
D ependency Parsing

N orm an M acA skill Fraser

Thesis subm itted for the degree of PhD

University College London

January 1993

1

ProQuest Number: 10106699

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10106699

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A bstract

Syntactic structure can be expressed in terms of either constituency or de­

pendency. Constituency relations hold between phrases and their constituent

lexical or phrasal parts. Dependency relations hold between individual words.

Almost all results in formal language theory relate to constituency grammars,

of which the phrase structure grammars are best known. In the realm of natu­

ral language description, almost all major linguistic theories express syntactic

structure in terms of constituency. This dominance carries over into natural

language processing, where most parsers are designed to discover the vertical

constituency relations which hold between words and phrases, rather than the

horizontal dependency relations which hold between pairs of words.

This thesis introduces dependency grammars, their formal properties, their

origins in linguistic theory and, particularly, their use in parsers for natural lan­

guage processing. A survey of dependency parsers — the most comprehensive

to date — is presented. It includes detailed discussions of twelve published de­

pendency parsing algorithms. The survey highlights similarities and differences

between dependency parsing and mainstream phrase structure grammar pars­

ing. In particular, it examines the hypotheses that (i) it is possible to construct

a fully functional dependency parser based on an established phrase structure

parsing algorithm without altering any fundamental aspects of the algorithm,

and (ii) it is possible to construct a fully functional dependency parser using

an algorithm which could not be applied without substantial modification in

a fully functional phrase structure parser.

Elements of a taxonomy of dependency parsing are outlined. These include

variables in origin, manner, order, and focus of search, as well as in the number

of passes made during parsing, techniques for the management of ambiguity,

and the use of an adjacency constraint to limit search.

Computer implementations of a number of original dependency parsing

algorithms are presented in an Appendix, together with new implementations

of established algorithms.

Contents

Acknowledgements 13

Abbreviations 15

1 Introduction 16

1.1 Scope of the t h e s i s ...16

1.2 Chapter o u t l in e .. 22

2 Dependency grammar 23

2.1 Overview.. 23

2.2 Gaifman g ra m m a rs .. 24

2.2.1 D efinitions...24

2.2.2 A recognizer for Gaifman gram m ars.. 30

2.2.3 Representing dependency stru c tu res...32

2.2.4 The generative capacity of Gaifman g ram m ars 36

2.3 Beyond Gaifman grammars ... 41

2.4 Origins in Hnguistic th e o ry 43

2.5 Related grammatical form alism s...51

2.5.1 Case g ram m ar.. 52

2.5.2 Categorial grammar ... 53

2.5.3 Head-driven phrase structure g ra m m a r 57

2.6 S u m m a r y .. 58

3 Dependency parsers 60

3.1 Dependency in computational lin g u is tic s ...61

3

3.1.1 Machine translation s y s te m s .. 61

3.1.2 Speech understanding s y s te m s ...63

3.1.3 O ther a p p l ic a t io n s ... 64

3.1.4 Implementations of t h e o r i e s .. 64

3.1.5 Exploratory s y s t e m s .. 65

3.2 PARS: Parsing Algorithm Representation S c h e m e69

3.2.1 D ata s t r u c tu r e s .. 69

3.2.2 E x p re s s io n s ... 71

3.3 S u n u n a r y ..75

4 The R A N D parsers 76

4.1 O verview ... 76

4.2 The bottom -up a l g o r i t h m ... 78

4.2.1 Basic p r in c ip le s .. 78

4.2.2 The parsing a lg o r i th m ...79

4.3 The top-down a lg o r i th m ...85

4.3.1 The parsing a lg o r i th m ...85

4.4 S u m m a r y ..88

5 H ellw ig’s PL A IN system 90

5.1 O verview ... 90

5.2 Dependency Representation Language ...91

5.2.1 T he form of DRL e x p re s s io n s ... 91

5.2.2 Word order c o n s tra in ts ... 94

5.2.3 The base l e x i c o n ... 96

5.2.4 The valency lexicon 96

5.3 The parsing a lg o r i th m .. 98

5.4 The well-formed substring t a b l e ... 102

5.5 S u m m a r y .. 106

6 The K ielikone parser 107

6.1 O verview .. 107

6.2 Evolution of the p a r s e r ... 109

6.2.1 The earliest version: two way finite a u t o m a t a109

6.2.2 A gram m ar representation language: D P L 113

6.2.3 C onstraint based grammar: F U N D P L115

6.3 The p a r s e r ... 120

6.3.1 The g r a m m a r ... 120

6.3.2 Blackboard-based co n tro l...121

6.3.3 The parsing a lg o r i th m .. 123

6.3.4 A m b ig u ity ..128

6.3.5 Long distance d e p e n d e n c ie s .. 128

6.3.6 Statistics and p e rfo rm an ce ..129

6.3.7 Open q u e s t io n s .. 130

6.4 S u m m a r y ..132

7 The DLT M T system 134

7.1 O verview ... 134

7.2 Dependency gram m ar in D L T .. 137

7.3 An ATN for parsing d ep en d en c ies ..140

7.4 A probabilistic dependency p a r s e r ..143

7.5 S u m m a r y ..149

8 Lexicase parsers 151

8.1 O verview ... 151

8.2 Lexicase t h e o r y ..152

8.2.1 Dependency in L e x ic a s e ... 153

8.2.2 Lexical entries in L e x ic a s e .. 159

8.3 Lexicase p a rs in g ..164

8.3.1 S tarosta and Nom ura’s p a r s e r ... 164

8.3.2 Lindsey’s p a r s e r ... 170

8.4 Summary .. 172

9 W ord Grammar parsers 174

9.1 O verview .. 174

9.2 Word Gram m ar th e o r y ... 175

9.2.1 Facts about words .. 175

9.2.2 Generalizations about w o rd s ... 181

9.2.3 A single-predicate s y s t e m ...186

9.2.4 Syntax in W G .. 187

9.2.5 Semantics in Word G r a m m a r ..191

9.3 Word G ram m ar parsing ..193

9.3.1 Fraser’s p a rs e r .. 194

9.3.2 Hudson’s p a r s e r ...208

9.4 Summary .. 215

10 C ovington’s parser 217

10.1 O verview .. 217

10.2 Early dependency g ra m m a ria n s .. 217

10.3 Unification-based dependency g ra m m a r.. 218

10.4 Covington’s p a r s e r ..220

10.5 S u m m a r y ...228

11 T he CSELT lattice parser 230

11.1 O verview .. 230

11.2 The problem: lattice p a rs in g ...231

11.3 The solution: the SYNAPSIS parser ..235

11.3.1 Overview of SYNAPSIS .. 235

11.3.2 Dependency gram m ar ..238

11.3.3 Caseframes ..240

11.3.4 Knowledge s o u r c e s .. 241

6

11.3.5 The sequential p a r s e r .. 243

11.3.6 The parallel p a r s e r ..249

11.4 S u m m a r y ...251

12 E lem ents o f a taxonom y of dependency parsing 254

12.1 Search origin .. 254

12.1.1 Bottom -up dependency p a r s i n g .. 256

12.1.2 Top-down dependency p a rs in g ..261

12.1.3 Mixed top-down and bottom -up dependency parsing . . 269

12.2 Search m anner ...271

12.3 Search o r d e r ..272

12.4 Number of p a s s e s ... 275

12.5 Search fo c u s ..276

12.5.1 Network n a v ig a tio n ..277

12.5.2 Pair s e le c t io n .. 277

12.5.3 Heads seek d e p e n d e n ts ..278

12.5.4 Dependents seek h e a d s ..278

12.5.5 Heads seek dependents ordependents seek h e a d s 279

12.5.6 Heads seek dependents anddependents seek heads 279

12.5.7 Heads seek dependents thendependents seek heads 279

12.5.8 Dependents seek heads thenheads seek dependents 281

12.6 Ambiguity m anagement ..281

12.7 Adjacency as a constraint on s e a rc h ..288

12.8 S u m m a r y ... 289

13 Conclusion 292

List o f Figures

2.1 stem m a for Sm art people dislike stupid robots 33

2.2 tree diagram (D-marker) for Sm art people dislike stupid robots . 33

2.3 arc diagram for Sm art people dislike stupid r o b o t s34

2.4 dependency tree for * S m a rt people stupid dislike r o b o ts35

2.5 arc diagram for *Smart people stupid dislike robots35

2.6 Dependency structure of Old sailors tell tall t a l e s 36

2.7 First phrase structure analysis of They are racing horces 39

2.8 Second phrase structure analysis of They are racing horces . . . 39

2.9 Dependency structure for They are racing horses. The sentence

root is racing..40

2.10 syntactic structure in DG (a) and in HPSG (b) 58

3.1 dependency-based NLP p ro je c ts ... 68

5.1 stem m a showing a simple dependency s t r u c t u r e92

5.2 Hellwig’s W EST for Flying planes can be d a n g ero u s 104

6.1 a functional dependency s t ru c tu re .. 110

6.2 left and right context s t a c k s ...112

6.3 a DPL definition of S u b j e c t ...115

6.4 the general form of functional sch e m a ta .. 117

6.5 a schema for Finnish transitive v e r b s ..118

6.6 the binary relation ‘Subject’ ...118

6.7 the ‘SynC at’ ca teg o ry .. 119

6.8 architecture of the Kielikone p a r s e r ... 122

6.9 the Kielikone parser control strategy a u to m a to n126

7.1 the D istributed Language Translation system 137

7.2 dependency analysis of the sentence Whom did you say it was

given t o ? ..139

7.3 the use of comma in coordinate structure a n a ly s e s140

7.4 an ATN for parsing Danish s e n te n c e s .. 142

7.5 an ATN for parsing Danish su b je c ts ..143

7.6 a dependency link network for the sentence You can remove the

document from the d r a w e r ..148

8.1 a syntactic structure with em pty nodes 155

8.2 a syntactic structure without em pty n o d e s .. 155

8.3 a syntactic structure constrained by the one-bar constraint . . .158

8.4 a Lexicase syntactic s t r u c t u r e .. 159

8.5 components of Starosta & Nomura’s Lexicase p a r s e r 164

8.6 a m aster entry showing the intersection of the feature sets of

two homographie w o rd s ...171

9.1 dependency structure of Ollie obeyed R o n n ie 177

9.2 part of the WG ontological h ie r a r c h y .. 181

9.3 part of the WG word type h ierarchy ..182

9.4 part of the WG gram m atical relation h ierarchy184

9.5 a WG dependency a n a ly s is ... 187

9.6 the use of constituency in W G .. 188

9.7 a structu re perm itted by W G ’s version of a d ja c e n c y189

9.8 the use of visitor links to bind an extracted element to the main

v e r b ...189

9.9 the use of the visitor link to relate the extracted element to the

main verb as its o b j e c t ...190

9.10 the use of visitor links to interpret the object of an embedded

s e n te n c e ..191

9.11 semantic structure is very similar to syntactic structure in WG . 192

9.12 a prohibited dependency s tru c tu re ... 203

9.13 with a telescope depends on s a w ...215

9.14 with a telescope depends on the man ...215

11.1 a simple lattice for the uttered words I k n o w232

11.2 a SYNAPSIS casefram e..241

11.3 a SYNAPSIS dependency r u l e ..242

11.4 another SYNAPSIS c a se fra m e ..242

11.5 a SYNAPSIS knowledge s o u r c e ...242

11.6 a simplified DI showing jolly s l o t s ... 249

11.7 a single parse t r e e ..250

11.8 a distributed representation of the same parse t r e e251

12.1 PSG and DG analyses of the sentence Tall people sleep in long

beds ...258

12.2 phrase structure of A cat sleeps on the c o m p u ter 263

12.3 dependency structure of A cat sleeps on the c o m p u te r264

10

List o f Tables

2.1 Subtrees in Figure 2.6 37

2.2 Complete subtrees in Figure 2 . 6 ...37

2.3 Complete subtree labels in Figure 2 . 6 .. 38

2.4 Subtrees and complete subtrees in the DG analysis of the sen­

tence They are racing horses shown in Figure 2.9. Only com­

plete subtrees are labelled... 40

2.5 C onstituents in the phrase structure analysis of the sentence

They are racing horses shown in Figure 2 .7 ..41

4.1 main features of Hays’ bottom -up dependency p a r s e r 88

4.2 main features of Hays’ top-down dependency p a r s e r 89

5.1 main features of Hellwig’s dependency p a rs e r 106

6.1 main features of the Kielikone dependency p a r s e r 133

7.1 different dependency links retrieved from the B K B146

7.2 main features of the DLT ATN dependency p a r s e r150

7.3 main features of the DLT probabilistic dependency parser150

8.1 main features of Starosta and Nomura’s Lexicase p a r s e r173

8.2 m ain features of Lindsey’s Lexicase p a r s e r .. 173

9.1 inheriting properties for w l ..185

9.2 main features of Fraser’s Word G ram m ar p a r s e r 216

9.3 main features of Hudson’s Word Gram m ar p a r s e r216

11

10.1 main features of Covington’s first two dependency parsers 229

11.1 main features of the SYNAPSIS dependency p a r s e r 253

12.1 origin of search—su m m a ry .. 255

12.2 m anner of search—s u m m a ry ...272

12.3 order of search—s u m m a r y .. 273

12.4 number of passes—su m m a ry ... 276

12.5 focus of search—s u m m a r y .. 277

12.6 ambiguity managem ent—s u m m a r y ..282

12

A cknow ledgem ents

This thesis may bear one name on its title page but it represents an in­

vestm ent of time and effort, of wise advice and honest criticism, of practical

support and unfailing love on the part of many people. I am grateful to them

all.

F irst m ention m ust go to Dick Hudson, who has been so much more than

just a thesis supervisor. Over the years he has selflessly given me his time,

enthusiasm and insight. He has listened patiently to all of my hair-brained

ideas and helped me to have fewer of them. My heartfelt thanks go to him

and to his family, Gay, Lucy and Alice, who have never failed to respond

positively to my all too frequent disruptions of their domestic hves.

I am very grateful to Neil Sm ith and all members of the D epartm ent of

Phonetics and Linguistics a t University College London for supporting me so

well during my time in their midst. Special thanks are due to M ark Huckvale,

Monika Pounder, and a number of members of the Word G ram m ar seminar,

including Billy Clark, John Fletcher, and And Rosta. I have also benefited

enormously from the support and encouragement I have received as a member

of the Social and Com puter Sciences Research Group a t the University of Sur­

rey. I am grateful to all members of the group, and especially to Nigel G ilbert

for enabling me to fit thesis-writing into a hectic research schedule, and to

Scott M cGlashan for his expert assistance with the HTjgX/ typesetting pack­

age. I have gained much from discussions with other people a t the University

of Surrey, particularly G rev C orbett and Ron K nott.

The finishing touches were added while I was a member of the Speech

and Language Division of Logica Cambridge Ltd. I am grateful to Jerem y

Peckham for his persistent belief in the value of NLP research and for his

practical support, and to Nick Youd, Simon Thornton, Trevor Thom as and

Ave Wrigley for daily stimulus.

13

A significant portion of this thesis is devoted to dissecting other people’s

dependency parsers. I would not have been able to do so w ithout the help of

those individuals who made otherwise unobtainable information available to

me. Many of them have read drafts of parts of the thesis, and their comments

have been invaluable. They include Doug Arnold, Paulo Baggia, Michael Cov­

ington, P eter Hell wig, Gerhard Niedermair, Claudio Rullent, Klaus Schubert,

Stan Starosta and Job van Zuijlen.

I have lost track of the number of friends and relations who have helped

me by providing practical support, by telling me to get on with it, and by

making me laugh. The generous gift of Ian and M air Bunting, who provided

the perfect retreat in which to work w ithout fear of interruption, has hastened

the completion of this thesis by an enormous am ount. Likewise, the practical

support of Jim and Rilla Cannon, whose hospitality knows no bounds. My

family have provided the sort of long-distance support which always feels close

a t hand.

Most of all, I want to thank Sarah for putting up with my nocturnal writing

habits, for believing th a t I really would finish this thing, and for being my

friend.

Thank you very much.

14

A bbreviations

APSG augmented phrase structure gram m ar
ATN augmented transition network
BFP best fit principle
COG combinatory categorial grammar
CD conceptual dependency
CFPSG context-free phrase structure grammar
CG categorial grammar
CNF Chomsky normal form
DCG definite clause grammar
DDG daughter dependency grammar
DG dependency gram m ar
DUG dependency unification gram m ar
FUG functional unification gram m ar
GB government-binding theory
GPS G generalized phrase structure gram m ar
HPSG head-driven phrase structure gram m ar
ID immediate dominance
LFG lexical-functional grammar
LP linear precedence
M T machine translation
NLP natural language processing
PSG phrase structure gram m ar
TAG tree-adjoining grammar
UCG unification categorial grammar
W FST well-formed substring table

15

C hapter 1

Introduction

The intuitive appeals of the two theories cannot be discussed, since
intuitions are personal and irrational. (Hays 1964: 522)

1.1 S cop e o f th e th esis

There are, in contem porary linguistic theory, two different views of gram m at­

ical relations. The first of these sees relations of gram m atical dependency as

basic: syntactic structures are essentially networks of gram m atically related

entities. The second view denies gram m atical relations basic status, instead

seeing them as being derived from more fundam ental structures, such as con­

stituent structures. This la tter view has predom inated throughout most of

this century, first in Im m e d ia te C o n s t i tu e n t (IC) analysis (Bloomfield 1914,

1933), and later, from the mid-1950s onwards, in P h r a s e S t r u c tu r e G ra m ­

m a r (PSG) (Chomsky 1957).

The dom ination of constituency-based approaches has not been limited

to theoretical linguistics. In com putational linguistics also, the overwhelm­

ing m ajority of proposals which posit a distinct syntactic layer assume that

th a t layer is based on constituent structure ra ther than dependency structure.

This asym m etry can not legitimately be a ttribu ted to any established results

showing the superiority of one system over the other in respect of descriptive

adequacy, or any other substantive function: no such results exist. However,

this is not to say th a t the asym m etry is inexplicable. A lthough the notion of

16

gram m atical dependency is almost as old as the study of grammar, it has, for

most of its existence remained just that: a notion.

