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Abstract

The work presented is this thesis is an investigation of the spatial resolution of
a Microstrip Gas Chamber (MSGC) as an imaging device for X-rays. Applica-
tions include digital radiology and experiments with synchrotron radiation. The
investigation was done for X-ray energies around 20 keV, and the detector was

evaluated for digital mammography.

Both experiments and simulations were used for the evaluation of MSGCs. A
series of experiments was performed at the Budker Institute of Nuclear Physics
in Novosibirsk, Russia, using a parallel strip MSGC. It was shown that MSGCs
have the potential to be used as imaging devices for medical applications. A
simulation model, based on the Monte-Carlo program ITS, was developed to
simulate the properties of MSGCs. The results of the simulation were in good
agreement with the experimental data form Novosibirsk. More experiments were
performed at UCL to test the model under different conditions, and were also

simulated successfully.

Having proved that the predictions of the simulation could be trusted the
model was used to predict the performance of a keystone MSGC for digital mam-
mography. The Line Spread Function (LSF) of the detector was simulated and
the Modulation Transfer Function (MTF) was calculated.
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Chapter 1

Introduction

Particle Physics is driven by the need of faster detectors with better resolution
(both spatial and energy) to devise and develop new detector technologies. Some
of these detectors find applications in other disciplines including medicine. Two
examples are the scintillator-photomultiplier combination in the Anger camera,

and the multiwire proportional chamber for Positron Emission Tomography.

However, this “technology transfer” is not automatic. The requirements
for detector performance are usually different, and the detector needs “re-
optimization” before it can be used in a different field. Also, researchers from
different areas use different terms in their specifications, and communication of

recent developments can be difficult.

This thesis tackles both tasks, to understand the demands of the new field
and to re-optimize the technology to meet those demands. A promising detector
technology, the Micro-Strip Gas Chamber (MSGC), was invented in 1987 by Oed
[1]. Gas detectors, after the invention of the Multi-Wire Proportional Cham-
ber (MWPC), had been used extensively in Particle Physics experiments, but it
seemed they had reach their limits. New experiments require better accuracy in

particle localisation, and the ability to perform under high particle fluxes.

21



22 Chapter 1. Introduction

Today, although research is still continuing, the technology is beginning to
mature. MSGCs can be manufactured industrially in large quantities. The time to
look for possible applications outside the Particle Physics community has come.
Gas detectors are used to detect ionising radiation, either charged particles or
photons. They have the right properties to detect X-rays so medicine is an
obvious area to look for applications. There are other areas where detection
of X-rays is also crucial, such as synchrotron radiation experiments. Although
this work has been done mainly with Digital Radiography in mind, the results
are valid for all other applications that involve detection of X-rays in the energy

range up to a few tens of keV.

1.1 Digital Radiography

Digital Radiography (DR) is a growing branch of medicine. It generally deals with
radiograms (pictures taken with the use of X-rays) in digital form. Traditional
Radiography uses film to detect, store and display the image. DR separates
these components so that each can be optimised independently. Although the
separation can be accomplished by digitising film images, such an approach is
time consuming and cannot produce digital images in real time. It also has the
inherent limitations of film such as small dynamic range and film granularity, and

the digitisation process increases the noise of the image.

Film is one of the oldest detectors ever used and has very good spatial resolu-
tion. It is very eflicient when used to detect light but very inefficient for detecting
X-rays. Film-screen combinations are used to improve efficiency using a high Z
material, the screen, for the conversion of X-rays to visual light, which is then
detected by the film. However, film/screen combinations have lower resolution
because the light from the screen is emitted isotropically reducing the localization

of the original X-ray photons.
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The most important limitation of film is its limited dynamic range. The
response of the film to radiation is expressed using the optical density D, a

measure of the blackening of the film. It is defined as:
D =logo(Jo/I) (1.1)

where Iy and I are the intensities of a light beam before and after passage through
the film [2].

Figure 1.1 shows a typical film response to radiation exposure X. For low
exposures the film density increases very slowly and non-linearly with exposure
to radiation. Very little information is recorded and the film is under-ezposed.
For high exposures the film density again increases very slowly; the film is over-
ezposed and turns completely black. The middle part of the curve is used in
radiograms to maximize their diagnostic value, as the film density increases lin-

early with the logarithm of exposure:
D=alogX +5b (1.2)

If a small change in the input signal X is considered in Equation 1.2, the change
in optical density is proportional to the input contrast (AX/X):

AX
AD = 0.4340 —— (1.3)
X
21.2:
o
~ 1F
o -
0.8F
0.6
0.4
0.2F
oF
—LllLlllLllJllll|llllll!llLlllJJl
0 0.5 1 1.5 2 2.5 3
log(exposure)

Figure 1.1: Characteristic curve of film density (blackening).
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But the range of the linear response is small—less than an order of magnitude. A
different film type has to be used for examinations requiring different exposures.
Even if the film is exposed correctly for the particular examination, some parts
of the film can be either under or over-exposed. A second exposure of the patient

may be needed.

The drawbacks of film can be overcome if a digital detector is used. An
ideal detector for digital radiography would have good spatial resolution (below
0.3 mm, depending on examination), wide dynamic range (of the order of 20000
photon counts), very high efliciency (if possible 100%) and high counting rate
to reduce the exposure time (of the order of 1 MHz per pixel). The pixel size
ideally would be 2 to 3 times smaller than the detector resolution and the size
of the detector would have to match the area under examination. Good energy

resolution is not very essential but it could be used for dual energy radiography.

Direct digital capture of radiographic image with such a detector offers many

advantages compared with traditional radiography:

e The image is obtained on-line and displayed on a high resolution screen,
without the delay of film development. It can then be printed by a high

resolution laser printer, or stored.

o A detector with linear response to exposure provides information that re-
flects directly the absorption of X-rays. The information on the image can
be processed easily since the relation between response and exposure does
not change, unlike the response of film. Linear response combined with wide
dynamic range means that all the available information from the exposure

has been captured.

e Direct digital capture produces images without the noise added due to digi-
tisation of film images. The contrast of the image can be manipulated to

reveal details that might be invisible in a single film exposure because they
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Figure 1.2: A digital image of the chest and lungs with the spinal column also
visible [3].

were either over or under exposed. Moreover, windowing techniques can be
used to improve the contrast only in certain areas of the image and software

filtering can enhance subtle details.

Figure 1.2 is an attempt to display the advantages of Digital Radiography. A
chest X-ray “sees” the spine as well as the lungs, but the different X-ray intensities
are not matched to the performance of the film; lung and spine images normally
require separate exposures. However with digital readout, windowing can be used
to reveal separate images of the same data. In Figure 1.2 the contrast values have
been changed inside the window to reveal the spine which was hidden behind the

sternum. The ribs and the sternum are not visible inside the window [3].

Other advantages of digital radiography include the ability to create libraries

with images which can easily be accessed through the Internet, the ability to
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send multiple images by electronic file transfer to experts for evaluation, and

automated diagnosis with the use of proper software algorithms.

A fully digital radiographic system, the Siberian Digital Radiographic Device
(SDRD), was developed in the late 1980s at the Institute for Nuclear Physics in
Novosibirsk, Russia. The MSGC system for digital mammography which will be
presented in Chapter 6 below, is based on the methods and concepts used in the

SDRD.

1.1.1 Siberian Digital Radiographic Device

The SDRD (Figure 1.3) [4, 5, 6] consists of a tungsten target X-ray tube, a pair

of slit collimators (one before and one after the patient), a mechanical scanning

MW PC

X-RAY TUBE

COLLIMATOR

Figure 1.3: Schematic layout of the SDRD.
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drift
electrode
X-ray beam
window
cathodes

anodes

Figure 1.4: Diagram of the MWPC (not to scale). A side view can be seen on
the left and a top view on the right.

system, an MWPC and the associated control and read out electronics. The first
collimator between the tube and the patient forms a 1 mm thick and 40 cm wide
fan-shaped beam. A second collimator between the patient and the detector
suppresses scattered photons. The tube, collimators and detector are mounted
on a rigid gantry which can move in the vertical direction. Every anode wire is
connected to a discriminator giving a logical pulse for every photon that converts
in the gas close to the wire. CAMAC scalers, connected to the discriminators,
count the pulses and produce a horizontal line with information on the spatial
distribution of X-ray photons. The gantry is then moved in a vertical direction
producing a two dimensional image from a series of lines. This is achieved by
scanning the patient at a constant speed and adding the number of hits of each
wire for the time period required to produce a line. The number of hits is then

stored in memory, the scalers are reset and the acquisition of the next Hne begins.

The MWPC was specially designed for the SDRD. The anode plane consists
of 320 wires, 1.2 mm apart, aU pointing towards the focal spot of the X-ray tube at
a distance of 1.35 m (Figure 1.4). The fan-shaped anode plane provides sufficient
absorption depth without introducing a parallax error, the error associated with
particle localization when the beam crosses the detector at an angle. If parallel

anodes were used photons passing through the same spot in the patient could
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be registered at different positions if they converted at different depths in the
detector. A plane of cathode wires is arranged so as to keep the gain of the
chamber constant along the anodes, and a separate electrode creates the drift

field. The chamber is filled with a Xe/CQO, mixture, 80/20, at 3 bar.

The discriminators connected to every anode wire generate a logic pulse if the
pulse from the wire corresponds to a deposited energy above ~ 2 keV. Charge
sharing between the wires often results in a double hit; a single X-ray photon
detected by two neighbouring wires. The device can operate in two modes de-

pending on the handling of double hits:

Standard (ST) mode Double hits are rejected using coincidence logic (Fig-
ure 1.5a) to improve the spatial resolution. The pixel size in the horizontal
direction at the patient, defined by the spacing of the anode wires is 1 mm.
The vertical pixel size is set by the integrating time of the scan line. For
1 mm a new scan line is produced every 30 ms and a 1 mm rear collimator

is used. The maximum number of lines is 256.

High Resolution (HR) mode Double hits are registered in separate channels.
This doubles the number of horizontal channels and improves the resolution
even further. The horizontal pixel size is 0.5 mm and the vertical pixel size
is set to the same value by using 15 ms integration time for a scan line and

a 0.5 mm rear collimator. The maximum number of lines is 512.

All stages of the process are controlled from a PC. Images can be displayed on
the computer screen, printed, and/or stored on hard disc. The quantum efficiency

of the system is about 30% for 60 keV photons.

The ratio of hits between the coincidence and anti-coincidence channels de-
pends both on the gain of the chamber and on the energy of the X-rays. This

creates a problem because the gain of the chamber changes with the count rate
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Figure 1.5: Coincidence logic used (a) to reject double hits and (b) to register
double hits on separate channels.

due to space charge effects (see section 3.1.2). A normalising algorithm is used
to correct for this effect using data from uniform chamber irradiation at different

counting rates.

Tests performed by Martinez et al. [7] in 1993 showed that the system could
achieve significant dose reductions compared with film/screen systems. Dose
reductions varied from 30 to 300 times depending on the clinical examination
involved. Its other advantages over film/screen were the linear response over a
wide range, without the non-linearities of the film for very low exposures, and
the very good signal to noise ratio. The standard deviation of pixel counts for
uniform irradiation in the ST mode scaled with VN , where N is the average
number of counts. This is the quantum limit set by the random nature of photon
detection. In the HR mode the standard deviation scaled with N; the image was
noisier. The extra noise was introduced by the necessary renormalization of the
double hits. The most serious disadvantage of the system was its limited spatial
resolution of 0.5 mm. The system is being used for routine clinical examinations

in hospitals in Novosibirsk and Moscow.

The only way to increase the resolution of the system in the horizontal di-
rection is to decrease the spacing of the anode wires. However, mainly due to

electrostatic forces between the wires, the operation of MWPCs with wire spacing
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below 1 mm is not stable. The replacement of the MWPC with an MSGC seemed
natural since the motivation behind the invention of the MSGC was exactly this
problem. With a typical anode spacing of 200 pm the MSGC offers resolution
comparable with that of film.

The area of radiography that images the female breast, mammography, seems

well suited for a device based on an MSGC:

o The imaged area is small, about 15x15 cm? and microstrip tiles of this size
are now available. Also, the required number of channels to cover this area

(15 ¢cm/0.02 cm = 750 or 1500 in HR mode) is not exceedingly large.

e The photon energy used in mammography is about 20 keV, lower than for
the rest of the body. This is because the breast tissue is not very dense and
low energy X-rays give better contrast. Lower energy photons give better
resolution in an MSGC because they produce lower energy photoelectrons.
Since the range of electrons is reduced at higher gas pressures, for lower

energy X-rays lower pressure is needed to achieve the necessary resolution.

1.2 Digital Mammography

Breast cancer is a very frequent cause of death for women, and studies in the
population have shown that the mortality rate can be reduced by the screening of
women between the ages of 50 and 64. By screening we mean X-ray examinations
of the female breast at regular time intervals (3 years) that will help find signs
of cancer when it is at its very early stages. One of the main indicators of breast
cancer is the appearance of microcalcifications, a situation where local tissue is
replaced by hydroxy-apatite (Cas[PO4)30H) [8]. These calcifications can be very
small so the imaging system must have very good spatial resolution in order to

detect them.
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A special type of film/screen, with a single screen placed behind the film, is
used for conventional mammography in order to achieve good resolution. The
resolution of this combination is below 100 ym and the efficiency around 75%.
The limit in the size of calcifications that can be detected with this combination

is 100-200 pm.

The first systems for digital mammography have appeared only recently and
are still being tested in clinical trials. Most of the research is done with semicon-
ductor detectors that use CCD technology. A scintillator screen is used to convert
X-rays to photons in the optical part of the spectrum because the absorption co-

efficient of silicon for X-rays is small.

The requirements for pixel size have not been set yet. H.P. Chan argues that
pixel size at least as small as 35 pm is necessary for computer detection of sub-
tle microcalcifications [9]. M. Freedman claims that there is minimal advantage
using 50 pm pixels rather than 100 pm pixels, on the basis that smaller calcifica-
tions are very difficult to detect due to their reduced contrast, and smaller pixels
require greater patient dose for the same statistics [10]. Karssemeijer et al. have
shown that digitising film to 100 pm pixels did not reduce the detectability of
small calcifications [11].

There are certain other constraints that a system for mammography has to
meet besides spatial resolution. Patient dose and time to acquire the radiogram
are the most important. The time limit is imposed because the breast is com-
pressed during the examination and the compression can be very painful. The
time needed for a conventional examination is about 2 s and a system needing
more than 10 s for a mammogram would be unacceptable. The current dose limit
and typical dose per examination is 2 mGy glandular dose. The Gy is defined as
absorbed energy per kilogram of mass (1 Gy = 1 J/1 Kg).

A typical X-ray tube for mammography operating at 30 kV provides an X-ray

flux of 4.67 x 10° photons mA~'s"*mm~? at 75 cm [12]. In a typical examination
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the tube is used at 30-35 kV, and 100-150 mAs. Assuming a 4 cm thick breast,
which absorbs ~93% of the radiation, for each 100 x 100 zm? pixel at 45 cm there
are about 100,000 available photons. The SDRD produced quality images with
less than 10,000 counts per pixel. So a similar system for mammography could

produce images with 10 times less dose than conventional systems.

1.2.1 An MSGC for digital mammography

There are certain advantages in the use of an MSGC as a detector for digital

mammography compared to CCDs:

1. An MSGC counts individual photons. There are no other sources of noise
but the intrinsic randomness of photon detection, so the quantum limit can
be reached. CCDs work by collecting charge produced by ionizing radiation
in a potential well over a period of time. However, small quantities of
charge, the dark current, are released even without exposure to ionizing
radiation, so there is an uncertainty in the energy deposited in the detector
and the number of absorbed photons. This uncertainty introduces noise in

the images.

2. The absorption coeflicient of silicon for photon energies around 20 keV,
combined with a typical thickness of 200-300 pm, limits the quantum ef-
ficiency of a CCD to below 30%. Coatings, used to improve the quantum
efficiency by converting X-rays to light, degrade the performance of the de-
tector because light is emitted isotropically. An MSGC filled with xenon at
5 bar can easily be made long enough to absorb all the incoming photons
(97% if 5 cm long). The factors that limit the quantum efficiency of such
a device are thickness and material of entry window and possible inactive
gas volume. An entry window made from 1 mm thick beryllium absorbs

only about 5% of photons around 20 keV, but 0.5 cm of inactive xenon at
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5 bar absorbs 30% of the photons. The actual efficiency of the system will
depend on the design of the chamber, but a quantum efficiency above 50%

is possible.

Both characteristics, the high signal to noise ratio and the very good quantum
efficiency, can lead to a device that offers significant dose reductions for the
patient. This is a big advantage for a device used in a screening programme since

it involves large numbers of people and the integrated dose to the population is

high.

Another application in which dose reduction could be of great importance is
the imaging of small areas of the breast for the localisation of a needle during
biopsies. The image can be acquired instantly and with a very small dose be-

cause the needle offers high contrast. The studies of the SDRD showed that high

contrast objects can be imaged with a dose reduction of almost 300.

A system based on a CCD can, in principle, offer better spatial resolution
than a system based on an MSGC since CCD pixels can be very small (below
30um). However, in medical applications it is the diagnostic value of the images
that is important, and a system with higher spatial resolution does not necessary
offer higher diagnostic value. Smaller pixels require higher exposure to reach the
necessary pixel counts for good image quality, hence higher dose for the patient,
especially if details comparable to the pixel size are to be detected. A system
based on an MSGC with lower resolution and lower noise levels could offer images

with the same diagnostic value as that from a CCD system using lower exposures.

