section 3.2 for further details on this aspect). From now on and for more simplicity, the Ca2+ transients induced by depolarisation for 60 and 500 ms will be denominated small and large Ca2+ transients respectively.
may not be representative of what occurs close to the plasma membrane. The use of a low affinity Ca\(^{2+}\) dye (Ca\(^{2+}\) green; oregon green or benzothiazide coumarin) and the study of Ca\(^{2+}\) signal close to the plasma membrane might give more accurate amplitude and recovery kinetics for depolarisation-induced Ca\(^{2+}\) transients. On the other hand, they would give less accurate measurements of resting [Ca\(^{2+}\)]. In the present study, the main attention was focused on the mechanisms involved in the regulation of [Ca\(^{2+}\)]\(_c\) close to rest and of the Ca\(^{2+}\) transient’s recovery. The involvement of a particular regulatory system was assessed by comparison of the control situation with a situation in the presence of a specific inhibitor and therefore the study could be carried out using indo-1 as Ca\(^{2+}\) indicator.

In conclusion, the data as shown represent the somatic average of [Ca\(^{2+}\)]\(_c\) variations that appeared to be directly proportional to the duration of the depolarisation-induced Ca\(^{2+}\) influx. The rate of recovery from these Ca\(^{2+}\) transients was dependent on the amplitude of the rise in [Ca\(^{2+}\)]\(_c\) and suggest a Ca\(^{2+}\)-dependent acceleration and a progressive activation of Ca\(^{2+}\) clearance systems. Following large rise in [Ca\(^{2+}\)]\(_c\) (in the absence of intracellular Na\(^+\)), the recovery phase presented a secondary slow component that had an amplitude and a decay time constant that appeared independent from the rise in [Ca\(^{2+}\)]\(_c\). Such a slow secondary phase might represent either a Ca\(^{2+}\) release from intracellular stores or the slow Ca\(^{2+}\) dissociation from CaBPs.
2. **Endogenous calcium buffering capacity**

In order to determine the Ca$^{2+}$ buffering properties in SCG neurones, Ca$^{2+}$ entry was generated with depolarisation of increasing duration and the corresponding changes in [Ca$^{2+}$], measured with indo-1. From these recordings, the total concentration of Ca$^{2+}$ entering the cell ([Ca$^{2+}]_{\text{total}}$) and the amount bound to the buffer ([Ca$^{2+}]_{\text{bound}}$) were calculated. The endogenous buffering capacity was then estimated from the Ca$^{2+}$ binding ratio (κ_{endo}). Finally, to characterise further the properties of the endogenous buffering capacity, the Ca$^{2+}$ binding ratio for EGTA (κ_{EGTA}) was determined theoretically and compared with the endogenous Ca$^{2+}$ binding ratio.

2.1. **Free calcium concentration versus calcium charge transfer**

Neurones were voltage-clamped at -60 mV in the whole-cell configuration with 100 μM indo-1 added to the intracellular solution (Cs$^+$-based intracellular solution see Methods section 2.2.2, *figure 1* and Methods section 2.4.3, *Table 2 - solution J*). Calcium currents were elicited with depolarising steps from -60 to 0 mV for between 10 to 300 ms and the induced rise in [Ca$^{2+}$], measured with indo-1. *Figure 18* illustrates a typical recording where changes in [Ca$^{2+}$], (*figure 18-A*) are represented with the corresponding Ca$^{2+}$ currents (I_{Ca}, *figure 18-B*) elicited by depolarising steps for 10, 20, 40, 80 and 160 ms. The Ca$^{2+}$ currents were obtained after digital subtraction of the outward current recorded with the same voltage protocol in presence of 100 μM Cd$^{2+}$. Therefore, the currents mainly represented Ca$^{2+}$ influx through the plasma membrane during the depolarising step *i.e.* the total amount of Ca$^{2+}$ ions that have entered the cytosol ([Ca$^{2+}]_{\text{total}}$, see Results section 2.2).

From the integral of I_{Ca}, it was then possible to calculate, the total Ca$^{2+}$ charge transfer (Q_{Ca}):

$$Q_{Ca} = - \int I_{Ca} \, dt \quad \text{Equation 12}$$

Q_{Ca} corresponds to the area under the current trace and is expressed in amperes second (A.s) or coulombs (C) (*figure 19-A*). *Figure 19-B* illustrates the mean of the Ca$^{2+}$ charge
Figure 18: Rise in the [Ca$^{2+}$] and the corresponding I_{Ca} induced by depolarising steps of increasing duration

(A) Transient rises in [Ca$^{2+}$], induced by activation of VACC with depolarising steps of 10, 20, 40, 80 and 160 ms. (B) Corresponding currents traces elicited in the whole-cell patch clamp configuration (see inset - 100 µM indo-1) from a holding potential of -60 mV to 0 mV. The currents represent Ca$^{2+}$ currents after digital subtraction of the outward current remaining in the presence of 100 µM cadmium.
Figure 19: Net variation in the Ca\(^{2+}\) charge transfer as a function of the depolarisation duration

(A) Diagram of a Ca\(^{2+}\) current (I\(_{Ca}\)) and the corresponding integral representing the Ca\(^{2+}\) charge transfer (Q\(_{Ca}\), blue area under the curve). (B) Plot of the Ca\(^{2+}\) charge transfer (regrouped in 10 pC increments) as a function of the duration of the depolarisation (as shown under the graph in ms, n number mentioned in bracket above each bar - data as mean ± S.E.M.). The dashed line represents the fit of the expected Ca\(^{2+}\) charge transfer based on the 10 ms depolarisation and assuming the absence of current inactivation.
transfer plotted against the depolarisation duration (bottom axis in figure 19-B; n=14 cells). The Ca\(^{2+}\) charge transfer increased with the duration of the depolarisation (from 5 ± 1 pC for 10 ms depolarisation; n=5 to 124 ± 11 pC for 300 ms depolarisation; n=5). However, the charge transfer did not appear linearly proportional to the depolarisation duration as a charge transfer of 5 pC for 10 ms depolarising step did not equate to 150 pC at 300 ms (see dashed line in figure 19-B, which represents the linear fit of the expected charge transfer). This result suggested a time and/or Ca\(^{2+}\)-dependent current inactivation as shown by the decrease in the amplitude of I\(_{\text{Ca}}\) observed for longer depolarisation durations (figure 18-B).

The changes in [Ca\(^{2+}\)]\(_{i}\) induced by I\(_{\text{Ca}}\) were simultaneously recorded, as illustrated in figure 18-A, and the net change in [Ca\(^{2+}\)]\(_{i}\) (Δ[Ca\(^{2+}\)]\(_{i}\)) calculated as the difference between the peak amplitude ([Ca\(^{2+}\)]\(_{\text{peak}}\)) of the induced Ca\(^{2+}\) transient and the [Ca\(^{2+}\)]\(_{i}\) at rest ([Ca\(^{2+}\)]\(_{\text{rest}}\)). The Δ[Ca\(^{2+}\)]\(_{i}\) is represented against the corresponding calculated Ca\(^{2+}\) charge transfer and increased linearly with Q\(_{\text{Ca}}\) (data pooled from 14 cells were fitted with a linear regression, figure 20-A). This result suggested that the changes in [Ca\(^{2+}\)]\(_{i}\) were directly dependent on and proportional to the amount of Ca\(^{2+}\) ions that entered the cell through the Ca\(^{2+}\) channels (see also below Results section 2.2).

2.2. Calculation of the total calcium entering the cytosol

To improve the efficiency of the voltage-clamp and the quality of the current recordings, experiments were conducted on neurones with small neurites and a measured cell diameter ≈ 20 μm. It was then possible to select neurones of similar size using the field aperture of the microscope set to its minimum (≈ 20 μm, see Methods section 3.2).

If one assumes that a neurone is a perfect sphere, its volume can then be estimated from the following equation:

\[
V = \frac{4}{3} \times \pi \times R^3 \quad \text{Equation 13}
\]
Figure 20: Net variation in $\Delta [\text{Ca}^{2+}]$, as a function of the Ca^{2+} charge transfer and the estimated $[\text{Ca}^{2+}]_{\text{total}}$

(A) Pooled data of the net increase in $[\text{Ca}^{2+}]$, ($\Delta [\text{Ca}^{2+}]$, nM) against the Ca^{2+} charge transfer (Q_{Ca}, pC) recorded from 14 different cells. (B) Pooled data of $\Delta [\text{Ca}^{2+}]$, as a function of the $[\text{Ca}^{2+}]_{\text{total}}$ calculated from Q_{Ca} and the estimated cell volume ($[\text{Ca}^{2+}]_{\text{total}} = Q_{\text{Ca}}/2FV$ - see text for detail) recorded from 14 different cells. The solid lines in (A) and (B) represent the best fit obtained from a linear regression.
where R was the measured radius of the soma ($\approx 10 \, \mu m$) and $\pi \approx 3.14$. Therefore, an estimate of the cell volume was given by:

$$V = 4.2 \times 10^{-15} \, \mu m^3 = 4.2 \, pl$$

Knowing Q_{Ca}, the total Ca^{2+} entry ($[Ca^{2+}]_{total}$) during a voltage step can be calculated as follow:

$$[Ca^{2+}]_{total} = \frac{Q_{Ca}}{zFV} \quad \text{Equation 14}$$

where F is the Faraday constant (96485 C.mol$^{-1}$), z the valence of the Ca^{2+} ion ($z = 2$) and V the accessible cell volume (Equation 13). In the absence of any buffer and with an instantaneous Ca^{2+} influx, all the Ca^{2+} that enters the cytosol would be in its free ionic form and would represent the total Ca^{2+} concentration ($[Ca^{2+}]_{total}$). Figure 20-B illustrates the relationship between the measured $\Delta[Ca^{2+}]_i$ (as defined in Results section 2.1) and $[Ca^{2+}]_{total}$ (calculated from I_{Ca}, Equation 14). This result confirmed the observation from figure 20-A by showing that the rise in $\Delta[Ca^{2+}]_i$ was directly proportional to the increase of $[Ca^{2+}]_{total}$. However, it can be noticed that the calculated $[Ca^{2+}]_{total}$ entering the cytosol was in the micromolar range whereas the measured $\Delta[Ca^{2+}]_i$ was in the nanomolar range i.e. $\Delta[Ca^{2+}]_i$ was at least 1000-times smaller than expected.

Knowing $\Delta[Ca^{2+}]_i$ and $[Ca^{2+}]_{total}$, the variation in the concentration of the Ca^{2+} bound to the buffers ($[Ca^{2+}]_{bound}$) can be deduced from the mass action equation:

$$[Ca^{2+}]_{total} = [Ca^{2+}]_i + [Ca^{2+}]_{bound} \quad \text{Equation 15}$$

and $[Ca^{2+}]_{bound} = [Ca^{2+}]_{total} - [Ca^{2+}]_i \quad \text{Equation 16}$

2.3. The endogenous calcium binding ratio in SCG neurones

The Ca^{2+} binding ratio (κ) is defined at a particular $[Ca^{2+}]_i$ (Neher & Augustine, 1992) by:
where $\Delta[Ca^{2+}]_t$, is obtained as described above in Results section 2.1 and $[Ca^{2+}]_{bound}$ is calculated from Equation 16.

In fact, in Equation 17, κ represents the total Ca$^{2+}$ binding ratio (κ_{total}) because indo-1, which was added to the cytosol, also acts as a Ca$^{2+}$ buffer and competes with the endogenous Ca$^{2+}$ buffer for the free Ca$^{2+}$. Therefore, κ_{total} is defined as:

$$K_{total} = K_{endo} + K_{indo-1} \quad \text{Equation 18}$$

where K_{endo} and K_{indo-1} represent the endogenous Ca$^{2+}$ binding ratio and the Ca$^{2+}$ buffering component added by indo-1, respectively. The Ca$^{2+}$ binding ratio for indo-1 was determined as described by Palecek et al. (1999) using the following equation:

$$K_{indo-1} = \frac{[\text{indo - 1}] \times K_{d(\text{indo-1})}}{[\text{Ca}^{2+}]_{rest} + K_{d(\text{indo-1})} \left([\text{Ca}^{2+}]_{peak} + K_{d(\text{indo-1})} \right)} \quad \text{Equation 19}$$

where $[\text{indo - 1}]$ is the total indo-1 concentration (100 µM) at the diffusion’s equilibrium (\approx 10 minutes) and $K_{d(\text{indo-1})}$ (93.3 nM) is the dissociation constant for Ca$^{2+}$ binding to indo-1 and was obtained from the calibration procedures (see Methods section 3.3.2). Figure 21-A represents the total Ca$^{2+}$ binding ratio (κ_{total}) plotted against the measured $\Delta[Ca^{2+}]_t$ (pooled data; n=14 cells). The data points for the Ca$^{2+}$ binding ratio were then regrouped according to the Ca$^{2+}$ charge transfer (\approx 10 pC increments, see figure 19-B). The plot presents as a function of $\Delta[Ca^{2+}]_t$, the mean of the determined κ_{total} (solid squares, see Equation 17), of the calculated κ_{indo-1} (orange diamonds, see Equation 19) and of κ_{endo} (blue squares, see Equation 18) for each class (figure 21-B). Table 8 summarises the Ca$^{2+}$ binding ratio values at three representative $\Delta[Ca^{2+}]_t$, i.e. $[Ca^{2+}]_{total}$.

At low $\Delta[Ca^{2+}]_t$, κ_{endo} was around 1000, which suggested that out of 1000 Ca$^{2+}$ ions that entered the cytosol only 1 remained in the free ionic form. With the increase in $\Delta[Ca^{2+}]_t$, (up to \approx 180 nM and an equivalent Ca$^{2+}$ increase to \approx 90 µM - see first row Table
Figure 21: Endogenous calcium buffering capacity

(A) Plot of the pooled total Ca$^{2+}$ binding ratio (K_{total}) determined as the ratio of the [Ca$^{2+}$] by the buffer ([Ca$^{2+}$]$_\text{bound}$) divided by Δ[Ca$^{2+}$], and plotted against Δ[Ca$^{2+}$], (n=14). (B) The pooled data in (A), have been binned according to the increase in the Ca$^{2+}$ charge transfer (\approx 10 pC increments - data as mean ± S.E.M., n number in each class from figure 19-B) and represented as a function of Δ[Ca$^{2+}$]. The total binding ratio (K_{total}, solid squares) is determined as mentioned in (A) (see text for more details). The binding ratio for indo-1, the exogenous buffer ($K_{\text{endo},i}$, orange diamonds), was determined as described by Palecek et al. (1999) with 100 μM indo-1 in the recording pipette and the $K_{\text{endo},i}$ (93.3 nM) determined within the whole-cell calibration procedure (more details in Methods section 3.3.2). The endogenous buffer (K_{endo}, blue squares) was then calculated, for each value of Δ[Ca$^{2+}$], as $K_{\text{endo}} = K_{\text{total}} - K_{\text{endo},i}$.
Ken... 250 and stayed constant for any further rise in \([\text{Ca}^{2+}]_i\) (see Table 8 and figure 21-B). Therefore, at \(\Delta[\text{Ca}^{2+}]_i\) in the micromolar range, only \(\approx 0.4\%\) of the total \(\text{Ca}^{2+}\) entry was in the free ionic form (i.e. 4 out of 1000 \(\text{Ca}^{2+}\) ions are in the free ionic form).

Table 8: \(\text{Ca}^{2+}\) binding ratio at representative \(\Delta[\text{Ca}^{2+}]_i\) and the corresponding \([\text{Ca}^{2+}]_{total}\)

<table>
<thead>
<tr>
<th>([\text{Ca}^{2+}]_{total})</th>
<th>6 ± 1 μM</th>
<th>97 ± 3 μM</th>
<th>160 ± 15 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta[\text{Ca}^{2+}]_i)</td>
<td>8 ± 0.1 nM</td>
<td>180 ± 5 nM</td>
<td>417 ± 30 nM</td>
</tr>
<tr>
<td>(\kappa_{total})</td>
<td>1376 ± 372</td>
<td>687 ± 68</td>
<td>329 ± 77</td>
</tr>
<tr>
<td>(\kappa_{indo-1})</td>
<td>424 ± 33</td>
<td>192 ± 8</td>
<td>100 ± 6</td>
</tr>
<tr>
<td>(\kappa_{endo})</td>
<td>1028 ± 322</td>
<td>381 ± 126</td>
<td>261 ± 80</td>
</tr>
<tr>
<td>n</td>
<td>n = 5</td>
<td>n = 4</td>
<td>n = 5</td>
</tr>
</tbody>
</table>

Taken together, the results indicated that there was a linear correlation between \(\text{Ca}^{2+}\) entry and \([\text{Ca}^{2+}]_i\), suggesting that the rise in \([\text{Ca}^{2+}]_i\) was directly proportional to the \(\text{Ca}^{2+}\) influx and that there was no amplification mechanism of the \(\text{Ca}^{2+}\) response (such as \(\text{Ca}^{2+}\) induced \(\text{Ca}^{2+}\) release process; see also Results section 4). On the other hand, the data indicated that SCG neurones exhibit a high \(\text{Ca}^{2+}\) buffering capacity since most of the \(\text{Ca}^{2+}\) entering the cytosol during a depolarisation step was strongly buffered by endogenous \(\text{CaBPs}\). Finally, the results also suggested that the \(\text{Ca}^{2+}\) buffer system was at least partially saturable as the \(\text{Ca}^{2+}\) binding ratio decreased with the rise in \([\text{Ca}^{2+}]_i\).

2.4. Discussion

The determination of the \(\text{Ca}^{2+}\) binding ratio in SCG neurones gives an estimated value of 250 for \(\Delta[\text{Ca}^{2+}]_i\) \(\approx 500\) nM and suggests that SCG neurones have a higher buffering capacity than chromaffin cells (\(\kappa \approx 40\), Zhou & Neher, 1993), gonadotrophs (\(\kappa \approx 100-130\), Tse et al., 1994), neurohypophysal nerve endings (\(\kappa \approx 174\), Stuenkel, 1994) and hippocampal CA1 pyramidal cells (\(\kappa \approx 168-207\), Helmchen et al., 1996). On the other hand, SCG neurones present a similar \(\text{Ca}^{2+}\) binding ratio than that found in mouse occulomotor neurones (\(\kappa \approx 265\), Vanselow & Keller, 2000) but a far smaller binding ratio than rat and mouse Purkinje neurones (\(\kappa \approx 2000\), Fierro & Llano,
1996 and Maeda et al., 1999, respectively). However, in most of the studies the determination of the Ca$^{2+}$ binding ratio was carried out with the ‘added buffer’ method and extrapolated to a situation in the absence of exogenous buffer (see Neher & Augustine, 1992). This method only gives an estimate of the Ca$^{2+}$ binding ratio for resting [Ca$^{2+}$]$_i$ (\approx 100 \text{nM}) but not as a function of changes in [Ca$^{2+}$]$_i$. In fact, the buffering capacity corresponds to a dynamic process that would vary with the changes in the [Ca$^{2+}$]$_i$ (i.e. the buffering capacity would decrease with the rise in [Ca$^{2+}$]$_i$) and therefore would only be relevant at a particular [Ca$^{2+}$]$_i$. Thus, in mouse Purkinje neurones, Maeda and colleagues (1999) used another approach in that they directly determined the Ca$^{2+}$ binding ratio and expressed it as a function of [Ca$^{2+}$]$_i$. At rest ([Ca$^{2+}$]$_i$ \approx 100 \text{nM}) they obtained a Ca$^{2+}$ binding ratio of \approx 2000 but for a rise in [Ca$^{2+}$]$_i$ to \approx 500 \text{nM}, \kappa_{\text{endo}} decreased by \approx 90\% to \approx 250. These values of \kappa_{\text{endo}} are similar to those obtained in SCG neurones as \kappa_{\text{endo}} is \approx 1000 at rest and decreases to 250 for [Ca$^{2+}$]$_i$ \approx 500 \text{nM} (see figure 21-B) and therefore SCG neurones appeared to have a Ca$^{2+}$ buffering capacity equivalent to mouse Purkinje neurones. One can therefore conclude that SCG neurones have a high buffering capacity at rest and that up to \approx 1 \mu\text{M} only a minute proportion of the Ca$^{2+}$ that enters the soma would remain in the free ionic form (\approx 0.1-0.4\%). However, the rises in Ca$^{2+}$ elicited under the recording conditions were not large enough to induce saturation of the Ca$^{2+}$ buffering system. Therefore, it is not possible to determine precisely either the Ca$^{2+}$ affinity or the concentration of the endogenous buffering system present in SCG neurones. To characterise further the properties of the endogenous buffer and in order to have a point of comparison, the Ca$^{2+}$ binding ratio for EGTA has been calculated.

EGTA is an extensively well used Ca$^{2+}$ chelator with one Ca$^{2+}$ binding site and a high affinity for calcium (K_{d(EGTA)} = 5.54.10^{-8} \text{ M at 33\degreeC, pH 7.4 and 300 mosm.l}^{-1}). Using a [Ca$^{2+}$]$_{\text{total}}$ ranging from 1 \text{nM} to 1 \text{mM}, the free Ca$^{2+}$ concentration ([Ca$^{2+}$]$_{\text{free}}$) was determined for various EGTA concentrations (10 to 250 \mu\text{M}) and the [Ca$^{2+}$]$_{\text{bound}}$ then calculated using the mass action equation (Equation 16). Figures 22-A and -B illustrate, as a function of [Ca$^{2+}$]$_{\text{total}}$ and for various concentrations of EGTA, the variation in [Ca$^{2+}$]$_{\text{bound}}$ and in [Ca$^{2+}$]$_{\text{free}}$, respectively. Upon the rise in [Ca$^{2+}$]$_{\text{total}}$, [Ca$^{2+}$]$_{\text{bound}}$ to EGTA increased (i.e. [Ca$^{2+}$]$_{\text{free}}$ is close to zero) until the [Ca$^{2+}$]$_{\text{total}}$ and the
Figure 22: Properties of the calcium binding to EGTA

(A) Plot of [Ca\(^{2+}\)]\(_{\text{bound}}\) against [Ca\(^{2+}\)]\(_{\text{free}}\) for increasing concentration of EGTA ([EGTA] = 10 to 250 µM - see inset) against a [Ca\(^{2+}\)]\(_{\text{free}}\) ranging from 1 nM to 1 mM. (B) Plot of [Ca\(^{2+}\)]\(_{\text{free}}\) in the presence of increasing [EGTA] (see inset in A) against a [Ca\(^{2+}\)]\(_{\text{bound}}\) ranging from 1 nM to 1 mM. (C) Plot of the Ca\(^{2+}\) binding ratio for EGTA (K\(_{\text{EGTA}}\) - calculated as in figure 21-A) against [Ca\(^{2+}\)]\(_{\text{free}}\) for increasing [EGTA] (see inset in A). The K\(_{\text{EGTA}}\) (log (5.54.10\(^{-8}\)) = -7.256) value is shown by the dashed line.
[EGTA]_{total} are equal. At this point, the maximum [Ca^{2+}] that EGTA can bind has been reached (i.e. the buffer is saturated) and therefore [Ca^{2+}]_{bound} becomes constant (i.e. [Ca^{2+}]_{free} starts to increase - right part of the curves, figures 22-A and B). The higher the concentration of buffer is, the more Ca^{2+} can be added before the buffer starts to saturate. From the determined values of [Ca^{2+}]_{free} and of [Ca^{2+}]_{bound} to EGTA, the Ca^{2+} binding ratio for EGTA (κ_{EGTA}, figure 22-C) was determined for each concentration of the buffer.

To compare κ_{endo} to κ_{EGTA}, the data obtained experimentally from figure 21-B were superimposed to the calculated κ_{EGTA} (figure 22-C). It appears that the experimental data points (κ_{endo}) fit between the κ_{EGTA} curves generated for 50 and 75 μM EGTA. However, above a Δ[Ca^{2+}] ≈ 180 nM (with log(180nM) ≈ -6.75), κ_{endo} deviated from the curves generated for κ_{EGTA} and remained constant around 250 for any further increase in Δ[Ca^{2+}] (dashed line in figure 23-A).

In fact, for buffer with a low affinity for Ca^{2+}, the Ca^{2+} binding ratio is assumed constant (see figure 22-C, left part of the curve) and equivalent to:

$$\kappa_{buffer} = \frac{[\text{Buffer}]}{K_{d(buffer)}}$$ \hspace{1cm} \text{Equation 20}

This analysis therefore suggested that there might be at least two buffering systems in SCG neurones: a high affinity buffering system equivalent to a [EGTA]_{total} between 50 and 75 μM and a buffering system with a lower affinity for Ca^{2+} with a constant Ca^{2+} binding ratio (≈ 250) in the range of the measured Δ[Ca^{2+}]. Therefore, κ_{endo} can be described as the sum of the Ca^{2+} binding ratios for a high (HB) and a low (LB) affinity Ca^{2+} buffer:

$$\kappa_{endo} = \kappa_{HB} + \kappa_{LB}$$ \hspace{1cm} \text{Equation 21}

with

$$\kappa_{HB} = \frac{d[Ca^{2+}]_{bound}}{d[Ca^{2+}]_{free}} = \frac{[HB]}{(K_{d(HB)}[Ca^{2+}])^2}$$ \hspace{1cm} \text{Equation 22}

and

$$\kappa_{LB} = \frac{[LB]}{K_{d(LB)}}$$ \hspace{1cm} \text{Equation 23}
Figure 23: Comparison of the Ca^{2+} binding ratios calculated for EGTA and determined in situ
(A) Ca^{2+} binding ratio calculated for 50 and 75 μM EGTA (green and red lines, respectively) along with the endogenous Ca^{2+} binding ratio (κ_{endo}, blue circles - data from figure 21-B). (B) Recalculated Ca^{2+} buffering ratio for 50 and 75 μM EGTA (green and red lines, respectively) taking into account a low affinity buffering system with a Ca^{2+} binding ratio constant and equal to ≈ 250. The data for κ_{endo} are also represented (blue circles).
where the subscripts HB and LB represent the high and low affinity buffers, respectively. When the Ca^{2+} binding ratios for 50 and 75 μM EGTA were determined using Equation 21 with k_{LB} equal to ≈ 250, the curves illustrated in figure 23-B were generated. This analysis confirmed the presence of two buffering systems in SCG neurones and suggested that the high affinity buffering component was equivalent to ≈ 75 μM EGTA.