The first rigorous formalization of a dependency gram m ar (DG) came just

over th irty years ago (see Gaifman 1965), a few years after the first formaliza­

tion of the class of PSGs (Chomsky 1956). By the time the formal definition of

a DG was published in a wide circulation journal, the corresponding definitions

of PSG had been in the public domain for a decade, with large international

programmes of research in formal language theory and theoretical linguistics

building on a PSG foundation. DG as an expHcitly articulated system thus

entered an arena in which PSG was already well-established. Given th a t the

earliest published formal accounts of DG established its equivalence (weak and

strong) w ith context-free PSG (CFPSG)^, there was little incentive to aban­

don the now familiar and well-understood formalism in favour of the unfamiliar

and com paratively less-well understood formalism.

A remarkable situation now obtains. Formal work in DG is virtually frozen

in the s ta te it was in around the mid-1960s, with only a handful of groups

around the world making any (modest) advances since then (hardly any of

which has ever been published in English). In contrast, a much larger —

though still modest by PSG standards — number of theoretical linguists con­

tinues to assume some version of DG as the foundation of syntactic struc­

ture. Unfortunately, almost all linguistic theories based on DG have departed

to some extent from the terra firma of formal definition.^ Since the choice

of DG as basic is a minority preference, those making the choice have gone

to some lengths to argue the case for DG rather than PSG (for example,

Hudson 1984: 92-8, forthcoming; Starosta 1988: 35-6). The opposite is gen­

erally not found: proponents of theories based on PSG do not typically support

the choice of PSG with argum ents for the superiority of PSG over DG (but

^Given a definition of equivalence to be described in Chapter 2 below.
^The passing allusion to Pullum’s (1985) iconoclastic paper ‘Assuming some version of

the X-bar theory’ is thus intentional.

17

see the debate in Hudson 1980a; Dahl 1980; Hudson 1980b; H ietaranta 1981;

and Hudson 1981b for some responses to arguments against PSG).

The principal argum ent offered by proponents of DG is th a t PSG ap­

proaches introduce a redundant layer of structure. Lexical-Functional G ram ­

m ar (LFG) offers a particularly clear illustration of this, with its c-structure

(constituent structure) and separate f-structure (functional structure), the la t­

ter being constructed by reference to the former (Kaplan and Bresnan 1982).

In a DG approach a single structure suffices. The position adopted by many

advocates of PSG is th a t it is unnecessary, not to say impossible, to argue

against moving targets such as the underformalized versions of DG on offer.

This is to present the issues as being neatly polarized. In fact, most lin­

guists nowadays work w ith hybrid systems which express both dependency

and constituency in a single structure, albeit one which owes more to the

PSG tradition than to the DG tradition. The most widespread example is

X gram m ar (originally proposed by Harris 1951) which augments a CFPSG

by distinguishing one element in each constituent as the h e a d of th a t con­

stituen t. However, there are complications here since a num ber of syntactic

theories have been charged with uncritically adopting unformalized versions of

X theory (Pullum 1985; Kornai and Pullum 1990) — the very charge laid a t

the door of certain DG theories!

The general paucity of formal results concerning DG carries over from

theoretical to com putational linguistics. Here DG is scarcely mentioned, far

less argued against. In the small number of cases in which it achieves passing

mention, the same reasons for not using DG are employed: first, the only

existing formal results show the equivalence of DG and CFPSG so there is

no incentive to work with the less familiar system; second, almost nothing

else is known formally about DG so until such tim e as additional solid results

become available there is no incentive to invest effort in trying to work w ithin

th a t framework.

18

Let us consider these points in turn. F irst, then, the equivalence of DG

and CFPSG. In their monograph Linguistics and Inform ation Science Sparck

Jones and Kay provide a brief introduction to DG and then furnish an account

for why DG is not mentioned again;

We have put phrase structure and dependency together in the same

class because it is easy to show th a t the differences between them

are trivial from almost every point of view (see Gaifman 1965).

It is also possible to write gram m atical rules in a suitable no­

ta tion which describes a single language and which assigns to

each sentence of th a t language both phrase-structure and depen­

dency trees (see Kay 1965; Robinson 1967). In this paper we shall

make no further references to dependency gram m ar, intending what

we say about phrase-structure gram m ar to be understood as ap­

plying also to dependency with occasional minor modifications”

(Sparck Jones and Kay 1973: 83-4).

Sparck Jones and K ay’s observation th a t it is possible to devise a m eta­

formalism which includes both dependency and constituency information is

useful from a descriptive point of view. However, the point it misses is th a t the

equivalence of the formalisms or the possibility of devising a meta-formalism

leaves open the question of whether phrase structure parsing and dependency

parsing can be achieved by means of identical algorithms. This is a question

which has hardly ever been raised in the literature. Hays’ claim th a t “a phrase-

struc ture parser can be converted into a dependency parser w ith only a minor

a lteration” (Hays 1966b: 79) is presented without argum ent or illustration so

its status is, a t best, uncertain. A seminal text in com puter science bears the

title Algorithms + Data Structures = Programs (W irth 1975). It is well under­

stood th a t a change in data structure may necessitate a change in algorithm

if the net effects of the program are to remain constant. “The development of

the algorithm...is intim ately linked to the choice of an appropriate d a ta struc­

19

tu re” (Goldschlager and Lister 1982: 65). Thus it cannot be taken for granted

a priori th a t familiar phrase structure parsing algorithms will map effortlessly

into the dependency parsing domain.

The second criticism of DG in com putational linguistics is th a t where DG

has been employed, for example in parsing systems, the resulting systems

have not been constructed on a principled or even well-defined foundation.

W inograd writes:

The formal theory of dependency gram m ar has emphasized ways

of describing structures rather than how the system ’s perm anent

knowledge is structured or how a sentence is processed. It does not

address in a systematic way the problem of finding the correct de­

pendency structure for a given sequence of words. In systems tha t

use dependency as a way of characterizing structure, the parsing

process is generally of an ad hoc nature (W inograd 1983: 75).

Once again, this claim is presented without further argum ent or evidence.

The absence of empirical da ta which characterizes these claims is not as

surprising as it m ight first seem when it is understood th a t the number of

dependency parsing systems in existence is severely limited in comparison with

the number of phrase structure parsing systems. It is also the case th a t those

descriptions of dependency parsing systems which have appeared in prin t have,

on the whole, been published in relatively obscure sources or have only been

circulated privately. Some accounts have been terse to the point of leaving most

of the detail unreported. No survey or com parative account of dependency

parsers is currently in existence.

One of the chief objectives of this thesis is to fill this gap in the literature

by presenting an extensive survey of existing dependency parsing systems, the

first such survey to be prepared.

The availability of this survey m aterial presents a unique opportunity to

consider from a base of empirical fact how the parsing algorithms employed

20

in dependency parsing compare with those which are widely used and well-

understood in phrase structure parsing. This study focuses on two hypotheses:

H ypothesis 1

It is possible to construct a fully functional dependency parser

based directly on an established phrase structure parsing algorithm

w ithout altering any fundam ental aspects of the algorithm.

This hypothesis is a strong version of Hays’ (1966b: 79) claim. It is m otivated

by Gaifm an’s definition of strong equivalence between DG and PSG which

guarantees some measure of structural correspondence a t each point in the DG

and PSG parse trees (see C hapter 2 below). However, it is not the strongest

possible hypothesis, since it stops short of predicting th a t a dependency parser

can be constructed based on any phrase structure parsing algorithm.

H ypothesis 2

It is possible to construct a fully functional dependency parser using

an algorithm which could not be used w ithout substantial modifi­

cation in a fully functional conventional phrase structure parser.

This hypothesis is motivated by an appreciation of the particular way in which

DG rules encode information, as compared with the way in which PSG rules

encode information.

As I have previously noted, most linguistically motivated DGs have pro­

ceeded beyond the limits of what has been defined in a m athem atically rigor­

ous way. It is impossible to undertake a survey of dependency parsing systems

without encountering some of these devices of unknown formal power. W hile

noting in passing these extensions where relevant, I shall concentrate my anal­

ysis on the parsing of the context free backbone of these theories (i.e. th a t

which can be m apped onto a Gaifman grammar). I shall not be concerned

in this thesis to make any qualitative judgements between DG and PSG qua

descriptive devices.

21

1.2 C h ap ter o u tlin e

W hat follows divides conceptually into three parts,

1. C hapter 2 introduces dependency grammar. It presents a formal account

of DG and outlines the equivalence relation used to compare DG with

PSG. The development of DG from its origins in the classical world

through to the present day are charted in the la tte r part of the chapter.

2. Chapters 3 to 11 present the most detailed review and critique of de­

pendency parsers yet assembled. C hapter 3 describes the growth of the

use of DG in com putational systems for natural language processing.

Chapters 4 to 11 are each devoted to the description and evaluation of

a different dependency parser or closely related family of dependency

parsers. The chapters are arranged in approxim ate chronological order;

the oldest parser is presented first and the most recent parser is presented

last. Needless to say, the development phases of some parsers overlapped

so the ordering of chapters must be regarded as no more than a rough

guide to the relative age of the systems reported therein.

3. Finally, drawing heavily on the preceding analyses of existing depen­

dency parsers. C hapter 12 sets out some elements of a first taxonom y of

dependency parsing, defines some technical vocabulary for the field and

specifies the range of relevant variables. The two hypotheses stated above

are examined in C hapter 13 in light of the survey of existing dependency

parsing algorithms.

22

C hapter 2

D ependency gram m ar

“It all depends.”
C.E.M. Joad,

BBC Radio ‘Brains T rust’,
1942-1948

2.1 O verv iew

Before proceeding with a survey of parsing systems based on DG it is necessary

to be clear about exactly what a DG is. One of the dangers when working

w ith a notion like gram m atical dependency is th a t it can come to mean all

things to all people. The purpose of this chapter is therefore to furnish an

unambiguous definition of DG, to introduce some terminology, and to review

where systems approxim ating to this definition of DG have been employed in

theoretical linguistics.

Section 2.2 introduces Gaifman grammars, the only version of DG to be

defined with full m athem atical rigour. Accordingly, these systems are taken as

a stable reference point in this thesis. The formal properties of Gaifman gram ­

mars are defined, together with a decision procedure for determining whether

or not a given string is accepted or rejected by an arb itrary Gaifman grammar.

A lternative conventions for portraying dependency structures diagram m ati-

cally are introduced. Although there is insufficient space here to reproduce

the ra ther lengthy proof which establishes the strong equivalence of DG and

23

PSG, the equivalence relation employed is described and scrutinized.

In practice, very few — if any — linguists have used Gaifm an’s system

in the description of natural language w ithout making use of various aug­

m entations of unknown formal power. These augm entations are flagged in

Section 2.3. Those which must necessarily be examined in the course of the

survey of dependency parsing systems are described in greater detail in later

chapters. Section 2.4 charts the origins and development of DG in linguistic

theory.

In Section 2.5, three gram m atical formalisms bearing some similarities to

DG are identified, namely Case Grammar, Categorial Grammar, and Head-

Driven Phrase Structure Grammar. Although a full description of these frame­

works is not appropriate here, their basic concepts are introduced and some

reasons for excluding them from this study are provided.

2.2 G aifm an gram m ars

2 .2 .1 D efin itio n s

The first formal definition of DG was offered by Haim Gaifman (1965). In this

section, I present his definition along with illustrative examples.^

D e f i n i t i o n

A d e p e n d e n c y g ra m m a r A is a 5-tuple

A = (T,C,X,7e,^)

where

1. T is a finite set of word symbols, i.e. the term inal symbols. For the pur­

poses of exposition, the letters u, v, w, x, y, z, w ith or w ithout subscripts,

will denote members of this set.

În this re-presentation of Gaifman’s (1965) work, the logic and substance of his definition
is maintained but the manner of exposition has been altered to render the material more
transparent.

24

2. C is a finite set of category symbols. For the purposes of exposition,

the letters U, V, W, X, Y, Z, with or without subscripts, will denote

members of this set.

3. ^ is a set of assignment rules, whose elements are all members of T x C.

Every word belongs to a t least one category and every category m ust

have at least one word assigned to it. A word may be assigned to more

than one category.

4. 7^ is a set of rules which give for each category the set of categories

which may derive directly from it with their relative positions. For each

category X , there is a finite number of rules of the form

(where Yi to Yn are members of C) indicating th a t Yi • • • may de­

pend on X in the order given, where marks the position of X in

the sequence. A rule of the form X{*) allows X to occur w ithout any

dependents.

5. ^ is a subset of C whose members are those categories which may govern

a sentence, i.e. the s ta rt symbols.

E x a m p l e

A i is an example of a dependency grammar, where A i = ({people, robots,

dislike, sm art, stupid} , {N, V, A) , {(people, N), (robots, N), (dislike, V),

(sm art, A), (stupid. A) } , {N(*), N(A,*), V(N,*,N), A(*) }, {V}).

C o n v e n t i o n

By convention, the fact th a t some % is a member of Q may be indicated

thus: *(%).

25

Following this convention, G of A i may be represented as *(V).

C o n v e n t i o n

By convention, A may be represented as follows: for each distinct category

X m C create a correspondence of the form X : L where L is the set of all

words X such th a t (t ,X) is in A.

Thus, A of A i may be represented as {N:{people, robots}, V:{dislike} ,

A:{smart, stupid}}.

C o n v e n t i o n

To improve readability, a grammar of type A may be represented by writing

each member of ^ on a line by itself, followed by each member of 7?. on a line by

itself, followed by each member of ^4 on a line by itself. T and C are implicitly

defined in A.

Thus, A i may be represented as follows:

*(V)
N(*)
N(A,*)
V(N,*,N)
A(*)
N:{people, robots}
V:{dishke}
A:{sm art, stupid}

The next definition elucidates the relationship between sentences of a lan­

guage A and the gram m ar of type A which generates A.

In this definition it is necessary to make reference to occurrences of words

or categories in a sequence. An occurrence is an ordered pair (a:,z), where x is

the word or category and i is the position number of x in the sequence. P , Q

and P , with or w ithout subscripts denote occurrences of words or categories.

If P = (AT, z) then P (P), the sequence number of P , is defined to be z; P is

26

said to be of category X .

D E F I N I T I O N

A se n te n c e XiX2 • • • is analyzed by a gram m ar of type A iff the following

are true:

1. A sequence of categories X 1 X 2 ' ' ’ Xm can be formed such th a t Xi is of

category Ai for 1 < i < m .

2. A 2-place relation d can be established between pairs of words in X1 X2 • - • Xj

PdQ signifies the fact th a t P depends on Q, i.e. the relation d holds be­

tween P and Q.

For every d we define another relation d* where Pd*Q iff there is a se­

quence Pq, Pi " ■ Pn such th a t Pq = P^ P^ = Q and PidPi^i for every

0 < 2 < n — 1.

The relation d is constrained in the following ways:

(a) For no P , Pd*P.

(b) For every P , there is a t most one Q such th a t PdQ.

(c) If Pd*Q and R is between P and Q in sequence (i.e. either S{P) <

6"(P) < 5'(Q) or 5"(P) > 5 '(P) > S(Q)), then Pd-'Q.

(d) The whole set of occurrences is connected by the relation d.

3. If P is an occurrence of Xj and if the occurrences th a t depend on

it are P i ,P 2 ---Pn, also, if Ph is an occurrence of where h =

1 ’ "71, and the order in which these words occur in the sentence is

5 5 ‘ 5 " " ’ 1) then A j(A jj • • • X{^ * " ' ' ^ in) is a

rule of R. In the case th a t no occurrence depends on P, A j(*) is a rule

of R.

27

4. The occurrence which governs the sentence (i.e. which depends on no

other occurrence) is an occurrence of a word whose category is a member

O Î Ç .

The structure corresponding to a sentence of a language generated by a

gram m ar of type A is called a dependency tree.

D e f i n i t i o n

A d e p e n d e n c y tr e e for a sentence Xi - - • Xn consists of the string of cate­

gories X i ’ ' ' Xnt together with the relation d.

D E F I N I T I O N

A lan g u ag e is weakly generated by a dependency gram m ar iff for every

sentence in th a t language there is a corresponding dependency tree and no

dependency tree exists for a sequence of words which is not a sentence. A lan­

guage is strongly generated by a dependency gram m ar iff it is weakly generated

by th a t dependency gram m ar and, for every syntactically correct in terpreta­

tion, and only for these, there are corresponding dependency trees.

The above definitions can be summarized informally as follows. In the

structure corresponding to a sentence of a language generated by a dependency

gram m ar of type A:

1. one and only one occurrence is independent (i.e. does not depend on any

other);

2. all other occurrences depend on some element;

3. no occurrence depends on more than one other; and

4. if A depends directly on B and some occurrence C intervenes between

them (in linear order of string), then C depends directly on A or on B

or on some other intervening element (Robinson 1970: 260).

28

To aid discussion, I shall adopt the following terminology. All occurrences of

words in a sentence shall be called w ords. W here the intention is to refer

to words in the lexicon, this will be stated explicitly. The single independent

word in a sequence (i.e. the word which depends on no other) shall be called

the ro o t. One word W i is said to be a s u b o rd in a te of another word W 2

if W i depends on W 2 or on another subordinate of W 2 , i.e. W i depends di­

rectly or indirectly on W 2 . The word on which another word depends shall be

called its h e ad . The requirement th a t a head-dependent pair either be next to

each other or separated by direct or indirect dependents of themselves (point

4 above) is known as the a d ja c e n c y c o n s tra in t .

E x a m p l e

Given these definitions, the sentences in (1) belong to the language defined

by A i, whereas the sequences in (2) are outside of tha t language. (By conven­

tion, sequences which are not well-formed in respect of a particular gram m ar

are prefixed by ‘*’).

(1) a People dislike robots.
b Stupid people dislike sm art robots,
c Sm art robots dislike people,
d People dishke sm art people.

(2) a * Sm art people dislike,
b *Stupid dislike robots,
c *Stupid robots.
d * Robots people dislike,
e * Robots sm art dislike people.

Exam ple (2a) is ill-formed because dislike is a V, and Vs require two depen­

dents, one preceding and one following. In this case, no following dependent is

present. Example (2b) is ill-formed because all of the words are not connected

together by dependency. The sequence is divided into two parts: stupid (which

requires a head) and dislike robots (which requires a preceding dependent of

29

category N for dislike). None of the words in (2c) is missing a dependent. How­

ever, the independent word robots is of category N, but only words of category

V may govern a sentence. In example (2d), none of the words is missing a de­

pendent and the independent element dislike belongs to the required category

V. However, the dependents of V are required to occur one on either side of

V, whereas here they both occur before it. Example (2e) is ill-formed because

of the inappropriate position of smart. E ither it is a dependent of robots, in

which case it should precede th a t word, or it is a dependent of people. If it is

a dependent of people then it precedes it as it ought, but smart and people are

separated by the word dislike, which is dependent on neither.

