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“I f  we knew what we were doing, it wouldn’t be called research, would it?”

— Albert Einstein
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Abstract

The present thesis documents the development of a general method for calculat­

ing the vibrational energies of small biomolecules. Starting with the general time- 

dependent molecular Hamiltonian, assumptions allowing the separation of coordi­

nates are outlined. The variational Configuration Interaction technique for calculat­

ing ab initio electronic eigenstates is adapted for vibrational systems, and a general 

method for solving the Hamiltonian in normal coordinate space is described. A com­

puter program is developed, implementing this formulation of the quantum problem. 

The code is tested against benchmark systems including the Morse Oscillator, the 

Henon-Heiles 3D potential and water monomer. It is seen that the results agree 

well with those of DVR and variational calculations. The vibrational Cl method 

is applied to tryptamine and its water clusters, systems of great biological impor­

tance. Results are used to test the assignment of experimental IR spectra for the 

monomer and are compared with ab initio results to probe the accuracy of anhar- 

monic terms in the molecular modelling potential. An attem pt is made to assign 

the conformational isomers found in the solvated spectra. The results of Cl calcula­

tions are found to be an improvement on harmonic calculations, agreeing well with 

experimental spectra in some cases. High order terms in the potential are found to 

model the anharmonicity of the system accurately. The results demonstrate that 

anharmonic effects in widely-used potential functions for biomolecules are large and 

need to be treated accurately in interpreting vibrational spectra.
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Chapter 1

M olecular Vibrations

1.1 Biomolecules

Amino acids are the building blocks of life. These bio-molecules are crucial precur­

sors in the synthesis of peptides and proteins. They are involved at the basic level 

of the biochemical pathways of life. There are 20 naturally occurring amino acids, 

eight of which are essential in nutrition. The other 12 can be synthesised from these. 

All stereoisomeric amino acids in nature are found in the laevorotatory form. Two 

amino acids can react to form a peptide bond. The acid group from one molecule 

reacts with the amine group of the other to form an amide hnking group with the 

loss of water. Many amino acids can Hnk in a sequence via a polymerisation process
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to form proteins. These can be thought of as biological machines. For example, 

enzymes are proteins that catalyse reactions and hormones, such as insulin, act as 

messengers in biological systems.

Many biochemical processes are governed by non-bonded interactions between, for 

example, proteins and sugars. The 20 amino acid differ only in their side chains. 

It is these side chains that control the non-bonded interactions in proteins. Thus, 

the sequence of amino acids defines the structure and, therefore, bioactivity of the 

protein. Such interactions are found to play a central role in stabihsing solvated 

structures and in the activation or inhibition of physiological processes by proteins. 

In many cases, man-made drugs are designed to maximise non-bonded interactions 

so as to block biological pathways such as the insertion mechanism of the HIV virus 

into human cells. Clearly, study of intermolecular interactions in such systems is 

of great biological and medical interest.®"^®

Systems of biological or physiological importance are mainly found in aqueous me­

dia. Therefore, studies of the effects of biomolecule-water complexation are of 

great importance. Applications are wide-ranging and include the function of 

biomolecules^® and simulations of water effects on protein folding structures and 

mechanisms. Hydrogen bonds are weak compared to covalent interactions and, 

therefore, exhibit highly anharmonic behaviour. On forming a hydrogen bond, the 

donor molecule experiences a weakening of the donor-hydrogen bond. This results 

in a red-shift in corresponding infra-red absorption. Thus, accurate models of water-
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biomolecule interactions are needed to interpret and assign experimental vibrational 

spectra.

Interest in computer simulation of biomolecules has grown dramatically in the last 

decade as computers have grown more powerful, enabling calculations on more com­

plex systems. Molecular modelUng force fields have been developed with atom types 

optimised for amino acid residues in proteins.^^^ For these surfaces, the time 

needed to calculate each potential point is greatly reduced with respect to ab initio 

methods. Thus, calculations on larger systems are now feasible. These force fields 

are used in the calculation of structure and bonding. However, studies of the in­

ternal and inter-molecular vibrations of biomolecules are also of great interest. It 

is important to test the accuracy of these force fields by comparison with precise 

experimental data such as infra-red spectra.

1.2 Vibrational States

In the classical view of molecular systems, molecules can have no vibrational energy; 

the atoms are stationary in their equilibrium positions. The properties of the bond, 

such as strength and length, are measured from the bottom of the potential well. 

In the quantum mechanical interpretation of bonding, however, even bound atoms 

in the ground vibrational state oscillate about the potential minimum. The zero- 

point energy must be considered when discussing the bond properties, reducing
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the energy needed to reach the vibrational continuum and break the bond and, 

in many cases, increasing the average bond length. Furthermore, in the classical 

picture of vibrators, the atoms are most likely to be found at the extremes of the 

motion. However, in the real quantum world, the probability density is maximised 

at the potential minimum. Consequently, a rigorous approach to the calculation of 

vibrational states in the quantum frame is essential.

The vibrational zero-point energy is implicit in all bound systems and is found to 

be important in fields as diverse as proton transfer in photosynthesis'^^ and to the 

formation of hydrogen in the interstellar medium.^"^®

Modelhng vibrations can be vital in predicting barrier heights and rate constants 

in transition state theory. Consideration of the zero point energies of reactants and 

transition states is important as these can affect calculated reaction pathways and 

rate constants.'*^"®® Furthermore, such research can aid understanding of chemical 

stabihty.^^®^

In molecular spectroscopy, accurate calculation of ground and excited vibrational 

states can specifically aid in assigning infra-red, electronic and rotational spec- 

tra.^^“ ®̂ Assignment, in turn, enables a better understanding of energetically pre­

ferred structures and binding sites for solvation. Recent spectroscopic studies pro­

vide a wide range of biomolecules of interest to study.^^^^ High quality, quantitative 

information is available from new spectroscopic techniques and thus a theoretical
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method is required to analyze the data. Of particular interest are experimental spec­

tra  of amino acids®  ̂ such as tryptophan/^"^^ and their analogues.®^^^ For example, 

spectroscopic studies have yielded information on the role of water in directing 

conformational preferences in biom olecules.A nalysis of these spectra can aid in 

understanding the preference of one solvent binding site over another and how this 

affects the structure and reactivity of the system. The work of Kleinermanns et al. 

is particularly fascinating, as, in measuring IR spectra of monomer and bound DNA 

bases,̂ ®~̂ ® they are probing the inner workings of the genetic code.

1.3 M odelling Vibrations

1.3 .1  T h e  H arm onic A p p roxim ation

In many studies of vibrational states, cubic and higher order terms in the Tay­

lor series expansion of the potential energy function are assumed to be negligi- 

This is the harmonic approximation, the assumption that, near 

the minimum, the form of the potential is effectively quadratic. This results in 

a simplified system where no overtones are seen in the spectrum and vibrational 

modes do not mix. Calculating harmonic vibrational frequencies has proved ef­

fective; enabling, for example, assignation of experimental spectra.®®’®’’ However, 

high resolution spectroscopy invariably shows the inaccuracies of this model. Even
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low resolution spectra can display features attributed to the effects of anharmonic- 

ity, particularly in weakly bound systems and for transitions between high energy 

vibrational states.

1 .3 .2  A n h arm on icity

Strongly bound molecular complexes can be modelled relatively well using a simple 

harmonic approach. However, this method can be inaccurate for some vibrations. 

For example, the calculated harmonic frequencies for OH stretching modes in water 

dimer can deviate from experiment by 100-200cm~^.^^ Two kinds of anharmonicity 

can be observed. Mechanical anharmonicity is the deviation of the potential from the 

harmonic model. In the majority of cases, this causes a decrease in the energy of the 

vibrational eigenstate. Electronic anharmonicity is the result of the dipole moment 

changing as the bond length is altered. Electronic anharmonicity contributes to the 

presence of overtones in the spectrum albeit at reduced intensities.

Early attem pts to quantify anharmonicity concentrated on small systems.®^^® As a 

key molecule in many fields, such as astro-, geo- and bio-chemistry, water was a focal 

point for many studies.^'^®^ Small clusters of water molecules®®"®® have also come 

under scrutiny as a stepping stone to the ultimate goal of an accurate model of the 

bulk l iquid.Variat ional ,®^"®^ local mode®®’®̂ and Discrete Variable Representa­

tion, DVR,®® approaches have been used in modelling anharmonic vibrational states.
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Bowman suggested a self consistent field, SCF, approach for a problem of two cou­

pled oscillators.®^ The SCF procedure was shown to accurately predict eigenenergies 

and described the wavefunction well; better, in fact, than harmonic wavefunctions. 

Consequently, SCF wavefunctions have been employed as the basis for variational 

calculations to reduce the number of basis functions needed for the calculation to 

converge.®®"̂ ®

Extremely detailed calculations have been performed on the vibrations of wa- 

teri03-i24 other small m o l e c u l e s . E v e n  relativistic effects^^^’ and the 

breakdown of the Born-Oppenheimer approximation^^® have been included. These 

are very accurate calculations but the complexity of the techniques involved mean 

that extension to larger systems can prove difficult.

Gerber and co-workers have developed a perturbation technique for calculating the 

vibrational eigenstates.®®' procedure involves a change to normal coordi­

nates followed by a vibrational self-consistent field, VSCF, calculation. A M0ller- 

Plesset type perturbation theory approach, typically of second order, is used to im­

prove on the self consistent field wavefunctions. This technique is fast and general 

and can be applied with no rigid body approximation i.e. to  all atoms. All modes 

are included in the basis, therefore the coupling between inter- and intra- molecular 

modes can be studied. The VSCF-perturbation procedure has been applied to 

many systems, such as w a t e r a r g o n ^ ® ^ ’ ̂ ®® clusters, biomolecules such as 

glycine®®’ and simple organic systems.®®’ Accurate eigenstates
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of rare gas compounds have been calculated to allow identification of species from 

IR spectra.®^“̂ ’̂̂ ’̂ '̂̂  ̂ In the study of the transition from covalent to ionic bonding 

in hydrated hydrogen-halide clusters, harmonic calculations were shown to be in­

accurate as the proton stretching motions are highly anharmonic.'^^’̂ ®’ '̂̂  ̂ In early 

studies, Gerber and co-workers used empirical and semi-empirical p o te n t ia ls .T h is  

approach renders the direction of research dependent on the availability of high qual­

ity potentials. To remove this refiance, the VSCF-perturbation method was adapted 

to work with ab initio^ "̂  ̂and density functional, DFT,^^® potentials. This facilitated 

the testing of anharmonic terms in empirical and semi-empirical potentials by direct 

comparison of results with those of ab initio calculations.^^'

The Handy group have performed accurate calculations on the vibrational states 

of small molecules, producing potentials,^^"^^^^ anharmonic constants^®^ and spec­

tra. Recently, Carter, Handy and Bowman developed a general method

for calculating anharmonic vibrational states. The procedure involved a variational 

improvement to VSCF basis f u n c t i o n s . T h i s  was extended to a general code. 

M u lt im o d e ,a n d  was applied to systems such as benzene using an all-atom po­

tential.^®^ The program was also used to investigate the parameterisation of force 

fields in Morse, Causs-like and Taylor expansion coordinate spaces. Multi-

mode takes into consideration coupling between 2, 3 and 4 modes and is shown to 

produce calculated spectra of high accuracy. However, the complexity of the calcu­

lations mean that the code is only applicable to systems of relatively small molecules
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with up to 12 a t o m s .T h e r e  is a need for a general technique that can be used 

on larger systems so that data from spectral studies of important biomolecules can 

be analysed. Furthermore, it is necessary to test the parameterisation of molecular 

modelling potentials of such systems. Of particular interest are the importance and 

accuracy of anharmonic terms in these force fields.

The Diffusion Monte Carlo, DMC, algorithm for electronic structure calculations^®^ 

was adapted for the vibrational problem.'^ '̂'^®' i6i-i78 jvi^ch work has been done 

on the structure^®^~^®  ̂ and properties^^^ of water clusters and aromatic-water clus- 

ters.*̂ ®’^̂ ’̂̂ ®̂ Accurate vibrational eigenstates have been used to improve calculated 

rates of reaction and tunnelling.^^’̂ ® However, many of these calculations made the 

rigid body approximation to reduce the dimensionality of the problem. This method 

normally gives only the ground vibrational states of molecules which limits its use 

for interpreting spectra.

1.4 This Work

The research presented in this thesis is an attem pt to quantify the anharmonic 

contributions to vibrational states in small biomolecules.
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In Part II, the theoretical background to the problem is presented. A quantum 

mechanical method is developed with a full description of the techniques used and 

the approximations made in order to solve the problem.

The construction and testing of a computer program developed specifically for this 

research is outlined in Part III. Details of the functionafity of the code are provided 

here along with the results of the methods used to ensure the accuracy of the pro­

gram. The Morse oscillator is used as a ID benchmark for the code. The extension 

to three dimensions and the pairwise potential approximation are tested by compar­

ison of results with literature values of vibrational eigenstates of the Hénon-Heiles 

3D oscillator and water monomer.

In Part IV of the thesis, the 01 method for calculating anharmonic vibrational 

eigenstates is applied to biomolecular systems of interest. Experimental spectra of 

tryptamine monomer and water clusters are compared with spectra calculated using 

the Cl technique allowing a test of the method and an investigation of the accuracy 

of anharmonic terms in the potential.
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Part II

Theory
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Chapter 2

The Theory of Molecular

V ibrations

2.1 The Time Independent Schrodinger Equation

Defined in Equation 2.1, the time independent Schrodinger equation describes a 

stationary state of energy, E, with wavefunction, that contains all necessary 

information about the system.

=  E ^ {x )  (2.1)
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These are eigenvalue and eigenfunction, respectively of the complete molecular 

Hamiltonian, 3^ .  The Hamiltonian can be expressed as a sum of kinetic energy, T, 

and potential energy, K, operators.

^  =  t  +  V  (2.2)

This equation is still very general and very difficult to solve fully for systems of three 

bodies or more. Approximations must be made to further simplify the problem 

at hand. The Hamiltonian contains terms depending on, for example, electronic 

and nuclear coordinates. In order to treat the vibrations of the nuclear frame, it

is necessary to separate these contributions to the Hamiltonian to the maximum

extent. This will allow a separation of the Schrodinger equation into equations in 

various coordinate spaces.

2.2 The Born-Oppenheimer Approximation

The first separation arises from the observation that nuclei are at least three orders 

of magnitude more massive than electrons. Electrons can therefore move much 

faster and adjust very quickly to changes in nuclear configuration. It is assumed 

that this electron adjustment is instantaneous, the electrons therefore experiencing 

a completely frozen nuclear conformation. This is the Born-Oppenheimer, B-0, 

approximation, a separation of the motion of electrons from the motion of nuclei. It 

is therefore possible to split the Hamiltonian into electronic and nuclear coordinates.
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The electronic Hamiltonian, may be used to solve the Schrodinger equation for 

a given configuration of nuclei,

3^e(Xe\Xn) = Te{Xe) +  Ve(Xg; Xn) (2.3)

ê ' (̂̂ Xej XjiJ^e(^ei ^n) ~  -^e(^n)^e(^ei ^n) (2.4)

The electronic energy. Be, can be calculated over a range of nuclear conformations.

These points can be fitted to form a potential energy surface, a functional form for 

the electronic energy of the system at different nuclear configugrations, Ee(xn)-

Following the Born-Oppenheimer separation, the nuclear Hamiltonian can be ex­

pressed solely in nuclear coordinates

J ^ (x n )  = fn (xn)  +  V„(a:„) (2.5)

and the full Hamiltonian of the system is simply the sum of electronic and nuclear 

Hamiltonians

jê(Xe; Xn) = J^(Xe; Xn) +  J^ni^n) (2.6)

Using the potential energy surface obtained by solving Equation 2.4, the

Schrodinger equation for nuclear motion is, in principle, soluble

^Ee{Xn) +  j é ’niXn) ^n{Xn) = En^n{Xn) (2.7)

where ipn{xn) is the nuclear part of the total wavefunction, ^

^  = ^e{Xe',Xn).'^n{Xn) (2.8)
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The Born-Oppenheimer approximation is apphed extensively for molecular systems 

that are not in highly excited states.

2.2 .1  T h e P o ten tia l E nergy Surface

Potential energy surfaces arise from the Born-Oppenheimer separation of electronic 

and nuclear motion. The B-0 approximation resolves the motion of electrons and 

nuclei allowing electronic and nuclear calculations to be performed independently. 

Electronic structure calculations of eigenstates at various nuclear conformations can 

be performed and the energies fitted to functions approximating Ee{xn). Such po­

tential energy surfaces allow quick and easy calculation of the electronic energy at a 

given nuclear geometry. A variety of surfaces are used in this study, and the validity 

and accuracy of our calculations are dependent on them. To aid discussion, the 

three main types of potential energy surface are introduced briefly.

1. Empirical. The potential is a functional form, usually a polynomial expansion 

of coordinates or set of Morse functions. All parameters are chosen to fit to 

experimental data.

2. Semi-Empirical. Some parts of the potential, for which the form is known 

accurately from quantum calculation, are used alongside empirical corrections.

3. Ab initio. The energy at every point is obtained from quantum mechanical 

calculations.
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In many studies of vibrational eigenstates, the potential is assumed to have a har­

monic form when close to the minimum to simplify calculations. This approximation 

is discussed in Section 2.4. High order anharmonic terms in a potential are impor­

tant, however, as they allow the molecule to dissociate. Furthermore, in weakly 

bound and vibrationally excited systems, anharmonic contributions to the eigenen- 

ergy can be significant. Clearly, testing anharmonicity in force fields is essential in 

the development of accurate potentials. Later in this study, experimental spectra 

and calculated anharmonic vibrational energies are compared, enabling testing and 

parameterisation of empirical and semi-empirical potential energy surfaces for small 

biomolecules.

2.3 Rovibratonal Coupling

The complete molecular Hamiltonian has thus far been reduced to a general 37V 

dimensional nuclear Hamiltonian, where TV is the number of atoms. The translation 

of the system as a whole can be separated in field-free problems leaving 37V — 3 

rotations and internal vibrations.

The vibrations and rotations of molecular systems can only be separated approxi- 

mately.^^®’ ®̂° The bond lengths and angles change as a molecule rotates, thereby 

coupling nearby vibrational modes within the same electronic state. In extreme 

cases, rovibrational coupling can lead to interaction between different electronic
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states, causing a breakdown of the Born-Oppenheimer approximation.

In this work, all systems studied are assumed to be in the ground rotational state. 

For such systems, where the rotational angular momentum, J , is zero, the rovi­

brational coupling is small. In this work, the rovibrational coupling is assumed to 

be negligible and set to zero.^®^“ ®̂̂ For biomolecular systems this is a reasonable 

approximation to make.

The removal of translational and rotational motion from the molecular Hamilto­

nian leaves a system of coupled oscillators. In many studies of vibrational states, 

the harmonic approximation is made, both as a way of investigating vibrational 

properties and as a basis for further calculations. This assumption simplifies the 

potential energy surface allowing a separation of the 3N  — 6 coupled vibrations into 

3N  — 6 independent oscillators. The next section defines and describes the harmonic 

approximation and discusses its validity.

2.4 The Harmonic Approximation

2.4 .1  In trod u ction

The most widely used technique for studying nuclear oscillations and their effect 

on spectral, kinetic and other vibrational properties of molecules is the harmonic
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approximation. The precise details of this technique are presented in the later 

sections of this chapter. Briefly, it is the assumption that, near a minimum, the 

potential has a form that can be well defined by a quadratic function. The benefits 

of this approximation are:

•  Generality. A simple, logical process allows calculation of the vibrational eigen­

function and frequencies for any molecular system.

•  Speed. It is a quick way of calculating the vibrational energies and wavefunc­

tions of a system. They can also be performed directly in ab initio calculations.

•  Accuracy. The approximation is found to be quite good for many systems, 

especially for ground states of strongly bound and non-hydrogen containing 

molecules.