Two geometries

Two possible arrangements of an MSGC detector have been considered for X-ray

detection: the “perpendicular” and the “tangential” shown in Figure 1.6.
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Figure 1.6: Two geometrical configurations for X-ray detection with MSGCs.
The “perpendicular” geometry was used in the first series of experiments, while
for a device for X-ray imaging the “tangential” geometry with a keystone tile

may be more suitable.
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In the “perpendicular” geometry an MSGC with parallel strips is placed with
the strip plane perpendicular to the incident X-ray beam. Although this geometry
is very simple, it poses certain problems. The quantum efliciency of the detector
depends on how thick the drift gap is. At least 1 cm of xenon at 5 bar is necessary
for efficiency above 50%. But a thick drift gap allows the electrons to diffuse
significantly even if a low diffusion gas mixture is used. The diffusion coeflicient
of Xe/CO, (80/20) is about 200 xm for 1 cm of drift which degrades the resolution
of the detector. With 0.5 cm drift gap the quantum efficiency limit is 30% if the

gas mixture is at 5 bar.

Parallax error is also introduced because the X-ray beam enters the detector
at an angle that is 90° only in the centre and can be up to 8° off the perpendicular
direction at the edges. Two photons following the same path and entering the
detector at 6° of the perpendicular will be registered 0.5 mm from each other if
the difference in depth of their conversion points is 5 mm. Although this geometry
is not very promising, microstrip tiles with parallel strips are more suitable for
preliminary experiments because of their simpler geometry, readily available and
cheaper since large number of tiles have been manufactured. The first series of

experiments at Novosibirsk, reported in Chapter 5, were done with this geometry.

The “tangential” geometry is the same as that of the SDRD. The strips of the
detector, no longer parallel, point at the X-ray source in a fan-shaped arrange-
ment. The X-ray beam is parallel to the strip plane. There is no parallax error
in this geometry and the active depth of the detector can easily be made long
enough so that almost all X-ray photons are absorbed. However, this geometrical
arrangement may introduce inactive gas volume in the beam entrance and reduce
the detector efficiency. The effects of diffusion are minimised because the beam
enters the detector very close (0.5-2 mm) to the microstrip tile. The proximity
of the beam to the anodes is limited only by the mechanical construction, as
the chamber is under high pressure. Special studies of different cathode config-

urations have proven that the gain of the chamber along the strips is uniform
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(variations less than 4%) in spite of the varying anode pitch. Tiles of this geom-
etry were not available during the first series of experiments, but the Novosibirsk
group are preparing experiments with keystone tiles, and such tiles are being used

in the CMS experiment at the CERN LHC.



Chapter 2

Elements of X-ray Physics

X-rays were discovered by Rontgen in 1895 and have played a major role in med-
ical examinations from the beginning of the century. A description of the mecha-
nisms of the absorption of X-rays is essential for understanding the operation of

detectors.

2.1 X-ray Production

X-rays are conventionally taken to be photons in the energy region of 100 eV to
150 keV. Two sources of X-rays are used in this work: radio-isotopes and X-ray

tubes. Synchrotron radiation is outside the scope of this thesis.

2.1.1 Radio-isotopes

Radio-isotopes are a very common source of radiation. They have the advan-
tage that they work simply by existing. Photons from nuclear or atomic electron
transitions are commonly found in the decay products of nuclei. Originally pho-

tons generated in nuclear transitions were called y-rays, and photons generated

37
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by electron transitions were called X-rays. Unfortunately the range of energies
overlap and in this thesis the term X-rays is used to refer to any photons between

100 eV and 150 keV.

Electron capture is a decay mode where the nucleus captures one of the or-
biting electrons which then interacts with a proton to produce a neutron and
a neutrino. In this case atomic X-rays and/or nuclear 4-rays may be emitted
without being accompanied by other decay products. Elements that decay via
electron capture are very useful because they provide pure photon sources. A
good example is *"Co which decays to °"Fe by electron capture. 3"Fe is created
with an excess of energy of 136 keV and in 10% of cases emits a photon with that
energy. In the remaining 90% of cases it decays to its first excited state which
is 14.4 keV above ground and emits an 126 keV photon, followed by a 14.4 keV
photon [13].

It is also possible that after electron capture the daughter atom will rearrange
its electrons and will emit the characteristic X-rays for this element. 55Fe, the
most commonly used source in gas detector testing, is a good example of this. **Fe
decays via electron capture to 5°Mn, emitting a 5.9 keV X-ray, the characteristic
K line of Manganese. The !°°Cd source used in the experiments in Novosibirsk
decays via electron capture to 1°Ag which has a double X-ray line at 21.9 and
22.1 keV.

2.1.2 X-ray Tubes

Radio-isotopes have the advantage of emitting X-rays of specific energy, but using
them to generate the high photon fluxes necessary for medical examinations is
hazardous and expensive. Present-day X-ray tubes, far more sophisticated than
the cathode-ray tube Rontgen was using when he discovered X-rays, but based

on the same principles, generate X-rays by allowing energetic electrons to hit a
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Figure 2.1: Typical X-ray spectrum produced by a tube with a molybdenum
target at 40 kV and filtered with 1 mm of beryllium and 0.03 mm of molybdenum.

metal target. Electrons are produced at the cathode from a filament by thermal
emission. They are then accelerated to the target (anode) by a potential difference
of tens of thousands of volts. When they hit the target they emit bremsstrahlung
radiation with a continuous spectrum. An example of such a spectrum can be
seen in Figure 5.3. If the energy of the electrons is higher than the binding
energy of the K shell of the target material, they can ionize the target atoms
by kicking out electrons from the K shell. In that case electrons from the other
shells fill the gap and emit the characteristic K lines for that material. The most
probable transition is from the L to the K shell and is called the K, line, while the
transition from the M to the K shell produces a higher energy line called the Kg
line. The spectrum of a tube with molybdenum target (used for mammography)
with characteristic K, and Kg lines at 17.4 and 19.5 keV, operated at 40 kV is
shown in Figure 2.1 [12].

2.2 X-ray Absorption

The understanding of the interactions of X-rays with matter is very important
in the building of a detector for X-rays. Only after considering all the possible

ways that X-rays interact with matter and after understanding the processes that
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efficient versus energy of X-rays in absorption in several gases at nor-
several gases used in gas detectors. mal conditions.

follow the interactions, can the performance of a detector be optimized.

When an X-ray beam of intensity / traverses a thin layer of matter of thickness

dx its intensity will decrease by:

—dl = iildx (2.1)
where /x is the absorption coefficient. Integrating equation 2.1 we get:

I= (2.2)

where /Qis the initial beam intensity and / is the intensity of the beam after
traversingmaterial ofthickness x. If the thickness x isequal tol//x the beam

intensity wifidecrease to lo/e. This thickness iscalled themean freepath for
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absorption. The absorption coeflicient px for the gases most commonly used in
detectors is given in Figure 2.2 in cm?/g. It must be multiplied by the density
of the material to be converted to inverse length. Notice that the absorption
coefficient increases dramatically when the photon energy increases above the
edge of a shell. The mean free path for absorption is given in Figure 2.3. Both

figures were taken from reference [14].

X-rays interact with matter in three ways: the photoelectric effect, Compton
scattering and, if their energy is above 1 MeV, pair production. In the energy
region that is of interest in medical applications (10-100 keV), the photoelectric

effect is the dominant process of photon interaction in tissue.

2.2.1 The Photoelectric Effect

Photoelectric absorption is a quantum process involving a transition from the
lower lying electron shells to the free continuum [13, 14]. Denoting by E; the
binding energy of a shell j, photo-ionization in the shell can take place only for
photon energies E, > E; and, at a given energy, the contributions of all shells
having E; < E, add up. Absorption of a photon of energy E, in a shell of energy
E; results in the emission of a photoelectron of energy E. = E, - E;. Table 2.1
shows the density and the binding energy of the K and L shells of various gases
[15]. There are three sub-shells with slightly different binding energies in the
L shell so the numbers given are the averages of their binding energies. It is easy
to see that for photon energies around 20 keV only L shell ionization is possible

in Xenon.

After the emission of the photoelectron the excited ion can then return to its

ground state mainly through two competing mechanisms:

e Fluorescence, i.e. the transition of an electron from an energy shell E; < E;

into the j shell, with the emission of a photon of energy E; - E;;
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e Radiationless transition, or Auger effect, which is an internal rearrangement
involving several electrons from the lower energy shells, with the emission

of an electron of energy very close to E;.

The binding energy of the ¢ shell is usually small compared to the binding
energy of the j shell so the energy of the photon is just below E; where the
cross section is at a local minimum. This means that thin materials tend to be
transparent to their own characteristic X-rays. The effect is pronounced at the K
edge where the difference in the cross section before and after the K shell binding
energy is the largest. This has an application in the filtering of X-rays. If a broad
spectrum of X-rays passes through a thin layer of some material the energies
absorbed least are the energies just below the K edge. Higher energy photons
can also ionize the material and cause the emission of characteristic photons also
just below the K edge. If the filter is close to the X-ray source, these extra
characteristic photons will also be added to the apparent outgoing flux, giving an

extra enhancement below the K edge energy.

The fraction of de-excitations resulting in fluorescence is called the fluores-
cence yield. For the K shell the fluorescence yield increases with the atomic

number. For argon the fluorescence yield is about 0.1 and for xenon about 0.75

Table 2.1: Density, binding energy of the K and L shells, average energy for
the creation of an electron-ion pair (W) and the Fano factor in several gases
commonly used in gas detectors, in normal conditions.

Element Xe | Kr Ar Ne He
Density (g/cm®) | 5.9 | 3.7 | 1.8 | 0.90 | 0.18
K shell (keV) |34.5| 143 | 3.2 | 0.87 | 0.024
L shell (keV) ~5 | ~1.7 | ~0.3 | ~0.03
W value (eV) | 22 | 24 26 36 41
Fano factor 0.17 0.2 | 0.17
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[16]. For xenon L shell ionization the ITS simulation program used in this work

gave a fluorescence yield of about 0.1.

2.2.2 Range of Low Energy Electrons

The electron emitted after a photoelectric ionization process and the Auger elec-
tron that might follow are the particles that ionize the gas by transferring part
of their energy to atomic electrons. The range of these electrons determines the

size of the ionization cluster and in most cases the performance of the detector.

Electrons are much lighter than
atomic nuclei so they can scatter
through large angles after a colli-
End
sion. As a result, although the to-
tal length of their path can be calcu-
lated using the Bethe-Bloch formula
[17] this information is of little use Start

since their range is much smaller.

The practical range R is defined as R

the distance between the point of

the creation of the electron and the

Figure 2.4: The definition of the prac-
tical range R for electrons is the distance
between their creation point and the point
Kobetich and Katz [18] modified of their path that is the furthest away.

point farthest away (Figure 2.4).

the constants of the formula for the calculation of the electron practical range,
originally developed by Weber [19], to fit ranges of electrons with energies from
0.3 keV to 20 MeV:

R=aFE[1-b/(1+cE)] (2.3)

where E is in keV, R in cm/gr? and a = 5.37 x 107%, b = 0.9815 and ¢ =
3.123 x 1072 (dashed line in Figure 2.5). Sauli in his report on gas detectors [14]
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Figure 2.5: Curves indicating the practical range of low energy electrons. The
dashed line is plotted using Equation 2.3, the solid line using Equation 2.4 and
the dotted line using Equation 2.5.

uses the formula:
R = 0.71EN (2.4)
where F is in MeV. It is a very good approximation of Equation 2.3 in the range

of a few to a few hundred keV (solid line, Figure 2.5). The formula:
R = AF™M (2.5)

reported by Haffner [20], with A in the range 0.3-0.6 (here plotted for A= 0.5,
dotted line of Figure 2.5) is a better approximation of the practical range of

electrons with energies from 0.5 to 10 MeV.

Using Formula 2.4 the range of a photoelectron with energy 2.6 keV, emitted
after the absorption of an X-ray photon from an “Fe source in argon (5.9 —3.2 =
2.6 keV), is 145 /xm at 1 bar. For an 18 keV photon absorbed in xenon the energy
of the photoelectron is 18 —5 = 13 keV and the range 690 /xm for xenon at 1 bar

and 140 /xm for xenon at 5 bar.

Sometimes theenergytransfer of the photoelectron totheatomic  electrons

is much higher thanthe ionization potential. Theseelectrons canalso ionize the
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gas and move away from the interaction point, contributing to the size of the
ionization cluster. They are called knock-on electrons or é-rays and must also be

taken into consideration.

2.2.3 Number of Electron-Ion Pairs—Fano Factor

Unless a fluorescence photon escapes the detector after a photoelectric absorption,
all the energy carried by the incoming photon is deposited in the detector. If all
of the energy was spent ionising the gas, the number of electron-ion pairs created
should be equal to the incoming photon energy divided by the ionization potential.
However, a considerable amount of energy is spent in non-ionising processes like
excitation. So the average energy needed for the creation of an electron-ion pair
W is higher than the ionization potential. It was also found that the W value
depends very little on the energy deposited in the detector and it can be used to
calculate the average number of electron-ion pairs created. Some values of the

average energy for the creation of an electron-ion pair are given in Table 2.1 [14].

The number of electron-ion pairs created after each interaction fluctuates, and

the standard deviation of the number of pairs created is given by:
on=VFn (2.6)
where F' is known as the Fano factor [21] and n is the total number of pairs.

The reasons for the fluctuations are due to:

1. The different modes in which energy may be absorbed. Energy can be
absorbed exciting atoms and molecules as well as ionizing them, so the

fraction available for ionization may vary.

2. Electrons can absorb only amounts of energy above the ionization potential
of the atom. An electron given energy equal to 1.8 times the ionization

potential cannot use the excess of energy to further ionize the gas.
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A complete treatment of the Fano factor is given by van Roosbroeck in [22].

Values of the Fano factor for noble gases are given in Table 2.1.



Chapter 3

Principles of Operation of

MSGCs

There is a wide variety of gaseous detectors offering both energy resolution and
radiation position localization with applications in many fields of experimental
physics. A brief introduction of their operation is given in this chapter starting

from the Proportional Chamber and finishing with the Gas Microstrip Counter.

3.1 The Proportional Counter

When a charged particle, or a photon, passes through (or stops in) a volume
of gas, some of its energy is dissipated ionizing the gas. The detection of the

ionization is the basic principle for all gas detectors.

The electrons and ions created from the ionizing particle tend to recombine to
form neutral atoms. But if a uniform electric field is applied across the gas volume
electrons will drift towards the anode and ions towards the cathode. Assuming

that there is some capacitance between the electrodes and that the RC time

47
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constant of the system is much higher than the collection time, electrons and

ions on their arrival at the electrodes will generate a signal:

ne
V= (3.1)

where n is the number of electron-ion pairs and (' the capacitance of the detector
[14]. For a typical capacitance of 10 uF and a few hundred pairs (typical ionization
of single particles) the signal voltage is in the region of pV. For comparison, the
noise at the input of a typical FET operational amplifier with 1 MHz bandwidth
is about 5-10 pV [23], so the signal will be lost in the noise. (If large fluxes of
particles are available then the integrated signal can be high enough for detection.
This integrating type of detector is called an ionization chamber and is frequently

used to measure doses for medical applications.)

The signal is increased if a higher electric field is applied. Electrons, which
have a higher mobility than ions, can acquire enough energy between collisions
to ionize the gas further in what is called avalanche multiplication. An electron
hits an atom and ionizes it, extracting another electron so there are two free
electrons, each one generating another free electron in the next step. The number
of electrons doubles in every step and their final number depends on the number

of steps before they are collected at the anode.

A coaxial cylindrical geometry is commonly used to create the electric field.
A thin metal wire (diameter 20-40 ym) is stretched on the axis of a conducting
cylindrical tube and a potential difference is applied between the electrodes. The
polarity is chosen so that the wire is positive with respect to the cylindrical
tube. If a is the wire diameter and 3 the tube diameter the electric field and the

potential are given by:

CV, 1
E(r) = - 2
(r) 2meg T (3-2)
CV, r
Vir) = In — 3.
("= (3.3)
where C = 22 js the capacitance per unit length of the system, V5 = V() the

In(8/e)
over-all potential difference, V(a) = 0 and ¢, the dielectric constant (for gases
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€o ~ 8.85 pF/m). The minimum value for r is o and if the wire diameter is small

the electric field can reach values of 70-80 kV/cm close to the anode [14].

Electrons liberated in the gas volume drift towards the anode and ions towards
the cathode. Only very close to the anode, typically a few wire radii, does the
field get strong enough so that multiplication starts, and every electron produces
approximately the same number of final electrons independent of its original
creation point—the total number of electrons follows the Polya distribution, see
section 3.3.2. The total signal (sum of all avalanches) has an even narrower
distribution (divided by a factor equal to the square root of the number of primary

electrons) and depends only on the number of primary electron-ion pairs created,
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Figure 3.1: Gain-Voltage characteristic curve for a proportional counter showing
different modes of operation [24].



50 Chapter 3. Principles of Operation of MSGCs

which reflects the energy deposit. This detector is called the proportional counter.
The gain of the proportional counter is the ratio of the number of collected ions

to the number of primary ions.

Figure 3.1 shows how the number of detected ions in a proportional counter
depends on the operational voltage V,. For very low voltages some ions are
collected but the main process is recombination, As the voltage increases full
ion collection begins and the chamber operates in ionization chamber mode. At
a threshold voltage Vr multiplication starts and gains in excess of 10* can be
obtained still in the proportional mode. At higher voltages the proportionality is
gradually lost because the space charge of the avalanche limits the multiplication.
This is the imited streamer mode. Then when even higher fields are applied the
avalanche is no longer localised but stretches out to a significant fraction of the
wire length. Geiger-Miiller mode starts at even higher voltages with every event
resulting in the same saturated signal with the avalanche strétching out to cover

the whole wire length.