I shall henceforth refer to dependency grammars of type A as G a ifm a n

G ra m m a rs .

2*2.2 A reco g n izer for G a ifm an gram m ars

So far, I have characterized Gaifman grammars in terms of constraints on the

well-formedness of gram m ar rules and dependency structures. In this section

I describe a decision procedure — a re c o g n iz e r — which accepts all and only

the well-formed strings of the language described by a Gaifman gram m ar. The

recognizer is based on one described by Hays (1964: 516-17).

The principal da ta structure used by the recognizer is a table. To determ ine

whether or not a string is generated by a Gaifman gram m ar A proceed as

follows:

1. S tarting from 1, and counting upwards in units of 1, assign an integer to

each word in the string, working from left to right. The integer assigned

to a word shall be known as the position of th a t word. Let M a x equal

the position of the rightm ost word.

2. Set up a table, having M a x positions, numbered from 1 to M a x . A cell

[a,h] shall occupy all the positions from Pa to Pb, where 1 < a < 6 <

M a x.

30

3. For each word Wi in the string retrieve all the classes X i to assigned

to th a t word by assignment rules of the form W : { X i , X ^ } in A. If

Pi is the position of VFj, write Xi to Xn in the table at cell

4. For each word class X a t cell [j, j] in the table (1 < j < M a x) determ ine

w hether a rule of the form %(*) exists in A. If so, insert %(*) in the

table a t cell

5. Let y be a variable. Set V = 2.

6. Consider each sequence of V adjacent cells in the table. For each se­

quence which consists of exactly one word class symbol X and V -1 trees,

arranged in the order

Fi) X̂ Yj, . . . , Yy —1

search in A j for a corresponding rule of the form:

. . . , Zi^ " " I Z y — \)

If the root of each tree Yn in the table is identical to each dependent

Zn in the gram m ar rule then if Y\ is located a t cell and

Yy - i is located a t cell [FV-i,c/t, insert a new tree in the table

occupying cell FV-i^ight]- The form of the new tree should be as

follows:

^ (T i , F2 , ..., F ,̂ *, F j , ..., FV-i)

7. If y = M a x then go to step 8, otherwise increment V and go to step 6.

8. If a tree exists in the table occupying cell [l,M ax] then succeed if the

root of the tree is of type X and a rule of the form *(A') exists in A.

O therwise fail.

31

Hays presents his algorithm informally, so it has been necessary to recon­

struct some of the details in the above account.

A Prolog im plem entation of this recognition algorithm can be found in the

file h a y s_ re c o g n iz e r .p l in Appendix A.3.

Hays also outlines a generative procedure for enum erating all the strings

generated by a Gaifman gram m ar (Hays 1964; 514-15). A Prolog implemen­

ta tion of a reconstructed version of Hays’ procedure can be found in the file

h a y s_ g e n e ra to r .p l in Appendix A.3.

2 .2 .3 R e p r e se n tin g d e p e n d e n c y s tr u c tu r es

There are a t least three conventions for presenting dependency structures di-

agrammatically: stemmas^ tree diagrams and arc diagrams.

The first representational scheme — due to Tesniere (1959) — presents

words as nodes in a graph which is known as a s te m m a (see Figure 2.1,

for example). Dependencies between word occurrences are signalled by links

between nodes. By convention, heads are located nearer the top of the diagram

than their dependents. The first occurrence in a sentence is positioned furthest

to the left in a diagram and the n th occurrence appears to the right of the

n - l t h occurrence and to the left of the n + l th occurrence. For simplicity,

category labels are usually om itted from diagrams of all types.

A lthough stem m as contain the appropriate am ount of information, they

can sometimes prove to be difficult to read, especially when the sentences

represented are long and involve a lot of alternation between left-pointing and

right-pointing dependencies.

In the second type of diagram, exemplified in Figure 2.2, dependency is

represented by the relative vertical position of nodes in a tree; if a line connects

a lower node to a higher node then the symbol corresponding to the lower node

depends on the one corresponding to the higher node. I shall call diagrams of

this kind t r e e d ia g ra m s. They are also known as D -m a rk e rs .

The th ird diagram m atic convention represents dependency relations by

32

dislike

robots

sm art stupid

Figure 2.1: stem m a for Sm art people dislike stupid robots

sm art people dislike stupid robots

Figure 2,2: tree diagram (D-marker) for Sm art people dislike stupid robots

33

' V '

Sm art people dislike stupid robots

Figure 2.3: arc diagram for Sm art people dislike stupid robots

means of directed arcs. I shall adopt the convention of directing arcs from

heads to dependents, although (unfortunately) there is no generally accepted

convention and it is not unusual to find examples in the literature of arcs being

oppositely directed. I shall refer to diagrams of this kind as a rc d iag ram s.

Figure 2.3 is equivalent to Figures 2.1 and 2.2 in the information it expresses.

Some authors (such as M atthews 1981) draw arc diagrams with the arcs

below the symbols in the sentence rather than above them as shown here.

Hudson sometimes divides the arcs so th a t those having a designated func­

tion appear below the sentence symbols, whilst the rest appear above them

(Hudson 1988b: 202; page 189 below).

The adjacency constraint is satisfied in the sentence Sm art people dislike

stupid robots^ as can be seen in the dependency structure variously represented

in Figures 2.1, 2.2 and 2.3. The constraint is violated in the dependency

structure shown in Figure 2.4.

In Figure 2.4, S tu p id violates the constraint, stupid is separated from its

head robots by d islike which depends on neither stupid nor robots^ neither

is it a subordinate of stupid nor robot. In a tree diagram, the dotted line

which connects a word with its node is called its p ro je c tio n . Note th a t in

Figure 2.2, links and projections do not intersect. Such tree diagrams and their

corresponding syntactic structures are said to be p ro je c tiv e . In Figure 2.4 a

link and a projection intersect a t precisely the point where ill-formedness was

detected. Diagrams like Figure 2.4, and the corresponding syntactic structures

34

people stupid dislike robotssm art

Figure 2.4: dependency tree for *Sm art people stupid dislike robots

Sm art people stupid dislike robots

Figure 2.5: arc diagram for * Sm art people stupid dislike robots

are said to be n o n -p ro je c tiv e .

The vocabulary of projectivity is rooted in the imagery of tree diagrams.

I shall henceforth make use of the more neutral terms a d ja c e n t and n o n -

a d ja c e n t.

The arc diagram corresponding to Figure 2,4 is shown in Figure 2.5. Notice

tha t arcs never cross in arc diagrams of structures which satisfy the adjacency

constraint, whereas arcs do cross where the structures violate the adjacency

constraint. (The only exception to this generalization is discussed below).

In general, I shall use arc diagrams to represent dependency structures;

when describing a particular dependency system reported in the literature I

shall use the representation normally employed by proponents of th a t system.

35

Old sailors tell tall tales

Figure 2.6: Dependency structure of Old sailors tell tall tales

2 .2 .4 T h e g e n e r a tiv e ca p a c ity o f G a ifm a n gram m ars

As well as providing a formally explicit definition of one class of DG, Gaifman

went on to investigate the generative capacity of the class. He did this by

comparing his DG w ith phrase structure grammar.

He concluded th a t for every DG there is a strongly equivalent CFPSG

and for a subclass of CFPSGs (in which every phrase is a projection of a

lexical category) there is a strongly equivalent DG. His proof is too lengthy

to reproduce here; it can be found in Gaifman (1965). Definitions of strong

equivalence between the two systems can be found in Hays (1961b) and in

Gaifman (1965: 320-25).

Let a s u b tre e be a connected subset of a dependency tree. (This is what

Pickering and Barry (1991) have recently called a ‘dependency constituent’.)

Let a c o m p le te s u b tre e consist of some element of a tree, plus a ll other

elements directly or indirectly dependent on it. Thus, the dependency tree

in Figure 2.6 includes the subtrees shown in Table 2.1. Of these, only those

shown in Table 2.2 are complete subtrees.

A phrase structure and a dependency structure, bo th defined over the same

string, c o rre sp o n d re la tio n a lly if every constituent is coextensive with a

subtree and every complete subtree is coextensive with a constituent. Two

structural entities are c o ex te n s iv e if they refer to exactly the same elements

in a string.

Let each subtree have a lab e l, where the label is th a t word in the subtree

36

Old
Old sailors
Old sailors tell
Old sailors tell tall tales
sailors
sailors tell
tell
tell tall tales
tell tales
tall
tall tales
tales

Table 2.1: Subtrees in Figure 2.6

Old
Old sailors
Old sailors tell tall tales
tall
tall tales

Table 2.2: Complete subtrees in Figure 2.6

37

L A B E L S U B T R E E

Old
sailors
tell
tall
tales

Old
Old sailors
Old sailors tell tall tales
tall
tall tales

Table 2.3: Complete subtree labels in Figure 2.6

which depends on no other word in the same subtree. Labels for the complete

subtrees of the dependency tree shown in Figure 2.6 are given in Table 2.3.

Let each phrasal constituent in a PSG also have a label, where the label

is conventionally understood (for example, the label of a noun phrase is often

given as ‘N P ’, etc).^

In dependency theory, a string is said to d e r iv e fro m the label of the

corresponding complete subtree. In phrase structure theory, a string is said to

d e r iv e fro m the label of the corresponding constituent. A label a c c o u n ts fo r

the set of strings th a t derive from it. Two labels are s u b s ta n t iv e ly e q u iv a ­

le n t if they account for the same set of strings.

A phrase structure and a dependency structure c o r re s p o n d if (i) they

correspond relationally and (ii) every complete subtree has a label which is

substantively equivalent to the label of the coextensive constituent.

A DG is s t ro n g ly e q u iv a le n t to a PSG if (i) they have the same te r­

m inal alphabet, and (ii) for every string over th a t alphabet, every structu re

a ttribu ted by either gram m ar corresponds to a structure a ttrib u ted by the

other.

Let us consider, by way of example, the ambiguous sentence (3), the two

phrase structu re interpretations of which are shown in Figures 2.7 and 2.8.

The linguistic plausibility of these analyses is not an issue here.)

(3) They are racing horces.

^All subtree and phrase labels must be unique within each sentence. If necessary this
can be effected by providing labels with unique integer subscripts.

38

p VP

AuxP V P

Aux

They are racing horses

Figure 2.7: F irst phrase structure analysis of They are racing horces

P P

V NP

AdjP N

Adj

They are racing horses

Figure 2.8: Second phrase structure analysis of They are racing horces

39

They are racing horses

Figure 2.9: Dependency structure for They are racing horses. The sentence
root is racing.

L A B E L S U B T R E E

they they
are are

they racing
they are racing

racing they are racing horses
are racing
are racing horses
racing
racing horses

horses horses

Table 2.4: Subtrees and complete subtrees in the DG analysis of the sentence
They are racing horses shown in Figure 2.9. Only complete subtrees are la­
belled.

Now consider the dependency structure in Figure 2.9. This includes the

subtrees shown in Table 2.4.

The constituents in Figure 2.7 are shown in Table 2.5 (ignoring the initial

category assignments).

Since every constituent in Figure 2.7 is coextensive with a subtree in Fig­

ure 2.9 and every complete subtree in Figure 2.9 is coextensive w ith a con­

stituent, the structures correspond relationally. Since it is also the case tha t

every complete subtree has a label which is substantively equivalent to the

label of the coextensive constituent, the structures correspond. Close exami­

nation of Figure 2.8 reveals th a t it also corresponds relationaly to Figure 2.9.

40

L A B E L CO N S T I T U E N T

NP
s
AuxP
VP
VP
NP

they
they are racing horses
are
are racing
are racing horses
horses

Table 2.5: Constituents in the phrase structure analysis of the sentence They
are racing horses shown in Figure 2.7

However, only Figures 2.7 and 2.9 share substantively equivalent labellings so

only these structures can be said to correspond.

2.3 B ey o n d G aifm an gram m ars

In presenting his work on PSGs, Chomsky frequently and explicitly represented

them as a formalization of the structuralist Im m ediate Constituent model (e.g.

Chomsky 1962). This claim has recently been contested by M anaster-Ram er

and Kac (1990), thus highlighting some of the difficulties inherent in trying to

formalize a pre-existing linguistic notion faithfully.

The issues are somewhat clearer in the case of DG, since Gaifman, as

au thor of the formalization, makes no claims regarding its relation to any

existing notion other than th a t embodied in a RAND Corporation machine

translation program. Hays, on the other hand, represents Gaifman’s work as

being a formalization of the hnguistic notion of dependency. For example,

following a discussion of the different linguistic notions underlying IC theory

and dependency theory in his 1964 Language paper, his sum m ary of what is

to follow includes the following statem ent:

Section 2 presents a formalism for the theory, identifying the com­

ponents of any dependency gram m ar (Hays 1964: 512, my em pha­

sis).

41

I have been unable to find any discussions anywhere in the literature which

investigate this assertion by reference to actual linguistic theories which claim

to be based on some notion of dependency.

W hat is noticeable is th a t few of the self-proclaimed dependency-based

theories of language have made use of Gaifman’s formalism. This contrasts

sharply with the uptake of Chomsky’s PSG formalism, and particularly C F­

PSG. The only DGs which incorporate a more or less intact version of Gaifman

gram m ar are those which use it as the base component in a transform ational

gram m ar (Hays 1964: 522-4; Robinson 1970) or as the transcription system

on one stra tum of a stratificational grammar (Hays 1964: 522-4). Otherwise,

alternative quasi-formalisms are employed.

It is common to find versions of DG which make use of complex feature

structures instead of or as well as word category labels, with dependency rules

being allowed to m anipulate features in arbitrary ways (e.g. S tarosta 1988;

Covington 1990b). Consider the following illustrative example of a dependency

rule for intransitive verbs which enforces subject-verb agreement (adapted from

Covington 1990b: 234):

category : verb
person : X
num ber : Y

Here the head is of syntactic category ‘verb’, of person ‘X ’ and num ber ‘Y’.

Its single dependent must be a preceding nom inative case noun, also of person

‘X’ and num ber ‘Y’. ‘X’ and ‘Y’ are variables over feature values.

This kind of augm entation could easily be formalized as an extension to

Gaifm an’s definition of DG. So long as the feature structures are simply ar­

rangements of symbols drawn from a finite set, the generative power remains

unchanged. The proof is trivial: any arrangem ent of features m ay be ‘frozen’

and treated as though it were an atomic symbol.^ This is directly analogous to

/ ' category : noun \
person : X
number : Y 5 *

\ case : nom inative /

^Obviously, this is just a sketch of the proof. The proof itself would first have to define
precisely the notational extension to Gaifman’s formalism.

42

what happens when a PSG is augmented by the addition of feature structures.

Gazdar has summarized this as follows:

If we take the class of context-free phrase structu re grammars and

modify it so th a t (i) grammars are allowed to make use of finite

feature systems and (ii) rules are perm itted to m anipulate the fea­

tures in arb itrary ways, then what we end up with is equivalent to

w hat we started out with (Gazdar 1988: 69).

Unfortunately, all of the DGs which introduce feature structures also introduce

other extensions, whose effects on the generative capacity of the grammars are

unknown. For example, in Hudson’s Word G ram m ar, a word may depend on

more th an one head (Hudson 1990: 113-20). In S tarosta’s Lexicase, certain

complete subtrees (e.g. prepositional structures in English) have two roots, or

rather, a single root which is the union of the features of two of the words in­

cluded in the subtree (S tarosta 1988: 232-4). Hudson offers a revised version

of the adjacency constraint whose definition includes a reference to multiple

heads (Hudson 1990: 117), while Pericliev and llarionov (1986), Sgall et al.

(1986), Schubert (1987), and Covington (1990b) advocate abandoning the ad­

jacency constrain t altogether!

A thesis of this kind can not proceed w ithout giving some atten tion to

these theoretical extensions. However, as previously indicated, these features

m ust be regarded as lying on the periphery of the study.

2.4 O rig in s in lin g u istic th eo ry

The concept of gram m atical dependency is found in some of the earliest known

gram m ars, for example those of the Greek scholars of the Alexandrian School,

and especially Dionysius Thrax (c.lOO B.C.) whose work drew heavily on the

Stoic trad ition of linguistic studies. T hrax’s Téchnt grammatikë was the in­

spiration for the gram m ar of the later A lexandrian scholar Apollonius Dysco-

43

lus (second century A.D.) whose work “foreshadowed the distinction of sub­

ject and object and of later concepts such as government...and dependency”

(Robins 1979: 37). The work of T hrax and Apollonius was further developed

by a num ber of Latin grammarians, most notably Priscian (c. 450 A.D.). An

independent (earlier) strand of gram m atical study was pursued by the Sanskrit

gram m arians, most notably Panini (some tim e between 600 and 300 B.C.). In

Panin i’s gram m ar “the verb, inflected for person, number, and tense, was

taken as the core of the sentence... O ther words stood in specific relations to

the verb, and of these the most im portant were the nouns in their different

case inflexions” (Robins 1979: 145).

Particularly clear early articulations of the central concepts of dependency

can be found in the writings of the medieval Arabic gram m arians, especially

those of the Basra and Baghdad schools. In Arabic gram m ar, a governor

was said to govern {^amila lit. ‘do, operate’) a governed (ma^miil).

M any of the details of modern DG are made explicit for the first tim e in the

writings of Ibn Al-Sarraj (died 928A.D.). For example, a word may not depend

on more than one other. Sarraj writes:

It is not perm itted to have two governors governing a single item.
(Owens 1988: 43'*)

Heads and dependents were required to be adjacent. Again, Sarraj writes:

The separation between the governor and the governed by some­
thing not related to either is disliked. (Owens 1988: 46)

This finds support in the writings of Jurjan i (died 1078), who insists that:

You cannot separate a governor and a governed w ith a foreign
element. (Owens 1988: 49)

In common with modern versions of dependency theory, governors could have

m any dependents, although dependents could have only one head. Dependency

"*A11 quotations use Owen’s translation and reference Owens (1988) rather than the orig­
inal sources.

44

was unidirectional and there was no interdependence. The mediaeval Arabic

gram m arians also observed tha t, for Arabic a t least, governor-governed was

the unmarked word order. A detailed guide to mediaeval Arabic gram m ar can

be found in Owens (1988).

Dependency is also found in the work of mediaeval European scholars such

as the modistic and speculative grammarians, and especially, in the work of

M artin of Dacia and Thomas of E rfurt (more details of their work can be

found on page 217ff below). According to Herbst et al. (1980; 33) who quote

Engelen (1975: 37), some of the central ideas of DG were used in Germany

by Meiner in the eighteenth century and later by others including Behaghel,

Biihler and Neumann.

