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ABSTRACT

This thesis reports the application of real time prediction and
control techniques to mitigate problems caused by the motions of
compliant marine structures.

Simulations and real ship motion data are used to assess an
adaptive predictor. Practical points such as the appropriate
choice and modification of forgetting factors, selection of
sampling interval, effectiveness of concatenation and recursion
of the Diophantine equation to generate multistep predictions are
highlighted. Such aspects are vital to applications but hard to
derive from theory. Ship motion data is used to assess the
predictor as an operator guide. The predictions are shown to be
useful in reducing waveoffs and crashes in VTOL operations at
sea.

A predictor/controller system for crane barge loading operations
in rough seas with constraints on control is developed using
optimal control and a novel arrangement of model based predictive
control (MBPC) techniques. The importance of constraints is
emphasized and the MBPC techniques are shown to offer an
efficient method of dealing with constraints.

Frequency domain techniques are used to design a motion
suppression controller for a pneumatic semisubmersible - the
exorbitant demanded control inputs shows the engineering
impracticality of such a scheme.

Significant nonlinearities in the dynamical equations of offshore
structures can under regular excitation give rise to disturbingly
large subharmonic or chaotic motions. The prediction of incipient
bifurcations is shown to be equivalent to very accurately
identifying evolving eigenvalues migrating towards an instability
boundary. The practical feasibility of detecting the precursors
to a bifurcation is illustrated with simulations and experimental
data from a fishtailing tanker. The non robustness of subharmonic
behaviour in the presence of random inputs 1is vividly
demonstrated using simulation.
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Chapter 1 Introduction

1.1 Trends in Offshore Structure Design

With the advent of newer types of offshore structures designed
for deep waters and hostile environments increasing emphasis has
been placed on the dynamical behaviour of offshore structures.
Early practice was largely limited to the design shallow water
0il production platforms such as steel or concrete gravity
structures using principally static methods of analysis. The
design of ocean structures like that of ships has been based
partly on empirical codes and rules that rely on well learnt past
experiences. The major concern in the design of an offshore
structure is to ensure that the natural period of vibration is
distinct from the period of expected waves (Langewis 1986) . The
severe limitations of designs based on linear models in possible

operational situations was not fully recognized.

In recent years to exploit new oil and gas finds the offshore
industry has been moving into deeper waters and more hostile
environments . In addition the exploitation of marginal fields
implies the concept of transportable production facilities.
Operation in deeper waters results in larger dynamic and static
loads, and a lengthening of the natural vibration period of the
structure. The choice of a particular design for the platform is
determined by economic factors that translate into weight
considerations during the manufacture of the structure. The use
of fixed steel jacket production platforms in the deeper waters
is uneconomic considering the amount of stiffening required to
provide satisfactory structural stability and fatigue 1life.
Concrete gravity structures with their "roots" in shallow water,
were originally designed for heavy payloads in shallow waters and
are similarly unsuited for deep water. Advanced deep water off-
shore production facilities have been forced to adopt a compliant
nature (Chou et al (1983)). These structures are not fixed
rigidly to the sea bed. The structures aim to reduce the working

14



stresses by moving in a compliant, yielding manner with the waves
and current. Large displacements are a feature of compliant
structures such as tension leg platforms (TLP) , moored
semisubmersibles and articulated mooring tower. The large working
displacements imply that the dynamics can be expected to be
inherently nonlinear. Indeed assumptions of near linearity are
often inadequate for a reasonable prediction of extreme response
(Thompson et al (1984a).

The size of some of these compliant structures is impressive ;
the Hutton tension leg platform (TLP) for example weighs about
50,000 tonnes with a deck larger than a football pitch. The
magnitude of these structures implies that even small
improvements in the design may give large savings in construction
costs. In a passive design if predicted displacements caused by
environmental and operational loads are too large it is usual to
reduce the coupling between force and structure by a change of
geometry or to increase the stiffness of the structure to raise
the natural frequency above the excitation frequency.

1.2 Active Control for Motion Suppression

The requirements to operate in deeper and hostile environments
has led to the development of slender structures where the
passive approach to motion suppression may be inadequate. An
active or feedback control system (Horowitz (1963), MacFarlane
and Limebeer (1981)) can offer an attractive alternative to
conventional designs to ensure adequate dynamical behaviour
(Jefferys and Mavrommatakis (1984)). In a feedback control scheme
the three functions of measurement computation of control force
and force generation are separated, Figure 6.1. An actuator
applies forces to counteract the displacements caused by
environmental external forces or disturbances. The actuator
forces depend on measured structural displacements and velocities
and are chosen to take account of the structural dynamics and the
costs and benefits of motion suppression. The structural control

problem posed in the ocean engineering field arises partly
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because of the lightly damped dynamics of the structure and
primarily because of the uncertain exciting wave and wind force
disturbances of changing sea states and weather. In a real sense
it is the random disturbances that cause the control problem and
the nature of the disturbances has a direct influence on the
difficulty of control. Feedback is an effective means of coping
with uncertainty such as uncertain disturbances, dynamic

parameter variations and nonlinearities.

The benefits of active control systems are widely recognized in
the aerospace industry. The Lockheed Tristar for example uses
wing tip accelerometers to control ailerons to minimise wing root
bending stresses and hence extend the structures fatigue life
with negligible weight penalty. There has been some work in the
onshore civil engineering field on the control of bridges and
buildings (Leipholz 1980).