3.1.1 Gas Properties

In principle avalanche multiplication can happen to all gases or gas mixtures,
so any gas would be suitable for filling a detector. However, various aspects of
the operation, particularly stable operation at high gains and long lifetime make

some gas mixtures more suitable than others.

Ionization occurs more easily in noble gases than in gases with complex
molecules, because there are no rotational and vibrational states to absorb the
deposited energy. Avalanche multiplication also occurs more easily in noble gases
because of the “Ramsauer effect” [17]. The wavelength of electrons in the range
of kinetic energies around 1 eV corresponds to two diameters of bound electron

orbits in noble gases. This, via a quantum-mechanical effect reduces significantly
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the collision cross section, and electrons can easily acquire enough energy between
collisions to create an avalanche. As a result lower fields and lower voltages are

necessary for the operation of a detector that uses a noble gas.

However, a chamber filled with a pure noble gas cannot reach gains higher than
10%-10* without entering a permanent discharge state. This is because during the
avalanche process atoms are excited as well as ionized, and return to the ground
state through radiative processes, which might include a significant amount of
UV photons (the minimum energy of the emitted photon for argon is 11.6 eV). If
these UV photons are absorbed by the cathode, they can extract electrons (the
ionization potential of copper is 7.7 €V) which can then initiate a new avalanche
soon after the primary. Ions, neutralized at the cathode, also emit photons that

can also extract electrons from the cathode and start a new avalanche.

Adding small quantities of a polyatomic (usually organic) gas to the mixture
can improve the performance of the detector by stopping the UV photons from
reaching the cathode. This effect is called quenching and the gas a quencher.
Polyatomic gases can absorb photons over a wide energy range because they have
a large number of non-radiative states; methane absorbs photons very effectively
in the range 7.9-14.5 keV, which covers the energy range of photons emitted by
argon. The molecules then can dissipate the energy either by inelastic collisions
or by dissociation into simpler radicals. Adding a polyatomic gas also reduces
the number of UV photons emitted from the cathode during neutralization. As
the noble gas ions drift towards the cathode, they collide with the quencher
molecules and capture one of their electrons. This ion exchange occurs because
most complex molecules have a lower ionization potential than noble gases. Very
quickly almost all of the ions belong to the gas with the lower ionization potential

and very few noble gas ions reach the cathode to emit UV photons.

Although organic gases are very good quenchers, allowing stable operation

at gains of 10°-10%, they introduce problems in the long-term operation of the
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chamber. When the quencher molecules are neutralized at the cathode, they
either break down to simpler molecules or polymerize. The products of polymer-
ization are deposited at the cathode and create problems in the operation of the
detector. So the quencher gas must be chosen carefully. It is sometimes useful
to add a third component to the gas mixture with an even smaller ionization po-
tential than the primary quencher, which does not tend to form polymer coating

(ethanol, methanol or H,O to name a few).

3.1.2 Rate Capability—Space Charge Effects

The performance of the proportional counter is affected by the rate of particles
interacting in the detector volume. The positively charged ions generated in the
avalanche modify the electric field around the wire, which is restored only when
all the ions are collected at the cathode (after several hundred us). For low
particle rates (up to 10®°/mm?/s) the gain of the chamber is not affected because
the avalanche in the proportional mode does not extend more than 0.5 mm along
the wire, leaving the rest of the wire active. However, as the rate of particles
increases, there is not enough time for the ions to reach the cathode between
events, and space charge builds up. The ions in the space between the anode and
cathode reduce the electric field, and the gain of the chamber decreases, reducing

the efficiency of the detector.

3.2 From MWPCs to MSGCs

Proportional counters are widely used wherever the the measurement of energy
loss is required, but their capability in space localization is limited; a particle
has either entered the detector of not. Stacking many small counters together

is possible but mechanically difficult. It was Charpak who solved the problem
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in 1968 with the invention of the MultiWire Proportional Chamber MWPC [25].
An MWPC consists of a series of parallel wires stretched between two cathodes.
The electric field (shown in Figure 3.3) is uniform except very close to the anode
wires, where it takes the 1/r form. Electrons liberated in the gas from a passing
particle drift in a uniform field until they reach very close to an anode wire where
they start avalanche multiplication as described for the proportional counter. The
difference is that the signal is highest on the wire that the particle passed closest
to, so the position of the particle is known (in one dimension). A second chamber
with a second set of wires perpendicular to the first, or segmented cathodes on a

single chamber, can provide information about the second dimension.

The spatial resolution (FWHM) of the chamber in the direction perpendicular
to the wires, if it is operated with simple discrimination, is the distance between
the anode wires (typically 2 mm). The resolution can be improved by using the
signal from a number of cathode segments and using the centroid to locate the

particle. A resolution of about 400 ym has been achieved with this method.

The centroid method is slow and has to be done off line. For fast, on line
read-out systems, threshold discrimination is used and the only way to improve
the spatial resolution of the detector is to reduce the distance between the anode
wires. For small distances between the wires the repulsive electrostatic forces
tend to move them off their position. The force that is stretching the wires to
keep them in position is limited by the tensile strength of the metal. The limit in
the inter-wire distance imposed on even small chambers by the tensile strength
is about 1 mm leading to a resolution 1 mm resolution. Various wire support
methods were devised to hold the wires and reduce the effect of electrostatic

forces, but they lead to locally reduced efficiency.

Thus, it is very difficult to achieve resolution below 0.5 mm with an MWPC.
A solution to this problem was suggested by Oed [1] in 1987 with the invention
of the Gas MicroStrip Counter (MSGC).
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3.3 The Gas Microstrip Counter

The Gas Microstrip Counter, as shown in Figure 3.2, consists of a plane electrode
(drift cathode) a few millimetres above an insulating substrate on which thin
metal strips (anodes and cathodes) have been deposited using the technology for
micro-chip production. With this technology the strips can be very narrow and
positioned very accurately. A typical pitch is 200 /im, with the anodes 10 /zm
wide, the cathodes 90 /zm and the distance between anode-cathode 50 /zm. The
granularity of the detector is about 10 times denser than that of an MWPC.
Figure 3.4 shows two different layouts of anode and cathode strips on glass.
Special care was required at the ends of the strips to avoid sharp edges that

could result in high fields and sparks in the chamber.

The principles of operation are the same as in the MWPC. Figure 3.3 shows the
electric field in an MSGC compared with that of an MWPC. Electrons hberated by
a passing particle drift in the area of low field and start avalanche multiplication
when they reach very close to the anodes. The big difference is the presence of

the substrate.

The substrate was originally made from very resistive materials to reduce

the “leakage current” from the anodes to the cathodes. This approach is not

Drift plane

Anod
Cathode node

Substrate

Figure 3.2; Outline of an MSGC detector.
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Figure 3.3: The electric field in an MWPC and an MSGC.

very successful because ions tend to get trapped in the substrate and modify the
electric field, so the gain of the chamber changes with exposure to radiation. For
that reason specially processed glasses with lower resistivity have been developed.
In this way the ions trapped in the substrate could drift slowly to the cathodes.
With Moscow C85 glass, (I0® 0 cm), rates up to 10®particles/mm~*/s have been
reached [26].

Anodes Cathodes

©

Figure 3.4: Two different layouts of anode and cathode strips on glass.
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MSGCs can operate in high particle fluxes without being seriously affected by
space charge effects, because the cathode strips are very close to the anode strips.
After the avalanche multiplication a large fraction of positive ions is collected by
the neighbouring cathodes in less than 1 ys. For the same reason the signal of
an MSGC rises much faster than the signal of an MWPC and is less affected by
the long drift of ions. The same signal output can be reached with lower gain,
when the detector is terminated with a resistor R and the signal is differentiated
with a constant RC, because of the faster rise time. However, for rates above
10 particle/mm? /s the ions moving towards the drift cathode start affecting the

gain of the chamber.

Another drawback of the presence of the substrate is that its properties change
with exposure to radiation. The exact processes are not very well understood,
but a lot of theoretical and experimental work is under way, with different types
of glass. MSGCs are planned to be used in the tracking of the CMS experiment
at the CERN LHC [27], where long life-time under heavy exposure to radiation

is essential.

3.3.1 Spatial Resolution

The spatial resolution of an MSGC system for X-ray imaging depends on the
following factors:
1. The range of electrons (photoelectrons, Auger electrons, -rays) in the gas.
2. The energy, range and generation probability of fluorescence photons.
3. The detector pitch.
4. Diffusion of electrons as they drift towards the anode plane.

5. The discriminator threshold, if the detector is operated in binary mode.
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The first two items were discussed in detail in the the previous chapter. In
binary mode, with a discriminator on each channel, possibly the only read-out
mode that is fast enough for medical applications, the longer the range of electrons
the worse the spatial resolution. One factor that affects the range of electrons is
the density of the gas. Heavy, dense gases are expected to perform better than
light gases. High pressure also increases the density of the gas and can improve

the performance of the system by reducing the range of electrons.

For a chamber filled with a xenon/CO, mixture at 5 bar, irradiated with
18 keV X-rays the range of the photoelectrons is about 140 pm while the range
of Auger electrons is almost negligible. Diffusion of electrons over a drift length
of a few millimetres is also about 130 gm, comparable with the ionization spread
due to the electron range. Both factors combined should give hits that are either
single (only one strip) or double, if the detector pitch is 200 pm, with a very
small percentage (depending on the discriminator threshold) giving a hit on three

anodes.

Spreading of charge to more than one channels can be very useful in the case
where the chamber is not operating in a strict binary mode, like the HR mode of
the SDRD, where double hits lead to improve resolution. If a weighting algorithm
is used, combining information from more than one anode, then the spreading of
charge can improve the resolution significantly. In this case, a detector pitch 2-3

times smaller than the spread of electrons should be used.

Diffusion

A localized distribution of electrons diffuses by multiple collisions due to the
thermal energy of the gas, following a Gaussian law:

iN 1

N _ 1 ey g 3.4
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where dN/N is the fraction of charges found in the element dz at a distance =
after time ¢, while D is the diffusion coefficient and it is temperature dependent

[14]. The standard deviation in one dimension is given by:

o =V2Dt (3.5)

If the charges are in a uniform electric field, as in the drift area of an MSGC
or MWPC, the time ¢ until they reach the anode is equal to d/vp. The standard

deviation can then be written:

o= 22 3 (3.6)
Up

where d is the distance from the anode, vp the drift speed and D’ the field de-
pendent diffusion coeflicient. The diffusion coefficient has to be modified because
the energies of the electrons can be higher than the energies expected from the
gas temperature, because of the presence of the electric field [28]. Electrons with
higher energies spread out more and the diffusion coefficient increases. For a

particular field D’ and vp are constant and equation 3.6 becomes:
o=KVd (3.7)

where K is also sometimes called the diffusion coeflicient, expressed usually in

pm/ /cm. K scales inversely with the square root of pressure.

Diffusion at normal angles to the drift direction is called transverse or lateral
diffusion and along the drift direction longitudinal diffusion, and the coeflicients
can be different. In an MSGC longitudinal diffusion affects only the time develop-
ment of the signal, which was not studied. In the present work the only diffusion

considered is transverse.

Figure 3.5 shows the o of the electron distribution, in the direction perpen-
dicular to their drift direction, after 1 cm of drift, in Xe/CO, mixtures. The
solid curves were generated [29] using a program called MAGBOLTZ [30]. The
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dashed curved is an interpolation for Xe/CO, (80/20). The exact values used
can be found in Table 4.2. The field values in the experiments at Novosibirsk
were in the region of 1-3 kV/cm/atm. Electrons in CO, can stay at thermal
energies for much higher fields than other gases because of the existence of rota-
tional and vibrational states that absorb energy in electron-molecule collisions. A
field strength of 1 V/cm produces electrons with energies distinctly higher than
thermal in argon (“hot gas”) while in CO, the same behaviour occurs at fields of
the order of 2 kV/cm (“cold gas”). In Figure 3.5 diffusion gets lower as the field
strength increases but at some point it reaches a minimum and starts increasing
again. This is the point where electrons start gaining a significant fraction of
their energy from the electric field and the behaviour of the gas mixture stops
being thermal. The higher the amount of CO, in the mixture the higher the field
when that happens.

Diffusion affects the resolution of the detector by spreading out the electrons
before they are collected by the anodes. The probability of getting a pulse above

the discriminator threshold on more than one anode increases as the diffusion
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Figure 3.5: o of electron distribution after 1 cm of drift in Xe/CO, mixtures.
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coefficient increases. It is thus important to minimize the effects of diffusion.
The obvious way is to chose a gas mixture with low diffusion coefficient. Mix-
tures based on CO; for quenching have frequently the lowest values. The use of
high pressure also reduces the spreading of electrons by reducing the diffusion
coeflicient as well as reducing the range of electrons in the main cluster. In some
circumstances raising the discriminator threshold may also improve the spatial

resolution.

3.3.2 Energy Resolution

The output signal of a detector is not always the same even if exactly the same
energy is deposited. The reasons for this may be intrinsic to the detector type
or may be due to faults in its construction. The intrinsic factors are due to the
actual processes of detection and set the physical limits in the energy resolution.
For gas detectors there are two intrinsic factors: the fluctuations in the number
of electron-ion pairs and fluctuations in the gain. These factors set the limits of

the energy resolution of gas detectors.

Gas detectors detect the ionization in the gas, but since energy can be ab-
sorbed in other modes the number of electron-ion pairs created varies from event
to event. A varying number of electrons results in a varying output signal. More
detailed discussion on the fluctuation of the primary number of electrons can be

found in section 2.2.3.

The second intrinsic factor is variation of gain. Every electron when it reaches
close to the anode starts an avalanche. The process of multiplication is statistical
so the exact number of produced electrons (and the gain of the chamber) cannot

be predicted. It follows the Polya distribution [31]:

_ m(mz)™"!

P.(z) = T(m) e ™ dz (3.8)
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where I'(m) is the Gamma function. The probability of having gain g = zG
(where G is the measured gain of the chamber) is given by P,(z). The mean
value of the Polya distribution is 1 and the variance m™'. For m = 3/2, P/(z)
is called the Curran distribution and has been found to be a good approximation

of the gain fluctuations in wire chambers [31].

Imperfections in the construction of the chamber, like rough metal surfaces,
variations in the distance between anodes and cathodes or a non-uniform sub-
strate, affect the local electric field, the local gain and as a result the energy
resolution. Impurities in the gas can also affect the energy resolution by captur-
ing electrons before they reach the anodes. Electron clusters created away from

the anodes will produce a lower signal than clusters created close to the anodes.

3.4 Choice of Gas

Xenon and COg, in a ratio 80:20 were chosen to form the gas mixture for the
detector used in the experiments at Novosibirsk (Chapter 5) and for the simulated

future system (Chapter 6), for the following reasons:

1. Xenon is the heaviest of the stable noble gases. For that reason it has gen-
erally the highest absorption coefficient for X-rays, although at the energy
region of 20 keV krypton has a slightly higher absorption coeflicient because
of its K edge. A high absorption coeflicient is essential for a system used
in medical applications because it leads to better quantum efficiency and

reduced patient dose.

2. Carbon dioxide has the lowest diffusion coefficient of all gases and used as

a quencher can reduce the diffusion coefficient of the mixture.

3. Carbon dioxide does not polymerize, so it offers a longer lifetime for the

detector. It is also stable in time, important since the detector will probably
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operate in a sealed box.

4. The mixture is not flammable, thus no special guidelines are needed for

handling the gases.
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Simulation

“As far as we know, our computer has never had an undetected error.”

Weisert

As mentioned in the introduction, the purpose of this study is to establish the
feasibility of an MSGC for medical imaging, especially mammography. A combi-
nation of computer simulation and experiments was used. Computer simulation
is a powerful tool, which can be used to model the experimental results of many
different set-ups and at a very small cost. The comparison of specific simulation
results with experimental data can show if the predictions are correct or not.
The model can then be extended to predict the performance of a system which

is optimized for a particular application, such as medical imaging.

4.1 EGS4

Electron Gamma Shower 4 (EGS4) [32] is a Monte-Carlo program developed to
simulate the interaction of electrons and photons with matter. It is used exten-
sively both in particle physics and in medical physics and has very good docu-

mentation. It was found not to be ideal for this study for the following reasons:

e The physical model used for the transport of electron assumes that all the

electrons in matter are free. This assumption works nicely when the energy
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of the incoming particles is much higher that the binding energy of electrons
in matter, and it reduces computing time, but it does not give accurate
results when the energy of the particles that are being tracked is comparable
with the binding energy of electrons. The program was originally developed
for High Energy Physics applications, so this approach is understandable. In
recent years the program has been extended to cater for many lower energy
problems with biomedical applications in mind. One of the additions has
been the the PRESTA subroutine, which makes corrections in the step sizes
of the particle transport, and allows electron transport down to 10 keV. But
the present study was concerned with showers initiated by primary X-rays
with energies in the range from 6 to 20 keV, so even the modified version

of EGS4 is not really applicable.

Table 4.1: Processes treated by ITS 3.0 [34].