• Orthogonality. The harmonic approximation wavefunctions are orthogonal so 

the vibrational motion of a A-atom system can be separated into SN  — 6 

oscillators.
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Figure 2.1 is a ID representation of the 

ground state of a strongly bound system. It 

is clear that the harmonic approximation is 

valid only at small displacements from the 

equilibrium geometry.

H a rm o n ic  A pprox im ation0)c
LU

T ru e  P o te n tia l

M inim um

Intermolecular (distance

2.4 .2  T h e H arm onic A pp roxi­

m ation
Figure 2.1: Harmonic ap­

proximation; at small dis­

placement from the minimum 

the true potential follows a 

quadratic function.
The separation of kinetic from potential en­

ergy in the Schrodinger equation is described

in Equation 2.2. The nuclear motion can, therefore, be considered independently 

from the electronic motion. Classically, the total kinetic energy of the N  nuclei 

system can be described by 3N  Cartesian coordinates, X{.

T  =  (2.9)
Z=1  ̂ ^

where nrii is the mass of atom i. The potential energy can be expanded around a 

minimum as a Taylor series in powers of a;^_i79,i80,i84-i87 displacement coordinates 

i.e. the minimum is at x=0, the potential can be expanded as



2 ^  ^  V dxidxj )
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V(Zi,T2,...,T3Jv) =  Vo +

1 37V 37V

4 Z E
i=l ;=1

4 37V 37V J7V /  f ^ ' \ r  \

Cross terms in the expansion such as couple motions in different

Cartesian coordinates.

The first term, V q, is the minimum energy of the potential, an arbitrary constant 

which can justifiably be set to zero. Furthermore, the coordinates, rci, are dis­

placement coordinates such that a; =  0 corresponds to the equilibrium position, the 

minimum of the potential energy surface

(
d Y \
_  = 0  f =  1 ,2 , . . . , 37V (2.11)

z=0

The potential expansion at vibrational equilibrium. Equation 2.10, is thus reduced 

to terms of order 2 and higher.

The harmonic approximation is the assumption that, as the displacements from 

equihbrium are small, the third and higher order terms in the potential expansion 

are negligible (see Figure 2.1). A simplified multi-dimensional potential results

37V 37V /  ^ 2 - y  \^  OJ V O i  V /

V(Zi,T2,...,T37v) =  2 (
i = l  7=1 \

.  37V 37V

=  -  (2-12)
i=l j — 1
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where Fij is a symmetric matrix of harmonic force constants.

= ( ^ )  = (5^ )  =
Thus, Newton’s laws of motion, F  =  ma, can be written

m
a v

dt  ̂ J dx, .'  j=i
- — F ijXj ( 2  14)

In general, any, or all, of the elements in F  may be non-zero, resulting in a set of 

3A coupled differential equations in Cartesian coordinates.

There is, however, another set of coordinates, =  1 ,2 , . . . ,  3AT, in which Newton’s 

equations are uncoupled, leaving T  and V  as diagonal matrices. The solution for 

each coordinate can, therefore, be obtained separately:

37V

2V(gi,Ç2,..-,g37v) =  \  (2.15)

I - i Ë ( t ) ’ ( 2 «
Î=1  ̂ '

In these so called normal coordinates, qi, the system is equivalent to a set of 3A 

independent harmonic oscillators. Extending the harmonic approximation to the 

quantum case, this separation allows the full vibrational wavefunction to be ex­

pressed as a product of all the individual normal mode wavefunctions.

^  = '01^2 . . . '0 3 7 V -6  (2.17)
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The normal mode approximation assumes that the potential is roughly harmonic 

around the minimum. Thus, in order to calculate the normal modes of a system, 

the first step must be a search for the minimum of interest on the potential energy 

surface.

2.5 M inimisation o f the Potential Energy

Finding minima on complex multi-minima potentials can be extremely difficult both 

theoretically and computationally. Much research has gone into developing tech­

niques to achieve this. Geometry optimisation methods such as simulated anneal- 

ing,̂ ®®“ ®̂̂ genetic algorithms^^^ and the Large-scale Bound-constrained or Uncon­

strained Optimization, L-BFGS,^^^’ ®̂̂ method implemented in the TINKER^^^^®^ 

molecular modelling code can be used. These techniques permit a rigorous scan 

of the conformational landscape, finding conformers of interest in complex multi­

minima systems. In this section, an outline is given to the minimisation techniques 

employed in this project; the simple gradient following steepest descent^^^'^^^ and 

more efficient Newton-Raphson^^^"^^'^ and conjugate gradient^°^’̂ °̂ ’̂ °®’̂ °® minimisa­

tions.

Steepest descent, SD, is a standard multi-dimensional minimisation that converges 

hnearly but will eventually converge to a minimum.^®^’̂ ®̂ It is an iterative process 

moving towards the minimum in a series of steps. For example, consider a minimisa-



Chapter 2: Minimisation of the Potential Energy 43

tion of the potential V{x)  with starting position xq. At each iteration, k, the search 

direction, is taken as the negative gradient of the function to be minimised

at point Xfc. This method is simple but can be slow, especially near the solution. 

The Newton-Raphson and conjugate gradient methods are also iterative derivative 

techniques, but the search directions and step sizes are calculated in a more complex 

manner.

Newton methods are based on approximating the potential function locally by a 

quadratic model and subsequently minimizing.^°^“ °̂̂  The method derives from the 

Taylor series expansion of the potential.

f { x  + S ) ^ f { x ) +  S + I  -5' +  • • • (2-18)

In a step analogous to the harmonic approximation, quadratic terms are assumed 

to dominate the potential as the minimum is approached and terms beyond linear 

become negligible. Moving to the zero of the function f{x)  i.e. f { x  + S) =  0 implies

5 =  / ( x ) / ( ^ )  (2.19)

The Newton methods find the zero of a function, but the potential is not necessarily 

zero at the minimum. The zero of the derivative of the potential must be found. 

Thus, the method requires second order differentials which are harder and take 

longer to compute than the first order differentials required by steepest descent. 

However, far fewer iterations are required to find the minimum with the Newton- 

Raphson technique as it displays quadratic convergence, as shown in Figure 2.2.
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The technique is most efficient when close to the minimum. Far from the solution, 

the higher order terms in Equation 2.18 become important rendering the Newton- 

Raphson minimisation method grossly inaccurate.

The conjugate gradient, CG, method is the same as steepest descent for the first 

iteration.^®^’̂ ^̂ ’̂ ^̂ ’̂ ®̂ However, successive iterations are constructed so they form a 

set of mutually conjugate vectors with respect to the Hessian, i.e. the force constant 

matrix, of a general convex quadratic function. Like Newton methods, CG displays 

quadratic convergence close to a minimum .

Steepest Descent Newton-Raphson Conjugate Gradient

Figure 2.2: Schematic representation of steepest descent, Newton-Raphson and 

conjugate gradient minimisation techniques on a 3D Hénon-Heiles potential at 

z=0.

Figure 2.2 is a schematic representation of the efficiency of steepest descent, Newton- 

Raphson and conjugate gradient minimisations on a Hénon-Heiles potential.^^^ 

Newton-Raphson and CG are more efficient and more accurate than steepest de­

scent when close to the minimum. However, steepest descent is less likely to make
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the large errors associated with Newton and CG methods far from root so the tech­

niques can be used together. Steepest descent is often used to find the minimum of 

interest with a few steps of Newton-Raphson or CG to home in on the root more 

quickly at the end.

2.6 Normal M ode Analysis

The generalised multi-dimensional extension of the harmonic oscillator model for 

many body systems is called the normal mode approximation. The aim is to find a 

coordinate space, q, in which the vibrations of the molecule are reduced to a series of 

uncoupled harmonic oscillators. There are several techniques for achieving this goal 

such as the création-annihilation operator method^®'  ̂ and the Wilson F G  matrix 

method . 2 0 8  technique chosen is outlined in this section.

Once the minimum is found, the normal modes can be calculated at that point. To

move from Cartesian, x, to normal, q, coordinates requires a simple linear transfor­

mation.

3N

Xi — ^  or X =  Lg (2.20)

3N

Qi =  or q =  (2.21)



Chapter 2: Normal Mode Analysis 46

The normal coordinates are just a linear combination of Cartesian coordinates. The 

transformation matrix L must be found. It is a 3Nx3N  matrix of constant coeffi­

cients that transforms from Cartesian to  normal coordinate space.

The first stage in determining the matrix L involves transformation to mass-weighted 

Cartesian coordinates, x.

Xi = m fx i  or x = M.^x where M.ij=mi5ij  (2.22)

The potential and kinetic energies become

1=1 '  ^. 3N SN

(2.24)
1=1 j = l

The mass-weighted force constant matrix, FĴ -, is

Fjj =  F ij /y^TTiiTTij (2.25)

Clearly, inputting Equations 2.25 and 2.22 into 2.24 will lead to the simplified har­

monic potential described in Equation 2.12.

Diagonalising sets off-diagonal force constants in Equation 2.24 that couple the 

vibrations Cartesian space to zero. The resulting eigenvector matrix is L', the trans­

formation matrix between mass-weighted Cartesians, x, and normal coordinates, q.

F 'V  = AL' where Ay =  XiSij (2.26)

X = L'q (2.27)
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The square roots of the eigenvalues correspond to the normal mode vibrational 

frequencies.

E  = x f  (2.28)

To obtain the transformation matrix, L, the mass-weighting must be removed from

V

X = =  M r ^ V q  =  Lg

L =  M -^L ' (2.29)

2.6 .1  T h e N orm al M od e W avefunction

The normal mode wavefunction,i84-i87 can be written in terms of the

vibrational quantum number, v.

i>,{y) =  iV„i/„(y)e-»V2 y  =  (w/R)&g (2.30)

The Hermite polynomial Hv{y) is normalised by the constant Ny and u  is the vi­

brational frequency of the mode. The eigenstate energy for quantum number v

IS

Ey — T  —̂  huj (2.31)

The Hermite polynomials can be found via the recursion relation^®'^’̂ ^

Ho{y) = 1

H y + i { y )  =  2 y H y  — 2 v H y - i  — l/(a7T22^u!) (2.32)
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2.7 Breakdown of the Harmonic Approximation

P0c
LU

Ground S tate  
W avefunction

D issociation

Vibrational ground state

Zero-point energy

Minimum

Intermolecular distance

Figure 2.3: Visualisation of the ground state of a weakly bound ID system. 

The energy of interaction is labelled Dg and the Dissociation Energy is Dq. The 

red curve is the true potential. The blue curve shows the potential defined by a 

quadratic function i.e. that found by normal mode analysis. There can be large 

differences between harmonic and real zero-point energies and wavefunctions.

While the harmonic approximation holds for small displacements from the minimum, 

larger displacements cause a breakdown in the model. The difference between the 

harmonic potential and the real potential can become large. Examining Figure 2.3, it 

is clear that anharmonicity, deviation from the harmonic model, becomes important 

both for weakly bound systems, where the interaction energy, Dg, is small and for 

high vibrational states, where the system is near dissociation.
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In these cases, higher order potential terms affect the zero-point energies of systems 

and, most importantly, the wavefunctions. The wavefunction contains information 

about all observables. As such, anharmonicity can have a dramatic effect on the 

accuracy of calculations. For example, the bond lengths are often longer than those 

predicted by the harmonic model, making rotational constants smaller. Thus, an­

harmonicity can affect the calculation and fitting of rotational spectra. Furthermore, 

activation energies for reactions are calculated between the zero-point energies of the 

ground and transition states. Accurate anharmonic zero-point energies are needed 

to calculate precise activation energies and reaction rates.

A technique is required to improve on the harmonic eigenenergies and wavefunctions. 

In the proceeding chapter, a general method for calculating vibrational anharmonic­

ity is developed and discussed.
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Chapter 3

Anharmonic Corrections

3.1 Introduction

In order to calculate the normal modes and normal coordinates, it is assumed that 

the displacement of the atoms from their equilibrium positions is small, rendering 

the third and higher order terms in expansion 2.10 negligible. While the harmonic 

approximation works well for small displacements in strongly bound molecules, it 

breaks down for higher vibrational states and weakly bound systems, such as van der 

Waals clusters (see Figure 2.3). In such systems, high order and mode-mode coupling 

terms in the potential expansion become important. A configuration interaction 

technique is chosen to evaluate their eflFect on the wavefunctions and vibrational 

properties.
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3.2 Configuration Interaction

Configuration interaction, Cl, is a variational technique widely used in electronic 

structure theory. It can improve on self-consistent field methods by including 

electron correlation effects.

In electronic structure applications, a configuration is, traditionally, a set of orbital 

occupancies. The Cl method generates improvement to a wavefunction by construct­

ing a linear combination of, for example, hydrogenic or Hartree-Fock wavefunctions. 

This is the Cl space. For example, n  excited states, -0*, can be mixed into the ground 

state wavefunction, 0o-
n

ilfCi =  Co0o T ^  CiA (3.1)
i= l

The Variational Theorem states that an expectation value for the energy is always 

an upper bound to the exact, non-relativistic ground state energy. Consequently, 

the lower the ground state energy of the trial Cl wavefunction, the closer it must be 

to the true ground state energy. Thus, in electronic structure theory, the aim is to

find a set of coefficients, Cf z =  0 , . . . ,  n, that minimize the expectation value of the

electronic energy with respect to the Cl wavefunction. In practice, this minimisation 

is achieved through diagonalisation of a matrix, H, with elements

Hij =  (3.2)

yielding the coefficients, Q, as the eigenvectors and the energies as the eigenvalues.
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One of the great strengths of Cl is its generality. It can be used for any problem that 

can be defined by a series of basis functions. Its advantage over quantum Monte 

Carlo, QMC, techniques is its speed, its ease of application to a range of systems 

and the fact that the calculation produces excited state energies and wavefunctions. 

Its weakness is poor scaling. As more atoms are included, the size of calculation 

required to include all excited states rapidly increases. This is a well-known problem 

in electron correlation studies. Much study has been directed towards making the 

Cl expansion as short as possible.^^^”^̂®

In this study, the Cl approach is adapted to calculate anharmonicity in the vibra­

tional motion of biomolecules and clusters. Thus, basis functions, configurations 

and the expectation value to be minimised must be tailored to these polyatomic 

problems.

3.3 The Basis Functions

Analogy with electronic structure Cl can clarify the difference between configura­

tions and basis functions. In this work, a basis function describes the vibrational 

wavefunction for an individual vibrational mode. These are analogous to the sin­

gle orbital hydrogenic AOs in electronic structure theory. The configuration is the 

full vibrational state of the system, analogous to the fuU set of orbital occupancies 

in electronic structure CL In this study, the configuration is a product of all the
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individual basis functions. Note that configurations can be correctly termed the 

basis functions of a Cl calculation but this nomenclature is avoided as it can cause 

confusion.

The choice of basis function in Cl cannot influence the final result of a converged 

calculation. They can, however, greatly affect the size, and therefore speed, of 

the calculation required for convergence. For example, in electronic structure Cl, 

different basis functions are routinely used. The obvious choice for the basis would 

be the hydrogenic Slater type orbitals, STOs.^®  ̂ Gauss type orbitals, CTOs, are not 

such a good description of the actual orbitals so a larger basis is needed to converge 

the calculation. Nevertheless, CTOs are often chosen to simplify the integrals that 

must be evaluated. Often, expansion functions, such as pair natural orbitals, are 

used as the basis. These orbitals are harder to evaluate and non-orthogonal but are 

optimised, reducing the size of the basis needed to reach convergence.^^^"^^^ Another 

technique is to perform iterative super-CI calculations.^^^ The first iteration is 

performed with the chosen basis function, successive iterations are then performed 

substituting the calculated Cl wavefunction for the basis. Furthermore, in electronic 

structure Cl, techniques have been developed to aid selection of the best set of 

excited wavefunctions, the Cl space, to achieve results close to full Cl with a far 

smaller expansion. For example, symmetry considerations, the single double Cl 

method and the frozen core approximation^^'^ can be used to shrink

the Cl space.
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Configuration Interaction Technique

Electronic Structure Cl Vibrational Cl

Basis Functions Slater/Gauss Atomic Orbitals Morse Oscillator Wavefunctions

Molecular Orbitals Normal Modes

Pair Natural Orbitals Local Modes

Configurations Slater Determinants Product of Basis Functions

Table 3.1: Illustrative examples of basis functions and configurations for elec­

tronic structure and vibrational CL

In variational and perturbation theory studies of molecular vibrations, various basis 

functions have been used, such as local m o d e s ,n o r m a l  modes,^^^ self consistent 

field wavefunctions,^®’ and functions tailored to the symmetry of the sys­

tem.®  ̂ Examples of basis functions and configurations in electronic structure and 

vibrational Cl are provided in Table 3.1.

In this study, the basis functions selected are normal modes. Their choice is ratio- 

nahsed by their properties:

Standard, simple and efficient to calculate, as described in Section 2.6. The 

technique developed in this chapter must be general and readily applicable to 

all systems. Normal modes fit this criteria. They can also be applied as a good 

starting point to calculate the low-lying vibrational states of biomolecules.
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•  Orthogonal; therefore, there must be a Gauss-type numerical integration tech­

nique available to evaluate the Cl integrals (Section 3.5). Furthermore, the 

orthonormal character of normal modes reduces the number of integrals that 

must be evaluated.

• Widely used in literature as a way of calculating vibrational frequencies. They 

are a good starting point as Cl will improve on the literature values. Further­

more, comparison of basis and Cl vibrational energies gives a clear indication 

of the anharmonicity of the state.

Cl calculations in this study will therefore be performed on configurations comprising 

of a product of normal modes basis functions.

3 .3 .1  B asis Set N o ta tio n

In this section, a notation to enable succinct discussion of the basis and Cl configura­

tions is presented. Individual normal mode wavefunctions, defined in Equation 2.30, 

are denoted by a small tjj with a subscript describing the mode (highest energy 

first) and a superscript describing the vibrational quantum number. For example, 5 

quanta of energy in the bending mode of water will be V's in this notation.

Basis functions describe the state of individual vibrational modes. A configuration, 

however, is a description of the whole system in a particular vibrational state. Con­
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sequently, it is a full vibrational wavefunction of the system, a product of the 

wavefunctions of the individual normal modes.

(3.3)
i

In the present labelling scheme, the configurations are split into four distinct groups. 

They are referred to as the ground state, the singles, , the doubles, and 

the triples, It is important to note that the terms single, double and triple

refer to the number of excited modes in the configuration. S, D  and T  make no

reference to the vibrational quantum numbers of the basis functions. For example, 

a configuration with mode 4 in the sixth vibrationally excited state, but with all 

other modes in the ground state, is referred to as a single. In general, the S D T  

configuration types can be defined:

(3.4)
i

3JV—6 /max

=  X I  ^'(%) n  (%') (3.5)
i = l  Z=1

SN—7 3N—6 /max TMmax
=  X I  X  X  Ï 2  4 i9 i) i’T(9j) n  ^°(%') (3.6)

i = l  j > i  Z=1  m = l

3N 8 3N—7 3N—6 Zmax ̂rimax f̂max
=  X  X  X  X  X  X  V'i(%)V'r(%)V'Z(%) n  ^ " (» ')  (3.7)

z = l  j > i  k > j  1=1 Tn=l n = l

The ground configuration of the system is the product of the ground basis functions 

of all normal modes. Note that there is only one ground configuration but Zmax x 

(3iV—6) singles and ^ImaxT^max x (3AT—6)(37V—5) doubles. In an accurate expansion 

of all vibrational states, there are clearly many more possible configurations than
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those that fall under S, D  and T  types. In only including these configurations 

in the Cl calculation, an approximation analogous to single-double-triple electronic 

structure Cl, CISDT, is made. It is assumed that the inclusion of configurations 

higher in energy than triples is not needed to achieve accurate description of ground 

and low energy states.^^^"^^^

When presenting the theory of Cl in the next section, configurations are labelled 

in order of energy, with corresponding to the ith  excited state. Thus, assuming 

M  -f-1 configurations in total:

v’o = n ^ ”
t

# 2

n  (3.8)

3.4 The Secular Equations

The configurations describe the vibrational wavefunctions of the s y s t e m . I n  a 

Cl calculation an attempt is made to improve on the configuration wavefunction by 

taking a linear combination of M  -I-1 ground and excited state configurations. For
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example, in the notation described in Equation 3.8, the Cl ground state and first 

excited states are

(3.9)

(3.10)

These are the trial Cl wavefunctions. In the course of the calculation, the coefficients, 

Cab, are variables that are optimised such that the linear combination resembles the 

true wavefunction more closely.