Most com m entators agree th a t the most significant contribution to the

development of DG was made in the 1950s by the Frenchman Lucien Tesnière.

Tesnière was the first person to develop a semi-formal apparatus for describing

dependency structures. Tesniere’s ideas were initially collected in a slim and

ra ther program m atic volume (Tesnière 1953) which was not very well received

by reviewers (for example, see Garey 1954). Tesnière died in 1954 but Jean

Fourquet edited his unpublished works into a single volume — Éléments de

Syntaxe Structurale — which was published in 1959. This book presents a

coherent and comprehensive account of Tesnière’s work in DG.

Tesnière’s posthumous volume consists of three parts labelled ‘la connex­

ion’ (dependency), ‘la jonction’ (coordination) and ‘la translation’ (word class

transform ation). He argued th a t whereas all other constructions could be

analysed in terms of word-word dependencies, coordinate constructions could

not. This is now the standard view amongst dependency grammarians.^ (A

few dependency grammarians — including Mel’cuk (1988: 26ff) — hold th a t

coordinate constructions can also be analyzed in terms of dependency). The

‘Connexion’ section of the book presents in axiomatic fashion m any of the

®Brief descriptions of some approaches to coordination in DG can be found on
pages 139, 168, and 188. For a useful overview see Hudson (1988b).

45

principles which have come to define and to distinguish DG. For example (my

translation, Tesnière’s emphases):

The structural connections establish relations of d e p e n d e n c e be­
tween the words. As a rule, each link unites a s u p e r io r term with
an in fe r io r term.®

The superior term is called the re g e n t. The inferior term is called
the su b o rd in a te .^

The upward relation can be expressed by saying th a t the subordi­
nate d e p e n d s on the regent, and the downward relation by saying
th a t the regent co m m a n d s or g o v ern s the subordinate.®

In principle, a subordinate can only depend on a s in g le regent. In
contrast, a regent can command several subordinates.^

The node formed by the regent which commands all the subordi­
nates of the phrase is the n o d e o f n o d e s or c e n tra l n o d e . It is
the core of the phrase, of which it assures the structural unity by
tying the separate elements into a single structure. It is identified
w ith the phrase.^® (Tesnière 1959: 13-15)

In a footnote on Tesnière’s page 15 he tells how he first conceived of the idea

of the stem m a in June 1932. He started using it in his private research in

1933 and in his publications in 1934. In 1936, whilst on a trip to the U.S.S.R.,

he discovered th a t he was not the only person to have this idea.^^ Usakov,

Smirnova and Sceptova had published an article using stem mas as early as

1929. Barkhudarov and Princip had done likewise in 1930, and Kruckov and

Svetlaev had used stemmas in a book published in early 1936. In spite of this

— in W estern Europe a t least — Tesnière is usually named as the originator of

®Les connexions structurales établissent entre les mots des rapports de dépendance.
Chaque connexion unit en principe un terme supérieur à un terme inférieur.

^Le terme supérieur reçoit le nom de régissant. Le terme inférieur reçoit le nom de
subordon n é.

®0n exprime la connexion supérieur en disant que le subordonné d ép en d du régissant,
et la connexion inférieur en disant que le régissant com m an de ou régit le subordonné.

®En principe, un subordonné ne peut dépendre que d’un seu l régissant. Au contraire
un régissant peut commander p lusiers subordonnés.

i^Le nœude formé par le régissant qui commande tous les subordonnés de la phrase est le
n œ u d des n œ u ds ou n œ u d central. Il est au centre de la phrase, dont il assure l’unité
structurale en en nouant les divers éléments en un seul faisceau. Il s’identifie avec la phrase.

“J ’ai eu la joie de constater que l’idée du stemma y avait germé de façon indépendante”.

46

DG as an explicit system for linguistic description. Certainly it was Tesnière’s

work which did more than anyone else’s to publicize DG. Had his volume been

published any tim e other than in the immediate afterm ath of the publication

of Chom sky’s Syntactic Structures^ DG might have been taken seriously by a

much wider audience.

Amongst the most influential of Tesnière’s ideas were those relating to

valency. T he valency of a verb is its potential for having other words depend

on it. Thus, an intransitive verb takes one dependent, a transitive verb takes

two, a ditransitive three, etc. In addition to these complements which m ust

be present in a well-formed structure, a verb may also take some number of

adjuncts. Complements subcategorize the verb, whereas adjuncts modify it.

The term ‘valency’ was borrowed from molecular physics where it is used to

describe the a ttractive potential of a m o l e c u l e . Tesnière is often cited as

the originator of the term ‘valency’ in linguistics but, according to Schubert

(1987: 61), it can be found in the earlier writings of Kacnel’son (1948: 132)

[‘sintaksiceskaja valentost’] and de Groot (1949: 111) [‘syntactische valentie’].

Baum (1976: 32) claims th a t Rockett (1958: 249) uses the term ‘valence’

independently of Tesnière.

The relationship between valency and dependency is ra ther opaque. Early

dependency theorists tended to concentrate on formal issues and to see ver­

bal valency as just one speciflc example of the general case of dependency

— in o ther words, all words have a valency. Valency theorists, on the other

hand, concentrate on the pivotal role played by the main verb in natura l lan­

guage sentences. They tend to focus particularly on the case relations—in

the general sense of Fillmore (1968)—of the verb. Two largely disjoint re­

search communities have sprung up. In a recently published bibliography of

peut ainsi comparer le verbe à une sorte d’atome crochu susceptible d’excercer son
attraction sur un nombre plus ou moins élevé d’actants, selon qu’il comporte un nombre plus
ou moins élevé de crochets pour les maintenir dans sa dépendance. Le nombre de crochets
que présente un verbe et par conséquent le nombre d’actants qu’il est susceptible de régir,
constitue ce que nous appellerons la valence du verbe” (page 238).

47

valency gram m ar [valenzbibliographie] which includes 2377 entries, only 294

are indexed as relating to ‘dependency’ (Schumacher 1988). It is somewhat

difficult to see why these separate communities still exist since a number of

linguistic theories appear to bridge the perceived gap quite effectively (e.g.

Heringer 1970; Anderson 1977; Starosta 1988).

The influence of Tesnière’s work has reached into almost every part of the

world where language is studied, but the effects have not always been the same.

In Tesnière’s native France and throughout the Romance language areas his

insights have been frequently applauded but seldom adopted. In Schubert’s

words:

In works w ritten in French, Spanish, Italian and other Romance
languages, Tesnière is referred to as a classic of linguistics, but
hardly anybody has taken up the essence of his ideas and written
for example a dependency syntax of French or a valency dictionary
of Spanish (Schubert 1987: 22).

Maurice Gross is sometimes cited as a French dependency gram m arian but he

has not been active in the DG field since the early 1960s when he briefly exam­

ined dependency grammars from a com putational point of view (Gross 1964).

Tesnière’s work had more influence in Germ any (East and West),

where it was judged to be more appropriate for describing German

word order variation and agreement patterns than the rather inflexi­

ble PSGs available in the 1960s and 70s. One of the first large-scale

uses of dependency in the description of German was by Hans-Jurgen

Heringer, who combined constituency and dependency in a single represen­

ta tion (Heringer 1970). Two schools arose w ithin dependency-based stud­

ies of language in the late 1960s a t Leipzig and at Mannheim. The

Leipzig school — which is chiefly associated with Gerhard Helbig — con­

centrated on the compilation of valency dictionaries for German verbs

(Helbig and Schenkel 1969), adjectives (Sommerfeldt and Schreiber 1974),

and nouns (Sommerfeldt and Schreiber 1977). The M annheim school under

48

Ulrich Engel and Helmut Schumacher began by producing an alternative va­

lency dictionary of German verbs (Engel and Schumacher 1976) but they pro­

gressed to apply the insights of DG in the general description of languages.

Engel’s gram m ar of German (Engel 1977) was possibly the first a ttem pt to

describe all of the m ajor phenomena of a single language within a dependency

framework. O ther German dependency theorists include Jiirgen Kunze and his

colleagues in East Berlin (e.g. Kunze 1975) and Heinz Vater who developed a

transform ational generative version of DG (Vater 1975).

From Germany, interest in DG spread throughout N orthern Europe, often

being promulgated by Germanists. It was introduced in Finland by Kalevi

Tarvainen (Tarvainen 1977), in Sweden by Henrik Nikula (Nikula 1976), and

in Denmark by Catharine Fabricius-Hansen (Fabricius-Hansen 1977).

In G reat Britain, John Anderson (also a Germ anist) developed ‘Case G ram ­

m ar’, a combination of DG and localist case (Anderson 1971; Anderson 1977).

More recently, Anderson has been involved in the development of a

dependency-based theory of phonology (Anderson and Durand 1986). Richard

H udson’s theory of ‘Daughter Dependency G ram m ar’ (DDG) (Hudson 1976)

grew out of his earlier research in Systemic Gram m ar (Hudson 1971) and was

a combination of constituency and dependency. He subsequently abandoned

DDG in favour of a new theory, ‘Word G ram m ar’ (Hudson 1984), which is

based on dependency alone. Hudson has recently published what is probably

the first m ajor theoretically-motivated DG of English (Hudson 1990). In addi­

tion to these dependency theories, at least two British scholars have used DG

in syntax textbooks (M atthews 1981 and Miller 1985) and Rodney Huddleston

has published two grammars of English which incorporate insights from DG

(Huddleston 1984; Huddleston 1988).

In the early 1960s a num ber of Soviet scholars — including Sergei Fi-

tialov and Igor Mel’cuk — used dependency as the basis of machine trans­

lation systems. Since then, Mel’cuk (now at the University of M ontreal)

49

has been developing his dependency-based ‘M eaning-Text M odel’ of language

(Mel’cuk and Zolkovkij 1970; Mel’cuk 1979; Mel’cuk 1988). P e tr Sgall’s group

at Charles University in Prague has produced a general theory of language

structure called ‘Functional Generative Description’ in which dependency is

basic and constituent structure plays no part (Sgall et al. 1986). I am aware

of some ongoing dependency research in Bulgaria but I have not seen any En­

glish papers other than those by Pericliev and Ilarionov (1986) and Avgusti-

nova and Oliva (1990). A number of slavists working in the West have also

used some version of DG in their work, e.g. David Kilby (Atkinson et al. 1982)

and Johanna Nichols (Nichols 1978; Nichols 1986).

It is worth pausing to reflect th a t so far in our discussion of the develop­

ment of DG we have considered only European scholars (with the exception

of Panini, the mediaeval Arabic grammarians, and Johanna Nichols who is

based a t Berkeley). If constituency gram m ar can be regarded as the product

of N orth American scholarship (and especially of Bloomfield and Chomsky)

then DG can be regarded as a distinctively European development. However,

although the vast m ajority of work in DG has been carried out in Europe,

some work has been done in North America and Japan.

The m ain figures associated with DG in N orth America are David Hays,

Jane Robinson, and Stanley S taros ta. Hays worked for the RAND Corporation

in the early 1960s, on a large Russian-English machine translation project. He

explored the uses of DG for machine translation and also investigated the

formal properties of DCs. His work is described in more detail in C hapter 4.

In the late 1950s, Haim Gaifman, had collaborated w ith Bar-Hillel and Shamir

in a study of Categorial Grammars and PSGs which proved for the first time

the generative equivalence of the two formalisms (Bar-Hillel et al. 1960). In

the early 1960s, while he was based in the M athem atics D epartm ent of the

University of California a t Berkeley, Gaifman undertook consultancy work

for the RAND Corporation. It was there, while working with Hays, th a t

50

Gaifman carried out the work described at the beginning of this chapter. His

seminal paper Dependency systems and phrase structure systems appeared as

a RAND internal report in May 1961, although it was not published in a m ajor

journal until 1965, a year after Hays’ article making Gaifm an’s work accessible

to linguists had appeared in Language (Hays 1964). Robinson’s work in DG

was carried out at the end of the 1960s while she was employed a t IBM ’s

W atson Research Center. The main objective of her work was to explore

the ways in which Fillmorean case gram m ar could fit into a transform ational

framework. Her conclusion was th a t a transform ational gram m ar should have a

DG rather than a PSG base component (Robinson 1969; Robinson 1970). The

work of Vater mentioned above (Vater 1975) was a development of Robinson’s

i d e a s . T h e largest single contribution to DG in North America in recent

years has been made by Starosta a t the University of Hawaii. Since the early

1970s Starosta has been developing a dependency-based theory of language

called ‘Lexicase’ (S tarosta 1988). Lexicase has been used in the description of

around fifty different languages, many of them so-called ‘exotic’ languages. It

is unlikely th a t any other dependency-based theory has been so widely field-

tested. For th a t m atter, it is unlikely th a t many theories of any variety have

been so widely field-tested. An extended description of Lexicase can be found

in C hapter 8.

The main figure associated with DG in Japan is Tokumi Kodam a

(Kodam a 1982). However, very little theoretical DG work has so far been

done in Japan.

2.5 R e la ted gram m atica l form alism s

A num ber of frameworks bearing similarities to DG have emerged during the

last few decades. Three of these m erit special a tten tion here, namely Case

Gram m ar, Categorial Gram m ar, and Head-Driven PSG.

Robinson subsequently abandoned DG in favour of augmented PSG.

51

2 .5 .1 C ase gram m ar

Consider the following sentences:

(4) a Punch hit Judy with a club,
b Punch used a club to hit Judy,
c Judy was hit with a club (by Punch).

Although these sentences vary considerably in their surface forms, the semantic

relationships they express remain constant. Punch is the agent of the hitting

action; Judy is on the receiving end of the hitting action; the club is the

instrum ent of the h itting action.

Case gram m ar, developed in the late 1960s by Charles Fillmore

(Fillmore 1968), formalizes these relationships. The semantic deep structure of

a sentence is held to consist of two components, a modality and a proposition.

The m odality component carries features of tense, mood, aspect, and negation

relating to the sentence as a whole. The proposition component records the

deep case relations in the sentence. Typically these cases are associated with

the main verb. In Fillmore’s original version of case gram m ar there were six

deep cases: a g e n t i v e , i n s t r u m e n t a l , d a t i v e , f a c t i t i v e , l o c a t i v e , and

O B J E C T I V E . (This num ber has varied widely between different instantiations

of case gram m ar). The case frame for the verb hit would include agentive,

objective, and instrum ental case slots, where each slot can be filled by phrases

of the appropriate semantic type.

The similarities between case gram m ar and DG should be apparent. It

is easy to envisage writing a set of case gram m ar rules in modified Gaifman

form at, or giving a graphic representation of case structures using arc dia­

grams. Fillmore himself acknowledges his debt to Tesniere and other depen­

dency gram m arians (Fillmore 1977: 60). However, I believe there are good

reasons for keeping DG and case gram m ar clearly separated. DG as I have

described it so far, is concerned with surface syntactic structure. Once a de­

pendency structure has been found, one option is to use it as a guide to assign

a case structure. However, gram m atical relations and case relations are not

52

necessarily coextensive. In (4a), the o b j e c t i v e case is realized by the object

gram m atical relation (Judy). In (4c), the o b j e c t i v e case is realized by the

subject gram m atical relation.

The logical separation of dependency and case is dem onstrated in practice

by the fact tha t while some dependency grammarians make extensive use of

case in their theories (e.g. Anderson 1971, 1977; Starosta 1988), others make

use of alternative semantic frameworks (e.g. Covington 1990b; Hudson 1990).

Our concern here is with the construction of syntactic structures and not se­

mantic structures. The question of which semantic framework is most appro­

priate when starting from a dependency tree is an interesting one, but it is not

the question we are tackling here. Dependency and case — though superficially

similar — are logically distinct.

A useful introduction to case gram m ar is provided by Bruce and Moser

(1987). Applications of case gram m ar in NLP are described in Somers (1987).

It is worth noting in passing th a t Conceptual Dependency (CD)

(Schank 1972; 1975), which is a generalization of case gram m ar for describing

relations holding between events and participants, is also outw ith the scope

of this thesis. The presence of the word ‘dependency’ in its title should not

be allowed to lead to confusion: DG is concerned primarily with syntactic

dependency relations; CD is not.

2 .5 .2 C a teg o r ia l gram m ar

Categorial grammars (CGs) trace their origins from a number of devices devel­

oped in the field of logical semantics, specifically Lesniewski’s theory of seman­

tic categories (Lesniewski 1929) which brought together insights from Husserl’s

Bedeutungskategorien (Husserl 1900) and W hitehead and Russell’s theory of

logical types (W hitehead and Russell 1925). Lesniewski’s theory was refined

by Ajdukiewicz (Ajdukiewicz 1935) who applied the resulting system in the

specification of Polish notation languages (parenthesis-free logical languages

in which operators/ functors are w ritten immediately to the left of their argu-

53

merits). In a gram m ar of the sort envisaged by Ajdukiewicz, there are two

distinct types of category: p r im itiv e or fu n d a m e n ta l categories, which are

denoted by unitary symbols (eg. S, N), and d e riv e d or o p e ra to r categories,

which are denoted by complex symbols of the form:

a //3

where a and (3 can be either variety of category, prim itive or derived. When

complex categories appear within a category, it is custom ary to place brackets

around the embedded categories. A gram m ar consists of a single rule which

states th a t, given any string of two category symbols a / ^ and /?, replace the

string with a. This rule is suggestive of cancelling in fractions, eg. 3/2 x 2 =

3.

Consider a language with three items in its alphabet: x, y, and z. x has

category A /B \ b has category B/C ; c has category C. The string xyz would be

analysed as follows:

(5)

X y z
A /B B /C C

B
A

By convention, a line is drawn below two adjacent categories which combine

to form a composite category and the resulting category label is w ritten below

th a t line. The similarities to phrase structure should be obvious; in this case

we can generate the same string and the same constituent structure (7) with

the following set of PS rules:

(6) A A /B B
B B /C C
A /B —> X
B / C - ^ y
C z

54

A

BA/ B

CB

(7)

Three extensions to Ajdukiewicz’s scheme were introduced by Bar-Hillel

(Bar-Hillel 1953): (i) assignment of words to more than one category was

allowed, (ii) a new kind of complex category — a \/3 — was introduced, and

(iii) a new composition rule was introduced to deal with the new kind of

category: given a string of any two symbols a and a \/? , replace the string

w ith /).

A CG is unidirectional if its complex categories are all either of the form

a \/3 or of the form ex/(d. A gram m ar with both types of complex category is

called a bidirectional CG.