- Electron/Positron Interaction

¢ Energy loss straggling
¢ Elastic scattering
e Production of knock-on electrons (§-ray)

e Impact ionization followed by production of fluores-
cence photons and/or Auger electrons

¢ Production of annihilation radiation
- Photon Interaction
e Photoelectric absorption with the production of pho-

toelectrons, Auger electrons and fluorescence photons

e Incoherent scattering with the production of scattered
electrons

e Coherent scattering

¢ Pair production
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e The photoelectric effect, the dominant process of photon interaction at
low energies, is simulated in EGS4, but the photons interact only with
the K shells of elements. A significant part of this study, the absorption
of 20 keV photons in xenon, could not be simulated with EGS4 because
the binding energy of the K shell in xenon is 34.5 keV. A program able to

handle L shell interaction was necessary.

e From the relaxation processes after a photoelectric interaction only the K,
fluorescence is simulated by EGS4. It generates no fluorescence photons
from other shells and no Auger electrons. Auger electrons in the case of
L shell ionization in xenon have initial energy of 5 keV and depending on
the pressure of the gas their range can be significant. Again a program able

to handle Auger electrons was necessary.

4.2 ITS

The Integrated Tiger Series 3.0 code (ITS) has been developed in SANDIA Labs
and is described in its documentation as “a software package for the Monte-Carlo
solution of linear, time independent coupled electron/photon radiation transport
problems, with or without the presence of macroscopic electric and magnetic
fields” [33]. This amounts to the same goal as EGS4 but there are important
differences in how it is achieved. The physical model of ITS allows the produc-
tion and transport of the electron/photon cascade from 1 GeV down to 1 keV.
Table 4.1 gives a brief list of the processes simulated by the program.

4.2.1 Description of the Program

As the name suggests, the Integrated Tiger Series is an incorporation of a number

of different codes in a single library. The user has to run a program called the
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UPDATE emulator to extract the modules needed. The same program can be
used to modify the FORTRAN code by inserting or deleting lines. There are three

main options to be chosen according to the geometry of the problem in hand:

TIGER A code for one-dimensional problems made of layers of different mate-
rials.

CYLTRAN A three-dimensional description of particle trajectories within an

axi-symmetric cylindrical geometry.

ACCEPT The option used in this work. It is a general three-dimensional trans-
port code that uses the combinatorial geometry scheme in which the vol-
umes of material inserted in the process are built up of primitive bodies,
like a sphere, a box or a cone. These bodies can then be combined, using
the union, the difference or the intersection between bodies, or combination

of bodies, to create complicated geometries [35].

Other options that can be combined with the three main ones are the M-codes
option for macroscopic electric and/or magnetic fields, the P-codes option for low

energies and machine compatibility options (VAX, IBM or CRAY).

The P-codes give an improved modelling both of the ionization process and
the subsequent relaxation processes and were always used in this study. With the
P option, ITS is a more suitable program than EGS4 for simulation of the absorp-
tion of low energy X-rays in MSGCs, because there is more detailed modelling of
the photoelectric effect, fluorescence and Auger electron emission. Photoelectric
interactions are simulated for all K, L, M and N shells as long as the binding en-
ergy of the shell is above 1 keV. After the photoelectric interaction, fluorescence
and Auger emission are simulated, taking into account electron transitions from

all the above shells until the atom returns to its ground state.

No published flow chart of the program has been found in the literature or

in its manuals, and the comments that exist within the code are very brief. The
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authors of the code (particularly R.P. Kensek of SANDIA labs) were very willing
to reply to enquiries and give ad hoc explanations of particular points. They
suggested that one of the best accounts on modelling of ITS is to be found in the
documentation of a similar program called ETRAN [36]. Figure 4.1 shows a flow
chart of the operation of the ITS code, as utilised in this project, in an attempt

to fill this gap.

The cross sections for all the processes listed in Table 4.1 are generated by a
program called XGEN before the main run of the Monte-Carlo. The input files
used for XGEN and ITS are given in Appendix A.

4.2.2 How ITS Works

All Monte-Carlo simulation programs make use of random numbers to sample
various quantities—like energy deposition—from known distributions. These dis-
tributions depend on the energy of the particle and have to be re-calculated every
time the energy of the particle changes. ITS, which Kensek has classified as a
“Class I” code, pre-calculates a table with electron transport step sizes for a num-
ber of different energies. It also pre-calculates sampling distributions based on
these step sizes. That saves a lot on computing time, because for a given electron
energy the program looks up the appropriate step size from the table and then
samples the pre-calculated distributions that correspond to that step size. The
disadvantage of this method is that the step size cannot be changed if necessary,
for instance when a boundary between zones is crossed. In this case ITS deposits
energy in both zones proportionally to the length of the electron track in each
one of them. “Class II” codes, like EGS4, sample a distance for each step and
then calculate the necessary distributions based upon this distance. This is more

time consuming, but more flexible.

The geometry of the problem is made up of user defined zones. Every zone
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Figure 4.1: Flowchart of ITS (ACCEPT, P-option).
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occupies a certain sub-volume of the geometry and can be made of different
material. The zones are also used for scoring energy deposition, so if a detailed
mapping of energy deposition is needed the volume of interest must be divided
into a large number of zones. The volume of each zone, or a subroutine with the

necessary logic for the calculation of the volume, has to be provided separately.

The initial particles can be either electrons or photons. They may be monoen-
ergetic or sampled from a spectrum and the particle source can be point-like, or
a disc. The default direction is along the z-axis, but in ACCEPT the keyword
DIRECTION can be used to define the direction in terms of § and ¢. The user
can easily create customised sources by modifying the FORTRAN code using the
UPDATE program. Particle transport in ITS is done in steps and sub-steps. A
table of step sizes is pre-calculated in the XGEN program for a number of particle
energies and cannot be modified. The user has access to the number of sub-steps
per step using the keyword SUBSTEP. The number of sub-steps is initialised to
an empirical value and can be increased to match the geometry of the problem in
hand. According to the authors there are no physical limitations in the number
of sub-steps per step, but very big values (above 50) could cause inaccuracies in
the numerical calculations. A number of about ten sub-steps per scoring zone
is required to give accurate results. Care was taken to follow this rule in the
simulations. A test was done by solving the same problem with different zone

sizes and no problems were observed.
The default output of the program contains mainly:
e The number of events for the various physical processes (e.g. photoelectric
ionization, Compton scattering etc.) that were generated and the ener-

gies that correspond to these processes. No distinction is made between

processes initiated by primary or secondary particles.

e The energy and charge that was deposited in the user defined zones.
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e A number that shows how accurately energy was conserved. Since the
energy loss of the particles is treated in a statistical way there is always the
possibility of an error in energy deposition. This number provides an extra

test of the program.

Other output options include the scoring of electrons and photons that escape
the defined geometry, or the scoring of the electron or photon flux that crosses
the boundaries between certain zones. The user can create specialised output by

modifying the code with the UPDATE program.

A significant problem which had to be solved before ITS could be used at
all stemmed from the fact that ITS was designed to calculate energy depositions
averaged over large numbers of incoming particles, rather than event by event.
In this work the energy deposition of individual photons was essential. Since an
MSGC is a counting and not an integrating device, information for the energy de-
position of individual X-ray photons was necessary if the actual counting process

was to be simulated accurately.

Small modifications were made to the program in order to generate an output
for individual particles. The files that were used as input for the UPDATE program
and the actual Monte-Carlo can be found in Appendix A. A feature of ITS is
the division of the number of primary particles into batches with a new seed for
the random number generator for every batch. This is done so that statistical
errors can be calculated for the output. The output subroutine is called at the
end of every batch and the final output consists of the average of all batches.
By setting the number of batches equal the to number of primary particles the
output subroutine is called every time all the events triggered by one primary
particle have terminated. With a small modification of the FORTRAN code the
energy deposition from each individual primary particle could be written as a
separate record in a file. The file of these records was then available for further

analysis.
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A fundamental question and its answer

A problem of energy depositions with negative values appeared when ITS was used
to score energy depositions of individual X-ray photons. The negative values have
no physical meaning and the problem has its roots in a peculiarity of the modelling
of the program. In the modelling of electron transport the production of §-rays is
sampled from a distribution that is independent of the energy loss of electrons. A
6-ray can be deemed to be created even if the energy which was deposited at that
point is less than the energy of the §-ray. The extra energy needed is subtracted
from the medium and appears as a negative energy deposition. These negative
depositions of individual particles disappear when the average over thousands of
particles per batch is calculated and this is why the writers of the program made
use of such a model. But the problem becomes acute in our case where each

batch contains only one primary particle.

The generation of events that had some negative energy deposition could be
limited with the use of large zone sizes, so that enough “positive” energy would
be deposited to cancel them out. However, the size of the zones had to be small
enough to give good spatial resolution at the same time. The combination of
photon energy, gas density and zone size used in the simulations was such that

about 1-10% of the simulated events had some negative energy deposition.

One approach used was to correct the output of ITS before it was used for the
simulation of an MSGC. A negative deposition was created because a §-ray had
been generated at a point where the electron had not deposited enough energy.
But if the electron had deposited enough energy in one of the neighbouring zones
(within 50 pgm) then the error was not very significant. A program was written
to look for zones with negative energy and then find a neighbouring zone with
positive energy of a value higher than the absolute value of the negative energy
zone. If there was one, the program would put the energy content of the zone

with the negative energy to zero, and subtract that amount from the zone with
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the positive energy.

There were of course cases when even this approach did not work. Especially
for gas mixtures at atmospheric pressure, where electrons do not lose energy as
fast as for higher pressures, about 1% of the events had some negative energy de-
position without having big positive energy depositions in adjacent zones. These
events were without physical meaning and had to be discarded. The creation of
negative energy depositions is a random process depending only on the energy of
the primary particle. Since all primary photons had the same energy no bias is

expected from the rejected events.

4.2.3 Energy Deposition

For the simulation purposes of this study ITS was used to generate the initial
spatial distribution due to energy deposition of individual X-ray photons. As
mentioned before the energy deposition mapping of the detector volume is done
by recording the energy deposited in the user defined zones (in this case small
boxes). Good spatial resolution was needed to localise the ionization in the
gas, but zones that were very small would create problems with negative energy
depositions. Zones with dimensions of about 50 gm in the directions of interest
(across the strips and along the drift) provided sufficient spatial resolution without
creating big problems with negative energy depositions. The error of positioning
electrons within boxes of 50 ym is 50 yum//12 ~ 15 pm; much smaller than the

contribution from diffusion which varied from 70 to 130 pgm.

The two different geometries described in section 1.2.1 were simulated. In

both cases the direction of the beam was along the z-axis.

For the “perpendicular” geometry (Figure 1.6a), the z-axis was chosen to be
across the strips, the y-axis along the strips and the z-axis along the direction

of the drift. The volume of the detector simulated was 4 mm x 150 mm X 5
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mm (z X y X z). This volume was divided into 100 zones along the z-axis (every
40 pm) and 100 zones along the z-axis (every 50 pm) as seen in Figure 4.2a. No
division into zones was made along the y-axis since the strips were considered

uniform along all their length.

For the “tangential” geometry (Figure 1.6b) the simulation was performed
not for a keystone tile but for tiles with parallel strips. The effect of the varying
detector pitch was studied by simulating three detectors with pitch of 180, 190
and 200 pm (see section 6.3.1). A complete three-dimensional simulation was
not made, because of the extremely large number of zones that would have been
required. The division into zones was done again with the z-axis in the direction
across the strips, the y-axis the direction opposite to the direction of the drift and
the z-axis the direction along the strips. The simulated detector volume was the
same as before. The division into to zones this time was made along the z-axis
(again every 40 pm) and along the y-axis (every 50 pm) as shown in Figure 4.2b.

No division was made along the z-axis (along the strips).

The zones were numbered from 1 to 10000. After the end of all the histories
that were initiated by one source photon, the program wrote the zones with non-
zero energy content and their energy to a file. The zone number was used to
provide the spatial coordinates and the energy as a measure for the ionization in

the zone area.

4.3 From Energy Deposition to Signal Genera-
tion
The energy deposition in the detector volume is only the beginning of the simula-

tion of an MSGC. It is the electrons in the gas that create the signal, and electrons

diffuse before they reach the anodes. For that reason, a special program was de-
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Figure 4.2: Division of the detector volume into zones for energy deposition, a)

Perpendicular geometry, b) Tangential geometry.
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veloped to take the output of ITS and use it to simulate the performance of the

detector. The task is performed in five stages:

1. The energy deposition in every zone is converted into a number of electrons
by dividing the energy by W, the average energy to create an electron ion
pair. Adding these numbers for all zones gives the total number of electrons
per event, which is the same for all events with the same energy. This num-
ber is used as the mean number of electrons per event. Fluctuations on this
number are introduced by sampling a Gaussian distribution [37] with mean
zero and o the value from the Fano factor calculation (see section 2.2.3).
The sampled number is added to (or subtracted from) the mean number
of electrons to give the number of electrons for the particular event. The
extra electrons are added to (or subtracted from) the number of electrons
generated by ITS in separate zones, one by one, choosing the zones ran-
domly. After the number of electrons for every zone has been specified, the
electrons are distributed uniformly (by sampling a flat distribution) inside

their zone, so each one has an exact position (Figure 4.3 (a) and (b)).

2. The effect of impurities in the gas is simulated by introducing a probability

~<5 where cis a

of electron capture. The probability has the formp =1 —e
constant and S the distance the electron has to travel to reach the anode.
For S = 0 (the electron being very close to the anode) the probability is
zero, and for big S the probability goes to one. Whether the electron is
captured or not is decided by sampling a uniform distribution from zero to

one and comparing the outcome with the value of p. If the sampled number

is smaller than p the electron is captured.

This effect was used only in the simulations of the experiments in Novosi-
birsk where we had reasons to believe that the gas was not absolutely clean.
The value of the constant was scaled with pressure, since the number of

molecules per unit length increases linearly with pressure, and was tuned
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Table 4.2: Diffusion coefficients for the gas mixtures used in
the simulations.

AI'/iSOC4H10a Xe/002b
Pressure (bar) 1 2 3 | 5 7
Dif. coef. (pm/4/cm) 235 300 | 220 | 160 | 160

%See ref. [14]
*Calculated with MAGBOLTZ [30]

to fit the experimental data.

3. Electrons are allowed to diffuse in the direction across the strips during

their drift to the anodes. Diffusion is sampled from a Gaussian distribution
with sigma o = D+/S where D is the diffusion coefficient for the specific
gas mixture and S is the distance from the microstrip tile. The diffusion
coefficients used in the simulation are shown in Table 4.2. The sampled
number is added to the initial position of the electron to determine its
position just before reaching the anodes. Since the electric field is not
simulated, all electrons arriving in the area from the middle of one cathode
to the middle of the next cathode are considered to be collected by the anode
between the two cathodes (Figure 4.3 (c)). And since the development of
the signal in time was not part of this study, all electrons are considered to

arrive at the same time.

. Just before its arrival at the anode, every electron is multiplied by a gain

factor G. This gain is the result of the avalanche multiplication process in
the gas which is a statistical process that follows the Polya distribution,
described in section 3.3.2. This distribution was sampled using the subrou-
tines HISPRE and HISRAN from the CERN library. HISRAN is a subroutine
that samples a distribution which is given in histogram form and HISPRE
has to be called before HISRAN to prepare the array that represents the

histogram.
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Event 1 Event 2
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Figure 4.3: Two photon conversions: in event 1 an Auger electron followed the
photoelectron. Both electrons have undergone multiple scattering and have not
travelled far from the interaction point. The energy density around the interaction
point is high. In event 2 a fluorescence photon was emitted after the photoelectric
interaction, which also converted in the detector volume about 1.5 mm further
away. To keep the scale the same and the zones visible, only the area close to the
two interaction points is shown. The first photoelectron followed a rather straight
path ionising the gas away from the interaction point. The second photoelectron
did not have enough energy to travel far. (a) ITS output; the 40x50 //m zones are
shown with their energy content, (b) The energy deposition has been converted to
number of electrons and each dot represents one electron, (c¢) The electron cloud
after lateral diffusion just before reaching the anodes. No attempt has been made
to represent the true distribution in time. The detector pitch is 200 /xm.
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All the electrons that arrive at each anode are added together to create the
anode signal. This signal is then converted from number of electrons to keV
so that it does not depend on the gain of the chamber and can easily be
compared with experimental data. For the conversion the program is run
once giving the output in number of electrons. The energy of the peak in
the spectrum is known so an extra factor is then introduced in the program

to convert the number of electrons to keV.

. Noise is added to the signal, if the results are to be compared with ex-

periments, from a distribution that has been measured in the experiment.
Noise is estimated in the experiment by collecting a pulse height spectrum
without a source triggering the detector. Ideally the spectrum should be
just a line at the value of the ADC pedestal, but noise spreads the spectrum
to a (usually) Gaussian distribution. In the simulation, noise is inserted
to the signal by adding samples of a Gaussian distribution to give similar

results.



Chapter 5

Experiments and Comparison

with Simulation

It is usually said that the final test of a theory is the experiment. This is also
true for computer simulations. The only way to validate a model is to compare
its predictions with experiments. The methods and results from the experiments
at Novosibirsk and UCL are presented in this chapter together with the results

from the simulations.

5.1 Experiments with Xe/CO,, 2-7 bar

A special visit was made to the Budker Institute of Nuclear Physics in Novosibirsk,
Russia, to take data with their equipment. The Novosibirsk group had experience
in pressurised gas chambers from the SDRD work and they were starting a series
of experiments to investigate the use of MSGCs for medical applications. They
were particularly interested in the simulation methods described in the previous

chapter. A number of joint publications resulted from this visit [38].

