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Virus-mediated gene therapy has the potential to deliver exogenous genetic material
into specific cell types to promote survival and counteract disease. This is particularly
enticing for neuronal conditions, as the nervous system is renowned for its intransigence
to therapeutic targeting. Administration of gene therapy viruses into skeletal muscle,
where distal terminals of motor and sensory neurons reside, has been shown to result
in extensive transduction of cells within the spinal cord, brainstem, and sensory ganglia.
This route is minimally invasive and therefore clinically relevant for gene therapy targeting
to peripheral nerve soma. For successful transgene expression, viruses administered
into muscle must undergo a series of processes, including host cell interaction and
internalization, intracellular sorting, long-range retrograde axonal transport, endosomal
liberation, and nuclear import. In this review article, we outline key characteristics of major
gene therapy viruses—adenovirus, adeno-associated virus (AAV), and lentivirus—and
summarize the mechanisms regulating important steps in the virus journey from
binding at peripheral nerve terminals to nuclear delivery. Additionally, we describe how
neuropathology can negatively influence these pathways, and conclude by discussing
opportunities to optimize the intramuscular administration route to maximize gene
delivery and thus therapeutic potential.

Keywords: adenovirus (AdV), adeno-associated virus (AAV), axonal transport, lentivirus, motor neuron,
neuromuscular junction (NMJ), peripheral nerve, sensory neuron

INTRODUCTION

With thousands of clinical trials to date, gene therapy is a flourishing strategy with great promise
for the treatment of diseases impacting the nervous system. Indeed, virus-mediated gene therapies
have now been approved by the FDA in the US for RPE65-associated retinal dystrophy (voretigene
neparvovecmarketed as Luxturna) and SMN1-linked spinal muscular atrophy (SMA; onasemnogene
abeparvovec marketed as Zolgenmsa), as well as non-neuronal conditions (High and Roncarolo,
2019). Gene therapy viruses are non-replicating, but still hijack host cell machinery to express
transgenes of interest in the nucleus. Crucially, some viral vectors (i.e., viruses specifically used
to deliver genetic material into cells) have the potential to circumvent the blood-brain- (BBB)
and blood-spinal cord barriers (BSCB) when intravenously injected. Similarly, direct injection of
viruses into the cerebrospinal fluid (e.g., via lumbar puncture in humans) also permits targeting
of the peripheral (PNS) and central nervous systems (CNS). These two administration routes
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for neuronal delivery have been extensively covered in recent
reviews (Hocquemiller et al., 2016; Deverman et al., 2018; Hudry
and Vandenberghe, 2019). A complementary, and perhaps
sometimes superior (Benkhelifa-Ziyyat et al., 2013), method
to introduce genetic material into select neuronal populations
is by virus administration into muscle, which is the focus of
this review. Muscles contain the synaptic connection between
lower motor neurons and muscle fibers, i.e., the neuromuscular
junction (NMJ), as well as specialized sensory nerve endings (e.g.,
muscle spindles). Viruses can be internalized into peripheral
nerve terminals and subsequently retrogradely transported along
axons to deliver viral payloads into corresponding motor and
sensory neurons, with scope for widespread transfer to additional
cells throughout the spinal cord and brain (Benkhelifa-Ziyyat
et al., 2013; Chen et al., 2020).

The NMJ is a tripartite synapse comprised of a pre-synaptic
motor nerve terminal, a post-synaptic muscle fiber, and several
terminal Schwann cells (Li et al., 2018a). Moreover, the
synaptic cleft consists of a complex and dynamic extracellular
matrix (ECM) that contributes to receptor translocation and
internalization of a variety of molecules (Heikkinen et al.,
2020). Targeting muscles with viruses can transduce all three
cellular constituents of the NMJ (Mazarakis et al., 2001; Homs
et al., 2011)—by ‘‘transduction,’’ we mean the introduction of
genetic material into target cells. Furthermore, uptake at sensory
nerve terminals can lead to transgene expression in dorsal
root ganglia (DRG), trigeminal ganglia, and dorsal horn nerve
fibers (Watson et al., 2016; Chen et al., 2020). When injected
into a muscle, viruses are close to nerve endings for longer
periods and at higher concentrations than when systemically
injected. Moreover, limiting widespread virus distribution is
likely to decrease safety risks due to immunogenicity or toxicity,
while possible negative effects caused by central injections
will be avoided. Hence, targeting muscle may prove to be a
useful method to introduce viral vectors to certain central and
peripheral neurons and/or glia.

For this strategy to be exploited, viruses must undergo several
major processes, including host cell binding, internalization,
intracellular sorting, and retrograde axonal trafficking to
neuronal soma before nuclear entry. In this review article,
we outline these mechanisms for major gene therapy
viruses—adenovirus (AdV), adeno-associated virus (AAV)
and lentivirus (LV; Table 1)—with a focus on peripheral
neurons. We also comment on the impact of neuropathology on
using intramuscular virus injection as an administration route.
To conclude, we discuss opportunities to optimize gene therapy
delivery to muscle for nervous system targeting.

GENE THERAPY VIRUSES

Adenovirus
First isolated in the 1950s, AdVs are non-enveloped, double-
stranded DNA viruses with an icosahedral-shaped capsid
comprised mainly of hexon and penton capsomeres (Greber and
Flatt, 2019). Adenoviridae encompasses more than 300 different
vertebrate-infecting types, including seven human AdV (HAdV)
species (A to G) currently comprised of ≈80 types classified

TABLE 1 | Gene therapy virus characteristics.