Dynamic ship positioning (Grimble et al (1980)) is a well known
example of the use of feedback control in the ocean engineering
field. Thrusters control mean position more conveniently and
cheaply than could a passive mooring system, since conventional
moorings or anchors are not required and no costly delays are
incurred due to laying and retrieving anchors. In this problem
the system dynamics need only be known to optimise the removal
of the wave frequency motions from the position signal. Only the
low frequency motions are suppressed since the thrusters have
insufficient power to overcome the high frequency wave forces.
The control of zero or low frequency motions of rig ships,
submarines is an active and mature field that could possibly be
improved by the adoption of adaptive techniques. Linfoot et al
(1982) consider control systems to suppress the low frequency
motions of single point moored (SPM) vessels.

Rapid advances in microprocessors and control theory make it
possible to implement sophisticated controllers cheaply and
easily. Part of the work in this. thesis was to investigate

suppression of motions at low and wave frequencies. Both the
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compliant and stiff modes of compliant structures and the slowest
modes of stiff structures offer potential applications and will
result in lower fatigue damage and/or wider operating windows.
General design tools and techniques for the active and adaptive

control of marine structures are investigated.

1.3 Adaptive Motion Prediction

Intimately related to the problem of control is the problem of
predicting the motions of wave driven compliant structures . A
reliable predictor of the future motion of a ship or barge under
the influence of random wave and wind forces would have a variety
of applications in the control of aircraft or helicopter landing,
cargo transfer aboard ships, structural installation and
floating crane operations in rough seas. For example the safe
landing of aircraft on board small vessels is a most delicate
phase of flight operations at sea. If predictions of the future
motion of the vessel were known within reasonable error bounds
one could expect a significant improvement in touchdown windows
and a reduction in the number of waveoffs. Much of the previous
work in this area (Sidar and Doolin (1983), Lincoln (1983),
Triantafyllou (1982)) has assumed that an accurate model of the
vessel dynamics is known and furthermore that a differential
equation representation of the exciting force spectrum exists.
The ships equations of motion are transformed to state space form
and a Kalman filter implementation is used to gJgenerate
predictions. Details of the exciting force spectrum depends on
the wave directionality, orientation and speed of the vessel.
Even when the directional wave spectrum is known it is not simple
to evaluate the spectrum of the exciting force and hence derive
a differential equation model (Maciejowski (1983)). An adaptive
approach (Goodwin and Sin (1984)) to the prediction problem is
clearly warranted because of the time varying dynamics and random

disturbances.

In this thesis the problem of time series prediction (Box and
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Jenkins (1976)) is formulated as an analogous problem to that of
designing a minimum variance self tuning controller (Astrom and
Wittenmark (1973)). The predictors abilities are assessed and
possible uses of predictions as an operator guide and methods of
direct incorporation of predictions within a control loop are

developed.
1.4 Prediction of Extreme Responses

The inherent nonlinear nature of the dynamics of compliant
structures has been indicated above, and can lead to dangerous
large extreme motions caused by nonlinear resonance phenomenon
(Thompson (1983), Thompson et al (1984a)). There is a real
possibility of large subharmonic resonances with regular wave
forcing at a fraction of the natural period of the structure. The
prediction in real time of these extreme responses is of obvious
topicality since for marine structures limits to operation are
typically set by the expected maximum excursion and not the
average displacement. The presence of subharmonic behaviour and
chaotic dynamics was not widely recognized by design engineers,
since traditional training places emphasis on linear systems in
which unique solutions are normal. Furthermore computer
simulations can give misleading information unless the engineer
is aware of the complexities of nonlinear dynamics.
Traditionally operators assume that the maximum value to be
expected 1is proportional to the mean square of the exciting
force, and cease activity when the average excitation exceeds
some threshold based on theory or experience. However structures
can respond strongly to seas with particular directional or
frequency characteristics and the use of mean excitation would
give a drastically conservative estimate of the peak excursion
to be expected. Previous work on predicting incipient jumps to
resonance (Virgin (1986b), Bishop et al (1986), Wiesenfeld
(1985)) assume idealized systems subject to regular forcing at
a discrete sequence of control parameter values as the system
approaches the bifurcation. The problem which then reduces to a

system identification problem is easy. In this thesis the use of
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system identification techniques to track nonlinear systems
evolving towards a bifurcation in the presence of noise are

evaluated.
1.5 An Outline of the Thesis

This thesis is concerned with how real time prediction and
control techniques can be used to mitigate the problems caused
by the motions of compliant marine structures subject to random
wave and wind forces. The structure of the thesis is outlined

below

Chapter 2 The question of why a random signal can be predicted
and the inherent assumptions is addressed. The general theory of
linear prediction is developed from a state space viewpoint and
the algorithmic details of the Kalman filter and prediction from
state space models is reviewed. The Autoregressive Moving Average
(ARMA) based representation is derived and shown to be equivalent
to a canonical representation of the Kalman filter in an
innovations form. Various control interpretations of the

prediction problem are given.

Chapter 3 The important areas of system identification and in
particular parameter estimation are highlighted. The
relationships between the well known recursive least squares
(RLS) and extended least square(ELS) to Kalman filtering is
shown. Theoretical modifications necessary for adaptive systems
are discussed with particular relevance being given to variable
forgetting factor schemes. The self tuning predictor is

introduced and a proof of optimality given.