79
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5.1.1 Description of Laboratory Set-up in Novosibirsk

The laboratory installation consisted of an X-ray source, a microstrip detector in
a pressurised box, a slit collimator, and the associated electronics for operating
and reading out the detector (Figure 5.1). The size of the sensitive area of the
detector was 2 cm wide (across the strips, 96 channels) each strip being 1 cm long.
The distance between anodes was 200 /xm and the drift gap 5 mm. The window
of the pressurised box was about 3 cm x 2 cm (slightly bigger than the detector),
made of 1 mm thick beryllium. Beryllium has a very small cross section for X-ray
absorption and is the ideal window material for X-ray sources or detectors. A
piece of aluminized mylar was glued to the inner side of the beryllium window,
and acted as the drift electrode. In this way, there were no dead areas in the gas.
The gas mixture used was 80% xenon and 20% CO2 at pressures of 2 to 7 bar.
A lead colhmator 2 cm wide and 0.5 cm long was placed in front of the window
during all the measurements to reduce the effective window size along the strips.
Two high voltage power supplies were used, one to provide high voltage for the
drift plane and one for the cathode strips, the anodes being grounded. All the

voltages given were negative with respect to the ground.

lem  5Smm

Top view

detector

strips

X-ray source

(tube)
slit

70 cm
drift electrode

Figure 5.1: Schematic diagram of the experimental set-up in Novosibisk.
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Detector Scaler
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Figure 5.2: Configuration of read out electronics in Novosibirsk. Line (1) was
used for spectra collection, while line (2) was used for spatial resolution measure-
ments.

Two different configurations were used in the read-out electronics (Figure 5.2).
Line (1) was used for spectrum (pulse height) measurements. Either one or twelve
anodes together were connected to a pre-amplifier and a post-amplifier, and then
to a CAMAC ADC. The attenuator was used because the gain of the post-amplifier
was fixed. Line (2) was used for spatial resolution measurements. Compact
modules, with a pre-amplifier and a discriminator for every anode, were plugged

into the pressurised box and produced a digital signal that was read by scalers in

a CAMAC crate. A PC was used to read the CAMAC units in both cases.

Two sources of X-rays were used; a Cadmium source and a tungsten anode
X-ray tube. The !°°Cd source is known to produce a double X-ray line at 21.9
and 22.1 keV and was used as a reference energy. The tube could operate in
the range 0-40 kV, and two voltage settings, 15 and 30 kV were used in the
experiments. Tungsten characteristic K lines are above 70 keV, so the main
process of X-ray generation was bremsstrahlung of electrons. The exact shape of
the spectrum was not measured but Figure 5.3 shows a typical spectrum produced
by a tube with a tungsten target at 30 kV, and filtered with 1 mm of beryllium
and 0.5 mm of aluminium [12]. However, the tube used had a glass window with

a higher X-ray absorption coefficient than the Be/Al combination, so the lower
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energy end of the spectrum could be different than the one shown in Figure 5.3.
A Molybdenum filter was also used to reduce the range of energies when the

voltage was set to 30 kV.

5.1.2 Calibration Measurements

A number of spectra were collected for calibration purposes before any spatial
resolution measurements. Figure 5.4 shows spectra taken at 5 bar using Line (1)
of Figure 5.2 with 12 strips connected together or (Figure 5.4c only) using a single
strip. The settings of the pre-amp and post-amp were kept constant throughout

the experiments.

Figure 5.4a shows spectra taken either with the °°Cd source or with one of
two different voltages (15 and 30 KV) on the X-ray tube. The spectra are clearly
broadened by the energy resolution of the detector, which can be calculated from
the FWHM of the °°Cd spectrum (28% for 22 keV). An interesting feature of
the spectra is a long tail in the low energy region. This is probably due to

electronegative impurities in the gas which can capture electrons before they reach
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Figure 5.3: Typical X-ray spectrum produced by a tube with a tungsten target
at 30 kV and filtered with 1 mm of beryllium and 0.5 mm of aluminium.
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Calibration spectra at 5 bar
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Figure 5.4: (a) Spectra showing different energy X-rays. (b) Spectra showing
the difference with and without Mo filter. (c) Spectra showing the difference
between one and 12 channels.
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the anodes. Other smaller contributions to the tail could be due to conversions
that take place close to the outermost strips of the 12 channel group so that not
all of the energy of the photoelectron is collected. Fluorescence photons could
also contribute, either by escaping the area covered by the 12 anodes, or by being
detected within that area, even though the primary conversion was outside the 12
channel group. However, simulations with the ITS program showed that after L-
shell ionization the xenon atom returns to the ground state mainly by emitting an
Auger electron, so fluorescence is not expected to make a significant contribution.
The 1°°Cd spectrum was used as reference for the calculation of the energy of the
two other peaks. The Russian group had set up the ADC with a linear response
and no offset of the zero. The 30 kV peak was calculated to be at 17.8 keV and
the 15 kV at 13.2 keV.

The effect of the Molybdenum filter is shown in Figure 5.4b. The unfiltered
spectrum has its peak at 17.8 keV in agreement with Figure 5.3 which shows the
spectrum from a tube with the same settings. The filtered spectrum has also its
peak at the same energy. Materials tend to be transparent to their own char-
acteristic X-rays (see chapter 2), and the Molybdenum characteristic X-rays are
at 17.5 keV. The range of energies after filtering is clearly reduced significantly.
The FWHM of the curve is 35% which, compared with the FWHM for the 1°°Cd

source (28%), means that the spectrum after filtering is not monochromatic.

Figure 5.4c shows the difference between spectra collected with a 12 channel
group or just one channel using 15 kV photons. The tail at low energies is much
more marked for one channel readout. This shows that with uniform irradiation
of the chamber, only part of the photon energy is collected in one channel. That is
why it was found more useful to take the spectra with 12 anodes joined together.
The spectrum from 1 channel appears to reach its maximum at slightly higher
energies than does the spectrum from the 12 channels. This is probably due to
tﬁe lower capacitance of one channel which leads to higher effective gain in the

pre-amp.
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5.1.3 Spatial Resolution Measurements

The spatial resolution of the detector was measured for different gas pressures, for
different cathode voltages and for two settings on the X-ray tube, 15 and 30 kV.
Line (2) of the readout electronics (Figure 5.2) was used, and the threshold of

the discriminator and the gain of the pre-amplifier were kept constant.

The threshold of the discriminator was measured by the Novosibirsk group
with the following procedure. A step voltage pulse from a square pulse generator
was applied to the input of the pre-amplifier through a known capacitance. The
pulse had a very short rise time and very long width compared to the shaping
time of the pre-amplifier, so the charge delivered was known accurately from the
height of the voltage step and the value of the capacitance. The height of the test
pulse was increased until the scaler connected to the discriminator gave a number
of counts equal to half the number of pulses of the generator. The threshold of

the discriminator was found to be 6 fC.

The set-up shown in Figure 5.1 was used to measure the spatial resolution of
the detector. The size of the X-ray source was 2 mm, the distance between the
source and the slit about 70 cm, the width of slit was 50 pm and the distance
between the slit and the detector 1 cm. From geometrical arguments we can
deduce that the width of the irradiated area on the strip plane was 75 ym. The
length of the window along the strips was intentionally reduced to 0.5 mm with

the collimator to avoid errors caused by misalignment of the slit with the anodes.

The slit was moved across the strips in 40 ym steps and the number of hits
on individual channels was measured over a 10 second period. By plotting the
number of hits on one anode versus the position of the slit we get a curve that
rises as the slit moves closer to the anode and falls as the slit moves away from
the anode. The FWHM of the curve represents the resolution of the detector, the

least distance between two distinguishable slits.
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Figures 5.5-5.8 show the results for two adjacent channels for different pres-
sures and cathode voltages. The scale of the z-axis is the same in all graphs
at the same pressure. It is easy to see the broadening of the curves for higher
cathode voltages. Table 5.1 shows a summary of all the results. The estimated
error on the FWHM of the curves is +10 gm. After each resolution measurement
a spectrum would be collected from a 12 anode group and the position of the
peak recorded. The position of the peak was an indication of how much charge
was delivered to the anodes, assuming that the pulse height is proportional to

the charge.

5.1.4 Discussion of the Results

From Table 5.1 we see that the resolution of the MSGC under test varied from
450 pm to 190 pm. For low pressure (2-3 bar) the resolution is slightly bet-
ter than 0.5 mm, the limit for an MWPC. But for 5 and 7 bar the resolution is
around 200 pm, the pitch of the detector. This is very promising for the con-
struction of a device for digital radiology based on microstrip detectors, especially
since this resolution was achieved with simple discrimination. Experience from
the SDRD has shown that the resolution can be improved with more sophisticated

electronic readout (see section 1.1.1).

There are also two interesting observations to be made. First, we can see
that for the same pressure and cathode voltage, lower energy photons give better
spatial resolution. This could be due to two reasons: more energetic photoelec-
trons have longer range and/or the fact that higher energy photons produce more
charge in the detector, which after diffusion can give a signal above threshold to
more anodes. A graph (Figure 5.9) can be made with the resolution of the cham-
ber versus the charge delivered on the anodes (which is the initial charge times
the gain of the chamber). This allows comparison of the resolution for the same

charge delivered to the anodes, in which case, for lower energy photons the cham-
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Figure 5.5: Curves for the calculation of the spatial resolution at 2 bar. Vg is
the drift voltage, V. the cathode voltage and 30 kV and 15 kV are the X-ray tube

voltages.
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Figu re 5.6: Curves for the calculation of the spatial resolution at 3 bar. Vg is
the drift voltage, V. the cathode voltage and 30 kV and 15 kV are the X-ray tube

voltages.
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Figure 5.7: Curves for the calculation of the spatial resolution at 5 bar. Vg is
the drift voltage, V. the cathode voltage and 30 kV and 15 kV are the X-ray tube

voltages.
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Figure 5.8: Curves for the calculation of the spatial resolution at 7 bar.

ber is operating at a higher gain. If the initial charge deposition was point-like,

then the resolution should not depend on the photon energy. However, from the

Table 5.1: Full Width at Half Maximum of all the spatial resolution curves.

Pressure 18 keV photons 13 keV photons
(bar) Cath.Volt. (V) | FWHM (um) || Cath.Vol. (V) | FWHM (um)
1000 188
7 1030 190
1050 217
880 220 960 211
5 920 240 1000 264
960 268
700 273 760 295
3 740 326 800 358
800 385
600 335 650 347
2 640 415 680 403
680 465
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Figure 5.9: Resolution of the chamber versus signal delivered to the anodes.

graph it can be seen that lower energy photons give better resolution for the same
output charge. So the range of the photoelectron is an important factor in the

resolution of the detector.

Second, it is obvious that for photons of the same energy the resolution of the
chamber gets worse with increasing cathode voltage. This is because the chamber
gain is higher at higher voltages and a smaller number of initial electrons can
produce a hit. So for constant discriminator threshold, the effective threshold,
the number of primary electrons necessary to produce a hit, decreases with gain,
and that leads to worse resolution. The number of primary electrons reflects the
energy deposited in that channel so an effective threshold in energy units is very

practical, especially for comparison with simulations.

For each measurement of the spatial resolution the ADC channel of the X-ray

peak was recorded. Using this information the 6 f{C threshold can be converted
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into energy units. The gain of the pre-amplifier was known to be 0.31 mV/{C, so
for a 6 {C input, the output was 6 x 0.31 —1.86 mV. Acquisition of a spectrum
with the 1°°Cd source showed that an output of 12 mV corresponded to ADC
channel 117. So the threshold charge corresponded to channel 1171—i—8.‘,—6 = 18.

Channel 18 can be converted into energy from the known energy and position

of the X-ray peak:

peak energy(keV)

Eun(keV) = 18 x (5.1)

peak position(ch)

Equation 5.1 was used to calculate the effective threshold of the discriminator
for the each of the spatial resolution measurements. The results for the 18 keV

X-rays are shown in Figure 5.10. At 7 bar the limits of the lower threshold were

—~ 550 r
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400 &= ¢ 3 bar
350 ® 5 bar
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300
250
200
150 |
100 - | ] | i | | I | | | | | | | I | | | | | |
0 2 4 6 8 10 12

Threshold (KeV)

Figure 5.10: Resolution (FWHM) of the detector versus discriminator threshold
for 18 keV X-rays. The solid lines join the experimental results; the dashed lines
join the results of the simulations.
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set by the inability of the chamber to operate at higher voltages. As expected,
the resolution gets better for higher thresholds.

The results of the simulation have also been plotted in Figure 5.10 for com-
parison. The resolution in the simulation was also calculated using a very narrow
source that was moved in 40 pm steps.' Some of the simulated curves are shown in
Figure 5.11. They are much smoother than the experimental curves because the
same initial number of photons was generated for all the points of the same curve.
The experimental curves were produced by exposing the detector to X-rays for

the same time for all points, but the detected number of photons fluctuated as

expected from the random nature of photon interactions.

Simulated Resolution

» 400 600
T [ 2 bar, Thr. 4 keV, FWHM 370 L 3 bar, Thr. 6 keV, FWHM 265
3 -
3 - i
O 300 -
B 400
200 -
- 200 -
100 -
0 ~J 1 L Ll 1 | Il I ] 1 1 | L | 1 O [ 11 l 1 1 L I . | 1 l 1 1
$1000F -
c L 5 bar, Thr. 6 keV, FWHM 240 1200 7 bar, Thr. 8 keV, FWHM 205
3 B =
o - -
O 459 = 1000 :
- 800 |-
500 - 600 -
i 400 |
250 -
- 200
- n
O C Lo g I n [
0 200 400 600 800 0 200 400 600 800
Position (um) Position (um)

Figure 5.11: Simulated resolution for various pressures and thresholds.
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Since the exact spectrum of X-rays in the experiments was not known a source
with energy 17.8 keV was used in the simulation. The only free parameter in
the model was the mean free path for electron capture due to impurities in the
gas. Electron capture affects the resolution because fewer electrons reach the
anodes creating a lower signal that could be below threshold. The smaller the
mean free path the better the resolution. The measurements were performed by
filling the chamber to 7 bar and then releasing gas to reduce the pressure. The
chamber had been cleaned thoroughly before being filled, so a constant fraction of
impurities was assumed for all measurements. Since gas density scales inversely
with pressure the same relation was used for the mean free path. The best
values were obtained with a mean free path of 50 mm, which hardly affected the
resolution for 2 bar (where the biggest difference appears). The difference between
experimental data and simulation at 2 bar cannot be improved by changing the
mean free path for electron caption, as that would increase the difference by

improving the simulated resolution.

5.2 Experiments with Ar/Isobutane, 1 bar

Although the simulation results could be made to agree reasonably with the
experiments at Novosibirsk, further testing of the Monte-Carlo was needed. Ex-
periments were planned at UCL to provide more data for comparison with sim-
ulations. The advantages of performing an experiment at UCL were complete
control of the apparatus, time for repeated measurements, ability to change var-
ious parameters and collection of data that could be compared with simulations
in a direct way. An MSGC filled with Ar/Isobutane was used and pulse heights

distribution on individual anodes were recorded.

The MSGC was built at RAL and came as a complete assembly with pre-
amplifiers and post-amplifiers (Figures 5.12, 5.13). The strips were made of alu-
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Pre-amp positions

Gas pipes

High voltage connectors

MSGC tile

Figure 5.12: A RAL MSGC assembly, identical with the one used for our exper-
iments.

Figure 5.13: RAL hybrid preamplifier boards plugged into position.
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minium and were deposited on Tempax glass. The anodes were 10 pm wide and
the cathodes 90 pm. The pitch of the detector was 300 pum and the distance
from the drift cathode to the anodes 3 mm. Out of the 270 anodes a group of 16
was connected to a block of 16 pre-amplifiers and about 20 cathodes, containing
the 16 anodes, were biased. The output of the post-amplifiers was differential and
was matched by a transformer to oscilloscope or ADC input. The gas mixture
used through out the experiments was Ar/Isobutane 80/20. The gas proportions
were regulated with flow-meters and there was a constant gas flow. The flow-
meters were calibrated by making the gas bubble in a measuring cylinder filled

with water and turned upside down in a bowl.

5.2.1 Data Acquisition Using a Digital Scope and a PC

Preliminary exploration of the chamber performance, including energy resolution
measurements, was done with a four-channel digital oscilloscope connected to
a Pentium PC via a GPIB board. The PC was running LabVIEW 3.0 and a
program was developed for the communication with the scope. An ®*°Fe X-ray

source emitting photons at 5.9 keV was used for the tests.

LabVIEW is a user friendly and powerful program for the control of digital
instruments. The instruments can be cards that plug in the PC bus, and their
control is directly through software, or instruments that use the General Purpose
Interface Bus (GPIB), and their control is through a GPIB card on the PC. In the
latter case LabVIEW controls the GPIB card, and this was the configuration we
used. Programs for the communication with the scope were found on the Internet

and were modified to suit our needs.

Figure 5.14 shows some typical events as seen on the scope, with the four
channels connected to four adjacent anodes. The effect of the induced positive

pulses can be seen on anodes next the anodes that were hit (negative pulses).
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Figure 5.14: Three ™Fe events as seen on the scope at UCL. The four traces
come from four adjacent channels of the RAL MSGC
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Figure 5.15: An 5°Fe spectrum collected by digitally adding the four scope
channels that were connected on adjacent anodes.

The pulse heights of events that are spread over more than one anode are clearly
smaller. This is because the total number of electrons is effectively constant and
when they are shared between anodes the signal on each anode is not as big as in
single anode events. Adding the pulse heights of the hit anodes together should

give roughly the same result, depending on the energy resolution of the chamber.

