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IncDet: In Defense of Elastic Weight Consolidation
for Incremental Object Detection

Liyang Liu, Zhanghui Kuang, Yimin Chen, Jing-Hao Xue, Wenming Yang and Wayne Zhang

Abstract—Elastic weight consolidation (EWC) has been suc-
cessfully applied for general incremental learning to overcome
the catastrophic forgetting issue. It adaptively constrains each
parameter of the new model not to deviate much from its coun-
terpart in the old model during fine-tuning on new class datasets,
according to its importance weight for old tasks. However, the
previous study demonstrates that it still suffers from catastrophic
forgetting when directly used in object detection. In this paper,
we show EWC is effective for incremental object detection if with
critical adaptations. First, we conduct controlled experiments to
identify two core issues why EWC fails if trivially applied to
incremental detection: 1) the absence of old class annotations in
new class images makes EWC misclassify objects of old classes in
these images as background, and 2) the quadratic regularization
loss in EWC easily leads to gradient explosion when balancing
old and new classes. Then, based on the above findings, we
propose the corresponding solutions to tackle these issues: 1)
utilize pseudo bounding box annotations of old classes on new
datasets to compensate for the absence of old class annotations,
and 2) adopt a novel Huber regularization instead of the original
quadratic loss to prevent from unstable training. Last, we propose
a general EWC-based incremental object detection framework
and implement it under both Fast R-CNN and Faster R-CNN,
showing its flexibility and versatility. In terms of either the final
performance or the performance drop w.r.t. the upper bound of
joint training on all seen classes, evaluations on the PASCAL
VOC and COCO datasets show that our method achieves a new
state-of-the-art.

Index Terms—object detection, catastrophic forgetting, incre-
mental detection, Bayesian online learning

I. INTRODUCTION

OBJECT detection is undoubtedly the cornerstone in com-
puter vision and has facilitated many amazing applica-

tions related to image understanding, such as instance segmen-
tation [1], pose estimation [2] and human detection/recognition
[3]. Modern object detection systems equipped with deep
convolutional networks can locate and classify object regions
accurately and rapidly. Especially by the introduction of large-
scale datasets such as ImageNet [4], COCO [5], OpenImages
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[6] and VisualGenome [7], we can train models capable of
detecting up to several thousands of classes. Nevertheless,
almost all of these models can only recognize objects which
are restricted to predefined categories of interest, but we may
always want to detect new classes that the models have not
learned before. As humans learn in a life-long manner, a
model that can evolve to detect fresh concepts is appealing.
Incremental detection [8] aims at incrementally adapting the
base model trained on old classes to detect new classes and
meanwhile not to forget the old ones.

A naïve approach for incremental detection is to fine-tune
the base model with new class training data [8], but this
method notoriously suffers from catastrophic forgetting [9]
when the old data is inaccessible during fine-tuning. Conse-
quently, forgetting leads to severe performance drop on old
categories, and also dramatic false detections on new classes
due to misclassifying old class objects as new categories.
As an alternative, training from scratch with the combination
of old and new data seems feasible to avoid catastrophic
forgetting, but sometimes we may not have access to old
images or annotations because of privacy issues. Furthermore,
if the amount of old data is much larger than that of the
new data, we have to spend a lot of computation and storage
resources on old data, and thus cannot expect low-cost model
adaptation, which is attractive especially in circumstances with
a constrained training budget.

Incremental object detection is supposed to benefit from
incremental learning which has been widely investigated [10],
[11], [12], [13], [14], [15]. Especially, the previous study
[11] proposed Elastic Weight Consolidation (EWC) based on
Bayesian online learning [16]. Although EWC achieves im-
pressive empirical results on image classification, it still suffers
from catastrophic forgetting when directly applied to object
detection as reported in [8]. Through our pilot experiments, we
identify the following two key issues leading to the failure of
applying EWC to incremental detection. First, images in new
datasets might contain both old class and new class objects, but
with only new classes annotated. Treating all regions which
do not belong to new classes as background would misclassify
old class objects as non-objects, leading to disastrous missing
detections of old classes. Second, the quadratic loss in EWC
easily leads to gradient explosion and thus unstable training
during the hyper-parameter tuning process to find the best
trade-off between old and new classes.

To mitigate the missing annotation issue, we propose a
simple yet effective strategy that generates pseudo bounding
boxes of old classes to compensate for the absence of old
class annotations. Specifically, for each image in new datasets,
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0.initial training 3.incremental fine-tuning

1.predict

2.aggregate

4.recurse

(a) old classes: cow, dog, person, ...

(b) new classes: sheep, ... (c) predictions: dog, cow

(d) pseudo annotations: dog, sheep
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sheep

cow: 0.78

cow: 0.73
dog: 0.99

sheep
sheep dog

Fig. 1. Illustration of our incremental detection framework IncDet. (a) and (b) are the original annotations provided in the initial training and incremental
fine-tuning phases, respectively. (c) shows the predicted results of the old model on new images. (d) manifests the aggregated annotations we use to fine-tune
the old model and obtain the new model. Our incremental object detection pipeline consists of steps 0–3, in which step 0 needs to be run only once at the
very beginning, and steps 1–3 can be recursively executed if more classes are to be added.

we predict old class objects with the old model and obtain
pseudo bounding boxes for old classes. Then old class pseudo
bounding boxes and new class annotated bounding boxes are
jointly used to incrementally fine-tune the model as shown in
Fig. 1. In this way, the fine-tuned model can not only learn
to detect new classes but also retain the performance of old
classes to a large extent.

To overcome the unstable training issue, instead of the
quadratic loss in EWC, we propose a novel Huber regular-
ization. It shares the same spirit with the regularization term
in EWC by constraining each parameter in the new model
around its counterpart in the old model. Meanwhile, our Huber
regularization adaptively clips the gradient of each parameter
according to its contribution to old classes. Compared with
the conventional holistic gradient clipping [17], the proposed
adaptive gradient clipping not only realizes stable training but
also achieves better performance.

Based on the above two adaptations, we propose IncDet,
an EWC-based incremental object detection framework that
is general and flexible. Our framework IncDet is illustrated
in Fig. 1 which consists of 4 main steps: 0. initial training:
an empty model (maybe pretrained on an image classification
task) is trained with some old classes to obtain the base
model; 1. predict: the trained base model makes predictions
on images collected for new classes; 2. aggregate: predictions
from the old model and manual annotations are aggregated;
3. incremental fine-tuning: the base model is fine-tuned incre-
mentally on images with partially labeled (new classes) boxes
and partially predicted (old classes) pseudo annotations. Step
0 is done only once at the very beginning and steps 1 to 3 can
be recursively executed if more classes need to be added.

To summarize, our contributions are listed as follows:
1) We instantiate EWC in the context of incremental object

detection and identify the core issues that lead to the
failure of directly applying EWC to detection: missing
annotation and unstable training.

2) We propose pseudo annotation to compensate for the

missing annotations of old classes in new class images.
It mitigates the wrong supervisions of regarding old class
objects as background during fine-tuning.

3) We propose the Huber regularization to alleviate the
unstable training issue when fine-tuning the old model
on new datasets, by adaptively clipping the gradient of
each parameter according to its importance for old class
detection tasks.