Chapter 4 Simulations of various test signals are used to assess
the self-tuning predictor and gain practical "insights" into
bettering the quality of predictions. The use of model structure
tests is shown and their shortcomings illustrated. The practical
usefulness of variable forgetting factors with noisy signals is

also investigated.
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Chapter 5 Real ship motion data is used to give the self-tuning
predictor a sterner test than the previous simulations. The
possibility of using auxiliary inputs and nonlinear functions of
past roll history are explored. The usefulness of the predictor
algorithm as an operator guide to assist in helicopter landings
is evaluated. A simple test isnpresented for linearity and an

algorithm is suggested for further work.

Chapter 6 The state space model of a conventional semisubmersible
with pneumatic heave suppression cans 1is derived and a
suppression controller is developed in the frequency domain. The
practical feasibility of the scheme is assessed . The use of
predictions in a control scheme is explored and an optimal
prediction formulation is given for a crane-barge loading system.
The importance of constraints is émphasized and a model based
predictive scheme is introduced as an efficient control design
strategy that can incorporate constraints in a transparent

manner.

Chapter 7 The richness of nonlinear systems is illustrated. The
presence of significant nonlinearities in the dynamical equations
of offshore structures can under regular sinusoidal excitation
give rise to disturbingly large subharmonic or chaotic motions.
System identification techniques together with ideas from
catastrophe and bifurcation theory are used to predict incipient
dangerous excursions of compliant marine structures subject to
regular forcing. An experimental study of a fishtailing tanker
illustrates further some of the developments.

Chapter 8 The persistence of the subharmonic motions of the
nonlinear marine structures subjected to various types of random
forcing is examined. Time domain simulations of the equations
of motion are used to explore the response of the nonlinear
systems to random inputs. The prevention and control of the
bifurcational behaviour of a system to nonbifurcational behaviour
is discussed and a methodology suggested.
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CHAPTER 2 Linear Models and Prediction

2.1 Introduction

The desire to predict the future is the universal driving force
behind the search for laws that explain the behaviour of both man
made and natural systems, (Whittle 1984). Examples include the
anticipation of financial stocks and shares, to forecasting the

weather.

The ability to predict the future evolution of a given system

depends on two types of knowledge. "White" knowledge that 1is
based on rigorous models of the underlying physical laws of the
phenomena is the first and most powerful type of knowledge. Such
knowledge can be expressed in the form of equations that can in
principle be solved. Given the initial conditions ,to infinite
accuracy for chaotic systems (Lorenz 1964),the future can be
completely predicted. The construction of an accurate rigorous
can model can however be extremely difficult for most real
physical phenomenon and impossible for many more. Recourse must
often be made to approximations, that lead to a "tractable"

model.

The second approach is the "Black Box" method, that relies on the
elucidation of strong empirical regularities in the observations

of a system.

To introduce the basic concepts involved in prediction it is
instructive to consider the prediction problem first in a

deterministic framework.
2.2 Prediction in a State-Space Framework

The essential feature of the response of a dynamical system
(Derusso et al 1965,Rosenbrock 1970) to an input is that its
present Dbehaviour is influenced by its past history when
generating an output. In the standard form of differential
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equation descriptions an extra set of variables is used to take
account of the past history of the system; these are the so
called state variables of the dynamical system. Such state space
descriptions are commonly used in modern control theory (Dorf
1980) in which the basic form of description of a dynamical
system is comprised of relationships between three sets of system
variables : 1input, output and state variables. The state
variables are functions of themselves and the input variables,
that is the values of the state variables are associated with
sets of functions of time which define the past behaviour of the

inputs and of the states.

If the elements of the input vector u € R!, is a set of input
variables and the set of state variables is given by the
elements of the vector x € R® , then using integration as the
simplest possible functional relationship in which to express the
present in terms of the past, the j th state variable may be

found as

x;06) = [“o;(x,u 0)dt (2.1)

Where the set of functions ¢; define the nature of the system

dynamics as summarised in the current values of the states.

Equation (2.1) clearly implies that the state variables satisfy

a set of first order differential equations

x;(t) = (x,u,t) F=1,...n (2.2)

Surprisingly most (Derusso 1965) physical systems can be
described with a simple form of ¢; in which the effects of the
states and inputs are separated. Indeed modern controller design
depends heavily on this separation in the design of algorithms.
Equation (2.2) can then be written as

x;(t) = £5(x,t) + g,(u,t) j=1,...n (2.3)
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To complete the standard state space model an output vector y €
R" is obtained from the set of input and state variables as

yv;(€) = A;(x,u,t) i=1,...m (2.4)

Once again in most real systems the effect of the states and

inputs can be separated to yield

y;(t) =0,(x,t) + p,;(u,t) i=1,...m (2.5)
The standard state space model then takes the form

x(t)
y(t)

f(x,t) + g(u, t) (2.6)
0(x,t) + plu, t)

Il

Where f,g,6 and u are vector functions of the appropriate

dimensions.

Restricting analysis to linear systems (Kalman 1963) the state

space model assumes the form

x(t) = A(t)x(t) + B(E)u(t)
y(t) = C(t)x(t) + E(t)u(t)
Where (2.7)
x(t) € R™ A(t) € Rr:
u(t) e r1 B(t) € rnxl
y(t) € R™ c(t) € Rmxn

E(t) € rRmxl

For time invariant systems further simplification is possible

x(t)
y(t)

Ax(t) + Bu(t) (2.8)
Cx(t) + Eu(t)

here (A,B,C,E} is a set of constant matrices. For linear systems
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the state vector is not a unique set of variables and in fact any
set related by a nonsingular linear transformation (Luenberger
1967) of the form

x/(t) = P x(t) (2.9)

gives an equivalent input-output description. The matrix A is the
dynamical or state map and represents the internal physical
mechanism by which the state evolves and by which energy is
converted and dissipated within the system. Matrix B is the
input or actuator map and represents how the system is affected
by the environment. The matrix C is the output or sensor map and
represents the way in which information about the system is
conveyed to the environment. Finally matrix E is the direct
coupling between input and output, in the sequel E.is assumed
zero, since for mechanical systems such direct coupling is

physically unlikely.