Little is known about the nature of the CaBPs expressed in SCG neurones and it is therefore difficult to correlate the Ca^{2+} buffering capacity to the expression of particular CaBPs. However from immunocytochemical experiments, it appears that these neurones express high levels of parvalbumin along with calbindin D_{28k} (Marsh & Wanaverbecq unpublished observations). Although the expression of parvalbumin was proposed to induce fast spiking in neurones (Kawaguchi et al., 1987), the exact role of CaBPs remains unclear. However, rat sympathetic neurones posses both large (BK - Smart, 1987) and small (SK - Selyanko, 1996) conductance potassium channels that are selectively activated by Ca^{2+} influx through L-type and N-type Ca^{2+} channels, respectively. It is therefore tempting to propose that Ca^{2+} binding to a specific set of CaBPs might relay the selective channel activation by a particular Ca^{2+} influx. Such a system would serve two main functions by limiting the rise in $[Ca^{2+}]_i$ to region close to the plasma membrane and more importantly inducing site specific cellular responses. Sanchez-Vives and colleagues (1993, 1994a and b) demonstrated that in mature SCG neurones axotomy induced an upregulation of the calbindin D_{28k} expression. These authors observed that the axotomy induced both a slowing in the onset and the recovery of action potential-induced Ca^{2+} transients and therefore suggested that calbindin D_{28k} upregulation could explain this phenomenon. Therefore, it appears that the expression of particular CaBPs would depend on the state of the neurone and that the buffering capacity might vary during development, following injury or with ageing.

Finally, in rat dorsal root ganglion neurones, it was found that the relation between peak $[Ca^{2+}]_i$ and depolarisation-induced Ca^{2+} influx saturated around 500 nM and that the relationship became more linear after mitochondria inhibition (Thayer & Miller, 1990 and similar observations were made in chromaffin cells see Park et al., 1996). Moreover, it was suggested that mitochondrial Ca^{2+} uptake could be fast enough to occur during the few hundred milliseconds of the depolarisation step and therefore to
be capable of a substantial role in Ca\(^{2+}\) buffering (Thayer & Miller, 1990; Park et al., 1996 and Herrington et al., 1996). The mitochondrial Ca\(^{2+}\) uptake in SCG neurones appeared important (see Results section 3) and therefore might suggest that mitochondria could partly represent the low and not saturable endogenous buffering system. It would therefore be interesting to measure the Ca\(^{2+}\) buffering capacity of cells where the mitochondrial uptake has been inhibited and to determine how this would influence the ability of a cell to buffer Ca\(^{2+}\). The data presented in this section indicated that Ca\(^{2+}\) ions entering the cytosol bind to endogenous CaBPs and this binding most certainly serves to activate Ca\(^{2+}\)-dependent processes such as ionic channels modulation, enzyme activation or stimulation of gene transcription.
3. Mitochondrial regulation of the intracellular calcium

In this section, small and large Ca\(^{2+}\) transients were induced following somatic depolarisation and the mitochondrial activity inhibited using CCCP to determine the role of mitochondria in the regulation of resting [Ca\(^{2+}\)], and on the recovery phase of Ca\(^{2+}\) transients. The Ca\(^{2+}\) release mechanism was further investigated to determine its sodium dependency by comparing the recovery phase of Ca\(^{2+}\) transients in the presence and absence of intracellular sodium.

3.1. Mitochondrial calcium sequestration and release mechanisms

Neurones were voltage-clamped in the perforated patch configuration with 10 mM sodium in the intracellular solution (see Methods section 2.4.3, Table 2 - solution H and inset in figure 24). Typically, small Ca\(^{2+}\) transients (maximum amplitude < 500 nM), induced by 60 ms depolarising steps, presented a monoexponential decay whereas large Ca\(^{2+}\) transients (≥1 μM) had a multiphasic recovery phase with (i) an initial rapid decrease to a [Ca\(^{2+}\)]\(\approx\) 300 nM, (ii) a plateau phase (maximum amplitude of 217 ± 18 nM; n=11) lasting for tens of seconds and finally (iii) the [Ca\(^{2+}\)] slowly returned to its resting value (figure 24-A).

Upon bath application of 2 μM CCCP (figure 24-B), resting [Ca\(^{2+}\)], transiently increased (peak amplitude of 183 ± 8 nM; n=11) and then returned to its initial value after ≈ 1 minute. However, CCCP did not have a long lasting effect on resting [Ca\(^{2+}\)], as there was no significant differences in resting [Ca\(^{2+}\)], in the presence of CCCP compared to the control level (102 ± 5 nM and 110 ± 8 nM, respectively - n=11; P=0.4). In the absence of extracellular Ca\(^{2+}\), CCCP still induced a transient rise in [Ca\(^{2+}\)], indicating that the increase in resting [Ca\(^{2+}\)], was not a consequence of a CCCP-induced Ca\(^{2+}\) influx. Concomitant with the rise in [Ca\(^{2+}\)], there was the development of an inward current that persisted for the whole duration of the CCCP application (figure 24-B, bottom panel). This current was mostly unaffected in a Ca\(^{2+}\)-free extracellular solution but completely inhibited upon extracellular alkalisiation (pH 9 - data not shown) suggesting that it mainly corresponded to a ‘flux’ of protons through the plasma membrane.
Figure 24 (see next page for legend)

A

B

C

D

E

Figure 24 (see next page for legend)
Although CCCP was without effect on the net amplitude ($\Delta[Ca^{2+}]$) of Ca^{2+} transients, it dramatically affected the properties of their recovery phase, especially during large Ca^{2+} loads (Tables 9 and 10 and figure 24-C). Thus, CCCP abolished the plateau phase observed in control and delayed the recovery phase of large Ca^{2+} transients (compare figures 24-A and 24-C and see also figure 25-A). It was not possible to fit an exponential function to the recovery phase of Ca^{2+} transients recorded in control because of their multiphasic decay. Therefore, $t_{1/2}$, the time necessary for the recovery to reach 50% of the maximal amplitude (A_{max}), was measured in control and in the presence of CCCP (figure 25-A and Table 9). Upon application of CCCP, $t_{1/2}$ was increased by ≈ 1.5 fold compared to control suggesting that $[Ca^{2+}]_i$ stayed elevated for a longer period of time when the mitochondria were inhibited. However, $[Ca^{2+}]_i$ was brought back to resting level through a mechanism that appears CCCP-insensitive since its kinetics was mostly unaffected (compare recovery phase of the Ca^{2+} transients in figure 25-A and see below Table 10 and figure 27 in Results section 3.2).

Table 9: Effect of CCCP on the properties of Ca^{2+} transients

<table>
<thead>
<tr>
<th>$[Ca^{2+}]_i$ (< 500 nM)</th>
<th>Control</th>
<th>+ CCCP</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta[Ca^{2+}]_i$</td>
<td>157 ± 17 nM</td>
<td>165 ± 11 nM</td>
<td>n=8 paired, P=0.9</td>
</tr>
<tr>
<td>τ</td>
<td>3.6 ± 0.5 s</td>
<td>2.0 ± 0.2 s</td>
<td>paired, P<0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$[Ca^{2+}]_i$ (> 500 nM)</th>
<th>Control</th>
<th>+ CCCP</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta[Ca^{2+}]_i$</td>
<td>909 ± 106 nM</td>
<td>908 ± 105 nM</td>
<td>n=11 paired, P=0.7</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>2.5 ± 0.1 s</td>
<td>3.5 ± 0.3 s</td>
<td>paired, P<0.05</td>
</tr>
</tbody>
</table>

(Previous page)

Figure 24: Mitochondrial inhibition with CCCP affects the regulation of $[Ca^{2+}]_i$
(A) Calcium transients induced by depolarisation to 0 mV for 60 and 500 ms in a neurone voltage-clamped (10 mM intracellular sodium, see inset). (B) Bath application of 2 µM m-chlorophenylhydrazone (CCCP) induces a transient rise in $[Ca^{2+}]_i$ and the development of a persistent inward current. (C) In the presence of CCCP, the recovery of both small and large Ca^{2+} transients is modified.
Figure 25: CCCP delays the initial phase of the recovery form large Ca$^{2+}$ transients but also abolishes the plateau phase

(A) Large Ca$^{2+}$ transients recorded in the presence of intracellular sodium (see inset) in control (CTR, thick line) and after bath application of 2 μM CCCP (+CCCP, blue line). The traces are superimposed to compare the time ($t_{1/2}$) necessary for the Ca$^{2+}$ transient’s decay to reach 50% ($A_{1/2}$) of the maximum amplitude (A_{max}). The initial time (t_0) of the decay was set at the peak of the Ca$^{2+}$ transient. (B) CCCP effect on $t_{1/2}$ (CTR, solid bar and CCCP, blue bar; n=11, data as mean ± S.E.M. * P< 0.05).
In contrast, the recovery phase of small Ca\(^{2+}\) transients, was accelerated in the presence of CCCP as can be seen from the superimposed traces in figure 26-A, from the plot of the clearance rate (-d[Ca\(^{2+}\)]/dt against [Ca\(^{2+}\)], see Methods section 6.2 for more details - figure 26-B) and from the measurement of the decay time constant (inset in figure 26-B and Table 9). In the presence of CCCP, the clearance rate was accelerated from 0.15 s\(^{-1}\) to 0.2 s\(^{-1}\) (obtained from the slope of the best fit in figure 26-B) and the CCCP-sensitive component was negative suggesting a Ca\(^{2+}\) efflux from the mitochondria at this low [Ca\(^{2+}\)].

CCCP is a proton shuttle and upon its application, the intracellular pH will equilibrate with the extracellular pH. However, intracellular pH measurements with BCECF (see Methods section 4 for more details) showed that this flux of protons induced little changes in the cytosolic pH (data not shown). Moreover, an equivalent intracellular acidification, induced with 20 mM sodium acetate, did not significantly affect the recovery time of small Ca\(^{2+}\) transients (decay time of 3.5 ± 0.1 s; n=5). On the other hand, intracellular alkalisation, with 15 mM ammonium chloride, elicited large and rapid Ca\(^{2+}\) rises (see Willoughby et al., 2001 and Marsh & Wanaverbecq unpublished observations), which were not observed upon CCCP application (data not shown). Therefore the acceleration of the recovery from small Ca\(^{2+}\) transients did not appear to be due to changes in pH.

3.2. Sodium dependence of the mitochondrial calcium release

Following CCCP application and with 10 mM intracellular Na\(^{+}\), the recovery phase of large Ca\(^{2+}\) transients became biexponential with a predominant fast component and a secondary component lasting for over 30 s (Table 10, figures 24-C, 25-A and 27). Removing the intracellular sodium was without effect on the Ca\(^{2+}\) transients' amplitude, but did modify the properties of the large Ca\(^{2+}\) transients' recovery (Table 10 and figure 27-C). Thus, in the absence of intracellular sodium and similarly to the situation in the presence of CCCP (figures 24-C and 27), the recovery had lost the plateau phase and became biexponential with a similar fast component (compare panels in figure 27-A and see Table 10). However, the amplitude and the time constant of the slow component were respectively larger and faster in the absence of
Figure 26: In the presence of CCCP the recovery phase of small calcium transient is accelerated
(A) Superimposed traces of small Ca\(^{2+}\) transients recorded in the presence of 10 mM intracellular sodium (see inset) before (thick line) and after bath application of 2 \(\mu\)M CCCP (+CCCP, blue line). (B) Plot of the clearance rate (-d[Ca\(^{2+}\)]/dt in nM s\(^{-1}\) versus [Ca\(^{2+}\)]) in control and in the presence of CCCP. Data from 32 Ca\(^{2+}\) transients (16 in control and 16 in CCCP) were pooled from 8 cells and fitted with a linear regression. The best fit in CCCP (blue line) was then subtracted to the best fit in control (solid line) to determine the CCCP-sensitive component (red dashed line). The inset represents the decay time constant of the Ca\(^{2+}\) transient’s recovery in control and in CCCP (black bar, CTR and blue bar, CCCP; n=8, data as mean ± S.E.M. *** P< 0.001).
Figure 27: Sodium dependence of the mitochondrial Ca\(^{2+}\) release during large Ca\(^{2+}\) transients

(A) Typical recording of a large Ca\(^{2+}\) transient in the presence of 10 mM intracellular sodium (see inset) before (left) and after bath application of 2 μM CCCP (right). (B) Typical Ca\(^{2+}\) transient recorded in the same conditions as in (A) but in the absence of intracellular sodium (see inset). (C) Plot of the clearance rate as a function of [Ca\(^{2+}\)] in the presence of intracellular Na\(^{+}\) and CCCP (+ CCCP, blue line; n=11) and in the absence of intracellular sodium (No Na\(^{+}\) in, purple line; n=34). Data obtained from different cells were pooled together in each condition and fitted with a polynome of the second order. The dashed line represents the difference between the clearance rate in the absence of intracellular Na\(^{+}\) and after CCCP application. The inset illustrates superimposed traces in the presence of CCCP (blue trace) and in the absence of intracellular sodium (purple trace) on a slower time scale to compare the recovery phase in each condition.
intracellular sodium than after CCCP application (see inset in figure 27-C and Table 10). Finally, in the absence of intracellular sodium or in the presence of CCCP, there were little differences in the clearance rate of large Ca\(^{2+}\) transients (\(\approx 0.2 \ \mu\text{M s}^{-1}\) at 1 \(\mu\text{M}\), figure 27-C).

Table 10: Effect of intracellular sodium removal on the properties of Ca\(^{2+}\) transients

| \([\text{Ca}^{2+}]_i\) | \(\Delta[\text{Ca}^{2+}]_i\) | \(\tau\) | \(|\text{Ca}^{2+}|_s\) | \(t\)-test |
|---------------------|-----------------|-------|-----------------|-----------|
| \(< 500\) nM | 159 ± 12 nM | 3.5 ± 0.1 s | 1064 ± 72 | independ*, P=0.6 |
| | 165 ± 11 nM | 2.0 ± 0.2 s | 908 ± 105 nM | independ, P< 0.001 |
| \(> 500\) nM | 875 ± 63 nM | 2.3 ± 0.1 s | 122 ± 7 nM | independ, P=0.32 |
| | 705 ± 101 | 2.6 ± 0.2 s | 45 ± 5 nM | independ, P=0.25 |
| | 122 ± 2.2 s | 44 ± 17 s | 112 ± 7 nM | independ, P< 0.001 |

*indep: independent

In contrast, the removal of intracellular Na\(^{+}\) did not affect the properties of small Ca\(^{2+}\) transients (figure 28-A). In fact, the decay time constant in the presence of CCCP was 2-times faster irrespective of the presence or absence of intracellular sodium (figure 28-B and Table 10). Moreover, the clearance rates in the presence or absence of intracellular sodium were equivalent (\(\approx 0.15 \ \text{s}^{-1}\)) and about 1.5-times slower than after CCCP application (figure 28-C and compare decay in figure 28-A and see Tables 9 and 10).

In conclusion, in SCG neurones mitochondrial regulation of \([\text{Ca}^{2+}]_i\), appeared to represent an important component of Ca\(^{2+}\) homeostasis. Thus, following large rise in \([\text{Ca}^{2+}]_i\), mitochondria would rapidly sequester Ca\(^{2+}\) and subsequently release it in a Na\(^{+}\)-dependent manner when \([\text{Ca}^{2+}]_i\) had decreased to a concentration of \(\approx 200 \ \text{nM}\). Mitochondria appeared to act as a Ca\(^{2+}\) store at rest and to be capable to transport Ca\(^{2+}\) at concentrations as low as 200-300 nM. Finally, there are evidence for a mitochondrial Ca\(^{2+}\) release system at low \([\text{Ca}^{2+}]_i\) that appeared to be mainly Na\(^{+}\)-independent.
Figure 28: The recovery of small Ca$^{2+}$ transients is not affected by the removal of intracellular sodium

(A) Superimposed traces of small Ca$^{2+}$ transients recorded in the presence of intracellular sodium before (black line) and after CCCP application (blue line) and in the absence of intracellular sodium (purple line). (B) Decay time constant of the recovery phase (same colour code as in (A) with n=34; n=11 and n=57 respectively; data as mean ± S.E.M. *** P< 0.001, independent t-test). (C) Comparison of the clearance rate as a function of [Ca$^{2+}$], in the presence of intracellular sodium (10 mM Na$^{+}$ in, black line; n=11), after CCCP application (+CCCP, blue line; n=11) and in the absence of intracellular sodium (No Na$^{+}$ in, purple line; n=57). The data for ‘10 mM Na$^{+}$ in’ and ‘+CCCP’ are obtained from figure 26 and the data for ‘No Na$^{+}$ in’ were pooled from 57 different transients and fitted with a linear regression.

141
3.3. Discussion

The application of CCCP induces at rest (see figure 24-B) a transient rise in \([\text{Ca}^{2+}]\), that mainly corresponded to \(\text{Ca}^{2+}\) release from the mitochondria since it was still observed in the absence of extracellular \(\text{Ca}^{2+}\) or after depletion of the intracellular stores with SERCA inhibitors (data not shown). This result is further supported by direct measurements of the mitochondrial \(\text{Ca}^{2+}\) content that indicate a resting mitochondrial \([\text{Ca}^{2+}] \approx 80-200\) nM (Rizzuto et al., 1993 and Babcock et al., 1997). Although mitochondria would have the capacity to act as a \(\text{Ca}^{2+}\) store they did not appear to be involved in the regulation of basal \([\text{Ca}^{2+}]\); since mitochondrial inhibition was without effect on resting \([\text{Ca}^{2+}]\).

In the presence of 10 mM intracellular \(\text{Na}^{+}\), which corresponds to the physiological intracellular \(\text{Na}^{+}\) concentration, the recovery from large depolarisation-induced \(\text{Ca}^{2+}\) transients was multiphasic with an initial rapid decay followed by a secondary slow decrease towards resting \([\text{Ca}^{2+}]\). In agreement with numerous previous studies, mitochondrial uncoupling with protonophores, such as CCCP, induced in SCG neurones both a delay in the initial fast decay phase and the abolition of the slow secondary plateau phase (Thayer & Miller, 1990; Friel & Tsien; 1994; Herrington et al., 1996; Park et al., 1996; Babcock et al., 1997; Pivovarova et al.1999; Montero et al., 2000 and Colegrove et al., 2000). A notable exception to this was found in cerebellar Purkinje neurones where the recovery from large \(\text{Ca}^{2+}\) transients is biexponential and unaffected by mitochondrial inhibition (Fierro et al., 1998). However, the experimental conditions and particularly the low intracellular \(\text{Na}^{+}\) concentration (see below) might explain this discrepancy. Similarly to CCCP application, a delay in the initial rapid recovery was observed upon intracellular application of ruthenium red, an inhibitor of the \(\text{Ca}^{2+}\)-uniporter (e.g. see Babcock et al., 1997) indicating that mitochondria accelerate the clearance of large increase in \([\text{Ca}^{2+}]\) by sequestering \(\text{Ca}^{2+}\) via the mCU.

In the present study, in the absence of intracellular \(\text{Na}^{+}\) or after CCCP application, the plateau phase was no longer observed and instead the recovery became biexponential suggesting that \(\text{Ca}^{2+}\) release from the mitochondria is \(\text{Na}^{+}\)-dependent (see also Colegrove et al., 2000). This \(\text{Na}^{+}\)-dependent \(\text{Ca}^{2+}\) efflux appears to be mediated through the mitochondrial NCX (mNCX). Thus, CGP, a selective inhibitor of this exchanger, also abolishes the plateau phase of the recovery in the presence of 10 mM
intracellular Na\(^+\) but is ineffective when intracellular Na\(^+\) is omitted (Baron & Thayer, 1997 and Colegrove et al., 2000). However, both CGP application or intracellular Na\(^+\) removal do not prevent mitochondrial Ca\(^{2+}\) uptake since under these conditions, a transient rise in resting [Ca\(^{2+}\)], (smaller in amplitude) and a prolongation of the Ca\(^{2+}\) transient’s recovery were still observed following CCCP or FCCP application (data not shown and see also Colegrove et al., 2000).

Colegrove and colleagues (2000) observed that following CCCP application the Ca\(^{2+}\) transient’s amplitude is increased and the recovery markedly prolonged. These authors, in agreement with previous studies (e.g. Thayer & Miller, 1990; Friel & Tsien, 1994 and Pivovarova et al., 1999) therefore concluded that mitochondria represent a major Ca\(^{2+}\) clearance system during the initial phase of large increase in [Ca\(^{2+}\)]. However, several observations appear in contradiction with this conclusion. Firstly, the increase in the amplitude of Ca\(^{2+}\) transients was generally observed in experiments where cellular depolarisation was induced by KCl application but not under voltage-clamped conditions (compare with Park et al., 1996; Herrington et al., 1996; Babcock et al., 1997). Secondly, it has been reported that protonophores also affect the plasma membrane and intracellular Ca\(^{2+}\) store suggesting that the observed increase in the Ca\(^{2+}\) transient amplitude is not due to mitochondrial inhibition but rather to CCCP secondary effects (discussion in Friel & Tsien, 1994 and Park et al., 1996). This observation is further supported by the development of the inward current during CCCP application (see figure 24-B) that would induce a depolarisation of the plasma membrane and an activation of VACC. Finally, although CCCP delays the Ca\(^{2+}\) transient’s recovery, the CCCP-resistant recovery phase had kinetics similar to that of the initial fast decay in control or to the Ca\(^{2+}\) transient’s recovery in the absence of intracellular Na\(^+\) (see figure 25-A and 27). Moreover, after CCCP application, inhibition of the plasma membrane NCX by extracellular Na\(^+\) removal or of the Ca\(^{2+}\) uptake into intracellular store with SERCA inhibitors markedly affected the recovery of these large Ca\(^{2+}\) transients (data not shown and see Herrington et al., 1996). Therefore, it appears that the rapid recovery phase is mediated by extrusion or storage systems rather than by mitochondria. One could suggest that mitochondria accelerate the Ca\(^{2+}\) recovery through both a rapid Ca\(^{2+}\) uptake and a temporary storage system. Thus, at high [Ca\(^{2+}\)], mitochondria would promote Ca\(^{2+}\) extrusion through the plasma membrane NCX or storage into intracellular.
stores whereas mitochondria release the accumulated Ca\(^{2+}\) at lower [Ca\(^{2+}\)], where PMCA is most efficient for Ca\(^{2+}\) extrusion.

The mitochondrial Ca\(^{2+}\) uptake, because of its high transport rate and steep dependence on [Ca\(^{2+}\)], is thought to be predominant at high [Ca\(^{2+}\)] (> 500 nM) while at lower [Ca\(^{2+}\)], the direction of the net Ca\(^{2+}\) flux would be determined by the respective contribution of the Ca\(^{2+}\) uptake and release systems (see also General Introduction section 4.1.3.1). The [Ca\(^{2+}\)], where Ca\(^{2+}\) uptake and release systems balance each other corresponds to the 'set-point’, which can be visualised as the plateau phase during the recovery. The value of this set-point appears to vary between cell types. Thus, in the present study, the set-point was measured at 217 ± 18 nM (n=11) which is similar to that measured in chromaffin cells (180 ± 25 nM, Park et al., 1996), in pituitary gonadotrophs (≈ 200 nM, Tse et al., 1994) and bullfrog sympathetic neurones (≈ 200 nM, Friel & Tsien, 1990 and Colegrove et al., 2000) but far lower than in rat dorsal root ganglion neurones (≈ 500 nM, Thayer & Miller, 1990). This variation in the set point value suggests that the relative contribution of mitochondrial Ca\(^{2+}\) uptake and release varies amongst different cell types possibly as a result of different Ca\(^{2+}\) affinity of the transport systems or different level of expression. Nevertheless, in a particular cell type, the amplitude of the plateau phase is constant and independent from both the Ca\(^{2+}\) transient amplitude and the duration of the depolarisation (Thayer & Miller, 1990 and Friel & Tsien, 1994). However, the recovery time from the plateau phase increases with the duration of the depolarisation (Thayer & Miller, 1990 and Friel & Tsien, 1994). This suggests that with the increase in the depolarisation’s duration (i.e. the increase in the duration of elevated [Ca\(^{2+}\)]), more Ca\(^{2+}\) will be accumulated into mitochondria however when [Ca\(^{2+}\)] decreases below the set-point, Ca\(^{2+}\) is released at a constant rate.

A surprising result was the fact that mitochondrial uncoupling with CCCP accelerated the recovery of Ca\(^{2+}\) transients with a peak amplitude below 300 nM. The mitochondrial contribution to the regulation of [Ca\(^{2+}\)], close to rest (100-300 nM) has already been reported in bullfrog sympathetic neurones (Colegrove et al., 2000) and rat heart cells (Zhou et al., 1998). Moreover, if one considers that at this low [Ca\(^{2+}\)], the cytosolic Ca\(^{2+}\) binding ratio is ≈ 500 (see Results section 2.3), the free Ca\(^{2+}\) close to the plasma membrane would be in the micromolar range (≈ 100 μM for 200 nM free Ca\(^{2+}\)) and a substantial mitochondrial Ca\(^{2+}\) transport could therefore occur. Furthermore,
electron microscopic study showed that SCG neurones contain numerous mitochondria largely distributed close to the plasma membrane (Marsh, unpublished observations). Therefore mitochondria appear to be localised close to the source of Ca$^{2+}$ influx where [Ca$^{2+}$]$_i$ is thought to be in the submicromolar range. This localisation of the mitochondria under the plasma membrane is an additional argument for a mitochondrial role in Ca$^{2+}$ transport following 'small' rise in [Ca$^{2+}$]$_i$ and in Ca$^{2+}$ buffering (see Results section 2.4) and also reconcile the apparent contradiction of the low affinity of mCU ($K_d \approx 1-5 \ \mu$M) with a physiological role of mitochondria in the regulation of [Ca$^{2+}$]$_i$.