4) We present IncDet, an EWC-based incremental object
detection framework, and implement it under both Fast
R-CNN [18] and Faster R-CNN [19], demonstrating its
versatility and flexibility.

5) To showcase the effectiveness of our approach, we
conduct experiments on the PASCAL VOC [20] and
COCO [5] datasets. By adding new classes all at once
or sequentially, our results surpass the previous best [8],
[21], [22], [23] in terms of both the final performance
and the performance gap compared with the joint train-
ing upper bound.

II. RELATED WORK

A. Incremental learning
Incremental learning has been of great interest for decades

[24], [25] and has attracted much attention recently [26], [27].
Algorithms developed so far can be generally categorized into
four types [28]. Prior-based methods regard the posterior
over model parameters after finishing training one task as the
prior for transferring to the new task. Distinguished prior-
based methods differ in the way how prior knowledge is
modeled and will be further discussed in Sec. II-B. Rehearsal
methods are the second type, where memories about old
classes are stored selectively or reproduced by generative
models. These memories are then used together with new
data to overcome forgetting. VCL [14] adopts the K-center
algorithm [29] to construct a core-set by choosing exemplars
from the dataset of each old class. DGR [13] alleviates the
necessity of storing old data by training deep generative
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TABLE I
ADVANTAGES OF INCDET COMPARED WITH PREVIOUS STATE-OF-THE-ARTS.

methods ILOD [8] DMC [21] RILOD [22] CIFRCN [23] IncDet (Ours)
w/o auxiliary models 7 7 7 7 3

high memory efficiency 7 7 7 7 3
high computational efficiency 7 7 7 7 3

w/o extra data 3 7 3 3 3
w/o external proposals 7 3 3 3 3

models to mimic the past data. Ensemble-based methods
store a series of historical models and the final determination
is made by ensemble of these models. ADAIN [30] transforms
the knowledge of current data chunk into the learning process
of future chunks through the specially designed mapping func-
tion. Learn++.NSE [31] and its class imbalance variant [32]
study incremental learning of concept drift in nonstationary
environments. DTEL [33] preserves historical models that
are diverse enough for better transferability to new concept.
Dynamic structure methods progressively increase model
capacity by adding sub-networks to compensate for the new
tasks. PNN [34] completely fixes model parameters for old
tasks while DEN [35] selectively retrains the old network and
dynamically expand its capacity if necessary. Broad learning
system (BLS) [36], [37] develops incremental learning algo-
rithms for increment of input variables [38], feature nodes
[39] and enhancement nodes. EM-ELM [40] and AG-ELM
[41] achieve incremental learning by adding hidden nodes to
the extreme learning machine. In learning without forgetting
(LwF) [10], all tasks share feature extraction parameters and
task-specific parameters are introduced for newly arrived tasks.
When training on new datasets, task-specific parameters for
new tasks are learned via fine-tuning, while the output of
combined task-shared parameters and task-specific parameters
for old tasks are regularized to be close to the output of a
frozen copy of the old model.

B. EWC and its variants
Among prior-based incremental learning methods, the one

most related to our work is EWC [11], which has been
successfully applied to image classification and reinforcement
learning. Inspired by Laplace approximation [42], EWC adopts
a Gaussian prior for every single parameter, and approximates
the Hessian of the likelihood after training on each task to
be diagonal. It can be considered as regularizing parameters
that are more important for old tasks to have less discrepancy
with the old parameters when fine-tuning on new datasets,
where the importance is determined by the likelihood loss at
the end of each training stage. SI [12] however computes the
importance in an online fashion and thus takes the whole train-
ing trajectory into consideration. Instead of depending on the
likelihood loss, MAS [43] approximates the importance by the
gradient of the model output w.r.t. the model parameters, and
it can also take advantage of the unlabeled data. RWalk [44]
generalizes EWC and SI from a theoretically grounded KL-
divergence based perspective. Ritter et al. [15] introduce the
Kronecker factored online Laplace approximation to replace
the diagonal Hessian in EWC with a block diagonal one, and
thus model the interactions among the parameters. The above

incremental learning methods mainly focus on incremental
image classification while we devote ourselves to incremental
object detection which is under-explored.

C. General object detection
General object detection in the deep learning era can

be divided into proposal-based and proposal-free methods.
Proposal-based detectors first extract class-agnostic region
proposals of the potential objects, and then conduct proposal-
level classification and box regression. R-CNN [45] uses con-
volutional networks to classify the region proposals produced
by selective search [46]. SPP-Net [47] and Fast R-CNN [18]
speed up R-CNN by sharing the computation of feature
extraction for each region. NoC [48] points out the importance
of using proposal-level convolutional networks to classify each
region instead of the widely used multi-layer perceptrons.
Faster R-CNN [19] introduces a region proposal network
(RPN) that shares features with the detection network, and
thus enables nearly cost-free proposal generation. In contrast,
proposal-free detectors attempt to predict bounding boxes
and get the confidence of each category directly. YOLO [49]
divides the image into grids and for each grid cell predicts
several bounding boxes and class probabilities. SSD [50]
extends YOLO with multi-scale feature maps and adopts
diverse default boxes for various object shapes. RetinaNet
proposes focal loss [51] to deal with dense detections on
multi-scale feature maps based on FPN [52]. General object
detection has been largely developed, but it cannot be trivially
used to detect new classes without catastrophic forgetting.

D. Incremental object detection
Shmelkov et al. study incremental detection without catas-

trophic forgetting in the pioneering ILOD [8]. They develop
the dual-network learning under Fast R-CNN [18], where
one fixed copy of the old model serves as the teacher for
remembering old classes, and the other learnable model acts as
the student for learning new classes, trying to minimize the dis-
crepancy between outputs of the two models on new class data.
Dual-network learning is inspired by learning without for-
getting (LwF) [10] which adopts knowledge distillation [53].
Zhang et al. [21] propose deep model consolidation (DMC)
and extend LwF [10] to proposal-free detector RetinaNet [51].
They propose triple-network learning, where two models for
the old and new classes are trained separately and a third
network is learned via knowledge distillation from the former
two networks with the help of extra unlabeled data, with
which to overcome the intrinsic bias toward either old or new
classes. RILOD [22] introduces an extra feature distillation
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loss besides the classification and regression distillation loss
in ILOD [8], and it is implemented under both edge-cloud and
edge-only setups. CIFRCN [23] extends ILOD [8] to Faster
R-CNN [19] and proposes an end-to-end class incremental
detection method via distilling RPN [19] simultaneously with
R-CNN, without relying on external proposal generation.

Almost all of the previous incremental object detection
methods are auxiliary-based and inspired by knowledge distil-
lation [53], where knowledge about old classes is stored in the
frozen copy of the trained models. This requires feed-forward
passes through the auxiliary teacher networks during fine-
tuning on new data, and thus consumes more computation and
memory resources. In contrast, our auxiliary-free EWC-based
IncDet embeds knowledge with parameter importance for old
classes. When learning new classes IncDet only demands a
single network fine-tuning, which is more efficient and light-
weight. In addition, compared with ILOD [8], IncDet is more
general and can be adopted in any conventional object detec-
tion method, not only those who depend on external proposal
generation approaches. We also do not need extra unsupervised
data as used in DMC [21] for knowledge distillation. Tab. I
summarizes the advantages of IncDet compared with previous
incremental detection methods.