Once a state space realization of the dynamical behaviour of a
system has been found the prediction problem is then equivalent
to finding a solution to the matrix differential equation. The

solution to (2.7) can be shown to be (Derusso 1965)

x(t)

[X(6) X (€)1 x(£g) + [ X(6) X7 (x) B(v) u(s) o
to (2.10)

y(t) = C(t)x(¢t)

Where X(t) 1is a fundamental matrix containing a basis set of n
linearly independent solution vectors as its columns. From the
independence of the solution vectors, X(t) is always of full rank
and thus possesses an inverse X! (t) defined at all times

Defining the transition matrix and rewriting equation (2.10)

P(t,T) X(t) X ()

(2.11)
@(t,t,)x(t) + [ ®(t,1)B(v)ult)dr

to

x(t)

for the linear time invariant system the fundamental matrix is
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given by

X(t) exp (At)

A2t2 (2.12)
21

il

I+ At +

This follows since

d _
—¢ [exp (At)] = A exp (At) (2.13)

exp (A.0) =T

Equation (2.10) may therefore be written as

x(t) =[exp A(t-¢t,)) 1x(¢t,) + fl:exp[A(t—t)] Bu(t) dt
to (2.14)

y(t) =C x(¢t)

Where x(t,) is the initial wvalue of the state. The physical
interpretation of the input-output relationship can be seen if

the input is considered as a stream of impulses.

An impulse input of magnitude o at time 7

u(t) = a 6(t-1) (2.15)

causes a discontinuous state jump of amount

x(t+) - x(tv-) = Ba (2.16)
So that if the impulsive input is applied to a quiescent system
it will kick the state from zero to Ba , the subsequent motion

will therefore be the same as would result from the release from

an initial state wvalue

x(t) = Ba (2.17)

The evolution of the state is using the transition matrix

x(t) = expl[A(t-T)].Ba
(2.18)
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In the limit form an impulsive stream of inputs starting at t=0

can be represented as

u(t) = f;tu(t)é(t—t)d‘r (2.19)

It is clear then that the output consists of a free motion part

Yereo = C €Xp[A(E-ty) 1 x(¢)) (2.20)

and a forced motion part

Veorcealt) = C [ " explalt-r)]Bu(s)ds (2.21)

which is the limiting sum of responses from the set of initial
conditions into which the impulse input stream successively kicks

the system.

Equation (2.14) shows that given the state vector at any
particular time, and the sequence of future inputs one can
extrapolate and determine the future evolution of the state

vector and hence the output y(t).

If for example u(t) is a zero mean white noise process (Papoulis
1965) which by definition is completely unpredictable, and the
state at time t is x(t) then it follows that the only predictable
part of the output and state evolution is given by the free

motion term as

x(t + T/t) exp [A(T) ] x(t)

(2.22)

y(t + T/t) C x(t+T/t)

For a deterministic system in free motion, the future motion would
be uniquely determined by the actual value of the state.

As an illustrative example consider the prediction of the output

of the forced second order oscillator
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Y (£) + wly(t) = £(¢t) (2.23)

Where f(t) is the forcing term.

The equations may be expressed in state space form by defining

y
Xl= Tl)—
X, =Y
So that (2.24)
. y 2
X (t) = 2 = Wi, (t)  £(E) _ —ox, () + L1
(O] ® (A (V)
%, (t) = y(t) = wx, (t)

Rewriting in matrix form

x, (£)
_ 0 -w El(t) . 1 f(t)
- i
X, (t) © 0lke(t) 0 (2.25)
, (E)
y(t) =10 1]
, (£)

The transition matrix can easily be found wusing matrix

multiplication and trigonometric functions,
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0 -w -w2t? 0
At = A2t? =
wt 0 0 -—w32t?

242
eAt = T 4+ A + Azf +... = ®(t,0) (2.26)

cos wt -sin o
d(t,0) = 1

sin wt cos wt

The free motion response to arbitrary initial conditions 1is

therefore

x(t+T)

® (T, t)x(t)
(2.27)

y(t+T) = sin w (T)x, (t) + cos w(T) x,(t)

2.2.1 Linear Systems Driven By Stochastic Inputs

In order to predict the output of a system driven by a stochastic
input <ecignal a differential equation representation of the
disturbance must first be found. This is essentially the internal
model principle of Francis and Wonham (1976), which states that
before one can predict or control a system a model of the system
and environment with which it interacts is required. The
correlation between the random disturbance inputs will in general.
be specified by the spectral density matrix and the problem is
then to determine a characterization of the disturbances in the
time domain. The stochastic disturbance is modelled by
introducing a fictitious linear dynamic system which is itself
excited by white noise. The states of the disturbance model are
then augmented to the system states to give an enlarged A matrix.
Stochastic realization theory which shows how to fit systems to
spectra is discussed in Davis and Vinter (1985), Maciejowski
(1983) . The solution to the stochastic realization problem is
a difficult and involved task. The disturbance model obtained by
solution of the stochastic realization provides the proper
spectral and autocorrelation characteristics through
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specification of the linear system and variance of the driving
force. Consider a disturbance signal d(t) with spectral density
&, (@), then A;, B; D; must be chosen so that

(I)dd((")) = [Dd(j(-') - Ad) _1Bd]2

Where (2.28)

Xg(t) = Agxa(t) + Baw(t) d(t) = Dgx4(t)

The disturbance states x,;(t) do not correspond to physically
measurable quantities and are simply a means of converting the
white noise input w(t) into a signal d(t) with the required
spectral density.