Adenovirus AAV Lentivirus

Size (nm) ≈90 ≈25 80–120
Genome type dsDNA ssDNA ssRNA
Packaging capacity (kb) ≈8∗

≈4.7#
≈8

Enveloped No No Yes
Integration No No Yes
Expression Transient Persistent Persistent
Immunogenicity High Moderate Low

Adapted from Worgall and Crystal (2014); Lee et al. (2017); Kariyawasam et al. (2020).
∗This is increased to ≈36 kb in the “helper-dependent” human AdV serotype 5. #This is
halved in self-complementary AAV. ds, double-stranded; ss, single-stranded.

by serology or sequencing. HAdVs primarily cause ocular,
gastrointestinal, or respiratory infections (Ghebremedhin, 2014).
It is estimated that more than 80% of the human population
has been exposed to HAdV and develop type-specific humoral
and cross-reactive cellular immunity (Ahi et al., 2011), hence,
for utilization as a gene therapy vector, strategies to circumvent
the host immune response have been examined (Duffy et al.,
2012). In the 1990s, AdV became the first gene therapy virus
to be tested in human clinical trials and currently remains the
most investigated (Lee et al., 2017). The more common human
serotypes 2 and 5 belonging to species C have been the focus for
gene therapy development. E1/E3-deleted AdVs have a relatively
large packaging capacity of ≈8 kb, can transduce many different
cell types, and form episomes rather than integrating into
the host genome. Moreover, AdVs can be efficiently produced
in large, concentrated quantities. In some hosts and some
organs, transgene expression using AdV can be transient, likely
due to host-specific responses, while in other cases, transgene
expression remains robust for months (Li et al., 2016). In
this regard, the transient expression can be advantageous for
scenarios requiring short-term upregulation of therapeutic genes
and for limiting deleterious consequences that may arise from
long-term expression (discussed in Tosolini and Morris, 2016b).
However, the transgene capacity of AdV can be increased up
to ≈36 kb by removing essential elements and exogenously
providing them for in vitro packaging, and with this approach,
they lack the elements that usually activate host immunity,
which can thereby facilitate prolonged-expression (Ricobaraza
et al., 2020). Permitting much broader options for transgene
incorporation, this expansive packaging capacity is one major
advantage of AdV over other viral vectors.

AdVs display broad cell and tissue tropisms mediated by the
interaction between their capsid and specific cellular receptors
(Arnberg, 2012). Capsid modification, for instance by altering
the virus genome or adding ligands, can widen or narrow
tissue specificity depending on the required strategy (Worgall
and Crystal, 2014). Direct intracranial injection of HAdV has
been shown to result in the transduction of several different
neuronal and non-neuronal cell types in the rodent CNS (Akli
et al., 1993; Davidson et al., 1993; Le Gal La Salle et al., 1993).
Furthermore, intramuscular administration of AdVs can result
in their uptake at rodent NMJs and sensory terminals before
retrograde transport to cell bodies (Finiels et al., 1995; Ghadge
et al., 1995; Tosolini and Morris, 2016a), which is a viable
strategy to counteract neuromuscular disease (Haase et al., 1998;
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Acsadi et al., 2002) and peripheral nerve injury (Giménez y
Ribotta et al., 1997; Baumgartner and Shine, 1998). Of note, the
canine adenovirus serotype 2 (CAV-2; also known as CAdV-
2), which can cause mild respiratory infections in Canidae,
has become the AdV of choice for neuronal transduction (Del
Rio et al., 2019). Due to possessing greater specificity in host
cell receptor binding than HAdVs, CAV-2 preferentially targets
neurons (Soudais et al., 2001). Furthermore, it is efficiently
retrogradely transported along axons (Salinas et al., 2009), while
a helper-dependent CAV-2 has been shown to drive transgene
expression in the rodent CNS for over a year (Soudais et al.,
2004). CAV-2 injection into craniofacial muscles of rhesus
monkeys caused robust motor neuron transduction (Bohlen
et al., 2019), while intramuscular administration in rats results
in superior motor neuron uptake and transport compared
to AdV serotype 5 (Soudais et al., 2001), which together
highlight the potential of CAV-2 for motor neuron targeting via
skeletal muscle.

Adeno-Associated Virus
Belonging to the Dependoparvovirus genus and thus needing
factors from helper viruses (e.g., AdV) to replicate, AAVs
are non-enveloped, single-stranded DNA viruses discovered as
AdV preparation contaminants (Zinn and Vandenberghe, 2014).
More than 100 natural AAV variants, including 13 serotypes
from primates, have been identified, each with differing
tissue tropisms, transduction efficiencies, and antigenicities, all
resulting from their distinct protein capsids (Zincarelli et al.,
2008; Srivastava, 2016). Additional synthetic AAV subtypes
have been derived/engineered in the laboratory to optimize
these features for gene transfer (Kotterman and Schaffer, 2014).
Impinging considerably upon its tractability, the packaging
capacity of AAV is limited to≈4.7 kb, which is halved in themore
rapidly expressing self-complementary AAV (for simplicity,
we refer to single-stranded and self-complementary AAV as
one), although DNA delivery across separate AAV particles is
possible (Patel et al., 2019). In most cases, AAV vectors induce
limited immunogenicity in naïve hosts (Ronzitti et al., 2020),
and have a good safety record, although there may be toxicity
issues when administered at high doses (Hinderer et al., 2018).
However, the AAV vector effect on brain homeostasis has not
been completely addressed and is an important consideration
(He et al., 2019). Forming stable, non-replicating episomes for
sustained transgene expression, AAV is largely non-integrating
(Schnepp et al., 2005), although insertional mutagenesis has
been reported (Chandler et al., 2017). These combined features
have led to AAV becoming the premier clinical gene therapy
vector and its recent regulatory approval for the treatment
of several conditions (High and Roncarolo, 2019). However,
AAV gene therapy is not entirely infallible, as wild type AAV
infections have been linked with human disease (Nault et al.,
2016); however, potential solutions to overcome these and other
concerns to drive human AAV gene therapy are continuing
(Colella et al., 2018). Nonetheless, many more clinical trials of
AAV-mediated gene therapy are ongoing or planned, including
several involving intramuscular administration (although not
necessarily for neuronal transduction).