E. Self-training
Pseudo annotation proposed in this paper is reminiscent

of self-training which is widely used in general machine
learning, as well as object detection [54]. Data distillation
[55] applies the model trained on manually labeled data to
generate annotations on unlabeled images. A key difference
is that they try to utilize a large amount of unlabeled data
for self-promotion, but we aim at preventing the model from
wrongly regarding old class regions from new class images as
background due to the absence of manual labels. Moreover, in
self-training, labeled and unlabeled images share the same set
of categories so there will not be class confusion resulting from
the emergence of new classes. While in incremental detection,
the model may predict new classes in new images as old
classes with high confidence if they share similar appearances,
which should be dealt with carefully to generate accurate
pseudo ground truth.

III. EWC FOR INCREMENTAL DETECTION

In this section, we first review EWC [11] for general
incremental learning from the perspective of Bayesian online
learning [16]. Then we instantiate it in the context of incre-
mental object detection. Given an old model ✓?

t optimized on
datasets D1:t for the previous t tasks, EWC tries to learn a
new model ✓?

t+1 which performs well for all tasks 1 to t+1,
using the new dataset Dt+1 without the help of past data D1:t.
It models optimization for the new model as maximizing the
posterior on the collection of all data visited so far:

p (✓ | D1:t+1) / p (Dt+1 | ✓) p (✓ | D1:t) , (1)

in which p (Dt+1 | ✓) stands for the likelihood of new data. As
the posterior p (✓ | D1:t) is intractable without access to D1:t,
EWC approximates it by a multivariate Gaussian distribution

with Laplace approximation [42] at the optimized model for
the first t tasks ✓

?
t :

p (✓ | D1:t) ⇡ N
�
✓;✓?

t ,H
�1
t

�
, (2)

where Ht is the Hessian matrix of � log p (✓ | D1:t) w.r.t.
✓ computed at ✓

?
t . To obtain Ht, we again apply Laplace

approximation on the posterior probability p (✓ | D1:t+1):

p (✓ | D1:t+1) ⇡ N
�
✓;✓?

t+1,H
�1
t+1

�
. (3)

By substituting Eq. (3) and (2) into (1), and taking the second
order derivative w.r.t. ✓, we have the following recursive form
of the Hessian matrix:

Ht+1 ⇡�r2
✓ log p (Dt+1 | ✓) +Ht. (4)

As the Hessian matrix H whose size is square of the model
size cannot be computed exactly, EWC assumes the diago-
nal structure [11], [15] of the Hessian matrix and thus the
Gaussian distribution in Eq. (2) is fully factorized for each
parameter ✓i:

logN
�
✓;✓?

t ,H
�1
t

�
/ �1

2

X

i

H
ii
t

�
✓i � ✓

i?
t

�2
, (5)

in which H
ii
t denotes the diagonal entry of Ht. So from Eq.

(1), a model doing well for all seen tasks 1 to t + 1 can be
trained by minimizing the regularized loss:

Lt+1 = � log p (Dt+1 | ✓) + �

2

X

i

H
ii
t

�
✓i � ✓

i?
t

�2
, (6)

where � is a hyper-parameter introduced to balance the plas-
ticity and stability of the model [11]. Diagonal entries of the
Hessian matrix can be computed recursively from Eq. (4):

H
ii
t+1 = H

ii
t � @

2
i log p (Dt+1 | ✓)

��
✓i=✓i?

t+1
, (7)

in which @
2
i is the second-order partial derivative w.r.t. ✓i.

In the above we review the most general form of EWC, now
we instantiate it for supervised learning, especially incremental
object detection. Under the basic assumption that data sam-
ples are independent and identically distributed, in supervised
learning, the likelihood log p (Dt | ✓) in Eq. (6) and (7) can
be decomposed into

log p (Dt | ✓) =
X

j

log p
⇣
y
(j)
t | x(j)

t ;✓
⌘
, (8)

where x
(j) is the j-th data sample and y

(j) stands for its
corresponding label. Then the derivatives in Eq. (7) is

�@2
i log p (Dt | ✓) =�

X

j

@
2
i log p

⇣
y
(j)
t | x(j)

t ;✓
⌘

⇡
X

j

⇣
@i log p

⇣
y
(j)
t | x(j)

t ;✓
⌘⌘2

=
X

j

⇣
@iL(j)

t

⌘2
, (9)

where L(j)
t represents the loss of the j-th sample on task t.

Above we use the property of the Fisher information to build a
connection between the second-order derivative and the square
of the first-order derivative, which can be regarded as the
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importance of each parameter to the current task. Combining
Eq. (6), (7) and (9), we have the regularized loss:

Lt+1 =
�

2

X

i

w
i
t

�
✓i � ✓

i?
t

�2 � log p (Dt+1 | ✓) , (10)

with the recursive update of the importance weight (i.e., the
diagonal entry of the Hessian matrix):

w
i
t+1 = w

i
t +

X

j

⇣
@iL(j)

t+1

⌘2
����
✓i=✓i?

t+1

, t = 0, 1, 2, ... (11)

and w
i
0 = 0, 8i for recursion initialization. Intuitively, the

regularized objective not only depends on the likelihood of
the new data, but also the weighted model parameter deviation
from the old model, with the weight decided by the importance
of each parameter for all seen tasks. Note that we first fine-tune
the old model ✓?

t on the new data Dt+1 to obtain the optimized
new model ✓?

t+1. Then at the end of an incremental fine-tuning
phase which typically consists of about a dozen of epochs,
the importance of each parameter for the current task t + 1
is computed by iterating through the corresponding dataset
Dt+1 with the optimized model ✓?

t+1 for an extra epoch. Each
iteration consists of a forward pass and a backward pass but
the model is not updated by gradient descent. The computed
importance weights are accumulated to w

i
t+1, the importance

for all experienced tasks. Then the accumulated importance
w

i
t+1 is used for remembering the tasks 1 to t + 1 when we

fine-tune on the dataset of more new tasks.
For incremental object detection, we set the per-image loss

L(j)
t in Eq. (11) as the sum of per-region losses including

region classification and box regression for each image j and
task t:

L =
X

r

Lr
cls + Lr

reg. (12)

The likelihood � log p (Dt+1 | ✓) in Eq. (10) can also be
represented by the classification and regression losses as in
conventional detection. So with Eq. (10), (11) and (12), we
instantiate EWC [11] for incremental object detection.

Discussion. The recursive update of the importance weight
in Eq. (11) is significant, to which we eventually aggregate
the memory about all past tasks, by involving one new task
at a time. In practice, to incrementally adapt the old model
for some new classes, we first add parameters corresponding
to detectors of the new classes and initialize them randomly.
Note that the newly-added parameters are negligible compared
to the full model. Then we fine-tune the old model with the
regularized loss in Eq. (10) to obtain the optimized new model.
Finally we update the importance of each parameter as Eq.
(11) using the optimized model over Dt+1 to be prepared for
the fine-tuning on possible added classes in the future.