Augmenting the disturbance states with the original system
equations denoted with subscript s here for clarity yields

;é
S ) S-D
. 0 A

Xq

s(t)
y(t) =|Cs 0] ()
d

X 0

B4

s

Xa

+ w

(2.29)

Rewriting in a compact form with x(t)=[x,(t) x;(t)]"

x(t) = Ax(t) + Baw(t)  y(t) = Cx(t) = Cx,(t) (2.30)

Since w(t) is a white noise process the only predictable part of
the state evolution is given by the free motion term in the

solution to equation (2.30). The optimal prediction is therefore
given by

x(t+T/ t)
yv(t+T/ t)

exp [A.(T) 1 x(t)

Cx(t+T/t) = Cox(t+T/t) (2.31)
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Summarising it 1is apparent that both system and disturbance
dynamics form the basis of prediction. Prediction quality will
decay with time due to the fact that the unpredictable white
noise input term influences more and more of the future behaviour
of the system. The ability to predict is governed by the undriven
combined system and disturbance dynamics and the availability of

an initial state vector x(t,) measurement.

For a complex system the state vector may be of a high dimension
and in general not all elements of the state vector will be
available for measurement. This may arise because of cost
constraints on instrumentation or the fact that certain states
correspond to obscure internal quantities that cannot be
measured. Furthermore the disturbance states in (2.29) cannot be
measured anyway since they are simply an artifact of the
modelling. The state vector therefor must be reconstructed using
observers (Luenburger 1967) or optimal estimation techniques
(Kalman 1960) . Once a state estimate is obtained the prediction
is obtained by extrapolating the state estimate in time using the

system transition matrix.
2.3 State Reconstruction: The Kalman-Bucy Filter

If the signal to be predicted y(t) 1is assumed to be modelled as
the output of a linear stochastic model as above, a solution to
the state estimation problem can be obtained using the Kalman
filter (Kalman and Bucy (1961)). Generalising equation (2.30) to

include a corrupting random vector noise on the output gives

x(t)
y(t)

Ax(t) + Bw(t) (2.32)
cx(t) + v(t)

Where w(t) 1is a white vector random process with zero mean and

covariance matrix

cov [w(t),w(t)] = Q&(t-7) (2.33)

Where 6 is the Kronecker delta.The random vector v(t) is again
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a white stationary zero mean process with covariance matrix

cov [v(t),v(t)] = Rd(t-1) (2.34)

Stationarity of the noise process which means its properties are
time invariant, is assumed for convenience, the non stationary

case can also be easily handled.

The initial state vector 1is assumed to be a vector random

variable with zero mean and uncorrelated with the noise so that

cov [x(ty),w(ty)] =0 cov [x(t,),v(ty)] =0 (2.35)

The estimate x(t/.) of the unknown state x(t) is to be optimal

in the following defined sense. If the state estimate error is

x(t) = x(t) - x(t/.) (2.36)

then the estimate must be unbiased ,that is
E [x(t/.)] = E [x(t)] (2.37)
and the estimation error (2.36) must have minimum variance

E [xT(t)x(t)] = Error Variance (2.38)

The covariance matrix of x(t) is defined as

E [x(t)xT(t)] = P(¢t) (2.39)

For the stationary time invariant case the error covariance
matrix P(t) converges to a steady time invariant matrix P (Bryson
and Ho (1969)) and it can be shown that the optimal linear
unbiased estimate with minimum error variance can be realized by

the feedback system of the form shown in Figure 2.1.

The optimal state estimate is then given as
x(t/.) = Ax(t/.) + K [y(£) - cx(t/.)] (2.40)

Where the optimal gain matrix K of the feedback filter is the

constant matrix
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K= PCTR? (2.41)

P is the steady state covariance matrix of the state error

P = cov [x,xT] (2.42)

and is the solution of the algebraic Ricatti equation

AP + PAT - pcTR"1cP + BOBT = 0 (2.43)

Since P 1is a covariance matrix it must by definition be positive
definite. For a state vector of dimension n the Ricatti equation
gives n(n+1)/2 quadratic equations for the unknown elements of

P so that there is in general no unique solution for P.

Intuitively the existence of a solution to the optimal filtering
problem depends on the observability (Kalman 1963) of the pair
[A,C] which implies a nonsingular solution for P. Furthermore it
can be shown (Martensson (1971), MacFarlane (1963)) that subject
to the observability of the pair [A,C] there always exists a
unique positive definite solution. Details of numerical methods
to find solutions to Ricatti equations are discussed in Laub
(1979)

2.4 Discrete Time Formulation

In practice state estimation and prediction would be carried out
in discrete time. The discrete time formulation of the Kalman
filter therefore has a practical relevance to implementation.
Transformation from continuous time to discrete time is easily
facilitated (Franklin and Powell (1980) ) using the transition
and impulse response matrices derived from solution of the

continuous time equations.