At high [Ca$^{2+}$]$_i$, mitochondrial Ca$^{2+}$ sequestration would predominate whereas with at low [Ca$^{2+}$]$_i$ mitochondria would primarily release Ca$^{2+}$. The Ca$^{2+}$ release observed at low [Ca$^{2+}$]$_i$ would be in agreement with the set-point value ($\approx 200 \ \text{nM}$), which would predict a predominant net mitochondrial Ca$^{2+}$ efflux through mNCX and therefore CCCP application would accelerate the recovery (see figure 28). However, by contrast with the situation observed for the recovery of large Ca$^{2+}$ transients, the Ca$^{2+}$ release observed at low [Ca$^{2+}$]$_i$ appeared to be Na$^+$-independent (see figure 28). Thus, in the presence or absence of intracellular Na$^+$ there was no difference in the recovery of small Ca$^{2+}$ transients while CCCP application accelerated in both situations the recovery phase. Furthermore, the recovery from large rises in [Ca$^{2+}$]$_i$ was essentially monoeponential after CCCP application since the second component of the decay was both minute and slow ($\approx 50 \ \text{nM}$ and $\approx 40 \ \text{s}$). In contrast, in the absence of intracellular Na$^+$, the Ca$^{2+}$ transient's recovery was clearly biexponential (see figure 27) suggesting the presence of a secondary slow phase that might correspond, at least in part, to a mitochondrial Ca$^{2+}$ release via a Na$^+$-independent mechanism. It has been reported that the mitochondrial permeability transition pore, (MPTP), which is stimulated by a rise in mitochondrial [Ca$^{2+}$]$_i$, could transiently open under physiological condition and therefore change the mitochondrial membrane potential (MPTP) leading to Ca$^{2+}$ efflux (Petronilli et al., 1999; Murchison & Griffith, 2000 and Montero et al., 2000). Since the CCCP effect observed during the recovery of small Ca$^{2+}$ transient is unlikely to be an artefact (see above section 3.1), the possibility of a Ca$^{2+}$ release through MPTP and/or through the mCU operating in the reverse mode would represent a possible mechanism for a Na$^+$-independent Ca$^{2+}$ release. However, there is no evidence that MPTP activation
occurs in SCG neurones and further experiments would be necessary to investigate this possibility.

In agreement with previous studies in excitable and non-excitble cells, it appears that mitochondrial Ca$^{2+}$ transport plays an important role in the Ca$^{2+}$ homeostasis of SCG neurones. Firstly, through the rapid Ca$^{2+}$ uptake, mitochondria would have a protective role against long cytosolic exposure to high [Ca$^{2+}$]. Secondly, mitochondrial Ca$^{2+}$ transport might operate to redistribute Ca$^{2+}$ so that it could be extruded by the most efficient system. Thus, Ca$^{2+}$ uptake at high [Ca$^{2+}$], would help Ca$^{2+}$ extrusion through low affinity transport system whereas the Ca$^{2+}$ would be released at low [Ca$^{2+}$], where the high affinity system are the most efficient. The Ca$^{2+}$ cycling into the mitochondria would also enable these organelles to sense the cellular activity and enable the necessary ATP production to respond to the metabolic need. Finally, there is increasing evidence for a mitochondrial role in the shaping and propagation of Ca$^{2+}$ responses through interaction with intracellular stores and such mechanism might also occur in SCG neurones.
4. Intracellular calcium regulation and endoplasmic reticulum

Using caffeine and SERCA inhibitors, the characteristics of the Ca\(^{2+}\) release from and uptake into the intracellular stores were determined. Secondly, the involvement of the ER in the recovery phase of depolarisation-induced Ca\(^{2+}\) transients was investigated following either SERCA inhibition or activation of Ca\(^{2+}\) release with caffeine. Finally, the nature of the SERCA expressed in SCG neurones was investigated using experiments in immunocytochemistry.

4.1. Intracellular stores release and sequester calcium

Neurones were voltage-clamped at a holding potential of -60 mV (perforated patch configuration and no intracellular sodium; see Methods section 2.2.1, figure 1 and Methods section 2.4.3, Table 2 - solution H) and Ca\(^{2+}\) release from the intracellular stores was induced with 10 mM caffeine (Caff, figure 29-A). Caffeine was dissolved in the standard perfusion solution in the presence or absence of Ca\(^{2+}\) (see Methods section 2.4.1, Table 1 - solution A and D) and pressure-applied (10 p.s.i.) for 5 s using a ‘puffer-electrode’ (tip diameter \(\approx\) 1 \(\mu\)m) positioned at \(\approx\) 20 \(\mu\)m from the cell soma. Consecutive caffeine applications (every \(\approx\) 60 s) induced rapid [Ca\(^{2+}\)] rises of similar amplitude (rise time \(\approx\) 5 s and \(\Delta [\text{Ca}^{2+}] \approx 397 \pm 62\) nM; \(n=14\)). The recovery of the caffeine-induced Ca\(^{2+}\) transients, which was faster than that of a depolarisation-induced Ca\(^{2+}\) transient (see Results section 1.2 and below sections 4.2 and 4.3), had a monoexponential recovery phase with a mean decay time constant of 2.5 \(\pm\) 0.1 s and a Ca\(^{2+}\) clearance rate \(\approx 0.26\) s\(^{-1}\) (see figures 29-A and -B). At the end of the recovery phase, [Ca\(^{2+}\)] often decreased below the resting concentration (undershoot) before returning to the basal [Ca\(^{2+}\)], in tens of seconds (92 \(\pm\) 3 nM at the end of the recovery versus 102 \(\pm\) 3 nM in control; \(n=14\); \(P<0.05\) - see figures 29-A and 33-A).

(Next page)

Figure 29: Calcium release from and sequestration into the endoplasmic reticulum

(A) Typical rises in [Ca\(^{2+}\)], induced in a voltage-clamped neurone following pressure-application of 10 mM caffeine (Caff, arrows for 5 s). (B) Clearance rate versus [Ca\(^{2+}\)] of caffeine-induced Ca\(^{2+}\) transients (data pooled from 14 cells and fitted with a linear regression). (C) Caffeine application (10 mM for 5 s, arrow) before and after SERCA inhibition with cyclopiazonic acid (CPA, 50 \(\mu\)M) in a Ca\(^{2+}\)-free extracellular solution and (D) SERCA inhibition with CPA in the presence of extracellular Ca\(^{2+}\).
Figure 29 (see previous page for legend)
Figure 30: Thapsigargin inhibits Ca\(^{2+}\) sequestration into the endoplasmic reticulum and activates a Ca\(^{2+}\) influx through the plasma membrane

(A) SERCA inhibition with bath application of thapsigargin (TG, 100 nM) in the presence of extracellular Ca\(^{2+}\). (B) Thapsigargin induces a persistent rise in resting [Ca\(^{2+}\)], that is abolished in a Ca\(^{2+}\)-free extracellular solution or in the presence of 10 \(\mu\)M lanthanum (La\(^{3+}\)).
induced Ca\(^{2+}\) transients were maintained in a Ca\(^{2+}\)-free extracellular solution (less than 2 minutes - figure 29-C) and abolished in a use-dependent manner in the presence of 10 μM ryanodine (data not shown).

Bath application of 50 μM cyclopiazonic acid (CPA) or 100 nM thapsigargin (TG) both induced, at rest, a transient rise in the [Ca\(^{2+}\)], and inhibited the caffeine-induced Ca\(^{2+}\) transients (figures 29-C and 29-D for CPA and figure 30-A for TG). However, there were differences in the effects of these two compounds since upon CPA application the rise in [Ca\(^{2+}\)], was transient (109 ± 5 nM in CTR versus 101 ± 3 nM in CPA; n=15, P=0.11, figure 29-D) whereas after TG application, [Ca\(^{2+}\)], remained higher than in control (105 ± 10 nM in control versus 143 ± 7 nM in TG; n=12, P< 0.01 - figure 30-A). This TG-induced persistent rise in [Ca\(^{2+}\)], was abolished upon removal of extracellular Ca\(^{2+}\) as well as in the presence of 10 μM lanthanum (La\(^{3+}\), figure 30-B), a blocker of SOCC, suggesting the activation of a Ca\(^{2+}\) influx through the plasma membrane.

4.2. Role of the intracellular stores in the clearance of calcium transients

Neurones were voltage-clamped at -60 mV in the perforated patch configuration and in the absence of intracellular Na\(^{+}\) to abolish Ca\(^{2+}\) release from the mitochondria (see Results section 3.2). Calcium transients were elicited through depolarising steps to 0 mV for 60 and 500 ms prior to the application of 50 μM CPA or 100 nM TG. Depletion of intracellular stores and inhibition of the Ca\(^{2+}\) uptake was assessed using caffeine application (10 mM for 5 s) before and after SERCA inhibition (protocol illustrated in Results section 4.1, figure 29-C).

4.2.1. SERCA inhibition with cyclopiazonic acid

Inhibition of SERCA with 50 μM CPA was without effect on the properties of small Ca\(^{2+}\) transient (< 500 nM) as neither Δ[Ca\(^{2+}\)], nor the time constant of the decay were changed compared with control (Table 11, figure 31-A and inset in figure 31-B). Furthermore, the determination of the clearance rate showed no difference after CPA application (rate of 0.15 s\(^{-1}\) in CTR and CPA, figure 31-B).

For larger Ca\(^{2+}\) transients (> 500 nM) the time course of the recovery was unaffected by CPA but Δ[Ca\(^{2+}\)], was attenuated by ≈ 50% (Table 11). The analysis of
Figure 31: CPA is without effect on the recovery of small Ca\(^{2+}\) transients but prolongs the decay of large Ca\(^{2+}\) transients

(A) Small Ca\(^{2+}\) transients induced by depolarising steps for 60 ms (no intracellular sodium, see inset) before and after bath application of 50 μM CPA. (B) Plot of the clearance rate in control and in CPA for small Ca\(^{2+}\) transients (data from 15 cells) were pooled in each condition and fitted with a linear regression. The inset represents the decay time constant of the Ca\(^{2+}\) transient’s recovery in control and in CPA (black bar, CTR and orange bar, CPA; n=15, data as mean ± S.E.M.). (C) Large Ca\(^{2+}\) transients induced by depolarising steps for 500 ms in control and in CPA. In control only the recovery phase of the Ca\(^{2+}\) transient is represented because of the reduction of the Ca\(^{2+}\) transient’s amplitude in the presence of CPA (see text for more details). (D) Plot of the clearance rate in control and in the presence of CPA for large Ca\(^{2+}\) transients and determination of the CPA-sensitive component (dashed line - data from 15 cells pooled and fitted with a polynomial function). The inset represents the decay time constants of the Ca\(^{2+}\) transient’s recovery in control and in CPA (black bar, CTR and orange bar, CPA; n=15, data as mean ± S.E.M. *** P< 0.001).
the voltage-clamp recordings showed that CPA inhibited the peak Ca\(^{2+}\) current by about 30% (n=5) and this inhibition of the Ca\(^{2+}\) current may underlie the reduction in Δ[Ca\(^{2+}\)]. However, in the presence of CPA both the fast (τ\(_1\)) and slow (τ\(_2\)) decay time constants were slowed compared with the control recovery as can be seen from the superimposed Ca\(^{2+}\) transient in figure 31-C (Table 11 and inset in figure 31-D).

| Table 11: Effect of CPA on the properties of Ca\(^{2+}\) transients |
|-----------------------------|-----------------------------|-------------|-----------------------------|
| [Ca\(^{2+}\)]\(_i\) < 500 nM | Control | CPA | n | t-test |
| Δ[Ca\(^{2+}\)]\(_i\) | 169 ± 15 nM | 177 ± 14 nM | 15 | paired, P=0.55 |
| τ | 4.1 ± 0.3 s | 4.3 ± 0.2 s | | paired, P=0.44 |
| [Ca\(^{2+}\)]\(_i\) > 500 nM | Control | CPA | n | t-test |
| Δ[Ca\(^{2+}\)]\(_i\) | 998 ± 100 nM | 436 ± 21 | 15 | paired, P< 0.001 |
| A\(_1\) | 878 ± 115 nM | 278 ± 14 nM | | paired, P< 0.001 |
| τ\(_1\) | 2.3 ± 0.1 s | 3.7 ± 0.1 s | | paired, P< 0.001 |
| A\(_2\) | 147 ± 15 nM | 106 ± 11 nM | | paired, P< 0.01 |
| τ\(_2\) | 22.8 ± 4 s | 33.9 ± 6 s | | paired, P=0.06 |

As the amplitude of the Ca\(^{2+}\) transient was attenuated upon CPA application, only the recovery part of the control Ca\(^{2+}\) transient is represented. The plot of the clearance rate, obtained from the fit of the experimental data, was extrapolated to 1.5 μM in the presence of CPA to enable a better comparison and the determination of the CPA-sensitive component (figure 31-D). As expected from the time constant measurements, the rate of clearance was slower in CPA than in control (0.2 μM s\(^{-1}\) in CTR and 0.15 μM s\(^{-1}\) in CPA at [Ca\(^{2+}\)] \(\approx\) 1 μM - figure 31-D). Finally no saturation of the CPA-sensitive component was observed up to a [Ca\(^{2+}\)] \(\approx\) 1.5 μM. Therefore, despite the CPA effect on the amplitude of the Ca\(^{2+}\) transients, the results presented above suggest that SERCA inhibition affected the kinetics of the recovery of large Ca\(^{2+}\) transients (> 500 nM).

4.2.2. SERCA inhibition with thapsigargin

For small Ca\(^{2+}\) transients, the results obtained in the presence of 100 nM TG were in agreement with those obtained after CPA application (figures 32-A and -B). Although TG induced a persistent rise in resting [Ca\(^{2+}\)], there were no difference
Figure 32: Thapsigargin is without effect on the recovery of small Ca\(^{2+}\) transients but prolongs the decay of large Ca\(^{2+}\) transients

(A) Small Ca\(^{2+}\) transients induced by depolarising steps for 60 ms before and after bath application of 100 nM TG. (B) Plot of the clearance rate in control and in TG for small Ca\(^{2+}\) transients with the TG-sensitive component (dashed line, data from 7 cells). The inset represents the decay time constant of the Ca\(^{2+}\) transient’s recovery in control and in TG (black bar, CTR and orange bar, TG; n=7, data as mean ± S.E.M.). (C) Large Ca\(^{2+}\) transients induced by depolarising steps for 500 ms in control and in TG. (D) Plot of the clearance rate in control and in the presence of TG for large Ca\(^{2+}\) transients and determination of the TG-sensitive component (dashed line - data from 12 cells). The CPA-sensitive component (violet line) of the recovery is also represented for comparison. The inset represents the decay time constants of the Ca\(^{2+}\) transient’s recovery in control and in TG (black bar, CTR and orange bar, TG; n=12, data as mean ± S.E.M. *** P<0.001). Note that in (A) and (C), because of the TG-induced rise in resting [Ca\(^{2+}\)], the Ca\(^{2+}\) transients are represented as Δ[Ca\(^{2+}\)], to enable a better comparison of the recovery phase.
neither in $\Delta [Ca^{2+}]$, nor in the decay time constant compared with the control situation (Table 12). The plot of the clearance rate show little difference in the rate of the recovery (0.13 s\(^{-1}\) in CTR versus 0.11 s\(^{-1}\) in TG, figure 32-B) but a shift in resting $[Ca^{2+}]$, was observed, which could be explained by a Ca\(^{2+}\) influx at \(\approx 5\) nM s\(^{-1}\) (figure 32-B).

Table 12: Effect of thapsigargin on the properties of Ca\(^{2+}\) transients

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>TG</th>
<th>n</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[Ca^{2+}]_i < 500$ nM</td>
<td></td>
<td></td>
<td>7</td>
<td>paired, P=0.4</td>
</tr>
<tr>
<td>$\Delta [Ca^{2+}]_i$</td>
<td>240 ± 17 nM</td>
<td>241 ± 10 nM</td>
<td></td>
<td>paired, P=0.25</td>
</tr>
<tr>
<td>τ</td>
<td>3.7 ± 0.3 s</td>
<td>4.3 ± 0.2 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[Ca^{2+}]_i > 500$ nM</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>$\Delta [Ca^{2+}]_i$</td>
<td>763 ± 101 nM</td>
<td>677 ± 51 nM</td>
<td></td>
<td>paired, P=0.4</td>
</tr>
<tr>
<td>A_1</td>
<td>614 ± 104 nM</td>
<td>536 ± 54 nM</td>
<td></td>
<td>paired, P=0.3</td>
</tr>
<tr>
<td>τ_1</td>
<td>2.4 ± 0.1 s</td>
<td>5.0 ± 2 s</td>
<td></td>
<td>paired, P<0.001</td>
</tr>
<tr>
<td>A_2</td>
<td>140 ± 10 nM</td>
<td>136 ± 12 nM</td>
<td></td>
<td>paired, P=0.1</td>
</tr>
<tr>
<td>τ_2</td>
<td>21.9 ± 2 s</td>
<td>23.5 ± 2 s</td>
<td></td>
<td>paired, P=0.8</td>
</tr>
</tbody>
</table>

Unlike with CPA, in the presence of TG, $\Delta [Ca^{2+}]$, of large Ca\(^{2+}\) transients was unaffected as illustrated from the superimposed traces in figure 32-C (see Table 12). However, the fast decay time constant was slowed by nearly 2-times whilst the slow one remained unchanged (Table 12 and inset in figure 32-D). The clearance rate plot for larger rises in $[Ca^{2+}]_i$ shows that SERCA inhibition slowed the recovery compared to control (\(\approx 0.2\) \(\mu\)M s\(^{-1}\) in CTR and \(\approx 0.1\) \(\mu\)M s\(^{-1}\) in TG at $[Ca^{2+}]_i \approx 1$ \(\mu\)M - figure 32-D) and that the TG-sensitive component, obtained from the difference of the clearance rates in control and in TG did not show any saturation up to $[Ca^{2+}]_i \approx 1.5$ \(\mu\)M. Finally, up to \(\approx 1\) \(\mu\)M, TG appeared to have a stronger inhibitory effect than CPA on the recovery of Ca\(^{2+}\) transients as can be seen from the comparison of the clearance rate following CPA and TG application (figure 32-D, clearance rate in CPA as determined in figure 31-D).

4.3. Calcium clearance following SERCA activation

Calcium transients were elicited by depolarisation steps only or by depolarisation steps followed by caffeine application at the end of the depolarising step (at 60 ms, triggered through the digital output with the pClampex8 software). The caffeine application was meant to induce Ca\(^{2+}\) release from the ER and as a consequence to stimulate the uptake mechanism into the ER. This protocol was
designed to determine how Ca\(^{2+}\) release from the intracellular stores and SERCA activation could affect the characteristics of Ca\(^{2+}\) transients induced by depolarisation.

Calcium transients elicited by 60 ms depolarising steps (depolarisation-induced Ca\(^{2+}\) transients) had a rise time of hundreds of milliseconds, a monoexponential recovery phase and a mean decay time constant of 4.0 ± 0.1 s (n=11 - figure 33-A, centre). On the other hand, the caffeine-induced Ca\(^{2+}\) transients presented a slower rise time (≈ 5 s) but a faster monoexponential recovery phase (τ = 2.5 ± 0.1; n=14 - figure 33-A, left and see Results section 4.1, figure 29-A). When caffeine was applied at the end of the depolarising pulse, the amplitude of the depolarisation-induced Ca\(^{2+}\) transients was increased and equal to the sum of the amplitude of equivalent depolarisation-induced and caffeine-induced Ca\(^{2+}\) transients (574 ± 192 nM versus 463 ± 70; n=6, P=0.67). Furthermore, in this condition, the rise time of the Ca\(^{2+}\) transient induced by both depolarising step and caffeine application was similar to the depolarisation-induced Ca\(^{2+}\) transient but its recovery was accelerated and equivalent to the recovery of a caffeine-induced Ca\(^{2+}\) transient (τ = 2.4 ± 0.1 s; n=6, P<0.001 versus depolarisation-induced Ca\(^{2+}\) transient; n=11, independent Student t-test - see superimposed traces in figure 33-A, right). Moreover, similarly to caffeine-induced Ca\(^{2+}\) transients (see Results section 4.1) and following the recovery phase, resting [Ca\(^{2+}\)] transiently decreased below the control level (87 ± 2; n=6 and 107 ± 10; n=14, respectively and see figure 33-A right).

The determination of the clearance rate showed that caffeine-induced or both caffeine- and depolarisation-induced Ca\(^{2+}\) transients had a similar rate of recovery, which was faster than the clearance rate of a Ca\(^{2+}\) transient induced by depolarisation alone (≈ 0.26 s\(^{-1}\) and ≈ 0.15 s\(^{-1}\), respectively figure 33-B). By subtracting the clearance rate of the depolarisation-induced Ca\(^{2+}\) transient to the clearance rate of the depolarisation- and caffeine-induced Ca\(^{2+}\) transient, the rate of the 'SERCA uptake' could be estimated ≈ 0.11 s\(^{-1}\) (figure 33-B).
Figure 33: Caffeine effects on calcium uptake into the reticulum endoplasmic and on the recovery of depolarisation-induced calcium transients

(A) Calcium transients induced by caffeine (Caff, 10 mM for 5 s, left) and elicited by 60 ms depolarising steps without (ΔV, centre) and with an additional application of caffeine (ΔV+Caff, right) in a neurone voltage-clamped in the perforated patch configuration. The different traces have been superimposed to enable the comparison of the recovery phase. (B) Comparison of the clearance rate of Ca^{2+} transients induced by caffeine alone (Caff, blue line; n=14), by depolarisation alone (ΔV, black line; n=11) and by depolarisation and caffeine (ΔV + Caff, green line; n=6). The component corresponding to the ‘SERCA uptake’ (difference between ΔV + Caff and ΔV) is represented (dashed line).
4.4. **SCG neurones mainly express the SERCA-3 isoform**

So far three main SERCA isoforms have been characterised in living cells (see General Introduction section 4.2.2.2), therefore experiments in immunocytochemistry were carried out to determine which isoform was expressed in SCG neurones. After two days in culture, neurones were fixed using 0.2% glutaraldehyde/2% paraformaldehyde before incubation with a selective goat polyclonal antibody directed against the N-terminal region of each SERCA isoform (1/50, SERCA-1 to -3, respectively, see Methods section 7.1 and Table 5 for more details). The primary antibodies were subsequently labelled using swine anti-goat IgG conjugate to TRITC (1/50 - see Methods section 7.1 and Table 6). The selectivity of the labelling was assessed by the absence of significant labelling using solution of antibodies pre-incubated with the corresponding antigenic peptides. The results of the immunolabelling were examined on a fluorescent microscope, images acquired with a CCD camera and analysed using the deconvolution methods with the Nearest neighbours algorithm (figure 34 and see Methods section 7.2 and figure 8). For the three antibodies, images were acquired and analysed using the same parameters to enable a comparison of the staining’s results. Images taken at a particular plane of focus are illustrated in figures 34-A, -B, and -C for each of the three antibodies with the corresponding deconvolved image (SERCA-1, -2 and -3 in figures 34-A2, -B2 and -C2, respectively). It appears that SERCA-3 was the SERCA isoform the most largely expressed in SCG neurones. The deconvolution analysis suggested that SERCAs are localised close to the somatic plasma membrane with the exception of SERCA-3, which appeared to be also present in neurites (figure 34-C2). This localisation of SERCA close to the plasma membrane was in agreement with the distribution of the ER, which appeared mainly localised around the nucleus and in the first 2 µm under the plasma membrane (figure 34-D2). The localisation of the ER was determined using an antibody directed against the disulphhydryl protein isomerase (DPI, 1/50), a protein of the ER, and immunolabelled with a TRITC conjugate (1/200).
Figure 34: SERCA-3 is the predominant isoform expressed in SCG neurones and is primarily localised close to the somatic plasma membrane

Goat polyclonal antibodies (1/50) raised against each of the three SERCA isoforms were used to determine which isoform is expressed in SCG neurones (SERCA-1, -2 and -3 in panel A1, B1 and C1, respectively). The primary antibodies were labelled with swine anti-goat polyclonal antibodies conjugated to TRITC (1/50) and images acquired using a CCD camera attached to a fluorescent microscope. The images in A1, B1 and C1 were subsequently analysed with the digital deconvolution technique using the Nearest neighbours algorithm to generate the images in panels A2, B2 and C2 (scale bar 10 µm, x40 oil immersion fluorescent objective). (D1) Bright field image of a SCG neurone labelled with a rabbit polyclonal antibody raised against DPI (1/200) and immunolabelled with a secondary antibody conjugated with TRITC (D2). Images acquired using a confocal microscope (scale bar 5 µm, x63 oil immersion fluorescent objective).
Taken together, the results suggested that the ER presented functional Ca\(^{2+}\) release pathways, mainly through RyRs, and a fast Ca\(^{2+}\) uptake system via SERCA. The SERCA-3 isoform appeared to be the predominant isoform in these neurones and to be primarily distributed close to the somatic plasma membrane, where the ER it thought to be localised. The results suggested further that intracellular stores did not participate either as an amplification system or as a sequestration mechanism during small rise in [Ca\(^{2+}\)]. Nevertheless, when the SERCA were activated, following stores depletion, the recovery of depolarisation-induced Ca\(^{2+}\) transients, even at low [Ca\(^{2+}\)], was accelerated. In contrast, the recovery from larger Ca\(^{2+}\) loads, that might have invaded the cytosol, appeared to be accelerated through Ca\(^{2+}\) sequestration into the ER suggesting that Ca\(^{2+}\) store was capable of sequestering Ca\(^{2+}\) following Ca\(^{2+}\) influx through the plasma membrane.

4.5. Discussion

The data presented in this section suggested that the Ca\(^{2+}\) store is filled, at least partially, at rest. Thus, prior to store ‘loading’ through the activation of VACC, large amount of Ca\(^{2+}\) could be released by an application of caffeine (this study and see also Hernandez-Cruz et al., 1995; Garaschuk et al., 1997 and Seymour-Laurent & Barish, 1995). This observation is in agreement with earlier results suggesting that Ca\(^{2+}\) store would be filled at \(\approx 80\%\) in peripheral neurones at rest but contrast with the situation observed in most central neurones where intracellular stores are thought to be empty (Shmigol et al., 1994a). Finally, direct measurements of the free luminal [Ca\(^{2+}\)]\(_i\) ([Ca\(^{2+}\)]\(_i\)) in the intracellular stores indicated that there is \(\approx 5-10\) mM Ca\(^{2+}\) of which between 0.1 and 0.3 mM are thought to be in the free ionic form (see Meldolesi & Pozzan, 1998 for review).

Since caffeine-induced Ca\(^{2+}\) transients are observed in a Ca\(^{2+}\)-free extracellular solution and are inhibited in the presence of both SERCA inhibitors or high concentrations of ryanodine (10 \(\mu\)M), it can be assumed that Ca\(^{2+}\) is released from caffeine- and ryanodine-sensitive intracellular stores (this study and see also Sadoshima & Akaike, 1991; Friel & Tsien, 1992; Hua et al., 1993; Hernandez-Cruz et al., 1995 and Garaschuk et al., 1997). In SCG neurones, this result is further supported by data
showing that membrane preparations from rat sympathetic ganglia possess a high number of ryanodine binding sites (Hernandez-Cruz et al., 1995) about 3-fold larger than any other neuronal preparation and comparable to cardiac tissue (Meissner & Henderson, 1987).