IV. PSEUDO ANNOTATION

Motivation. Although the instantiation of EWC provides
a viable way for incremental object detection, we find it
still suffers from catastrophic forgetting as reported in [8].
We hypothesize the failure of trivially applying EWC mainly

results from the fact that old class objects may appear in new
class images, which will not be encountered in incremental
image classification [11]. Since regions without bounding box
annotations are simply considered as background during train-
ing in currently popular detection frameworks [18], [19], so old
class objects are misclassified as background when learning
new classes. However, in the past training stages, old class
regions have been labeled as foreground. During incremental
fine-tuning, the regularization term in Eq. (10) suggests to
classify old class regions as foreground, but the likelihood
term forces the network to regard them as background. This
contradiction leads to the optimization difficulty and finally
makes the network struggle to converge well.

(a) origin (b) mask

(c) pseudo

Fig. 2. Comparisons among different annotation strategies. (a) shows the
original annotations (i.e., sheep) for the new dataset. (b) masks the old class
objects (i.e., person) by the mean pixel values. (c) adds pseudo annotations
(i.e., person) to the original manually labeled annotations.

To validate the conjecture above, we conduct pilot exper-
iments VOC 2007 [20] with Fast R-CNN by incrementally
learning 5 new classes one by one from a base model trained
with 15 old classes. We fine-tune the model by masking the
old class objects in the new images with mean pixel values as
shown in Fig. 2 (b), and thus exclude the negative influence of
old class objects. Compared with the model fine-tuned with
the original annotations as shown in Fig. 2 (a), both mAP
of 15 old classes and that of all 20 classes are significantly
improved. Specifically, mAP of old classes increases from
46.9% to 59.7% while that of all classes boosts from 47.6%
to 56.7%. We believe that ignoring old classes can improve
recall of them during testing.

Since we do not have oracle annotations of old classes in
the new images, the masking strategy cannot be implemented
in practice. As a proxy, we propose to exploit predictions
of the old model on the new images. In this way, not only
do we alleviate wrong supervisions, but also we can fully
utilize information in the new images by consolidating old
class memories with the predicted regions. However, as the old
model has only learned to detect old classes, it will classify
new objects similar to old ones as its known categories (e.g.
Fig. 1 (c) it regards sheep as cow). To deal with the wrong
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Fig. 3. Effect of our pseudo annotations on the AP for each class and the mAP across all seen classes after incremental fine-tuning, where we originally train
the network on the first 15 classes (left to dashed line) and then fine-tune it with the remaining 5 ones (right to dashed line) sequentially. “origin” shows
the result of fine-tuning with the original annotations including only the new classes as Fig. 2 (a). “mask” represents the result of masking old class regions
with mean pixel values as Fig. 2 (b). “pseudo” is the result of fine-tuning with our pseudo annotations as Fig. 2 (c).

predictions, we further propose to correct predictions of the
old model with the manually labeled new class annotations.
Only those predicted old class boxes with maximal IoU with
new class annotations less than 0.5 are kept (see Fig. 1
(d)). When we fine-tune the model with the ensemble of
pseudo annotations and the manual labels, mAP of the 15 old
classes and that of all classes increases to 70.6% and 66.3%,
respectively, which is remarkably superior to its counterpart
with masking training strategy (see Fig. 3).

Discussion. Although pseudo annotation seems intuitive, as
far as we know, we are the first to identify that the failure
of EWC in incremental detection originates from missing
annotations. By adopting this simple strategy with certain
improvements (correct the old class pseudo annotations with
the new class manual labels), we effectively make EWC work
well in incremental detection, in contrast with the conclusion
drawn from ILOD [8]. Besides, solely depending on pseudo
annotation is not enough due to the unstable training issue
resulting from the quadratic loss in EWC, as discussed next.

V. HUBER REGULARIZATION

Motivation. The balancing parameter � in Eq. (10) acts as
a trade-off between remembering old classes and learning new
classes. When � = 0, the optimization of the model degrades
to conventional fine-tuning, and thus leads to catastrophic
forgetting. Ideally, when � = +1, the new model is kept
the same as the old one, and thus no new classes can be
learned. To find the best � for incremental object detection,
we gradually increase �. As shown in Tab. II, larger � leads
to significantly better performance on old classes but that
of new classes does not change notably. However, when �

reaches a certain value (e.g. 10), the training process becomes
dramatically unstable, which prevents us from finding the best
trade-off between old and new classes. We empirically find
that the gradient explosion of the regularization term is the
reason as we notice that certain parameters own extremely
large gradients before gradient explosion. Initially, we thought
it was because the inaccurate pseudo annotations act as outlier
data samples during incremental fine-tuning, but the gradient
explosion still happens even if we use the oracle manual labels
of old classes in the new images.

Fig. 4. Upper: Visualization of Huber regularization L� (with threshold �)
and quadratic regularization L for a single parameter ✓. ✓? denotes its last
optimized value and w is its corresponding importance for previous tasks.
When |✓ � ✓?| 6 �/

p
w, the two regularizations are the same. Lower: The

gradient of ✓ in quadratic regularization L is unbounded, but the absolute
gradient of ✓ in Huber regularization L� is adaptively clipped to �

p
w if

|✓ � ✓?| > �/
p
w according to its importance. More important a parameter

is for old classes, more easily its gradient is clipped.

We next analyze the gradient mathematically. Take a single
parameter ✓ in Eq. (10) as an example, the quadratic term
L = w (✓ � ✓

?)2 /2 has a gradient w (✓ � ✓
?) w.r.t. ✓. Due to

the distributional shifts of the images across different classes,
the model weights will change drastically to accommodate
the new classes at the beginning of incremental fine-tuning,
and thus the gradients are very easy to grow dramatically and
finally explode.

Therefore we propose a novel Huber regularization to
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Fig. 5. Efficacy of our Huber regularization. It shows the AP result for each class and the mAP across all classes after incremental fine-tuning. We originally
train the network on the first 15 classes (left to dashed line) and then fine-tune it with the remaining 5 ones (right to dashed line) all at once. “Huber”
represents the result of our Huber regularization. “L2” means to replace the Huber regularization with the quadratic loss originated from EWC. “GC” means
to use gradient clipping [17] instead of our Huber regularization. � is tuned to get the best performance for each case.

TABLE II
EFFECT OF � ON MAP (%) OF OLD (15), NEW (5) AND ALL (20) CLASSES

USING QUADRATIC LOSS WHEN 5 CLASSES ARE ADDED ALL AT ONCE.

� old new all
0.1 62.7 63.6 62.9
0.3 64.0 63.5 63.8
1 66.8 63.0 65.9
3 67.9 63.8 66.9

constrain the gradient within a reasonable range. More specif-
ically, we replace the quadratic regularization in Eq. (10) by

L� (✓) =

(
1
2w (✓ � ✓

?)2
p
w |✓ � ✓

?| 6 �

�

⇣p
w |✓ � ✓

?|� �
2

⌘ p
w |✓ � ✓

?| > �
, (13)

where � is a pre-defined clipping threshold. By taking the
derivative, we have

dL� (✓)

d✓
=

(
w (✓ � ✓

?)
p
w |✓ � ✓

?| 6 �

�
p
w

✓�✓?

|✓�✓?|
p
w |✓ � ✓

?| > �
. (14)

It can be seen that the gradient is effectively restricted to
be in the range of [��

p
w,�
p
w]. Besides, as the Huber

regularization is smooth so it is the same as the quadratic
loss when

p
w |✓ � ✓

?| 6 �. For each parameter ✓, the
corresponding regularization loss and gradient are shown in
Fig. 4. We can see that the absolute gradient of a parameter
with importance w to the previous tasks are clipped to �

p
w

if its deviation from the last optimal value |✓� ✓
?| > �/

p
w.