In his seminal paper The mathematics o f sentence structure, Joachim Lam-

bek proposed four different CG rules: application, commutativity, composition,

and raising (Lambek 1958). These rules — or minor variants of them — have

now become the standard rules of CG.

Application
X / Y Y X
Y Y \ X X

These are the rules of combination we have already encountered. If a noun were

assigned the category N, an intransitive verb would be assigned the category

N\S. Thus, by the second clause of the application rule, a noun-intransitive

verb sequence such as John snores would cancel to S.

55

Com m utativity

(X\Y)/Z X\(Y/Z)

Composition
X/Y Y/Z -4 X/Z
X \Y Y\Z X\Z

Raising
X - , Y /(X \Y)
X - , Y \(Y/X)

The m otivation for raising is as follows. Suppose th a t the pronoun he is as­

signed the category S /(N \S) to indicate th a t it can only occur in subject

position, and the pronoun him is assigned the category (S /N)\S to indicate

th a t it can only occur in object position. The raising rule allows an unmarked

noun to assume either of these categories and to appear in either subject or

object position.

Interest in CG greatly increased during the 1970s due to the influ­

ence of Richard M ontague’s work in truth-conditional model-theoretic se­

m ât ics and, in particular, his PTQ gram m ar (Thomason 1974; see also

Dowty et al. 1981). Interest in CG continued to increase throughout the 1980s,

due to the influence of David Dowty (Dowty 1982, 1988) M ark Steedman

(Ades and Steedman 1982; Steedman 1985, 1986), and others. Many different

variants of Lambek’s rules are currently in circulation. Steedm an’s Combina­

tory Categorial Gram m ar (CCG) offers one of the most interesting examples.

CCG analyses have been offered for particularly difficult non-context-free con­

structions such as the notorious Dutch cross-serial coordinate structures. An­

other claim for CCG is th a t it allows incremental (i.e. strict left-to-right) struc­

ture building, and thus it facilitates on-line interpretation (Haddock 1987).

CG and DG are widely held to be notational variants (Lyons 1968: 231).

This is understandable, since there is an obvious similarity between a DG rule

such as the one shown in (8a) and a CG category such as the one shown in

(8b).

56

(8)

a S(N,*,N)
b N \S /N

However, behind these surface similarities lie the rules of CG. The basic

rule of combination in DG is something like CG ’s rule of functional application.

DG has nothing corresponding to the rules of commutativity, composition, or

raising.

Most CG parsers adopt a basic shift-reduce strategy. The interest of these

parsers lies not in their parsing strategy so much as in the particular form

and effects of the combination rules they employ. Later I shall note in passing

how some similarities emerge between DG and CG parsing in the context of

incremental shift-reduce parsing.

2 .5 .3 H ea d -d r iv en p h rase s tr u c tu r e gram m ar

Head-driven Phrase Structure Gram m ar (HPSG) is a theory of syntax and

semantics developed by Carl Pollard and Ivan Sag (Pollard and Sag 1988). It

differs from standard PSG in the extent to which information is stored in the

gram m ar in relation to head words. For example, part of the lexical entry for

love is shown below.

(9)

(love, V[BSE, SUBCAT (NP, NP)])

This states th a t love is a verb which, in its base (infinitival) form subcategorizes

for two noun phrase complements. The SUBCAT list is ordered according to

obliqueness, with more oblique arguments appearing to the left of less oblique

arguments. This is further illustrated by the following example, which shows

the by-phrase of passive loved on the left of the SUBCAT list.

(10)

(loved, V[PAS, SUBCAT ((PP[BY]), NP)])

57

(a) X (b) XP

Figure 2.10: syntactic structure in DG (a) and in HPSG (b)

From the point of view of this survey, the identification of argum ents by posi­

tion on an obliqueness list is no more than an implement at io n al detail.

At first sight, the HPSG representation appears to have just the right kind

of information stored at the right (i.e. lexical) level to make it into a DG. It

is certainly possible to envisage using an HPSG lexicon to produce standard

dependency structures. However, in addition to its lexical rules, HPSG also

makes use of a small number of phrasal rules. These effectively add an extra

(phrasal) layer of structure above each head word. For every phrase of type X

an XP is constructed. X becomes one of the daughters of XP and the features

of X are copied to XP. Thus, where DG would build the structure shown in

Figure 2.10 (a), HPSG would build the structure shown in Figure 2.10 (b).

The relationship between HPSG and DG is certainly very close. Just how

close is a question which I shall not address further here. For information on

HPSG parsing see Proudian and Pollard (1985).

2.6 S u m m ary

This chapter has a ttem pted to delineate exactly w hat is understood by the

term ‘dependency gram m ar’ as used in this thesis. It has done so first by

presenting a detailed formal definition of Gaifman gram m ar, whose purpose

here is to act as a cardinal point to which other versions of DG may be related;

and second, by chronicling the rise and spread in linguistics of theoretical

approaches which, although they may include additional features, appear to

58

rest on a foundation which is expressible in term s of a Gaifman grammar.

Key figures and schools in the development of DG were identified. To assist in

identifying the boundary between that which is included in this study and th a t

which is not, three examples of grammatical theories which lie just outside DG

were isolated, and the reasons for their exclusion given.

59

C hapter 3

D ependency parsers

In the la tter part of the last chapter I traced the origins and development of DG

in theoretical linguistics. In this chapter I chart the origins and development

of DG in com putational linguistics.

The designer of a PSG parser has at his or her disposal the whole com puta­

tional linguistics literature which describes a host of tried and tested techniques

and algorithms. However, it does more than this. It defines the space of pos­

sibilities for PSG parsing. For example, the designer of a parser m ust decide

whether to build syntactic structure top-down, bottom -up or some combina­

tion of the two. Not only is there a serious lack of published descriptions of

dependency parsing techniques^, but there is an even more serious absence of

definitions of the problem space. It is sometimes naively assumed th a t DG

parsing and PSG parsing are slight variations on a single theme. This may

tu rn out to be the case but there can be no a priori guarantees. For example,

it may not make sense to talk about top-down versus bottom -up dependency

parsing when there are no non-term inal nodes in a tree.^ One of the main ob­

jectives of this thesis is to begin the task of charting the dependency parsing

problem space.

^The extensive bibliography of Natural Language Processing in the 1980s compiled by
Gazdar et al. 1987 includes only 9 entries indexed under ‘dependency’ (excluding non-DG
senses of the word).

^As we shall see below, a top-down/bottom-up distinction can be made in connection
with dependency parsers but it is not exactly the same as the more familiar PSG distinction
(cf. Chapter 12).

60

This chapter begins with an introduction to dependency in com putational

linguistics (Section 3.1). This is followed by an introduction to P A R S (Sec­

tion 3.2), a language for the description of dependency parsing algorithms,

which I shall use for the sake of clarity in the survey of existing dependency

parsers which follows this chapter.

3.1 D ep en d en cy in co m p u ta tio n a l lin g u istics

Although com putational DG is lacking in theoretical underpinnings, a num ­

ber of systems have been developed from the late 1950s onwards. These can

be roughly divided into machine translation systems, speech understanding

systems, other applications, implementations of theories, and exploratory sys­

tems. The next eight chapters present some of these systems in more detail.

3 .1 .1 M a ch in e tr a n s la tio n sy s te m s

Dependency-based machine translation (MT) research has taken place in two

periods: the first half of the 1960s and the second half of the 1980s.

The early 1960s

In the early 1960s, there were two m ajor dependency-based MT projects. The

first of these was based at the Moscow Academy of Sciences. Amongst the

scholars associated with the project were Sergei Fitialov, O.S. Kulagina and

Igor Mel’cuk. Very few — if any — documents describing the project in detail

are available in English. However, an annotated bibliography on dependency

theory released by Hays in March 1965 contains English abstracts of a num ­

ber of the project papers (Hays 1965). Since these papers are not discussed

elsewhere in the English literature and since Hays’ bibliography is not in wide

circulation, those most immediately relevant to our present concerns are re­

produced below.

61

The coding of words for an algorithm for syntactic analysis
(M artem ’yanov 1961)

Word classes ADr, ADI, AG, PG r, and PGl are defined, where
A=active, P=passive, D =depend, G=govern, r= righ t, l=left. An
active governor sweeps up passive dependents. A parsing routine
is discussed in part, including the effect of English inflections on
word class.

An algorithm for syntactical analysis of language tex ts —
general principles and som e results
(Mel’cuk 1962)
A dependency parser is outlined. The units of syntactic analysis are
‘content combinations’, i.e. syntagmas (governor and dependent),
phraseological combinations, etc., given in the form of configura­
tions, each giving a pair of objects to be sought, a search rule,
conditions, actions, etc. These are listed in a syntactic dictionary.
The algorithm th a t uses this list consists of 67 standard (Kulagina)
operators. The Russian configuration list has 263 lines. About 250
auxiliary operators are used. A flowchart and configuration list are
given.

O btaining all adm issible variants in syntactic analysis of
tex t by m eans of com puter
(Slutsker 1963)
Assume a gram m ar th a t specifies what pairs of words can be con­
nected as governor and dependent. To find all projective parses of
a sentence, first set up a square m atrix w ith Wij = 1 if the gram m ar
allows word i to depend on word j . A parse of the sentence can be
specified by a m atrix with a single non-zero element in each row,
chosen among those with W{j = 1. Projectivity can be interpreted
in terms of incompatibilities in the m atrix; all elements incom pati­
ble with unit elements unique in the rows can be erased. Then, by
a backward procedure, all parses can be found.

It is unfortunate th a t more information is not available on the Moscow MT

project. However, on the basis of these brief abstracts it is possible to infer tha t

a significant am ount of effort was directed towards developing dependency-

based NLP systems. (The abstracts tell us, for example, th a t a t least three

scholars were involved in the development of a t least three parsing algorithms).

62

The second major dependency-based MT project was sponsored by the

RAND corporation and led by David Hays. The RAND project aimed to

build a Russian-English MT system. It appears th a t Hays had no contact with

the work of Tesniere. Instead he learned about DG from the Soviet scholars.

It seems th a t there was a surprising amount of communication between the

two research groups (especially considering the prevailing Cold W ar climate

and the defence significance of Russian-English M T). The RAND DG work is

summarized in Chapter 4 of this thesis.

A th ird strand of dependency-based MT work was begun by P e tr Sgall’s

group in Prague in the early 1960s (Sgall 1963). No information on this work

is available at the time of writing.

The mid 1980s

In the mid 1980s three large dependency-based MT projects were under­

taken. The first of these is the European Community EUROTRA project

(Johnson et al. 1985; Arnold 1986; Arnold and des Tombe 1987) which has

led more recently to an offshoot dependency-based project called MiMo based

a t the Universities of Essex and Utrecht (Arnold and Sadler forthcoming). The

second, the Dutch D istributed Language Translation (DLT) project, is dis­

cussed in C hapter 7 of this thesis. Sgall’s group in Prague has recently been de­

veloping an M T system based on the model of Functional Generative Descrip­

tion (Kirschner 1984; Hajic 1987; Sgall and Panevova 1987; Hajicova 1988).

It is not clear w hether this is a continuation of the work begun in the 1960s,

or whether it represents a completely new venture.

3 .1 .2 S p e e c h u n d er sta n d in g sy s te m s

In at least two projects, dependency parsers have been used to process lattices

ou tpu t by speech recognition systems. The claimed advantages of DG are first,

th a t its rules and structures are word-based and can readily be associated with

the basic units of recognition in lattices, namely word hypotheses; and second,

63

tha t DG is well-suited to combining top-down and bottom -up constraints in a

way which is particularly useful for processing lattices.

The first speech understander to make substantial use of dependency is the

Italian CSELT system (late 1980s), which is a speech interface to a database.

The CSELT parser is described in C hapter 11.

The second dependency-based speech understander was developed in Japan

at N TT Tokyo and the University of Yamagata. It is described in M atsunaga

and Kohda (1988).

The speech understanding system developed for the SPICOS project by

Niedermair and his colleagues a t Siemens in Munich (Niedermair 1986) is

sometimes mentioned in discussions of DC. However, their system is a hy­

brid of PSC and basic valency theory. A first-phase augmented context free

phrase structure parser identifies and builds the m ajor phrases in a sentence.

A second-phase parser establishes binary relations between the m ajor phrases

on the basis of semantic caseframe entries. This is an interesting approach,

m otivated by the particular problems encountered in parsing speech. However,

it would be misleading to describe it as a dependency parser.^

3 .1 .3 O th er a p p lica tio n s

At least one m ajor NLP project has investigated the use of dependency in

a practical application other than MT or speech understanding. This is the

Finnish Kielikone project whose aim is to produce a general-purpose natural

language interface which — in theory a t least — can sit on top of any database

with minimal customization. The project has been running since 1982. The

Kielikone parser is described in C hapter 6.

®This view has recently been confirmed by Gerhard Niedermair (personal
communication).

64

3 .1 .4 Im p lem en ta tio n s o f th e o r ie s

So far we have considered only DG-based NLP systems which were designed

with some particular application in mind, such as MT, speech understanding,

or database access. However, a number of systems have been built in order

to test the coverage and coherence of particular linguistic theories. The two

theories which have most obviously spawned this kind of activity are Lexicase

(S tarosta 1988) and Word Gram m ar (Hudson 1984, 1990a). Their implemen­

tation has taken place only in recent years. The fact th a t more dependency-

based theories have not been implemented reflects the fact th a t there has

been a shortage of well-developed theories to implement. At least two parsers

based on Lexicase have been produced so far (S tarosta and Nomura 1986;

Lindsey 1987). These are described in C hapter 8. Several parsers based on

Word Gram m ar have been implemented (e.g. Fraser 1989a; Hudson 1989c).

These are described in Chapter 9.

Some of the work done by Sgall’s group in Prague is directed towards imple­

menting the theory of Functional Generative Description (e.g. Petkevic 1988),

although this seems to be less emphasized than the design of specific applica­

tions.

3 .1 .5 E x p lo r a to r y sy s te m s

It would be misleading to suggest th a t all work in dependency parsing has

been carried out with specific applications or theoretical linguistic objectives

in mind. Some of the most interesting and useful results have em anated from

exploratory research directed towards investigating the com putational proper­

ties of DCs and trying out various novel parsing algorithms.

Early in the 1960s, a DG research group was formed at the EURATOM

CETIS Research Centre in Ispra, Italy.^ O ther research was carried out by

a group funded by EURATOM and under the leadership of Lydia Hirschberg

^EURATOM = European Atomic Energy Community. CETIS = Centre Européen pour
le Traitement de l’Information Scientifique.

65

at the University of Brussels. Although the work these groups carried out is

widely referenced, most of it is described in EURATOM internal reports and

is otherwise unavailable. The following abstracts appear in Hays’ annotated

bibliography.^

A utom atic analysis
(Lecerf 1960)
The ‘conflict’ program tests each item against the adjoining, al­
ready constructed phrase and either subsumes it as an additional
dependent or makes it the governor of a new, extended phrase. The
result is a chameleon, looking like both a phrase structure diagram
and a dependency diagram.

C onditional relaxation of the P rojectiv ity H ypothesis
(Hirschberg 1961)
W hen parsing is blocked and a subtree exists headed by a unit tha t
demands a governor, remove th a t subtree and continue. W hen a
tree for a sentence is otherwise complete, look for the governor in
the subtree headed by the nearest preceding node. Many exam­
ples are given. There are also fixed non-projective combinations
in many languages. An annex classifies French dependency types
by value. The highest value obtains when governor and dependent
require one another; the lowest, when neither calls specifically for
the other.

For a t least a decade and a half, Jürgen Kunze’s group in F ast Berlin has

been developing a version of DG for use in com puter applications. This work

could be expected to be of considerable significance in dependency parsing.

Unfortunately, very little of Kunze’s m aterial has been available for inspection

at the time of writing.

Since the early 1970s Peter Hellwig has been developing his PLAIN system,

chiefly at the University of Heidelberg. PLAIN is a suite of programs centred

around a dependency parser. While Hellwig is actively involved in a number of

NLP projects to develop applications, the PLAIN system seems to be prim arily

a research environment. The PLAIN system is described in C hapter 5.

^Hays himself spent 1962-63 at the EURATOM CETIS Centre, Ispra, Italy on leave from
RAND.

66

During the last few years, Michael Covington at the University of Georgia

has developed a number of simple dependency parsers in order to explore

the parsing of free word order languages. Covington’s most recent parser is

described in Chapter 10.

A simple dependency parser has been designed and implemented by Bengt

Sigurd at the University of Lund. This work was inspired by Sigurd’s reading

of Schubert (1987).

Very recently a group at IBM ’s Tokyo Research Laboratory has be­

gun to experiment with dependency-based NLP systems (M aruyam a 1990;

Nagao 1990).

I have presented a very brief historical overview of the field of dependency-

based NLP. This is summarised in Figure 3.1. Projects identified by heavy lines

are discussed in detail in Chapters 4-11. Notice how the early enthusiasm and

associated research effort — much of it associated with MT — dwindled to

almost nothing in the late 1960s and throughout the 1970s. It is interesting to

see how interest has picked up throughout the 1980s and, at the s ta rt of the

1990s, the field is blossoming once more.

Chapters 4-11 present overviews and critiques of twelve parsers. I present a

sum m ary table for each algorithm noting the following features: search origin

(top-down, bottom -up, etc), search m anner (breadth-first, depth-first, etc),

search order (left to right, right to left, etc), number of passes (single pass,

multiple passes, etc), search focus (what is being searched for?), and ambi­

guity management (how are choice points and m ultiple analyses handled?).

Verbal descriptions of the algorithms are presented but these can not always

be as perspicuous as might be desired. Consequently, the informal verbal de­

scriptions are accompanied by slightly more formal descriptions. In order to

facilitate understanding and comparison of the parsers it is useful to abstract

away from the many different notations used, and to represent the parsing

algorithm s in a clear and theory-neutral fashion. It would be an enormous

67

^Moscow (MT)
RAND (MT)
EURATOM
? Sgall__________ _ _

Hellwig
Kunze

Kielikone
EUROTRA

DLT
Lexicase
Word Grammar
CSELT
NTT
Covington
MiMo
Sigurd
IBM Tokyo

\ I I I I I I
1960 1970 1980 1990

Figure 3.1: dependency-based NLP projects

68

task to do this thoroughly. First of all, it could involve the design of a whole

new representation language whose syntax and semantics would have to be

defined. Second, it would involve representing the knowledge pertaining to

each parser in the kind of detail which would make the task comparable to

re-implementing the algorithms. The solution adopted here is a compromise.