If for the continuous time system interest is focused on the
system state at discrete evenly spaced points in time ¢,

x(£) = A()x(£) + B(O)u(t) + G(£)w(t) (2.44)
E [w(t),w(t)] = 0(£)8(t-1)
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then the resulting difference equation is

x(k+1) = ® ,x(k) + Au(k) + I' w(k) (2.45)

Where ¢ is the transition matrix and

Q= Oty ty)

T, wi(k)

Eaa
ka ® (ty,,,T)G(t)w(t)dr (2.46)

A, ulk) = ft‘ ®(t,,,,t)B(t)u(t)de

k

Note that the equations (2.46) does not uniquely define the terms
u(k),w(k),T,, A but only the product terms T w(k) and Au(k). If
a zero order hold is assumed for the deterministic input so that

u(t) = u(k) Er <t<tp, (2.47)

Then

A, = f:*lQ(tk+l,r)B<r) . dt (2.48)

The random forcing function can be defined in terms of the
covariance matrices so that for the forcing function G(t)w(t) the

covariance matrix is

EGOw(t)wT(t)GT(t)] = G(E)0(E)GT(E)d (t-1) (2.49)

In the discrete time formulation the corresponding covariance
matrix is given by

E [(T,w(k)) (O,w(1)) 7] =T,0T% k=1 (2.50)
0 k* 1

*

From equation (2.46) and (2.50)

I'oIT=E ”"*‘ftt"*‘cp (tr, T GO w(T) wT(a) GT(a) ®T(£,,,, @) drda

Cx

(2.51)
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Using (2.44) this becomes

rorf- ft“‘ ®(t,,,,T)G(1)0(1)GT(T) ®T(L,,,,T)dr (2.52)

Ex

The assumption of stationarity for the random process w(t) and
time invariant dynamics simplifies the above equations so that

for a sampling interval of T

@,
Ay

F = exp [AT]
A= fTexp[A(T—r)] dt
0

(2.53)

The random forcing terms I',w(k) can be replaced by a noise

sequence e (k) with covariance matrix

E(eeT) =T'0I'T = LTexp[A(T—r)] GOGT expl[AT(T-t)] drt

(2.54)

The stochastic state space model in discrete time can then be

written as

x(k+1)
y (k)

Fx(k) + Tu(k) + e(k)
Ox(K) + V(K (2.55)

Noise sequence v (k) is found using the same method as for e (k).
The model (2.55) describes the evolution of the state and output
in terms of probability distribution functions. For example the
probability distribution of the state in terms of its mean and

covariance is given by the recursive equations

x(k) = E[x(k)]
P(k) = E[(x(k) - x(k)) (x(k) - x(k)) 7]
(2.56)
X(k+1) = Fx(k) + Au(k)
P(k+1) = FP(k)FT + TOI'T

The noise sequences e (k), v(k) are uncorrelated with the initial
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state x(0), but may be cross correlated so that

e(k)
v(k)

1!

E

or”
l]e(k) vk =1, j k=1 (2.57)
0 k=1

The discrete form of the Kalman filter can be stated as follows
(Bryson and Ho (1969)) . Let x(t+1/t) denote the conditional mean
of x(t+1) given observations of the output sequence { y(t) } up

to and including time ¢t.

x(t+1/t) = Elx(t+1) /Y (L) ]
v(t) = {y(t),y(t-1),...} (2.58)

Then the optimal linear unbiased minimum variance estimate of the

state satisfies the following recursion
x(t+1/t) = Fx(t/t-1) + K. [y(t) - cx(t/t-1)1 + Au(k)

(2.59)
K. is the Kalman gain that is given by

K, = [FP.CT + Sl [cP.CT + R]? (2.60)

P, is the state error covariance at sample time t
P, = E[((x(t) - x(t/t-1)) (x(t) - x(t/t-1)) T/{y(t-1),..}]
(2.61)

and satisfies the following Ricatti difference equation

P,,, = FP.FT + TOI'T - K [CP,.CT + RI K/ (2.62)
Implementation of the filter involves solving the discrete
Ricatti equation for the sequence P, and the corresponding gain
matrices K,. These calculations can be done off line before any

observations are taken and used to recursively update the state
estimate x(t/t-1) as observation data becomes available.

The Kalman filter equations may also be recast into a form in
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which the cross covariance term S (2.57) may be taken as zero.
Any crosscorrelation present is included in a modified Q
matrix,details may be found in Bryson and Ho. In the sequel S

is assumed zero.

For the case of linear time invariant system and measurement
dynamics and stationary noise processes, the filtering process
will reach a steady state. The error covariance matrix P, and
hence the Kalman gain K, converge to steady state values with
increasing time ; the limiting solution P will satisfy the
following algebraic Ricatti equation, derived from (2.62) by
putting P,,,=P,=P

P - FPFT + FPCT(CPCT + R) 1cPFT - TOI'T = 0 (2.63)

With steady state gain matrix K

K =FPCT(CPCT + R)™? (2.64)

Various theorems (Kalman (1963),Bryson and Ho (1969)) give the
limiting properties of the Kalman filter under a number of
conditions and are important in establishing sufficient
conditions for the asymptotic time stability of the filter. The
results are centred around the observability of the pair [F,C]
and stabilizibility of the pair [F,D] where D is a factor such
that

DDT = OOl T (2.65)

The Kalman filter has a number of interesting interpretations
that will be used to motivate further developments. In a Bayesian
(Papoulis (1963)) framework consider the problem of finding a
state estimate x(./.) to minimise the generalized minimum

variance cost functional

J'=.Liﬂw--tﬂw(f‘x)TT(f‘X)p(Xr{Y})dmadXé...dxh (2.66)

Where
T is an arbitrary positive definite matrix

dx; refers to component i of the state vector x
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p(x/{ Y}) is the conditional density function of the state given

past and present observations.