As expected, more important a parameter is for old classes,
more easily its gradient should be clipped.

Alternatively, we may adopt Gradient Clipping [17] to deal
with the gradient explosion as

ĝi =
�g

max (�g, kgk)
gi, (15)

in which g is the gradients of the regularized loss w.r.t. model
parameters ✓ and gi stands for its i-th entry, and �g is the
clipping threshold for the norm of g. Our Huber regularization
differs from [17]. First, in [17] parameters are coupled with
each other when clipping the gradient, but we decouple the
gradient clipping for different parameters. For example, if the
gradient of a certain parameter excesses the clipping threshold,

[17] will rescale the gradients of all the parameters, but we
only clip the gradient of the specific parameter. Moreover,
[17] down-scales the gradients of all the parameters in the
model with a fixed scaling factor, but we adaptively clip the
gradient for each single parameter according to its importance
for old classes. Compared with [17] which may unnecessarily
clip some parameters and thus limit the capacity of the entire
model, our method is more flexible.

Discussion. The Huber regularization proposed here may
seem simple, but it is based on our key findings that certain
parameters own extremely large gradients during incremental
fine-tuning. Through the Huber regularization, we equivalently
adopt adaptive gradient clipping for the individual parameter
to alleviate the unstable training issue of EWC in incremental
detection. It also differs from and significantly outperforms
the traditional gradient clipping method [17] (Fig. 5).

VI. EXPERIMENTS

Based on the above adaptations, i.e. pseudo annotation and
Huber regularization, we introduce our incremental object
detection framework IncDet as shown in Fig. 1. In practice,
we first train a base model that can detect multiple base
classes. Then when new classes arrive, we produce the old
class pseudo annotations which are corrected by the new class
manual labels. Next we incrementally fine-tune the base model
with pseudo annotations and Huber regularization, endowing it
with the ability to detect the new classes and not to forget the
old classes catastrophically. Finally the importance weight for
each model parameter is updated to embrace more new classes.
Note that the importance update step is merged into the incre-
mental fine-tuning in Fig. 1 for compactness. Our framework
is flexible thanks to its Bayesian online learning nature. So
the new classes can be seamlessly added sequentially or all at
once. Algorithm 1 gives the pseudo-code for the incremental
detection pipeline of our proposed IncDet. We implement our
framework under both Fast R-CNN [18] and Faster R-CNN
[19] to demonstrate its versatility. We first carry out ablation
studies to analyze the effectiveness of different components of
our framework and then conduct comprehensive comparisons
with state-of-the-art methods [8], [21], [22], [23].
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Algorithm 1 Incremental detection pipeline of our IncDet
Input: old model M, new class datasets {Dt} , t > 2
Output: new model M0

repeat
1. predict on Dt with M to obtain pseudo annotations D0

t

2. fine-tune M on D0
t with Huber regularization to get M0

3. update the importance weight wi as Eq. (11)
4. M M0, t t+ 1

until all new classes are added

A. Datasets and metrics
We conduct our main experiments on the PASCAL VOC

2007 [20] detection benchmark, including 5011 and 4952
images from 20 classes in the trainval and test subsets,
respectively. Training is done on the trainval split and testing is
done on the test split with mAP@0.5 as the evaluation metric.
We also conduct experiments on the COCO 2014 [5] dataset to
demonstrate IncDet’s effectiveness on the large-scale dataset.
We train our model in the 80K images from the training set
and test on the 5K minival split. COCO style mAP at 0.5
IoU and mean mAP (mmAP) among different IoU thresholds
ranging from 0.5 to 0.95 are used as evaluation metrics.

B. Implementation details
Following ILOD [8], we choose ResNet-50 [56] as the

backbone network and Batch Normalization [57] is replaced
with the frozen channel-wise affine layer. We also use Edge
Boxes [58] to extract 2000 proposals from every image. We
set the optimizer as SGD with momentum 0.9. Images are
scaled to 600 pixels for the shorter side and the longer side
is constrained to be less than 1000 pixels. Notice that in each
training stage, only images containing at least one instance
from the classes of interest are used, and bounding boxes
corresponding to irrelevant classes are excluded from the
annotations. We implement IncDet with PyTorch [59] and train
on servers with 8 GPUs for all experiments.

C. Ablation Studies
Pseudo annotation is proposed to overcome the missing

annotations of old classes in the new images. A comparison
of our method with and without pseudo annotations is shown
in Fig. 3. It shows that paradoxes produced by the supervision
in different training stages bring a huge negative impact on
old classes. Masking regions of old classes consistently and
substantially leads to recall and thus AP improvement of old
classes. By utilizing pseudo annotations, we can further boost
the performance of old classes. Surprisingly, APs of some
new classes, such as plant, sheep and train, are also improved
remarkably. We believe this is because pseudo annotations of
the old classes can prevent the model from misclassifying old
class objects as the new classes, and hence reduce false alarms
of the new classes during testing.

One concern about the pseudo annotation is how false
detections of the old model affect the performance. In Tab.
III we investigate the model performance when varying the
detection score threshold �. Predicted boxes whose scores

lower than � are excluded from the pseudo annotations, and
smaller � leads to more false detections. As shown, the mAP
decreases as the number of false detections increases but the
performance is fairly robust to the exact setting of �. The last
row with � = 1.0 means not to use pseudo annotations and
thus leads to much worse final performance.

TABLE III
EFFECT OF THE SCORE THRESHOLD � ON MAP (%) OF OLD (15), NEW (5)

AND ALL (20) CLASSES WHEN 5 CLASSES ARE ADDED ALL AT ONCE.

� old new all
0.3 63.0 56.5 61.4
0.4 63.2 57.5 61.8
0.5 63.5 57.7 62.1
0.6 63.5 57.9 62.1
0.7 63.5 57.6 62.1
0.8 63.7 58.1 62.3
0.9 64.5 58.3 63.0
1.0 39.6 56.7 43.8

The Huber regularization is extremely important in our
approach, without which we cannot train the network suc-
cessfully. We have tried linearly warming up [60] the learning
rate to avoid the gradient explosion issue but still failed, as
the quadratic loss quickly goes out of control in the warm-up
phase. The effect of Huber regularization is shown in Fig. 5,
where gradient clipping [17] is also compared. Note that the
clipping threshold �g in Eq. (15) is adjusted properly so that
the quadratic loss matches the Huber regularization loss and
the gradient explosion vanishes. Compared with the quadratic
loss both with and without gradient clipping [17], we are able
to obtain better old and new class trade-off and thus superior
final mAP across all learned classes.

TABLE IV
EFFECT OF � ON MAP (%) OF OLD (15), NEW (5) AND ALL (20) CLASSES

WHEN 5 NEW CLASSES ARE ADDED ALL AT ONCE. RESULTS ARE
OBTAINED VIA TRAINING ON THE TRAINING SET AND TESTING ON THE

VALIDATION SET.