The Schrodinger equation can be solved for each linear combination, resulting in 

M  + 1  equations.

J^7pi = Eilpi

{J& — =  0 2 =  0 ,1 , . . . ,  M

(3.11)

(3.12)

Solving these simultaneous equations yields M  +  1 eigenvalues, E,, and M  4- 1 

eigenvectors, However, this solution is only non-trivial if the secular determinant 

disappears i.e.

=  0 (3.13)

The eigenvectors form a (M +  1) x (M  +  1) matrix, X

/ COQlpO CioTpo

CQl'tpl C i i t p i

CMO'ipO

 ̂ ComV̂ M CiM'ipM • • • CMM'ipM j

(3.14)
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and a diagonal matrix, E, may be formed from the eigenvalues, Ei

(

M

E  =  ^  EiSi =
1= 0

V

Eo 0 . , . .  0

0 El . , . .  0

0 0 . • • Em

\

(3.15)

/
Forming the matrix, H, where

M  M

H  =  (3.16)1=0 j= 0

means that the Schrodinger Equations in 3.12 may be written more concisely as

H X  =  X E

Forming the inverse of X, X “ ,̂ allows a similarity transformation

X -^X E  =  E  =  X -^H X

(3.17)

(3.18)

which makes H  diagonal as E  is diagonal. The matrix X  tha t causes X " H X  to 

be diagonal must be found in order to solve the eigenvalue Equation 3.11. This is 

achieved in practice by diagonahsing the Cl matrix, H.

Variational improvements in the energy yield improvements in the approximate 

wavefunction, which in turn improves the expectation values of all other proper­

ties which are dependent on it. However, these other properties may not converge 

as fast as the energy with respect to the basis set. Usually, coefficients are found 

that minimise the energy of the system. It is, however, possible to minimise any 

expectation value to speed convergence of a given property. In the next section, the 

choice of expectation value to be minimised in the Cl calculation is considered.
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I

3 .4 .1  T h e  E x p ec ta tio n  V alue to  b e  M in im ised

Prom equations 2.3, 2.4 and 2.16, the general vibrational Hamiltonian of a system 

with an anharmonic potential, V , can be defined:

1 3^-6 pa.
=  +  V  (3.19)

1=1

The expectation value to be minimised can be adapted to the problem at hand. The

main interest in this study is the deviation from the harmonic approximation, i.e.

the anharmonicity of the system. It is convenient to write the Hamiltonian thus

S N -6  (  -i p a  1 \  3 N - 6  .

B  Â

The separation of the Hamiltonian into the operators A  and B  can be thought of 

as a splitting of the anharmonic effect into two distinct parts. Operator B only acts 

along the diagonal elements of the matrix, giving a zero point energy. The main 

work in the calculation is evaluating the matrix elements of Â. The matrix elements 

of Â  show how the harmonic basis functions in the configuration differ from the true 

anharmonic wavefunctions.

Figure 3.1 is a 3D visualisation of the Cl technique for calculating anharmonicity 

in the vibrational states of the water monomer system studied in Section 5.3. The 

expectation value of operator A  is the anharmonicity, i.e. the difference red-grey 

surface. In the diagram, the ground state wavefunction is plotted in blue. It is
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E n erg y
H a rtre e )

D isp la c e m e n t In o 
C o o rd in a te  1 (a u )

0  D isp la c e m e n t in 
C o o rd in a te  2  (a u )

Figure 3.1; 2D visualisation of the Cl technique. The red surface the Hoy, Mills 

and Strey PES.^® The grey surface is the potential approximated to a harmonic 

function and the blue surface is the ground state wavefunction.

concentrated near the minimum, so the atoms have a low probability of being found 

in the highly anharmonic regions, where the difference between the red and grey 

surfaces is large. The expectation value of Â is, therefore, small. Higher energy 

wavefunctions are more diffuse. The atoms are more likely to be found far from the 

equilibrium geometry. Therefore, the expectation value of A will be larger.

3.4 .2  T h e E x p ec ta tio n  V alue o f th e  O perator B

The operator B is the Hamiltonian for a simple harmonic oscillator, SHO. As such, 

the normal mode basis functions are eigenfunctions of B.

B '^ — Eip (3.21)
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In analogy to Equation 3.16, a matrix B can be defined for an M  -f 1 configuration 

calculation
M  M

B =  (3.22)
*=0 j =0

where the individual configurations are defined in Equation 3.8. B  is diagonal, 

as B is a single particle operator, not mixing modes, and the normal modes are 

orthogonal.

M  M

B =  E E ( ^ » | B | ^ i >
1=0 j =0 
M  M

= E E (*I* )^ ;
i =0 j =0 

M  M

— ^2/ (3.23)
i=0 j=0

In fact, B can be evaluated analytically:

0

{k +  \)uji i i k  = l

(3.24)

uji being the normal frequency of mode i. Generally, the diagonal matrix elements 

of the operator B  are

n  B I n  V̂fc) =  (̂  +  -)i'i -f (m +  -)i/j +  ^ 2  2^k (3.25)
k^ijj k^i,j k^,j
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3 .4 .3  T h e E x p ec ta tio n  V alue o f  th e  O perator Â

Operator Â, defined above in Equation 3.20, contains terms that can couple all

configurations, symmetry permitting. Thus, matrix A, where

M  M

A  =  (3.26)
i=0 j=0

can have non-zero elements on and off the diagonal.

In the general case of a N  atom system, the expectation value of A  is calculated as 

a SN  — 6 dimensional integral. I t  can be expanded as

<  V ’Î V ’2 • • • i>3N-e I Â  I tpilpl ■ ■ ■ V ’3 A T - 6 >  =

j  ■■■ J ,2

3N-6
In the next section, the methods used to evaluate these integrals are introduced.

3.5 Numerical Integration

The major computational work in the Cl calculation is the evaluation of the integrals 

of matrix A, defined in Equation 3.26. In simple systems, these can be calculated 

analytically. In general, however, the integrals have no analytical solution. A tech­

nique for calculating the matrix elements numerically is required.
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y

Xi b Xa

Figure 3.2: Gauss-Hermite Numerical Integration. Note the similarity to Simp­

son’s

Numerical integration,^®^’ or quadrature, is needed as the integrals of some 

functions cannot be evaluated analytically. An example is Simpson’s rule, involving 

the separation of the function into smaller equidistant segments, divided at the 

abscissae, see Figure 3.2. The aim is to evaluate the integral as accurately as possible, 

calculating the weighted sum of the integrand at a sequence of abscissae.

'6 N
j  f{x )à x

i=i
(3.27)

The weight of integrand i is Wi and there are N  abscissae Xi. For greater efficiency 

this is done using the smallest number of function evaluations possible, i.e. the 

number of abscissae, A, is kept to a minimum.
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In general, the integration can be closed, where the boundary points of the integrals, 

a and b, are taken as abscissae, or open, when the function takes some value that is 

hard to compute at the boundary points (e.g. /(a )  zero or infinity). The step size 

can be constant (as in Simpson’s rule) or variable/adaptive.

For techniques with equally spaced abscissae, the only variable is the weighting, 

in the sum. By changing this according to the function to be integrated, /(rc), the 

accuracy of the integral can be improved for the same number of abscissae. These 

integrals can be exact for polynomial functions f {x)  =  CjX*. The higher the order 

of f{x) ,  the more abscissae required for the integration to be exact. Quadratures 

are said to have order dependent on the highest order polynomial for which the 

technique is exact.

Variable stepsize gives an extra degree of freedom by allowing a choice of the position 

of the abscissae. The order of such quadratures can be up to twice that of constant 

stepsize techniques. It should be noted that higher order only means higher accuracy 

if the integrand can be well approximated by a polynomial.

The Cl integrals of interest include wavefunctions of the form

4 { x i )  =  (3.28)

The exponential term means they are not well approximated by a polynomial. How­

ever, a feature of Gaussian quadrature is that the weights and abscissae can be ar­

ranged such that the integral is exact for a polynomial times a specific function, g{x).
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weight

hermite polynomial 
H2(q)=4q2-2 y

displacement q

weight X hermite

Figure 3.3: Gauss-Hermite Numerical Integration. Second order Hermite poly­

nomial and the weight function multiply together to reproduce the wavefunction.

The form of the vibrational wavefunction of a simple harmonic oscillator is given in 

Equation 3.28. In this case g{x) =  . The quadrature required is, therefore, a

Gauss-Hermite where the approximation

.6 N
f  e f{x)dx  ^ ' ^ W i f i x i )

i=i
(3.29)

can be exact for a given set of weights and abscissae. Assuming f {x)  is an order m 

polynomial, the integral is exact for |(m  +  1) abscissae. Thus, m  abscissae allow 

exact integration of a polynomial function of order 2m +  1.

The weights are of the form which, when multiplied by the Hermite polyno­

mial of the appropriate order, result in a function replicating the wavefunction (see 

Figure 3.3.) The overlap integral between two doubly excited wavefunctions, like 

those shown, can be obtained exactly using only 3 abscissae.
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In evaluating the Cl matrix, H, most of the computational effort is expended on 

the calculation of the expectation value of the anharmonicity operator, Â. In the 

following section, the integrals that must be evaluated to calculate A  for ID, 3D 

and general 3iV — 6D systems are discussed.

3.5 .1  T h e E x p ec ta tio n  V alue o f  A  - M o d el S y stem s

3.5.1.1 ID  S ystem

Consider, first, a ID oscillator. The matrix elements of the Cl matrix A  are one 

dimensional. For example

(V^î|Â|^î> =  y* 'iij\ dgi (3.30)

3.5.1.2 3D S ystem

Here, the calculation is extended to a 3D system. The matrix elements of H  are 

therefore three dimensional, e.g.

3

d r  (3.31)
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3.5.1.3 General (3iV-6)D System

The matrix elements of the Cl matrix will require, in general, SN  — 6D integrals. 

Calculation of these multi-dimensional integrals for small systems is feasible. For 

larger systems such as biomolecules, however, the integrals become too computa­

tionally expensive as they must evaluated numerically through the use of nested 

loops, as described in Section 3.5. As the number of dimensions increases, so do 

the number of nested loops. The time required for the calculation of a single Cl 

matrix element therefore scales as where a is the number of abscissae in the 

Gauss quadrature. This is, clearly, a very poor scaling. A reduction in the scaling 

is needed to prevent the calculation from becoming impossibly large for all but the 

smallest systems. In the following section, a method to achieve such a reduction in 

integral size is presented.
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3.6 The Pairwise Potential Approximation

3 .6 .1  In trod u ction

In order to reduce the order of the integrals, it is important to consider the potential 

energy surface. Consider the expansion of the potential of a general 3N  — 6D system 

in normal coordinate space:

V  =  /(%) +  /(%, ^  / ( » ,  9k )
i i j  i j  k

+  . . .  +  ^ 2  • ' • ^ 2  , QdN-e) (3.32)
1 3JV-6

It can be assumed that three (and higher) body terms in the potential are negUgible 

i.e. the potential is approximated to be pairwise. This is the pairwise potential 

approximation, PPA. Making the PPA is, in effect, the assumption that the coupling 

of three or more normal modes is neghgibly small. The approximation is good for 

low energy eigenstates and is tested in Section 5.3.3.

The PPA is effective at reducing the time taken to perform a Cl calculation as it 

results in a reduction of the general SN  — 6 dimensional integral into a sum of ID 

and 2D integrals. Consider, first, this reduction in the model three mode system 

described above. Removing three-body terms from the general potential 3.32 yields 

the pairwise potential:

V  =  ^  m  +  E  E / ( » '  9j) (3.33)
i i j
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which for a three mode system expands to

v = E  + E  «'292+ E % + E E
i i i i j

+  E  E  % 9i93 +  E E  (3-34)
i 3 i 3

Note that the notation here is different to that used in describing wavefunctions. 

In this labelling scheme, qj, subscript, I, defines the normal coordinate as in the la­

belling of wavefunctions. However, the superscript, i, describes the power to which 

the coordinate is raised i.e. squared, cubed etc. For the potential coefficients, 6J, 

however, both sub- and superscript are purely labels. Â, defined as the anharmonic­

ity operator in Equation 3.20, can be expressed in terms of the normal coordinates, 

in analogy to the expanded potential.

i=l

— V  — -  [kiql -f- ^2^2 +  ^3 3̂ ) (3.35)

Clearly, the full anharmonicity operator, Â, can be expressed as a pairwise expansion 

in normal coordinates.

+  E  4 4  +  E  4 4  +  E  E  4 ,^ 4 4
i i i i j

+  ^ 2  ] E  ^ 4 4 4  d- ] E  ^ 4 4 4  (3.36)
i j  i 3

Note the similarity between Equations 3.34 and 3.36. This is due to inclusion of 

the harmonic expansion in the coefficients cj. In fact, all except the quadratic force 

constant coefficients of the potential, i.e. are identical to cj:
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ci = b] ; i ^ 2  (3.37)

cf = y f -  k, (3.38)

The Cl matrix integrals for the model 3D system can be generahsed thus

IÇ  49i + ^  4 4  + Ç  4 4  + Ç  4f29î4
i i i i 3

+ X IS  4444 + 44441 M ii’s )
i j  i 3

=  (  V ’l  I Ç  4 ^ 1  I > (  ^ 2 ' 0 3 1  ^ 2 ^ 3  )
i

+ (^21^ 4^2  1̂ 2) { ipMMs)
i

+  ( ^ 3 | X ] 4 4 k 3 >  (V'lV̂ 2|V̂ lV'2)
i

+ 4444 IV"! ) { V’31 V’S )
i j

+ (V' iV'314444IW3) (V’2|V’2)
i ;

+ 4 4 4 4  IV'2V'3><V'i|V'i) (3.39)
* J

Depending on whether the configurations are singles or doubles, some of the overlap 

integrals above will turn out to be zero, reducing the complexity of the integral. 

This is covered in greater detail in the following section.
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3 .6 .2  O vercounting  In tegrals

Four types of configuration are defined in Section 3.3. They are, the ground state, 

singles, doubles, and triples. There will, therefore, be ten different types 

of integral. Examples of six of these types are presented in the proceeding sections. 

The matrix elements are discussed for all possible permutations and combinations 

of Cl matrix elements for the ground, singles and doubles. On making the pairwise 

potential approximation, there is a possibility of overcounting integrals. Where this 

occurs, it is highlighted and rectified.

3.6.2.1 D iagonal E lem ents

The diagonal of the Cl matrix, H, is a special case as the expectation value of 

operator B  is non-zero for such elements. Consider the following generalised diagonal 

Cl matrix element.

(V 'ÎV ’̂ V’s I Â I V ’JV ’îV ’a )  =  (V ’î l X ^ c i Ç i  IV"}}
i

+  (V’2 lÇ492 lV '2>
i

+ (V'3lÇ493lV'3) (V’iV'SlV'iV'?)
i

+ (V'JV'®! ^ y ^ 4 f 2 9 i9 2  IV’iV’®) ( i’s li’s)* j

+ (  V " 3  I y ]  I V " !  V » 3  >  ( V ’2 l V ’2 )* j

+  1 4 4 4 9 3 1•>P°i>3) ) (340)
* J
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The configuration consists of normalised wavefunctions. Integrals such as 

are one. The integral simplifies to

=  (  v > î  I A<A I V " }  >  +  { I ^  4 « 2 1  +  ( ^ i ’s  I 4 4 1 V " ?  >
i i i

+  ( V-J V > 2 1 ci%Qi 4  I ̂ <1 V>2 ) +  ( V-î 1 5 1 4 4 4 4 1V»} V-s >
i j  i 3

+ (V'jV’s 15Z 5 2  4 4 4 4 \‘<p2'̂ 3) (341)
« J

Note that when i =  0 or j  =  0 in the three 2D integrals above, they reduce to ID. 

For example,

( v-215 2 1 2  4 , 2 4 4 1 v-2 ) =  (V’J i5 2 1 2 4 f 2 4 i^ i ) ( V ’?iV’S)
i j

— (V'l I ^ 2  ^i,29i I V’l } (3-42)

t 3 * J

» 3

This means that, including the actual ID integrals, the effect of ID terms in the 

potential, such as 9,re counted three times, i.e. they are overcounted. Two

of these ID integrals must be taken away for each mode.

= ( V’lV'215212 44441 11212 44441
i j  i j

-  (V’i l l 2 4 4 l V ’J) -  (V»?15 2  4 4 1V"®) -  (V"®! 5 2 4 4 1^ 3 )
i i i

+  {'^2'03 I 5 Z  I '^2'^3 ) (3.43)
* 3
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Thus, the 3D diagonal matrix elements reduce to three 2D integrals and three ID 

integrals. In a larger system of P  modes, there will be \ P { P  +  1) 2D integrals and 

P  ID integrals. This scales roughly x P^, far better than the full Cl scaling of 

a^, with a the number of quadrature points.

Operator B is shown to be diagonal in Equation 3.23. Therefore

Hij = Aij  +  Bij  ; i = j  (3.44)

Hij =  Aij  ; i (3.45)

As such, the following Cl matrix elements, H, are all expectation values of Â.

3.6.2.2 G round-S ing le  { | Â  | )

Calculation of Cl matrix elements of this type requires the evaluation of integrals 

between singly excited states and the ground state. For example, when the excited 

vibration is normal mode 1, and this mode has vibrational quantum number 1, the 

matrix element is
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(  V ' î V ’S V ' 3 1 Â I >  =  (  V < î  I ^  c\g{ I v > ?  )  (  >
i

+ (V’JV’slV’M )
i

+  {  V - a  I Ç  4 4  I V > 3  >  (  V ’î ^ ^ ’2  I ^ > 2  >
i

+  I V ' Î V ’2 >  ( V ’s i  V ’3 >
i 3

+  <  ^ 3 1 ^  ^  c % g W  I V » 3  >  {i’l\i’2)
i J

+  (V’2V-SI X ] ‘̂ ’̂ 39293 IV"M) (V'll'/'i) (3.46)* 3

However, the basis functions, normal mode wavefunctions, are orthonormal. There­

fore, all overlap integrals over mode 1 are zero. For example,

(^î^2lV’î^2) = 0  (3.47)

All other overlap integrals are 1. Therefore, the integral reduces to

IÂ I > =  ( Vii IÇ  4 9 1 1V"?) +  ( V’l V>21Ç  Y 1 4(29)921 i ’î i ’2 )
i i 3

+ ( V')V'31 I Z  4 (3 9 )9 3 1 V"i^3 ) (3.48)
I J

As above, it is clear that when j  = 0 the 2D integrals reduce to become ID. The 

effect of c\q{ terms in the potential will therefore be included three times so two 

of these ID integrals must be subtracted.
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(  V » } V " ?  I Â I V ’Î V ’J V ’a  )  =  (  V ' î  1 Ç  I >  +  (  V » } ^ > 2 1 ^  Ç  C % 9 i 9 2
i  i  j

+  (V’J^>31Ç Ç c\%g{41V’ÎV'3> -2 (V ' I I
i j  i

= { V ’ l V ’2  I Ç  Ç  4 ^ 2 ? ! ^  I V ' Î V ’S  >  -  (  V » }  I Ç  C ‘i 9 l  I V ’î  >
i j  i

+  c 'i,i4 4 1 V 'M  > (3.49)
i  j

In the general P  mode case, there will be (P  — 1) 2D integrals and one ID integral. 

Therefore, the PPA calculation will scale roughly c? x P , much better than the full 

calculation.