An estimate of the energy resolution of the chamber was obtained by adding
the pulse heights of all four channels, and found to be 19% (Figure 5.15). Chan-
nel 2 was set as the trigger channel, and after each event the pulse heights of
all channels with a negative value were added together and stored on the disk.
Only the channels with negative pulses were used because channels where no en-
ergy was deposited had positive values instead of zero due to the crosstalk. We
were able to measure the energy resolution with only four channels because of
the small range of photoelectrons produced with the 5*Fe source. Less than one
out ten events spread out to three anodes, and only the very few of them that
triggered channel 2 and spread to channel 1 and the next anode (not connected

to the scope) could degrade the estimation of the energy resolution.

For higher energy X-rays a system with more channels was necessary in order

to collect all the charge from the ionization cluster because of the longer range of
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photoelectrons. The data acquisition system would also have to be fast to handle

the high photon flux from an X-ray tube.

5.2.2 Data Acquisition Using a CAMAC ADC

After the preliminary exploration showed that the chamber was in good working
order, another data acquisition system was used to provide more channels with
faster readout. The set-up for the experiment is shown in Figure 5.16. Nine
adjacent anodes were read out using the pre-amplifiers and post-amplifiers that
were provided with the MSGC assembly. A CAMAC ADC (LeCroy 2249A) con-
trolled by VME was used for the data acquisition. Eight of the anodes were each
connected to an ADC channel through a delay of about 80 ns. The ninth anode,
in the middle of the group, was connected to an analogue fan-out. One of the
fan-out outputs was connected to the ADC through a delay while the other was
connected directly to a discriminator and then to a timer which provided the gate
for the ADC. Every time the discriminator was triggered all nine strips were read.
The duration of the pulses from the chamber was about 80 ns (Figure 5.14) and
the duration of the gate 150 ns.

Two different photon sources were used to provide a range of photon ener-
gies, the °Fe source and an X-ray tube with a copper anode. The spectrum of
the X-ray tube was measured with a high purity germanium detector (made by
EG&QG) and is shown in Figure 5.17. The main features are the K, and Kz lines
of copper at 8.0 and 9.0 keV. The photons above 10 keV are produced via elec-
tron bremsstrahlung processes.The nominal energy resolution of the germanium
detector is 470 eV at 60 keV. The FWHM of the two peaks is about 500 eV so

the main contribution to the broadening of the peaks is the detector resolution.

In order to be able to select “whole” events, events in which all the charge

deposited in the main ionization cluster was collected, a slit collimator was used
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Figure 5.16: Experimental layout for data acquisition with a CAMAC ADC.

in combination with the X-ray tube. The slit was 80 //m wide, 2 mm long and
aligned with the centre strip. The need for the slit arose from the fact that X-rays
that converted away from the centre anode could still trigger the discriminator.
The range of photoelectrons for 9 keV X-rays is about 0.8 mm at 1 bar and is
sufficient to spread the signal to three or more anodes after diffusion, resulting
in events where only part of the produced charge is collected. By only allowing
photons to interact close to the centre strip, the simulation of the experiment
became easier and more accurate. The length of the slit was chosen to be 2 mm
to eliminate any errors caused by misalignment of the slit with the strips. (If
the slit and the strips were not parallel the irradiated area would be wider than
the width of the slit.) The accuracy in the alignment was better than 5°, giving

a very small error in the irradiated area. The positioning of the slit in order to
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Figure 5.17: Spectrum of X-rays from the copper-anode tube.

be in front of the centre strip was done by counting the events on the anodes on
either side of the centre strip and adjusting the slit until the number was roughly

equal.

The use of a collimator was not necessary when the **Fe source was used.
The discriminator was triggered only by X-ray photons that converted very close
to the centre strip since the range for a 2.7 keV (5.9 — 3.2) electron in argon is
about 0.2 mm. A narrow slit would also reduce the already low count rate and
introduce problems associated with the very long times for data collection, like
interference noise or drift of the chamber gain. The simulation of this experiment

was simpler because of the small spread of charge in the detector.

In order to measure the pedestal of the ADC, and the noise levels, pulse
heights were measured without a source while the discriminator was triggered
randomly 1000 times. The results are shown in Figure 5.18. Small DC offsets
in the output of the amplifier could change the pedestal of the ADC, so all the
channels had to be measured separately. And since only one source with a line
spectrum was available it was essential to measure the offset for the zero correctly.
The sigma of the Gaussian fit to the histograms was used for the sampling of noise

in the simulations. Channel 0 and channel 7 are obviously noisier than the other
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Figure 5.18: Pedestal and noise measurements for all the ADC channels.
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channels, and the effect of the linear fan-out can be seen in channel 4 where the

pedestal is somewhat shifted but no serious extra noise is introduced.

Uniformity of gain of the channels was also checked by applying a test pulse
through a test input that was common for all channels. The test input was coupled
to the input of each pre-amplifier through a separate 0.6 pF capacitor. Figure 5.19
shows the results after subtraction of the mean pedestal value. There are small
differences of the order of 10% indicating different gains for different channels,
but these differences could be due to variations in the values of the capacitors. A
way to check if these variations were due to gain differences between channels is to
calculate the energy resolution of the chamber with and without the corrections,
because for energy resolution the values of all channels are added. The energy
resolution of the detector with corrections for different gains was slightly worse
than without corrections so it was assumed that the different gains were due to

variations in the values of the capacitors.

Figures 5.20 and 5.21 show pulse heights on the nine channels after irradiating
the chamber with X-rays from the 5°Fe source and the X-ray tube respectively.
The mean pedestal value has been subtracted for all the channels. Channel 4 is
the channel where the X-rays converted. The position of the “no signal” peak on
the other channels is sightly negative due to induced pulses of opposite sign from

the centre anode to the other anodes.

The first results with nine channel read-out gave an energy resolution for the
chamber of 21% for 6 keV, which was worse than the energy resolution that
had been measured with the 4-channel oscilloscope. It was important to identify
the reason for this increase and eliminate its effects. The energy resolution of
a detector is affected if any of the operational settings, like the voltage or the
amount of quencher in the gas mixture, change with time. Changes of barometric
pressure might also affect the gain by changing the ratio of main-gas/quencher.

The rate from the **Fe source was slow (about 0.5 Hz), so a few hours of data
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collection were necessary to get good statistics. In this time the gain of the
chamber might change resulting in a worse energy resolution than the intrinsic
resolution of the chamber. Small fluctuations of the order of 0.02-0.03 1t /hr had
been observed in the readings of the flow meter controlling the isobutane in time

periods of a few hours. It was decided to investigate.

5.2.3 Stability of Gain

First we looked at the possibility of changes of gain due to barometric pressure.
The chamber was left to acquire data from the °°Fe source for four days. Every
event was recorded in a file. At the end of each day the number of events was
divided into 24 groups one for each hour (about 1500 events). These groups were
used to estimate the gain of the chamber for every hour and check if it was stable
with time. With about 1500 events per group and for energy resolution of the

order of 20% the statistical error on the calculation of gain is about 0.4%.

Information about the barometric pressure, for the same time period, was
obtained from the Meteorological Office. The results are shown in Figure 5.22.
It is obvious that there are gain fluctuations much bigger than the ones due to
statistics. From the two graphs there seems to be no correlation between the

change of gain and barometric pressure.

The linear correlation coefficient was also calculated. For a pair of quantities

(zi,9:),5=1,..., N the linear correlation coeflicient r is given by the formula:

2 (2 —2) (% - 7)

r= : (5.2)

| (e -) (50

where, Z,7 are the means of z; and y; respectively [39].

The value of r lies between —1 and 1, inclusive. It takes on a value of 1 when

the data points lie on a perfect straight line with positive slope, with z and y
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Figure 5.22: Barometric pressure versus gain.

increasing together. The value 1 holds independent of the magnitude of the slope.
If the data points lie on a perfect straight line with negative slope, y decreasing
as z increases, the r has the value —1. A value of r near zero indicates that
the variables z and y are uncorrelated. The value of r for the set of points from
gain and barometric pressure measurements was —0.04, which also indicates that

there was no significant correlation.

A further 13 days of data were collected and various small changes in the
operational settings of the detector were introduced to examine their effect on
the gain variations. Fluctuations of about 0.1 It /hr had been observed at random
time intervals in the flow of the isobutane, and we wanted to examine whether
they could affect the gain of the detector significantly. Figure 5.23 shows a plot
of the relative gain versus time. The points marked with arrows correspond to

the following changes of operational settings:

1. The flow of isobutane was changed from 0.4 to 0.5 lt/hour, keeping the
argon flow constant. This change corresponded to about three times the
fluctuations in the flow of isobutane that had been observed and resulted

in a significant reduction of the gain.
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Figure 5.23: Gain fluctuations over a period of 13 days. The inset is a magni-
fication of the small square from 275 to 286 hours.

2. The flow of isobutane was changed back to 0.4 1t/hour. The gain returned to
a value close to the value before the first change was introduced. From these
two actions it can be deduced that the small fluctuations in the isobutane
flow that had been observed would have had a significant effect on the gain

of the chamber.

3. The isobutane pressure was changed slightly. No immediate response was

seen on the flow meter.

4. The isobutane flow had dropped to 0.3 1t /hour, probably due to the previous
action. The pressure of the isobutane was increased slightly to compensate

for that, and again no immediate response was seen on the flow meter.
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Without changing the isobutane pressure regulator or flow-meter settings
any further, the observed flow rate continue to oscillate, affecting the gain

as can be seen in the graph.
5. The cathode voltage was reduced by 5 V resulting in a 5% change of gain.
6. The cathode voltage was reduced to 600 V.

7. The cathode voltage was restored to 670 V.

Looking at Figure 5.23 we see that there were significant changes in the gain
of the detector over the period of 13 days. Comparing the variations in gain with
the changes of the settings we can deduce that the main contribution was from
the gas system. The small change in the flow meter settings at points 1 and
2 showed that the gain of the detector changes drastically with the amount of
the isobutane quencher in the gas mixture. When small changes in the pressure
regulator were introduced the system started to oscillate, affecting the gain of the

chamber.

A system for digital mammography based on an MSGC would probably oper-
ate in a sealed box. This would save gas, as xenon is very expensive, and reduce
the need for every-day maintenance. The MWPC of the SDRD operates in a
closed box at 3 bar and a test image is taken at regular intervals to test whether

the gas needs replacement.

The effect of fluctuations of the cathode voltage is investigated in item 5. The
fluctuations were less than +1 V, so the contribution of the power supply to gain
fluctuations was less than 1%. The time it takes the chamber to respond to a
significant change of cathode voltage is examined in items 6 and 7. The chamber
responds immediately (having a time scale of one hour) to a change of cathode

voltage so it is expected to be in stable operation a few hours after powering up.

There was no prospect of acquiring a better stabilised gas system, but it
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was observed that there were periods when the gain appeared to be sufficiently
stable for good measurements. The inset in Figure 5.23 is a magnification of the
small rectangle on the left side of the graph (time 275-286 hours). There are
about 15000 events in this area with maximum change of gain +1.5%. These
events were used to produce all of the experimental results that were compared

with the simulation.

5.2.4 Results

Every ADC channel contained a number proportional to the energy that was
deposited in a strip 300 ym wide parallel to the anodes. Adding all the channels
together gave the total energy that was deposited in the chamber per event. The
only factor that had to be taken into account was cross-talk between the anodes.
Every pulse on one of the anodes induced pulses of the opposite sign and the same
size on the other anodes, with the result of lowering the signal. This not what
would be expected from simple induction due to charge movements in the gas
(the case for an MWPC). The opposite sign pulses apply equally to all the anodes
within a single block of cathodes, which are connected to one another and to the
high voltage through a common resistor. This effect is caused by the hit anode
inducing a pulse in the neighbouring cathodes, which then induce pulses through
the whole block of cathodes affecting all anodes in the group. With almost all
the photons depositing most of their energy in the centre channel, the effect can
be seen as the centre anode inducing pulses that lower the output on all the other
anodes, as in Figure 5.20. This is the reason that the peaks of the histograms
ha&e slightly negative values. To compensate for this effect the values of every
channel (except the centre one) were shifted until the main peak of the histogram

would be at zero.

The ADC scale was converted to keV using the pedestal value for each channel
as zero and the value of the *°Fe peak as 5.9 keV. The energy spectra from
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various anodes, and the multiplicity of hits (assuming a threshold of 1 keV) were

simulated and compared with the experiment.

55Fe source

The experimental results from the 3°Fe source are shown in Figure 5.24 together
with the simulation results. The histograms on the left are the experimental mea-
surements and the histograms on the right are calculated using our Monte-Carlo

tools.

The energy resolution of the detector was measured by adding the values
of channels 2-6 for every event and plotting the sum (Figure 5.24, top right).
Adding 5 channels together proved sufficient to collect all the charge; adding more
channels would only have added more noise. The FWHM measured from the full

energy peak, was 19%, consistent with previous measurements (section 5.2.1).

As mentioned in the introduction, good energy resolution is not one of the
main requirements for a detector for digital mammography. The energy resolution
of the detector was measured and simulated purely for testing the accuracy of

the simulation.

The initial result of the simulation for the energy resolution of the chamber
was 12%. This value did not agree with our experimental results, but a litera-
ture search proved that it agreed well with published simulations and with other
experiments. Bellazzini et al. [40], having fully simulated the electric field and
the avalanche process in an MSGC, report an energy resolution of 12.7%. In ex-
periments, the energy resolution of MSGCs appears to depend on the width of
the anodes. An energy resolution of 11% was obtained by F. Angelini et al. [41]
using a chamber with 3 pm anodes, while the resolution of chambers with 5 and
10 pm anodes has been worse. The most probable explanation for this effect is

that the avalanche multiplication starts closer to the anode resulting in smaller
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gain fluctuations.

In our simulation, there are two fundamental factors that degrade the energy
resolution of the chamber, fluctuations of initial number of electron-ion pairs
(section 2.2.3) and variation of gain according to the Polya distribution (sec-
tion 3.3.2). However, the measured energy resolution of a chamber depends on
many factors like the width of the anodes or imperfections introduced in the etch-
ing process. For these reasons, it was decided that the simulation was valid and
that the particular detector has a rather poor energy resolution. To be able to
compare the simulation with the experimental results extra gain variations were
introduced. A simple, anode-width dependent adjustment, with Gaussian form,
was added to the simulation of the gain fluctuations for each anode. It was set
to give energy resolution of 19% for 10 um anodes although it is not expected
every chamber with the same anode width to have the same energy resolution.

It is the only free parameter in the simulation of the Ar/isobutane filled MSGC.

The smaller peak at about 3 keV in the same histogram is the argon escape
peak. Only 3 keV are deposited in the chamber because the emission of the pho-
toelectron is followed by a fluorescence photon, which then escapes the chamber.
The main peak corresponds to the more frequent process in which the primary
photo-emission is followed by an Auger electron whose charge is also collected.
The ratio of the number of events under the two peaks is the ratio of fluorescence
to Auger emission. It has been simulated correctly by the ITS code without

tuning.

The other histograms of Figure 5.24 allow us to compare the experimental data
and the simulation of the spectrum from the centre anode, the spectrum from
an anode adjacent to the centre, and the multiplicity of hits using a threshold
of 1 keV (to be well above the noise levels). The width dependent correction
to the gain fluctuations gives good simulation of the energy distributions on the

single strips as well as the summed signal. The hit multiplicity was calculated
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by counting how many adjacent anodes, including the centre anode, had energy
content above 1 keV. The simulation results match the multiplicity of hits quite

well.

X-ray tube

Pulse heights and hit multiplicities were also measured using the X-ray tube.
The simulation of this experiment was slightly more difficult because the exact
spectrum of the X-ray photons reaching the sensitive area of the detector was not

known. The X-ray spectrum produced by the tube was measured (Figure 5.17)
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Figure 5.25: (a) Spectrum of X-rays reaching the sensitive area of the MSGC.
(b) Calculated response from the MSGC, assuming an energy resolution similar
to the germanium detector an full energy deposition in the chamber.



116 Chapter 5. Experiments and Comparison with Simulation

5 . .

B 724 Original data

. B2 After the cut
~
B>
:.. J

B 02 %%

Totele!

— $ede
Lotele!

[ oo
PLICACD
RRRRY
PISIIRS

- RIGIRT]
Loletede!

R oletedele
BISI0I5S
oledelede

B BRLRKS
ededede
PSS

- e o000 e

P00 0.0 0.0
O .90 0.0 0.6
- 5, 0,0.0.0.0. 0
$.0.0.0.0 0.0
P00 0. 0. 0. &
- 0.0 0. 0.0.0.¢
20,0000 0
0. 0.0.0.0.0.6
R KRR KA
eSesosetetedese:
JOIEREIR]
LXK
SRIKIELRRRN]
00000003 v
| PPeleteteteteton
Fletetete 620t %e!
PRSI
R
e LOROCILEEIRRN]
20de3e; PROISCIIIIIIRRIK
0302050 T (S04 0gte teteerost
[SIIITIANINIRICRRIKHIS
LTI
. SIROCIIEIIIELS %
S0 HITRRIRIIRRRS
LTS0S0 RICEIRIIIIEEIEIIRRIELHREEH
0 i e 020 2000020 2000 2020 202020202020 2024 2026202620

0 200 400 600 800 1000 1200 1400
ADC counts

Figure 5.26: Full spectrum of X-rays from the X-ray tube (original data) and
the part of the spectrum used for comparison with the simulation (after the cut).

but the photons had to pass through the 30 pm layer of mylar that sealed the
chamber, and through the 250 pm aluminium drift cathode, so low energy X-rays
were attenuated more. Figure 5.25a shows the calculated spectrum of X-rays that
arrived at the sensitive area of the detector. The calculation was done using a sim-
ple convolution with energy dependent attenuation factors. Figure 5.25b shows
the predicted spectrum from the MSGC if the energy resolution was equivalent to
that of the germanium detector and the full photon energy was deposited. The
calculation allows for the fact that the cross section for X-ray absorption in argon
decreases with energy from 3 to 100 keV. Somewhat surprisingly, the attenua-
tion of soft X-rays before they reach the chamber, together with the loss of hard
X-rays which go through the chamber without converting, means that the broad
spectrum of Figure 5.17 turns into a much narrower spectrum of Figure 5.25b

with contributions almost entirely from the 8 and 9 keV peaks.