AAVs have been used for many years in the laboratory
to drive transgene expression in the nervous system (Hudry
and Vandenberghe, 2019). Due to its ability to cross the BBB,
AAV serotype 9 (AAV9) has become the principal serotype for
CNS-targeting upon systemic administration (Foust et al., 2009;
Bevan et al., 2011; Samaranch et al., 2012), although superior
serotypes, such as AAVrh10, have also emerged (Tanguy et al.,
2015). However, cell binding and transduction can change with
age (Chakrabarty et al., 2013), thus engineered serotypes with
greater neuronal tropism, at least in mice, are being developed
(Choudhury et al., 2016; Deverman et al., 2016). Nervous system
delivery has also been achieved by AAV injection into muscle;
intramuscular administration of several AAV serotypes (e.g.,
AAV2, AAV9) results in AAV uptake into the motor and sensory
neurons in rodents (Hollis Ii et al., 2008; Zheng et al., 2010;
Benkhelifa-Ziyyat et al., 2013; Jan et al., 2019; Chen et al., 2020)
and motor neurons in non-human primates (Towne et al., 2010).
Consequently, this method of gene delivery has proven beneficial
in mouse models of motor neuron diseases amyotrophic lateral
sclerosis (ALS), and SMA (Tosolini and Sleigh, 2017). Increasing
the possible clinical applicability of AAV, single intramuscular
injections of rAAV2-retro, a newly evolved variant with robust
retrograde transport capacity (Tervo et al., 2016), were recently
shown to result in broad transgene expression across ipsilateral
and contralateral motor neurons along the length of the spinal
cord, as well as brainstem motor nuclei, DRG, trigeminal ganglia
and dorsal horn nerve fibers (Chen et al., 2020). Importantly,
AAV targeting of peripheral neurons is therefore not limited to
those cells innervating the injected muscle.

Lentivirus
Belonging to the Retroviridae family, LV possesses a single-
stranded RNA genome and can infect both dividing and
non-dividing cells (Parr-Brownlie et al., 2015). LV is an
enveloped virus with a packaging capacity of ≈8 kb and it relies
on reverse transcription of its single-stranded RNA genome to
generate corresponding double-stranded DNA for integration
into the host genome (Mátrai et al., 2010). This provides benefits
of long-term transgene expression and inheritance of genetic
material in dividing cells; however, integration also has the major
disadvantage that it can disrupt host gene function through
insertional mutagenesis, which poses a safety risk. Incorporation
into the host genome is not random, as there are preferential
sites and conditions for integration (e.g., highly expressed and
intron-rich genes), but it is unpredictable (Lesbats et al., 2016).
Nonetheless, this has not prevented several LV-mediated gene
therapies being approved for human use, albeit being utilized
for ex vivo modification of autologous immune cells (High
and Roncarolo, 2019). For gene delivery, essential viral coding
regions (e.g., gag, pol, and env) are removed from the LV genome,
and instead provided by separate expression plasmids for in vitro
packaging (Milone and O’Doherty, 2018). This removal of viral
genes ensures that the immunogenicity of LV is relatively low,
although not absent (Annoni et al., 2019).

LVs are typically derived from primate or non-primate
immunodeficiency viruses [e.g., human immunodeficiency virus
type 1 (HIV-1) or equine infectious anemia virus (EIAV)]. LV
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tropism is mediated by the viral envelope, which is engineered to
include glycoproteins from other enveloped viruses in a process
called pseudotyping (Cronin et al., 2005). The most common
virus used to pseudotype LV is the vesicular stomatitis virus
(VSV), but heterologous envelope proteins from many other
viruses have been used to target LV to particular cells and
tissues, e.g., measles virus, murine leukemia virus and influenza
viruses (Joglekar and Sandoval, 2017). The VSV glycoprotein
(VSV-G) binds to a widely expressed receptor, leading to broad
tropism when integrated into the LV envelope. In contrast, LVs
pseudotyped with rabies virus (RV) display greater neuronal
selectivity and have been shown to aid efficient transduction
of neurons both in vitro and in vivo. Compared to VSV, LV
pseudotyped with RV glycoprotein (LV-RV) shows superior
neuronal transduction and transport when injected into the rat
striatum and spinal cord (Mazarakis et al., 2001). A similar high
efficiency has been reported when injected into the primate brain
(Kato et al., 2007), while distal uptake and efficient retrograde
trafficking occurs in rodent primarymotor neurons (Hislop et al.,
2014). Moreover, LV-RV administration into gastrocnemius
muscle results in effective transgene expression in spinal cord
motor neurons, while LV-VSV remains restricted to the muscle
injection site (Mazarakis et al., 2001), which was confirmed
with additional RV strains (Wong et al., 2004; Mentis et al.,
2006). Pseudotyping with several different hybrid glycoproteins
has since shown improved targeting of motor neurons when
delivered to muscle, which can be further enhanced by the
coupling of antibodies against NMJ receptors to the virus
surface (Hirano et al., 2013; Eleftheriadou et al., 2014). As
a consequence, numerous different LV-mediated therapeutic
strategies that target motor neurons via muscle have proven
successful in mouse models of ALS and SMA (Azzouz et al.,
2004a,b; Ralph et al., 2005; Raoul et al., 2005; Benkler et al., 2016;
Eleftheriadou et al., 2016).

FROM VIRUS BINDING TO NUCLEAR
ENTRY

For viruses injected into a muscle to express transgenes in
neurons, they must undergo a series of events: host cell binding
and internalization, intracellular sorting, retrograde axonal
transport, liberation from the transporting structure/organelle
and nuclear entry (Figure 1). AdV, AAV, and LV rely on the
same or similar mechanisms for several parts of this journey
which are also shared by botulinum and tetanus neurotoxins
(Surana et al., 2018). For instance, they all hijack retrograde
axonal transport (Merino-Gracia et al., 2011), which is dependent
on active, processive movement along microtubules by the
motor protein complex cytoplasmic dynein-dynactin (Schiavo
et al., 2013). By trafficking towards the stable minus ends
of the microtubule, which are located at the cell body end
of an axon, cytoplasmic dynein enables long-range retrograde
delivery of cargoes, such as autophagosomes and neurotrophin-
containing signaling endosomes. Additionally, the Rab (Ras-
related proteins in the brain) GTPase protein family is specifically
required for signaling endosome trafficking (Villarroel-Campos
et al., 2018). Target tissue-derived (e.g., muscle) neurotrophins

transition from early Rab5-positive endosomes into retrogradely
transported Rab7-positive signaling endosomes (Deinhardt
et al., 2006). Unlike in the canonical endolysosomal pathway,
retrograde Rab7-endosomes within axons display a tightly
regulated neutral pH value that is maintained during transport
(Bohnert and Schiavo, 2005). All three gene therapy viruses
have been shown to localize to these axonal Rab7-endosomes,
indicating that they share a common compartment when
voyaging to the nucleus. Retrograde trafficking is a rapid
and constitutive process that delivers large quantities of
endosomes to the motor and sensory soma; it is thus unlikely
to be a rate-limiting step in virus transgene expression.
Rather, idiosyncratic aspects of the journey of each virus,
e.g., binding to specific receptors or endosomal liberation
at the cell body, probably have a greater impact on overall
transduction efficiency.