A representation called PARS is introduced in the next section. It is in tu ­

itively simple bu t lacking in formal rigour. The prim ary purpose of PARS is

to achieve expository clarity in descriptions of parsing algorithms. I make no

stronger claims for the representation.

3.2 P A R S : P arsin g A lgor ith m R ep resen ta ­
t io n Schem e

In this section a simple quasi-formal language (PARS) for describing depen­

dency parsing algorithms is outlined. Its purpose is exposition ra ther than

im plem entation so it is defined rather less rigorously than would be required

in a more formal specification. There is a tradition in computer science of

using languages of this type (sometimes known as pseudo-Pascal) to describe

algorithms (e.g. Goldschlager and Lister 1982). PARS is unusual in being

designed specifically to serve as a general-purpose representation scheme for

dependency parsing algorithms. I shall use PARS to describe m any of the

dependency parsing algorithms described in the following chapters.

3 .2 .1 D a ta s tr u c tu r es

C onstants

Integers, and lower case identifiers are allowed. Two list-related constants are

recognized. ‘0 ’ is the ‘begin-list’ marker, ‘e’ is the ‘end-list’ marker.

69

Variables

Variables can be distinguished from other da ta structures in PARS by the fact

th a t they all begin with an upper case character. All variables are global unless

otherwise indicated.

By convention, the variable C is used to identify the current word in the

input list of words by means of its sequential position in the list. Because of

PARS s expository function, this variable is used fairly loosely. Sometimes it

is used as a normal variable, sometimes as a pointer, sometimes it refers to the

thing pointed to. The context ought to make the interpretation clear in each

case.

O ther naming conventions include List (a global list). Stack (a global stack),

and Top (the top element on the stack).

As we shall see below, values are assigned to variables by means of the :=

(assigns) operator.

Variables can be used as pointers. W hen X is a pointer, X | is the element

to which it points.

Stacks and Lists

A stack is a last-in-first-out data structure. The default name for a stack is

Stack. The action

pop(Stack)

discards the topm ost item on the stack. The action

push(Element)

pushes Element (any variable or constant) onto Stack. It is possible to push

elements onto stacks other than the default stack by means of the action

70

push(Stackl, Element)

which pushes Element onto Stackl (some stack).

The action

empty(Stack)

returns ‘tru e ’ if Stack is empty, otherwise it returns ‘false’. The action

top(Stack)

returns the top element of Stack without popping it.

A list is an ordered sequence of elements. The begin m arker is ‘O’. The end

m arker is ‘e’. Elements in a list are addressed by pointers. If C is a pointer to

a list elem ent, then C-1 is the previous element and C+1 is the next element.

An element can be added to the tail of a list by means of the action

append(Element) or append(Listl,Element)

and an element can be removed from the list by means of the action

remove(Element) or remove(Listl,Element).

The first and last elements of a list are returned by the following actions:

first(Listl)

and last(Listl).

71

The length of a list can be found by means of the action

length(Listl)

3 .2 .2 E x p re ss io n s

The basic components of PARS descriptions are expressions. Expressions can

either be simple, consisting of one or more actions, or structured condition-

action sequences, as shown below:

(1 1)

IF condition(s)
T H E N expression(s)
(E L S E expression(s))

In addition, expressions may be labelled, as follows:

(12)

N: expression

where ‘N ’ is an integer.

Expressions end with a full stop.

C o n d itio n s

Conditions can be of several different varieties. Each variety is associated with

a different operator. The general purpose operators are summarized in the

table below.

O p e ra to r N a m e
= equals

depends
U unifies

E q u a l i ty The = (equals) operator is used to test two items for identity. The

test succeeds it the items are identical.

72

D ependency The (depends) operator is used to test for dependency. The

test succeeds if the element on the RHS of the operator already depends on

the element on the LHS of the operator or if it can be made to depend on the

LHS element (i.e. there is nothing in the gram m ar or the sentence to prevent a

dependency relation from being established). The detailed articulation of this

operator will vary from system to system.

U nification The U (unifies) operator is used to test whether or not two

feature structures unify. The test succeeds if the structures unify. As well as

producing a tru th value, a successful test also results in the unification of the

feature structures tested as a side effect.

O ther As was noted above, the empty(Stack) action returns a tru th value

and can be used as a condition in expressions.

The condition saturated(C) succeeds if all of the valency requirements of

some word C are satisfied.

C onjunctive and disjunctive conditions Conditions may be conjoined

using the & (and) operator. For example:

(condition 1 & condition^)

Disjunctions of conditions are possible using the ‘V’ (or) operator. For ex­

ample:

(conditionl V condition2)

A ctions

A ssignm ent Values are assigned to variables using the := operator. Thus

73

C:=l

assigns the value 1 to C. If C equals, say, 5, then it is possible to reassign

C thus

C:=6

or thus

C:=C+1

(the result is the same in both cases).

R ecord The record(X) action makes a record of X. For example,

record(C —>• C+1)

makes a record of the fact th a t a dependency has been established in which C

is the head of the next word in the global queue.

G oto The goto(Label) action shifts control to the expression identified by

Label. The sta te before a goto action is not stacked. It is not possible to

re turn to a prior state once a goto action has been executed. Expressions are

usually identified by integers. For example,

goto(3)

L e n g th The iength(List) action returns an integer corresponding to the num ­

ber of elements in List, excluding the end-of-list marker.

74

Succeed a n d fail succeed signals th a t a parse has succeeded, fail signals

that parsing has failed. Both actions term inate the parse immediately.

O th e rs As noted above, other actions include the stack-related pop and push,

and the list-related append and remove.

3.3 Sum m ary

In this chapter I have charted the rise of ‘applied’ DG, i.e. DC in service of

NLP. I have shown how an increasing number of NLP systems are being based

on DG in MT, speech understanding, and database access systems. Separate

strands of research are devoted to building NLP systems whose object is to

explore novel parsing algorithms and to implement linguistic theories. Lack of

published m aterial (or lack of m aterial published in a language accessible to

me) renders it impossible to include here a detailed exam ination of every sys­

tem named in the survey. The following eight chapters describe those parsers

for which most information is currently available. At least one representative

of each of the categories mentioned above is included in this collection. W here

possible and helpful, parsing algorithms are described in the special-purpose

description language, PARS.

The following chapters constitute the most thorough exam ination of the

practice of dependency parsing yet assembled. C hapter 12 builds on this

m aterial with a view to outlining some elements of a general taxonom y of

dependency parsing algorithms.

75

C hapter 4

T he R A N D parsers

4.1 O verv iew

In this chapter I present the earliest dependency parsers described in this

survey. The parsers were produced in the early 1960s by researchers at the

RAND Corporation, Santa Monica, USA and reported, for the most part, by

David Hays. Most of the natural language work at RAND was centered on

the development of a Russian-English MT system, of which a parser was con­

sidered to be a vital part. The choice of DG as the basis of the system could

be regarded as natural considering the difficulties involved in writing PSGs

for variable word order languages like Russian — especially as the RAND

work preceded developments in PSG for handling variable word order such as

scrambling transform ations (Ross 1967; Saito 1989) or the ID /L P formalism

(cf. Gazdar et al. 1985: 44-50). However, in 1961 — when RAND was just

one of m any groups involved in building Russian-English MT systems — DG

was far from being the ‘na tu ra l’ choice. Hays claimed th a t “Phrase structure

theories underlie all MT systems being developed in the United States, except

th a t of the RAND Corporation” (Hays 1961b: 258). As a leading figure in

MT in the U nited States who was soon to become president of the Association

for Machine Translation and Com putational Linguistics, Hays would almost

certainly have known if there had been any other dependency systems in ex­

istence. For an overview of the NLP work carried out a t RAND in the early

76

1960s, see Hays (1961c).

It is hard to over emphasize the im portance of the RAND work in the

development of dependency parsing. It was probably the first m ajor project in

com putational linguistics in the W estern world to be based on DG. Although

Tesniere’s Éléments de Syntaxe Structurale was published shortly before the

RAND M T project got under way, it is not referenced in any of the available

publications by Hays or his colleagues. Instead, the RAND work seems to

draw on an older Russian literature. In fact. Hays reports tha t several Soviet

MT projects made use of the notions of dependency. Leading figures in these

projects are named as Kulagina, Moloshnaya, Paduceva, Revzin, Shelimova,

Shumilina and Volotskaya. Unfortunately, nothing has been found describing

their DG work except Hays’ abstracts presented on page 62 above. Their work

in other areas of formal linguistics is described in Papp (1966) and Kiefer

(1968). As the first widely publicized NLP system based on dependency, the

RAND system set an agenda for future systems to follow. Almost all authors

of the o ther systems described in this thesis acknowledge their debt to Hays

and his colleagues.

It m ust be remembered th a t com putational linguistics was ra ther different

th irty years ago from its present-day condition. Firstly, there were hardware

and software lim itations which impaired prototyping and which, inevitably,

coloured the way th a t researchers viewed the problems to be modelled. We

shall see in this chapter some suggestions which seem rather old-fashioned to

m odern eyes. Secondly, many techniques of linguistic description which are

nowadays taken for granted, were in 1960 still in their infancy or even w ait­

ing to be invented. For example, the RAND systems would almost certainly

have looked different if their designers had been able to make use of complex

feature unification. Thirdly, the prevailing views on what constituted difficult

problems and what constituted easy problems were markedly different from

present day views. These were days of great optimism in MT. Hays wrote in

77

1961:

Machine translation is no doubt the easiest form of autom atic
language-data processing... In 10 years we will find th a t M T is too
routine to be interesting to ourselves or to others. (Hays 1961c:
25)

Of course, events proved him wrong. The US National Academy of Sciences

produced a damning report on MT in 1966 which resulted in all US government

funds to MT projects drying up, and with them the dream of constructing fully

functional MT systems. This precipitated the demise of the RAND MT project

and the virtual disappearance of DG from W estern com putational linguistics

until the emergence of a new wave of DG research in the 1980s.

In this chapter I present two parsing algorithms. One of these was imple­

m ented in the RAND MT system and could loosely be described as a ‘bottom-

up ’ algorithm. The other is described by Hays in abstract term s and it is not

clear whether it was ever implemented. It could loosely be described as a ‘top-

down’ algorithm. A third algorithm is described very briefly in Hays (1966b).

Unfortunately, insufficient detail is given to reconstruct the algorithm.

4 .2 T h e b o tto m -u p a lgorith m

The bottom -up algorithm was embodied in the RAND SSD (‘Sentence Struc­

ture D eterm ination’) program. The principle references are Hays and Ziehe

and Hays (1961a).

4 .2 .1 B a s ic p r in c ip les

There may, in fact, have been several distinct versions of the parser described

here. Hays points to the fact th a t work centred around two ‘basic principles’

which could be ‘preserved through a variety of technical variations’.

78

Basic principle 1: separate word-order and agreem ent rules

The first basic principle was th a t word-order rules should be isolated from

agreement rulesd This principle led to the development of two sub-programs.

The first program selected pairs of words which could serve as candidates to

enter into a dependency relationship on the basis of their relative positions.

The second sub-program tested to see whether a dependency relation was pos­

sible on the basis of the gram m atical features and dependency requirements of

each word. The sub-programs could thus be thought of as working alternately;

the first program selected a pair for the second program to link or reject. If

the linking program succeeded then the pair-selection program would try to

find a new pair of candidates for linking. If the linking program failed then

the pair-selection program would have to find an alternative pair to be linked.

Basic principle 2: adjacency

The second basic principle stated tha t ‘two occurrences can be connected only

if every intervening occurrence depends, directly or indirectly, on one or the

other of th em ’. In other words, this was an explicit adjacency constraint. This,

in turn , ensured th a t the class of languages recognized was exactly the class

of context-free languages.

4 .2 .2 T h e p arsin g a lg o r ith m

The parsing algorithm iterates through the pair-selection/linking cycle until

there are no more pairs left to select.

Pair selection

The pair selection procedure effectively embodies the control strategy of the

parser. It works by attem pting to link any two words which are immediate

^Hays (1961a: 368) states that “this principle has been invented, lost, and re-invented
several times.”

79

neighbours in the input string. Search for immediately adjacent pairs pro­

ceeds from left-to-right. An attem pt is made to link the current word with its

rightside immediate neighbour. If a dependency can be established between

the two words, the dependent drops out of sight, thus creating a new pair

of immediately adjacent elements to be tested. The word which is the head

of the newly created pair becomes the current word. If a dependency is not

established, the next word in the string becomes the current word. Leftside

neighbours are only checked after a change of current word resulting from a

failure to establish any dependency links.

The algorithm can be described more formally in PARS as follows.

80

IN IT IA L IZ A T IO N : read input words into a list;
C =1.

1. IF C + l= e

T H E N halt

E LSE IF C C+1

T H E N record(C C +l).
remove(C+l),
goto(l)

ELSE IF C + l C

T H E N record(C+l C),
remove(C),
goto(l)

E LSE C:=C+1,
goto(2).

2. IF C=e

T H E N halt

E LSE IF C C + l

T H E N record(C -v C +l),
remove(C+l),
goto(2)

ELSE IF C + l C

T H E N record(C+l C),
remove(C),
C:=C+1,
goto(3)

ELSE C:=C+1,
goto(2).

3. IF C=1

T H E N goto(l)

ELSE IF C-1 -> C

T H E N record(C-l C).
remove(C),
C:=C—1,
goto(2)

81

E L S E IF C C-1

T H E N record(C C-1),
remove(C-l),
goto(3).

A lg o r ith m 4.1: Hays’ bottom -up parser

The parser succeeds in producing an analysis for the whole sentence if ex­

actly one word remains visible in the input list at the end of the parse. This

implies th a t all the other words have been successfully linked into the structure

and so have disappeared from view.

The parser reported by Hays produces only a single analysis for an ambigu­

ous sentence. This was a lim itation imposed by the then existing technology.

It has to be assumed by most designers th a t the cost of a search for
all possible structures is too great to be borne in practice; heuristic
devices of various types therefore appear in most SSD programs.
(Hays 1961a: 370)

The parser favours closer attachm ents over more d istant ones. Hays suggested

three kinds of heuristic which could be used to increase the likelihood of the

parser getting the attachm ents right first time. (Apparently this was vital:

there are no references to the possibility of backing up after wrong choices.)

W o rd -c e n tre d o rd e r in g Hays’ first suggestion was to specify for certain

words a partial ordering for the establishing of their dependency relations. For

example, in one trial version of the RAND SSD system a preposition could not

be linked to its head until its object had been attached to it.

D e p e n d e n c y -c e n tre d o rd e r in g Dependency relations could be labelled ac­

cording to gram m atical type (such as subject). A partial ordering could then

be established amongst types (for example, find subjects before objects).

82

A ssig n ‘u rg e n c y ’ sco res Dependency relations could be assigned ‘urgency’

scores. W henever more than one possible link existed, the one with the highest

urgency score was allowed to ‘w in’. This was a simple weighting system. Hays

only suggests local scoring of alternative analyses. It would be interesting to

investigate the use of global scoring techniques to choose between alternative

analyses. Of course, bo th approaches presuppose th a t some reliable weights are

available, for example, from a hand-analyzed corpus (see C hapter 7 for more

on this approach to dependency parsing). Hays does not report the results of

any trials which made use of ‘urgency’ scores and it seems unlikely th a t his

suggestion was implemented.

L in k in g

The parsing algorithm presented above shows the order in which word-pairs

should be examined to check the possibility of establishing a dependency rela­

tion between them . In a m odern-day system this would constitute most of the

work of the parser. The test for dependency would simply involve an attem pt

to unify two complex feature structures, one associated with each word to be

tested. If the test succeeds then unification has already built the new composite

structure, otherwise a simple failure is returned. However, in the early 1960s

no such luxuries were available and so-called ‘agreement tests’ constituted a

m ajor part of the parsing problem. At least one of Hays’ papers (Hays 1966a)

is entirely devoted to this subject. If they were used, the heuristics mentioned

above would be implemented in the agreement testing mechanism. The de­

tails of the various kinds of agreement testing are mostly of little relevance to

m odern readers. However, two of the strategies still hold some interest.

T a b le lo o k -u p Imagine a feature-based gram m ar including a large feature

inventory covering all of the various distinctions possible in a gram m ar. Now

imagine converting every possible feature perm utation into a distinct atomic

symbol. This is effectively what was done in the RAND SSD system. Each

83

word form was assigned to one of these symbols (or a disjunction of these

symbols). For convenience the symbols used were integers. Assume tha t there

were n distinct integer symbols. An n x n array was set up. In order to find

out whether a dependency could be established between a word form of type i

and another of type j it was necessary to look in the (z, j) - th cell of the matrix.

This would indicate whether it was possible to link the words and, if so, what

kind of dependency relation was involved and which word was the head. In

the RAND system a 4000x4000 cell array was used and it was projected th a t

a 50000x50000 array would eventually be required! It is little wonder th a t

agreement testing came to be viewed as such a significant component of the

parsing problem.

B it encoding One of Hays’ suggestions to improve the efficiency of agree­

m ent testing was a modification of the categorial gram m ar system th a t Lam-

bek had recently developed (Lambek 1958). Hays’ suggestion was to replace

the atomic symbols in a category symbol (usually N and S', e.g. S /N) with

complex symbols. He writes:

In Russian, nouns and adjectives agree in number, gender and case;
there are six cases, and the following gender-number categories:
masculine singular, feminine singular, neuter singular, and plural.
Let each bit-position of a 24-digit binary num ber correspond to a
case-number-gender category, and use the appropriate num ber as
a component of the grammar-code symbol of adjective or noun.
Agreement is tested by taking the ‘intersection’.. .If the intersec­
tion is zero, the occurrences do not agree. This m ethod is faster in
operation and requires no stored agreement tables; it is almost cer­
tain to be the m ethod of future operational systems. (Hays 1961a:
373-4).

There is no evidence th a t this approach was ever tried at RAND. A recent

parsing system which includes a similar strategy using a UCG is described in

A ndry and Thornton (1991) and Andry et al. (1992).

84

4 .3 T h e to p -d o w n a lgorith m

In this section we examine Hays’ other dependency parsing algorithm. It is not

clear w hether it was ever implemented at the RAND Corporation. Hays de­

scribes it in an introductory textbook on com putational linguistics (Hays 1967)

so it is possible th a t it was invented for purely pedagogical purposes.