The recovery from caffeine-induced Ca^{2+} transients was faster than that of a depolarisation-induced Ca^{2+} transient suggesting that these two Ca^{2+} responses might be regulated by different mechanisms. The Ca^{2+} released by caffeine would be transported by systems close to the release sites and could therefore be re-sequestered through the activation of SERCA back into the same Ca^{2+} store. It has been shown that high $[\text{Ca}^{2+}]_l$ would inhibit the SERCA activity and facilitate Ca^{2+} release whereas lower $[\text{Ca}^{2+}]_l$ is thought to have the opposite effect (Inesi & de Meis, 1989; Gilchrist et al., 1992; Favre et al., 1996 and Mogami et al., 1998). The activity of SERCA has been shown to be upregulated in a Ca^{2+}-dependent manner by both direct CaM-dependent phosphorylation processes and by the phosphorylation of phospholamban (see Carafoli, 1987 and Pozzan et al., 1994 for review). In contrast, the $[\text{Ca}^{2+}]_i$ threshold for RyR activation has been shown to be lower when the Ca^{2+} content of the ER is high, therefore Ca^{2+} release would be promoted (Gilchrist et al., 1992; Lukyanenko et al., 1996 and Marie & Silva, 1998). Therefore, after activation of RyRs and depletion of the Ca^{2+} store, Ca^{2+} replenishment would be ensured by stimulating Ca^{2+} uptake and inhibiting Ca^{2+} release (RyR inactivation). Such a system would optimise the activity of the intracellular store and enable regenerative Ca^{2+} response by promoting Ca^{2+} release when the luminal $[\text{Ca}^{2+}]$ is high and stores refilling after store depletion (Friel & Tsien, 1992 and Hernandez-Cruz et al., 1995 and Garaschuk et al., 1997).

Several observations suggested that the released Ca^{2+} would only partially be re-sequester into Ca^{2+} store. Firstly, although the recovery from caffeine-induced Ca^{2+} transients was rapid ($\approx 2-3$ s) a minimum delay (≈ 60 seconds in SCG neurones) was necessary to induce two consecutive equivalent caffeine responses (see figure 29-A and see also Friel & Tsien, 1992; Hernandez-Cruz, 1995 and Usachev & Thayer, 1999b). In addition, the refilling of the Ca^{2+} store was shown to be accelerated by an intercalated depolarisation-induced Ca^{2+} transient (Sorimachi, 1993; Hernandez-Cruz, 1995 and Garaschuk et al., 1997). Secondly, in the absence of extracellular Ca^{2+}, caffeine-induced responses would progressively run down and completely disappear after long exposure
to a Ca\(^{2+}\)-free perfusion solution (Sorimachi, 1993; Garaschuk \textit{et al}., 1997 and Usachev & Thayer, 1999b). Therefore, although Ca\(^{2+}\) appears to cycle in and out of the ER, ryanodine-sensitive Ca\(^{2+}\) store would depend on extracellular Ca\(^{2+}\) to maintain their 'resting' [Ca\(^{2+}\)]\(_i\). In fact, in CA1 pyramidal neurones and sensory neurones the refilling of the ryanodine-sensitive Ca\(^{2+}\) store is prevented in the presence of Ca\(^{2+}\) channels antagonists (D600 and nickel - Garaschuk \textit{et al}., 1997 and Usachev & Thayer, 1999b) or in a Ca\(^{2+}\)-free extracellular medium suggesting the involvement of a plasma membrane Ca\(^{2+}\) influx (Garaschuk \textit{et al}., 1997 and Usachev & Thayer, 1999b). Similar results were observed in rat sympathetic neurones where following depletion of the intracellular stores the rise in resting [Ca\(^{2+}\)]\(_i\) was abolished in a Ca\(^{2+}\)-free extracellular solution or in the presence of La\(^{3+}\), an inhibitor of the capacitative channels (this study see figure 30-B). Therefore there must be at rest a Ca\(^{2+}\) influx through the plasma membrane to enable the spontaneous refilling of Ca\(^{2+}\) store. This mechanism would be analogous to the capacitative or store-operated Ca\(^{2+}\) influx activated by IP\(_3\)-sensitive Ca\(^{2+}\) store (Tsien & Tsien, 1990; Berridge, 1995; Boulay \textit{et al}., 1999 and Kiselyov \textit{et al}., 1999, 2000). This result also suggest that intracellular stores might play a role in the regulation of resting [Ca\(^{2+}\)]\(_i\) (see Results section 7.2).

The necessity of a Ca\(^{2+}\) influx to maintain the [Ca\(^{2+}\)]\(_i\) is further supported by the observation that Ca\(^{2+}\) store appeared to be 'leaky'. Firstly, in a Ca\(^{2+}\)-free extracellular solution the caffeine response ran down (see above) and secondly the inhibition of SERCA induced a slow dissipation of Ca\(^{2+}\) that was visualised as a transient rise in [Ca\(^{2+}\)]\(_i\) (see figures 29-D and 30-A). The exact nature of this leak mechanism is still unclear. However Ca\(^{2+}\) leak might be mediated through RyR open at a low probability or channel flickering (Hernandez-Cruz \textit{et al}., 1995 and Armisen \textit{et al}., 1996). Since cyclic ADP ribose (cADPr) was proposed to correspond to the endogenous RyR ligand and was shown to stimulate Ca\(^{2+}\) release through RyR (Galione, 1993, 1994; Empson & Galione, 1997), an alternative mechanism to explain the Ca\(^{2+}\) leak from the intracellular stores could be a basal production of cADPr that would maintain RyR in low open probability state.

The ryanodine-sensitive Ca\(^{2+}\) signal is known to be the basis of the process of Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR - see Kuba, 1994 and Usachev & Thayer, 1999a for review). Surprisingly, although SCG neurones present strong caffeine- and ryanodine-
sensitive Ca2+ transient and have been shown to possess high level of ryanodine binding sites (Hernandez-Cruz et al., 1995), there was no evidence for a CICR process (this studies and see also Hernandez-Cruz, 1995). This results is paradoxical and contrasts with the situation observed in bullfrog sympathetic neurones (Hua et al., 1993; Narita et al., 1998; Hongpaisan et al., 2001 and Albrecht et al., 2001), in rat sensory neurones (Usachev et al., 1993, 1997 and Shmigol et al., 1995) or rat cerebellar Purkinje neurones (Kano et al., 1995; Llano et al., 1994 and Womack et al., 2000). All these cell types present robust caffeine-induced Ca2+ responses and Ca2+ influx through the plasma membrane elicits an amplification of the Ca2+ signal that is sensitive to both ryanodine and SERCA inhibitors. In SCG neurones, there was a linear correlation between transmembrane Ca2+ influx and rise in [Ca2+], (see Results section 2 and figure 19), the rising phase of depolarisation-induced Ca2+ transient was monophasic and application of ryanodine or SERCA inhibitors did not modify the amplitude of the Ca2+ transient. However, the inhibition of the Ca2+ uptake with thapsigargin significantly prolonged the recovery of submicromolar rises in [Ca2+], suggesting that SERCA activation might accelerate the recovery from large changes in [Ca2+]. Interestingly, the stimulation of Ca2+ release from the intracellular stores during a depolarisation-induced Ca2+ transient, even following small rises in [Ca2+], significantly accelerated the recovery phase. Moreover, in this condition the recovery was similar to that of a caffeine-induced Ca2+ transient suggesting that after stimulation of Ca2+ release from the ER, Ca2+ would preferentially be transported back into the Ca2+ store. Thus, SCG neurones possess all the systems required for the induction of the CICR process and their intracellular stores appear to exhibit the ability to regulate rises in [Ca2+], induced by Ca2+ influx through the plasma membrane providing the proper pathway is activated. The absence of amplification of the Ca2+ response cannot be explained by Ca2+ store in an empty state, as there was clearly a releasable Ca2+ pool even at rest. The amplitude of the Ca2+ influx and of the rise in [Ca2+], can neither be responsible for the lack of CICR because in other cell types similar rises in [Ca2+], are sufficient to trigger this process (Hua et al., 1993; Usachev et al., 1993; Llano et al., 1994; Shmigol et al., 1995; Kano et al., 1995; Usachev & Thayer, 1997; Narita et al., 1998, 2000; Womack et al., 2000; Hongpaisan et al., 2001 and Albrecht et al., 2001). On the other hand, because SCG neurones exhibit high endogenous Ca2+ buffering capacity, one could suggest that larger
increase in \([\text{Ca}^{2+}]_i\) would be necessary to overcome the \(\text{Ca}^{2+}\) buffering system and to be still large enough to trigger CICR. The net \(\text{Ca}^{2+}\) flux in the ER would depend on the respective contribution of \(\text{Ca}^{2+}\) uptake via SERCA and \(\text{Ca}^{2+}\) release through RyR.

The rise in \([\text{Ca}^{2+}]_i\) might not be large enough nor fast enough to trigger \(\text{Ca}^{2+}\) release and would instead stimulate \(\text{Ca}^{2+}\) uptake since SERCA activity is upregulated by a rise in \([\text{Ca}^{2+}]_i\) (Albrecht et al., 2001). Another possible answer to this paradoxical result may be the experimental conditions since it has been reported that neurones in culture behave differently than in vivo or even in slice (see Womack et al., 2000). One could therefore suggest that under culture conditions the absence of tonic activation through synaptic inputs might induce the down regulation in the expression of activatory pathways necessary for a functional CICR. However there are several studies in dissociated neurones that successfully demonstrated CICR (Hua et al., 1993; Usachev et al., 1993; Usachev & Thayer, 1997 and Narita et al., 1998). Another explanation might lie in the recording’s conditions with the CICR process being lost by the measurement of somatic averaged \(\text{Ca}^{2+}\) transients. However, if such a phenomenon occurred one could expect the application of selective inhibitors to unmask it. Finally, since neurones were loaded with indo-1-AM, the indo-1 trapped in the ER might increase the \(\text{Ca}^{2+}\) buffering capacity of \(\text{Ca}^{2+}\) store and perturb the \(\text{Ca}^{2+}\) release process. This issue could be further addressed by carrying out new experiments with either membrane localised or low affinity \(\text{Ca}^{2+}\) indicators and by comparing the \(\text{Ca}^{2+}\) response in dissociated neurones with those in slices. Finally, at low concentrations caffeine does not induce \(\text{Ca}^{2+}\) release through RyR but sensitises the receptor to lower \([\text{Ca}^{2+}]_i\) and the involvement of CICR could therefore be tested using this protocol.

In conclusion, SCG neurones express high level of ryanodine receptor (Hernandez-Cruz et al., 1995) and of SERCA (this study), which is the basis for the robust ryanodine-sensitive \(\text{Ca}^{2+}\) release system associated to an efficient \(\text{Ca}^{2+}\) sequestration system. In bullfrog sympathetic neurones, the involvement of \(\text{Ca}^{2+}\) store was demonstrated to play an important role in the regulation of the cellular excitability through the modulation of \(\text{Ca}^{2+}\)-dependent potassium conductance (Akita & Kuba, 2000 and Lu & Kuba, 2001). Rat sympathetic neurones also exhibit such \(\text{Ca}^{2+}\)-dependent potassium conductance (Smart, 1987 and Selyanko, 1996) and there is evidence for a
modulation of Ca$^{2+}$-dependent potassium channel by ryanodine-sensitive Ca$^{2+}$ store (Davies et al, 1996). Furthermore, these Ca$^{2+}$ store might be involved in the generation of Ca$^{2+}$ waves necessary to relay throughout the cytosol signals from the cell environment. The fact that SERCA are distributed close to the plasma membrane and throughout neurites would support the idea of both a modulation of ionic channels of the plasma membrane and a relay of Ca$^{2+}$ signal.
5. Plasma membrane calcium ATPase and intracellular calcium

In this section, the role of PMCA in the control of resting $[\text{Ca}^{2+}]_i$ and the extrusion of small (< 500 nM) but also larger (≈ 1 μM) rises in $[\text{Ca}^{2+}]_i$ following depolarisation was determined using extracellular alkalisation (pH 9) and intracellular addition of 5,6-succinylmidyl carboxy eosin (CE) to inhibit the Ca^{2+} pump. Secondly, the variations in the intracellular pH following rises in $[\text{Ca}^{2+}]_i$ and the subsequent Ca^{2+} clearance was measured using BCECF a fluorescent pH indicator. Finally, to determine which PMCA isoforms are expressed in SCG neurones, PCR analysis along with experiments in immunocytochemistry were carried out.

5.1. Calcium extrusion through PMCA

Neurones were voltage-clamped in the perforated patch configuration and rises in $[\text{Ca}^{2+}]_i$ were induce by depolarising step from -60 mV to 0 mV for 60 ms and 500 ms before, during and after extracellular alkalisation (pH 9). Following extracellular alkalisation, resting $[\text{Ca}^{2+}]_i$ increased from 102 ± 5 nM in control to 254 ± 27 nM at pH 9 ($n=9$, $P< 0.001$ figure 35-A, see also Results section 7.1) whereas the Ca^{2+} transients $\Delta[\text{Ca}^{2+}]_i$ remained unaffected (Table 13).

Upon extracellular alkalisation, the time course of the small Ca^{2+} transients’ recovery was strongly affected and the decay time constant was nearly 3-times slower than in control (Table 13, figure 35-A and inset in figure 35-C). To enable a better comparison of the recovery phase and because of the difference in the basal $[\text{Ca}^{2+}]_i$, only the net rise in $[\text{Ca}^{2+}]_i$ ($\Delta[\text{Ca}^{2+}]_i$) is illustrated in figure 35-B (see dashed line in figure 35-A). As soon as the extracellular pH was brought back to 7.4, resting $[\text{Ca}^{2+}]_i$ returned to its control value and the recovery of Ca^{2+} transients induced after wash out was identical to the one prior to pH 9 application (in figure 35-A compare left and right panels). The determination of the clearance rate showed that up to ≈ 250 nM all the Ca^{2+} clearance was mediated through a pH-sensitive process and above this $[\text{Ca}^{2+}]_i$, the clearance rate was slow (0.06 s$^{-1}$ at pH 9 compare to 0.17 s$^{-1}$ in CTR, figure 35-C).
Figure 35: Effects of extracellular alkalisation on resting $[\text{Ca}^{2+}]$, and on the clearance of small depolarisation-induced Ca^{2+} transients

(A) Small Ca^{2+} transients induced by depolarising steps for 60 ms before, during and after extracellular alkalisation (pH 9) to inhibit the PMCA. (B) Superimposed traces from (A) on a slower time scale and represented as $\Delta[\text{Ca}^{2+}]$, to compare the recovery phase. (C) Plot of the clearance rate in control and at pH 9 for small Ca^{2+} transients with the pH-dependent component (dashed line, data from 9 cells). The inset represents the decay time constant of the Ca^{2+} transient’s recovery in control and at pH 9 (black bar, CTR and green bar, pH 9; n=9, data as mean ± S.E.M. *** P< 0.001).
The recovery from larger rise in \([Ca^{2+}]_r (> 500\text{nM})\) was also markedly affected at pH 9 (figure 36-A) and both decay time constants were \(\approx 2\)-times slower than in control (figures 36 and Table 13). This prolongation of the recovery phase at pH 9 is even more evident in figure 36-B where \(\Delta[Ca^{2+}]_r\) in control and at pH 9 are superimposed, because of the difference in the basal \([Ca^{2+}]_r\) (see dashed line in figure 36-A). In agreement with the results obtained for small \(Ca^{2+}\) transients (see above figure 35), extracellular alkalisation induced a rise in resting \([Ca^{2+}]_r\) to \(\approx 250\text{nM}\). However at pH 9 and at the end of the recovery of large \(Ca^{2+}\) transients the \([Ca^{2+}]_r\) only returned to 366 ± 35 nM (figure 36-A; n=7 and compare with figure 35-A). The plot of the clearance rate shows that, in agreement with the situation observed for smaller \(Ca^{2+}\) transients, the \(Ca^{2+}\) clearance is mostly pH-sensitive up to a \([Ca^{2+}]_r\) of 250–300 nM (pH-sensitive component in figure 36-C). Over this concentration, the contribution of the pH-sensitive component is seen to reach saturation with a maximal rate of 0.1 \(\mu\text{M} \text{s}^{-1}\) at 1 \(\mu\text{M}\) (figure 36-C).

Table 13: Effect of extracellular alkalisation on the properties of \(Ca^{2+}\) transients

<table>
<thead>
<tr>
<th>([Ca^{2+}]_r < 500\text{nM})</th>
<th></th>
<th></th>
<th></th>
<th>(n)</th>
<th>(t)-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta[Ca^{2+}]_r)</td>
<td>176 ± 10 nM</td>
<td>188 ± 21 nM</td>
<td>paired, (P=0.29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau)</td>
<td>4.2 ± 0.7 s</td>
<td>11 ± 3 s</td>
<td>paired, (P<0.001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>([Ca^{2+}]_r > 500\text{nM})</th>
<th></th>
<th></th>
<th></th>
<th>(n)</th>
<th>(t)-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta[Ca^{2+}]_r)</td>
<td>1079 ± 166 nM</td>
<td>1034 ± 160 nM</td>
<td>paired, (P=0.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_1)</td>
<td>785 ± 144 nM</td>
<td>758 ± 164 nM</td>
<td>paired, (P=0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_1)</td>
<td>3.3 ± 0.6 s</td>
<td>5.1 ± 0.7 s</td>
<td>paired, (P<0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>286 ± 43 nM</td>
<td>254 ± 17 nM</td>
<td>paired, (P=0.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>17.7 ± 2 s</td>
<td>30.7 ± 2 s</td>
<td>paired, (P<0.001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 36: Effects of extracellular alkalisation on the clearance of large depolarisation-induced \(Ca^{2+}\) transients

(A) Large \(Ca^{2+}\) transients induced by depolarising steps for 500 ms before, during and after extracellular alkalisation (pH 9) to inhibit the PMCA. (B) Superimposed traces from (A) on a slower time scale and represented as \(\Delta[Ca^{2+}]_r\) to compare the recovery phase. (C) Plot of the clearance rate in control and at pH 9 for large \(Ca^{2+}\) transients with the pH-dependent component (dashed line, data from 7 cells). Decay time constants for the fast (D) and slow (E) component of the \(Ca^{2+}\) transient’s recovery in control and at pH 9 (black bar, CTR and green bar, pH 9; \(n=7\), data as mean ± S.E.M. ** \(P<0.01\) and *** \(P<0.001\)).
Figure 36 (see previous page for legend)
5.2. **PMCA inhibition with carboxyeosin**

Neurones were voltage-clamped in the whole-cell configuration (see inset in *figure 37-A* and Methods section 2.2.2, *figure 1* and Methods section 2.4.3, *Table 2 - solution J*) and Ca$^{2+}$ transients were induced by depolarising steps from -60 mV to 0 mV for 60 and 500 ms. To allow for complete dialysis of both the intracellular solution and indo-1 (100 µM added to the intracellular solution), the recordings were started 10 minutes after achieving the whole-cell configuration and Ca$^{2+}$ transients were subsequently induced every ≈ 2 minutes. In the perforated patch configuration, recordings of the [Ca$^{2+}$], were stable for over 60 minutes whereas, in the whole-cell mode, resting [Ca$^{2+}$], increased from ≈ 100 nM to ≥ 200 nM and the recovery phase of Ca$^{2+}$ transients was markedly prolonged 20-25 minutes after rupture of the membrane patch (*figure 37-A*). However, since within the first 15 minutes, recordings acquired in the whole-cell mode were similar to those in the perforated patch configuration, only Ca$^{2+}$ transients obtained within this ‘time window’ were considered for analysis (compare Tables 13 and 14 in control). In the whole-cell mode, 5,6-succinylmidyl carboxyeosin (CE), a potent non-membrane-permeant inhibitor of PMCA was added to the intracellular solution (Methods section 2.4.3, *Table 2 - solution J* together with 100 µM indo-1 and 50 µM CE). It is important to note that the addition of CE to the intracellular solution did not affect the spectral properties of indo-1. The effects of intracellular CE on resting [Ca$^{2+}$], and on the properties of Ca$^{2+}$ transients, were determined from the comparison of recordings obtained in control cells and in cells containing 50 µM CE after the same time of dialysis (15 minutes, open arrow in *figures 37-A and -B*).

Although in the whole-cell mode, [Ca$^{2+}$], increases with time, the addition of 50 µM CE induced a larger rise in resting [Ca$^{2+}$], than in control (291 ± 24 nM in CE; n=4 and 115 ± 2 nM in CTR; n=26, P< 0.001 independent *t*-test). While no difference in Δ[Ca$^{2+}$], of Ca$^{2+}$ transients was observed (*Table 14*), the presence of CE markedly affected the recovery phase of Ca$^{2+}$ transients (*figures 37-A and -B* and 38).

In the presence of CE, the decay time constant of small Ca$^{2+}$ transients was slowed by 30% whilst both decay time constants of larger Ca$^{2+}$ transients were
Figure 37: Effects of intracellular carboxy eosin on resting \([\text{Ca}^{2+}]_r\) and on the clearance of large depolarisation-induced \(\text{Ca}^{2+}\) transients

\(\text{Ca}^{2+}\) transients induced by depolarising steps for 500 ms in neurones voltage-clamped in the whole-cell configuration (see inset) with 100 μM indo-1 in a control cell (A) and in a cell where 50 μM carboxy eosin was added to the intracellular solution (B) to inhibit the PMCA. Recordings were started 10 minutes after rupture of the membrane patch (violet arrow, left) and \(\text{Ca}^{2+}\) transients were elicited every 2 minutes. Only \(\text{Ca}^{2+}\) transients obtained within the first 15 minutes were analysed (open arrow, centre and see text for details).
prolonged by 50% compared with control cells (figures 38-A and -C, respectively and see Table 14). The plot of the clearance rate against [Ca{}^{2+}], confirmed the slowing of the Ca{}^{2+} transients’ recovery (figures 38-B and 38-D). Thus up to ≈ 200 nM, most of the Ca{}^{2+} clearance was mediated through a CE-sensitive mechanism and, above ≈ 200 nM, the rate of recovery was strongly reduced in the presence of CE (0.04 s{}^{-1} in CE and 0.16 s{}^{-1} in CTR, figure 38-B). For larger [Ca{}^{2+}], (> 500 nM), the CE-sensitive component appeared to saturate at 0.5-1 μM as the rate of clearance remained constant and ≈ 0.15 μM s{}^{-1} (figure 38-D). The results obtained with intracellular CE are in agreement with those observed with extracellular alkalisation (see Results section 5.1) and show that at low [Ca{}^{2+}], most of the Ca{}^{2+} extrusion is mediated through PMCA. However CE appeared to have a stronger inhibitory effect (figures 38-B and -D and compare with figure 37).

5.3. Intracellular acidification following PMCA activation

After loading with BCECF, a fluorescent pH indicator (see Methods section 4.2.4), neurones were superfused with the standard extracellular solution (see Methods section 2.4.1, Table 1 - solution A). To activate the VACC and induce rises in [Ca{}^{3+}], an extracellular solution of 50 mM KCl was bath applied for 15 seconds (see Methods section 2.4.1 - solution G). Under these conditions, the plasma membrane would be depolarised from a resting potential of ≈ -60 mV to ≈ -20 mV and induce a rise in [Ca{}^{2+}], ≥500 nM.
Figure 38: Intracellular carboxyeosin prolongs the Ca^{2+} transients' recovery

Decay time constant of the recovery for small (A) and large (C) rises in [Ca^{2+}], in control (black bar; n=12 in A and n=14 in C) and with 50 μM intracellular CE (orange bar; n=8 in A and n=12 in C) (data represent mean ± S.E.M., * P<0.05 *** P<0.001, independent t-test). Plot of the clearance rate in control (black line) and with intracellular CE (orange line) for small (B) and large (D) Ca^{2+} transients and determination of the CE-sensitive component (dashed line). The pH-sensitive component (green line) of the recovery is also represented for comparison.
At rest the intracellular pH (pH_i) measured with BCECF was at 7.29 ± 0.03 and a cytoplasmic acidification to pH 7.14 ± 0.02 was observed following depolarisation with 50 mM KCl (figures 39-A and -B; n=24, P< 0.001). Upon removal of the extracellular Ca^{2+} (figure 39-C), the pH_i decreased from 7.28 ± 0.06 in control to 7.11 ± 0.08 (n=7, P< 0.01 - figure 39-D). However, in a Ca^{2+}-free extracellular solution (Methods section 2.1, Table 1 - solution E), no further changes were observed following a KCl-induced depolarisation (pH_i = 7.10 ± 0.08; n=7, P=0.75 - figures 39-C and -D). These results suggest that the cytoplasmic acidification observed after membrane depolarisation was Ca^{2+}-dependent. To determine if the Ca^{2+}-dependent acidification of the cytoplasm was due to Ca^{2+} extrusion, PMCA was inhibited by extracellular alkalisation (see Results section 5.1). Although extracellular alkalisation induced an increase in pH_i from 7.27 ± 0.03 in control to 7.38 ± 0.04 at pH 9 (n=6, P< 0.001 - figure 39-F) following KCl application at pH 9 no cytoplasmic acidification was observed (pH_i = 7.32 ± 0.04 at pH 9 + KCl; n=6, P=0.1 - figure 39-E). Therefore these results suggest that the Ca^{2+} extrusion through PMCA induced a cytoplasmic acidification that could be explained by a counter-transport of protons.

5.4. PMCA expression in SCG neurones

5.4.1. In SCG mRNA transcripts for all PMCA isoforms are found

To determine which PMCA isoforms are expressed in SCG neurones, a PCR analysis was carried out. A common forward (s for sense) and four isoform-specific reverse (a for antisense) primers were designed using rat gene sequences for PMCA obtained from ‘GenBank’: pmca1/3342s and pmca1/3878a, pmca2/3563s and pmca2/4076a, pmca3/3721s and pmca3/4178a, pmca4/3208s and pmca4/3844a. The selectivity of the primers was assessed using sequences alignment against the gene databank (see Methods section 8.3 and Table 7 for more details). The PCR reaction was carried out against cDNA (10 µg) extracted from whole SCG tissue and cerebellar cortex (CB). The sequence coding for the ubiquitously expressed hypoxanthine-guanine phosphoribosyltransferase (hprt) was successfully amplified in all cDNA templates (data not shown) suggesting that the cDNA templates were intact and the amplification
Figure 39: Intracellular acidification following Ca\(^{2+}\) extrusion through the PMCA

Neurones were loaded with BCECF, a fluorescent pH indicator to measure variations in intracellular pH (pH\(_i\)). Plasma membrane depolarisation was induced by 15 seconds application of high potassium extracellular solution (KCl, blue bar) in a standard extracellular solution (A and B), in the absence of extracellular Ca\(^{2+}\) (C and D) and after extracellular alkalisation (E and F). In B, D and F, intracellular pH\(_i\) values expressed as mean ± S.E.M. with ** P< 0.01, *** P< 0.001.
reaction successful. In contrast, no signal was present in the absence of templates (-ve, lanes 3, 6, 9 and 12 in figure 40-A) or with mock templates', in which the reverse transcriptase was omitted during the reverse transcription (data not shown).