Highlighting similarities and differences, we now describe the
individual journeys that each virus must take to migrate from
muscle to peripheral nerve soma for transgene expression.

Adenovirus
Similar to most viruses, AdV is typically internalized in a two-
step, receptor-mediated fashion that is dependent on the viral
capsid, although non-specific, large-scale internalization has also
been reported (Meier et al., 2002). Primary receptors that mediate
AdV attachment to cells include, heparan sulfate proteoglycans,
CD46, and sialic acid, which selectively interact with different
serotypes (Arnberg, 2012); however, the appears to be the major
initial binding partner for AdVs (Bergelson et al., 1997; Arnberg,
2012). Coxsackie and adenovirus receptor (CAR) is a widely
expressed cell adhesion protein critical for heart development
(Dorner et al., 2005), and is involved in neurogenesis through
its synaptic expression throughout the mature brain (Zussy et al.,
2016). CAR serves as the primary receptor for several different
HAdV species (i.e., A, C-F) and serotypes, including 2 and 5, as
well as CAV-2 (Arnberg, 2012; Loustalot et al., 2016). The second
step of AdV internalization (i.e., entry) is facilitated by penton
capsomere binding to members of the integrin receptor family,
e.g., αVβ3 and αVβ5 (Wickham et al., 1993). Facilitating cell-to-
cell and cell-to-ECM interactions, integrins are expressed in a
tissue-specific fashion and can in some instances mediate AdV
attachment in the absence of CAR (Huang et al., 1996).

Despite extensive knowledge on AdV receptors, relatively
little is known about the specific entry of AdV at the NMJ or
sensory nerve terminals. Intramuscular injections of AdV result
in the targeting of both muscle fibers and innervating motor
neurons in juvenile and adult mice (Tosolini and Morris, 2016a),
which is consistent with the reported expression of CAR in
muscle fibers (Nalbantoglu et al., 1999) and at both mouse and
human NMJs (Shaw et al., 2004; Sinnreich et al., 2005). However,
one of the major issues with AdV-mediated gene therapy is
the relatively poor transduction of neurons in adults compared
to young mice, including upon intramuscular injection (Acsadi
et al., 1994; Huard et al., 1995; Tosolini and Morris, 2016a). This
is somewhat unsurprising as CAR is downregulated post-natally
in several neuronal subtypes (Hotta et al., 2003) and muscle
(Nalbantoglu et al., 1999). Indeed, CAR is highly expressed in
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FIGURE 1 | The journey of gene therapy viruses from peripheral nerve terminals to the nucleus. Viruses used to deliver gene therapy must access cell nuclei to
express their packaged genetic material. When administered into muscles for targeting of peripheral nerve somas, viruses such as adenovirus, adeno-associated
virus (AAV) and lentivirus, undergo a series of processes that aid their transfer from the periphery to CNS (depicted here using AAV as an example). (A) First, the virus
interacts with specific host cell surfaces. This entails primary receptor binding (e.g., glycans) followed by internalization, which is often mediated, at least in part, by a
secondary receptor (e.g., AAV receptor, AAVR or fibroblast growth factor receptor, FGFR). Internalization at nerve terminals is regulated by a variety of endocytic
pathways. Post-internalisation, viruses hijack the Rab GTPase-mediated endosomal sorting system, transitioning through Rab5-positive early endosomes to
non-acidic Rab7-positive late endosomes. (B) Virus-containing Rab7-positive signaling endosomes are actively transported along microtubules by cytoplasmic
dynein-dynactin complexes towards nerve cell bodies (i.e., retrogradely). (C) At the neuronal soma, viruses escape endosomes and are processed, sometimes
through the Golgi apparatus, before entry into the nucleus (e.g., via the nuclear pore complex), where the virus can begin to drive transgene expression.

immature skeletal muscle fibers but is drastically downregulated
after birth (Nalbantoglu et al., 1999) becoming restricted to the
NMJ (Shaw et al., 2004; Sinnreich et al., 2005). Nevertheless,
to better understand the limited uptake of AdV into adult
motor neurons, further investigation is required to provide a
thorough longitudinal assessment of CAR levels at post-natal
neuromuscular synapses. Upon muscle damage caused by
Duchenne muscular dystrophy or polymyositis, CAR expression
increases within muscle fibers and co-localizes with markers
of regeneration (Sinnreich et al., 2005); given the parallels
between mechanisms of muscle development and regeneration,
this suggests that CAR may indeed be developmentally regulated
at the NMJ and serve in the synaptic response to regeneration
(Sinnreich et al., 2005).

After binding to CAR, AdVs are internalized and processed
in a cell type-dependent manner. Experiments in immortalized
non-neuronal cells describe AdV internalization into endosomes
via clathrin-coated pits (Meier et al., 2002) and subsequent

endosomal liberation via acidification (Leopold et al., 1998).
The intracellular domain of CAR plays a critical role in this by
recruiting the endocytic machinery and influencing subsequent
intracellular AdV trafficking (Loustalot et al., 2015). AdVs are
then transported towards the nucleus by cytoplasmic dynein-
mediated trafficking along with the microtubule network (Kelkar
et al., 2004), impairments in which drastically disrupt this
nuclear targeting (Suomalainen et al., 1999; Leopold et al., 2000).
The AdV capsid directly interacts with cytoplasmic dynein via
hexon capsomeres (Bremner et al., 2009), suggesting that in
non-neuronal cells AdVs are transported as ‘‘naked particles’’
rather than in membrane-bound organelles (e.g., endosomes;
Scherer et al., 2020). Moreover, this interaction appears to be
dependent on exposure to low pH, suggesting that AdV binding
to the motor protein is primed by transition through the early
endosomal system (Bremner et al., 2009). AdV serotype 5 has
also been shown to interact with the Kif5B subunit of kinesin-1,
a motor protein that drives transport in the opposite direction to
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cytoplasmic dynein (i.e., towards dynamic plus ends), possibly as
an evolutionary strategy for increased cellular exploration (Zhou
et al., 2018).