� old new all
10 61.2 58.7 60.6
30 62.7 59.0 61.8
100 64.5 58.3 63.0
300 65.6 54.8 62.9

1000 66.1 51.8 62.5

Impact of the balancing parameter �. As shown in
Fig. 6, with our Huber Regularization, increasing � would
consistently boost the APs of the old classes. But the APs
of the new classes will be harmed because of the stronger
intransigence of the model. We can even fine-tune the model
stably with a huge � such as 1000 without gradient explosion.
The best trade-off between old and new classes is achieved
when � = 100. For fair comparison with previous work [8], we
investigate the effect of � when training on the trainval set and
testing on the test set. In practice, to completely avoid the use
of the test set, we can choose the best hyper-parameters (e.g.,
�) by training on the training set and testing on the validation
set (results shown in Tab. IV). Then we can use the chosen
optimal � to train on the combination of the training and
validation (trainval) set to obtain the final model. Comparing
Fig. 6 and Tab. IV, we are able to get the best � = 100
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Fig. 6. Effect of � on the AP for each class and the mAP across all seen classes after incremental training, where we originally train the network on the
first 15 classes (left to dashed line) and then fine-tune it with the remaining 5 ones (right to dashed line) all at once.

TABLE VI
COMPARISON OF MAP (%) ON VOC 2007 TEST SET WHEN 5 CLASSES ARE ADDED SEQUENTIALLY. NUMBERS IN EACH ROW REPRESENT MAP FOR
OLD, NEW AND ALL CLASSES, AFTER ADDING A SINGLE CLASS ACCORDING TO THE ALPHABETICAL ORDER. COLUMNS WITH “-B” SUFFIX ARE THE

RESULTS OF JOINT TRAINING ON ALL SEEN CLASSES, SHOWN AS UPPER BOUNDS FOR INCREMENTAL DETECTION. COLUMNS WITHOUT SUFFIX SHOW
THE MAP AFTER INCREMENTAL FINE-TUNING. COLUMNS WITH “-4” SUFFIX SHOW MAP DROP AFTER ADDING CLASSES W.R.T. THE PREVIOUS

BOUNDS, THE LOWER THE BETTER.

added class methods old-B new-B all-B old new all old-4 new-4 all-4

16 (plant)
ILOD [8] 70.9 47.7 69.5 69.7 26.3 67.0 1.2 21.4 2.5

IncDet-Fast 74.0 45.2 72.2 73.3 32.1 70.7 0.7 13.1 1.5
IncDet-Faster 75.1 47.7 73.3 75.4 33.3 72.7 -0.3 14.4 0.6

17 (sheep)
ILOD [8] 70.9 58.5 69.4 67.4 37.4 63.9 3.5 21.2 5.5

IncDet-Fast 74.0 59.8 72.3 72.3 45.8 69.2 1.6 14.0 3.1
IncDet-Faster 75.1 60.9 73.4 74.2 42.3 70.4 0.9 18.6 3.0

18 (sofa)
ILOD [8] 70.9 60.9 69.2 66.4 42.5 62.5 4.5 18.3 6.7

IncDet-Fast 74.0 63.3 72.2 71.5 46.5 67.3 2.5 16.9 4.9
IncDet-Faster 75.1 65.0 73.4 73.4 47.6 69.1 1.7 17.4 4.3

19 (train)
ILOD [8] 70.9 64.9 69.6 66.0 48.8 62.4 4.9 16.1 7.2

IncDet-Fast 74.0 65.9 72.3 71.2 53.4 67.4 2.8 12.6 4.9
IncDet-Faster 75.1 69.0 73.8 72.8 54.8 69.0 2.3 14.3 4.8

20 (tv)
ILOD [8] 70.9 66.7 69.8 66.0 51.6 62.4 4.9 15.0 7.4

IncDet-Fast 74.0 67.4 72.3 70.6 53.4 66.3 3.4 14.1 6.0
IncDet-Faster 75.1 69.9 73.8 72.2 53.7 67.6 2.9 16.2 6.2

consistently, indicating the robustness of the hyper-parameter
tuning. Note that the results in Tab. IV are lower than those
in Fig. 6 because less training data is used (the validation set
is excluded).

TABLE V
EFFECT OF THE CLIPPING THRESHOLD ON MAP (%) OF OLD (15), NEW

(5) AND ALL (20) CLASSES WHEN 5 CLASSES ARE ADDED ALL AT ONCE.

� old new all
3⇥ 10�7 62.3 63.5 62.6
10�6 66.2 64.1 65.7

3⇥ 10�6 68.9 62.9 67.4
10�5 71.4 61.6 69.0

3⇥ 10�5 71.6 60.4 68.8
10�4 71.7 57.9 68.2

3⇥ 10�4 71.5 58.1 68.1

(a) Huber Regularization

�g old new all
100 69.5 59.8 67.1

3⇥ 100 69.2 60.2 66.9
101 69.1 59.9 66.8

3⇥ 101 69.4 60.1 67.1
102 69.0 60.5 66.9

3⇥ 102 69.2 60.3 67.0
103 69.1 59.9 66.8

(b) Gradient Clipping [17]

Impact of the clipping threshold �. Generally speaking, as
� increases, mAP of the old classes increases and that of the
new classes decreases (shown in Tab. V (a)). Since we only
restrict the gradient of the regularization term not to cause
gradient explosion, the actual gradient for each parameter
comes from both the regularization and the likelihood term

where the gradient is kept unconstrained. When � is too small,
the incremental fine-tuning degrades to the naïve fine-tuning
without regularization as the regularization loss approaches
zero, so the model will forget the old classes. However when
� is too large, the gradient cannot be constrained effectively
and thus leads to worse performance on new classes. We fix
� to 10�5 in the rest experiments for its best trade-off. For a
complete comparison, we also study the effect of the clipping
threshold �g in gradient clipping [17] in Tab. V (b). Although
gradient clipping can alleviate the gradient explosion issue,
its best performance 67.1% lags behind that of our Huber
regularization 69.0%, showing the superiority of our adaptive
clipping method.

D. Results on VOC
Now we compare our proposed IncDet with the previous

state-of-the-art methods [8], [21], [22], [23]. The theoretical
upper bounds for incremental detection are the results of joint
training with all the seen classes. So we compare the methods
by both the absolute mAP and the mAP drop w.r.t. these
bounds after incremental fine-tuning.

Add classes sequentially. Tab. VI and Fig. 7 (b) compare
our method with ILOD [8] when we first train on 15 old
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TABLE VII
COMPARISON OF MAP (%) ON VOC 2007 TEST SET WHEN GROUPS OF CLASSES ARE ADDED SEQUENTIALLY. EACH ROW REPRESENTS MAP FOR THE

FOUR GROUPS OF CLASSES AND ALL CLASSES, AFTER ADDING A GROUP CONSISTING OF 5 CLASSES. COLUMNS WITH “-B” SUFFIX ARE THE RESULTS OF
JOINT TRAINING ON ALL SEEN CLASSES, SHOWN AS UPPER BOUNDS FOR INCREMENTAL DETECTION. COLUMNS WITHOUT SUFFIX SHOW THE MAP

AFTER INCREMENTAL FINE-TUNING. COLUMNS WITH “-4” SUFFIX SHOW MAP DROP AFTER ADDING CLASSES W.R.T. THE PREVIOUS BOUNDS, THE
LOWER THE BETTER.