For all four PMCA isoforms, a PCR product of the expected size was observed in SCG tissue and for cerebellar cortex, except for PMCA3, which was not found in cerebellar cortex (lane 8 in figure 40-A): 536 base pairs (bp) for pmca1 (lanes 1 and 2), 513 bp for pmca2 (lanes 4 and 5), 457 bp for pmca3 (lane 7) and 636 for pmca4 (lanes 10 and 11) (figure 40-A). However, for each isoform and each tissue, numerous bands were also observed either of larger or smaller size but generally amplified at a lower level (figure 40-A).

5.4.2. All four PMCA isoforms are present in SCG neurones

Immunocytochemical experiments were carried out to confirm PMCA expression at the level of the plasma membrane in SCG neurones. After fixation, neurones were incubated with an isoform non-specific mouse monoclonal antibody raised against PMCA (5F10, 1/50; gift from Dr. Filoteo - see Methods section 7.1 and Table 5), which was subsequently immunolabelled with a swine anti-mouse IgG conjugate to TRITC (1/50 - see Methods section 7.1 and Table 6). The selectivity of the labelling was assessed by the absence of significant difference in the labelling compared with the background when the secondary antibody was used alone. The results of the immunolabelling were examined on a confocal microscope and suggested a distribution at the level of the somatic and neuritic plasma membrane (0.5 μm optical slice, figure 40-B2). To determine which isoform is expressed, specific antibodies were used (PMCA-1 to -4 rabbit polyclonal antibodies 1/50 labelled with swine anti-rabbit IgG conjugated to FITC, 1/50 - see Methods Tables 5 and 6). The results of the immunolabelling were examined on a fluorescent microscope, images acquired with a CCD camera and analysed using the deconvolution methods with the Nearest 5 neighbours algorithm (see Methods section 7.2, figure 8). For the four staining runs, images were acquired and analysed using the same parameters to enable a comparison of the results. Images taken at a particular plane of focus are illustrated in figure 41 for each of the four antibodies with the corresponding deconvolved images (PMCA-1, -2,
Figure 40: Superior cervical ganglia express mRNA for all PMCA isoforms and the PMCA protein is present in the plasma membrane

(A) PCR analysis of the PMCA expression in SCG and cerebellar cortex (CB). For the determination of PMCA expression, selective set of primers were used as follow: lanes 1 to 3, PCR amplification of pmca1 (pmca1/3342s and pmca1/3878a); lanes 4 to 6, of pmca2 (pmca2/3563s and pmca2/4076a); lanes 7 to 9, of pmca3 (pmca3/3721s and pmca3/4178a); lane 10 to 11, of pmca4 (pmca4/3208s and pmca4/3844a). For each PCR reaction a negative control was used (-ve, lanes 3, 6, 9 and 12). (B) PMCA immunolabelling with an isoform non-specific mouse monoclonal antibody (5F10, 1/50) counter-stained with swine anti-mouse polyclonal antibodies conjugated to TRITC (1/50). Images were acquired using a confocal microscope for B₁ (bright field) and for B₂ (TRITC) (optical slice of 0.5 μm, scale bar 10 μm, x63 oil immersion fluorescent objective).
Figure 41: Neurones in SCG express all four PMCA isoforms at the level of the plasma membrane
PMCA immunolabelling with isoform specific rabbit polyclonal antibodies (PMCA-1, -2, -3 and -4, 1/50 in figures A, B, C and D, respectively) counter-stained with swine anti-rabbit polyclonal antibodies conjugated to FITC (1/50). Images were acquired using a CCD camera attached to a fluorescent microscope and analysed with the digital deconvolution technique using the Nearest neighbours algorithm to generate the images in panels A2, B2, C2 and D2 for PMCA-1, -2, -3 and -4 respectively (scale bar 10 μm, x40 oil immersion fluorescent objective).
-3 and -4 in figures 41-A, -B, -C and -D, respectively). A staining was observed for all four isoforms, in agreement with the PCR analysis and suggested that SCG neurones express all four PMCA isoforms (see Results section 5.4.1). However, it appears that the level of staining is higher for PMCA-3 and PMCA-4. Finally, all PMCA isoforms appeared localised on the somatic plasma membrane whereas PMCA-3 and PMCA-4 were also expressed in neurites.

The results presented in this section suggest that PMCA is the major regulatory system for resting \([\text{Ca}^{2+}]_i\) (see also Results section 7) and for the extrusion of small increases in \([\text{Ca}^{2+}]_i\). However they also show that PMCA is active up to 500 nM and able to extrude larger rise in \([\text{Ca}^{2+}]_i\), while above this concentration the \(\text{Ca}^{2+}\)-ATPase appears to be saturated. Finally, the measurements of the intracellular pH suggest that following \(\text{Ca}^{2+}\) extrusion through PMCA an acidification of the cytoplasm occurs, presumably underlying a proton counter-transport during PMCA activity. The PCR and immunocytochemical analyses suggested further that SCG neurones express all PMCA isoforms, whose distribution appears to be isoform-specific.

5.5. Discussion

The determination of PMCA expression using PCR analysis showed that products for all four isoforms as well as several bands for a particular isoform are present in SCG (see figure 40-A). There are two splicing sites on the sequence of the PMCA isogenes and following alternative splicing more than 30 different transcripts can be generated (see Carafoli, 1994 for review). Therefore, the multiple bands observed for a particular PMCA isoform suggest that different splice variants are expressed, or at least that their transcripts are present, in SCG tissue. It is also necessary to point out that the PCR analyses were carried out on the whole ganglion and therefore some PCR products observed could have amplified mRNA sequences from glial origin. Although several types of transcript appear to be expressed for each PMCA isoform, the exact nature of the different splice variants was not further investigated as the main concern was to determine which of the four principal PMCA isoforms are expressed in these tissues.
The results obtained from the immunocytochemical study are in agreement with the PCR analysis and indicate further that the distribution of the Ca2+-ATPases appears isoform-specific (see figure 41). Thus, while isoforms 1 and 2 are mainly somatic, isoforms 3 and 4 are present throughout the cell (see figure 41). Interestingly, no labelling was observed in regions of contact between neurones suggesting the presence of regulatory factors for protein expression and insertion into the plasma membrane in order to optimise its function (see figures 40-B and 41-A). One might wonder why a cell population would express four isoforms of the same protein involved in Ca2+ extrusion. However, although the different PMCA isoforms have the same function, it has been shown that the Ca2+ affinity, the rate of Ca2+ transport and the regulatory pathways are isoform-specific (see Carafoli, 1994 for review). Moreover, the fact that the four proteins are expressed in the SCG neuronal population does not imply that one particular neurone would express all four isoforms but would suggest that some neurones could express different set of proteins. From studies on the PMCA tissue distribution, it appears that PMCA-1 and -4 are the ubiquitous isoforms since they are found in all tissues while PMCA-2 and -3 are more tissue-specific (see Brandt & Neve, 1992; Stauffer et al., 1995; Carafoli, 1994 for review). Therefore, it could be suggested that SCG neurones would express PMCA-1 and/or -4 along with either PMCA-2 and/or -3. However, this is just speculative since no evidence for such a distribution is available in SCG neurones. Further experiments would be necessary to address this issue and the single cell PCR technique would be of great use for such a study. This analysis would also allow the determination of developmental and/or activity-dependent upregulation of a particular PMCA isoform.

The extracellular alkalisation induced both an increase of resting [Ca2+], and the prolongation of the recovery from small rise in [Ca2+]; (< 500 nM). Similar results have been obtained in giant squid axon (DiPolo & Beaugé, 1982), in dorsal root ganglion neurones (Benham et al., 1992), rat cerebellar granules cells (Khodorov et al., 1995) and in CA1 pyramidal neurones (Trapp et al., 1996). These pH-sensitive effects on [Ca2+], almost certainly resulted from the impairment of the [Ca2+], regulation after PMCA inhibition. Firstly, since PMCA activity has been shown to depend on the counter-transport of protons, one would expect to inhibit the Ca2+-ATPase by reducing the availability of extracellular protons (DiPolo & Beaugé, 1982; Carafoli et al., 1988;
In turns, during Ca2+ extrusion a Ca2+-dependent and pH-sensitive cytosolic acidification was observed following plasma membrane depolarisation (Schwiening et al., 1993; Khodorov et al., 1995; Park et al., 1996; Trapp et al., 1996 and Xu et al., 2000). Thus, in SCG neurones, there was a decrease in the intracellular pH by \(\approx 0.15 \) unit, a value that is consistent with those reported in other cell types either using fluorescent pH indicator (Daugirdas et al., 1995 - vascular smooth muscle; Trapp et al., 1996 - CA1 pyramidal neurones) or proton-sensitive microelectrodes (Schwiening et al., 1996 - snail neurones). Furthermore, extracellular alkalisation produced similar effects to those observed using either inhibitor of ATPase activity (vanadate, Benham et al., 1992; Bassani et al., 1995; Trapp et al., 1996 or lanthanum Usachev et al., 1993 and Park et al., 1996) or eosin and carboxyeosin, the most potent inhibitors of the PMCA (this study see figures 37 and 38 and see also Gatto & Milanick, 1993, 1996; Bassani et al., 1995; Park et al., 1996 and Yamoah et al., 1998). However, the prolongation of the recovery and the slowing of the clearance rate from depolarisation-induced Ca2+ transients appeared to be more pronounced in the presence of carboxyeosin (this study, see figures 38-B and -D) or vanadate (compare figure 4 and 5 in Benham et al. 1992) than following extracellular alkalisation. The main reason for such a result might be the fact that vanadate inhibits all ATP-dependent Ca2+ transport systems and that carboxyeosin have been shown to affect both PMCA and SERCA activity (Bassani et al., 1995) suggesting that both these compounds would not only affect the PMCA activity. Finally, Xu and colleagues (2000) suggested that half-maximal inhibition of the Ca2+ pump would be observed at \([H^+]\approx 2\) nM \(i.e.\) a pH \(\approx 8.7\) suggesting that PMCA would not be completely inhibited at pH 9. The activity of PMCA is strongly dependent on CaM therefore the rise in resting [Ca2+], and the prolongation of the recovery of Ca2+ transient observed in the presence of calmidazolium, a CaM inhibitor, support further the involvement of PMCA in the regulation of [Ca2+]; (Benham, 1992 and Marsh & Wanaverbecq unpublished observations).

In agreement with previous studies, PMCA appears to be the major system controlling [Ca2+], close to rest (DiPolo & Beaugé, 1982; Baker & DiPolo, 1984; Carafoli et al., 1988; Benham et al., 1992; Schwiening et al., 1993; Usachev et al., 1993; Khodorov et al., 1995; Park et al., 1996; Trapp et al., 1996; Yamoah et al., 1998
and Xu et al., 2000). In fact, in almost all cell types, PMCA inhibition markedly affects [Ca^{2+}]_{i} by either inducing a rise in [Ca^{2+}]_{i} at rest (this study and see Benham, 1992 and Yamoah et al., 1998) or a sustained elevation in [Ca^{2+}]_{i} following the initial recovery phase from a micromolar rise in [Ca^{2+}]_{i} (Usachev et al., 1993). One of the noteworthy exceptions came from the study of Llano and colleagues (1998) in cerebellar Purkinje neurones where these authors did not observe any variation in resting [Ca^{2+}]_{i} and only a minor prolongation of the recovery from small rises in [Ca^{2+}]_{i} (< 500 nM). They therefore suggested that [Ca^{2+}]_{i} is regulated by three mechanisms (PMCA, SERCA and NCX) that equally contribute to the Ca^{2+} clearance at low [Ca^{2+}]_{i}. However, these authors were working with cerebellar slices and used the ester form of carboxyeosin to inhibit PMCA. One might therefore suggest that under their experimental conditions the intracellular concentration of carboxyeosin was not sufficient (short loading period, low hydrolysis of the ester form) to greatly inhibit the Ca^{2+} extrusion through PMCA.

The results presented in this section indicated further that PMCA appears to be the major system for the control of resting [Ca^{2+}]_{i}, since the inhibition of any other regulatory systems was without effect on resting [Ca^{2+}]_{i} with the exception of the intracellular stores (see Result sections 4 and 7 for more details on this aspect). The PMCA inhibition induced a rise in [Ca^{2+}]_{i} which was dependent on the extracellular [Ca^{2+}] and appeared to be due to a Ca^{2+} influx through the plasma membrane (see Results section 7). Following, PMCA inhibition by extracellular alkalisation, [Ca^{2+}]_{i} increased ≈ 250-300 nM than reached a plateau suggesting the involvement of another regulatory system that would counter-balance the Ca^{2+} influx (see Results section 6). The determination of the clearance rate of the pH-sensitive component indicated that PMCA activity increased up to [Ca^{2+}]_{i} = 500 nM and was saturated at higher [Ca^{2+}]_{i} (see figures 35-C, 36-C, 38-B and D). Following PMCA inhibition, both decay time constants are prolonged suggesting that PMCA was involved in both components of the recovery phase. However, because of the Ca^{2+} affinity of PMCA one would suggest that at high [Ca^{2+}]_{i}, PMCA would have a less important role in Ca^{2+} extrusion as can be observed from the clearance rate (see Results section 4 and 6). In contrast, at lower [Ca^{2+}]_{i}, PMCA appears to play a major role in the regulation of the slow phase of biexponential recoveries and a predominant role in the monoexponential recoveries. One could therefore propose that the acceleration observed with the increase in [Ca^{2+}]_{i}
for the recovery time constant of the monoexponential component could reflect a \(\text{Ca}^{2+} \)-dependent increase in PMCA activity until it reaches its maximum at which point other systems like the plasma membrane NCX, mitochondria or \(\text{Ca}^{2+} \) store might become active or predominant. The PMCA-1 and -4 are thought to correspond to the ubiquitous PMCA isoforms, it is tempting to consider these isoforms as the house-keeping \(\text{Ca}^{2+} \)-ATPase (see Carafoli, 1994) involved in the control of resting \([\text{Ca}^{2+}]_i\). In contrast, PMCA-2 and -3 could be involved in the extrusion of \(\text{Ca}^{2+} \) following depolarisation-induced \(\text{Ca}^{2+} \) transients. One could suggest a site-specific expression of PMCA with the isoforms involved in returning \([\text{Ca}^{2+}]_i\) to rest after the activation of VACC localised close to these channels while PMCA isoforms controlling resting \([\text{Ca}^{2+}]_i\) would be expressed throughout the cell (e.g. see Juhaszova et al., 2000).

In conclusion, PMCA appears to play a major role in \(\text{Ca}^{2+} \) homeostasis and a predominant role in both the regulation of resting \([\text{Ca}^{2+}]_i\) and in the extrusion of small rise in \([\text{Ca}^{2+}]_i\). The activity of PMCA would depend on the isoforms expressed and on the stage of development of a cell type. Thus, following the differentiation of human neuroblastoma cells and in parallel with the development of functional VACC, the expression of PMCA isoforms changes and the control of \([\text{Ca}^{2+}]_i\) becomes more efficient and more rapid (Usachev et al., 2001). Similar results were observed in cerebellar granule cells where during the development a down regulation of the PMCA-4 isoform was accompanied by an upregulation of isoforms -1, -2 and -3 (Guerini et al., 1999). Finally, when PMCAs were overexpressed in chinese hamster ovary (CHO) cells, they significantly accelerated the recovery of agonist-induced \(\text{Ca}^{2+} \) transient but also reduced the filling state of \(\text{Ca}^{2+} \) store presumably due to an accelerated extrusion of \(\text{Ca}^{2+} \) (Brini et al., 2000). Therefore, although PMCA represents an important element of \(\text{Ca}^{2+} \) regulation its activity would be modulated by other factor (see Results section 6 and 7).
6. Sodium/calcium exchanger and intracellular calcium

In this section, the role of NCX in the control of resting $[\text{Ca}^{2+}]_i$ and in the extrusion of Ca^{2+} following neuronal excitation was determined in SCG neurones by removing extracellular Na^+ but also by reversing the direction of the Ca^{2+} transport using high intracellular Na^+ concentration. Finally, the nature of the isoform(s) expressed in SCG neurones was investigated using both PCR analysis and experiments in immunocytochemistry.

6.1. Calcium extrusion through the sodium/calcium exchanger

Small and large Ca^{2+} transients were induced in neurones voltage-clamped in the perforated patch configuration following depolarising steps for 60 ms and 500 ms, respectively. Recordings were carried out in the standard extracellular solution and after substitution of extracellular Na$^+$ with N-methyl D-glucamine to inhibit NCX (NMDG, see Methods section 2.4.2, Table 1 - solution B). Following removal of extracellular Na$^+$, neither changes in resting $[\text{Ca}^{2+}]_i$ (99 ± 2 nM in control versus 97 ± 9 nM in Na$^+$-free; $n=14$, $P=0.48$) nor in $\Delta[\text{Ca}^{2+}]_i$ of Ca^{2+} transients were observed (see Table 15).

Table 15: Effect of extracellular Na$^+$ removal on the properties of Ca^{2+} transients

<table>
<thead>
<tr>
<th>$[\text{Ca}^{2+}]_i$, nM</th>
<th>Control $\Delta[\text{Ca}^{2+}]_i$</th>
<th>$\theta[\text{Na}^+]_{out}$</th>
<th>n</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 500</td>
<td>τ</td>
<td>τ</td>
<td>14</td>
<td>paired, $P=0.9$</td>
</tr>
<tr>
<td>> 500</td>
<td>$\Delta[\text{Ca}^{2+}]_i$</td>
<td>$\theta_{[\text{Na}^+]_{out}}$</td>
<td></td>
<td>paired, $P=0.8$</td>
</tr>
<tr>
<td>τ_1</td>
<td>2.2 ± 0.1 s</td>
<td>4.3 ± 0.3 s</td>
<td>14</td>
<td>paired, $P<0.001$</td>
</tr>
<tr>
<td>$\Delta[\text{Ca}^{2+}]_i$</td>
<td>1228 ± 105 nM</td>
<td>1073 ± 116 nM</td>
<td>paired, $P=0.1$</td>
<td></td>
</tr>
<tr>
<td>A_1</td>
<td>1159 ± 127 nM</td>
<td>1021 ± 90 nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_1</td>
<td>21.0 ± 4 s</td>
<td>26.0 ± 17</td>
<td>paired, $P=0.3$</td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>130 ± 25 nM</td>
<td>148 ± 8 nM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The extracellular Na$^+$ substitution with NMDG did not affect the recovery phase of small Ca^{2+} transient as can be seen from the superimposed traces in figure 42-A and from the plot of the clearance rate (0.17 s$^{-1}$ in CTR and 0.16 s$^{-1}$ in Na$^+$-free, figure 42-B and see inset for the decay time constants).
Figure 42: Sodium-dependent extrusion of large but not small rises in \([\text{Ca}^{2+}]\).

(A) Depolarisation-induced small \([\text{Ca}^{2+}]\) transients in control and after extracellular Na\(^+\) substitution with N-methyl D-glucamine (Na\(^-\)-free). (B) Plot of the clearance rate in control and in Na\(^-\)-free solution for small \([\text{Ca}^{2+}]\) transients with the Na\(^+\)-dependent component (dashed line, data from 14 cells). The inset represents the decay time constant of the \([\text{Ca}^{2+}]\) transient’s recovery in control and in Na\(^-\)-free (black bar, CTR and violet bar, Na\(^-\)-free; n=14, data as mean ± S.E.M.). (C) Large \([\text{Ca}^{2+}]\) transients induced by depolarising steps for 500 ms in control and in Na\(^-\)-free. (D) Plot of the clearance rate in control and in Na\(^-\)-free for large \([\text{Ca}^{2+}]\) transients and determination of the Na\(^+\)-dependent component (dashed line, data from 14 cells). The inset represents the decay time constants of the \([\text{Ca}^{2+}]\) transient’s recovery in control and in Na\(^-\)-free (black bar, CTR and orange bar, Na\(^-\)-free; n=14, data as mean ± S.E.M. *** P<0.001).
Although the time course of the recovery for larger Ca\(^{2+}\) transients was unaffected in the absence of extracellular Na\(^{+}\), the fast decay time constant, but not the slow one, was prolonged compared to control (see Table 15, figure 42-C and inset in figure 42-D). The determination of the clearance rate showed that for [Ca\(^{2+}\)]\(_i\), above 500 nM, the removal of extracellular Na\(^{+}\) slowed the Ca\(^{2+}\) extrusion (rate \(\approx 0.25 \mu\)M s\(^{-1}\) in CTR and \(\approx 0.15 \mu\)M s\(^{-1}\) in Na\(^{-}\)-free - figure 42-D). The contribution of Na\(^{+}\)-sensitive component, obtained from the difference of the clearance rate in control and in Na\(^{-}\)-free, became more predominant with the increase in [Ca\(^{2+}\)]\(_i\). Therefore, these results suggested that the regulation of low [Ca\(^{2+}\)]\(_i\) was mostly Na\(^{+}\)-independent whereas at larger [Ca\(^{2+}\)]\(_i\), a Na\(^{+}\)-dependent process was involved and its contribution increased with [Ca\(^{2+}\)]\(_i\).

6.2. Reverse mode of the sodium/calcium exchanger

Alkalisation of the extracellular medium (pH 9) has been shown to inhibit PMCA and to induce a rise in resting [Ca\(^{2+}\)]\(_i\) (see Results sections 5 and 7 for more details). The results in this section suggested that NCX was without effect on resting [Ca\(^{2+}\)]\(_i\), since the removal of extracellular Na\(^{+}\) did not induce changes in [Ca\(^{2+}\)]\(_i\) at rest (see Results section 6.1). However, after PMCA inhibition, [Ca\(^{2+}\)]\(_i\) increased initially linearly but then reached a plateau with a maximal concentration of 333 ± 114 nM (n=3, P<0.05 - figure 43-A and see also Results section 5 and 7). When extracellular Na\(^{+}\) was removed at pH 9, an additional rise in the [Ca\(^{2+}\)]\(_i\) to 594 ± 139 nM was observed (n=3, P<0.05 - figure 43-A and inset). As soon as extracellular Na\(^{+}\) was re-introduced, [Ca\(^{2+}\)]\(_i\) decreased back to the concentration observed after PMCA inhibition (figure 43-A). These results suggested that a Na\(^{+}\)-dependent mechanism was active at [Ca\(^{2+}\)]\(_i\) < 500 nM in parallel with PMCA or at least able to compensate for the PMCA inhibition (see Results section 5.5 and 6.4).

The direction of the Ca\(^{2+}\) transport through NCX depends on the driving force (\(\Delta V\)), which is defined as the difference between the membrane potential (\(E_m\)) and the reversal potential of the exchanger (\(E_{NCX}\)) (Blaustein, 1988a, b and Wier, 1990):

\[
\Delta V = E_m - E_{NCX} \quad \text{Equation 24}
\]

with \(E_{NCX} = 3 \times E_{Na} - 2 \times E_{Ca} \quad \text{Equation 25}\)
Figure 43: NCX regulates low [Ca\(^{2+}\)] when PMCA is inhibited and induces Ca\(^{2+}\) influx in the reverse transport mode

(A) Rise in resting [Ca\(^{2+}\)], induced by extracellular alkalisation in a neurone voltage-clamped at -60 mV in the presence or absence of extracellular Na\(^{+}\) (Na\(^{+}\)-free). Inset represents [Ca\(^{2+}\)], in control (black bar; n=3), at pH 9 (green bar; n=3) and at pH 9 in the absence of extracellular Na\(^{+}\) (violet bar; n=3) (data represent mean ± S.E.M., * P< 0.05).

(B) Rise in resting [Ca\(^{2+}\)], induced by removal of extracellular Na\(^{+}\) in a neurone voltage-clamped at -60 mV in the perforated patch with 140 mM intracellular Na\(^{+}\) (see inset) at pH 7.4 and pH 9. Inset represents [Ca\(^{2+}\)], in control (n=15), in the absence of extracellular Na\(^{+}\) (violet bar; n=13) and at pH 9 in the absence of extracellular Na\(^{+}\) (green bar; n=3) (data represent mean ± S.E.M., * P< 0.05).
E_{Na} and E_{Ca} are the reversal potential for Na\(^+\) and Ca\(^{2+}\), respectively and are obtained from the Nernst equation:

\[
E_{Na} = \frac{RT}{zF} \ln \left(\frac{[Na^+]_{out}}{[Na^+]_{in}} \right)
\]

\textit{Equation 26}

\[
E_{Ca} = \frac{RT}{zF} \ln \left(\frac{[Ca^{2+}]_{out}}{[Ca^{2+}]_{in}} \right)
\]

\textit{Equation 27}

with z the ion valence (1 for Na\(^+\) and 2 for Ca\(^{2+}\)), n_{Na} and n_{Ca} the number of Na\(^+\) and Ca\(^{2+}\) ions respectively transported (3 Na\(^+\) and 1 Ca\(^{2+}\)).

For a ΔV negative (-ve), the exchanger works in forward mode and Ca\(^{2+}\) is extruded from the cytosol. In contrast, when ΔV is positive (+ve), the Ca\(^{2+}\) is transported into the cytosol. In the recording conditions used in the Results section 6.1, the membrane potential was -60 mV, the extracellular concentration of Na\(^+\) and Ca\(^{2+}\) were 140 mM and 2.5 mM, respectively and the [Ca\(^{2+}\)]\(_i\) in the absence\(^6\) of intracellular Na\(^+\), was \approx 100 nM. Therefore, NCX was in the forward mode, \textit{i.e.} Ca\(^{2+}\) would be extruded from the cytosol, with:

at -60 mV and [Na\(^+\)]\(_{out}\) = 140 mM

$E_{NCX} = +1205$ mV and $\Delta V = -1265$ mV

Thus, in theory, when the extracellular Na\(^+\) is removed, the direction of the Ca\(^{2+}\) transport should be inverted and [Ca\(^{2+}\)]\(_i\) should increase since:

at -60 mV and [Na\(^+\)]\(_{out}\) = 0 mM

$E_{NCX} = -265$ mV and $\Delta V = +205$ mV

However, in the absence of extracellular Na\(^+\), resting [Ca\(^{2+}\)]\(_i\) remained unchanged (see Results section 6.1).