3 6.2.3 Ground-Double ( | H | )

Matrix elements describing the interactions between ground and doubly excited 

states result in integrals similar to that shown in Equation 3.50. In this example, 

modes 1 and 2 of the three mode system are excited to the second vibrational 

eigenstate.
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(V'ÎV’jV’sIÂIV'ÎV’̂ V's) =  ( V 'I lÇ c ’iîilV ’î)
i

+ ( v>21Ç  441 > ( v>}̂31 V'ÎV’s )
i

+ ( V"3 I ^  44 I V-3 ) ( V"! 1 V'lV'2 )
i

+  (  V’J I X I  53 4444 I V’ÎV’2 > ( V>31 3̂ )
* i

+  ( V ' M l X X 4 4 4 4  IV'?V'3> (V'2l^2>* 3

+ ( ̂ >2 V"? I X  X  4 4 4 4 1 ̂ <2 V’s > ( V’î IV’? > (3.50)
i 3

As the basis functions are orthonormal, the Cl integral is reduced to one 2D integral.

( V’xVaV’s IÂ \1pt1p2 rp3 ) = {iplrpl I X  X  4 4 4 4  IV'iV'2 ) (3.51)* 3

There is no overcounting of integrals in this case. In the general 3iV — 6D system, 

matrix elements of this type also reduce to one 2D integral. As there is always only 

one 2D integral to evaluate there is no increase in computational effort as system 

size increases. Gauss-Hermite quadrature scaling is reduced from to one for a 

system of P  modes.

3.6.2.4 Single-Single Â

When calculating Cl matrix elements between two singles, there will be three types of 

integral. When the excited mode is the same for both configurations, and they have 

the same vibrational quantum number, the integral will fail under the diagonal type
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discussed above. However, when the vibrational quantum numbers are different, the 

integral will follow the logic shown in the ( | Â  | ) case:

IÂI V'îV’SV’? > = {V'iV’? IX !  I
i j i

+ (AVs IX X ‘̂ifsSiSs I V’ÎV’?} (3.52)
* J

Another type of integral results when different modes in the configuration are ex­

cited. Consider, for example, the matrix element when mode 1 in the configuration 

and mode 2 in the second configuration are excited. The overlap integrals involving 

these modes are zero, reducing the matrix element to a simple 2D integral, as in the 

ground-double case.

(V’îV’SV’alÂIV'ÎV’JV'?) = ( V'l 1X X 1 V'iV'2 ) (3 53)
i j

3.6.2.5 Single-Double ( | Â | )

There are three distinct scenarios in the single-double matrix elements. In the first, 

there is no overlap in the excited modes, such as when modes 1 and 2 are excited in 

and mode three is excited in
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I ^  I V ' Î V ' 2 ^ 3 >  =  ( V » }  1 Ç  <A<A I V " ? >  ( V ’a V ’s l >
i

+  (V’21Ç  4«21 ̂ <2 > ( V’JV'?! V'lV'i )
i

+  ( V'S I I V>3 ) ( V'lV'21 ̂ Î̂V'2 >
i

+  ( I ^  4f29l92 I > { V>?l V’3 >
i J

+  ( V'̂ V'3 I ^  ^  C%9W I V'lV'i ) (V’2lV’2>
i J

+  ( ̂ >2V>? I X )  X )  4^3929  ̂I V’?V'3 > {V"} IV-Î > (3.54)» 3

It is clear that all overlap integrals are zero since they involve single and ground 

state wavefunctions of the same mode. Thus, the overall integral is zero. This is a 

result of the PPA, the assumption that interaction between three normal modes is 

negligible.

However, when the mode excited in is the same as one of the modes excited 

in such as mode 2 for example, the integral is non zero once more. If the 

vibrational quantum number of this mode is the same in both configurations, the 

integral resembles that from the ( | Â | ) case.
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( V ' f V ’M i Â I V ' Î V ' a V ' s )  =  ( I ^ C i 9 i  I 1 V » 2
i

+  ( ^ ^ ’2  I Ç  4 ? 2  I )
i

+  (V’s l Ç ^ î s I V ’s) (V'JV'2lV’?V’2>
i

+  ( ^ i V ’2 1  Y u  Y  4 f 2 9 i 4  I V ’? V ’2  )  ( V - a l V - a )
* j

+  c\%Qi41 v»M  ) ( v>21 v>2 >
* J

+  i i ’l i ’i l Y Y ' i l i ' A ' A l ' ^ l i ’t )  (V’ll V>i> (3 55)
» j

Checking for zero overlap matrix elements and removing extra ID integrals:

{‘>Pïi>liPt\Mi>î‘>Pli>î) =  i i ’i i ’l l Y Y ' ^ ' é ' À d i i ’i i ’l )  -  ( V ’ î l X ^ ^ s î l V ’ î )
i j  i

+  (  ^ > 3  1 4 f 3 « i 9 3 1  V ’ Î V ’3  )  ( 3 . 5 6 )» 3

The final scenario occurs when vibrational quantum numbers of mode 2 in the 

configuration are different. The expectation value of the anharmonicity operator, 

Â, reduces to a single 2D integral, analogous to the ( ̂ °  | Â  | ) case above

(V’îV’̂ V’sI.^IV'ÎV’iV’s) =  ( V"211 3 1 3  4 ) 2 4 4 1V»! V»2 > (3.57)
i 3

3.6.2.6 Double-Double ( | Â | )

This type of integral can only be non-zero when the two modes excited are the same 

in both configurations, otherwise all overlap integrals will be zero. Assuming the
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same modes, for example 1 and 2, are excited, there are two possible outcomes. 

Firstly, when both pairs of excited modes have different vibrational quantum num­

bers, the integral reduces to a single 2D integral.

j  = (V’JV’îV'alÂIV’ÎV’M )  =  (3.58)
* J

However, when only one pair of modes has a different number of quanta, the matrix 

element is reduced to a sum of 1 and 2D integrals

y =( v>2 v»? IÂI ip\ipiip3 )

= (V’îV'215 1 5 2  - (V "2i5Z  ‘̂ 1^11^ 2 )
i  j  i

+  { V>2 V"? I X ]  5 Z  4 )2 9 ^  I V'IV’3 ) (3.59)
t  J

Clearly, the integral is of the diagonal type when both pairs of modes have the same 

vibrational quantum number.

Part III of this report concerns the development of a program to implement the 

vibrational Cl technique. Details of the inner working of the code are provided and 

the results of benchmark calculations are examined.
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Part III

D evelopm ent and Benchm arking
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Chapter 4

D evelopm ent

A computer program is developed to implement the vibrational Cl theory presented 

in Part II. This chapter concerns the development of this program, and its function- 

ahty. In the following chapter the code is tested and calculations compared with 

results reported for benchmark systems.

4.1 Introduction

The code is developed entirely for this project, except for the sections concerned with 

finding the potential minimum, written by Wales.^^® It is written in FORTRAN 77 

and is developed on a Silicon Graphics platform. A flow chart representation of the 

code’s functionahty is given in Figure 4.1.
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The project aim is to design a general, adaptable method for calculating anhar­

monicity in biomolecular systems. Therefore, it is important that the code is as 

general and flexible as possible. It has been designed to be portable, so that it 

can be used on other systems, possibly with any FORTRAN compiler, although it 

has only been tested on SGI machines. W ith this aim in mind, the use of external 

subroutine calls has been limited. The only library calls made are to NAG sub­

routines for evaluation of weights and abscissae for Gauss-Hermite quadrature and 

for diagonalisation of real symmetric matrices. If required, implementation of non­

library routines for these tasks from sources such as Numerical Recipes^^^ is trivial, 

but the NAG libraries are chosen for their speed, having been specifically optimised 

for the processors used, and their theoretical accuracy, ease of use and consistent 

error-handling.

To make the program flexible, the code is based around a main routine which calls the 

separate functions and in which all parameters, such as the number of configurations 

and number of abscissae used in the Gauss-Hermite integration, may be set. All the 

subroutines and variables are labelled as clearly as possible and extensive comments 

are included as instructions and explanations.

The code is made as flexible as possible by a clear and complete separation of 

the potential from the main program. Separating the potential from the code, 

with no use of common memory, allows a variety of potential energy surfaces to be 

used from simple functional potentials such as the Hénon-Heiles surfaces to semi-
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empirical molecular modelling potentials like MM3, CHARMM and AMBER. The 

sole interface is a wrapper subroutine that is adapted to each PES. The only input 

to the PES wrapper subroutine is an array, x, of length n  containing the Cartesian 

coordinates of the atoms. Its only output is the potential energy at the nuclear 

configuration described by T. It would also be possible to calculate the surface 

points “on the fiy” using density functional or ab initio methods. However, with the 

number of function calls presently required to perform a Cl calculation, this would 

be a very slow process for all but the smallest molecules. Methods for reducing the 

number of calculations of potential points are introduced and implemented later and 

suggestions are made for further improvements.

Figure 4.1 is a graphical description of the way the code works. All of the operations 

listed are individual subroutine calls made from the main program so specification of 

computational variables, changes in running order and extra operations are easy to 

implement. Optional subroutines are shown in grey and the processes and theories 

involved in these are discussed in Section 6.3.



Chapter 4: Introduction 86

c a lc u la te  m atrix  
e le m e n t

c h o o s e  m o d e  with 
la rg e s t  coup ling

r e a d  s ta rtin g  a to m ic  
p o s itio n s  a n d  w e ig h ts  

V  J

find p o ten tia l 
m inim um

c a lc u la te  
n o rm al m o d e s

V

r  >
c a lc u la te  q u a d r a tu re  
w e ig h ts  & a b s c is s a e

V  J

find s tro n g ly  
c o u p le d  m o d e s ?

o p tim ise  b a s is  
fu n c tio n s?

no y es

s e t  u p  b a s i s

I
c a lc u la te  

m atrix  e le m e n ts

d ia g o n a lis e

s o r t  e ig e n v a lu e s

c h a n g e  n o rm al 
m o d e  f r e q u e n c ie s

m in im ise  e n e rg y

d ia g o n a lis e
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Figure 4.1: Schematic representation of functions of the computer code. Op­

tional subroutines are shown in grey. All but the potential minimisation is devel­

oped for this project.

The most complex portions of the code are the search for a minimum in the po­

tential, evaluation of the normal modes and the calculation of the Cl matrix. The 

theory behind this is described in Sections 2.4 and 3.4. The calculation of the Cl
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matrix is the most time intensive section of the process with many calls made to 

the potential wrapper subroutine. Performing full Cl calculations on many-body 

systems will quickly become unfeasible as the number of potential calls increases 

dramatically with the number of vibrational modes under consideration. To over­

come this problem, the pairwise potential approximation, described in Section 3.6, 

is implemented and tested in Section 5.3.3.

The main areas of the program are discussed briefly in the following section. The 

results of rigorous testing and comparisons with benchmark calculations are detailed.

4.2 The Program

4 .2 .1  M in im isa tion

Three methods for finding a minimum on the potential energy surface were consid­

ered. The simplest is an iterative simplex method implemented via a NAG subrou­

tine. This method requires many iterations to find the minimum and is therefore 

slow, but it is robust. Conjugate gradient and Newton-Raphson minimisations have 

also been included via the code of Wales.^^^ These techniques are introduced in 

Section 2.5.
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The accuracy of the minimisation is inherently tested in the calculation of the nor­

mal modes. This is achieved through diagonalisation of the mass weighted force 

constant matrix, defined in Equation 2.25, which will result in six zero and 3AT — 6 

real eigenvalues at the minimum. If the system has not been minimised correctly, 

some of the eigenvalues of the mass-weighted force constant matrix will be negative, 

providing an immediate diagnostic of the quafity and accuracy of the minimisation 

process.

For larger systems, such as tryptamine, there are many minima. Techniques for 

finding all potential wells and the global minimum have been widely studied and 

implemented in black-box packages that are simple to use. The TINKER package, 

developed by Ponder and co-workers,^®^^°^ implements tools for finding minima of 

potentials for complex biosystems and allows exploration of minima other than the 

global minimum. As such, TINKER is used to find minimum geometries of interest 

in the study of biomolecular systems discussed in Chapter 6. These conformational 

searches are performed independently to the code developed for this research.

The minimisation method employed by TINKER is a semi-Newton technique, 

a modified limited-memory large-scale bound unconstrained optimisation, L- 

BFGS.^^^d94 jg (designed for problems with large numbers of variables and 

minimal storage. It finds the minimum over Cartesian coordinates, requiring stor­

age proportional to the number of atoms in the system. The L-BFGS optimisation 

converges in a slow linear fashion near the minimum so it is a good preliminary



Chapter 4: The Program 89

minimisation. It can be used in conjunction with another method, for example 

conjugate gradient, that displays quadratic convergence.

4 .2 .2  C alcu lation  o f  N orm al M od es

After minimisation of the structure, normal coordinates must be found. The first 

step in this is calculation of the Cartesian second derivative, i.e. force constant 

matrix. The differentiation technique employed is Bidders method,^^^ a numerical 

technique for calculating first derivatives, utilising Neville’s algorithm to extrapolate 

ÔX —► 0. The code can be extended by calculating first-derivatives of first-derivatives 

to obtain the second-derivatives required.

The force constant matrix is subsequently mass-weighted and diagonalised with 

a NAG subroutine.^^^ The normal mode frequencies are the square roots of the 

eigenvalues. The eigenvector matrix is mass-weighted, so this must be removed to 

give the matrix for transforming from Cartesian to normal coordinate space (see 

Section 2.4).

The code is tested by calculating normal modes for simple, benchmark functional 

potentials such as the Bartlett et fit of the Simons, Parr and Finlan water 

potential^^^ and the Hoy, Mills and Strey^® water potential. Results are compared 

with hterature values in Table 5.3.
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4 .2 .3  G au ss-H erm ite  In tegration

Gauss-Hermite weights and abscissae are calculated using a NAG subroutine. A

test of the integration method and the correct calculation of the normal mode basis 

functions is performed at the start of every calculation by checking the orthonor­

mality of the excited states. The results are printed as an overlap matrix, O, of 

elements Oim

o,„ = (v-!iV’r> (4.1)

More detailed testing is subsequently performed on the calculation of the matrix 

elements and the full Cl procedure as outlined in the next section.

4 .2 .4  M a tr ix  E lem en t C alcu lation

The calculation of matrix elements can be tested by evaluating integrals with ana­

lytical solutions. Consider, for example, a ID system of two particles on an arbitrary 

potential for which the harmonic frequency is found to be w. An integral with an 

analytical solution is chosen, e.g.

(4.2)

=  j  Q gA  N,H,{g)e-i^"dq  (4.3)

= j ^ { H , { g ) f g ^ e - ^ d g  (4.4)
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Choosing v to be 1 means

^  (4.5)
27T2

(ffi(?))2 =  (4.6)

SO the integral becomes

/( 7T2
—  ] q e   ̂ dg (4.7)

But, can be expressed in terms of H2 {q), Hi{q) and Ho{q)

=  ^  [(% (?)) ' +  m i ) ?  -  4 (% (g))'] (4.8)

SO the integral can be expressed

e~^dqJ i i
1  j  # ^ (% (g ))'e -« 'd g  +  l  J  # f ( ; f i(g )) 'e -« 'd g

-  J  y  NS{Ho{q)fe-^dq  (4.9)

As the wavefunctions are normalised, all the three separate contributing integrals 

are 1 so the total integral is | .  Calculating such integrals allows a check of the 

Gauss-Hermite integration procedure.

In the following chapter, the code is applied to benchmark ID and 3D systems, and 

the pairwise potential approximation is incorporated into the model.
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Chapter 5

Benchmark System s

5.1 The Morse Oscillator

5 .1 .1  In tro d u ctio n

The proceeding section involves testing the code on a one dimensional system to 

check that the theory has been correctly implemented. The system chosen is the 

Morse oscillator as implementation of the potential is trivial. The eigenvalues and 

eigenvectors are known, as the Schrodinger equation for this system can be solved 

analytically, and the system has been used in previous benchmark calculations.^^^
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Morse^^^ suggested in 1929 that an empirical po­

tential energy function for diatomics was needed. 

The true potential energy depends on a compli­

cated function of the interatomic distance, r, and 

the electronic quantum numbers. Therefore, it 

is expensive to calculate and difficult to imple­

ment. Until then, Taylor series type potentials 

had been used but Morse proposed that a poten­

tial should fulfil four criteria:

I
UJ

In te r-a to m ic  s e p a ra t io n  r

Figure 5.1: The Morse po­

tential with eigenstates.

1. It should come asymptotically to a finite value as r  —> oo.

2. It should have only one minimum at r = tq.

3. It should become infinity (or very large) at r  =  0.

4. It must give energy levels close to those empirically found to fit IR spectra.

En = —D -f- hujQ (n — x{n -f —)̂

The Morse potential was proposed as a solution to this problem.



Chapter 5; The Morse Oscillator____________________________________ 94

5 .1 .2  T h e P o ten tia l

The function Morse proposed has the form

V{r) = D ^ { 1 -  (5.1)

where a  =  y/k/2De.  Solving the Schrodinger equation a n a l y t i c a l l y , i t  is found 

tha t the eigenvalues arê ®̂

In the test calculations, Dg is set to 5, /z =  1, a; =  1 so a  =  Transforming

to atomic units, the eigenvalues are

5 .1 .3  R esu lts

The calculated eigenenergies of the Morse oscillator are reproduced in Table 5.1. 

Results of the analytical solution are provided for comparison. Clearly, the Cl 

eigenvalues converge to the analytical Morse energies. Note, however, the number of 

configurations required for higher energy eigenvalues to converge increases rapidly. 

This is a result of the increasing anharmonicity in the Morse potential at higher 

energies. This can be seen clearly in Figure 5.1.
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Mode Harmon 05 BFs 10 BFs 15 BFs 20 BFs 25 BFs 60 BFs Morse

1 0.50000 0 .48766 0.48750 0.48750 0.48750 0.48750 0.48750 0.48750

2 1.50000 1.39386 1.38766 1.38750 1.38750 1.38750 1.38750 1.38750

3 2.50000 2.30296 2.19422 2.18790 2.18752 2.18750 2.18750 2.18750

4 3.50000 3.33068 2.97030 2.89963 2 .88906 2.88769 2.88750 2.88750

5 4.50000 4 .76387 3.85410 3.59704 3.51685 3.49457 3.48750 3.48750

6 5.50000 9.30841 4.92804 4.40083 4.16811 4.06280 3.98753 3.98750

7 6.50000 6.24435 5.35603 4.93324 4.69865 4.38976 4.38750

Table 5.1: Vibrational eigenstates of the Morse oscillator. Harmonic values are 

provided alongside results of Cl calculations with varying configuration size. An­

alytical Morse eigenenergies are reproduced for comparison.

Study of this system allows testing of the evaluation of diagonal and off-diagonal 

elements and the matrix diagonalisation procedure. However, this is only a ID 

system. The code must be extended to perform calculations on real 3D systems and 

a model 3D system must be found to test this extension.

5.2 Hénon-Heiles Potential

5 .2 .1  In tro d u ctio n

Hénon and Heiles^®  ̂introduced their potential in 1964 as a model function for grav­

itational field effects on the motion of a star. In their original work, periodic orbits 

are calculated numerically on an arbitrary 2D surface. A new potential function 

was required that had to be analytically simple, to speed computation, yet complex 

enough to give non-trivial trajectories. A 2D potential was proposed:
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V{x

This potential has been adopted in computational chemistry as a model potential, 

often used in benchmarking the calculation of vibrational eigenstates, as, in the 

past, they have been evaluated using several different methods.®*^®’ It is often 

extended to three®^“®® and sometimes many dimensions.

5 .2 .2  T h e H én o n -H eiles  3D  P o ten tia l

The potential chosen for this calculation is the Hénon-Heiles 3D oscillator with a 

potential of the form

V =  +  2/̂  +  z^) — 0.1 +  yz^ 4- O.lx^ -f O.ly^) (5.4)

It is clear from simple analysis of the potential that the normal coordinates are 

simply the Cartesian coordinates. To enable an understanding of the surface to­

pography, a plot of the potential in normal/ Cartesian coordinate space is given in 

Figure 5.2.

The eigenstates of this system have been studied in depth.®^® Light and co-workers 

adapted a generalised Gaussian Quadrature Discrete Variable Representation, DVR, 

method^^® to calculate and label the 20 lowest eigenstates of the potential.®^ These 

are calculated to a higher degree of accuracy by Echave and Clary®® with a Potential 

Optimised DVR (PO-DVR) method.
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Figure 5.2: 2D representation of Hénon-Heiles potential at z =  0 in normal 

coordinate space.