added classes methods a-B b-B c-B d-B all-B a b c d all a-4 b-4 c-4 d-4 all-4

6 – 10

ILOD [8] 65.2 73.2 69.2 44.8 59.2 52.0 20.4 14.0 17.2
CIFRCN [23] 65.2 73.2 69.2 43.8 71.2 57.5 21.4 2.0 11.7
IncDet-Fast 68.4 76.2 72.3 62.4 74.5 68.4 6.0 1.7 3.9

IncDet-Faster 70.9 78.2 74.5 63.7 75.4 69.6 7.2 2.7 4.9

11 – 15

ILOD [8] 66.2 71.3 77.3 71.6 49.0 43.4 48.6 47.0 17.2 27.9 28.7 24.6
CIFRCN [23] 66.2 71.3 77.3 71.6 35.3 49.0 68.4 50.9 30.9 22.3 8.9 20.7
IncDet-Fast 68.5 75.7 77.8 74.0 58.8 67.6 68.6 65.0 9.7 8.1 9.2 9.0

IncDet-Faster 71.6 76.1 79.3 75.7 62.4 70.6 69.9 67.6 9.2 5.5 9.4 8.1

16 – 20

ILOD [8] 65.1 70.4 76.4 67.8 69.9 40.2 35.5 42.5 38.8 39.3 24.9 34.9 33.9 29.0 30.6
CIFRCN [23] 65.1 70.4 76.4 67.8 69.9 34.6 44.1 55.6 59.6 48.5 30.5 26.3 20.8 8.2 21.4
IncDet-Fast 68.8 75.4 77.7 67.4 72.4 55.8 61.9 66.0 57.0 60.2 13.0 13.5 11.8 10.4 12.2

IncDet-Faster 70.4 75.6 79.1 69.9 73.8 59.2 66.0 68.5 56.6 62.6 11.2 9.6 10.6 13.3 11.2

TABLE VIII
COMPARISON OF MAP (%) ON VOC 2007 TEST SET WHEN 5 OR 10 CLASSES ARE ADDED ALL AT ONCE. NUMBERS IN EACH ROW REPRESENT MAP FOR

OLD, NEW AND ALL CLASSES, AFTER ADDING A SET OF NEW CLASSES SIMULTANEOUSLY. COLUMNS WITH “-B” SUFFIX ARE THE RESULTS OF JOINT
TRAINING ON ALL SEEN CLASSES, SHOWN AS UPPER BOUNDS FOR INCREMENTAL DETECTION. COLUMNS WITHOUT SUFFIX SHOW THE MAP AFTER

INCREMENTAL FINE-TUNING. COLUMNS WITH “-4” SUFFIX SHOW MAP DROP AFTER ADDING CLASSES W.R.T. THE PREVIOUS BOUNDS, THE LOWER THE
BETTER.

added classes methods old-B new-B all-B old new all old-4 new-4 all-4

16 – 20
ILOD [8] 70.9 66.7 69.8 68.3 58.4 65.9 2.6 8.2 3.9

IncDet-Fast 74.0 67.4 72.4 71.4 61.6 69.0 2.6 5.8 3.4
IncDet-Faster 75.1 69.9 73.8 72.7 63.5 70.4 2.3 6.5 3.4

11 – 20

ILOD [8] 68.4 71.3 69.8 63.2 63.1 63.1 5.2 8.1 6.7
DMC [21] 75.3 74.0 74.7 70.5 66.2 68.3 4.8 7.9 6.4

RILOD [22] 75.3 74.0 74.7 67.5 68.3 67.9 7.9 5.7 6.8
IncDet-Fast 72.1 72.6 72.4 68.0 71.2 69.6 4.1 1.4 2.8

IncDet-Faster 73.0 74.5 73.8 69.7 71.8 70.8 3.3 2.7 3.0

classes and then add 5 new classes sequentially. They show
that our method instantiated with Fast R-CNN and Faster R-
CNN outperforms the approach based on knowledge distilla-
tion [53] consistently, in terms of both the final performance
and the performance drop compared with the upper bounds.
We notice that our upper bound is a bit higher than ILOD [8]
and this may be due to different implementation infrastructure
(e.g. PyTorch vs. TensorFlow, multi- vs. single-gpu training).
As we are concerned about the performance drop after in-
cremental fine-tuning, so these results can still be compared
reasonably. Both methods perform well on memorizing old
classes but struggle to detect new classes. Overfitting on new
category images can be the reason, since only hundreds of
images are added for each class. We also perform adding 10
classes sequentially and compare the results with ILOD [8]
(Fig. 7 (a)). The gap between the solid lines is almost always
larger than that of the dashed lines, which means our mAP
drop is consistently less than ILOD [8].

Add groups of classes sequentially. To compare fairly with
the recent method CIFRCN [23], we follow their settings and
split the 20 classes in the VOC dataset to 4 groups (a, b, c, and
d) with 5 classes in each group. The incremental fine-tuning is
conducted by adding one group of classes at a time until all 20
classes are learned. The results are shown in Tab. VII, where
our method significantly outperforms its counterpart in terms
of the mAP for each group, the mAP for all classes and the
mAP drop compared with joint training upper bounds, showing

that our method is also superior in the group-wise incremental
detection setting.

Add classes all at once. We report the results of adding 5
and 10 classes all at once in Tab. VIII. Compared with the
auxiliary-based methods implemented with either proposal-
based [8] or proposal-free framework [21], [22], our approach
performs substantially better regarding mAP for new classes
and meanwhile obtains comparable or better mAP for old
ones, indicating we can leverage the capacity of the network
to a greater extent. Besides, comparing Tab. VI and Tab. VIII,
we see that adding multiple classes simultaneously manifests
better mAP than adding a single class each time.

TABLE IX
COMPARISON OF MAP (%) ON COCO MINIVAL SPLIT. MAP OF ALL 80

CLASSES ARE SHOWN IN THIS TABLE. COLUMNS WITH “-B” SUFFIX ARE
THE RESULTS OF JOINT TRAINING ON ALL SEEN CLASSES, SHOWN AS
UPPER BOUNDS FOR INCREMENTAL DETECTION. COLUMNS WITHOUT

SUFFIX SHOW THE MAP AFTER INCREMENTAL FINE-TUNING. COLUMNS
WITH “-4” SUFFIX SHOW MAP DROP AFTER ADDING CLASSES W.R.T. THE

PREVIOUS BOUNDS, THE LOWER THE BETTER.

methods .5-B .5:.95-B .5 .5:.95 .5-4 .5:.95-4
ILOD [8] 38.1 22.6 37.4 21.3 0.7 1.3

IncDet-Fast 42.8 25.5 41.9 25.5 0.9 0.0
IncDet-Faster 50.4 29.6 49.3 29.7 1.1 -0.1

E. Results on COCO
To validate the effectiveness of our proposed IncDet on the

challenging large-scale dataset, we also conduct incremental
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(a) adding 10 classes (b) adding 5 classes

Fig. 7. Comparison of AP for each new class between ILOD [8] and our IncDet after adding new classes sequentially, the dashed lines indicate joint training
upper bounds and the solid lines are the results from incremental fine-tuning.