For that reason it was decided to use only 8 and 9 keV photons in the simula-
tion (in different ratios), and correct the experimental data to match the simula-

tion spectrum. A cut was applied to reject bremsstrahlung photons above 10 keV
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Figure 5.27: Comparison of experimental results and simulation for energy
resolution, the spectrum of the centre anode, the spectrum of an anode adjacent
to the middle and multiplicity of hits for X-rays from the X-ray tube.
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(Figure 5.26) and only events passing the cut were used further in the analysis.

The experimental data and simulation results are shown in Figure 5.27. The
reproduction of all the curves is very close, although there were no free parameters
in the simulation. The energy resolution of the chamber was fixed from the
measurements with the *Fe source (page 114). The curve showing the sum of
five channels is now wider, since the energy resolution of the chamber is not

sufficient to separate the 8 keV peak from the 9 keV peak.

The shape of the spectrum of the centre anode is different from that acquired
with the ®®*Fe source because of the slit collimator. The photons enter the detector
very close to this anode and the probability of depositing most of their energy
there is high, so the spectrum drops considerably below 2.5 keV. Due to the
longer range of photoelectrons more energy is deposited in the strips adjacent to
the centre compared with the **Fe data, and about 10% of the events give above

1 keV depositions in three anodes (bottom histogram).

5.3 Summary

A first series of experiments was performed at Novosibirsk for the evaluation of
an MSGC as an X-ray detector. The results showed that resolution of 200 pgm
is possible at high pressure (5 bar or higher) and with a discriminator threshold
above 6 keV.

The simulation model, described in the previous chapter, was used to simulate
the experiments at Novosibirsk and gave similar results. Further experiments
were done at UCL, using an Ar/iso-C4H;, filled MSGC at atmospheric pressure,
to prdvide more data that would be easily compared with the simulation. The
model reproduced the experimental results well, having as the only free parameter

the energy resolution of the chamber. These results are published in [42].



Chapter 6

Simulation of a Keystone MSGC

Although successful simulation of experiments implies good understanding of the
physics involved, the power of the computer simulation does not stop there. Suc-
cessful models can be used to predict results of future experiments with different
parameters. In this chapter, the model described in Chapter 4 and tested in
Chapter 5 is used to simulate the performance of a keystone MSGC in “tangen-

tial” geometry.

6.1 Description of the Planned System

A schematic diagram for the planned system can be seen in Figure 6.1. A slit
collimator is used to make a very narrow, fan-shaped, X-ray beam. The X-rays
go through the object to the detector, at about 1-2 mm above the microstrip
tile. A second collimator can be used in front of the detector to reduce scattered
radiation. Each anode is connected to an amplifier and a discriminator. Readout
electronics as shown in Figure 1.5, would have to be used to either reject double
hits or register them into separate channels. The device would operate in scanning

mode, like the SDRD described in section 1.1.1.
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Keystone MSGC

Figure 6.2: A keystone MSGC tile. The ratio of length to width is the same as
it would be in the real detector, while the size of the strips as well as the distance
between strips, has been exaggerated to make them visible. The real detector
would have 825 anodes.

A prototype tile that would be suitable for mammography is shown in Fig-
ure 6.2. It is 5 cm long in the beam direction, 15 cm wide at the front and 16.5 cm
at the back. The length of the strips is enough to stop 97% of 18 keV X-rays if
the detector is filled with a xenon mixture at 5 bar. The angle of the strips is
such that aU the anodes point to a source 50 cm away. The pitch of the detec-
tor is 180 fim in the front and 200 /im in the back. If the detector is operated
with coincidence logic the pixel size of the system would be 180 //m in the “stan-
dard” mode and 90 fim in the ‘“high resolution” mode as defined for the SDRD

(section 1.1.1).

An early problem associated with keystone tiles was non-uniformity of gain
along the anodes due to the change of the anode-cathode distance. However
the keystone geometry is important for many High Energy Physics appHcations
so tiles of this type have already been studied. Snow et al. [43] have tested
an MSGC prototype of keystone geometry with gain variations along the anodes
of less than 3%. The length of the strips was 15 cm, all of them pointing to a
source 85 cm away and the minimum detector pitch was 212.5 fim. The technique

used to keep the gain constant was to change the cathode width from 68 to 85 “m.
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6.2 Transfer Function Analysis

Transfer theory is commonly used to describe the relation between the input
and output of a signal processing system. It has also been used successfully to
describe imaging systems as a practical approach that predicts the degradation of
an image for any given object [44]. Although what follows can be applied to any
position sensitive detector, it has been written with an X-ray imaging detector in

mind.

6.2.1 Definitions

An ideal position sensitive detector should image a point source of radiation as a
single point. Such a detector of course does not exist and the intensity of an image
of a point source at (z1,y:) is given by the Point Spread Function (PSF) A(z,y),
where (z,y) are detector coordinates [44]. Assuming that the detector is linear
and space invariant, the PSF describes fully the properties of the detector. A
linear detector is one for which, if there is more than one point source, each source
will be imaged independently of the others. The resulting intensity distribution
in the image will be the sum of all PSFs. This is the superposition principle of
linear imaging systems. Space invariance implies that the shape of the PSF is the

same, independent of the position of the source.

The PSF is usually not easy to determine directly, (though it can be easily
simulated in a Monte-Carlo program because it is possible to generate large num-
bers of events at the same geometric point). The image intensity would have
to be measured using a small aperture compared to the size of the PSF, which
would result in a very small signal. Aligning the aperture with the centre of the
distribution would also be very difficult. Some of these difficulties are avoided by
measuring the Line Spread Function (LSF), which is the intensity distribution of

an image of an infinitely long, infinitely narrow line.
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There are cases when creating an approximation for an infinitely narrow line
source—usually a very narrow slit collimator—is difficult. An equivalent method
is to image a very sharp straight edge, by inserting an object like a block of
a material with high absorption coefficient, in front of the detector. With this
technique the detector is divided into an irradiated area and a non-irradiated
area. The Edge Spread Function (ESF) is the detector response along a line which
crosses the border of the two areas perpendicularly. The LSF can be calculated
from the ESF by differentiation.

The FWHM of the LSF can be interpreted as the resolution of the detector
since it represents the closest distance at which two parallel lines can be distin-
guished. It is a very useful number, but being a single number it does not give any
information on the shape of the LSF. A more useful function that has been used

to characterise the properties of detectors is the Modulation Transfer Function

(MTF).
The MTF is defined as the modulus of the Fourier Transform of the LSF:
+o00o .
MTF(v) = l [ LSF(e)e e de (6.1)

where v is spatial frequency and z is distance. The LSF is a function in the space
domain, while the MTF describes the response of the detector in the spatial fre-
quency domain. The units most commonly used are mm™! or the equivalent “line
pairs per mm” (lp/mm). The higher the frequencies the detector can respond to,
the higher its resolution. The frequency value of the MTF at 10% of its maximum
is frequently used as a reference point. In Figure 6.3 there are some examples of

analytical LSFs and their corresponding MTFs.

The MTF is usually normalised at 1 for spatial frequency 0 to allow easy com-
parison of different systems. For this reason, and because the Fourier transform
is a linear operation, the MTF depends only on the shape of the LSF and not
its exact values. Therefore, corrections on the pixel values that are done with a

simple multiplication do not affect the MTF.
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Figure 6.3: Some examples of analytical LSFs with the corresponding MTFs.
Arrows represent &functions. Ifthe LSF is a “-function (a) then the MTF is 1 for
aU spatial frequencies, the perfect detector. On the other hand (b) if the LSF is
flat the MTF is O for aU frequencies except zero. The MTF of a square aperture
(c) is given by the sine function. More realistic examples are LSFs with Gaussian
(d) or exponential form (e). For the Gaussian case the MTF is also Gaussian.
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6.2.2 Numerical Methods

While the definition of the MTF is clear if the LSF is an analytic function, for real
systems the LSF or ESF are sampled by measuring the detector signal at discrete
intervals. In this case instead of a Fourier Transform (FT) a Discrete Fourier
Transform (DFT) has to be performed [39]. The distance between the samples
(A) is very important because according to the Nyquist theorem the maximum

frequency that the transform can be calculated for is:

1
VN = ix (6.2)

and is called the Nyquist frequency.

If a function is sampled at an interval A and does not contain frequencies
higher than the Nyquist frequency vy, then the function is completely determined
by its samples. But if the function contains frequencies higher than vy then the
DFT will be inaccurate due to a phenomenon called aliasing. Any frequency
component that is higher than vy is aliased (falsely translated) to frequencies
lower than vy, by the very act of discrete sampling. In this case the function
is undersampled, so care must be taken in the choice of the sampling interval
A. If an MTF is not zero for frequencies higher than vy the function has been

undersampled.

6.2.3 Digital Detectors

Digital detectors, by nature, are not spatially invariant devices because of the
finite size of their pixels. Nevertheless, methods similar to the ones outlined above
can be used to describe digital systems. They are also anisotropic because of the
shape of the pixels. Pixels are usually square, so not all directions are equivalent.
For that reason the analysis of their properties is done in two directions, horizontal

and vertical, always perpendicular to the sides of the pixels.
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Another interesting point is that the LSF or the ESF depends on the position
of the line source or edge, specifically whether it is positioned in the middle of
a pixel or between pixels. And because of the distance between pixels these

functions are undersampled causing false estimates of the MTF due to aliasing.

A technique that is used to overcome the problem of undersampling is to
position the slit or edge at a small angle (> 2°) to the direction perpendicular
to the scanning direction used to derive the LSF or ESF [45, 46]. This provides a
large number of different LSFs, one for every row of pixels. These LSFs can then
be combined to form an LSF with much smaller sampling distance, known as the

pre-sampling LSF.

An equivalent technique in case of one-dimensional detectors is a scan of a
point source (or an edge) across the sensitive elements of the detector in uniform
steps. A large number of LSFs is acquired for different positions of the source
relative to the pixels (individual LSFs), which can then be averaged to give a
pre-sampling LSF. Averaging the individual LSFs has to be done in a way that
takes into account the source movement. This can be done by dividing each pixel
into a number of sub-pixels equal to the number of samples taken per pixel. The
average LSF can be calculated by first shifting each LSF to the direction opposite
to the source movement by a number of sub-pixels, and then taking the average
(Figure 6.4). In this way the sub-pixel that coincides with the position of the
source is the same for all individual LSFs. The sampling distance is the step
size of the source movement and may be made as small as needed. The LSFs

presented in this chapter have all been averaged over relative positions.

Although taking the average seems a reasonable way of getting an oversampled
LSF for the calculation of the MTF, the fact is that the resolution of a digital
detector can be variable and it is generally worse when the point source is between
pixels. This could affect the detectability of small details, especially if their size

is smaller than the pixel size.
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Figure 6.4; An example of taking the average of five LSFs taken at different
positions of a point source relative to the pixels. The individual LSFs, divided
into 5 sub-pixels per pixel, are shown on the left with the black circle marking
the position of the source. The same individual LSFs are shown on the right after
having been shifted to compensate for the source movement. The average LSF,
shown at the bottom of the figure, has been calculated using the shifted LSFs.
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Figure 6.5: Channel response of a keystone MSGC with 200 pm pitch. From
left to right: no logic used, anti-coincidence channel, coincidence channel.

6.3 Simulation Results

The resolution of an MSGC in “tangential” geometry was simulated for three

modes of operation:

e No coincidence logic (Figure 6.5a).

e “Standard” (ST) mode; Coincidence logic with rejection of double hits (Fig-
ure 6.5b).

e “High resolution” (HR) mode; Coincidence logic with use of double hits in

separate channels (Figure 6.5b and c).

The response of one channel while a point source is scanned across the detector
is shown in Figure 6.5 for the three operation modes, detector pitch 200 pm and
threshold 3 keV. The resolution of the detector in the mode without coincidence
logic was not expected to be significantly different from the experimental results

of section 5.1.3 since the conditions are almost identical. The response of the
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channels in the two coincidence modes is much narrower as expected. These two

modes will be examined in detail in the following section.

Figure 6.6 shows the response from three adjacent channels of the SDRD
in HR operation mode [6]. The first and third channels are anti-coincidence
channels and the channel in the middle is a coincidence channel. Although the
detector is an MWPC with 1.2 mm pitch, there is a certain similarity in the shape

of the curves for coincidence and

~ 800

anti-coincidence channels to the sim- T i
~/

ulations in Figure 6.5. This rein- 8 gog B
3] i
forces our faith in the reliability of ;, :
. c i
the simulation. < 400 N
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the ability of the detector to per-

form at lower pressure. High pres-

Figure 6.6: Resolution of the HR mode
of the SDRD described in section 1.1.1.
spreading to more than one channels, The first and third curves are from single
hit channels. The middle curve is from
the coincidence channel in between. The
that trigger two anodes are as use- FWHM of the curves is shown [6].

sure is needed to prevent charge from

but with coincidence logic events

ful as single events.

6.3.1 Study of the Effect of Keystone Geometry

In the simulation of the “perpendicular” geometry, as mentioned in Chapter 3
the strips were parallel so the division of the volume of the detector in zones
was necessary only in two dimensions. Only the distance between the conversion

point of the X-ray photon and the anode is important and not the exact position
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of the conversion along the anode.

In the “tangential” geometry with a keystone MSGC tile, the pitch of the detec-
tor changes along the anodes. A complete simulation of this geometry would in-
clude information about the exact position of the conversion in three-dimensions.
But in order to simulate the energy deposition in three dimensions the detec-
tor volume would have to be divided in cubes with dimensions around 50 pm.
This, even for a small detector volume, would have required inordinately large

workstation memory.

However, the change in the pitch from front to back of a detector whose strips
point to a source 50 cm away is quite small. If 200 gm is chosen to be the biggest
distance between anodes at the back of the detector then the distance between
the anodes at the front would be 180 pm. A test of the effect of the varying pitch
on the resolution of the detector was done by comparing the LSF of detectors with
parallel strips and a pitch of 180, 190 and 200 um. The results can be seen in
Figure 6.7. The gas pressure was 5 bar, the threshold 3 keV and the beam entered
the detector 2 mm above the microstrip tile. The 3 keV threshold was chosen
so that both channel types will count the same number of hits. If a different
threshold is chosen then a weighting factor will have to be used to compensate

for the difference in counts between the two channel types.

The FWHM of the LSF for a detector with pitch 190 gm in Figure 6.7 is the
average of the FWHM of the LSFs of the other two detectors for both the HR and
ST modes. This allows us to predict the resolution of any point along the anodes
of a keystone tile by simple interpolation. Although more photons stop in the
first half of the detector, for all practical purposes the resolution of a keystone
MSGC with an increase of pitch of 10% between the front and the back can be
approximated with the resolution of a detector with parallel strips and pitch equal
to the average between the minimum and maximum pitch. For the rest of the

analysis the curves that correspond to a detector pitch of 190 pm will be used as
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Figure 6.7: Simulation of the LSF of MSGCs with parallel strips in “tangential”
geometry for detector pitch of 180, 190 and 200 pm.
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the response of the whole keystone tile. The small reduction in efficiency (fewer
photon counts), evident in the ST mode, is due to the increased probability of

coincidence hits as the width of the channels gets smaller.

6.3.2 Calculation of the MTF

Having established that the resolution in the middle of the detector is a reasonable
approximation to the resolution of the detector as a whole, we proceeded with
the calculation of the Modulation Transfer Function. The curves in the middle
of Figure 6.7 were used for the calculation. The DFT was performed using a
subroutine of LabVIEW. The MTF for both the ST and HR modes can be seen
in Figure 6.8. As expected from the shapes of the LSFs, the MTF for each mode
is different. The HR mode. having smaller pixel size has a resolution of 6.5 mm™!
(at MTF = 0.1) while the resolution of the ST mode is 4.5 mm~!. The distance
between the samples of the LSF is 10 pm, so the Nyquist frequency for the MTF

is 50 mm™. The MTF for both channels reaches zero before 15 mm™?, so there

are no errors due to aliasing.

The MTFs of detectors with LSFs of Gaussian form and FWHM 100 and
200 pgm are also plotted in Figure 6.8. Comparison between the differences of
the MTFs of the ST mode and the Gaussian 200 gm case shows how misleading
the FWHM of the LSF can be, if the shape of the curve is not taken into considera-
tion as well. Although both LSFs have the same FWHM, the MTF of the ST mode
is clearly superior because the curve of the LSF does not have the extended tails
of a Gaussian. The HR mode, with 100 pm pixels, has clearly worse resolution

than a typical detector with resolution 100 pm.