In contrast, when the \textit{intracellular} Na\(^+\) is increased to 140 mM, the Na\(^+\) gradient is inverted and therefore a Ca\(^{2+}\) influx should be observed. Under these conditions:

\textit{To enable the calculation of the reversal potential, the intracellular Na\(^+\) concentration was set to 1 nM}
at -60 mV and \([\text{Na}^+]_{\text{out}} = 140 \text{ mM}\)

\[E_{\text{NCX}} = -265 \text{ mV and } \Delta V = +205 \text{ mV} \]

and

at -60 mV and \([\text{Na}^+]_{\text{out}} = 0 \text{ mM}\)

\[E_{\text{NCX}} = -1735 \text{ mV and } \Delta V = +1675 \text{ mV} \]

Neurones were therefore voltage-clamped at -60 mV with an intracellular solution containing 140 mM Na^+. (see Methods section 2.4.3, Table 2-solution K). In the control situation, with 140 mM extracellular Na^+, resting [Ca^{2+}] was not significantly increased (99 ± 11 nM with [Na^+] = 0 and 118 ± 6 nM with [Na^+] = 140 mM). In contrast, when the extracellular Na^+ was removed, a rise in [Ca^{2+}] was observed (from 118 ± 6 nM in control to 284 ± 17 in the absence of extracellular Na^+; n= 15 and n=13, respectively; P< 0.001 - figure 43-B). Upon re-introduction of the extracellular Na^+, the [Ca^{2+}] returned to the control level (figure 43-B). When, in the absence of extracellular Na^+, PMCA was inhibited (pH 9) an additional rise in [Ca^{2+}] to 784 ± 111 nM was observed (figure 43-B; n=3, P< 0.001 and compare with figure 43-A). Thus, a Na^+-dependent system is functional in these neurones and able to reverse its transport mode to induce a Ca^{2+} influx.

6.3. NCX expression in SCG neurones

6.3.1. The three NCX isoforms are expressed in whole SCG

To determine which NCX isoform is expressed in SCG neurones, a PCR analysis was carried out. Selective forward and reverse primers for each NCX isoform were designed using rat gene sequences for NCX obtained from 'GenBank' and their selectivity controlled using sequence alignment against a gene databank (see Methods section 8.3 and Table 7 for more details). Each set of primers was tested against cDNA (10 μg) extracted from whole SCG tissue and against tissues previously shown to express particular isoform: ncx1/1713s and ncx1/2120a against heart cDNA (Ht), ncx2/611s and ncx2/863a against cerebellar cDNA (CB) and ncx3/620s and ncx3/963a against skeletal muscle cDNA (SkM). In the presence of cDNA templates, PCR products were observed for each tissue with the hprt primers, suggesting that the cDNA templates were intact and the amplification reaction had been successful (figure 44-A,
Figure 44: NCX is expressed at a low level on the soma of SCG neurones

(A) PCR analysis of NCX expression in whole SCG, Heart (Ht), cerebellar cortex (CB) and skeletal muscle (SkM). Lanes 1 to 9, control of the PCR amplification with hprt. For the determination of NCX expression, selective set of primers were used as follow: lanes 10 to 18, PCR amplification of ncx1 (ncx1/1713s and ncx1/2120a), lanes 19 to 27, of ncx2 (ncx2/611s and ncx2/863a) and lanes 28 to 36, of ncx3 (ncx3/620s and ncx3/963a). For each PCR reaction a negative control (-ve, lanes 9,18,27 and 36) and for each tissue a ‘mock cDNA template’ (labelled with the letter m for mock) were used. (B) Rabbit polyclonal antibody (1/50) raised against the cardiac isoforms (NCX-1) was used to determine the expression of NCX in SCG neurones. The primary antibody was labelled with a swine anti-rabbit polyclonal antibody conjugated to TRITC (1/50) and images acquired using a CCD camera attached to a fluorescent microscope. The image in B1 was subsequently analysed with the digital deconvolution technique using the Nearest neighbours algorithm to generate the images in panels B2. In B1 and B2, the contours of the neurones have been marked to enable a better visualisation of the labelling (scale bar 10 μm, x40 oil immersion fluorescent objective).
top panel left, lane 1, 3, 5 and 8). In contrast, no signal was present in the absence of any template (-ve, lanes 9, 18, 27 and 36 in figure 44-A) or when 'mock templates', in which the reverse transcriptase was omitted during the reverse transcription were used (m for 'mock' in figure 44-A - see Methods section 8.2 for more details).

The PCR reactions for the different NCX isoforms produced a PCR product of the expected size with each control template (ncx-1: 407 bp in lane 14, ncx-2: 252 bp in lane 21 and ncx-3: 343 bp in lane 35 - figure 44-A). In addition a band of the correct size was observed for SCG and cerebellar tissues with ncx-1 primers (lane 10 and 12 in figure 44-A). For ncx-2, a product of the correct size was present for SCG and cerebellar tissue (lane 19 and 21 in figure 44-A). However there was also a signal for heart tissue but of a larger size (lane 23, 400 bp instead of 252 bp). Finally all cDNA templates amplified a signal of the expected size for ncx-3 (lane 28, 30, 32 and 35 in figure 44-A). Therefore these results suggest that in superior cervical ganglia transcripts for all three NCX isoforms are present but at a level that appears to be low if compared with the control tissues (see lanes for each isoform and also hprt).

6.3.2. NCX is expressed at a low level in SCG neurones

Immunocytochemical experiments were carried out to corroborate the expression of NCX at the level of the plasma membrane in SCG neurones. Unfortunately, there are, so far, no isoform-specific antibodies available but only an antibody raised against the cardiac isoform (NCX-1, recommended concentration of 1/1000 for immunocytochemistry). However, this antibody is thought to cross react with NCX-2 and NCX-3 at higher concentrations. Neurones after two days in culture were fixed and incubated with a rabbit polyclonal antibody raised against NCX-1 (1/50- see Methods section 7.1 and Table 5), which was subsequently revealed with a swine anti-rabbit IgG conjugate to TRITC (1/50 - see Methods section 7.1 and Table 6). The selectivity of the labelling was assessed by the absence of significant difference in the labelling compared with the background when the secondary antibody was used alone. The results of the immunolabelling were examined on a fluorescent microscope, images acquired with a CCD camera (figure 44-B1) and analysed using the deconvolution method with the Nearest neighbours algorithm (figure 44-B2 and see Methods section 7.2). These results confirmed those obtained in the PCR analysis and would indicate
that NCX was expressed at a low level in the somatic plasma membrane. However, from the immunocytochemical experiment, it is unfortunately not possible to determine which isoform is expressed in SCG neurones.

Taken together, the results presented in this section indicate that SCG neurones express a functional Ca\(^{2+}\) extrusion system mainly active for high [Ca\(^{2+}\)], that depends on the Na\(^+\) gradient and might therefore correspond to NCX since both mRNA transcripts and immunolabelling for this exchanger were detected. The results show also that NCX is able to reverse its transport mode and induce Ca\(^{2+}\) influx depending on the intracellular Na\(^+\) concentration.

6.4. Discussion

The relative importance of the plasma membrane NCX in the control of neuronal [Ca\(^{2+}\)], has only been addressed in few studies. However, it appears that a clear difference exist between peripheral and central neurones. Thus, in neurones from the central nervous system, the inhibition of NCX was shown to induce both an increase in resting [Ca\(^{2+}\)], and a prolongation of depolarisation-induced Ca\(^{2+}\) transients (Taglialatela et al., 1990a, b in rat brain synaptosomes; Segal & Manor, 1992 and Koch & Barish, 1994 in cultured hippocampal neurones; Kiedrowski et al., 1994 in cultured cerebellar granule cells; Fierro et al., 1998 in Purkinje neurones recorded from slices of the cerebellar cortex). In peripheral neurones, removal of extracellular Na\(^+\), did not significantly affect resting [Ca\(^{2+}\)], or the recovery from transient rises in [Ca\(^{2+}\)], (Thayer & Miller, 1990; Duchen et al., 1990; Benham et al., 1992 and Shmigol et al., 1995b).

The results obtained in rat sympathetic neurones were in agreement and suggest that NCX is neither involved in the control of resting [Ca\(^{2+}\)], nor in the recovery of small Ca\(^{2+}\) transients (< 500 nM). With a rise in [Ca\(^{2+}\)], above 500 nM, NCX would appear to be activated especially during the recovery of the fast component and the NCX contribution became more predominant with the increase in [Ca\(^{2+}\)], (see figure 42-B). These observations are consistent with the characteristics of NCX and because of its lower affinity for Ca\(^{2+}\) (K\(_d\) \approx 750 nM see Blaustein & Lederer, 1999 for review). However, although NCX is involved in the recovery from large rises in [Ca\(^{2+}\)], it appears to have only a moderate role in the recovery of Ca\(^{2+}\) transients and to work in co-operation with other Ca\(^{2+}\) homeostatic systems. This result might be explained by the
low NCX expression level as observed from both PCR and immunocytochemical analysis (see figure 43). An alternative explanation for the small contribution of NCX might be an expression primarily in dendrites and nerves terminal and therefore a predominant role in non somatic regulation of [Ca^{2+}], (Blaustein 1988b; Luther et al., 1992; Reuter & Porzig, 1995 and Juhaszova et al., 1996, 2000).

The stoichiometry of NCX has been shown to be 3 Na^+ for 1 Ca^{2+}, to be electrogenic and therefore the NCX activity is expected to be modulated by both the ionic gradients and the membrane potential (see Blaustein & Lederer, 1999 for review). Blaustein (1988b) suggested that during a depolarisation (i.e. an action potential) of the plasma membrane, NCX would promote Ca^{2+} influx by reversing and transporting Ca^{2+} into the cytosol. Thus, theoretically at 0 mV (or +20 mV, the peak of an action potential), the driving force (ΔV) for the Ca^{2+} transport is strongly positive and NCX should induce a Ca^{2+} influx. Although such a Ca^{2+} influx through the ‘reversed’ NCX was observed in the giant squid axon (Allen & Baker, 1985 and DiPolo & Beaugé, 1988) and synaptosomes (Turner & Goldin, 1985 and Taglialatela et al., 1990a, b), there is no strong evidence that it may occur under physiological conditions. Under the experimental conditions of the study presented in figure 43-A ([Ca^{2+}]_{out} = 2.5 mM, [Ca^{2+}]_{in} = 100 nM, [Na^+]_{out} = 140 mM and [Na^+]_{in} = 0 mM) the depolarisation of the plasma membrane to 0 mV would not induce the reversal of the exchanger at rest (ΔV = -1205 mV for [Ca^{2+}]_{i} ≈ 100 nM) even if one considers a rise in [Ca^{2+}]_{i} from 100 nM to 1 μM (ΔV = -1265 mV for [Ca^{2+}]_{i} ≈ 1 μM). These theoretical values for ΔV are in agreement with the experimental data, since no difference in the amplitude of the depolarisation-induced Ca^{2+} transient in the presence or absence of extracellular Na^+ were observed. On the other hand, the removal of extracellular Na^+ at rest (-60 mV, ΔV = +205 mV) or at 0 mV (Δv = +265 mV) is expected to induce a Ca^{2+} influx. However neither resting [Ca^{2+}]_{i} nor the amplitude of the depolarisation-induced Ca^{2+} transients were increased under these conditions. One of the reasons for the absence of Ca^{2+} influx could be the dissipation of the Na^+ gradient with both intracellular and extracellular [Na^+] equal to zero, however experiments were carried out in the presence of 10 mM intracellular Na^+ and no change in [Ca^{2+}]_{i} were observed (data not shown). The other reason could be the fact that the [Ca^{2+}]_{i} was too low to bind to the Ca^{2+} regulatory site and to induce Ca^{2+} transport since it was suggested that [Ca^{2+}]_{i} should rise to
micromolar concentration to activate NCX (see Blaustein & Lederer, 1999 and Philipson & Nicoll, 2000 for review). However, the affinity of the Ca^{2+} regulatory site is an unresolved issue as some authors proposed a value between 0.1-0.3 \mu M and other between 20-50 nM (Miura & Kimura, 1989 and Fang et al., 1998 and see Philipson & Nicoll, 2000 for review). Furthermore, the data presented in figure 43-B would suggest that both the Na^{+} gradient and the [Ca^{2+}]; would determine the transport of Ca^{2+} ions since in the presence of high intracellular [Na^{+}] and the absence of extracellular Na^{+} a significant Ca^{2+} influx was observed. Finally, one could argue that the role of NCX in Ca^{2+} extrusion was underestimated under the experimental conditions since firstly the recordings consisted of averaged somatic Ca^{2+} transients and secondly the rise in [Ca^{2+}]; were not large enough to maximally activate NCX. Again, recordings close to the plasma membrane or in specialised structures of the neurone (synapses or synaptic boutons) might generate different results.

Interesting results were obtained following PMCA inhibition and suggested that NCX was capable to transport Ca^{2+} at concentration as low as 300 nM. Thus, when PMCA was inhibited (see figure 43-A for example), [Ca^{2+}]; increased up to 200-300 nM and remained at this plateau as long as PMCA was inhibited. However, the removal of extracellular Na^{+} induced an additional rise suggesting that [Ca^{2+}]; was maintained at 200-300 nM by a Na^{+}-dependent process presumably NCX (see figure 43-A). In contrast, the rise in [Ca^{2+}]; induced in the reverse mode of NCX (high [Na^{+}];) was limited to around 300-400 nM by a pH-sensitive mechanism, most certainly PMCA. Under these conditions, where NCX transport is reversed and PMCA inhibited, [Ca^{2+}]; increases to micromolar concentration.

In conclusion, the results presented in this section indicate that SCG neurones express at a low level functional NCX. NCX appear to be involved, along with other regulatory mechanisms, in the Ca^{2+} clearance when [Ca^{2+}]; rises to micromolar ranges. However, this study also provides evidence for two important and novel features on the Ca^{2+} transport through NCX. Firstly, NCX appears capable of extruding Ca^{2+} at concentration as low as 200-300 nM. Secondly, at [Ca^{2+}]; \approx 500 nM, PMCA and NCX, and presumably other Ca^{2+} homeostatic factors, operate in parallel to control and limit the rise in [Ca^{2+}];.
7. Control of resting calcium concentration

Most eukaryotic cells maintain resting $[Ca^{2+}]_i \approx 100$ nM and therefore a large inwardly directed gradient is created across the plasma membrane. It is thought that resting $[Ca^{2+}]_i$ results from a constant Ca^{2+} 'leak' counter-balanced by regulatory mechanisms present in the plasma membrane or in the cytosol. Authors agree that PMCA, because of its high affinity for Ca^{2+}, would represent the main mechanism of control for resting $[Ca^{2+}]_i$. However, since most cells possess Ca^{2+} buffering and sequestration systems, other mechanisms might be involved in the regulation of resting $[Ca^{2+}]_i$.

In order to determine how resting $[Ca^{2+}]_i$ is controlled in rat SCG neurones, experiments in which either the extracellular calcium was removed or PMCA and SERCA inhibited were undertaken. This study focused on both the determination of the nature of the Ca^{2+} influx and of the regulatory systems.

7.7. Passive calcium influx and active extrusion

Under voltage-clamp conditions, in the perforated patch configuration and a holding potential of -60 mV, resting $[Ca^{2+}]_i$ was 99 ± 4 nM (CTR; $n = 31$) and decreased to 80 ± 4 nM upon removal of extracellular Ca^{2+} (Ca^{2+}-free; $n = 13$, $P < 0.01$, independent t-test - figures 45-A and 46). Intracellular Ca^{2+} concentration then returned to control values when Ca^{2+} was reintroduced and sometimes a small and transient overshoot was observed (figure 45-A). Cells were hold at various hyperpolarised holding potential (between -90 mV and -60 mV) and no change either in resting $[Ca^{2+}]_i$ or in the amplitude of the decrease in $[Ca^{2+}]_i$ after extracellular Ca^{2+} was observed (data not shown), suggesting the involvement of a voltage-independent mechanism.

The data presented in Results section 5, suggested that SCG neurones express PMCA as primary extrusion system at low $[Ca^{2+}]_i$ (see Results section 5.1, figures 35-A and -C). Thus at pH 9, resting $[Ca^{2+}]_i$ increased to 249 ± 12 nM ($n = 23$, $P < 0.001$ independent t-test - figure 45-B and figures in Results section 5). This pH-induced response was reproducible upon several applications of pH 9 and fully reversible (see figure 45-B). In the absence of extracellular Ca^{2+}, pH 9 failed to elicit an elevation of
Figure 45: Resting $[\text{Ca}^{2+}]$, is maintained through a passive influx and an active extrusion of Ca^{2+}

Effect on resting $[\text{Ca}^{2+}]$ of extracellular Ca^{2+} removal (A, Ca^{2+} free) or PMCA inhibition by extracellular alkalisation (B, pH 9). (C) Changes in $[\text{Ca}^{2+}]$, in the absence of extracellular Ca^{2+} at pH 7.4 and pH 9. Neurones were voltage-clamped at -60 mV in the perforated patch configuration (no sodium in the patch pipette - see inset).
Figure 46: Effect of extracellular Ca\(^{2+}\) removal and/or extracellular alkalisation on resting \([\text{Ca}^{2+}]_{r}\).

Resting \([\text{Ca}^{2+}]_{r}\) in control (black bar; \(n=31\)), after removal of the extracellular Ca\(^{2+}\) at pH 7.4 (Ca\(^{2+}\) free; \(n=13\)) and at pH 9 (pH 9 Ca\(^{2+}\) free; \(n=10\)) and after extracellular alkalisation (pH 9; \(n=23\)). Data represent mean ± S.E.M. and statistical significance of the differences was compared against the control value with an independent t-test (* \(P<0.05\), *** \(P<0.001\)).
but \([\text{Ca}^{2+}]_i\), decreased to a level equivalent to that measured at pH 7.4 in a \(\text{Ca}^{2+}\)-free extracellular solution (to 83 ± 6 nM in pH 9 \(\text{Ca}^{2+}\)-free; \(n = 10\) versus 80 ± 4 in \(\text{Ca}^{2+}\)-free; \(n=13\), \(P= 0.6\), independent \(t\)-test- figures 45-C and 46).

7.2. Intracellular stores and maintenance of resting calcium

From the data presented in the Results section 4, it was suggested that SCG neurones possess functional intracellular \(\text{Ca}^{2+}\) store able to release and to sequester \(\text{Ca}^{2+}\). The \(\text{Ca}^{2+}\) release from the ER appeared to be mainly mediated through a caffeine- and ryanodine-sensitive pathway and the sequestration occurred via the activation of SERCA, which were inhibited by CPA or TG (see figures 29 and 30-A). In neurones voltage-clamped at -60 mV in the perforated patch configuration, the decrease in \([\text{Ca}^{2+}]_i\), observed upon removal of extracellular \(\text{Ca}^{2+}\), was more pronounced following SERCA inhibition (compare panels A and B in figure 47 and 82 ± 1 nM in \(\text{Ca}^{2+}\)-free and 39 ± 2 nM in \(\text{Ca}^{2+}\)-free + CPA; \(n=13\), \(P< 0.001\) - figure 47-C). Moreover, when the \(\text{Ca}^{2+}\) store was depleted and its \(\text{Ca}^{2+}\) uptake system inhibited, the decrease in \([\text{Ca}^{2+}]_i\), following extracellular \(\text{Ca}^{2+}\) removal and the subsequent recovery appeared to have faster kinetics (figure 47-B).

7.3. Nature of the passive calcium influx

The results presented in section 7.1 suggest that, at rest, there is a passive \(\text{Ca}^{2+}\) influx. However, the nature of this \(\text{Ca}^{2+}\) entry pathway is unknown. From the results in section 4, there is evidence for a \(\text{Ca}^{2+}\) influx through store-operated \(\text{Ca}^{2+}\) channels (SOCC - Results section 4.1, see figure 30-B). Since one of the possible candidates for this \(\text{Ca}^{2+}\) influx might be related to SOCC, experiments were therefore carried out with \(\text{La}^{3+}\), a potent SOCC inhibitor (Kwan et al., 1990 and Rom-Glas et al., 1992), testing its effect on both resting \([\text{Ca}^{2+}]_i\), and the pH-induced rise in \([\text{Ca}^{2+}]_i\). Lanthanum applied at a concentration of 10 \(\mu\text{M}\) induced no change in resting \([\text{Ca}^{2+}]_i\), whereas at 100 \(\mu\text{M}\), \(\text{La}^{3+}\) reduced resting \([\text{Ca}^{2+}]_i\), from 99 ± 4 nM to 77 ± 5 nM, the same level as that reached upon removal of extracellular \(\text{Ca}^{2+}\) (80 ± 4 nM - figures 48 and 49-A). The reduction in \([\text{Ca}^{2+}]_i\), induced by 100 \(\mu\text{M}\) \(\text{La}^{3+}\) was reversible but the recovery was slow and only complete after ≈ 5 minutes (see figure 48-D).
Figure 47: SERCA inhibition induces larger and faster decrease in $[\text{Ca}^{2+}]_i$ when the extracellular Ca^{2+} is removed

Extracellular Ca^{2+} removal in a neurone voltage-clamped at -60 mV in the perforated patch configuration in control (A) and after SERCA inhibition with 50 μM CPA (B). (C) Decrease in resting $[\text{Ca}^{2+}]_i$, induced in a Ca^{2+}-free extracellular solution prior (blue bar) and after CPA application (orange bar) (data represent mean ± S.E.M.; n=13, *** P< 0.001).
Figure 48: The passive Ca\(^{2+}\) influx is lanthanum-sensitive
Neurones were voltage-clamped at -60 mV in the perforated patch mode (no sodium in the patch pipette) and the effects of extracellular Ca\(^{2+}\) removal (Ca\(^{2+}\) free – A and C) and lanthanum (La\(^{3+}\) - 10 µM in B and 100 µM in D) application on resting [Ca\(^{2+}\)] were compared (see also figure 49-A). The extracellular Ca\(^{2+}\) removal was used as a control for the presence of a passive Ca\(^{2+}\) influx prior to bath application of La\(^{3+}\).
Figure 49: Effects of lanthanum on resting \([Ca^{2+}]_r\), and on the rise in \([Ca^{2+}]_i\) induced after PMCA inhibition

(A) Effect of La\(^{3+}\) 10 (n=11) and 100 \(\mu\text{M}\) (n=10) on resting \([Ca^{2+}]_r\), compared to control (black bar; n= 31) and in absence of extracellular Ca\(^{2+}\) (Ca\(^{2+}\) free; n=13) (data as mean ± S.E.M. *** P< 0.001, independent t-test – see also figure 48).

(B) Effect of La\(^{3+}\) 10 (n=13) and 100 \(\mu\text{M}\) (n=6) on the \([Ca^{2+}]_i\) rise induced in pH 9 compared to control value (black bar; n=31) and after inhibition of the PMCA (pH 9; n=23) (data as mean ± S.E.M. *** P< 0.001, independent t-test – see also figure 50).
To confirm the involvement of a La$^{3+}$-sensitive passive Ca$^{2+}$ influx, it was necessary to determine if La$^{3+}$ was able to block the rise in [Ca$^{2+}$], when PMCA is inhibited at pH 9. As expected from the result illustrated in figure 48-B, 10 μM La$^{3+}$ was without significant effect on the pH-induced rise in [Ca$^{2+}$], (figure 49-B). In contrast, application of 100 μM La$^{3+}$ resulted in a complete inhibition of the pH-induced rise in [Ca$^{2+}$], in 6 out of 8 cells (figure 50 and 249 ± 12 nM at pH 9; n=23 and 75 ± 5 nM at pH 9 + 100 μM La$^{3+}$; n=6 - figure 49-B). Moreover, in the presence of 100 μM La$^{3+}$ and at pH 9, the [Ca$^{2+}$], felt to a level equivalent to that measured with 100 μM La$^{3+}$ or in the absence of extracellular Ca$^{2+}$ (see figures 49-A and -B). After ≈ 5 minutes wash out of the La$^{3+}$, extracellular alkalisation induced an increase in [Ca$^{2+}$], which was similar to the one observed in control (compare panels A and C in figure 50).

The rise in [Ca$^{2+}$], observed at pH 9 could be due to an influx through VACC because of a pH-dependent change in the gating properties of these channels. Lanthanum has been shown to block VACC (Hagiwara & Takahashi, 1967), it was therefore necessary to test that the La$^{3+}$ blocking effect was not due to the inhibition of VACC opened by pH 9 treatment. Cadmium (Cd$^{2+}$), at a concentration of 100 μM, has been shown to block VACC (Fox et al., 1987 and see figure 11). It was therefore used to demonstrate the ‘selectivity’ of the La$^{3+}$ block of the passive Ca$^{2+}$ influx. Cadmium, added to the extracellular solution prior to and during the extracellular alkalisation (figure 51), was without effect either on resting [Ca$^{2+}$], or on the amplitude of the increase in [Ca$^{2+}$], induced following PMCA inhibition (90 ± 7 and 317 ± 80, respectively; n = 3). In contrast, Cd$^{2+}$ and La$^{3+}$ both blocked the VACC.

Finally, as the properties of fluorescent dyes may be affected by other multivalent ions and by variations in the cell environment, experiments were undertaken to test that extracellular alkalisation or La$^{3+}$ application did not change the spectral properties of indo-1. Figure 52-A shows that upon reduction of the [Ca$^{2+}$], in a Ca$^{2+}$-free extracellular solution, the fluorescence (F) emitted by indo-1 at 480 nm (Ca$^{2+}$-unbound form) was increased whereas the fluorescence emitted at 407 nm (Ca$^{2+}$-bound form) was slightly reduced. In figure 52-B, the rise in [Ca$^{2+}$], observed at pH 9 was consistent with a decrease in the fluorescence emitted at 480 nm and an increase in the fluorescence emitted at 407 nm (see also results section 1.1, figure 12, for comparison).
Lanthanum completely blocks the rise in $[\text{Ca}^{2+}]$, induced at pH 9

PMCA was inhibited at pH 9 and the rise in $[\text{Ca}^{2+}]$, recorded in a SCG neurone voltage-clamped at -60 mV in the perforated patch configuration (no sodium in the patch pipette – see inset). The $[\text{Ca}^{2+}]$, changes were recorded before (A), during (B) and after (C) bath application of 100 µM La$^{3+}$ and at pH 9 (see also figure 49-B). Upon wash out of La$^{3+}$ (= 5 min), the re-inhibition of the PMCA at pH 9 induces a new rise in $[\text{Ca}^{2+}]$.
Figure 51: Cadmium is without effect on resting $[\text{Ca}^{2+}]$, and does not block the pH-induced rise in $[\text{Ca}^{2+}]$. PMCA was inhibited in pH 9 before (A), during (B) and after (C) bath application of 100 μM Cd$^{2+}$ to test the possible involvement of VACC.
Figure 52-A and -B (see next page for legend)
Figure 52: Extracellular alkalisation and lanthanum are without effect on the spectral properties of indo-1
To test eventual alteration of the indo-1 spectral properties due to extracellular alkalisation (pH 9) and La³⁺ application, recording of the fluorescence emitted at 407 nm (Ca²⁺-bound form of indo-1) and 480 nm (Ca²⁺-unbound form of indo-1) were realised along with Ca²⁺ measurement. (A) Removal of the extracellular Ca²⁺, (B) pH 9 and (C) application of 100 μM La³⁺.
Finally, it has been reported that lanthanides may quench Ca\(^{2+}\) indicators (Kwan and Putney, 1990; Halaszovich et al., 2000). However, upon La\(^{3+}\) application, the increase in the fluorescence emitted at 480 nm and decrease in the fluorescence emitted at 407 nm are in agreement with the decrease in [Ca\(^{2+}\)]. (figure 52-C). Moreover, in the absence of extracellular Ca\(^{2+}\), no changes in the indo-1 fluorescence ratio were observed, upon La\(^{3+}\) application (data not shown). These observations suggested that La\(^{3+}\) did not appear to affect the spectral properties of indo-1 nor to bind directly to indo-1 and give a false reading of the [Ca\(^{2+}\)]. Therefore, the effects observed at pH 9 and/or in the presence of La\(^{3+}\) appeared to be the consequence of changes in [Ca\(^{2+}\)], and not due to changes in the spectral properties of indo-1.