5.2 .3  R esu lts

This single-body potential requires no computational minimisation as the minimum, 

(x =  0?/ =  0 2  =  0), normal coordinates and eigenvectors can be deduced by analysis 

of the potential. There is, therefore, no need to employ the areas of the program 

concerning potential minimisation and normal mode calculation.

Performing a Cl calculation with 1942 configurations yields results that are con­

verged for the first 10 eigenstates. Furthermore, the results display excellent agree­

ment with the converged PO-DVR values of Echave and Clary. Note that for a full 

Cl, this size of calculation, even on a simple surface such as the Hénon-Heiles 3D 

potential studied here, requires 5 days of computer time.
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Absolute Energies (cm
State Harmonic Anharmonic PO-DVR Configuration

1 1.5000 1.49388975 1.49388975 ( 0 0 0  )
2 2.5000 2.47041786 2.47041786 ( 0 1 0 )
3 2.5000 2.47996173 2.47996173 ( 0 0 1 )
4 2.5000 2.49168459 2.49168459 ( 1 0 0 )
5 3.5000 3.42714282 3.42714282 ( 0 2 0  )
6 3.5000 3.43827646 3.43827646 ( O i l )
7 3.5000 3.45388584 3.45388584 ( 0 0  2 )
8 3.5000 3.47192175 3.47192175 ( 1 1 0 )
9 3.5000 3.48408013 3.48408013 ( 1 0  1 )
10 3.5000 3.48631241 3.48631241 ( 2 0 0  )
11 4.5000 4.36246634 4.36246633 ( 0 3 0  )
12 4.5000 4.37333157 4.37333155 ( 0 2 1 )
13 4.5000 4.39593488 4.39593489 ( 0 1 2 )
14 4.5000 4.41909346 4.41909342 ( 0 0 3 )
15 4.5000 4.42935671 4.42935669 ( 0 3 0  )
16 4.5000 4.45122547 4.45122546 ( 2 1 0 )
17 4.5000 4.45262411 4.45262411 ( 0 2 1 )
18 4.5000 4.47208896 4.47208896 ( 1 0 2 )
19 4.5000 4.48245731 4.48245730 ( 3 0 0  )
20 4.5000 4.48258834 4.48258834 ( 2 0 1 )

Table 5.2; Comparison of Hénon-Heiles 3D Eigenvalues calculated with the Cl 

method, labelled “Anharmonic”, with those reported by Echave and Clary,®® la­

belled “PO-DVR”. 1942 configurations are used in the Cl calculation. 24 abscissae 

are used in the evaluation of the Cl integrals.

Table 5.2 shows the excellent agreement between eigenvalues calculated by Echave’s 

PO-DVR technique and the Cl method. This demonstrates an accurate extension 

of the model to three dimensions. However, the normal modes are all calculated an­
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alytically to be one atomic unit. Therefore, the matrix transforming from Cartesian 

to normal coordinates is clearly the unity matrix. The section of the code concerning 

the calculation of the normal modes has, therefore, not been tested to three dimen­

sions. Furthermore, the calculation performed on the Hénon-Heiles potential has 

been a full Cl, i.e. the assumption of pairwise interactivity has not been used. The 

potential, described in Equation 5.4, is in fact pairwise. Apphcation of the pairwise 

potential approximation to this system, as described in Section 3.6, will, therefore, 

not affect the results. To test the PPA, another three mode system must be found 

where the potential contains higher order terms.

5.3 W ater Monomer

5 .3 .1  In trod u ction

The next stage in benchmarking the Cl method is application to a real three mode 

system. This will allow a full test of the pairwise potential approximation through 

implementing the technique and benchmarking against full Cl results.

Water is a key molecule in biological systems. However, bulk water is an extremely 

complex system. Initially, water monomer is studied. Subsequent extensions to 

the models are made to allow for water-water interactions in water clusters, with 

the final aim of making an accurate model of water’s bulk properties.
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As such, water has been studied extensively, both experimentally^^^ and theoret­

ically. 1 0 3 -1 2 4 ,2 3 8 -2 4 6

In a theoretical study, Watson^'*^ developed a Hamiltonian for symmetric top tri- 

atomic molecules that included both vibrational and rotational motion of the nu­

clei. Whitehead, Handy, Carter and Sutcliffe®̂ ’ extended this hamiltonian to 

evaluate rovibrational states of triatomics with general potential functions. These 

calculations involved linear combinations of configurations, with Morse or harmonic 

oscillator wavefunctions chosen to model the vibrations and Legendre functions em­

ployed to include rotations. Burden and co-workers^®’ use the Hamiltonian set out 

by Handy et al. but choose numerical wavefunctions as the basis. The Tennyson 

group have performed extremely detailed calculations on the vibrations of water 

m o l e c u l e s , p r o d u c i n g  detailed potential energy surfaceŝ ®*̂ ’^̂® and including, 

for example, relativistic e f f e c t s ^ a n d  the breakdown of the Born-Oppenheimer 

approximation.

The aim of this section is to test the pairwise potential approximation. Therefore, a 

simple potential is adequate for our needs. The Hoy potential^® is chosen as it has a 

simple functional form and it has been used previously in studies of the vibrational 

states of water.^®’̂
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5 .3 .2  T h e H oy, M ills and S trey  P o ten tia l

In the 1960s and early 1970s, several groups®^’ attempted to incorporate higher 

order anharmonic terms into empirical and semi-empirical force fields. In 1972, Hoy, 

Mills and S t r e y H M S ,  introduced a general technique for relating these terms to 

spectroscopic data. This included a calculation of the force constants for the intra­

molecular modes of water.

The potential is expanded in internal water coordinates as defined in Figure 5.3

(5.5)
i  j  k

Values for harmonic and anharmonic force constants, Kijk, and equilibrium geome­

tries, r°5 , and 0^, are evaluated by performing a least squares fit of a calculated 

vibration-rotation spectrum to spectroscopic data.

A plot of the true and harmonic potentials in normal coordinate space is given 

in Figure 5.4. Clearly the anharmonicity increases greatly at large deviation from 

the minimum. This potential appears to only be optimised for the low vibrational 

eigenstates as there does not seem to be a dissociation channel. Consequently, high 

energy vibrational states will not be well described.

When studying the Hénon-Heiles system, the normal modes were evaluated via a 

simple analysis of the form of the potential energy function. Consequently, the 

code for calculation of normal modes has not been tested for systems larger than
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( i j k ) ^ i j k ( i j k ) K i j k
( 2  0  0  ) 4 .227 ( 4  0  0 ) 16.0033

( 0  2 0  ) 4 .2 2 7 ( 0  4  0  ) 16.0033

( 1 1 0 ) -0 .1 0 1 ( 3 1 0 ) -0 .8267

( 1 0  1 ) 0 .219 ( 1 3 0 ) -0 .8267

( O i l ) 0 .2 1 9 ( 2 2  0  ) 0 .1425

( 0  0  2  ) 0 .3485 ( 3 0 1 ) 0

(  3  0  0  ) -9 .8 9 4 3 ( 0 3 1 ) 0

( 0 3 0  ) -9 .8 9 4 3 ( 2 1 1 ) 0

( 2 1 0 ) 0 .1265 ( 1 2 1 ) 0

( 1 2 0 ) 0 .1265 ( 2  0  2  ) -0 .3525

( 2 0 1 ) 0 .202 ( 0  2  2  ) -0 .3525

( 0 2 1 ) 0 .202 ( 1 1 2 ) 0.305

( 1 1 1 ) -0 .4 0 2 ( 1 0  3 ) 0

( 1 0 2 ) -0 .1 1 2 5 ( 0 1 3 ) 0

( 0 1 2 ) -0 .1 1 2 5 ( 0 0 4  ) -0 .0029

( 0 0  3  ) -0 .1 4 6 2

Figure 5.3: The internal valence coordinates of water monomer. The potential is 

expanded in terms of the vectors A ra b , A v a c , A 6 .  Hoy, Mills and Strey potential 

constants in md-A units.

ID. The extension to three dimensions of the normal mode code is benchmarked 

by comparing calculated normal modes with the normal coordinate force constants 

given by Hoy.

Harmonic Frequencies (cm

Hoy This work

1648.9 1648.82

3832.0 3831.82

3942.5 3942.43

Table 5.3: Normal modes of the 

HMS potential. Frequencies com­

pared with those of Hoy.®̂

The differences between the normal fre­

quencies calculated in this study and the 

Hoy normal coordinate force constants are 

small and acceptable. Differences arise as a 

result of different accuracies of the calcula­

tions, affecting both the minimisation and 

the calculation of the normal modes. Dif­

ferent values used for the atomic masses of
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E n e rg y
(H a rtre e )

D isp la c e m e n t in C o o rd in a te  
M o d e  3 (au)

D isp la c e m e n t in C o o d in a te  
M o d e 2  (au )

Figure 5.4: Plot of the topography of the Hoy, Mills and Strey^  ̂water potential 

in normal coordinate space. The figure depicts the change in energy when moving 

along normal coordinates. The modes chosen as the coordinate space are the 

symmetric stretch (Mode 2) and bending (Mode 3) coordinates. The red surface 

describes the HMS potential and the grey surface is the potential predicted by 

the harmonic approximation. The plot shows the anharmonicity of the system 

demonstrating that the harmonic approximation is only valid around the potential 

minimum.

oxygen and hydrogen and the atomic mass units can have an effect on the normal 

modes too. The values for the atomic mass unit used in this research are those 

provided by Cohen and Taylor^ '̂^ in 1987, which are clearly different to those used 

by Hoy et al. in 1972. Retro-fitting these constants to values used in 1972 is not 

possible, since they are not mentioned in the Hoy paper.
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5 .3 .3  T h e P a irw ise  P o ten tia l A p p rox im ation

Calculations on the Morse Oscillator and Hénon-Heiles system have been full Cl, 

making no approximations as to the form of the potentials. Extending to systems of 

more than three modes will render this technique very slow. A general riD system 

will require evaluation of n-dimensional integrals in order to calculate the Cl matrix 

elements. The number of potential calls, and therefore the amount of time needed 

for the calculation, will increase factorially with n.

The pairwise potential approximation, PPA, is introduced in Section 3.5.1.3. The 

effect of the approximation is to reduce the n-dimensional integrals required to 

calculated the Cl matrix into ID and 2D integrals. The results of the implementation 

of this approximation to the calculation of the eigenstates of water monomer are 

detailed in Table 5.4

Comparing the eigenvalues of the full Cl calculation to those obtained making the 

PPA in Table 5.4 shows the pairwise potential approximation to be quite good. The 

decrease in calls to the potential subroutine speed up the calculation, taking 525 

seconds for the full Cl but 248 seconds for the PPA. This speed gain will increase as 

more configurations are included in the calculation and will have a dramatic effect 

when moving to larger systems.
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Absolute Energies (cm )̂

Level Harmonic Full Cl PPA

( 0 0 0  ) 4711.6 4662.7 4659.4

( 0 1 0 ) 6360.2 6247.6 6239.1

( 0 2 0 ) 8008.8 7805.1 7795.9

( 1 0 0 ) 8543.6 8380.3 8367.5

( 0 0 1 ) 8654.3 8471.8 8450.0

( 1 1 0 ) 10192.2 9978.1 9944.0

( O i l ) 10302.9 10062.3 10019.3

( 1 2 0 ) 11840.8 11539.1 11492.7

( 0 2 1 ) 11951.5 11598.2 11545.7

Table 5.4: Results of harmonic, full Cl and PPA calculations of the absolute 

energies of vibrational eigenstates of water monomer. Anharmonic eigenstates 

are calculated with the Cl method. The calculation includes 54 configurations 

and the integrals are evaluated over 24 abscissae.

It is clear that for the lowest modes, the agreement between PPA and full Cl cal­

culations is satisfactory. However, as the energy of the state increases, the three 

body terms in the potential become more important. This is borne out as a greater 

difference between the higher eigenenergies of the two calculations.

Simple analysis of the potential, defined in Equation 5.5, will not provide an insight 

into the extent of three body motion. The potential is expanded in terms of force 

constants in internal coordinates defined in Figure 5.3. Resolution of the two and 

three body terms is not trivial as any vibration in internal coordinates, when trans­

formed into normal coordinates, is a three body motion. To quantify the extent of
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three body terms in the potential, and therefore the accuracy of the approximation, 

it is possible to plot individual matrix elements of the full Cl and PPA calculations. 

The difference, (full Cl - PPA), gives an indication of the effect of the three body 

terms on the matrix elements, and is plotted in Figure 5.5.
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Figure 5.5: Plot to demonstrate the accuracy of the pairwise potential approx­

imation for water monomer. The matrix element of the full Cl calculation are 

plotted in blue. In red is the difference (full Cl) - PPA, quantifying the three- 

body terms in the potential. The higher numbered configurations generally cor­

respond to higher energy terms. The three body terms in the potential become 

more important at higher energies.
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The red line is a plot of the difference between full Cl elements and PPA elements. 

There are two trends to note. Most importantly, the red hne is very small in relation 

to  the blue peaks for the lower energy configurations. This is a result of three body 

terms being relatively small near the potential minimum. However, the red peaks 

become more pronounced at higher configurations because these are higher in energy. 

This implies tha t the pairwise potential approximation is good for lower states but 

gets worse at higher energies, as expected.

The other clear trend is the positive value of most of the red peaks. As this is 

the difference (full Cl) - (pairwise approximation), it represents the three body 

interactions. As they are mainly positive, removing them will result in lower absolute 

energies, as seen in Table 5.4.

5 .3 .4  C om parison  w ith  L iterature V alues

It is possible to benchmark the pairwise potential approximation by comparing the 

results of the Cl calculation with anharmonic vibrational energies calculated on the 

same Hoy potential by Whitehead et and Burden et al.^  ̂ Whitehead^® performs 

a variational rovibrational calculation for various rotational states. Thus, the Cl re­

sults must be benchmarked with W hitehead’s converged results for J=0 calculations. 

B u r d e n , u s e s  the Hamiltonian of Whitehead, Handy and Carter.®̂ ’ Thus 

calculations, while performed at J=0, also include rotational effects due to Coriolis 

coupling terms in the Watson Hamiltonian. Table 5.5 compares the results of a PPA 

Cl calculation with those obtained by Whitehead and Burden.
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Absolute Energies (cm )̂

Level Harmonic PPA Whitehead Burden

( 0 0  0 ) 4711.6 4659.4 4653.1 4652

( 0 1 0 ) 6360.2 6239.1 6252.8 6249

( 0 2 0  ) 8008.8 7795.9 7820.1 7812

( 1 0 0 ) 8543.6 8367.5 8371.1 8368

( 0 0 1 ) 8654.3 8450.0 8474.5 8472

( 1 1 0 ) 10192.2 9944.0 - 9952

( O i l ) 10302.9 10019.3 - 10054

( 1 2 0 ) 11840.8 11492.7 - 11494

( 0 2 1 ) 11951.5 11545.7 - 11603

Table 5.5: Results of harmonie and PPA calculations of the absolute energies of 

vibrational eigenstates of water monomer. The results of calculations by White­

head®  ̂and Burden®® at J=0 are provided for comparison. Anharmonic eigenstates 

are calculated with the Cl method. The calculation includes 54 configurations and 

the integrals are evaluated over 24 abscissae.

The results show reasonable agreement between some energy levels, especially with 

the calculation of Burden et af.®® The observed differences between calculations 

arise as a result of the different configurations and methods used. An important 

point to note is that the calculations of both Whitehead and Burden have not fully 

converged. This is demonstrated by a change in absolute energies in going from 

calculations with the largest configuration to calculations with the second largest 

configuration in the two studies®®’®® as shown in Table 5.6.
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Level E " i  ^  2

B a s i l  S e t

E  <  4 E  " i  <  5 E  " t  <  6
( 0 0 0  ) 4 6 7 4 .5 1 4 6 5 4 .5 1 4 6 5 3 .2 5 4 6 5 3 .2 0 4 6 5 3 .09

( 0 1 0 ) 6 2 8 1 .7 0 6 2 7 9 .2 6 6 2 4 5 .2 3 6 2 5 2 .9 2 6 2 5 2 .8 4

( 0  2  0  ) 7 9 1 7 .5 0 7 8 6 3 .5 4 7 8 5 5 .3 6 7 8 2 3 .1 5 7 8 2 0 .1 2

( 1 0 0 ) 8 4 3 6 .3 4 8 4 2 1 .2 9 8 3 8 1 .2 4 8 3 7 1 .3 4 837 1 .0 5

( 0 0 1 ) 8 5 3 8 .0 2 8 5 2 2 .5 2 8 4 8 8 .2 2 8 4 7 4 .8 0 847 4 .4 8

B a s is  S e t

Level 2 7  C o n fig u ra tio n s  6 4  C o n fig u ra tio n s

(  0 0 0  ) 4 6 5 2 4 6 5 2

( 0 1 0 ) 6 2 4 9 6 249

(  0 2 0  ) 7843 7 812

( 1 0 0 ) 8369 8 3 6 8

( 0 0 1 ) 84 7 2 8 4 7 2

( 1 1 0 ) 99 4 9 9 952

( O i l ) 10 0 5 5 10054

( 1 2 0 ) 11541 11494

( 0 2 1 ) 11636 11603

Table 5.6: Tables demonstrating the convergence of the vibrational eigenstates of 

the Hoy water potential. The left table shows the convergence of J=0 calculations 

by Whitehead^® with respect to basis size, defined in terms of where n*,

i — 1,2,3 is the vibrational quantum number associated with each of the three 

normal modes. The right hand table shows the convergence of a J=0 calculation 

by Burden.^® 27 SCF basis functions is a basis set with up to two quanta in each 

valence coordinate mode and 64 SCF functions allows up to three quanta in each 

valence coordinate mode. Note that the two basis set types are different.

An attem pt has been made to use a configuration of a similar size to those used 

by Whitehead and Burden in order to have a better comparison between energy 

levels. However, the speed at which convergence is reached depends on the type of 

calculation, along with the number and type of basis functions used. It is almost 

impossible to reproduce unconverged results with a different Hamiltonian, configu­

ration and basis function. There is also a possibility that Coriolis coupling, non-zero 

even at J=0, can have an effect.

It is important to consider the differences in the context of the anharmonicity of 

that state i.e. the drop from calculated harmonic to anharmonic energy, which are 

as large as 3 5 0 c m " I n  comparison, differences between the Cl energies and those 

calculated by Burden and Whitehead are small.
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In this chapter, the PPA-CI technique and code has been tested against calculations 

on simple systems. In the next part of this thesis, biomolecular systems of interest 

are chosen for study. Results of Cl calculations are compared with experimental 

data and harmonic results.
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Part IV

Calculations on Biom olecules
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Chapter 6

Tryptophan

6.1 Introduction

Accurate calculation of vibrational states and wavefunctions can aid the study of 

biomolecules in many ways. Their preferred structures in the gas phase and in 

solution play an essential role in bio-activity and can be affected greatly by the 

vibrational eigenenergies. For example, one conformer may be the global minimum 

when comparing the potential minima, Dg, while another conformer may be found to 

have the lowest zero-point energy, Furthermore, harmonic and anharmonic

calculations of zero-point energies can predict different global minima. The zero- 

point energy may also be large enough to allow free rotation about bonds with a 

low barrier to torsional motion, as in the case of the benzene-water system.^®®
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Calculation of reaction rates with theories such as transition state'^^’̂ ®̂ and 

RRKM^^® requires precise knowledge of activation energies. The activation energy 

for a reaction is the difference in energy of the ground state and the transition state 

which must be measured between the ground and transition vibrational states and 

not the potential minima.

Anharmonic vibrational wavefunctions allow the expectation values for bond lengths 

to be calculated with greater accuracy, providing a better description of moments of 

inertia and rotational constants of molecules. Rotational spectra can therefore be 

fitted more easily. Furthermore, bond lengths also affect molecular dipoles. Exact 

calculation of the expectation value of bond length can result in more accurate 

models of dipole moments.