4 .3 .1 T h e p a rsin g a lg o r ith m

This parser is in the minority amongst the dependency parsers described in

this survey in th a t it embodies a top-down control strategy. Hays’ exposition

does not describe the rule system employed by the parser so I shall assume

that dependency rules are expressed in Gaifman format. Rules may thus take

the following forms:

(13)

b
c 4 ;^.)

where (13a) shows the case where X i has dependents X j^ -X j^ . (13b) is the

case where X{ can appear in a sentence without dependents. (13c) notates the

case where X{ can appear in a sentence without depending on any other word,

i.e. it is the sentence root.

The parsing algorithm begins by scanning the sentence for a word which

can serve as the sentence root, i.e. for which there is an entry of type (13c)

in the gram m ar. Having found the sentence root, the algorithm makes it the

root of a dependency tree. Next, the gram m ar is searched for a rule of type

(13a) listing possible dependents for the root, or a rule of type (13b) showing

that the root can occur without dependents. For example, suppose th a t the

sentence root is R; the gram m ar is searched for a rule of type If a rule

is fDund, it is m atched against the words of the sentence. For example, if the

rule R (Q ,* ,S) is found, checks are made to see if the pa tte rn ^Q...R...S'’ is

85

present in the input sentence. If there is a m atch then the fact th a t these

dependents have been found is recorded in the dependency tree. If there is no

m atch then an alternative rule specifying dependents for the root is searched

for in the grammar. The same is done for every word in the input string when

it becomes a leaf in the dependency tree. If a rule of type (13b) matches any

word X then no more rules of type % (...) are searched for. A sentence has

been successfully parsed if all leaves in the dependency tree have been matched

against rules of type (13b) and no words remain in the input string which are

not linked in the dependency tree.

I shall say th a t a word X for which a rule of type % (...) is found and

m atched, has been expanded. If the dependency tree is represented as a nested

list, then expansion replaces one symbol with more than one symbol. For

example, consider the following sentence:

(14)

Simpson eats haggis

Assume th a t the sentence is pre-processed with a word class recognizer:

(15)

[N: simpson] [V: eats] [N: haggis]

If the gram m ar contains a rule of the form *(V), the dependency tree will

initially look like this:

(16)

([V: eats])

If the gram m ar contains a rule of the form V(A^, *,A^), then the dependency

tree can be expanded to look like this:

(17)

(([N: simpson]) [V: eats] ([N: haggis]))

Thus, it should be clear th a t successful expansion operations increase the size

of the tree. Note, however, th a t the num ber of nodes in the final tree (177) is

no greater than the number of symbols in the input string. In this resp^ect,

86

top-down dependency parsing differs crucially from top-down PSG parsing: in

top-down dependency parsing an expansion can not add a symbol which does

not appear in the input string. In top-down PSG parsing, of course, extra

non-term inal symbols can be inserted by expansion operations. This leads

to the possibility in a top-down PSG parser of an infinite succession of non­

term inal symbol insertions, as in the case of left recursion. The dependency

parsing algorithm described here is capable of recognizing exactly the context

free languages (recall Gaifman’s result) but unlike a top-down CFPSG parsing

algorithm which has not been heuristically constrained, it can never enter

infinite loops, given an arbitrary grammar. Thus, it must be regarded as

being more robust than a top-down CFPSG parsing algorithm which is always

a t the mercy of the gram m ar with which it works. If the CFPSG contains any

left recursive rules then parser can expect, sooner or later, to blunder into an

infinite loop.

The order in which symbols are expanded is not crucial to Hays’ algorithm,

although it may be im portant in some applications. If the leftmost available

leaf were always to be expanded this would lead to a left-to-right depth-first

search. If the rightm ost available leaf were always to be expanded it would lead

to a right-to-left depth-first search. If all nodes a t distance d from the root were

expanded before any nodes a t distance d + 1 were expanded, a breadth-first

search would be implemented. This could also be set up to progress left-to-

right, right-to-left or middle-out, all at level d before moving on to level d -f 1.

However, these labels describe the ways in which the branches are added to

dependency trees ra ther than the order in which words in the sentence are

built into the trees. For example, a left-to-right depth-first parser would add

the words of sentence (18) into the tree in the order: like, giants, jolly, green,

corn, golden.

(18)

Jolly green giants like golden corn

87

Table 4.1: main features of Hays’ bottom -up dependency parser

Search origin bottom -up
Search m anner depth-first
Search order left to right
Number of passes one
Search focus pair-based
Ambiguity management first parse only (heuristics guide choices)

Hays top-down parser is intuitively simple but since it is best described for­

mally in terms of recursive procedure calls, a PARS description of the algorithm

is not particularly illuminating. The subject of top-down dependency parsing

is addressed in C hapter 12, where a top-down algorithm is presented in detail.

4 .4 S u m m ary

Hays’ first parsing algorithm processes sentences from left-to-right. It is

bottom -up, in the sense th a t it starts building structure from the words in

the sentence ra ther than from the rules in the gram m ar. Heads do not search

for dependents; neither do dependents search for heads. Instead, the parser

searches for potential head-dependent pairs and an agreement m atrix (‘belong­

ing’ to neither word) indicates whether the potential dependency can become

an actual dependency. There is never an instance of one member of the pair

searching for the other member. The parser produces at most a single analysis

for each input sentence by means of depth-first search.

The main features of Hays’ first parser are summarized in Table 4.1 (the

exact meaning of entries in summary tables will be discussed in C hapter 12).

H ay’s second parsing algorithm processes sentences from heads to depen­

dents. It is top-down in the sense th a t it builds structure from the rules in

the gram m ar ra ther than from the words in the sentence. Hays leaves many

of the details of his algorithm unspecified or underspecified. I have a ttem pted

to show how different search strategies offer variations on the order in which

Table 4.2: main features of Hays’ top-down dependency parser

Search origin top-down
Search manner unspecified
Search order unspecified
Number of passes one
Search focus heads seek dependents
Ambiguity management unspecified

a dependency tree is constructed although the resulting tree does not depend

on the order in which branches are added. No strategy for handling ambiguity

is offered.

The main (known) features of Hays’ second parser are summarized in Ta­

ble 4.2.

89

C hapter 5

H ellw ig’s P L A IN system

5.1 O verview

The PLAIN system (‘Programs for Language Analysis and INference’) is a

suite of NLP com puter programs developed by Peter Hellwig at the University

of Heidelberg. The system originated in work Hellwig did in the early 1970s

towards his dissertation (Hellwig 1974). Since then he has continued to develop

his system. Although the PLAIN system has been implemented in several

different locations around the world (e.g. Cambridge, Hawaii, Heidelberg, Kiel,

Paris, Pisa, Surrey, Sussex, Zurich) and customized for at least three different

languages (English, French and German), Hellwig remains the only author on

the PLAIN bibliography (a copy of which is included in Hellwig 1985: 79).

Basically, the PLAIN system is a parser. I shall not describe any of its

incidental capabilities here. Instead, I shall detail the form and content of

the gram m ar th a t PLAIN uses. All linguistic knowledge is w ritten in a sin­

gle feature-based representation called ‘Dependency Representation Language’

(DRL). I shall examine the way in which the parser uses unification to build

structures, including discontinuous constituents. I shall also show how a chart

can be used to increase the efficiency of the parser.

90

5.2 D ep en d en cy R ep resen ta tio n L angu age

Hellwig’s prim ary motivation for basing his parser on dependency is his be­

lief th a t DG provides a framework within which “functional, lexical, mor­

phological and positional features can be processed smoothly in parallel”

(Hellwig 1986: 198). This can be done within a single representation lan­

guage and a single structure. Hellwig contrasts this with, for example, LFG

(K aplan and Bresnan 1982) which builds a c-structure to represent the syntac­

tic constituent structure of a sentence and a distinct f-structure to represent

the functional dependency relationships between functors and argum ents. He

describes his dependency system in the following way:

The salient point of this formalism is th a t the functional, the lexe-
m atic and the m orphosyntactic properties coincide in every term ,
as they do in the elements of natural language. To put it in the
terminology of LFG: f-structure and c-structure are totally synchro­
nized. Since this cannot be achieved in a phrase structure represen­
tation, it is often assumed th a t there is a fundam ental divergence
between form and function in natural language. (Hellwig 1986:
196).

In effect, Hellwig is offering an existence proof tha t form and function do coin­

cide in natural language, at least to the extent th a t they have been modelled

in the PLAIN system.

A secondary argument Hellwig offers for using DG is th a t it deals with

discontinuous constituents ra ther more elegantly than PSG. There are, after

all, no ‘constituents’ to be ‘discontinuous’ in DG. As we shall see, this claim

takes us beyond the power of Gaifman grammars.

5 .2 .1 T h e form o f D R L ex p re ss io n s

All linguistic information is represented in a unified framework, DRL. Hellwig

describes it in the following terms:

Gram m ar formalisms and com puter languages are usually devel­
oped independently. DRL is both a t the same time. In the same

91

Figure 5.1: stem m a showing a simple dependency structure

spirit as Prolog is tailor-made for the purposes of logic, DRL
has been particularly adapted to represent linguistic structures.
W hereas the interpreter for Prolog includes a theorem prover, the
interpreter for DRL is linked with a parser. (Hellwig 1986: 195)

The parser is described in the next section. Here, I pursue the question of

linguistic representation. A DRL structure consists of a bracketed expression,

where the bracketing represents a tree with nodes and directed arcs. Arcs

are directed from the node represented by an outer bracketing to the nodes

represented by each bracketing it contains. Each node is a lexical item. Thus,

an expression representing the stem ma shown in Figure 5.1 has the form shown

in (19).

(19)

(D (A) (B (O) (E))

In a DRL expression, the nodes A -E (called ‘term s’) correspond to single

words bu t they are not expressed by atomic symbols. R ather, they consist

of collections of features in the form of attribute-value pairs. Three types of

a ttribu tes are grouped together in each DRL term , namely a role, a lexeme,

and a complex m orphosyntactic category.

Sentence (20) would be represented by the DRL expression shown in (21).

(20)

The cat likes fish

92

(21)

(ILLOCUTION: assertion: else typ<l>
(PREDICATE: like: verb fin<l> num<l> per<3>

(SUBJECT: cat: noun num<l> per<3>
(DETERMINER: the: dete))

(OBJECT: fish: noun)
This example shows one term per line with indentation marking the hierar­

chical structure of the tree represented. The three different types of attribute

in each term are separated by single colons. Roles are listed first. These are

syntactico-sem antic functions. They can be thought of as labels on arcs in the

tree. So, for example, cat is the SUBJECT of like and fish is the OBJECT

of like. Lexemes are listed next. Roles and lexemes express, respectively, the

word’s syntagm atic and paradigm atic relations. Together they constitute a

sem antic representation of the sentence. The th ird part of each term describes

the surface properties of the associated word. This consists of a main category

— usually a word class — followed by a set of attribute-value pairs. A ttributes

are, by convention, three-character strings. Values are coded as numbers inside

angle brackets.

The analysis employed in PLAIN does not make use of any non-terminal

constituents. Neither does it use empty categories. Every node in a depen­

dency tree must correspond to an actual word in the sentence — with one

exception. Hellwig argues tha t

There must be something to denote the suprasegmental meaning
th a t a clause conveys in addition to the semantics of its con­
stituents. As a necessary extension of DG, the yield of a clause
is — so to speak — lexicalized... and represented by a term th a t
dominates the corresponding list (Hellwig 1986: 196).

In order to te ther this ‘clause’ item to something which actually occurs in the

sentence, Hellwig associates it with the sentence-final period. The period, after

all, serves to mark the ending of a main clause and it can — if so desired —

be viewed as a word in a w ritten sentence. Several objections can be raised

to this approach. (W hat about spoken language? W hat about subordinate

93

clauses?) Hellwig is aware of these but he argues th a t the advantage of treating

the period as clause head is tha t it allows a fully consistent system in which

all nodes correspond to actually occurring ‘words’ in the input sentence. He

steps into much more dangerous territory when he goes on to suggest th a t

“punctuation in w ritten language can be interpreted as a similar lexicalization

of clausal semantics” (Hellwig 1986: 196). However, he does not carry his

suggestion any further in practice.

5 .2 .2 W ord ord er co n stra in ts

In addition to the more familiar surface property features such as finiteness,

person and number, a DRL term can also include positional features which

act as constraints on the relative ordering of words in a sentence. Three such

features are reported in the literature: ‘seq’, ‘ad j’, and ‘lim ’. These constrain

the relative positions of a dependent (D) and a head (H) as follows:

seq This feature relates to linear sequence. It has two possible values:

1. D precedes H

2. D follows H

a d j This feature relates to the immediate adjacency of items. It has two

possible values:

1. D immediately precedes H

2. D immediately follows H

lim This feature delimits the outerm ost dependents of a word and thus can

be used to m ark a ‘barrier’ across which other dependents of the same

word may not be ‘moved’. Once again, this feature has two values:

1. D is the leftmost dependent of H

2. D is the rightm ost dependent of H

94

Hellwig presents the DRL term in (22) to illustrate the use of these word order

features. The term describes sentence (23), due to Pereira 1981.

(22)

(ILLOCUTION: assertion: adj<1>
(PREDICATE: squeak: adj<l>

(SUBJECT: mouse: adj<l>
(DETERMINER: the: seq<l>)
(ATTRIBUTE: chase: adj<2>

(OBJECT: that : lim<l>)
(SUBJECT: cat: adj<l>

(DETERMINER: the: adj<l>)
(ATTRIBUTE: like: adj<2>

(SUBJECT: that: lim<l>)
(OBJECT: fish: adj<2>)))))))

(23)

The mouse th a t the cat th a t likes fish chased squeaks.

The purpose of these positional features is to produce analyses of sentences —

including sentences with discontinuous constituents — which do not make use

of transform ations, m etarules or SLASH feature passing, and which leave no

gaps or traces. In this respect, Hellwig’s system is similar to Covington’s (de­

scribed in C hapter 10 below): neither recognizes the existence of constituents,

either explicitly by means of non-term inal phrase labels or implicitly by means

of an adjacency constraint, so for them there is no difference between estab­

lishing a dependency between a head and an ‘unmoved’ word and establishing

a dependency between a head and a word which has ‘moved’ out of its parent

‘constituen t’. Covington’s system works without any positional constraints at

all whereas Hellwig’s system can use as many or as few positional constraints

as are required. Both systems can be constrained to accept only contiguous

groups of dependents if necessary. Hellwig’s claim is to be able to set positional

constraints so as to allow the kind of discontinuous constituency found in n a t­

ural language and to disallow the sort of discontinuous constituency prohibited

in natu ra l language (e.g. movements across barriers). If Hellwig is correct then

his system will be impressive indeed. In fact, there is a clue to indicate th a t

95

Hellwig’s suggestions are fairly tentative since he proceeds to say th a t “It is

likely th a t appropriate attributes can also be defined for more difficult cases

of extraposition” (Hellwig 1986: 197), thereby suggesting th a t these have not

yet been fully explored.

5 .2 .3 T h e b a se lex ico n

A base-lexicon is required to associate word forms in the input sentence with

lexemes and clusters of m orphosyntactic features. The base lexicon consists

of a collection of assignments. An assignment consists of a word form to the

left of the assignment arrow, and a DRL term to the right of the arrow. The

following examples (from Hellwig 1986: 197) show some entries in the base

lexicon.

(24)

cat: noun num<l> per<3>);
cat : noun num<2> per<3>);
like: verb per<l,2>);
like: verb num<l> per<3>);
like: verb num<2> per<3>);
fish: noun per<3>);

None of the entries has been assigned a role. This can only occur during

parsing. E ntry (24a) has a singular number feature num< 1 > distinguishing

it from the plural num< 2 > in (24b). The person feature per< 1,2 > of (24c)

has a disjunction of values. Entries (24d) and (24e) are required for subject-

verb agreement. Entry (24f) has no number feature since fish can be either

singular or plural. Since features are constraints, absence of a feature means

absence of any associated constraint.

5 .2 .4 T h e v a le n c y lex ico n

As well as a base lexicon it is necessary to m aintain information detailing

the kinds of dependents a word may have. It would be possible to enter the

inform ation directly in the base lexicon, for example:

96

a CAT -> (*
b CATS -> (*
c LIKE -> (*
d LIKES -> (*
e LIKE -> (*
f FISH -> (*

(25)

(*: like: verb fin<l> num<l> per<3>
(SUBJECT: _ : noun num<l> per<3> adj<l>)
(OBJECT: _ : noun seq<2>));

The characters are variables. In an analysis of a sentence they would be

replaced with lexemes corresponding to the SUBJECT and O B JECT words.

variables are knows as ‘slots’ since they can be filled by dependents. The

SU BJECT slot can be read as saying th a t the subject must be a singular third

person noun which immediately precedes its head. The O BJECT slot requires

th a t the object be a noun which occurs somewhere to the right of its head.

The technique of storing valency information in the base lexicon is effec­

tive but it fails to capture generalizations. O ther forms of the verb like will

have very similar slots and many other third person singular verbs will have

identical slots. Generalizations can be made very simply by storing the shared

inform ation in ‘completion p a tte rn s’ and setting up a distinct ‘valency lexicon’

which associates completion patterns with words. For example, the following

completion patterns would be set up for SU BJECT (a) and O B JECT (b):

(26)

a (* : +subject: verb fin<l>
(SUBJECT: _ : noun num<C> per<C> adj<!>));

b (*: +object
(OBJECT: _ : noun seq<2>));

The feature value ‘C’ is used to copy feature values from heads to dependents,

i.e. (26a) says th a t the subject will agree with its head in person and number.

Entries in the valency lexicon look like those in (27).

(27)

a (: - > (* : squeak) (: +subject));
b (: - > (* : like) (& (: +subject)

(: +object)));
These state th a t squeak just has a subject slot (it is intransitive) whereas like

has both subject and object slots (it is transitive). Entries in the valency

lexicon control the unification of terms from the base lexicon with stored com­

97

pletion patterns. Unification is not confined to this task; it is the principal

structure-building operation in the grammar. For this reason, Hellwig terms

his gram m ar Dependency Unification Grammar (DUG). I prefer to retain this

label to designate any DG based on the unification of complex feature struc­

tures, and to describe Hellwig’s gram m ar as one variety of DUG (for example

McGlashan 1992 describes another variety of DUG).