In primary neurons, AdVs are also internalized in a
CAR-dependent manner (Loustalot et al., 2016), facilitated by
CAR enrichment in actin-domains of neuronal growth cones
as well as lipid rafts (Huang et al., 2007). Internalization
occurs through a lipid microdomain-, actin- and dynamin-
dependent manner before the receptors are eventually targeted
for lysosomal degradation (Salinas et al., 2014). The major
difference between neuronal and non-neuronal AdV trafficking
is that in neurons, CAR does not undergo lysis during
intracellular sorting, and is instead transported to the neuronal
soma as part of non-acidic, Rab7-positive endosomes, thus
preventing pH-induced conformational changes to the AdV
capsid and restricting endosomal liberation (Salinas et al., 2009).
CAR-positive organelles favor the retrograde direction but can
also be anterogradely transported by kinesin motor proteins
(Salinas et al., 2009). Again confirming the essential nature of
transport to AdVmigration, in vivo pharmacological blockade of
microtubule dynamics inhibits the delivery of AdV to the neuron
(Boulis et al., 2003). Once in the soma, AdV accesses the nucleus
at the nuclear pore complex via histone H1 (Trotman et al., 2001)
or the nucleoporin receptors (Trotman et al., 2001; Cassany et al.,
2015), with the route also appearing to be cell type-dependent
(Kremer and Nemerow, 2015).

Adeno-Associated Virus
AAV also gains cellular access via a two-step process involving
primary cell surface receptors with a secondary receptor
mediating entry. Negatively charged glycans or glycoconjugates
serve as primary attractants with which AAVs initially interact
allowing extracellular viral accumulation and co-receptor access.
These include heparan sulfate proteoglycans for AAV2, AAV3,
AAV6 and AAV13, N-terminal galactose for AAV9, and specific
N- andO-linked sialic acidmoieties for AAV1, AAV4, AAV5 and
AAV6 (Huang et al., 2014). The wide expression of surface
glycans, including in neuronal extracellular matrices (Broadie
et al., 2011; Singhal and Martin, 2011), explains the broad
infectivity of AAV, while glycan diversity and relative density
likely dictates selectivity of AAV serotype tropism.

Several serotype-specific co-receptors have also been
identified that after glycan binding, facilitate AAV uptake.
These co-receptors include fibroblast growth factor receptor
(FGFR) and hepatocyte growth factor receptor (HGFR) for
both AAV2 and AAV3, platelet-derived growth factor receptor
(PDGF) for AAV5, and epidermal growth factor receptor (EGFR)
for AAV6 (Madigan and Asokan, 2016). Signaling through each
of these receptors has been linked to NMJ formation/function
(Zhao et al., 1999; Li et al., 2012; Taetzsch et al., 2018), consistent
with their synaptic availability. Additional receptors have been
identified for engineered serotypes contributing to distinct
tropisms (Hordeaux et al., 2019; Huang et al., 2019). However,
a common receptor required for endocytosis of most natural
primate AAV serotypes was recently identified (Pillay et al.,
2016). Originally called KIAA0319L and linked with dyslexia
and functions of neuronal migration and axon guidance

(Poon et al., 2011), the AAV receptor (AAVR) possesses an
N-terminal MANSC domain, several immunoglobulin-like
PKD domains, a C6 domain, and a transmembrane region
before a short C-terminal tail (Poon et al., 2011). As expected
given the broad cellular and tissue infectivity of AAV, AAVR
is expressed across many human tissues, including muscle
and nerve, and can be found as several spliced variants and
post-translationally modified isoforms (Poon et al., 2011; Gostic
et al., 2019). AAVR knockout rendered mammalian HeLa cells
highly resistant to infection with AAV serotypes 1, 2, 3b, 5,
6, 8, and 9, with a similar finding in AAV9-injected AAVR
knockout mice in vivo (Pillay et al., 2016). The removal of AAVR
resulted in no obvious phenotype, suggesting that AAVR is
non-essential or there is genetic compensation. In subsequent
work from the same group and others, AAV serotypes have
been shown to differentially interact with AAVR PKD domains
(Pillay et al., 2017; Zhang et al., 2019), while AAV4 gains
full cellular access in absence of the receptor, suggesting that
some serotypes can utilize non-AAVR internalization pathways
(Dudek et al., 2018). In immortalized cells, AAVR localizes
to the cytoplasm and perinuclear region where it associates
with the Golgi network (Poon et al., 2011; Pillay et al., 2016).
Several hypotheses as to where exactly AAV interacts with
AAVR have been put forward, including on the cell surface, in
the endolysosomal system and at the Golgi apparatus; however,
this requires further clarification (Summerford et al., 2016;
Pillay and Carette, 2017).

Data are supporting several distinct AAV internalization
mechanisms, including clathrin-dependent endocytosis (Uhrig
et al., 2012), caveolar endocytosis (Sanlioglu et al., 2000), and
the clathrin-independent carriers and GPI-enriched endocytic
compartments (CLIC/GEEC) pathway (Nonnenmacher and
Weber, 2011). However, not all routes result in an efficient
delivery to the nucleus, rather they traffic AAV through
unproductive paths leading to a viral cul-de-sac (Nonnenmacher
and Weber, 2012; Pillay and Carette, 2017); only ≈30% of
internalized AAV is estimated to enter the nucleus (Zhong et al.,
2008; Xiao et al., 2012). Nonetheless, there are distinctions in
AAV uptake depending on cell type and serotype (Weinberg
et al., 2014), thus future work identifying neuronal-specific
internalization mechanisms is required.