Setting 0J/0x = 0 gives that independent of T (Gelb 1982)

2=f:f:---f:xP(x/iY}>dX1---dx,,=E[x/{y}] (2.67)

The optimal estimate is therefore the conditional mean estimate.
For linear systems driven by Gaussian white noise processes the
Kalman filter can be shown to generate the state estimate x(t/t-

1) as the conditional mean of x(t) given {y(t),y(t-1)...}.

X(t) = Elx(t)/Y(t-1)] (2.68)

The Kalman filter is a recursive and hence efficient solution to
the problem  of computing the conditional probability
distribution. The minimum variance property for the estimate of
x clearly follows from (3.66), furthermore

E[(2(t) - x(t))/Y(t-1)] =0

(2.69)
P, = E[(R(t) - x(£)) (R(t) - x(t)) T/Y(t-1)] < P/

Where P° is the covariance given by any other filter, linear or

nonlinear.

For non Gaussian noise processes the filter gives the best linear
minimum variance estimator, the estimation error is however still
uncorrelated with past data so that

E [(R(t) - x(&)).Y(t-1)] =0 1i=1,2... (2.70)

Equation (2.70) can be used to motivate a geometric
interpretation of the state estimate , in which the best estimate
of x(t+1) is the projection of x(t) onto the linear space
spanned by the y(t),y(t-1),...y(0) . The state estimation problem
is then equivalent to calculating a projection in Euclidian
space. Of particular significance is the error term & (t) defined

as
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w(t) = y(t) - CX(t) (2.71)

Since this term contains the "information" on which the filter
works. The sequence { &(t) } is called the innovations (Kailath
1968) sequence since &(t) represents new information available
at sampling instant ¢t. From (2.70) it 1is apparent that the
innovations are orthogonal or uncorrelated with the past values,
so that

Elw(t)/Y(t-1)] =0 (2.72)

Using the innovations the output y(t) of the system may be

written as

y(t) = CcX(t) + w(t) (2.73)

The state estimation equations may also be recast to give

R(t+1) = FR(t) + Au(t) + K0 (t) (2.74)

Clearly the innovations model as described by (2.73) and (2.74)
represents an alternative input-output state space description
of the original system. Indeed it can be shown that to every
state space model there corresponds an "equivalent" innovations
model (Luenberger 1967). It therefore follows that the innovation
models are just as rich as state space models in representing the
input-output behaviour. The innovations model however includes
fewer parameters and a reduced number of noise inputs.
Furthermore an alternative predictor derivation 1is easily

facilitated using the innovations representation.
2.4.1 Prediction Using the Discrete State Estimate

Examination of (2.74) reveals that the Kalman filter actually

corresponds to the one step ahead state prediction

X(t+1) = Elx(t+1)/ Y(t)] (2.75)
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The optimal d step ahead prediction corresponds to the
conditional mean E [x(t+d)/y(t),y(t-1)..]. The so called
smoothing property of conditional expectations (Goodwin and Sin
(1984) ) can be used to write

Elx(t+d) /Y(t)] = E{E[x(t+d/Y(t+d-1)]1/Y(t)}

(2.76)
= E[R(t+d) /Y(t)]
From (2.74)
t+d-1 t+d-1 .
R(t+d) = F&IR(t+1) + Y Au(j) + Y F&9IK0(F)
F=t+1 Jj=t+1
(2.77)

Taking expectations of (2.77) conditioned on data up to time t
and using equation (2.72) yields
t+d-1

E[R(t+d) /Y(t)] = FO1R(t+1) + Z FErd-3-1Ay (5) (2.78)
J=t+1

and this is from (2.76) equivalent to E[ x(t+d)/Y(t)] . The
corresponding d step ahead prediction of the output y(t+d/Y(t))
is simply obtained as

t+d-1

Ely(t+d)/Y(t)] = CF¥'R(t+1) + C Y, F=¥7tAu(j) (2.79)
J=t+1

2.5 Autoregressive Moving Average (ARMA) Representation of
Stochastic State Space Models

An alternative and often more convenient way of describing the
input-output behaviour of the stochastic state space model is by
the Autoregressive Moving Average model with eXogenous input,
ARMAX model (Box and Jenkins (1973)).

Consider an r dimensional vector output y(t) and an m

dimensional input vector u(t) related by the ARMAX model
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y(t) + Ay(t-1) + ...Ay(t-n) = Bju(t-1) +...Bu(t-n)
+ e(t)+ Cie(t-1)....Ce(t-n)

Az y(t) = BlzYHYu(t-1) + C(z™1) e(k)
(2.80)

Where

A,....A, are r x r matrices
B,....B, are r x m matrices
C,....C, are r x r matrices

and {e(t)} is a sequence of zero mean uncorrelated r dimensional
vectcr random variable. An equivalent state space representation

will always exist , such that

x(t+1)

Il
X
—~
ﬁ
+

(2.81)

<
2
I
~
o
o
X
o
+
®
2

A state space representation with this structure is called the
"observer" form (Luenberger (1967)).