Comparison of experimental spectra with calculated vibrational energies enables 

testing and parameterisation of potential energy surfaces. The anharmonic

parts of the potential are particularly important as they permit dissociation of the 

system. Thus testing anharmonicity in force fields is essential in the development 

of accurate potentials. Since these force fields are used in biomolecular simulations 

it is important to evaluate their accuracy by comparison with experimental data.
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6.1 .1  T ryptop han

Of the 20 naturally occurring amino acids, tryptophan is the most complex and is 

one of eight essential in nutrition for human life. It is a precursor in the biosynthe­

sis of serotonin and melatonin,^ important neurotransmitters. Serotonin receptors 

are found throughout the limbic system of the brain and in the gastrointestinal 

tract. As such, tryptophan is thought to be important in the treatment of many 

psychological disorders, such as depression,®’® seasonal affective disorder^® and al- 

coholism^^’^̂  and in the uptake of food and regulation of appetite.^®’ Selective 

serotonin reuptake inhibitors, SSRJs, such as Prozac and Seroxat, are the most 

commonly prescribed anti-depressants. They function by inhibiting the reuptake of 

serotonin in the synaptic cleft in order to prolong the serotonin presence but are 

associated with withdrawal symptoms^® and other side effects.^® As a serotonin 

precursor, L-tryptophan, a naturally occurring amino acid, can also be prescribed 

in the treatment of psychological and dietary disorders with minimal side effects. It 

is thought to function by increasing the blood plasma concentrations of tryptophan 

and aiding the biosynthesis of serotonin.

As an amino acid, tryptophan is a building block in the synthesis of peptides and 

proteins playing a crucial role in many biochemical reactions. For example, this 

bioactivity is demonstrated in many drugs, such as those designed to prevent the 

insertion of HIV into cells. As a hydrophobic amino acid, tryptophan is an im­

portant constituent of the active site in a drug when binding to the gp41 protein
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Tryptophan Tryptamine Serotonin

Figure 6.1: The structures of tryptophan, tryptamine and serotonin.

on the surface of the HIV virus.^ This is shown clearly in Figure 6.2. Trypto­

phan residues (coloured in the exploded view) in the active site of DlO-pl (white) 

help bind it to the IQN17 (green), the model used to describe the gp41 protein. 

Once attached, the drug prevents gp41 from folding and fusing viral and human 

cells. Tryptophan has been shown to play a key role in the binding in studies 

where the binding energy is measured as residues are swapped for inert species.^ 

Clearly, understanding and accurately modelling the molecular wavefunctions of 

tryptamine, an analogue of tryptophan, has scientific and possible medical value. 

Testing the accuracy, and in particular the anharmonic terms in molecular potentials 

of tryptophan and similar biomolecules is an important part of this goal. As the 

majority of the biochemical pathways of these molecules involves solvated species, 

study of the interaction of tryptophan analogues with water is extremely important.
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Figure 6.2: Tryptophan (coloured in the exploded view) is crucial to the binding 

of drugs such as DlO-pl (white molecule) to a cavity in the IQN17 protein (green 

molecule), blocking the fusion of the HIV to human cells.

Complexation with solvent molecules affects equilibrium geometries and bond 

strengths. Furthermore, it is thought that the hydrophobic nature of tryptophan 

residues is a factor in the drug binding activity. Therefore, it is important to test 

the accuracy of water-amino acid potentials modelling these interactions.
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6 .1 .2  T ryptam ine

Tryptamine is the base of the tryptophan amino acid and has been studied ex- 

tensively.^^^' 2 5 7-2 6 I ^phe structure is similar to that of both serotonin and its 

biochemical precursor, tryptophan, though it is not an intermediate in the bio­

chemical pathway (see Figure 6.1). It is chosen for this study as it has relatively 

few conformational isomers (depicted in Figure 6.3) for a biomolecule, as the only 

rotational degrees of freedom are the Cq-C^ and Cq-N bonds.®^’®̂’®®’®̂’̂ '̂  As a re­

sult, tryptamine has been studied extensively, both experimentally and theoretically. 

Carney, Zwier and co-workers,®^® in particular, produced excellent IR spectra in 

their experiments. These spectra have been assigned to individual conformational 

isomers. Tryptamine has 24 atoms and 66 vibrational, modes making it an ambi­

tious but technically feasible system to study as an application of the Cl techniques 

discussed in Part II.

Molecular modelling force fields work on the premise tha t atoms are generally found 

in a finite number of environments, defined in the potential as atom types. By 

optimising the parameters of the force field for atoms in various environments, it 

is possible to predict their behaviour in similar molecules. Many force fields such 

as CHARMM,^®"^^ AMBER^®"^  ̂ and MM3Pro®^~^ are created specifically for the 

study of proteins. As tryptophan is a constituent of many proteins, all the force 

fields created for their study have atom types optimised for the tryptophan molecule, 

usually in the zwitterionic form. It is a simple task to remove the C 0 0 ~  and
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Gauche-Pyrrole

o u t

Gauche-Phenyl

o u t

Figure 6.3: The nine possible structural minima for tryptamine.®®’®̂ They 

are separated into groups according to the position of the amino group relative 

to indole. G auche Pyrrole - amino near the pyrrole side of indole. A nti - 

away from the indole. G auche Phenyl - amino near the phenyl side of indole. 

Inside the three groups, the conformers are labelled according to the position of 

the amino lone pair relative to the indole ring. The symmetric stretch of the 

CH2  group a  to the amine displays the most conformational sensitivity, so the 

calculated frequencies of this mode, typically in the 2840-2940cm“  ̂ range, can be 

used to assign the spectra.
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groups to create a tryptamine coordinate file. However, care must be taken to ensure 

the remaining atoms retain the coordination number and local environment expected 

in the potential. As a close analogue of tryptophan, the model for tryptamine should 

be accurate.

6.2 The Potential

The TINKER molecular modelling package by Ponder et is adapted for

use as a general potential energy surface.^®^’̂ ®̂ The advantage of this is the imple­

mentation of many molecular mechanics packages, such as CHARMM,^°“^̂  OFLS 

and 0PLS-AA,264-274 a MBER,^»-^^ M M 3 ^ ^  and MMSPro,^^ TINKER. Once 

TINKER has been adapted to provide the potential energy at a given molecular ori­

entation, all these force fields are readily available. Another advantage of TINKER 

is the range of tools that come with the package, including, VIBRATE, a normal 

mode subroutine to calculate harmonic frequencies. This allows easy comparison 

of results with the Cl code. Various minimisation and surface scanning tools allow 

easy and complete exploration of the conformational landscape.

The MM3Pro force field is chosen as it is a version of the MM3 potential that has 

been optimised for the study of proteins. This force field has been widely used 

in the study of biomolecules.^^^^^^ The input files for tryptamine and tryptophan 

include coordinates and atom types which are used by TINKER to assign atom and
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bond properties such as bond strengths, equihbrium bond lengths and angles, and 

dipole moments. Input files can be created by hand, by the TINKER PROTEIN 

subroutine, or converted from PDB structure files downloaded from the Protein Data 

Bank.^®° Clearly, while these structures may be in a minimum energy conformation, 

this cannot be assumed and an energy minimisation should be performed using one 

of the available TINKER tools. Further subroutines can perform a conformational 

search in Cartesian or dihedral coordinates allowing the global minimum and other 

low-energy minima to be found.

D escription N am e Formula

Bond Stretching Es 7 1 .9 4 k ,(( -  ( o p  [1 -  2.55(Z -  (q) +  (7 /1 2 )2 .5 5 ((  -  Iq) ]̂

Angle Bending Ee 0.021914(fco)(e -  6q)^ [1 -  0 .014(0  -  6o) -f 5 .6 (1 0 -5 )
X (0 -  0o)2 -  7 .O (lO -7 )(0  -  0o)3 4- 9.O (lO -iO )(0  -  0o)4]

Torsion Eu, ( V i /2 ) ( H -c o s o ; )  4- (V ^ /2 ) ( l  — cos 2w) 
4 -(V ^ /2 )(1 4 -c o s3 w )

Stretch-Bend Ese 2.51118A :,e [(( -  lo) +  il' -  ((,)] (0 -  Oo)

Torsion-Stretch Euis 11 .99 5 (K w s/2 )(( -  (q) ( 1 4- cosSw )

Torsion-Bend Eu,e 0*

Bend-Bend Eee> -O .O 21914K gg,(0 -  0o)(0 ' -  6'q)

Van der W aals E-vdw e {-2.25(rv/r}® -H 1 .8 4 (1 0 5 )ex p  [-1 2 .0 0 (r /7 -„ )]}

Electrostatics Eea Ed-d  +  -E'c-d^*

Rotational Barriers Erb KrbS

These term s, though  p resen t in  th e  MM2 force field are unused in  M M 3/M M 3Pro.

d is th e  dipole-dipole in te rac tion  term .

^f7c_d is th e  charge-dipole in te rac tion  te rm , non-zero for charged molecules.

 ̂C o n stan t describing th e  ro ta tio n a l barrie r for a  four a tom  linkage.

Table 6.1: The interaction terms included in the MMSPro force field.^
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Almost all molecular modelling potentials are semi-empirical, including complex 

functions to model bending, stretching and torsional motion. The terms included in 

the MMSPro potential are listed in Table 6.1. Parameters for all bonds and electro­

static and Van der Waals parameters for individual atoms are fitted to experimental 

and ab initio data. As MMSPro and other force-fields include many complex terms, 

it takes longer to compute the PE than on the simple empirical potentials used in 

benchmarking the code. Moreover, the system under consideration is much larger 

than before.

The calculation of the Cl matrix is the slowest step in the Cl procedure. Evaluation 

of the matrix elements requires numerical integration. Computationally expensive 

potential calls are made at each abscissa. The time taken for a Cl calculation has in­

creased dramatically in moving from the simple benchmark systems to tryptamine. 

An attem pt must be made to limit the number of calls made to the potential dur­

ing the Cl procedure. To reduce the time required for a Cl calculation, the most 

conunonly used integrals are stored in arrays and re-used, drastically cutting the 

number of potential points that need to be evaluated. The details of the integrals 

evaluated are given in Section 3.6.2 where the problem of overcounting integrals is 

also discussed. There, it is shown that, for a general 3 mode system, the integral 

/  d r  reduces to

(  ^ 2 1 ^  ^  I V ' 2  )  -  ( V ’ î l Ç c i ^ î  l ^ - i )
i

+  (V'IV'31 ^  ^  I V'iV'3 ) ( 6 .1 )

» 3
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Stored Integrals

Integrals over 1 Mode Integrals over 2 Modes

I Â I V - ? )
m | Â | v > ? ) |Â |V ’iVm)

| Â | < > (V-lVm

{ i ’l l \ Â W ) |Â|V'iVm)
(V’lVml

Table 6.2: Commonly calculated integrals stored to reduce the number of calls 

made to the potential subroutine.

on making the pairwise potential approximation and accounting for overcounting 

integrals over the single modes. It is clear that one dimensional integrals will be 

used many times in evaluating matrix elements so all integrals of this type are stored 

and re-used. Many 2D integrals, such as the one shown in Equation 6.1, are also 

evaluated more than once and should be stored. Table 6.2 shows the integrals that 

are most commonly required in setting up the Cl matrix. They are stored and 

re-used to reduce the number of potential calls made.

This is an extremely effective way of reducing the time taken to perform the Cl 

calculation. By far the slowest part of the technique is the calculation of the Cl 

matrix. By reducing the number of integrals that must be evaluated, the speed 

is dramatically increased. In fact, calculations on 20-30 atoms systems with 2000 

configurations required 2-3 days before the integrals were stored. On storing the 

commonly needed integrals, the same calculation can be performed in 2-4 hours.
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6.3 The Basis Set

In this section, the effect of the Cl space on the calculation is investigated. To 

aid discussion, a simple labelhng scheme is required that defines the basis and Cl 

configurations as concisely and accurately as possible.

6 .3 .1  B asis  Set L abelling

The notation used to describe the individual wavefunction and configurations is 

defined in Section 3.3.1. Briefly, the Cl space is split into four distinct subgroups, 

the ground state, the singles, ^ f ,  the doubles, and the triples, The 

terms single, double and triple refer to the number of modes in the configuration that 

are excited above the ground state irrespective of the vibrational quantum number 

of those modes. For example, a configuration with mode 4 excited to vibrational 

quantum state 6, but all other modes in the ground state is referred to as singly 

excited. More generally, the configuration types can be defined in terms of the 

individual normal mode basis functions, -0 ,̂ with y quanta in normal mode a.
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(6.2)
i

3A/"—6 /max

(6.3)
i = l  1=1 V ^i

SN—7 3N—6 /max ÎTlmauc
1] IZ Ë ̂ !(%)̂r(%) n ̂ °(%') (6.4)

i = l  j > i  / = 1  m = l  i ' ^ i j

3N —8 3JV—7 3iSr—6 /max f^max ^max

S IZ H 5Z Z ̂ !(%)̂r(%)V'&(%) n °̂(%') (6.6)
i = l  j > i  k > j 1=1 m = l n = l  i'j^i,j,k

The labelling scheme for the Cl space can be defined in terms of these four subgroups. 

As the ground state is always included, this can be ignored, leaving singles, doubles 

and triples. The only extra information needed is the maximum vibrational quantum 

number of each of the modes. A full description of the configuration can therefore 

be achieved with three numbers, SDT. In this labelling rationale, each number 

represents the maximum vibrational quantum number, Vmaxj of each normal mode 

of the single, double and triple subgroups respectively, such that

'//max ~  ^max ~  ^ m a x  ^m ax (fi fi)

This is referred to as an SD T  configuration. As an illustrative example, a 112 

configuration of a three mode system is shown in Table 6.3

In calculations on large systems, such as tryptamine, it is expensive to perform a Cl 

calculation using more than 2000 configurations as a Cl matrix larger than this will 

exceed the permitted stack size of the computer available to us. In order to decrease 

the size of the Cl space, it is possible to systematically select normal modes to
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Individual Configurations

Ground State Single Double Triple

xpl'ipl'ipl

Table 6.3: Expansion of a 112 configuration of a three mode system in individual 

normal mode basis functions.

perform a Cl calculation on. For example, in the study of tryptamine IR spectra, 

only 12 vibrational frequencies fall in the 2800-3800cm“  ̂ region of the spectrum 

measured by Zwier. The normal mode closest in energy to the 12 IR active modes 

has a much lower vibrational frequency of around 1800cm~^. It is assumed tha t this 

large gap in energy results in little coupling between the IR active and IR inactive 

modes. Therefore only these 12 modes are included in a Cl calculation. In such 

a scenario, where only a subset of the normal modes of the system are included in 

the Cl space, the configuration labelling scheme, defined above, must also list the 

modes included. A calculation on the highest three energy modes of tryptamine at 

112 excitation will involve the individual configurations presented in Table 6.3. A 

calculation on, for example, the 12 highest energy normal modes of tryptamine, will 

require a much larger Cl space.
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In summary, the total configuration of the Cl calculation can be described, in full, 

by the modes chosen for study and three numbers, SDT, defining the maximum 

vibrational quantum number of each normal mode in the single, double and triple 

subgroups.

An understanding of the effect of the choice of Cl space on the calculation is vital. 

It is important to investigate the effect of varying the configuration on Cl results, 

with a goal of achieving reasonably converged results for certain vibrational states 

with as short a calculation as possible. Having defined the configuration in terms 

of the modes included and the SD T  excitation, these are an obvious choice for the 

variables to investigate first.

6 .3 .2  V arying th e  N orm al M od es in  th e  C onfiguration

Consider the number of modes included in the calculation. Tryptamine has 24 atoms 

and therefore 66 vibrational modes. Only the 12 modes highest in energy fall into 

the frequency range of the IR spectra measured, 2800-3800cm“ ,̂ so, at the very 

least, these 12 modes must be included in the configuration. To test the hypothesis 

that the energy gap between IR active and IR inactive modes is large enough that 

only IR active modes need to be included in the calculation, more modes can be 

added.
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In Figure 6.4, the theoretical spectrum in the 2800-3600cm“  ̂ region is plotted for 

Cl calculations on the 12 highest energy normal modes at 321 excitation. To test 

the effect of modes outside the IR region, further results are plotted for calculations 

where the next highest energy mode is added in sequence until the configuration 

includes the 20 highest energy normal modes. The configuration is kept constant at 

321 for these calculations. The results of an harmonic calculation on the MM3Pro 

surface and the gas phase resonant ion-dip infrared spectra of tryptamine, measured 

and conformationally assigned by Carney and Zwier,®® are included for reference.

A clear trend shown in Figure 6.4 is the convergence between experimental and 

calculated spectra on including more modes in the configuration. In fact, results 

for the calculations including 20 normal modes agree quite well with experiment. 

Spectral lines corresponding to empty regions of the spectrum, particularly the NH2 

symmetric and asymmetric stretches at 3315 and 3400cm"^ respectively, can be 

explained by the fact that transition intensities are negligibly small as shown by the 

calculations of Carney (See Table 6.4 in Section 6.4).

It is to be expected that a variational calculation 

improves on expanding the Cl space. The time 

taken to perform a Cl calculation is important if 

the technique is to be applicable to large, com­

plex systems in future. The aim, as in electronic
Figure 6.5; Symmetric

structure Cl, is to truncate the Cl configuration , ^
stretch of the 0 -CH2  group

to the maximum extent without greatly affecting of tryptamine.

a-C H 2
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Figure 6.4: Cl calculation on the tryptamine gauche-phenyl (out) conformer. 

Configurations are of the same S D T  excitation but include an increasing number 

of normal modes. Line colours allow the mode to be followed over the range 

of calculations. Experimental spectrum from Carney and Zwier®® provided for 

comparison.

the resulting eigenstates. It is important to determine the smallest configuration, 

leading to the shortest calculation, that will reproduce experimental results ade­

quately. The harmonic spectrum shows acceptable agreement with experiment for 

the high energy amine N-H stretch at 3525cm“ .̂ However, the CH2 group a  to the 

amine (See Figure 6.5) displays the most conformational sensitivity. The vibrational
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frequency of the symmetric stretch of this group, which, for the gauche-phenyl (out) 

conformer, occurs at 2 8 4 5 cm "m u st be calculated accurately in order to assign the 

spectra. The harmonic approximation breaks down for lower energy vibrations such 

as these. This breakdown is clearly shown by improved agreement with experiment 

on including anharmonic effects in the Cl calculation. Harmonic calculations on the 

MM3Pro surface are, therefore, inadequate for comparison with experimental spec­

tra. The spectra predicted by Cl calculations show a far greater correlation with 

experiment, and it is seen that agreement with the experimental spectrum improves 

as more modes are included in the Cl space. The assumption that only the 12 IR 

active modes are needed in the configuration is shown to be reasonable. The results 

of the 12 mode Cl calculation show a far better correlation with experiment than 

harmonic calculations. However, as the aim is to assign conformational isomers to 

experimental spectra, the calculated spectra must be very accurate. It is clear from 

Figure 6.4 that, in order to model the low energy modes in the spectrum accurately, 

17-20 modes must be included in the configuration. Therefore, when attempting to 

compare experimental and calculated spectra, as in Section 6.4, the configuration 

should include as many modes as possible.

A re-ordering and splitting in the five modes around 3050cm"^ is seen in Figure 6.4 

in going from harmonic to Cl calculations, with some spectral fines increasing in 

energy. The normal modes in this region of the spectrum couple strongly, push­

ing their energies apart. The absolute energies of the 12 spectral modes and the
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Figure 6.6: Absolute energies of the ground and 12 highest energy vibrational 

eigenstates of a Cl calculation on the tryptamine gauche-phenyl (out) conformer. 