Upon cellular entry, AAVs have been reported to be
retrogradely transported from the cell surface to Golgi in a
syntaxin 5-dependent mechanism (Nonnenmacher et al., 2015),
before escaping into the cytoplasm and entering into the
nucleus via the nuclear pore complex (Nicolson and Samulski,
2014). However, before reaching the Golgi, AAV must transit
through various acidic endosomal compartments to drive pH-
and cathepsin-mediated conformational changes in the capsid
(Akache et al., 2007; Salganik et al., 2012). Indeed, the passage
of AAV through the endosome to Golgi system appears to be
necessary for transgene expression, as AAV directly injected into
cytosol do not migrate to the nucleus (Sonntag et al., 2006).
AAV has been reported to localize to Rab5-, Rab7-, and Rab11-
positive (recycling) endosomes (Berry and Asokan, 2016), and,
as expected, requires a functioning microtubule network for
transport (Xiao and Samulski, 2012). Nevertheless, its exact route
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through the cell requires further elucidation, especially its transit
through long and highly polarized peripheral nerves, as little data
have been generated in neurons.

That being said, there is ample indirect evidence that
AAVs are transported in axons in vivo both in peripheral
(Hollis Ii et al., 2008; Towne et al., 2010; Zheng et al., 2010;
Benkhelifa-Ziyyat et al., 2013; Jan et al., 2019) and CNS
(Salegio et al., 2013; Castle et al., 2014a,b) neurons, suggesting
the availability of AAV receptors and uptake mechanisms;
however, observations of AAV being actively trafficked are
limited. Nevertheless, peripherally administered AAV likely
hijacks Rab-positive endosomes in peripheral nerves to reach
the CNS, like that of AdV. Indeed, in primary cortical neurons
grown in microfluidic chambers to separate axons and soma,
AAV9 was shown to localize in a time-dependent fashion to
several different endosomes/vesicles (e.g., Rab5-, Rab7-, Rab11-
positive; Castle et al., 2014b). AAV9 internalized at axon tips
was retrogradely transported in cytoplasmic dynein-dynactin-
driven Rab7-positive endosomes and was subsequently capable
of inducing transgene expression post-transition through the
Golgi (Castle et al., 2014b). Moreover, in a companion study
it was shown that AAV1, AAV8, and AAV9 share the same
intra-axonal compartment when being transported in primary
cortical neurons, indicating that once they have gained access
to the endosomal sorting system, AAV serotypes harness
common axonal transport mechanisms (Castle et al., 2014a).
However, direct evidence from the motor and sensory neurons
remains unavailable.

Lentivirus
LV tropism is dictated by the envelope glycoproteins with which
it has been pseudotyped (Cronin et al., 2005). VSV-G interacts
with the low-density lipoprotein receptor (LDLR; Finkelshtein
et al., 2013). LDLR mediates uptake of cholesterol-rich LDL and
is broadly expressed, thus LV-VSV is pan-tropic. A measure
of cell-type selectivity can be achieved with cell/tissue-specific
promoters, which is a strategy used with all three gene therapy
viruses. For example, LV-VSV combined with an hGFAP
promoter induces astrocytic expression, whereas LV-VSV with
an rNSE promoter selectively expresses in neurons (Jakobsson
et al., 2003). Alternatively, envelope modification coupled with
surface antibody-mediated targeting can confer tissue specificity
and improve virus uptake (Yang et al., 2006; Eleftheriadou
et al., 2014). In contrast, LV-RV interacts with receptors
that are predominantly expressed by neurons, including the
pan-neurotrophin receptor p75NTR (Tuffereau et al., 1998),
neuronal cell adhesion molecule (NCAM; Thoulouze et al.,
1998) and nicotinic acetylcholine receptor (nAChR; Hanham
et al., 1993). p75NTR non-selectively binds to all neurotrophins
(i.e., BDNF, NGF, NT-3, and NT-4/5) and, depending on the
active co-receptor, can activate both pro-survival or pro-death
signaling (Gentry et al., 2004). NCAM is an immunoglobulin-like
glycoprotein that mediates cell-to-cell contact and functions in
adhesion, guidance, and differentiation during neuronal growth
(Weledji and Assob, 2014). nAChRs bind to the excitatory
neurotransmitter acetylcholine secreted into the synaptic cleft to
facilitate depolarization of the postsynaptic cell. All three LV-RV

receptors are integral constituents of the NMJ (although nAChRs
are post-synaptic), explaining the efficient in vivo uptake into
motor neurons of these RV pseudotyped viruses when injected
into a muscle (Mazarakis et al., 2001; Azzouz et al., 2004a,b;
Wong et al., 2004).

After receptor-mediated internalization, most likely in
clathrin-coated pits as dictated by their neuronal receptors
(i.e., p75NTR; Bronfman et al., 2003), RV-LVs migrate
through the endolysosomal system transitioning from
Rab5-positive early endosomes to the non-acidic Rab7-positive
compartment (Hislop et al., 2014). In non-neuronal cells,
endosome acidification causes a conformational change in LV
glycoproteins, which initiates membrane fusion between the
viral envelope and endosome membrane to permit the escape
of the virus into the cytoplasm (Gaudin et al., 1993; Gaudin,
2000). However, in neurons, LVs are retrogradely transported
within neutral Rab7-positive signaling endosomes towards
peripheral nerve cell bodies through the same motor protein-
driven process as AdV and AAV. In rat primary motor neuron
cultures, LV-RV was shown to co-localize in axons with all three
receptors (i.e., p75NTR, NCAM, and nAChR) with co-migration
confirmed for p75NTR (Hislop et al., 2014). However, despite
transport being rapid and effective, neuronal transduction
was comparatively inefficient, suggesting that post-trafficking
processes are suboptimal in neurons (Hislop et al., 2014). Upon
arrival at the cell body, LV must undergo a process known as
uncoating, in which several viral proteins (e.g., Gag structural
proteins) are removed to permit reverse transcription of the viral
RNA (Matreyek and Engelman, 2013). The resulting double-
stranded DNA then complexes with virus proteins for entry into
the nucleus via the nuclear pore complex, before integration
into the DNA of the host neuron. Improving understanding of
these processes in motor and sensory neurons will be key to
optimizing the effectiveness of intramuscular virus delivery.