For example for a single input single output (SISO) stochastic

state space model in observer form the corresponding innovations

model is

X(t+1)

Il

(2.82)

y(t) |1 0 -
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From the multi input multi output (MIMO) form above or by direct
substitution the corresponding ARMAX model for a single input
single output (SISO) system is
y(t) + a,y(t-1) +...a,y(t-n) = bju(t-1) + ...bu(t-n)
+w(t) + [a + kKlw(t-1) + ...[a, + k,Jw(t-n)
(2.83)

If the Kalman gains approach steady values then the C polynomial
will also be time invariant. The innovations representation of

the Kalman filter may therefore be written as

A(z Y y(t) = B(zHu(t-1) + C(zHw(t) (2.84)

The polynomial C will be assumed to have all its zeros strictly
inside the unit circle. The significance of zeros on the unit
circle and implications for prediction is discussed in Section
2.6.

The ARMAX model is said to be canonical since it represents a
systems input-output behaviour with the smallest number of
parameters with respect to state space. The advantage of such
"parsimonious" parameterizations will become evident when system

identification techniques are considered.
2.5.1 Predictors in ARMAX Forms

The ARMAX representation provides a useful alternative way of
deriving optimal steady state linear filters. Consider a SISO
process represented by the ARMAX equation.

A(zY)y(t) = B(zHu(t-1) + C(zH) w(t) (2.85)

The noise sequence {&(t)} is assumed to be zero mean Gaussian

white noise N(0,0) and

A(z™) =1+ az?t+...a,z™"
B(z™*) =by, + bzt +...b,z™" (2.86)
C(z?) =1+czt+...c,z™”
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Denote by y(t+k/t) the optimal least squares k step ahead
prediction based on y(t),y(t-1),... and consider the 1loss

function

V = Ee?(t+k) (2.87)

here e(t+k) is the prediction error
e(t+k) = y(t+k) - y(t+k/t) (2.88)
The prediction problem is to find a predictor to minimise the

loss function (2.87). To solve the problem introduce polynomials

E(z*') and F(z?') that satisfy the Diophantine equation.
C(z™Y) = E(zY)A(z™) + zkF(z™) (2.89)
It can be shown that (Kucera 1979), unique polynomials E(z?)

and F(z!) always exist to satisfy (2.89) where E(z') and F(z?)
are of the form

E(z™1)
F(z™1)

-1 -k+1
1+ ez to.. €412

2.90
fo + £,z +. .. f, 27 ( )

Premultiplying the process equation (2.85) by E(z*) gives
E(zH)A(zY)y(t)=E(zY)B(z ) u(t-1)+E(z1)C(z 1) w (L)
(2.91)
On using equation (2.89) this gives
C(z‘l)y(t) - F(Z_l)_V(t—k) = (2.92)
E(zY)YB(zYu(t-d) + E(zHh)c(zYHw(t)
Shifting all terms forward by k steps and rearranging gives
F(zY)y(t) + E(zY)B(zY) u(t+k-d)

c(z™1) (2.93)
+ E(zY)w(t+k)

y(t+k) =
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The first term is independent and orthogonal to the second term,
so clearly all information available up to time t is in the first
term. The optimal prediction y(t+k/t) is then

Plerk/t) = PNy + B(z7) Blz™) ultrk-d)

(2.94)
c(z™1)

Where it has been assumed that the future deterministic inputs
u(t+k-d) are known. The corresponding prediction error is
V(t+k/t) = E(zY)w (t+k) (2.95)

Rewriting the predictor equation (2.94) in terms of prediction
errors e(t) gives

yitrk) = L2 (o(e) + ple/t-K)]
clz™) (2.96)
. E(zY)B(zY) u(t+k-d)
Cc(z™1)
Which is readily rearranged to become
V(t+k/t) = F(z7) e(t) + BEZD) yitik-a)  (2.97)

A(zY)YE(z™Y) A(z™)
2.5.2 Control Interpretation

An interesting alternative interpretation of the predictor is the
solution of the control problem depicted in Figure 2.2. From
(2.85) and (2.88)

Az He(t)y = A(zY)y(t) - A(z ) y(t/t-k)

AlzYe(t) = BlzYHu(t-d) + C(z Y w(t)

- zkA(z V) P(t+k/E)
1
0 w(t) - zkp(t+k/t)

(2.98)
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In the fictitious control problem (2.98) the process to be
controlled is the delay -z*. The process output is the prediction
error e(t) and the input is the prediction y(t+k/t). Measurable
disturbances u(t) and nonmeasurable noise disturbances o(t)
constitute through appropriate transfer functions the output
additive "disturbance", y(t). The prediction problem is clearly
analogous to the minimum variance control problem (Astrom and
Wittenmark (1973)) in which the controller must be designed to
minimise the wvariance of the output of the process in the

presence of disturbances acting at the output.

Using equation (2.98) and the Diophantine equation yields

E(zY)B(zY)u(t+k-d) + F(z)e(t)

C(z™%) (2.99)

zHYa(z1)
t+k/t
ciz ) y(t+k/t)

e(t+k)

+E(zYYw (t+k) + E(

The predictable part of e(t+k) at time t when the "input"
v (t+k/t) must be generated is

E(zYYB(zYu(t+k-d) + F(z 1) e(t)
c(z™1)

e(t+k/E) =
(2.100)

* E(Zc_,l()ZA_l()Z_l) y(t+k/t)

The unpredictable part of e(t+k) is the component that is
orthogonal to the prediction

E(t+k) = E(z') w (t+k) (2.101)
To minimise the variance of the output e(t+k) the predictable

part of e(t+k) should be set to zero by the control input
yv(t+k/t) , solving for the control gives

F(z71) ey + B2 yitek-a) (2.102)

J(t+k/t) =
yitrk/ O A(zY)E(z™Y) A(z™1)
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