Another major difference between the two modes is their efficiency. Figure 6.9
shows how the efficiency of the detector for photons converted in its active area

varies across the strips for the two modes. In the HR mode the efficiency is
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Figure 6.8: The MTF of a 190 um MSGC operating in ST or HR mode compared
with the MTF of detectors with Gaussian LSF with FWHM of 100 or 200 m.

essentially uniform and equal to 100%. (It appears from Figure 6.9 that the HR
mode can sometimes exceed very slightly 100% efficiency. This is due to the few
events in which 3 channels are hit giving two apparent hits from a single event.
There is no significant effect on the argument given here.) In the ST mode it is

significantly below 100% and very non-uniform.

Figure 6.10 gives a simple illustration of the different performance of the two
modes. It shows the simulation of the response of the MSGC in “tangential”
geometry to uniform irradiation from a parallel X-ray beam. In front of the
detector there are three small high contrast objects—actually three 30um gaps
in the beam—at different positions with respect to the strips. The first object
(from left to right) is half way between strips, the second in the middle of a strip
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Figure 6.9: Efficiency of MSGC for the two modes that use coincidence logic.
The strip pitch is 190 gm in both cases.

and the third at an intermediate position. The first object can be seen clearly
in the HR mode, but is almost invisible in the ST mode. This is because half
way between strips the efficiency of the detector is smaller, so the contribution
of this point to the formation of the image is not so significant. In the HR mode,
where the efficiency is constant, the object is visible. The middle object is visible
in both modes because at the middle of a strip the efficiency of the ST mode is
maximum. Between these two cases is the third object. It can be seen, but not

as clearly as the second since it is at a point with lower than maximum efficiency.

6.3.3 Summary of Results

In a keystone MSGC the pitch of the detector varies along the strips. This effect
was studied by comparing the simulated resolution of detectors with 180, 190
and 200 pm. The results show that for strips pointing to a source more than 50 cm
away the detector performance is equivalent to the performance of a detector with

parallel strips and a pitch equal to the anode pitch half way between the front
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Figure 6.10: Simulated detection of three small objects in either ST or HR mode
at different positions with respect to the detector strips. Although the objects
have the same size, they appear with different intensities (or not at al) in the ST
mode because of the non-uniform efficiency of the detector across the strips.
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and the back of the keystone tile.

The use of coincidence logic can improve the resolution of the detector signif-
icantly. Simulations and experiments (Chapter 5) have shown that with simple
discrimination the resolution of a 190 gm pitch MSGC is around 280 pgm (3 keV
threshold). Simulations of the same detector using coincidence logic showed that

resolution can be below 150 um (HR mode).

There are two different modes of coincidence logic, rejection (ST mode) or
use of double hits (HR mode). The pixel size for the HR mode is half of that of
the ST mode. The MTF was simulated for both modes and was found to be (at
MTF = 0.1) 4.5 mm™? for the ST mode and 6.5 mm™! for the HR mode. A major
difference in the efficiency was also evident in the simulation, with the ST mode

having much lower and non-uniform efficiency compared with the HR mode.

6.4 Possible Problems in the Realisation of the

System

There are two easily identifiable problems in the construction of a system based
on an MSGC for digital mammography: insufficient X-ray flux and decrease of

the quantum efficiency due to dead areas in the gas at the detector entrance.

The problem of the insufficient X-ray flux arises because of the slit. Only a
very small part of the solid angle and of the X-ray flux is used. If the area covered
is 15 x 15 cm? and the pixel size 100 x 100 pm? 1500 line scans are needed. In
order to limit the time for scanning the whole image to below 5 s, the integration
time for each line must be 3 ms. Experience from the SDRD has shown that about
5000 counts per pixel are necessary to get sufficient picture quality. This leads to
a total flux of 1.66 x 108 photons/mm/s at 50 cm. This X-ray flux corresponds to

a count rate of about 2.5 MHz/channel. Keeping in mind that the current rate
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Figure 6.IP Schematic layout of the arrangement of an MSGC tile inside a
pressure box.

limit of MSGCs is about 1 MHz/mm*, a rate of 2.5 MHz/anode should not create

a problem.

A molybdenum tube, in order to provide the necessary X-ray flux, would have
to operate at 50 kV and 40 mA for 5 s. This is within the maximum load of the
very latest molybdenum tubes [47]. Some R & D would be required to match

such a tube to the needs of a low cost MSGC based system.

If more than one detector was integrated onto a rigid gantry, each one with
its own slit and each one scanning only part of the total area, the load for the
X-ray tube would be smaller or less time would be necessary for the acquisition
of the image data. The image would then be made using the information from all
the detectors. If the images were slightly overlapping, a software algorithm would
have to be developed to integrate them into one image. By using 3 detectors the

necessary flux or time would go down by a factor of 3.

The second problem arises from the fact that is very difficult to position
the tile in the pressure box in such a way that the sensitive area of the strips
starts just inside the window, while keeping the vertical distance between the
window and the tile about 1-2 mm. The vertical distance has to be small, so
that the resolution is not significantly affected by diffusion. Figure 6.11 shows

an arrangement of the tile in a high pressure box. Even if the glass tile touches
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the metal box, the layout of the strips at the end of tile is such that the sensitive
area begins about 1 cm inside the window (see Figure 3.4). This is to avoid
discharges at the ends of the strips. If the dead area of the gas extends to 1 cm,
assuming xenon at 5 bar, we can calculate the absorbed fraction in this area
using Equation 2.2. The absorption coefficient of xenon for 18 keV X-rays is
about 28 cm”/g. That means that 1 cm of xenon at 5 bat would absorb 56% of
the X-ray photons limiting the quantum efficiency of the system to a maximum

of 44%.

A possible way to reduce the X-ray absorption in the entrance of the de-
tector would be to make the material which constitutes the entrance window
thick enough to reach almost above the sensitive area of the microstrip tile (Fig-
ure 6.12). If the window is made from a material with a lower absorption coeffi-
cient than xenon at 5 bar, the absorption in the detector entrance will be lower
and the quantum efficiency of the detector will be higher. Beryllium is a good
candidate for window material, and 1 cm of beryllium will absorb only 30% of the
X-ray photons. In this case care must be taken to keep the window at the right

potential, because it will be very close to the strips and might cause discharges.

Pressurised Box

Dead area iActive area /

X-rays Strips

Window from light material
Substrate

Figure 6.12: Schematic layout of the arrangement of an MSGC tile inside a
pressure box with a thick window made of light material.



Chapter 7

Summary and Conclusions

Digital Radiography has advantages over conventional radiography, the most im-
portant being digital image processing, which can reveal details invisible in a
single radiogram. Although it is possible to digitize film and then process the
images, this approach is time consuming and restricted by the limitations of film
as a detector. The use of detectors that provide digital image capture and have

wide dynamic range is essential.

Experience with the Siberian Digital Radiographic Device has shown that
gas detectors, MWPCs in particular, are suitable for digital radiology. It has
also been shown that by using such a detector in counting mode, it is possible
to produce images of high signal to noise ratio and reduce the dose needed for
the examinations. Tests performed by the Department of Medical Physics and
the High Energy Physics group (UCL) showed a dose reduction between 30 and
100 times compared to standard film/screen systems, depending on the clinical
examination. The main disadvantage of the device is its spatial resolution of
~0.5 mm, the limit for an MWPC, whereas film/screen systems achieve resolutions

of 0.1-0.2 mm.

An MSGC is a detector that operates with the same principles as the MWPC
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but offers five times better spatial resolution. It was developed as an improvement
on the MWPC, it is being used on a number of current experiments including the
HERMES experiment at HERA, and it is going to be used in the next generation
of Particle Physics experiments (CMS).

Experiments at Novosibirsk showed that an Xe/CO, MSGC, at pressure of
5 bar or higher, has a resolution around 200 pgm for 18 keV X-rays. This is the
photon energy used for mammographic examinations. The fact that the breast
image size is well within the current detector sizes and that mammography is a
field where dose reduction is important made the detector an interesting candidate

for breast imaging.

A Monte-Carlo simulation model, based on ITS 3.0, was developed to simulate
the performance of MSGCs for X-ray detection. The model compared well with
the results of the Novosibirsk experiments as well as with further tests done with
an Ar/iso-C4H;o MSGC at atmospheric pressure. It was then used to predict
the performance of a keystone MSGC as a prototype for mammography. The
simulated tile had a pitch of 190 pm and parallel strips giving an equivalent
resolution of a tapered tile with a pitch varying from 200 pgm to 180 pm over

5 cm.

The results show that if the MSGC is filled with Xe/CO, at 5 bar the FWHM
of the channel response, as a point source is scanned across it, is 280 um if simple
binary mode is used. If coincidence logic is used, and double hits are registered in
separate channels, the FWHM of the channel response is below 150 pm. The pre-
sampled LSF was calculated for the ST and HR modes and showed a FWHM of 190
and 150 pm respectively. The MTF was also calculated and showed a resolution
of 4.5 and 6.5 mm™! (at MTF = 0.1). Although the minimum requirement for
a detector for mammography at the moment is 10 mm™, it is not out of the
question that this could be achieved by future optimisation of gas pressure and

strip pitch.
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The potential advantages of a system based on an MSGC are high quantum
efficiency, high signal to noise ratio and wide dynamic range. A system with these
characteristics can make the best use of the available X-ray photons, reducing the
necessary dose to the patient. Although the spatial resolution of such a system
is slightly worse than the resolution of film/screen systems or possibly worse
than systems based on CCDs, a system based on an MSGC could offer the same

diagnostic value using lower doses than the other systems.
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Appendix A

Input files for UPDATE and ITS

A.1 Input file for the UPDATE program

*IDENT ,DEFINE

*DEFINE,VAX

*DEFINE,ACCEPT

*DEFINE,PCODES

*/ DEFINE,PLOTS

*DEFINE,RNG1

*/ THE FOLLOWING EXAMPLES OF PARAMETER MODIFICATION ARE USUALLY

*/ OPTIONAL, BUT MAY SIGNIFICANTLY REDUCE COMPUTER COSTS BY

*x/ REDUCING MEMORY REQUIREMENTS.

*IDENT ,PMOD

*/D,PARAMS .9

x/ PARAMETER ( INMT=2, INEM=1, INMAX=64, NSURV=2775,

*/ INMAX UPDATE FOR USING CROSS SECTION SET WITH EXPANDED ELECTRON

*/ ENERGY GRID: THE PARAMETER INMAX IN THE MONTE CARLO CODE MUST BE
*/ EQUAL TO OR GREATER THAN THE VALUE OF NMAX IN THE UNIT IOUT

*/ OUTPUT OF THE CROSS SECTION GENERATOR. EXPANDED ELECTRON ENERGY
*/ GRID IS NOT NEEDED IN THIS EXAMPLE WHERE THE SOURCE ELECTRON

*/ ENERGY IS 1.0 MeV AND THE GLOBAL ELECTRON CUTOFF ENERGY

*/ IS 0.05 MeV.

*D,PARAMS .9
PARAMETER ( INMT=4, INEM=4, INMAX=60, NSURV=2775,
*D,PARAMS.11,PARAMS. 14
$ INRANG=34, INTANG=INMAX/4+1, INEEL=13, INPEL=21,
$ INEPS=9, INGAS=1000, INLAN=5000, INPPS=21,
$ INLAMB=1591, JAHSUB=651, IJSPEC=5, JATPR=698,
$ JATAN=799, INTAB=10, IMTAX=150 )
*D,PARAMS .28 ,PARAMS .30
PARAMETER ( IKMAX = 7, IJMAX = 7,
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$ IKPMAX = 7, IJPMAX = 7,

$ INIZON = 8, INSZON = 11000)
*D,PARAMS . 37

PARAMETER ( IJSMAX = 1, IJFMAX =2,
*D,PARAMS . 39,PARAMS .42

$ IJFMXP = 2, IJFMP1 = IJFMXP+1,

$ IKFMAX = 2, IKFMXP = 2,

$ IKFMX1 = IKFMAX+1, IKFMP1 = IKFMXP+1,

$ INLF = 55, INLFP = 55)
*D,PARAMS .81 ,PARAMS .82

$ IFPD = 150, INUMR =7, ITMA = 300, NAZ = 7,

3
$ IJTY 7, IARB =1, NVIEWS = 7, NCZONE = 50,
*/
*/ VOLUME DATA. ALL VOLUMES ARE THE SAME
*D, JOGEN.833,J0OGEN.834
DO I=1,10000
VNOR(I)=1D-4
*B, JOGEN . 835

ENDDO
*D,PARAMS .21

PARAMETER ( KPTMAX=15, INSTAT=15,
*/
*x/ DEFINE NEW OUTPUT FILE
*I,ITS.165

OPEN(18,FILE=’SCR$WEEK :XEC02_5BAR_mo_KEY.SIM’,

+STATUS=’NEW’)

*I,ITS.343

CLOSE (18)
*/

*/ MODIFICATION OF THE OUTPUT SUBROUTINE. ZONES WITH NON-ZERO
*/ ENERGY ARE WRITTEN TO THE OUTPUT FILE. A FLAG IS INSERTED AT
*/ THE END OF EVERY EVENT
*I,0UTPUT. 318
NEXTEVENT=2999999
DUMENERGY=0.0
ICHECK=0
DO I=1,10000
XMYDUMMY=SNGL ( (DUMP(I,1)+DUMP(I,2)+DUMP(I,3))*1.0E6)
IF (XMYDUMMY.NE.0.0) THEN
WRITE(18,*)I,XMYDUMMY
ICHECK=1
ENDIF
ENDDO
IF (ICHECK.EQ.1) THEN
WRITE(18,*)NEXTEVENT,DUMENERGY
ENDIF
*/
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*x/ MODIFICATION OF THE POSITION OF THE SOURCE TO CREATE

*/ A PLANE OR A SQUARE OF PHOTONS. SMALL GAPS CAN SIMULATED
*x/ HIGH CONTRAST OBJECTS

*/D,HIST.209

*/ 1989 X = XSR-0.19+RAN(IRAN)*0.36

x/ IF ((X.GT.0.0945.AND.X.LT.0.0975).0R.(X.GT.0.199.AND.
*/ + X.LT.0.202).0R.(X.GT.0.307.AND.X.LT.0.310)) GOTO 1989
*/D,HIST.210

*/ Y = YSR+RAN(IRAN)*0.02

*/

*/

*x/ STOP SOME OF THE DEFAULT OUTPUT

*D, JOGEN . 849

C ** WRITE(IOUT,’(’® ZONE’’, 10(3X,I5,4X))’) (J,J=JS,JF)
*D, JOGEN . 850

C *x WRITE(IOUT,’(’’ VOLUME’’,10(1X,1PE10.3,1X))?’)
C *x (VNOR(J),J=JS,JF)
*D,0UTPUT. 223

C *x CALL STATS(TEMP,ISIG,1)

*D,0UTPUT. 338

C ** CALL STATS(TEMP,ISIG,1)

*D,0UTPUT. 351

C ** CALL STATS(XONE,ISIG,NSH)

*D,0UTPUT. 361

C *x% CALL STATS(XONE,ISIG,NSH)

*D,0UTPUT. 375

C %% CALL STATS(TEMP,ISIG,2)

*D ,0UTPUT . 406

C *% CALL STATS(TEMP,ISIG,NPUT)

*D, 0UTPUT . 437

C ** CALL STATS(TEMP,ISIG,4)

*/D,0UTPUT.514

*/C *x CALL STATS(TEMP,ISIG,NPUT)

*xD,0UTPUT.566

C ** CALL STATS(TEMP,ISIG,NPUT)

*D,0UTPUT . 622

C ** CALL STATS(TEMP,ISIG,1)

*D,FLUX0.111

C ** CALL STATS(TEMP,ISIG,NPUT)

*D,TABLE.56

C ** CALL STATS(TEMP,ISIG,NPUT)

*D, TABLIN.66

C *x CALL STATS(TEMP,ISIG,NPUT)

*D, TABLIN, 89

C *x CALL STATS(TEMP,ISIG,NPUT)

*/D,0UTPUT.555

*/C ** WRITE(NPRT,2539) L,MAT(LBC),(TEMP(I),ISIG(I),I=1,NPUT)
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*D,0UTPUT.478,0UTPUT . 556

A.2 Input file for ITS

ECHO 1
TITLE
...20 KEV XE/C02 AT 5 BAR KEYSTONE
sokokokokokokokokokskokkokskokokkokkokokokkk GEOMETRY ook sk sk sk ok s ok sk ke sk sk sk sk ok sk ok ko ok ok ok
GEOMETRY 2
* DON’T FORGET TO CHANGE THE VOLUMES IF YOU CHANGE ANY OF
* THE FOLLOWING NUMBERS
RPP 0.0 0.4 0.0 0.5 0.0 5.0
RPP -1.0 1.0 -1.0 1.0 -1.0 10.0

END
ZSUBOO1  +1
100 100 1
2002 +2 -1
END

* MATERIAL CUTOFF STRETCHING
1
0
kKRR RK KRRk kkkok ok sk okokk SOURCE ekt sk ok sk sk ok sk ok s o sk sk sk sk sk ok sk sk s sk ok ok sk ok
RANDOM-NUMBER
0.188873598D+13
PHOTONS
SPECTRUM 4
1.0 0.87 0.86 0.0
0.0191 0.0189 0.0181 0.0179
CUTOFFS 0.001 0.001
POSITION 0.2 0.2 0.0001
* DEFAULT DIRECTION
DIRECTION 0.0 0.0
KKK KKK KKK KK KRR KAk dokkkokk QUTPUT OPTIONS  skokokokskskskok sk sk sk sk ko kK kK
*
KokKKKKKK KKK KK KRRk dkkokokkokk OTHER OPTIONS skokokokokskokokkkkok sk ks k ko k k%
HISTORIES 10000
BATCHES 10000
*
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