INFLUENCE OF PATHOLOGY

Neuropathology will impact most, if not all, major steps in
the journey of viruses from the nerve terminal to the nucleus
(Figure 2). Neurodegeneration of peripheral nerves results
in the loss of axon terminals within muscles (Figure 2A).
Motor neuron retraction from the NMJ, i.e., denervation, is
an early feature of motor neuron diseases [e.g., ALS, SMA
and Charcot-Marie-Tooth disease (CMT; Goulet et al., 2013;
Moloney et al., 2014; Sleigh et al., 2014; Spaulding et al.,
2016)], and will limit neuron-virus interactions within muscles.
Sensory degeneration observed in conditions like CMT (Sleigh
et al., 2017), will have a similar restrictive effect. Nonetheless,
motor neurons branch frequently within muscles resulting
in multiple contacts across the entire muscle; thus, if one
or several NMJs become denervated, there is likely to be a
window of time in which at least some neuromuscular contacts
of a pathological neuron remain viable. In ALS mice, for
instance, rather than all neuromuscular contacts of a single
motor neuron denervating simultaneously, healthy synapses
close to degenerating NMJs are more likely to denervate than
those located further away, suggestive of localized pathological
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transfer (Martineau et al., 2018). It is therefore conceivable that
functional synapses may facilitate virus uptake and nuclear
delivery to preserve the integrity of NMJs that remain. Moreover,
once delivered, viral vectors encoding secretable proteins (e.g.,
neurotrophins) can influence central networks through both
autocrine and paracrine mechanisms (Baumgartner and Shine,
1997; Benkhelifa-Ziyyat et al., 2013). NMJs resident in different
muscles, and even within a single muscle, can show large
differences in both pre- and post-synaptic structures (Mech et al.,
2020) as well as levels of key synaptic proteins (Allodi et al., 2016),
thus virus binding and uptake are likely to differ across motor
nerve terminals.

Significantly, intramuscular injections of gene therapy viruses
can result in efficient and extensive transgene expression within
the neonatal and adult mouse spinal cord, brainstem, and
sensory ganglia, likely via the cerebrospinal fluid (Benkhelifa-
Ziyyat et al., 2013; Chen et al., 2020). This finding is
particularly important, as it suggests that injecting one muscle
can result in viral transduction of an array of central neurons
(Chen et al., 2020), meaning that not all muscles require
injection for potential widespread motor and sensory neuron
transduction; although injecting more muscles can cause greater
therapeutic benefit (Benkhelifa-Ziyyat et al., 2013). Furthermore,
muscle transduction can be used to promote synaptogenesis
and/or reinnervation after neuromuscular pathology (Darabid
et al., 2014). In this regard, collateral sprouting and dynamic
remodeling of the NMJ, as is observed in ALS mice (Martineau
et al., 2018), may also be therapeutically targeted.

In addition to the loss of peripheral nerve endings in muscle,
deficiencies in endocytosis (e.g., in SMA; Dimitriadi et al., 2016),
endolysosomal sorting (observed in many conditions; Neefjes
and van der Kant, 2014), Golgi processing (e.g., in ALS; van
Dis et al., 2014), and nuclear import (e.g., in ALS; Dormann
and Haass, 2011) would all likely reduce the efficiency of viral
transgene expression (Figure 2B). As would pathology-
associated restrictions in axonal transport (Figure 2C),
which have been reported in many neurodevelopmental
and neurodegenerative conditions (Sleigh et al., 2019), such
as the signaling endosome transport deficits observed in ALS
mice (Bilsland et al., 2010; Sleigh et al., 2020a). Nevertheless,
Rab7-positive endosomes containing AAV have been shown in
primary cortical neurons in vitro to increase retrograde transport
speeds compared to non-AAV containing Rab7 organelles
(Castle et al., 2014b), which could perhaps counteract
transport dysfunction.

Only a few studies are have investigated the impact of
disease on virus transduction after intramuscular delivery.
Despite downregulation during development, CAR expression
is upregulated in regenerating adult skeletal muscle in response
to disease (Nalbantoglu et al., 1999; Shaw et al., 2004; Sinnreich
et al., 2005), which will likely positively impact AdV uptake.
Increased levels of sialic acid, a known AAV9 inhibitor, in the
CNS of a mouse model of lysosomal storage disorder have been
shown to severely limit the effectiveness of AAV9-mediated gene
therapy (Chen et al., 2012). Nonetheless, the opposite may be true
for particular AdV and other AAV serotypes, which use sialic
acid as a primary attachment factor. Involved in pro-apoptotic

signaling during development, but downregulated in the mature
nervous system, the p75NTR receptor is also re-expressed in
neurons after disease or trauma (Dechant and Barde, 2002),
possibly impacting LV efficacy. For example, p75NTR expression
is increased in SOD1G93A mice motor neurons and human ALS
tissue (Lowry et al., 2001), and plays a key role in organizing
andmaintainingNMJ connectivity (Pérez et al., 2019).Moreover,
NCAM expression is a major regulator of synaptic remodeling in
pre-synaptic NMJ terminals (Chipman et al., 2014) and levels are
dysregulated in ALS (Jensen et al., 2016), which could also affect
LV binding. Also, the background of the experimental animal
can influence the transduction efficiency of some vectors and
must be carefully considered (He et al., 2019). Overall, these
studies warn against the assumption of similar virus binding and
uptake profiles between healthy and disease states and indicate
that further studies in disease models at symptomatic stages
are required.

Despite these hurdles, intramuscular injections of gene
therapies have proved successful at symptomatic stages in
ALS mice (Tosolini and Sleigh, 2017), hence the above-
discussed effects of pathology do not abolish virus transduction.
Furthermore, symptomatic SMA patients treated with
onasemnogene abeparvovec to augment SMN protein levels
respond positively to treatment (Mendell et al., 2017), albeit with
AAV administered intravenously. Nevertheless, while it remains
unclear precisely how and to what extent specific diseases and
associated pathologies will impact the transduction of peripheral
neurons, the described viral vectors have the undisputed
potential for the treatment of neuromuscular disorders when
delivered to skeletal muscle.