The configurations are of the same S D T  excitation but include an increasing 

number of normal modes. Eigenstate line colours are the same as for Figure 6.4, 

to enable comparison.

ground state energy are plotted in Figure 6.6. On close examination, it is clear that 

the variational principle is still obeyed, as the absolute energy of each eigenstate 

decreases on extending the Cl space. However, this decrease in absolute energy is 

less for the normal modes in the 3100cm"^ and 3300-3400cm“  ̂ regions than for the 

ground state, resulting in an increase in the energy gap and therefore the transition 

energy.
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In both Figures 6.4 and 6.6 a change is seen on adding mode 17 (1652cm“ )̂ charac­

ter to the configuration. The rationale for adding more normal modes is that those 

closest in energy to the 12 IR active modes will have the greatest effect on them. 

In both Figures, calculations performed including the spectral modes and adding 

normal modes 13 (1909cm“ ^), 14 (1828cm~^), 15 (1805cm~^) and 16 (1732cm“ )̂ 

show very little change from calculations with the original 12 spectral mode config­

uration. The change in the calculated spectrum on including mode 17 (1562cm~^) 

is a breakdown in this assumption.

To understand this breakdown, a visualisation of the actual movement of the atoms 

involved in the normal mode vibrations is needed. A schematic representation of 

the molecular motion involved in the 20 highest energy vibrational modes of the 

gauche phenyl (out) conformer of tryptamine is presented in Figure 6.7. Looking at 

modes 13-16, it is clear that these involve, on the whole, stretching of bonds inside 

the indole ring. The 12 IR active modes falling in the 2800-3600cm~^ region of the 

spectrum involve stretching of hydrogen-heteroatom bonds and so are unlikely to 

couple strongly with modes 13-16. Modes 17-20, however, involve motion of the 

same atoms as modes 1, 2 and 9-12, so the modes are likely to couple. Thus, it is 

clear that modes 17-20 should have a greater effect on the spectrum obtained by Cl 

calculations than modes 13-16 as seen in Figures 6.4 and 6.6.

The breakdown in the assumption that modes closest in energy couple most strongly 

means that many modes must be included in the Cl calculation to achieve reasonable
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3118cm'^

2951cm"'

leSScm'

1563cm-''

Figure 6.7: The 20 highest energy vibrational normal modes of tryptamine 

Gauche Phenyl (out). Normal mode frequencies, as calculated on the MMSPro 

potential, are given in wavenumber units.
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convergence. However, adding extra modes to the configuration greatly increases its 

size and therefore the length of the calculation. For example, for the current 12 mode 

problem at 321 excitation there are around 500 configurations. The rate fimiting 

step of the Cl calculation is the evaluation of the 01 matrix. This is symmetrical 

so only one half of the ofiF-diagonal elements (but all of the diagonal elements) need 

be obtained. Therefore, assuming that all elements take roughly the same amount 

of time to evaluate, the length of calculation scales as 1/2 n{n +  1), where n  is 

the size of the configuration. In the case of 500 configurations, a Cl calculation on 

tryptamine on the MMSPro potential takes roughly 60 minutes. Including 15 modes 

at 321 excitation requires around 1000 configurations meaning that four times the 

number of matrix elements must be evaluated. In Section 6.3.1 it is shown that many 

integrals are stored and not recalculated, so the scaling is, in fact, roughly 2:1 and 

the calculation actually takes 120 minutes. Including 20 modes in a 321 excitation 

configuration requires 2000 states. A calculation of this size is expected to take 16 

times as long as a 500 configuration calculation but, due to some integrals being 

reused, the actual time taken is 4 hours. This is still twice as long as a calculation 

on a 15 mode configuration will take. Though for these systems, the increase in time 

is only a m atter of hours, on more complex potential energy surfaces, the increase is 

likely to be in days. The number of potential calls made must be kept to a minimum. 

It will be extremely beneficial to be able to choose the modes with a significant effect 

on the spectrum with a more rigorous rationale.
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6 .3 .3  S e lection  o f  N orm al M od es for th e  C onfiguration

In the Cl calculation, coupling between IR active i.e. modes with vibrational fre­

quencies in the IR range of the spectrum, and inactive modes, i.e. modes with 

vibrational frequencies outside the IR range of the spectrum, is likely to occur be­

tween the first excited state of the IR active modes, ^ ir, and the second excited

state of the IR inactive modes, ^mact- The extent of coupling between these two

states can be quantified by evaluating the integrals

( ̂ mV̂ kiact I A I V̂ inV’Siact ) ( -̂7)

The energy gap is still important so the integrals are adjusted to account for this 

using the term occurring in second order perturbation theory

( V'lRV'fa.ct I A I Ÿ ,
3/2wir — 5/2Winact

The effect of IR inactive modes on the spectrum is quantified in Equation 6.8. A 

new code was written to evaluate all such coupling terms between all IR active and 

inactive modes. The three IR inactive modes found to couple most strongly with IR 

active modes are 20, 17 and 18 in that order. A Cl calculation is performed with a 

configuration of the IR active modes and modes 17, 18 and 20 in 321 excitation. The 

results are compared with those for calculations with configurations of the highest 

energy 12, 15 and 20 normal modes in Figure 6.8.

The calculations with configurations of the highest energy 12 and 15 modes produces 

very similar results. This is explained above with reference to the atoms involved
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Figure 6.8: Tryptamine gauche-phenyl (out) conformer. Comparison of exper­

imental spectrum®®’®̂ (corresponding to the C2 line in the one colour resonant 

two-photon ionisation spectrum of TRA+) with harmonic and Cl calculations. 

Cl configurations include the 12, 15 and 20 modes highest in energy and the 12 

highest energy modes with a further three selected according to coupling.

in the vibrations. In fact, in the middle and high energy (3000-3600cm“ )̂ regions 

of the spectrum, all Cl calculations are similar and reproduce experiment well. 

The differences arise in the low energy (2800-3000cm“ )̂ region that is crucial for 

assignment of isomers. The configuration including IR active and modes 17,18 

and 20 is the same size as that of the highest energy 15 modes and, consequently, 

results in a Cl calculation of the same length. However, the calculation with the
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chosen modes shows a greater similarity to  experiment than the Cl calculation with 

a configuration of the 15 highest energy modes, especially in the important low 

energy region. In fact, in this part of the spectrum, the configuration including three 

strongly coupled modes is effective at reproducing results for the 20 mode calculation 

despite including only 75% of the number of modes. This is an important finding as 

a 15 mode configuration at 321 excitation includes 1000 functions whereas a 20 mode 

configuration at the same excitation includes around 2000 states, a 50% reduction. 

Halving the Cl space results in a calculation tha t takes roughly a quarter of the 

time, as explained above. Overall, this technique can be useful as it is certainly an 

improvement on a calculation of similar size in the important low energy region of 

the spectrum and can reproduce results of a larger calculation in a quarter of the 

time.

6 .3 .4  V arying th e  S D T  E x c ita tio n  o f  th e  C onfiguration

The effect of the modes included in the Cl space has been studied. The other term 

in which a configuration is defined is the mode excitation, the maximum number 

of quanta in each mode of the subgroup 5, D or T. In Figure 6.9, the spectrum is 

calculated with a configuration of the 12 highest energy normal modes, varying the 

vibrational quantum numbers for each mode. The configurations are labelled with 

the SD T  notation described above.
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Figure 6.9: Cl calculations on the tryptamine gauche-phenyl (out) conformer. 

Configurations include the 12 spectral modes with increasing S D T  excitation. 

Line colours allow the mode to be followed over the range of calculations. Exper­

imental spectrum from Carney and Zwier®̂

The transition energies increase from the harmonic spectrum up to the Cl calculation 

with a 320 configuration, an apparent contravention of the variational principle. 

However, plotting the absolute energies of the vibrational eigenstates in Figure 6.10 

clearly shows that the variational principle is followed. It is the decrease in energy 

of the ground state relative to the excited states that results in the increase in 

transition energies. Including triple excitations, i.e. one quanta of excitation in 

three modes, in the Cl space reduces the energy of the excited states relative to the 

ground state.
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Figure 6.10: Absolute energies calculated for the tryptamine gauche-phenyl 

(out) conformer. Configurations include the 12 spectral modes with increasing 

S D T  excitation. This demonstrates the variational behaviour of the calculation. 

Line colours are the same as for Figure 6.9 allowing a comparison.

The reverse effect is seen to be true in moving from 421 excitation to a 541. 

Here, the excited states are stabilised relative to the ground state resulting 

in a decrease in transition energies. This is probably due to the higher en­

ergy eigenstates in the single and double subgroups interacting more strongly 

with the first excited states than the ground state, as they are closer in 

energy. Such a problem may be overcome by a more careful choice of con­

figuration excitation. Including quadruply excited states of the type
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or introducing two quanta of energy into each of the triples, in a 632 configuration, 

for example, may improve the correlation between results of Cl calculation and ex­

periment. However, the size of calculation required to probe these theories prohibits 

further research on the current computer hardware.

In the following sections, results of the Cl calculation will be compared with exper­

iment in order to check assignment of spectra to individual conformers and attem pt 

assignation of more complex spectra. A configuration must be found that will pro­

duce results which compare well with experiment. It is clear from Figure 6.4 that 

the Cl calculation correlates better with experiment as more modes are included 

in the configuration. The S D T  excitation chosen must be small enough to allow 

the inclusion of as many modes as possible. However, including too few excited 

states yields results far from convergence. The Figure 6.9 suggests that triples must 

be included, so the smallest configuration that produces meaningful results is 321. 

W ith this configuration, it is possible to perform a calculation on up to 20 modes - a 

calculation on more modes will make the Cl matrix larger than the stack size of the 

computer used to perform these simulations. All further calculations are performed 

with a 321 excited configuration.
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In Section 6.3.3, an attem pt is made to reduce the number of modes that must be 

included in the Cl space in order to achieve convergence. The aim is to reduce the 

time taken for the Cl calculation by reducing the total number of configurations 

and therefore the number of Cl integrals that must be evaluated. The technique 

introduced previously is to reduce the number of normal modes included so, working 

systematically, an attem pt should be made to reduce the SDT  excitation. In a 

variational calculation, the closer the resemblance of the trial wavefunction to the 

true wavefunction, the fewer excited trial functions needed in the configuration to 

achieve converged results. Therefore, in the next section, an attem pt is made to 

improve the initial trial wavefunctions.

6 .3 .5  O p tim isin g  th e  B asis F unctions

The configuration can be improved by adapting 

the trial basis wavefunction to show a greater re­

semblance to the true wavefunction. Currently, 

the trial wavefunction is that of an harmonic os­

cillator. Associated with the basis functions is 

a potential energy surface. The harmonic os­

cillator wavefunction is a solution of the vibra­

tional Hamiltonian with a potential of the form 

a{x — Xe) .̂ Figure 6.11 shows the deviation of

>. H a rm o n ic  A pprox im ation  

ax'0)cm
T ru e  P o te n tia l

H a rm o n ic  Z P E

T ru e  Z P E

M inim um  x.

Intermolecular distance x

Figure 6.11: Harmonic

and true potential energies.
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this trial harmonic potential, in blue, from the true potential, in red. The wave­

functions are plotted in green. The process of calculating harmonic wavefunctions 

involves assuming terms of order 3 or more are negligible in the Taylor expansion of 

the true potential near the minimum i.e. at low energy, the potential scales roughly

(X -  Xef

The Wilson method of making the harmonic approximation and solving the

vibrational Hamiltonian is described in Section 2.6. Briefly, diagonalising the mass 

weighted force constant matrix yields the normal modes. The associated wavefunc­

tions are^^^’ ®̂̂

xpy = NyHy(y)e~y^^^ y = (u/h)^q  (6.9)

where v is the vibrational quantum number. The vibrational frequency of the normal 

mode, cj, is linked to the force constant of the potential, k, and the reduced mass of 

the system, fi.

u  =  y/k/fjL (6.10)

The harmonic approximation assumes that a real potential is roughly quadratic at 

the bottom of the well. Effectively, this is a minimisation of the difference between 

the true and trial potentials at the minimum. As the zero-point energy of this system 

is higher in energy than the minimum, there is a substantial deviation between trial 

and true potentials at this point, as seen in Figure 6.11. The true potential is more 

attractive than the trial harmonic potential at x <  xq and less attractive at x >  xq. 

On average however, the true potential is not as attractive, implying a smaller force
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constant and consequently a lower vibrational frequency. This is shown in the lower 

zero-point energy and the broader, more diffuse nature of the true wavefunction.

The zero-point energy is the first to converge in the Cl calculation. In order to 

reduce the SD T  excitation needed to reach convergence, the trial wavefunctions 

should resemble the true wavefunction as much as possible at this point. This can 

be achieved by minimising the difference between the trial and true potentials, i.e. 

the anharmonicity, of the ground state. This is, in effect, an optimisation of the 

basis functions. As the Cl technique exploits properties such as the orthonormality 

of harmonic wavefunctions, the new trial functions must be of the same form, as 

described in Equation 6.9. Therefore, the variable used in the minimisation must 

be the exponential term y. This corresponds to the force constant of the bond and 

defines the curvature of the harmonic potential. The force constant may be adjusted 

to minimise the anharmonicity of the ground state, calculated by evaluating the 

integral

3̂ -6 / 1 A2 1 \ S N - 6 .
(V-ol ^  Ê  2 ^ 1 * )

=  + (6.11)

A new section of code is added to the program in order to perform this optimisation. 

A Newton-Raphson minimisation technique is chosen for this as the starting point, 

the harmonic force constant, is close to the minimum for the strong, intramolecular 

bonds under study. The technique is tested and the results are shown in Figure 6.12. 

This provides a comparison of Cl calculations with a configuration of the 12 IR active
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Figure 6.12: Tryptamine gauche-phenyl (out) conformer. Comparison of exper­

imental spectrum®®’®̂ (corresponding to the C2 line in the one colour resonant 

two-photon ionisation spectrum of TRA"*") with an harmonic, a 12 mode Cl and 

a 12 mode optimised a  calculation.

normal modes at 321 excitation both before and after optimisation. The harmonic 

and experimental spectra are also provided in order to gauge the performance of the 

optimisation.

The results of the Cl calculation with an optimised basis shows little difference 

to the calculation with a normal mode basis, particulary in the low energy region 

of the spectrum. Further investigation into optimisation of the first excited state 

wavefunctions is undertaken but again, no significant improvements are seen. In 

order for this technique to work successfully, the form of the basis functions must
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be adaptable. A basis of Morse or a linear combination of harmonic oscillator 

wavefunctions will show a greater resemblance to the true wavefunctions. However, 

the Cl method makes use of the orthonormality of harmonic oscillator wavefunctions 

and the analytical solutions of the harmonic oscillator Hamiltonian in order to speed 

up the calculation dramatically. Switching to more complex basis functions will allow 

a calculation with a smaller basis to reach somewhat converged results but this may 

not in fact result in a shorter calculation. The speed gains made will most likely be 

greatly outweighed by the losses due to a more complex calculation. Another major 

problem with the use of more complex basis functions will be the loss of generality 

of the technique which is a cornerstone of this project.

The effect of the basis set and the configuration on the Cl calculation have been 

studied in depth. In the next section, the results of the Cl calculation with the best 

possible configuration are compared with experimental spectra for some conforma­

tional isomers of tryptamine.

6.4 Results

Zwier and co-workers®^® measured gas phase resonant ion-dip infrared spectra of 

tryptamine and the other tryptophan analogue 3-indole-propionic acid, IPA, and 

their water clusters. Supersonic expansion cooling is used to remove vibrational hot 

bands and reduce the rotational temperature in order to simplify the spectra. In
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the supersonic expansion, the gaseous tryptamine molecules are collisionally cooled 

to very low temperatures. Of the nine low-lying conformers of tryptamine, shown 

in Figure 6.3, seven are thermally accessible at the pre-expansion temperature.®^ 

These are cooled in the expansion into their associated zero-point levels. Zwier et 

al. provide a spectrum for all conformers, as double resonance photo-ionisation leads 

to different conformers appearing in the same mass channel. UV-UV hole burning is 

used to selectively ionise individual isomers for the spectra which are subsequently 

identified using UV spectroscopy, calculated IR spectra and rotational constants. 

These spectra are compared with the results obtained by the Cl technique using the 

MMSPro potential.

Gauche-Phenyl (out) Anti (up) Gauche-Pyrrole (out)

Figure 6.13: The three low energy conformers of tryptamine chosen for study.

Of the seven conformers for which spectra are available, three, gauche-phenyl (out), 

anti (up) and gauche-pyrrole (out), are chosen for study. As shown above, in order to 

obtain the best results, the configuration must be chosen in such a way as to include
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as many excited vibrational states as possible at 321 excitation. Consequently, 

the results of Cl calculations for these three isomers performed with a 321 excited 

configuration on the 20 highest energy normal modes is given in Table 6.4. Results 

of harmonic calculations on the MM3Pro potential and on an ab initio density 

functional potential at a Becke3LYP/6-3H-G*(5d) level of theory, as presented by 

Carney and Zwier,®® are provided for comparison.

Table 6.4: Comparison of harmonic and Cl spectra with those calculated by 

Carney et uZ.®® Energies in wavenumbers (cm~^.

Harmonic

Anti(up)

* CI+ Carney*

Gpy(out)

Harmonic Cl Carney

Gph(out)

Harmonic Cl Carney

2892 2858 2892 2889 2857 2856 2889 2842 2841

2903 2876 2926 2901 2890 2912 2903 2874 2912

2943 2914 2933 2941 2920 2947 2941 2904 2942

2952 2946 2975 2947 2953 2961 2951 2941 2954

3048 3027 3051 3043 3035 3050 3048 3025 3052

3056 3039 3057 3052 3040 3058 3056 3042 3062

3069 3064 3068 3066 3064 3069 3070 3073 3075

3067 3085 3079 3064 3080 3080 3066 3094 3084

3118 3121 3129 3111 3119 3136 3118 3128 3129

3323 3327 3336 3320 3325 3341 3323 3331 3343

3429 3414 3418 3421 3407 3424 3423 3411 3423

3541 3533 3524 3527 3520 3524 3532 3527 3523

Harm onic calcu lation  on  M M SPro po ten tia l.

^C onfiguration in te rac tio n  enharm onic corrections calculated  on M M SPro po ten tia l.

^H arm onic calcu la tion  of IR  frequencies on ab  in itio  po ten tia l using B eckeSL Y P/6-Sl+G *(5d) level o f theory.

In general, a decrease in transition frequency is seen on comparing harmonic with Cl 

calculations on the MM3Pro potential. The drop in energy is seen to be more marked
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in the low energy end of the spectrum. This is due to the greater anharmonicity 

of the low energy vibrations. There tends to be good correlation between the Cl 

calculations and the harmonic ab initio calculations of Carney et al. . These trends 

are better illustrated visually and the results are plotted as line spectra below. 

Carney provides line intensities alongside the transition frequencies so these are also 

plotted.

6.4 .1  C om parison  w ith  E xp erim en ta l S p ectra

In Figures 6.14-6.16, the harmonic and Cl spectra for a 12 and 20 mode configura­

tions are plotted against the assigned experimental spectra. Ab initio harmonic fre­

quencies calculated by Carney are included to allow a comparison between MMSPro 

and ab initio surfaces. Note that the structure of tryptophan is highly dependent 

on Van der Waals forces which are not well described by the DPT method employed 

by Carney.

6.4 .2  T ryptam ine G au ch e-P h en y l (O ut) C onform er

It is clear from Figure 6.14 that the harmonic calculation on the MMSPro surface 

is a poor match with the experimental spectrum in the low energy, 2800-S200cm~^, 

region. Similarly, the results of a Cl calculation with a configuration of the 12 highest
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Figure 6.14: Tryptamine gauche-phenyl (out) conformer. Comparison of exper­

imental spectrum®®’®̂ (corresponding to the C2 line in the one colour resonant 

two-photon ionisation spectrum of TRA" )̂ with an harmonic and two Cl calcula­

tions on the MMSPro potential. Results of an harmonic ab initio calculation by 

Carney, using Becke3LYP/6-31-t-G*(5d) level of theory,®® are included for refer­

ence.

energy modes do not correlate well with experiment in this part of the spectrum. 