TABLE X
COMPARISON OF MAP (%) ON VOC 2007 TEST SET WHERE THE BASE MODEL IS TRAINED ON THE FIRST 10 VOC CLASSES ON VOC IMAGES AND

FINE-TUNED WITH THE REST 10 VOC CLASSES ON VOC OR COCO IMAGES. “VOC” COLUMNS REPRESENT MAPS AFTER INCREMENTAL FINE-TUNING
ON IMAGES FROM IN-DOMAIN DATASET (VOC), “COCO” COLUMNS ARE THE RESULTS AFTER INCREMENTAL FINE-TUNING ON IMAGES FROM

CROSS-DOMAIN DATASET (COCO). COLUMNS WITH “-B” SUFFIX ARE THE RESULTS OF JOINT TRAINING ON ALL SEEN CLASSES WITH IMAGES FROM
VOC, SHOWN AS UPPER BOUNDS FOR INCREMENTAL DETECTION. COLUMNS WITHOUT SUFFIX SHOW THE MAP AFTER INCREMENTAL FINE-TUNING.

COLUMNS WITH “-4” SUFFIX SHOW MAP DROP AFTER ADDING CLASSES W.R.T. THE PREVIOUS BOUNDS, THE LOWER THE BETTER.

methods old-B new-B all-B VOC COCO
old new all old-4 new-4 all-4 old new all old-4 new-4 all-4

ILOD [8] 68.4 71.3 69.8 63.2 63.1 63.1 5.2 8.2 6.7 61.4 48.2 54.8 7.0 23.1 15.0
IncDet-Fast 72.1 72.6 72.4 68.0 71.2 69.6 4.1 1.4 2.8 70.9 75.0 72.9 1.2 -2.4 -0.5

IncDet-Faster 73.0 74.5 73.8 69.7 71.8 70.8 3.3 2.7 3.0 73.8 76.1 74.9 -0.8 -1.6 -1.1

detection experiments on the COCO dataset and compare it
with previous work [8]. The base model is trained on the
first 40 classes and then fine-tuned with the rest 40 ones
as done in [8]. Tab. IX compares our method with ILOD
[8]. It shows that IncDet implemented with Fast R-CNN and
Faster R-CNN only declines slightly in terms of mAP@0.5
w.r.t. the joint training upper bounds with all seen classes.
And it achieves comparable or even better results in terms
of mean mAP across different IoU thresholds compared with
its corresponding joint training upper bounds, which suggests
that our method can also overcome catastrophic forgetting on
the large-scale dataset. Compared with ILOD [8], our method
achieves comparable performance drop in terms of mAP@0.5,
and much less performance drop in terms of average mAP
across different IoU thresholds (0.5 to 0.95). This indicates our
method produces more accurate bounding boxes. Also, thanks
to the versatility of our IncDet, we can leverage advanced
detection methods such as Faster R-CNN and thus achieve
much better final performance in challenging datasets.

F. Results of Cross-Domain
Since we are interested in domain drift during incremental

detection, where the datasets used for old model training
and incremental fine-tuning come from different domains, we
initially train the old model on the first 10 classes from VOC,
then fine-tune it on the rest 10 classes either from the VOC
or COCO dataset, and finally test the new model on the
VOC test set. Tab. X shows that the performance obtained
via incrementally fine-tuning on COCO with our method is

better than that of fine-tuning on VOC, even better than that of
jointly-training on VOC with all seen classes. We believe that
this is because COCO has much more appearance variations
such as scale, pose and viewpoint than VOC. Compared with
ILOD [8], our IncDet achieves much less performance drop
in both in-dataset and cross-dataset scenarios. This reveals the
generalization ability of our method both for the in-domain
and cross-domain setting.

G. Efficiency Investigation

As incremental detection aims at incrementally adapting the
old model to detect new classes, last we study the efficiency
of our IncDet in terms of both time and memory during fine-
tuning and testing. Comparison is also made with previous
knowledge distillation based method ILOD [8].

Testing efficiency. With the number of classes increasing,
the model size grows as parameters for new classes are added.
So we care about the time spent and memory consumed at
testing time when more classes are involved. We train the
base model on the first 5 VOC classes and then add the
rest 15 classes to the model, each time 5 classes are added.
As can be seen from Tab. XI adding 5 classes only spends
about 1 more millisecond and consumes about 0.2 MB more
memory. Compared with 0.260s inference time and 2382.6
MB memory consumption for the 5 old classes, our method
is efficient when adding classes. This is intuitive because we
only add about 51.2K parameters for the new classes in the
last fully-connected layers (including region classification and
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box regression) of the network, which are negligibly light-
weight compared with the backbone network ResNet-50 that
has around 25.6M parameters. All the time and memory are
measured on a GTX 1080 Ti GPU.

TABLE XI
TIME SPENT AND MEMORY CONSUMED AT TESTING TIME FOR A SINGLE

IMAGE WHEN THE NUMBER OF DETECTED CLASSES INCREASES.

#classes 5 10 15 20
time (s) 0.260 0.261 0.262 0.263

memory (MB) 2382.6 2382.8 2383.0 2383.2

Training efficiency. Compared with the auxiliary-based
methods [8], [21], [22], [23] which need to conduct forward
passes of the teacher networks during fine-tuning on new data
for about a dozen of epochs, our EWC-based method is totally
auxiliary-free and only needs to go through the new data with
the optimized model at the end of each fine-tuning phase
for a single epoch to update the importance weight of each
parameter in the network. The extra epoch for importance
update is the same as normal epochs for incremental fine-
tuning, so the time spent for importance update is less than
one tenth of the usual training time where more than ten
epochs are typically needed. Tab. XII verifies that our IncDet
is much more efficient and economic in terms of computation
and memory. Specifically, our IncDet based on Fast R-CNN
needs less than half of the time and memory compared with
ILOD [8]. ILOD exploits one auxiliary teacher network during
fine-tuning and thus needs to maintain a frozen copy of the
whole model in memory while we do not. IncDet based on
Faster R-CNN needs more time and memory compared with
the Fast R-CNN variant because it includes an RPN module
for online proposal generation, but it is still more efficient
than the counterpart ILOD [8]. Moreover, our method is more
efficient than DMC [21] where two different teacher networks
corresponding to the old and new classes are used during
incremental fine-tuning.

TABLE XII
TIME SPENT AND MEMORY CONSUMED WHEN FINE-TUNING ON 10 NEW

CLASSES WITH 2 IMAGES IN A BATCH.

methods time (s) memory (MB)
ILOD [8] 0.98 9579

IncDet-Fast 0.41 4483
IncDet-Faster 0.70 4885

VII. CONCLUSIONS

In this paper, we propose IncDet, an EWC-based incre-
mental detection framework, which can theoretically enable
any conventional detection methods to learn to detect new
classes in a recursive and efficient manner. Key issues causing
the failure of directly applying EWC to object detection are
identified by controlled experiments and addressed by our
simple but effective pseudo annotation and Huber regular-
ization. Comprehensive experiments show that our general
approach implemented with either Fast R-CNN or Faster R-
CNN outperforms the previous best methods [8], [21], [22],

[23] while requiring less memory and computation during
incremental fine-tuning.

For future work, we may extend incremental detection to the
setting of few shot detection [61], where the incremental fine-
tuning only requires few new class images and annotations. In
this way, we can further reduce the cost needed for manual
labeling and the time spent on incremental fine-tuning. In
addition, it is valuable to develop techniques on boosting
the incremental detection performance especially when the
new classes are added sequentially. Moreover, how to apply
variants [43], [15] of EWC to incremental detection is still an
open problem.
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