Taken together, the results presented in this section, suggest that resting [Ca\(^{2+}\)], is maintained around 100 nM as a consequence of a passive La\(^{3+}\)-sensitive Ca\(^{2+}\) influx counter-balanced by the active Ca\(^{2+}\) extrusion through PMCA. Moreover, intracellular stores appear to play a regulatory role in the control of resting [Ca\(^{2+}\)], by either sequestering or releasing Ca\(^{2+}\) depending on the [Ca\(^{2+}\)].

7.4. Discussion

In most cell types resting [Ca\(^{2+}\)], is maintained \(\approx 50-100\) nM and is tightly controlled through several homeostatic mechanisms. Since SCG neurones exhibit high Ca\(^{2+}\) buffering capacity especially at rest (Ca\(^{2+}\) binding ratio \(\approx 1000\) at [Ca\(^{2+}\)], \(\approx 100\) nM), one can assume that part of the regulation of resting [Ca\(^{2+}\)], is carried out through CaBPs (see Results section 2). However, the Ca\(^{2+}\) buffering is a dynamic equilibrium and is saturable, therefore other mechanisms have to be involved to insure the control of resting [Ca\(^{2+}\)]. Most authors agree that, because of its high affinity for Ca\(^{2+}\), PMCA would represent a regulatory system of resting [Ca\(^{2+}\)], however very few studies have tried to characterised the mechanisms responsible for the control of resting [Ca\(^{2+}\)], (e.g. Usachev & Thayer, 1999b). Inhibition of PMCA by extracellular alkalisation induced a large rise in resting [Ca\(^{2+}\)], that did not appear to be a secondary effect of extracellular alkalisation. Thus, similar effects are observed using other PMCA inhibitors (see Results section 5.2) and the increase in resting [Ca\(^{2+}\)], was both abolished in the absence of extracellular Ca\(^{2+}\) and selectively blocked by lanthanum (see figures 45 and 48).
Furthermore, changes in resting $[\text{Ca}^{2+}]$, were not observed following inhibition of NCX (see Results section 6) or of mitochondria (see Results section 3). These results therefore suggested that Ca^{2+} extrusion via PMCA was the major control mechanism of resting $[\text{Ca}^{2+}]$, and, more importantly, they indicated that PMCA was constitutively active to counter-balance a passive Ca^{2+} influx at rest (see below). The presence of a Ca^{2+} influx across the plasma membrane is further supported by the fact that removal of extracellular Ca^{2+} induced a decrease in resting $[\text{Ca}^{2+}]$, (this study and see also Kennedy & Thomas, 1995; Usachev & Thayer, 1999b). Moreover, the decrease in $[\text{Ca}^{2+}]$, upon removal of extracellular Ca^{2+} was reproduced by bath application of La^{3+}, a blocker of store-operated Ca^{2+} channels (SOCC; Kwan et al., 1990 and Rom-Glas et al., 1992). The selective sensitivity to La^{3+} but not VACC blockers of the rise in $[\text{Ca}^{2+}]$, unmasked following PMCA inhibition further supported the presence of a specific Ca^{2+} influx at rest. It is interesting to note that La^{3+} application both at pH 7.4 and at pH 9 induced a decrease in resting $[\text{Ca}^{2+}]$, to concentrations similar to those observed upon extracellular Ca^{2+} removal. Therefore, one could propose that the rise in $[\text{Ca}^{2+}]$, observed following PMCA inhibition and the decrease in $[\text{Ca}^{2+}]$, observed after removal of extracellular Ca^{2+} is mediated through the same set of channels that is La^{3+} sensitive. The fact that the La^{3+} effects were not reproduced by specific VACC blockers further excluded the involvement of a VACC as suggested earlier by some authors (DiPolo et al., 1982 and Tsien et al., 1987) but rather suggests the presence of a selective channels types in SCG neurones. Since the experiments presented here were carried out in the presence of TTX the possibility of a Ca^{2+} leak through TTX-sensitive Na$^+$ channels can also be excluded (DiPolo et al., 1982). Finally, it has been suggested that Ca^{2+} influx at rest could be explained by Ca^{2+} transport into the cytosol via NCX working in the reverse mode as it is sometimes observed in neurones from the central nervous system (Taglialatela et al., 1990a, b; Segal & Manor, 1992 and Kiedrowski et al., 1994). However, in SCG neurones and similarly to most peripheral neurones (Thayer & Miller, 1990; Duchen et al., 1990; Benham et al., 1992; Shmigol et al., 1995 and Usachev & Thayer, 1999b), NCX inhibition was without effect on resting $[\text{Ca}^{2+}]$, suggesting that the Ca^{2+} influx at rest is not mediated by this exchanger (see also Results section 6). Therefore, the data presented in this section suggest the presence, at rest, of a novel La^{3+}-sensitive Ca^{2+} entry pathway that appears to be constitutively active since it is unmasked by PMCA.
inhibition or abolished by removal of extracellular Ca\(^{2+}\) (see figure 45 and see below). Usachev and Thayer (1999b) draw similar conclusions and also proposed the presence in DRG neurones of a specific set of channels responsible for this Ca\(^{2+}\) influx at rest.

In non-excitable cells, the predominant Ca\(^{2+}\) entry pathway is mediated through capacitative Ca\(^{2+}\) channels (also known as SOCC), which are activated either by intracellular second messenger or by Ca\(^{2+}\) store depletion (see Putney & McKay, 1999 for review). There is evidence for the presence of such a Ca\(^{2+}\) entry route in neurones (this study and see Usachev & Thayer, 1999b) and it is interesting to consider that the Ca\(^{2+}\) influx observed at rest shares similar features to Ca\(^{2+}\) influx through SOCC. Thus, depletion of the Ca\(^{2+}\) store activates a sustained rise in [Ca\(^{2+}\)], that is abolished either by removal of extracellular Ca\(^{2+}\) or bath application of lanthanum (this study figure 30-B; Garaschuk et al., 1997 and Usachev & Thayer, 1999). Secondly, cell exposure to a Ca\(^{2+}\)-free perfusion medium, generally induces an overshoot in resting [Ca\(^{2+}\)], upon reintroduction of extracellular Ca\(^{2+}\), presumably mediated through SOCC (this study and see Garaschuk et al., 1997 and Usachev & Thayer, 1999b). Calcium store appears to replenish spontaneously via Ca\(^{2+}\) influx across the plasma membrane since a minimum delay is required between two caffeine-induced Ca\(^{2+}\) transients to generate responses of similar amplitude (see Results section 4.5 and Garaschuk et al., 1997 and Usachev & Thayer, 1999).

The channels involved in the store-operated Ca\(^{2+}\) influx in non-excitable cells are thought to be related to trp channels or their mammalian homologues (see General Introduction section 2.2.2; Putney & McKay, 1999 and Clapham et al., 2001 for review). Since neurones appear to express high level of trp channels (see Clapham et al., 2001 for review) it has been proposed that the Ca\(^{2+}\) influx observed after store depletion might be mediated through these channels. The fact that Ca\(^{2+}\) store appeared to take part in the regulation of resting [Ca\(^{2+}\)], would suggest that channels related to SOCC or trp could mediate the Ca\(^{2+}\) influx observed at rest. Thus, following SERCA inhibition and Ca\(^{2+}\) store depletion, the decrease observed in resting [Ca\(^{2+}\)], upon extracellular Ca\(^{2+}\) removal was more pronounced (see figure 47) suggesting that Ca\(^{2+}\) is released from intracellular stores to maintain resting [Ca\(^{2+}\)]. Considering that Ca\(^{2+}\) store has been suggested to be leaky (see Results section 4.5 and Garaschuk et al., 1997), one could propose that there might be a basal activation of SOCC or related channels and
that Ca\(^{2+}\) might cycle from the extracellular medium to the Ca\(^{2+}\) store via the cytosol. This Ca\(^{2+}\) influx activated by Ca\(^{2+}\) store would serve both to maintain resting [Ca\(^{2+}\)]\(_i\), and refill leaky Ca\(^{2+}\) store. However, regarding the Ca\(^{2+}\) influx observed at rest, two aspects remain paradoxical to conclude that it is mediated through SOCC. Firstly, SOCC are, per definition, supposed to be operated by intracellular stores and especially following their depletion. Secondly, Ca\(^{2+}\) influx through SOCC has been shown to be enhanced by hyperpolarisation whereas in SCG no change in the amplitude of the rise in [Ca\(^{2+}\)]\(_i\) was observed with hyperpolarising step (but see Usachev & Thayer, 1999b and see Clapham et al., 2001 for review). Further experiments would be necessary to characterise the channels involved in the passive Ca\(^{2+}\) influx at rest and to determine if they are related to SOCC and how they are regulated.

In conclusion, the data presented in this section indicate that resting [Ca\(^{2+}\)]\(_i\), results from an equilibrium between a constant passive Ca\(^{2+}\) entry and leak from the intracellular stores counter-balanced by Ca\(^{2+}\) extrusion through PMCA and Ca\(^{2+}\) sequestration via SERCA. One could therefore suggest that resting [Ca\(^{2+}\)]\(_i\) is set by a dynamic Ca\(^{2+}\) cycle from the extracellular environment into the Ca\(^{2+}\) store via the cytosol. The resting [Ca\(^{2+}\)]\(_i\) would therefore depend on the activity of the different component of Ca\(^{2+}\) homeostasis and particularly the binding kinetics to CaBPs both from the cytosol and from the ER. These CaBPs by determining the amount of free Ca\(^{2+}\) would influence the PMCA and SERCA activity and also the extent of Ca\(^{2+}\) influx and Ca\(^{2+}\) leak (see General Discussion for more details on this aspect)
Chapter IV
General Discussion
and Conclusion
1. Calcium homeostasis in rat sympathetic neurones

The work presented in this thesis represents, to our knowledge, the first study to characterise the various mechanisms involved in the regulation of somatic \([\text{Ca}^{2+}]_i\) in neurones from rat superior cervical ganglion. The data presented do not allow the precise determination of the kinetics of \(\text{Ca}^{2+}\) transients’ recovery nor the study of localised \(\text{Ca}^{2+}\) responses because the recordings of \([\text{Ca}^{2+}]_i\) represent spatially averaged somatic \(\text{Ca}^{2+}\) signals and might therefore not be representative to what occurs close to the plasma membrane.

Although amongst a particular neuronal population there might be heterogeneity in the level of expression of the different component involved in \(\text{Ca}^{2+}\) homeostasis, the results obtained in this study appear consistent from cell to cell suggesting a homogeneity in the \(\text{Ca}^{2+}\) regulatory mechanisms. Furthermore, under the perforated patch configuration, the properties of the depolarisation-induced \(\text{Ca}^{2+}\) transients were stable over long recording periods with little alteration in their amplitude or their decay time constant(s) suggesting that the \(\text{Ca}^{2+}\) influx and the activity of the \(\text{Ca}^{2+}\) clearance systems remained constant during the experiments. The results collected therefore allow the characterisation of the mechanisms involved in \(\text{Ca}^{2+}\) homeostasis in rat SCG neurones.

The major features of \(\text{Ca}^{2+}\) homeostasis in rat SCG neurones are summarised below and in the following sections hypothetical models based on the experimental data are presented to try to explain how the different elements of \(\text{Ca}^{2+}\) homeostasis might interact to both maintain resting \([\text{Ca}^{2+}]_i\) and return \([\text{Ca}^{2+}]_i\) to basal level after a period of cellular activity.

1) In SCG neurones, the \(\text{Ca}^{2+}\) binding ratio was \(\approx 1000\) close to rest and decreased with the rise in \([\text{Ca}^{2+}]_i\), to reach a value of \(\approx 250\) when \([\text{Ca}^{2+}]_i \approx 1 \, \mu\text{M}\). This suggests the presence of, at least, two \(\text{Ca}^{2+}\) buffering systems: a high affinity \(\text{Ca}^{2+}\) buffer saturated close to rest \(\approx 150 \, \text{nM}\) and a second buffer system with a lower \(\text{Ca}^{2+}\) affinity that appears non-saturable for rises in \([\text{Ca}^{2+}]_i\) within the physiological range and which might involve rapid mitochondrial \(\text{Ca}^{2+}\) uptake.

2) Resting \([\text{Ca}^{2+}]_i\) might be the result of a dynamic \(\text{Ca}^{2+}\) cycle from the extracellular medium to the \(\text{Ca}^{2+}\) store via the cytosol. Calcium is extruded through
PMCA that counter-balances a constant passive Ca^{2+} influx. Calcium store appears to both sequester and release Ca^{2+} and therefore to be also involved in the regulation of resting $[Ca^{2+}]_i$.

3) During cellular activity, rises in $[Ca^{2+}]_i$ appear directly proportional to the amplitude and duration of the Ca^{2+} current mainly mediated through N-type VACCs and there was no evidence for a CICR-like amplification of the Ca^{2+} influx.

4) PMCA was the major Ca^{2+} clearance system for small rises in $[Ca^{2+}]_i$ (<500 nM) and there is some evidence for a mitochondrial Ca^{2+} release presumably through a Na^+-independent mechanism that would delay the recovery of small Ca^{2+} transients.

5) For larger rises in $[Ca^{2+}]_i$ (>500 nM), mitochondria sequestered Ca^{2+} during the rising phase while Ca^{2+} was extruded through NCX and taken up into Ca^{2+} store via SERCA. With the decrease in $[Ca^{2+}]_i$, the recovery of Ca^{2+} transients was mainly mediated by PMCA and delayed by Ca^{2+} release from the mitochondria, mainly through mNCX.

2. Regulation of resting intracellular calcium

Under resting conditions (see figures in Results section 7), $[Ca^{2+}]_i$ would result from a dynamic equilibrium between active Ca^{2+} extrusion (PMCA) or sequestration (SERCA) and passive Ca^{2+} leak from the intracellular stores (ER) or Ca^{2+} influx across the plasma membrane (PM). In addition Ca^{2+} ions in the free ionic form would be in equilibrium with Ca^{2+} binding proteins from both the cytosol (CaBPs - see results section 2) and the ER (ER-CaBPs). One could therefore suggest a constant Ca^{2+} cycling from the extracellular environment to the intracellular stores via the cytosol and back to the extracellular space (figure 53 - top panel). The results presented in this work (see figures 48 to 50) suggest that Ca^{2+} would enter the cytosol through La^{3+}-sensitive Ca^{2+}-permeable channels, presumably related to SOCC, and be in equilibrium with CaBPs. In the same time, the free Ca^{2+} would be transported into the ER by SERCA functioning at a basal rate (see figures 29-C, 47 and figure 53, top panel right). However, under resting conditions, the ER appears to be filled up to $\approx 80\%$ (Shmigol et
Figure 53: A model for the maintenance of resting intracellular calcium concentration

Calcium cycling from the extracellular medium into the intracellular stores via the cytosol might be responsible for the maintenance of resting [Ca\(^{2+}\)], and restoration of resting free [Ca\(^{2+}\)] in the endoplasmic reticulum (1) and in the cytosol (2) following a decrease in the [Ca\(^{2+}\)].

Plasma membrane (PM); plasma membrane Ca\(^{2+}\)-ATPase (PMCA); store-operated Ca\(^{2+}\) channels (SOCC), cytosolic Ca\(^{2+}\) binding protein (CaBP); cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)] \(c\)); endoplasmic reticulum (ER); sarco/endoplasmic Ca\(^{2+}\)-ATPase (SERCA); Ca\(^{2+}\) binding protein from the ER (ER-CaBP); free Ca\(^{2+}\) concentration in the ER ([Ca\(^{2+}\)] \(e\)) and ryanodine receptor (RyR).
1994b; Pozzan et al., 1994 and Mogami et al., 1998). The high Ca\(^{2+}\) content of the ER was proposed to limit Ca\(^{2+}\) uptake into the stores (Inesi & DeMeis, 1989; Favre et al., 1996 and Mogami et al., 1998) and to promote Ca\(^{2+}\) release into the cytosol by lowering the \([\text{Ca}^{2+}]_i\); threshold for RyR activation (Gilchrist et al., 1992; Usachev & Thayer, 1997, 1999a; Lykyanenko et al., 1996; Marie & Silva, 1998 and Sitsapesan & Williams, 1997, 2000). The resting luminal free \([\text{Ca}^{2+}]_l\) appears to be maintained \(\approx 100 \text{ M}\) and Ca\(^{2+}\) store have been suggested to be leaky (Garaschuk, 1997; Mogami et al., 1998 and Usachev & Thayer, 1999b) and therefore, one could propose that Ca\(^{2+}\) uptake during basal activity of SERCA might be compensated by this Ca\(^{2+}\) leak. The mechanism or the channel type mediating the Ca\(^{2+}\) leak from the ER is still unidentified. However, ryanodine receptors (RyR) open in a low probability state (Hernandez-Cruz et al., 1995 and Armisen et al., 1996) could mediate this Ca\(^{2+}\) leak. Since, cADPr was proposed as the endogenous agonist for RyR (see Galione, 1993; Bak et al., 1999 and Petersen & Cancela, 1999), one could suggest that a basal activation of RyR via cADPr could underlie the observed Ca\(^{2+}\) leak. The Ca\(^{2+}\) released into the cytosol would finally be extruded into the extracellular medium through a PMCA working under basal condition. It can be further suggested that in SCG neurones, this basal Ca\(^{2+}\) extrusion might be carried out via PMCA-1 and/or 4 since both Ca\(^{2+}\)-ATPases are expressed in these neurones and considered as the 'house keeping' isoforms (see Carafoli 1994). The PMCA activity would compensate both the leak from the ER and the Ca\(^{2+}\) influx across the plasma membrane (figure 53, top panel left). In SCG neurones, this observation is supported by the rise in \([\text{Ca}^{2+}]_i\); following PMCA inhibition (see figures in Results sections 5 and 7). Of course, one has to consider that all these mechanisms are simultaneously active so that as a result resting \([\text{Ca}^{2+}]_i\) would be maintained \(\approx 100 \text{ nM}\) and \([\text{Ca}^{2+}]_l\approx 100 \text{ M}\) (see Pozzan et al., 1994).

Such a system would allow a steady \([\text{Ca}^{2+}]_l\) and provide a Ca\(^{2+}\) source to compensate for the Ca\(^{2+}\) leak from the ER. This process would enable both the maintenance of resting \([\text{Ca}^{2+}]_i\approx 100 \text{ nM}\) and ensure that the Ca\(^{2+}\) store remain in a filled state ready to release Ca\(^{2+}\) when stimulated by an intracellular messenger or a rise in \([\text{Ca}^{2+}]_i\). The model presented also propose a strong interaction between resting \([\text{Ca}^{2+}]_i\) and \([\text{Ca}^{2+}]_l\) so that both cellular compartments would be in equilibrium with each other and changes in one of them would be compensated by variation in the Ca\(^{2+}\) regulation in
the other. The fact that PMCA overexpression resulted in a decrease in \([\text{Ca}^{2+}]_L\) (Brini et al., 2000) and therefore modified the equilibrium between \(\text{Ca}^{2+}\) content in the cytosol and ER further support the idea of an interaction between cytosol and ER. Thus, a decrease in \([\text{Ca}^{2+}]_L\) is known to activate SOCC (Usachev & Thayer, 1999b, Garaschuk et al., 1997 and Putney & MacKay, 1999) and would as a consequence induce an increase in \([\text{Ca}^{2+}]_i\) (figures 30 and 53, panel 1). However, the \(\text{Ca}^{2+}\) influx would primarily serve the refilling of the \(\text{Ca}^{2+}\) store by the upregulation of SERCA and one would expect only minimal changes in \([\text{Ca}^{2+}]_i\) and therefore no increase in the activation of PMCA (Mogami et al., 1998). Moreover, Mogami and colleagues (1998) suggested that the \(\text{Ca}^{2+}\) refilling of the ER was triggered by an intra-luminal signal and could occur without elevation of \([\text{Ca}^{2+}]_L\) to avoid a prolonged upregulation of PMCA. On the other hand, the \(\text{Ca}^{2+}\) leak through intracellular store could be inhibited to promote stores refilling (figure 53, panel 1). This hypothesis would be further supported if one consider that \(\text{Ca}^{2+}\) leak from the intracellular stores is mediated through RyR since these channels have been shown to be inhibited following a decrease in \([\text{Ca}^{2+}]_L\) (Pozzan et al., 1994 and Mogami et al., 1998). Finally, as a consequence, \([\text{Ca}^{2+}]_L\) would be brought back to basal value without significantly affecting resting \([\text{Ca}^{2+}]_i\) and the equilibrium between cytosolic and luminal \([\text{Ca}^{2+}]\) that existed at rest would be progressively restored.

On the other hand, to compensate a decrease in \([\text{Ca}^{2+}]_i\) both the activity of PMCA and the rate of \(\text{Ca}^{2+}\) uptake via SERCA could be reduced (figure 53, panel 2). This process would induce a larger net \(\text{Ca}^{2+}\) influx through SOCC related \(\text{Ca}^{2+}\) channels in parallel with the \(\text{Ca}^{2+}\) leak from the ER (figure 53, panel 2) and would result in an increase in \([\text{Ca}^{2+}]_i\) back to resting values. With the restoration of resting \([\text{Ca}^{2+}]_i\) the different systems involved in the regulation of resting \([\text{Ca}^{2+}]_i\) would then progressively return to their basal activity (figure 53, top panel).

Although, several features in the regulation of resting \([\text{Ca}^{2+}]_i\) presented in this study (see Results section 7) are in agreement with Usachev and Thayer (1999b), the proposed model is still speculative since supporting evidence for some of the proposed aspects are still missing. Further experiments would be necessary to determine the nature of the \(\text{Ca}^{2+}\) influx and to demonstrate if it corresponds to a basal activation of SOCC. It would be necessary to characterise the channel type involved in the \(\text{Ca}^{2+}\) leak
from the ER. Experiments in which combined recording of \([Ca^{2+}]_i\) and \([Ca^{2+}]_c\) with Ca\(^{2+}\) indicators targeted to specific cellular compartments would provide valuable clues for a better understanding of this issue. Finally, molecular biological experiments would enable the characterisation of the proteins underlying the passive Ca\(^{2+}\) influx.

3. Mechanisms involved in the clearance of calcium

In order to determine the rates of Ca\(^{2+}\) clearance for the major systems involved in the regulation of \([Ca^{2+}]_i\), Ca\(^{2+}\) transients with similar peak values in control and in experimental conditions were compared. Figure 54 summarises the Ca\(^{2+}\) clearance rate as a function of \([Ca^{2+}]_i\) for PMCA, NCX and SERCA. The clearance rate in control was obtained from the best fit of the experimental data pooled from all Ca\(^{2+}\) transients recorded in control. For each clearance system the experimental data obtained in the presence of a particular inhibitor were pooled and fitted and the curves presented in figure 54 correspond to the inhibitor-sensitive component obtained after subtraction of the best fit in the presence of the inhibitor to the best fit in control.

In the present study the role of mitochondria in the regulation of rises in \([Ca^{2+}]_i\) was also determined and appears to be an important component of Ca\(^{2+}\) homeostasis particularly following large increase in \([Ca^{2+}]_i\) (see figures 24 and 27). However, because the analysis of the recovery from large rises in \([Ca^{2+}]_i\) was complicated by the multiphasic recovery induced by a functional mitochondrial Ca\(^{2+}\) release, the study was carried out in the absence of intracellular Na\(^{+}\) to reduce the contribution of mitochondria in the overall recovery process. Although in the absence of intracellular Na\(^{+}\), mitochondrial Ca\(^{2+}\) release was mostly inhibited, mitochondria still appear to be capable of sequestering Ca\(^{2+}\) and presumably to slowly release it at lower \([Ca^{2+}]_i\) when the net mitochondrial Ca\(^{2+}\) flux would be outward (see figure 28). Therefore, one needs to bear in mind that the overall clearance rate presented in figure 54 is mostly qualitative and might be underestimated since the mitochondrial contribution is not represented. The data collected in the present study would indicate that mitochondria have a dual effect, by releasing Ca\(^{2+}\) at low \([Ca^{2+}]_i\) and therefore delaying the recovery and sequestering Ca\(^{2+}\) at higher \([Ca^{2+}]_i\), and therefore accelerating the Ca\(^{2+}\) clearance.

At the lowest range of \([Ca^{2+}]_i\) and up to \(\approx 300\) nM, PMCA appears to be the major extrusion mechanism and to represent 75% of the overall Ca\(^{2+}\) clearance (see figures in
Figure 54: Summary of the calcium clearance in rat SCG neurones

(A) Plot of the clearance rate in control (black line) and for PMCA, SERCA and NCX as characterised in this study (see Results sections). The sum of the clearance rates is also represented (red dashed line) for comparison. The different curves represent the respective contribution of each clearance process (see Results sections for more details) and are represented against \([\text{Ca}^{2+}]_i\). (B) Summary of the respective contribution of each clearance mechanism at particular \([\text{Ca}^{2+}]_i\) (in percentage).
Results section 5 and figure 54). Surprisingly, the determination of the clearance rate for SERCA indicates that even close to rest, 25% of the overall Ca^{2+} removal from the cytosol is carried out via SERCA (see figure 54 and Table). However, after SERCA inhibition the decay time constant from small rises in [Ca^{2+}]_i (≈ 300 nM) was not significantly modified (see Tables 11 and 12 in Results section 4). One could suggest that this discrepancy arise from the activation of a Ca^{2+} influx following SERCA inhibition that might prolong the recovery compared to the control situation. On the other hand, following SERCA inhibition especially with CPA, the slow component of biexponential recoveries was prolonged compared with control (≈ 23 s in control versus 34 s in CPA see Table 11 in Results section 4) and could suggest Ca^{2+} sequestration at low [Ca^{2+}]_i.