The calculation with a configuration including the 20 highest energy normal modes, 

however, compares well with ab initio results and experiment. This suggests the 

vibrations in the 2800-3200cm“  ̂ region are anharmonic and that anharmonic terms 

in the MMSPro potential are significant.
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However, the harmonic calculation by Camey on an ab initio surface also compare 

quite well to experiment. It is important to note tha t the results of Carney are 

scaled by 0.9603 to fit the intense peaks at 3520cm"^ and 3065cm“  ̂ so this part 

of the Carney spectrum reproduces experiment well by default. However, the lower 

energy modes also compare well to experiment. Only one scaling factor has been 

used for all the spectral lines. Use of only one scaling factor lowers the energy of 

high energy modes more than low energy modes on an absolute scale.

6 .4 .3  T ryptam ine A n ti (U p ) C onform er

A similar pattern is seen in this spectrum, whereby the harmonic and 12 mode 

calculations on the MM3Pro surface fail to reproduce the true spectrum accurately. 

For this system however, the ab initio calculation also fails to model the lower energy 

modes. If the modes chosen for fitting (3520cm“  ̂and 3065cm“ )̂ are excluded, there 

is poor agreement between experimental and calculated peaks. The simulation with 

the 20 highest energy modes in the Cl space displays a far better agreement with 

experiment.

As in the spectrum of tryptamine gauche-phenyl (out), TRA-GPHO, there appear 

to  be more absorption peaks in the experimental spectrum than the calculated spec­

trum. This could be a result of overtones or combination bands, especially in the 

case of TRA-GPHO where there are many peaks of low intensity. Overtones and
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Figure 6.15: Tryptamine anti (up) conformer. Comparison of experimental 

spectrum®®’®̂ with an harmonic and two Cl calculations on the MM3Pro poten­

tial. Results of an harmonic ab initio calculation by Carney, using Becke3LYP/6- 

31-fG*(5d) level of t heory , are  included for reference.

combination band are forbidden in the harmonic approximation. However, the an- 

harmonic nature of this system means that weak absorptions due to transitions of 

Av = 2 or the excitation of two fundamentals by one photon are possible, though 

weak. The presence of these lines makes it very hard to fit spectra. It may appear 

that the calculated Cl or ab initio spectral lines have shown good agreement with 

experiment but, in fact, they can be inaccurate as they are corresponding with over-
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tones or combination bands and not the fundamental lines. Calculating transition 

intensities can help rectify this problem but not in all cases as weak fundamental 

lines can look identical to overtones and combination bands as these exhibit weak 

absorption in most cases.

6 .4 .4  T ryptam ine G au ch e-P yrro le (O ut) C onform er

H a m o n ic  C a lcu la tio n  o n  A b Initio P o te n tia l

, JjL
• • u _

C l C o n ’e c tio n  - 2 0  Nomrial M o d e s - 3 2  1 C o n fig u ra tio n

JL JaJILI ftm

C l C o rre c tio n  -  12 N o rm al M o d e s - 3 2  1 C o n fig u ra tio n
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Figure 6.16: Tryptamine gauche-pyrrole (out) conformer. Comparison of ex­

perimental spectrum®®’®̂ with an harmonic and two Cl calculations on the 

MMSPro potential. Results of an harmonic ab initio calculation by Carney, using 

Becke3LYP/6-31-|-G*(5d) level of theory,®® are included for reference.
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The MMSPro results are seen to show a greater correlation with experiment on 

going from an harmonic to a 20 mode Cl calculation. In this spectrum, the low 

intensity peaks in the 3300-3400cm“  ̂ part of the spectrum have been amplified. 

The calculated transition at 3410cm“  ̂ demonstrates particularly good agreement 

with experiment. However, modes in the 3000-3100cm“  ̂ region do not correlate 

well with the experimental spectrum. For this conformer, the scaled harmonic ab 

initio calculation performs quite well, even for lower energy modes.

For the three conformers studied, results of Cl calculations consistently display 

greater correlation with experiment than harmonic results. It is clear that in all 

cases, more than 12 modes must be included in the Cl space to achieve good results. 

Generally, the performance of Cl is comparable to that of the ab initio calculations 

but calculations take 1-2 hours to complete compared to 20-30 hours for an ab 

initio calculation of this level, and this time can be further reduced. It is also 

important to note that the Cl technique requires no fitting/scahng so there is no 

need for experimental spectra. The results show clearly that the anharmonic terms 

in the MM3Pro potential are significant for calculating vibrational frequencies of 

these biomolecules. The results also suggest that parameterising force-fields for 

biomolecules must be done with care if vibrational frequencies are used without 

anharmonic modifications.
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Chapter 7

Tryptamine W ater Clusters

In biological systems, tryptophan and the proteins of which it is a constituent, are 

found in solvated environments. It is important to study how the structure and 

bonding is affected in moving from gaseous to real environments. The biochemical 

reactions of amino acids take place in aqueous media. The hydrophobic nature of the 

large indole group of tryptophan is thought to play a key role in drug binding sites 

and protein folding. The amine and acid groups of the tryptophan are involved in 

the polymerisation tha t creates the protein backbone, leaving the indole ring as the 

functional group exposed on the surface. As the largest amino acid, it is one of the 

most hydrophobic. Protein folding can be compared to formation of micelles, with 

hydrophobic residues on the protein interior and polar residues on the surface.^’̂  In 

the monomeric form, tryptophan has three potential binding sites. Studies can help 

in finding the site preferred by solvent molecules.
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Water is the key biological solvent, so studies of water-tryptamine complexes are 

extremely important. Zwier and Carney obtained spectra of tryptamine-water„ 

71 =  1 — 3 complexes by introducing solvent vapour into the supersonic expansion 

along with the tryptamine.®®’®̂ The cluster size, i.e. the value of 7i, is controlled 

by the relative concentration of solute to solvent and the absolute pressure of the 

molecular beam.

In the case of tryptamine monomer, seven isomers are found in the supersonic ex­

pansion cooled mixture. The molecules in the expansion are vibrationally and ro- 

tationally cold but the presence of significant quantities of different conformers in 

the pre-expansion nozzle results in a mixture of conformers in the cooled jet. In the 

case of tryptamine-water^t, however, only a single conformer is found for each cluster 

of size, n. Zwier identifies the minimum energy conformations of these clusters on 

a DFT potential.®®’®̂ However, no attem pt is made to assign the spectra. In this 

chapter, an attem pt is made to identify the conformers by comparison of calculated 

and experimental spectra.

7.1 Tryptamine-W ater

The MMSPro potential has 21 conformational isomers of the tryptamine-wateri 

complex. In Figure 7.1, five low energy conformers chosen for study are depicted, 

including the minimum energy structure. A, as predicted by Zwier and confirmed
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by the MMSPro potential and, C, a structure very similar to it.

1

Figure 7.1: Tryptamine-wateri conformations chosen for calculation.

There are 27 atoms in the system with 75 normal modes. 14 of these fall in the 2800- 

3800cm~^ region of the electromagnetic spectrum so a minimum of 14 modes must 

be included in the calculation. The best possible results are needed so 20 normal 

modes are included in the configuration and Cl calculations are performed for all 5 

conformers depicted above. These are compared with each other and experiment in 

Figure 7.2.
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Figure 7.2; Tryptamine-wateri spectra calculated with a 321 configuration of 

the last 20 normal modes for the conformers A-E. The highest three energy modes 

are assigned by Zwier®®’ to the Free OH stretch (3715cm“ )̂, Indole N-H stretch 

(3522cm“ )̂ and H-Bond OH stretch (broad 3340cm“ )̂.

Five of the 21 conformational isomers found on the MMSPro surface are similar to 

conformer B in that the solvent molecule acts as a hydrogen donor in two hydrogen 

bonds. Zwier assigns the three highest energy modes to an O-H stretch (3715cm~^), 

indole N-H stretch (3522cm~^) and another O-H stretch (broad 3340cm“^). Com­

paring calculated and experimental spectra it can be concluded that the complex 

found in the molecular beam cannot contain two hydrogen bonds. The system must
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have a free water hydrogen as the calculated vibrational frequency for one O-H 

stretch is significantly lower for conformer B  than for the experimental spectrum. 

Isomers C  and E  are also predicted to have the free O-H stretch at a slightly lower 

energy than shown by the experimental spectrum. Isomers A  and C  differ only in 

the orientation of the free hydrogen in the water molecule. The calculated vibra­

tional frequency of this bond stretch is lower for system C than that of A  and the 

experimental value presumably due to some small attractive interaction between the 

free hydrogen and the indole nitrogen. This also shows up in a small effect on the 

position of the indole N-H stretch. This effect may be seen in the true spectrum of 

the conformer C or it may be a failing of the potential as seen later in Section 7.2.

The indole N-H stretch ( 3 5 2 2 c m " in  this spectrum appears in an identical position 

to the tryptamine monomer spectra. This implies that neither the indole nitrogen 

and hydrogen atoms nor the conjugated indole tt electrons are involved in any H- 

bonding to water. The calculated spectra for all isomers show this behaviour with 

the exception of B and E. It is clear that the increase in N-H bond stretch frequency 

in conformer B is due to an interaction between the indole tt electrons and a hydrogen 

atom on the solvent molecule. This leads to an increase in the bond strength of the 

indole N-H bond and a resultant increase in its vibrational frequency. The frequency 

shift of this bond in isomer E  is not so easily explained. It may be linked to the 

decrease in vibrational frequency of the free O-H stretch. However, this seems 

unlikely given the conformation of the molecule.
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The calculated spectra of conformers A  and D  bear the closest resemblance to the 

experimental spectrum. A  and D differ in the conformation of the tryptamine 

component, being based on the gauche-pyrrole (out) and gauche-phenyl (out) con­

formers respectively. The CH2 group a  to amine on tryptamine are in different 

environments in these two isomers. The stretching frequency of this group falls in 

the 2800-3000cm“  ̂ region. In this part of the spectrum, there is poor agreement 

between the calculated and experimental spectra. It is difficult to assign the exper­

imental spectrum conclusively to conformer A  or D as it could be either or one of 

the other isomers not studied.



Chapter 7: Tryptamine-(Water ) 2 159

7 . 2  Tryptamine-(W ater)

As with the tryptamine-wateri complex, only 

one conformational isomer is found in the super­

sonic expansion cooled molecular beam. This is 

not assigned to a structure though Zwier gives 

the minimum energy structure on the ab initio 

potential, reproduced in Figure 7.3. The min­

imum energy structure predicted by Zwier in­

volves the indole NH acting as a hydrogen donor 

and the amine group acting as a hydrogen-acceptor.

Figure 7.3: Tryptamine- 

Water2  global minimum 

predicted by Zwier.®*’

However, while 121 minima corresponding to conformational isomers, are found on 

the MMSPro surface, none of those found resemble the structure predicted by Zwier. 

The MMSPro surface predicts indole NH will act as an hydrogen acceptor. Despite 

adding bonding parameters and adjusting dipole moments and Van der Waals coef­

ficients, the minimum found by Zwier cannot be reproduced without changing the 

MMSPro potential to the extent that the parameters become meaningless. As a 

result six low energy minima of interest, depicted in Figure 7.4, are chosen for study 

with the aim of testing the hydrogen bonding scheme predicted by MMSPro. An 

attempt is made to assign the structure of the species in the experimental spectrum 

and comparing the different bonding rationales predicted by ab initio and molecular 

modelling potentials.



Chapter 7: Tryptamine-(Water) 2 160

K

>f * - -

Figure 7.4: Clusters A  F are tryptamine-water2  conformations chosen for study. 

Note the Indole NH acts as a hydrogen acceptor in hydrogen bonding in the 

MMSPro potentials but Zwier suggests it is a hydrogen donor as shown in Fig­

ure 7.3

The conformers are chosen as a representative sample of the various hydrogen bond­

ing schemes predicted by the MMSPro potential. The 30 atoms in the system have 84 

vibrational modes, of which 16 fall into the 2800-3800cm“  ̂ region of the spectrum. 

Results for Cl calculations of the spectra of the conformers with a configuration of 

20 normal modes are compared with the experimental spectrum in Figure 7.5.

Zwier assigns the two highest frequency lines (3710cm  ̂ and 3715cm to free O-H 

stretches. The two intense broad peaks at 3490cm"^ and 3175cm“  ̂ are assigned to
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Figure 7.5; Tryptamine-water2  spectra calculated with a 321 configuration in­

cluding the last 20 normal modes for the conformers A  F

H-Bond O-H stretches and the intense peak at 3470cm“  ̂ is assigned to the indole 

N-H stretch. Clearly, none of the calculated spectra match these peaks and it can 

be seen that the bonding schemes predicted by the MMSPro potential are incorrect. 

It is not possible, therefore, to suggest a structure for the species studied by Zwier. 

Close inspection of the MMSPro potential shows that there is no hydrogen bonding 

parameters for interaction between indole H and water O. Many hydrogen bond 

strengths and lengths for this interaction were tested with no success. Attempts 

at changing Van der Waals parameters and dipole moments were made. However,
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no minimum energy structures of the type found by Zwier were found. Note that 

such anomalous solvent-biomolecule behaviour in molecular modelling potentials has 

been reported elsewhere.'*®

Zwier also measured the IR  spectrum of a tryptamine-water3 complex but the 

MM3Pro potential is not able to predict an accurate structure for this cluster and 

attempts at identifying the conformer in the molecular beam would prove futile.
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Part V

Conclusions
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Chapter 8

Conclusions

In the last two Chapters, the Cl technique for calculating anharmonic eflfects has 

been applied to real systems of biological importance. The results have shown 

promising agreement with experimental spectra suggesting that the technique works 

well. The improved agreement with experiment, especially for lower energy modes, 

on moving from harmonic to anharmonic energies suggests a degree of anharmonic 

behaviour in these systems and that the MMSPro potential includes terms that allow 

these anharmonic effects to be accurately modelled. The Cl technique is seen to be 

a useful technique to model such anharmonic effects.

The Cl technique is applied effectively to tryptamine monomer and the complex 

tryptamine-wateri. It has been shown to be a useful tool to aid in assigning spectra,
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requiring no scaling or fitting, producing results similar to scaled ab initio calcu­

lations of Carney in a fraction of the time. On moving to the tryptamine-water2 

cluster, the MMSPro potential breaks down, unable to  predict the correct hydrogen 

bonding schemes and preventing the identification of the species responsible for the 

experimental spectra. This is attributed to be a failing of the potential as no minima 

similar to those found on ab initio surfaces can be found. For such hydrogen bonded 

systems more accurate potentials will be needed.

A general method and computer program has been developed for calculating the 

vibrational states of biomolecules. A particular feature of this technique is the 

systematic treatment of anharmonicity using a variational method. The method is 

first tested on simple benchmark systems such as the Hénon-Heiles potential and 

the water molecule. It is then applied to biomolecules chosen for their significant 

medical interest. Promising comparisons with experimental data are made. The 

results show that there are significant anharmonic effects on the vibrational states 

in these systems in the potential energy surface used. The method will have useful 

future use in testing potential energy surfaces in biomolecular systems and predicting 

vibrational spectra.
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Chapter 9

Further Com putational Work

Calculation of vibrational eigenstates for larger systems is desirable. As such, the 

Cl program should be adapted to use multiple arrays to hold and diagonalise the 

Cl matrix.

The rate limiting part of the calculation is the calculation of the Cl matrix. Nu­

merical evaluation of integrals when calculating the expectation value of the anhar­

monicity, A, requires many calculations of the potential at the abscissae. As more 

complex potential energy surfaces and larger systems are studied, the time needed 

for each evaluation of the potential energy increases. Improvements on the speed of 

calculation have been made by storing some commonly used integrals in the calcu­

lation of the Cl matrix. This reduces the number of calls to the potential. Further
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speed increases by reducing the number of potential calls would be important.

The quadrature abscissae, and weights, w*, are evaluated at the start of the Cl 

program, and they remain constant throughout the calculation. In calculating ID 

integrals, the potential is evaluated at each abscissa.

{il)i\Â.\tpl) = j  ipi(v(q)-̂ kiq{\il>ldq
= J'N°H°,{q)e-y"/^ (̂ (9) - \hq\^ N\Hl{q)e-'^l‘̂Aq

N /  m -6  ̂ \
»  N?N} Y ,  WiHUq)Hl{q) F(%) -  Y  ô''®? (91)

i = l  \  j = l  /

Where y = (ulK)^q. To aid visualisation of this technique, a 2D plot of the two 

surfaces V(q) and ^kiqf for the HMS water monomer potential is given in Figure 5.4. 

In the expansion of the integral, the term V{q) — ^kiqf describes the anharmonicity 

and must be evaluated at each abscis point. As the abscissae are constant throughout 

the calculation, the value of this term can be stored as an “anharmonicity grid” . 

An example 2D grid is shown for the water monomer in Figure 9.1. Clearly, the ID 

grid for calculation of one-dimensional matrix elements is the central line in the 2D 

grid.

Once this grid is stored, the calculation of all the Cl matrix elements involving 

these two modes can be calculated by performing a sum analogous to that described 

in Equation 9.1. A 2D sum is needed to evaluate matrix elements describing the 

interaction between the modes. Therefore, once the grids have been stored, the 

will be no need to make any more potential calls. The numerical integration would
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Figure 9.1; Plot of the anharmonicity grid of the Hoy Mills and Strey^  ̂ wa­

ter potential in normal coordinate space. The modes chosen as the coordinate 

space are the symmetric stretch (Mode 2) and bending (Mode 3) coordinates. 

The orange surface describes the anharmonicity of the HMS potential. The plot 

demonstrates that the harmonic approximation is only valid near the potential 

minimum.

require only a calculation of the relevant normalised hermites at the abscis points. 

It was shown in Figure 3.3 that the hermite polynomial and the quadrature weight 

multiply to model the wavefunction. This fact is shown in two dimensions in Fig­

ure 9.2. The blue surface is the weight multiplied by the normalised hermite for 

the integral ( ^ 2 ^ 3  | A The orange anharmonicity grid stays constant for

all integrals. Plotted together, these two surfaces depict the numerical integration 

process. Clearly, the anharmonicity is constant for all integrals. It is the wave- 

functions of the normal mode basis functions that change between matrix elements. 

Low energy wavefunctions are concentrated near the potential minimum. There-
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Figure 9.2: Depiction of the numerical integration method for evaluation of the 

matrix element ('02'*/̂ 3 | A  | The orange surface describes the anharmonicity

of the HMS potential. The blue surface describes the wavefunction.

fore, in low vibrational states, the system experiences little anharmonicity. It is 

only higher energy wavefunctions that are more diffuse and can sample regions of 

greater anharmonicity.

When calculating the grid, care must be taken to ensure it is constructed from 

an odd number of abscissae in each coordinate so that there is a central line at 

Qi = 0. This will allow calculation of 1 and 2D integrals using a single grid. There 

should also be enough abscissae to permit the evaluation of the integral at the 

required accuracy. For example, consider a calculation on a configuration of 632 

excitation. The highest order hermites will be found in matrix elements of the type 

{ I Â I tpi'ipj ). Assuming that terms of order 5 or higher in the potential are 

negligible, the maximum order of the polynomial in the Gauss-Hermite quadrature
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is 16. For Gauss quadrature techniques m  abscissae enable exact integration of a 

polynomial function of order 2m +  1. Therefore, a 9 x 9 anharmonicity grid would 

allow accurate calculation of the matrix elements in the 632 excited configuration 

calculation.

Further research into techniques for optimising the basis functions could prove 

valuable. Vibrational studies by Bowman,Qgj.j^gj.79,129,133- 135,137 Carter and 

Handy^^'^^^^ make improvements to the normal mode basis functions by performing 

a SCF calculation. The SCF basis functions are then used as the basis for the Cl 

configurations. Implementing a similar algorithm might prove valuable by speeding 

the convergence of the Cl calculation.

After implementation of the above techniques for speeding calculation, it should be 

possible to use potential points calculated ab initio. This would enable direct com­

parison with the results obtained by calculation on molecular modelling potentials. 

Such comparisons allow an in depth check of the anharmonic terms in molecular 

modelling force fields.

To permit calculations on larger molecules, the Cl code should be implemented on a 

machine with a larger stack size. The maximum Cl matrix size can also be increased 

by storing matrix elements in more arrays. Once all elements are calculated, these 

arrays can be diagonahsed as one.
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