OPTIMIZING INTRAMUSCULAR GENE
THERAPY

One of the biggest challenges facing gene therapy is achieving
sufficient delivery to target cells/tissues to combat disease.
This is particularly difficult for peripheral nerve disorders in
which pathological cells are located deep within the spinal
cord and behind the BBB and BSCB. Several investigator-
independent factors such as nervous system maturity (Foust
et al., 2009; Tosolini and Morris, 2016a) and pathology
influence viral transduction and transgene expression, but these
cannot be modified in a clinical setting. However, varied
investigator-driven factors also impact the effectiveness and
should be carefully considered when designing gene therapy for
intramuscular administration. Differences in tropism, infectivity,
and transport between viruses and their serotypes will impact the
success of this delivery method; for example, in a side-by-side
comparison, muscle injection of rAAV2-retro was shown to have
superior capacity to transduce peripheral neurons compared to
AAV serotypes 1, 2, and 5–9 (Chen et al., 2020). Similarly,
superior LV pseudotypes based on hybrid glycoproteins have
also been identified (Hirano et al., 2013; Eleftheriadou et al.,
2016). Moreover, vector purity and concentration will impact
transduction levels (Hollis Ii et al., 2008; Klein et al., 2008), as
will the efficiency and specificity of the promoter (von Jonquieres
et al., 2013; Borel et al., 2016), the choice of which can also reduce
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FIGURE 2 | Neuropathological events impair the viral transduction of peripheral neurons. Several general and virus-specific pathological events caused by
neurological disease diminish the effectiveness of gene therapy delivery to the nervous system via muscle. (A) Loss of motor and sensory nerve endings due to
neurodegeneration will restrict nerve-muscle connections and the frequency of virus-nerve interaction. (B) Alterations in the expression or availability of certain
primary or secondary receptors will affect virus attraction and binding. Deficits in endocytosis, as seen in spinal muscular atrophy (SMA), or impaired endosomal
sorting, as identified in amyotrophic lateral sclerosis (ALS) and some forms of Charcot-Marie Tooth disease (CMT), could reduce virus uptake into peripheral nerve
terminals. Defects in Golgi processing and nuclear import may also decrease viral transduction (not depicted). (C) A variety of impairments affecting axonal transport
machinery (e.g., microtubule dysfunction) are known to cause defects in cargo trafficking (e.g., slowed transport or reduced quantity/flux), which will limit viral delivery.

off-target expression, and hence further enhance therapeutic
potential (Parr-Brownlie et al., 2015).

Several different methods have been pioneered that can
enhance peripheral neuron transduction upon intramuscular
virus administration. As may be expected, these techniques
focus on enhancing virus uptake rather than other processes
essential to transduction. For instance, a complementary
viral strategy can be used to boost the expression of the
virus receptor(s) at peripheral nerve terminals that can then
be therapeutically targeted with a different virus, as has

been demonstrated with AAV-mediated CAR expression for
increased AdV binding and uptake (Larochelle et al., 2010;
Li et al., 2018b). Receptor expression may also be selectively
increased by genetic overexpression (Nalbantoglu et al.,
2001) or administration of drugs that enhance transcription,
albeit non-specifically (e.g., histone deacetylase inhibitors;
Larochelle et al., 2010). Similarly, genetic screens are beginning
to identify a variety of viral restriction factors (i.e., proteins
that constrain uptake and transduction), which could also be
genetically or chemically manipulated, perhaps in a tissue-
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specific fashion, to aid uptake (Mano et al., 2015; Madigan
et al., 2019). Alternatively, approaches are being developed
in which recombinant viral receptor proteins are conjugated
to biomaterials and pre-loaded with gene therapy viruses
before injection. Indeed, intramuscular administration of
recombinant cysteine-tagged AAVR chemically linked to
polyester microspheres and pre-incubated with AAV resulted
in local and prolonged gene delivery with reduced spread
compared to AAV alone (Kim et al., 2019). However, it remains
to be seen whether this system can be adapted to increase
uptake into peripheral nerve terminals, which would require
the release of AAV from the receptor microspheres. Similarly,
viral capsids can be chemically modified with a variety of
different substances that may aid peripheral nerve binding (e.g.,
conjugation with neuron-specific homing peptides; Terashima
et al., 2009), or antibodies against key neuronal receptor proteins
(e.g., p75NTR and CAR; Hedley et al., 2006; Eleftheriadou et al.,
2014). Furthermore, motor neuron transduction efficiency
upon intramuscular administration of AdV was shown to
be enhanced by pre-treatment with flaccid paralysis-causing
botulinum toxin type A (BoNT/A; Millecamps et al., 2002).
Likely mediated by enhanced motor terminal sprouting, this
enhancement was even greater in the SOD1G93A ALS mouse
(Millecamps et al., 2001, 2002).

Unfortunately, many of these strategies are not currently
a clinical possibility, for obvious reasons. Nonetheless, their
implementation in the laboratory to deliver genes within the
therapeutic range, along with the development of novel and
improved tools to assess virus transduction and treatment
efficacy (Han et al., 2019; Chen et al., 2020; Sleigh et al., 2020b;
Surana et al., 2020; Ueda et al., 2020), will undoubtedly lead to
improved understanding of disease mechanisms and assessment
of potential gene therapy strategies.

CONCLUSION

Gene therapy injected into the skeletal muscle for delivery
to neurons holds therapeutic promise for peripheral nerve
disorders. Motor and sensory nerve terminals located within
muscles can act as therapeutic conduits not only for the

innervating neurons (Figure 1) but also neighboring nerve and
glial cells via paracrine mechanisms. Moreover, some viruses
can escape from the initially transduced neurons, resulting in
widespread gene delivery throughout the spinal cord, brain
stem, and sensory ganglia. Importantly, this indicates that
not all muscles need to be injected to obtain broad cellular
dosing. Unfortunately, neuropathology is likely to hinder the
effectiveness of intramuscular gene therapy delivery (Figure 2);
but innovative pre-clinical methods are being developed that
will enhance peripheral neuron transduction via this method.
Also, the intramuscular administration could be combined
with, for example, intrathecal delivery to further enhance
CNS uptake. However, due to the immune response, repeated
successful dosing is unlikely, and hence such treatments
need to be given within a short time frame to circumvent
this impediment. Nevertheless, by factoring in a detailed
understanding of the dynamics of viruses and host cell
receptors, especially in the context of peripheral nerve biology
and neuromuscular pathology, perhaps this minimally invasive
delivery method can contribute to successful gene therapy in
the future.
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