With the increase in [Ca^{2+}]_i, the contribution of PMCA was still predominant (see Table in figure 54) but the contribution of both NCX and SERCA increased. Thus, at ≈ 800 nM, NCX and SERCA respectively account for ≈ 30% and 35% of the Ca^{2+} removal from the cytosol whereas PMCA contribute by ≈ 45% to the Ca^{2+} clearance (see figure 54). The rate of Ca^{2+} transport through PMCA is maximal and remains constant ≈ 100 nM s^{-1} for any further increase in [Ca^{2+}]_i. The plot of the clearance rate for PMCA suggests a half-maximal activation at [Ca^{2+}]_i ≈ 500 nM that is in agreement with the reported Ca^{2+} affinity for PMCA (K_d ≈ 500 nM). The Ca^{2+} extrusion through PMCA observed at higher [Ca^{2+}]_i, could be explained by the involvement of two different PMCA isoforms with different affinity for Ca^{2+}. Since, CaM binding to PMCA increases the Ca^{2+} affinity from 10-20 μM to 0.5 μM (Carafoli, 1994 and Carafoli & Stauffer, 1994), one could suggest the presence in SCG neurones of a PMCA isoform that would be active at higher [Ca^{2+}]_i, because of their lower affinity for Ca^{2+} and possibly in a CaM-independent manner. The predominant role for PMCA at low [Ca^{2+}]_i in SCG neurones (see Figure 35) is also in agreement with previous reports in other cell types (e.g. Benham et al., 1992 and Park et al., 1996). Interestingly this major role for PMCA in SCG neurones contrasts with the observation by Fierro and colleagues (1998) in rat cerebellar Purkinje neurones. These authors suggested that even for small increases in [Ca^{2+}]_i, the Ca^{2+} clearance would involve, to the same extent, both SERCA and NCX along with PMCA. It is surprising to consider that PMCA play only a minor role in the Ca^{2+} extrusion in rat Purkinje neurones, since immunocytochemical studies
have demonstrated a high level of expression of several PMCA isoforms (see Discussion in Fierro et al., 1998). This difference in the regulation of [Ca\(^{2+}\)]\(_i\) could be explained by the type of neurones, since functional differences in the regulation of [Ca\(^{2+}\)] were suggested between neurones from the central and the peripheral nervous system (see Kostyuck & Verkhratsky, 1995c for review).

Above [Ca\(^{2+}\)]\(_i\) \(\approx 800\) nM, the PMCA contribution to the overall Ca\(^{2+}\) clearance decreases to represent only \(\approx 23\%\) at [Ca\(^{2+}\)]\(_i\) \(\approx 1.5\) \(\mu\)M (see Table in figure 54). The determination of the role of SERCA in the regulation of [Ca\(^{2+}\)]\(_i\) indicates that Ca\(^{2+}\) store might be partially filled (\(\approx 80\%\) in sensory neurones, Shmigol et al., 1994b) and that above \(\approx 300\) nM the clearance rate increases linearly with the rise in [Ca\(^{2+}\)]\(_i\), since the SERCA contribution remains constant \(\approx 36\%\) (see figure 54). Such a result would imply that the net ER Ca\(^{2+}\) transport is constant and that SERCA are not saturated for [Ca\(^{2+}\)]\(_i\) up to 1.5 \(\mu\)M. This observation in SCG neurones is in agreement with the previously reported activity of SERCA in rat cerebellar Purkinje neurones that suggested no SERCA saturation in the micromolar range (Fierro et al., 1998). The determination of the Ca\(^{2+}\) handling by the intracellular stores suggested that, most of the Ca\(^{2+}\) released through RyR was re-sequestered into the ER and that there was a constant Ca\(^{2+}\) leak into the cytosol (see figures 29 and 30). Furthermore, the Ca\(^{2+}\) store is thought to be, at least, partially filled with Ca\(^{2+}\) (Pozzan et al., 1994; Garaschuk et al., 1997 and Usachev & Thayer, 1999b) and the SERCA activity to be inhibited by a high [Ca\(^{2+}\)]\(_i\) (Inesi & de Meis, 1989; Favre et al., 1996 and Mogami et al., 1998) presumably by the direct binding of calreticulin (John et al., 1998) or calnexin (Roderick et al., 2000). Therefore, it is tempting to consider that the constant clearance rate observed for [Ca\(^{2+}\)]\(_i\) \(\geq 500\) nM is the result of Ca\(^{2+}\) being released from and subsequently re-sequestered into Ca\(^{2+}\) store before being progressively extruded via NCX at high [Ca\(^{2+}\)]\(_i\), and through PMCA when [Ca\(^{2+}\)]\(_i\) decreases to lower levels.

In contrast, NCX becomes the predominant Ca\(^{2+}\) extrusion system for high [Ca\(^{2+}\)]\(_i\), and its contribution increases with [Ca\(^{2+}\)]\(_i\) (see figure 42). Thus \(\approx 60\%\) of the Ca\(^{2+}\) clearance rate appears to be mediated through this exchanger at [Ca\(^{2+}\)]\(_i\) \(\approx 1.5\) \(\mu\)M (see Table in figure 54). The increased contribution of NCX with the rise in [Ca\(^{2+}\)]\(_i\) is both in agreement with the reported Ca\(^{2+}\) affinity of the exchanger (K\(_d\) \(\approx 750\) nM; Philipson and Nicoll, 2000) and with the properties of an exchanger since the increase in [Ca\(^{2+}\)]\(_i\) is
expected to promote the efflux mode of NCX. Similar observations were reported in several other cell types and suggested that NCX activity is non-saturable at least in the range of physiological [Ca^{2+}]_i (Herrington et al., 1996; Fierro et al., 1998). The plot of the clearance rate suggests that PMCA and NCX work in parallel between 500 and 800 nM. This result is further supported by the observation that following PMCA inhibition, the rise in [Ca^{2+}]_i is limited via NCX activity whereas a Ca^{2+} influx forced by NCX working in the reverse mode is counter-balanced by Ca^{2+} extrusion through PMCA (see Results section 6 figure 43). These observations firstly indicate that NCX is capable, even at a slow rate, to extrude Ca^{2+} at [Ca^{2+}]_i as low as 300-400 nM and secondly emphasise the co-operativity of the different system involved in the regulation of [Ca^{2+}]_i. Thus, for a [Ca^{2+}]_i \approx 500 nM the control of [Ca^{2+}]_i is the most efficient since several system are simultaneously active (figure 54).

4. Clearance of depolarisation-induced calcium transients

The determination of the regulation of [Ca^{2+}]_i following depolarisation-induced Ca^{2+} transients has indicated that the mechanisms involved in the recovery would depend on the amplitude of the rise in [Ca^{2+}]_i. Since the critical [Ca^{2+}]_i, i.e. [Ca^{2+}]_i, at which the recovery switches from a monoexponential to a biexponential decay, appears to be \approx 500 nM, two different models are proposed to described the mechanisms involved in the regulation of [Ca^{2+}]_i. Although, [Ca^{2+}]_i is increased by the plasma membrane depolarisation, one might consider that the processes described for the maintenance of resting [Ca^{2+}]_i (see figure 53 above) might still be active in parallel to the processes involved in the recovery from Ca^{2+} transients.

4.1. Calcium clearance of small rises in intracellular calcium

Following a short depolarisation (60 ms in the presented experiments) that might correspond to a short train of action potentials, Ca^{2+} would enter the cytosol through VACCs and would be strongly buffered by cytosolic CaBPs so that only 1 out of 1000 Ca^{2+} ions would remain in the ionised form (see figure 21 and blue arrow in figure 55). With the rise in [Ca^{2+}]_i, the PMCA activity would be stimulated and Ca^{2+} extruded back into the extracellular medium (see figure 35, green arrow in figure 55 and in inset). Since, studies of the tissue distribution for PMCA suggested that isoform 1
and 4 would be responsible for the house keeping Ca$^{2+}$ regulation whereas isoform 2 and 3 would exhibit more specialised functions, one could proposed that the latter PMCA isoforms might be responsible for extrusion of Ca$^{2+}$ following the depolarisation. At this low [Ca$^{2+}$], as supported from the plot of the clearance rate illustrated in figure 54, PMCA appears to be the major clearance mechanism involved in the control of [Ca$^{2+}$] (see figure 35). It was further suggested that Ca$^{2+}$ extrusion through PMCA would start in parallel with the rise in [Ca$^{2+}$], (Tepikin et al., 1991, 1992). Since the mitochondrial uncoupling with protonophores accelerated the recovery from small Ca$^{2+}$ transients (see figure 26), one could suggest that at this low [Ca$^{2+}$], mitochondria might be active in the regulation of [Ca$^{2+}$]. Thus, following the rise in [Ca$^{2+}$], Ca$^{2+}$ would be sequestered into the mitochondria via mCU (see 1 in figure 55 and inset) and since at this low [Ca$^{2+}$], the net mitochondrial Ca$^{2+}$ flux is close to the set-point (≈ 200 nM as suggested from figure 24-A), Ca$^{2+}$ would be released from the mitochondrial matrix. With the Ca$^{2+}$ extrusion through PMCA, [Ca$^{2+}$], would decrease and less Ca$^{2+}$ would be sequestered into the mitochondria so that the [Ca$^{2+}$] in the matrix would progressively return to the resting level. Surprisingly, the removal of intracellular Na$^{+}$ in SCG neurones did not affect the recovery of these small Ca$^{2+}$ transients suggesting the involvement of a Na$^{+}$-independent mechanism (see figure 28). Murchison and colleagues (2000) as well as Montero and colleagues (2000) suggested that Ca$^{2+}$ could be released under physiological condition either via mCU working in the reverse mode (Murchison et al., 2000) or the MPTP (see 2 in figure 55). It is therefore tempting to propose that such a mitochondrial Ca$^{2+}$ release might occur in SCG neurones. However, this is only speculative since further experiments using selective inhibitors for mCU and/or MPTP would be necessary to confirm this assumption.

4.2. Calcium clearance of large rises in intracellular calcium

For larger rise in [Ca$^{2+}$], that would correspond to prolonged cellular stimulation, [Ca$^{2+}$], would rise in the micromolar range and invade the cytosol. Since the Ca$^{2+}$ influx through VACCs is larger, the endogenous buffer might be partially saturated and therefore the amount of free cytosolic Ca$^{2+}$ would increase (4/1000 from figure 21; blue arrow in figure 56). During the rising phase of the Ca$^{2+}$ transient, Ca$^{2+}$ would be
Figure 55: A model for the calcium clearance from small rises in intracellular calcium

Representation of the different mechanisms involved in the recovery from small Ca\(^{2+}\) transients (<500 nM). The inset represents a typical Ca\(^{2+}\) transient elicited by a 60 ms depolarisation step from -60 mV to 0 mV. The arrows symbolise either Ca\(^{2+}\) influx/release (upward arrows) or Ca\(^{2+}\) clearance (downward arrows).

N-Type voltage-activated Ca\(^{2+}\) channels (N-Type VACCs); cytosolic Ca\(^{2+}\) binding proteins (CaBPs); cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]); plasma membrane Ca\(^{2+}\)-ATPase (PMCA, endoplasmic reticulum (ER); sarco/endoplasmic Ca\(^{2+}\)-ATPase (SERCA); mitochondria (Mit); Ca\(^{2+}\) uniporter (mCU); mitochondrial permeability transition pore (MPTP); mitochondrial Na\(^+\)/Ca\(^{2+}\) exchanger (mNCX) and plasma membrane Na\(^+\)/Ca\(^{2+}\) exchanger (NCX).
primarily sequestered into mitochondria via the mCU activated through the rise in [Ca\(^{2+}\)], (see figure 24, 23 and 1 in figure 56) that would both limit the rise in [Ca\(^{2+}\)], and promote Ca\(^{2+}\) clearance. The high [Ca\(^{2+}\)], would activate both Ca\(^{2+}\) extrusion through NCX (figure 42-C and violet arrow in figure 56) and Ca\(^{2+}\) sequestration into the ER via SERCA (figures 31-C, 32-C and orange arrow in figure 56). At these high [Ca\(^{2+}\)],, PMCA would only play a minor role in the Ca\(^{2+}\) extrusion. (figures 37, 38 and green arrow in figure 56). Since SCG neurones posses functional ryanodine-sensitive stores that have been shown to be at least partially filled, one might suggest that the Ca\(^{2+}\) influx or the high [Ca\(^{2+}\)], would trigger a Ca\(^{2+}\) release, also known as CICR, from the intracellular stores via ryanodine receptors (RyR). However, from the experimental data there is no evidence for such a mechanism. Nevertheless, one could propose that, although Ca\(^{2+}\) store contain Ca\(^{2+}\), the intracellular stores need to be saturated with Ca\(^{2+}\) in order to enable Ca\(^{2+}\) release similarly to the situation observed in most central neurones (Shmigol et al., 1994b). The fact that SERCA or RyR inhibition had only little effect on the properties of large Ca\(^{2+}\) transients (see figure 37 and 38) suggesting the absence of CICR-like process in SCG neurones is surprising since in rat sensory neurones CICR was triggered for rise in [Ca\(^{2+}\)], \(\approx 200\) nM (Usachev & Thayer, 1997). With the decrease in [Ca\(^{2+}\)], the NCX contribution in the overall Ca\(^{2+}\) clearance would be progressively reduced to be close to zero for [Ca\(^{2+}\)], below 500 nM (see figures 42, 43 and 54). On the other hand, PMCA would progressively become the major Ca\(^{2+}\) extrusion system (see figures 35 and 54) while SERCA would still take part in the reduction of [Ca\(^{2+}\)], by sequestering Ca\(^{2+}\) (see figures 31, 32 and 54). As [Ca\(^{2+}\)], reaches \(\approx 200-300\) nM, NCX would be inactive, SERCA at its basal activity and PMCA would be the only Ca\(^{2+}\) clearance system in operation (see inset in figure 56). However, the net mitochondrial Ca\(^{2+}\) flux would now be outward (see figure 24 and 25) and Ca\(^{2+}\) would be primarily released from mitochondria through the mitochondrial NCX (mNCX; 2 in figure 56). Typically, this mitochondrial Ca\(^{2+}\) release would induce a prolonged plateau phase that would delay the recovery as PMCA progressively extrude the Ca\(^{2+}\) released from the mitochondrial matrix. The recovery from small Ca\(^{2+}\) transients suggested the involvement of a Na\(^{+}\)-independent mitochondrial Ca\(^{2+}\) release (see General Discussion section 4.1), therefore one might propose that at low [Ca\(^{2+}\)], a similar mechanism
Figure 56: A model for the calcium clearance from large rises in intracellular calcium

Representation of the different mechanisms involved in the recovery from a large Ca\(^{2+}\) transients (>500 nM). The inset represents a typical Ca\(^{2+}\) transient elicited by a 500 ms depolarisation step from -60 mV to 0 mV. The arrows symbolise either Ca\(^{2+}\) influx/release (upward arrows) or Ca\(^{2+}\) clearance (downward arrows).

N-Type voltage-activated Ca\(^{2+}\) channels (N-Type VACCs); cytosolic Ca\(^{2+}\) binding protein (CaBPs); cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]); plasma membrane Ca\(^{2+}\)-ATPase (PMCA); endoplasmic reticulum (ER); sarco/endoplasmic Ca\(^{2+}\)-ATPase (SERCA); ryanodine receptor (RyR); Ca\(^{2+}\) induced Ca\(^{2+}\) release (CICR); mitochondria (Mit); Ca\(^{2+}\) uniporter (mCU); mitochondrial permeability transition pore (MPTP); mitochondrial Na\(^+\)/Ca\(^{2+}\) exchanger (mNCX) and plasma membrane Na\(^+\)/Ca\(^{2+}\) exchanger (NCX).
might exist during the recovery of larger Ca\(^{2+}\) transients. With [Ca\(^{2+}\)]\(_r\), close to its resting value all the components of Ca\(^{2+}\) homeostasis would be back to their basal activity.

5. Conclusion

For more simplicity, two separate Ca\(^{2+}\) clearance processes depending on the amplitude of the rise in [Ca\(^{2+}\)]\(_r\), have been considered and the involvement of each mechanism has been described sequentially. However, Ca\(^{2+}\) homeostasis is a dynamic process and the different systems would operate simultaneously and only the net effect would be observed.

One of the major results described in the present study is the predominant role for PMCA in both the regulation of resting [Ca\(^{2+}\)]\(_r\), but more importantly in the Ca\(^{2+}\) clearance for [Ca\(^{2+}\)]\(_r\), rises as high as 500 nM. Another important observation is the presence in SCG neurones of an passive Ca\(^{2+}\) influx that appears to be both involved in the maintenance of resting [Ca\(^{2+}\)]\(_r\), and in the ‘refilling’ of the Ca\(^{2+}\) store. This result appears even more important since, in neurones, only one other study has described such a passive Ca\(^{2+}\) influx at rest (Usachev & Thayer, 1999b). In agreement with numerous studies in peripheral neurones, the characterisation of the Ca\(^{2+}\) clearance via NCX confirms that this exchanger is only substantially active for rises in the micromolar range (≥1 µM). However, the characterisation of the NCX contribution to the Ca\(^{2+}\) clearance has indicated that this exchanger is capable of substantial Ca\(^{2+}\) extrusion at low [Ca\(^{2+}\)]\(_r\), (< 500 nM) particularly when PMCA is inhibited. Such a result supports the concept that a system normally inactive at a particular [Ca\(^{2+}\)]\(_r\), could be activated to compensate the inactivation of another. Finally, the determination of [Ca\(^{2+}\)]\(_r\), regulation by mitochondria further supports the growing evidence for a primordial mitochondrial role in Ca\(^{2+}\) homeostasis in neurones at physiological [Ca\(^{2+}\)]\(_r\).

In conclusion, this study emphasises the complexity of Ca\(^{2+}\) homeostasis and demonstrates the co-operativity and complementarity of the mechanisms involved in the regulation of [Ca\(^{2+}\)]\(_r\), to ensure the strict control of the level of free Ca\(^{2+}\) in a cell. Such a precise control and regulation of [Ca\(^{2+}\)]\(_r\), would be a prerequisite for allowing a cell to integrate the relevant information from its environment and to relay them into the different intracellular organelles to enable an adequate cellular response. The idea of a
tight regulation of [Ca2+], appears even more relevant in neurones where Ca2+ responses need to be restricted to specialised compartment in order to provide efficient coding of the synaptic inputs. Disturbances in the Ca2+ handling are known to have dramatic consequences for the cellular activity and on a larger scale to impair the normal functions of an organism (see Missiaen et al., 2000 for review). The characterisation of the different actors involved in Ca2+ homeostasis and the better understanding of their interaction to control [Ca2+], would probably result in a better comprehension of the pathology caused by a deficient regulation of Ca2+ homeostasis.

6. Future directions

From the results presented throughout the present study, the major components of Ca2+ homeostasis involved in the regulation of [Ca2+], have been described. The overall recovery process can be dissected into three principal components: one representing the Ca2+ buffering, the second corresponding to the extrusion processes mainly through PMCA and the third involving intracellular organelles (mitochondria and Ca2+ store). Using experimental data describing the clearance rates of the different Ca2+ regulatory processes, a mathematical model could be developed to determine if they are sufficient to account for the time course of the recovery from weak and strong stimuli. Further, such analytical study would enable a better understanding of the interactions between the mechanisms that control [Ca2+], and also to describe how the defect of one of these systems would perturb Ca2+ homeostasis.

From the present work, several questions have arisen, which focuses firstly on the regulation of the expression of the systems involved in Ca2+ homeostasis and in the involvement of intracellular organelles in the control of [Ca2+].

- Regulation of PMCA expression and activity?

The level of expression of PMCAs has been shown to change during development (Guerini et al., 1999). Therefore, it would be interesting to determine, in SCG neurones, how the expression of PMCA varies during cellular activity and with ageing and how eventual modifications would affect the regulation of [Ca2+]. Such a study could be carried out by combining functional recording of [Ca2+], regulation with molecular biological experiments and particularly single cell PCR. Since, numerous
neurodegenerative diseases, especially motoneurones diseases, are caused by perturbations of \(\text{Ca}^{2+} \) homeostasis. The results obtained in such investigation might help to understand the modifications that occur during neurodegeneration and could allow the development of new therapy.

PMCA is a highly regulated protein particularly through acidic phospholipids and long-chain polyunsaturated fatty acid as well as by phosphorylation processes and CaM. The mechanisms underlying such a regulation of PMCA activity could be determined by investigating how intracellular transducing pathways would modify \(\text{Ca}^{2+} \) clearance through PMCA-dependent mechanisms. Preliminary results (Marsh & Wanaverbecq, unpublished observations and see Benham et al., 1992) have indicated that CaM inhibition with calmidazolium induced both a rise in \([\text{Ca}^{2+}]_i\) and a delay in the \(\text{Ca}^{2+} \) clearance. Further, experiments would allow determining which mechanisms are involved in this regulatory process with a particular attention given to the activation of muscarinic receptor expressed in SCG neurones.

- Calcium clearance through the mitochondria at low \([\text{Ca}^{2+}]_i\)?

The results presented for the mitochondrial regulation of \([\text{Ca}^{2+}]_i\) suggested the involvement of a \(\text{Na}^+ \)-independent \(\text{Ca}^{2+} \) release at low \([\text{Ca}^{2+}]_i\). This result would be in agreement with earlier work (Petronilli et al., 1999; Murchison & Griffith, 2000 and Montero et al., 2000). It would be interesting to investigate further this mechanism especially by using specific inhibitors of \(\text{mCU} \) and of PMTP to demonstrate their possible involvement in the observed \(\text{Ca}^{2+} \) release.

- Calcium-induced \(\text{Ca}^{2+} \) release?

Although SCG neurones posses strong caffeine-sensitive response and have been shown to express functional RyR, no experimental evidence are available for a CICR mechanism. Cyclic ADPr has been proposed to correspond to the endogenous agonist of RyR and to be able to potentiate \(\text{Ca}^{2+} \) release from intracellular stores. Higashida and colleagues showed in neuroblastoma cells NG108-15 that adrenergic and muscarinic receptors were capable of activating ADP-rybosyl cyclase and to potentiate CICR (Hashii et al., 2000 and Higashida et al., 2000). Since SCG neurones express both muscarinic and adrenergic receptors along with functional RyR, it would be interesting to study the role of cADPr in \(\text{Ca}^{2+} \) regulation. Firstly, the effects on \(\text{Ca}^{2+} \) release of
cADPr injection into the neurones cytoplasm could be determined. Secondly, the presence of a functional transducing pathway from the receptor activation to the production of cADPr could be investigated. Finally, it has been suggested that neurones in culture would exhibit different properties than in situ that might explain the absence of CICR process in dissociated SCG neurones. Therefore, a study using recording from neurones in SCG slices could be carried out to determine if the absence of CICR in the presented data might be due to the down regulation of functional transducing pathways by lack of synaptic input.

• Resting free Ca^{2+} concentration?

The data presented in Results section 7 indicated that resting $[\text{Ca}^{2+}]_i$ is partly maintained by a Ca^{2+} influx through the plasma membrane that exhibit characteristic related to SOCC. Therefore, further experiments would be necessary to determine the nature of the channel mediating the observed passive Ca^{2+} influx and the mechanisms involved in their regulation. Members of the TRP channels (TRP3, Boulay et al., 1999; Kiselyov et al., 2000) have been suggested to mediate a store-operated Ca^{2+} influx but also to be activated by several other messengers (see Clapham et al., 2001 for review). Therefore, it would be interesting to determine using PCR analysis if TRP channels are expressed in SCG neurones and if they are involved in the passive Ca^{2+} influx observed at rest. Secondly, the mechanisms by which these channels are regulated would be investigated.

The work presented in this thesis was supported by the UK Medical Research Council and the Wellcome Trust.
Chapter V

References

239

KHODOROV, B., PINELIS, V., VERGUN, O., STOROZHEVYKH, T., FAJUK, D., VINSKAYA, N.,
external alkalinity on neuronal calcium recovery following a short-duration glutamate challenge: the role

cultured cerebellar granule cells challenged with glutamate. Mol. Pharmacol. 45, 1050-1054.

KISELYOV, K., XU, X., MOZHAYEVA, G., KUO, T., PEASAH, I., MIGNERY, G., ZHU, X.,
BIRNBAUMER, L. & MUALLEM, S. (1998). Functional interaction between InsP3 receptors and store-
operated Htrp3 channels. Nature 396, 478-482.

Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol. Cell 6, 421-
431.

permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing.
Neuron 10, 491-500.

KOSK-KOSICKA, D. & BZDEGA, T. (1988). Activation of the erythrocyte Ca\(^{2+}\)-ATPase by either self-
association or interaction with calmodulin. J. Biol. Chem. 263, 18184-18189.

signalling in the nervous system, eds. KOSTYUK, P. & VERKHRATSKY, A., pp. 1-38. New York: John
Wiley & Son,Inc.

signalling in the nervous system, eds. KOSTYUK, P. & VERKHRATSKY, A., pp. 39-57. New
York: John Wiley & Son,Inc.

nerve cells. In Calcium signalling in the nervous system, eds. KOSTYUK, P. & VERKHRATSKY, A.,

Biochem. 8, 119-174.

regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619-642.

KUBA, K. (1980). Release of calcium ions linked to the activation of potassium conductance in a

types of ryanodine receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and
cardiac muscle type in various neurons. Neuron 9, 1133-1142.

resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr\(^{2+}\) and Ba\(^{2+}\) of
agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J.
Biol. Chem. 265, 678-684.

Kidney Int. 53, 296-301.

Pflugers Arch. 425, 499-505.

Brain Res. 854, 139-151.

Cell Calcium 9, 1-7.

Basic. Res. Cardiol. 92(1), 25-35

J. Gen. Physiol. 112, 593-609.

J. Physiol. Lond. 450, 273-301.

Neuropharmacology 34, 1423-1442.

NICHOLLS, D.G. (1978a). The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria.

Science 250, 562-565.

J. Biol. Chem. 271, 24914-24921.

J. Biol. Chem. 274, 910-917.

253