It is possible to have a disjunction of slots (indicated by a comma at the

head of a list of disjuncts) where a dependent can be instan tiated in more than

one way. For example, Hellwig analyzes relative pronouns as the subjects of

embedded sentences. Thus the +subject completion p a tte rn can be expanded

at least to the following:

(28)

(*: +subject: verb fin<l> per<3>
(, (SUBJECT: _ : pron rel<l,C> lim<l>)

(SUBJECT: _ : noun num<C> per<C> adj<l>)));

We have seen how words in the input string can be associated with role, lexeme

and m orphosyntactic information in DRL terms. We have also seen how words

can be given slots into which dependents can fit. In the next section we shall

see how potential dependencies are turned into actual dependencies by the

parser.

5.3 T h e parsin g a lgorith m

The literature does not contain a full, clear exposition of the PLAIN parsing

algorithm. The content of this section has been constructed from Hellwig’s

1986 COLING paper and from personal communication with Hellwig.

The parser m aintains two data structures:

1. A list of DRL expressions corresponding to the words of the input sen­

tence.

2. A queue indicating the order in which words are to be examined. The

98

queue contains an explicit end-of-queue marker. The parser begins at

the left and works towards the right of the sentence so for a sentence

with n words (including the period), the queue looks like this: (1, 2, . . . ,

n, end-of-queue).

The parsing algorithm uses these two data structures in the following way:

1. Make the word at the head of the queue the current word.

2. Try to find a slot in another word with which the current word can unify.

Only adjacent words are tried. There are two possible outcomes:

(a) A slot is found for the current word. In this case the current word is

unified with the slot of its head to form a single partial dependency

structure. The pointer to this new structure is placed at the end of

the queue.

(b) A slot is not found for the current word. In this case the pointer to

the current word is moved to the end of the queue.

3. Goto 2 until end-of-queue is reached. W hen this happens move end-of-

queue to the end of the queue and proceed to 4.

4. Try to find a slot in another word with which the current word can unify.

Only words a t one remove (i.e. n — 2 or n -f 2 are tried. There are two

possible outcomes:

(a) A slot is found for the current word. In this case the current word is

unified with the slot of its head to form a single partial dependency

structure. The pointer to this new structure is placed at the end of

the queue.

(b) A slot is not found for the current word. In this case the pointer to

the current word is moved to the end of the queue.

99

5. Goto 4 until end-of-queue is reached. W hen this happens move end-of-

queue to the end of the queue and goto 2.

The process term inates when steps 2 and 4 are both executed with no change

to the queue.

Hellwig (p.c.) describes this as an island parser. It builds up structure

around word ‘islands’ in the sentence. The object of step 4, which looks beyond

the immediate context of an island, is to detect moved parts of a discontinuous

constituent.

This is a multi-pass parser. Dependents search for heads but not vice versa:

heads do not search for dependents. Hellwig makes no claims for the validity of

the parser as a psychological model; its motivation is purely im plem entational

and part of the ongoing programme of research is devoted to parallelizing the

algorithm.

100

IN IT IA L IZ A T IO N : initialize two lists: Pcinter_L and Term.L;
Term_L is an ordered list of DRL terms
corresponding to the words of the sentence;
Pointer.L is an ordered list of pointers
to these DRL terms;
C is a pointer;
CÎ is the term pointed to by C;
C|:Slot is any valency slot in C|;
X and Y are variables;
e is not an absolute end-of-list marker
initialize an empty stack: Stack.

1. IF C=e

T H E N IF top(Stack) = Term_L

T H E N IF length (Term_L) = 1

T H E N succeed

ELSE fail

ELSE push(Stack,Term_L),
remove(Pointer_L,C),
append(Pointer_L,e),
C := f i rst(Poi n te r_L),
goto(2)

ELSE IF CÎ U CT-l:Slot

T H E N remove(Term_L,CT),
remove(Pointer_L,C),
C:=first(Pointer_L),
goto(l)

ELSE IF CÎ U CT+l:Slot

T H E N remove(Term_L,Cî),
remove(Pointer_L,C),
C:=first(Pointer_L),
remove(Pointer_L,C),
append(Pointer_L,C),
C:=first(Pointer_L),
goto(l)

ELSE remove(Pointer_L,C),
append(Pointer_L,C),
C:=first(Pointer_L),
goto(l).

101

2. IF C=e

T H E N remove(Pointer_L,C),
append(Pointer_L,C),
C:=first(Pointer_L),
goto(l)

ELSE IF CÎ U CT-2:Slot

T H E N remove(Term_L,CT),
remove(Pointer_L,C).
C:=first(Pointer_L),
X:=last(Pointer_L),
remove(Pointer_L,X),
Y:=last(Pointer_L),
remove(Pointer_L,Y),
append(Pointer_L,X),
append(Pointer_L,Y),
goto(2)

ELSE IF CÎ U CT+2:Slot

T H E N remove(Term_L,CT),
remove(Pointer_L,C),
C:=first(Pointer_L),
X:=C+2,
remove(Pointer_L,X),
append(Pointer_L,X),
goto(2).

ELSE goto(l)

A lg o r ith m 5.1: Hell wig’s dependency parsing algorithm

5.4 T h e w ell-form ed su b str in g ta b le

One of the most interesting and innovative aspects of Hellwig’s parser is his use

of a well-formed substring table (W EST) to optimize processing in the parsing

of sentences with ambiguity. W EST parsing has been developed in the context

of PS G and has not been explored to any great extent in dependency-based

systems. The norm al conception of a W EST is of a structure with nodes and

102

edges. To begin with, there are as many edges as there are readings for the

words in the input sentence. W hen a constituent is built an edge is inserted

which spans all of the words which the constituent contains.

Hellwig’s W FST is very like this except th a t his edges are labelled with

DRL descriptions of the words spanned. These descriptions may contain slots.

W hen a word becomes a filler for another word’s slot, the two are unified and

a new edge is inserted in the W FST spanning what was previously spanned

by the two edges. Hellwig’s W FST for the globally ambiguous sentence Flying

planes can be dangerous (Hellwig 1988: 243) is shown in Figure 5.2.

However, the standard view of a W FST assumes th a t constituents are

continuous. An edge serves to mark everything between its end-points as

belonging to one constituent. The edge is labelled with the name of tha t

constituent. This is not sufficient for Hellwig’s parser, which advertises as one

of its benefits the ability to parse discontinuous constituents. If a constituent

is discontinuous, simply marking its left and right boundaries does not serve

to identify its components since, by virtue of the discontinuity, some of the

m aterial between the endpoints will not belong to the constituent.

Hellwig’s solution is to adopt a word-centred rather than a constituent-

centred approach to W FST parsing. This he does by assigning a bit string to

each word in the input sentence. Each bit string in an n-word sentence consists

of one ‘1’ and n-1 ‘O’s. The zth word is represented by a bit string with the ‘1’

in ith position. Before any attem pt is made to establish a dependency relation

between two words, their bit strings are added. If the addition involves any

‘carry’ operations (i.e. a 1 is added to a 1) then the dependency is prohibited

even before the slot features have been checked. If no ‘carry’ operations are

involved, the process may proceed. In this way a W FST can be built up for

discontinuous constituents.

For example, the words of sentence (29) would be assigned the initial bit

strings shown in (30) (trailing zeros in bit strings and features in DRL slots

103

ILLOC assertion
(PRED can verb fin

(MV be verb inf
(PA dangerous adje))

(SUBJ flying noun
(OBJ planes noun))

ILLOC assertion
(PRED can verb fin

(MV be verb inf
(PA dangerous adje))

(SUBJ planes noun
(ATR flying adje))

(can verb fin
(MV be verb inf

(PA dangerous adje))
(SUBJ flying noun

(OBJ planes noun))

^ (fly in g

(can verb fin
(MV be verb inf

(PA dangerous adje))
(SUBJ planes noun

(ATR flying adje))

noun
(OBJ planes noun))

[planes
(ATR flying adje))

noun

/(flying
noun

(OBJ .
noun))

/(flying
adje)

Flying

(planes
noun

(A T R _
adje))

planes

(can verb fin
(MV be verb inf

(PA dangerous adje))
(SUBJ _ noun))

/^ b e verb inf
(PA dangerous adje))

(can
verb fin

(MV __
inf)
(SUBJ
noun))

can

(be
verb inf

(P A _
adje))

he

^ " \y^ an gerou s
adje)

(ILLOC
assertion

(PRED __
verb fin))

dangerous

Figure 5.2: Hellwig’s W FST for Flying planes can he dangerous

104

are suppressed for readability).

(29)

W hat did Danforth say to George?

(30)

BITSTRING TREE
1 (what pron)
01 (do verb fin

(SUBJECT: _)
(MAINVERB: _))

001 (Danforth noun)
0001 (say verb inf

(DIRECTOBJECT: _)
(INDIRECTOBJECT: _))

00001 (to
(_)

000001 (George noun)
0000001 (ILLOCUTION question

(PREDICATE: _)
In (29), What is the direct object of say. The discontinuous tree rooted in ‘say’

is represented unproblematically in Hellwig’s W FST as shown in (31).

(31)

BITSTRING TREE
100111 (say verb inf

(DIRECTOBJECT: what)
(INDIRECTOBJECT: to

(George)))
W hat Hellwig has done is to discard the notion of ‘constituency’ and replace

it with the notion of ‘consistency’.

W hat is missing from the PLAIN literature is a description of exactly how

the W FST is used in the parsing algorithm to increase the efficiency of the

parser. Hellwig consistently describes his system as a ‘chart parser’ thereby

implying a more sophisticated control mechanism than is necessary in a sim­

ple W FST parser. The omission is particularly disappointing since Hellwig’s

system is, to the best of my knowledge, the only dependency parser to make

use of a W FST in the m anagement of ambiguity. We shall return to this topic

in Section 12.6 below.

105

Table 5.1: main features of Hellwig’s dependency parser

Search origin bottom -up
Search manner depth-first
Search order left to right
Number of passes at least two
Search focus dependents seek heads
Ambiguity management W FST (adjacency not enforced)

5.5 S um m ary

Hellwig uses a simple unification gram m ar expressed in terms of complex fea­

ture structures. His parser has a bottom -up island-driven control strategy

which is claimed to be able to build discontinuous constituents without re­

course to special registers or feature passing (although more information on

the precise use of the lim feature is required before the system can be properly

evaluated). Words look for heads; they never look for dependents. The parser’s

efficiency is increased by the use of a W FST which differs from standard W FST

parsers in building dependency rather than constituency structures and in rep­

resenting non-contiguous collections of dependents.

The main features of Hellwig’s parser are summarized in Table 5.1.

106

C hapter 6

T he K ielikone parser

6.1 O verv iew

In this chapter I examine the Kielikone dependency parser. Since June 1982

the Finnish National Fund for Research and Development (‘SITRA’) has spon­

sored a research project known as ‘Kielikone’ a t the Helsinki University of

Technology. The aim of the project is the development of a com puter system

for the autom atic interpretation of w ritten Finnish. The main application fo­

cus of the research is the design and implementation of a Finnish tex t interface

to com puter databases. However, the object is to produce an interface which

is independent of any single database so th a t it can be ported to many appli­

cations. The overall structure of the interface system — which has recently

come to be known as ‘SUOMEX’ — is described in Jappinen et al. (1988a).

Sentence processing in the Kielikone system is achieved by four distinct

modules.

1. A morphological

analyser known as ‘M ORPHO ’ breaks words down into their compo­

nent morphs (Jappinen et al. 1983; Jappinen and Ylilammi 1986). This

is vital in an agglutinating language like Finnish since a full form lexicon

would be much larger than for a language like Enghsh which has much

less morphological variation. By 1987 the lexicon contained over 35000

lexical entries (i.e. stems) (Valkonen et al. 1987a).

107

2. A parser, known as ‘A D P’ (Augmented Dependency Parser), uncovers

the dependency structure of sentences. It is this module which v/ill be

the focus of investigation in this chapter.

3. A logical analyser is responsible for constructing the prepositional m ean­

ing of sentences and also for interpreting sentences in their dialogue con­

text. Thus the module embraces both semantics and pragmatics. In early

1987 this module was referred to as ‘DIALOG’ (Jappinen et al. 1987:

preface); by 1988 its name seemed to have changed to ‘AWARE’

(Jappinen et al. 1988a: 335).

4. The fourth module appears not to have a name. It serves as the buffer be­

tween the natural language understanding module and the database. Its

task is to transform interpretations of Finnish sentences into sequences

of formal database queries. In order to make this a general purpose

portable interface, queries are couched in a database interlingua called

‘UQL’ (Universal Query Language). To interface the system to any spe­

cific database it is only necessary to write an interpreter to translate UQL

queries into the format expected by the specific database, e.g. SQL.

Some of the dependency parsers covered in this thesis are described on the

basis of just one or two papers or reports. W ith the Kielikone parser there

is an abundance of docum entation. A Kielikone bibliography published in

1987 hsts 53 items, of which 14 are specifically concerned with parsing. This

abundance of literature is obviously very welcome to the student of dependency

parsing. However, it does introduce some problems of version control. During

the hfetime of the project a number of changes in direction have been made

and it is difficult to keep track of exactly which incarnation of the system is

being described a t any given point. As we have already seen, many of the

components in the system have been given names. W hen new names appear

it is not always clear whether (i) only the names have changed while the

108

components remain the same, (ii) the new names introduce new components

to complement the existing components, or (iii) the new names introduce new

components to supersede old components. This would all be self evident were

it not for the fact th a t SUOMEX is a very complex system and most published

papers can only discuss selected sub-parts of it. It is thus necessary to try to

guess whether elements which are not mentioned have been left out for lack of

space or because they have been quietly dropped from the system. The parser

itself suffers from this problem since, as we shall see, its internal structure is

also ra ther complex.

6.2 E v o lu tio n o f th e parser

In order to aid exposition, I shall plot the main milestones in the development

of the parser before turning to a more detailed exam ination of the most recent

version.

6 .2 .1 T h e ea r lie s t version : tw o w a y f in ite a u to m a ta

The earliest descriptions of the parser appeared in

1984 (Nelimarkka et al. 1984a; Nelimarkka et al. 1984b). At th a t stage the

developers of the parser were emphasizing three main points:

1. The gram m ar was based on the notion of functional dependency.

2. ‘C onstituents’ were built middle ou t

3. The parser built s tructure using two-way finite automata.

Functional dependency grammar

The parser builds dependency structures consisting of pairs of words in binary

antisym m etric dependency relationship with each other. T he words involved

in dependency relationships are identified using a ‘regent-dependent’ nomen­

clature. Non-term inal phrase nodes or labels do not appear anywhere in the

109

heitti

a . d v ô r b i a . 1 / subject object
TIME / a g e n t n e u t r a l

Nuorena poika kiekkoa

Figure 6.1: a functional dependency structure

system. However, the term ‘constituent’ is used consistently to refer to a word

plus all of its (direct or indirect) dependents. It is even (confusingly) used to

refer to a single word which has no dependents. The word on which all others

depend (directly or indirectly) in a constituent is the ‘head’. Different kinds

of dependency are recognized and these are linked with the traditional syntac­

tic functions (or relations) subject, object, adverbial, genitive a ttribu te , etc.

These, in turn , are associated with semantic interpretations such as AGENT,

NEUTRAL, DIRECTIVE, etc.

For example, the sentence Nuorena poika heitti kiekkoa (‘W hen he was

young the boy used to throw the discus’) is given a stem m a analysis as shown in

Figure 6.1 (example cited in Nelimarkka et al. 1984a: 169). This combination

of dependency, syntactic function, and deep case is what is referred to by the

term ‘functional dependency gram m ar’.

M iddle-out structure building

The parser is described as being strongly data driven, left-to-right, and bottom -

up. It is also described as building a constituent from the middle outwards.

This seems slightly inconsistent: left-to-right suggests one control strategy,

middle-out suggests another. In fact, the parser is only left-to-right in the

sense th a t it sees word 1 before it sees word 2. It may actually end up building

constituents a t the end of the sentence before it has built any a t the beginning.

110

Overall, the strategy is very close to th a t of an island parser which starts

constructing ‘islands’ as close to the beginning of the sentence as it can.

Suppose th a t the string the parser is operating on consists of constituents

C\ — Cn (remember, a single word can be a constituent and, if the constituent

consists of more than one word, only the head is visible externally). Middle-out

control works as follows:

1. Try to recognize (7,_i as a dependent of Q .

2 . Try to recognize C.+i as a dependent of C,-.

3. Shift the focus to or C i^\.

Notice th a t the parser only attem pts to link immediately adjacent (i.e. neigh­

bouring) constituents. If constituent A meets the dependency requirements

of constituent B, then constituent A is ‘absorbed’ into constituent B and so

disappears from sight of the parser. Constituent B now has a new neighbour

and so the parser can attem pt to establish a new dependency link between

them.

The parser can be envisaged as consisting of a register holding the current

constituent, plus two stacks, one storing the left context, the other storing the

right context (see Figure 6.2, due to Lehtola et al. 1985).

The current constituent C either establishes a dependency link with LI or

R l, or it is pushed onto one stack and the current constituent register is filled

from the top of the other stack. The parser is constructed so as always to

search the immediate left context first.

T w o-w ay finite autom ata

The gram m ar stores information concerning binary dependency relations and

their corresponding functions. However, it is also necessary in this system

to store information specifying what all constituents may contain. In other

words, it is necessary to store for each word type a complete record of all its

111

The register of the
current constituent

LI
L2
L3

The left
constituent

stack

Rl
R2
R3

The right
constituent

stack

Figure 6.2: left and right context stacks

obligatory and optional dependents. This can then serve as a model for actual

occurrences of th a t word type. For this task the system uses two-way finite

autom ata,

A two-way finite autom aton (Levelt 1974) consists of a set of states. One

of these is distinguished as the s ta rt s ta te and one or more are distinguished

as final states. The states are linked by transition arcs between the states.

Each arc recognizes a sentence element and moves the reading head either to

the right or to the left in the input string. The autom aton accepts an input

string if it begins in the s ta rt s ta te with the first word under the reading head

and proceeds to a final state, leaving the reading head pointing to the right of

the last word in the input string.

The standard idea of a two-way finite autom aton is modified somewhat in

the Kielikone system. Instead of recognizing words in the input string, each

autom aton recognizes functions like subject, object, etc. Each arc traversal

also serves to build some structure, namely to insert a dependency relation

between two neighbouring words. The dependency relation is labeled with

112

the name of the function specified by the arc traversed. States are divided

into ‘left’ and ‘right’ states indicating the side of the current word on which

dependents so m arked will be found. Thus, contra Covington (1990b), relative

position is expressed explicitly in the gram m ar of a free word order language.

It has been known for some time th a t any language recognized by a two-way

autom aton is regular (i.e. type 3, the most highly constrained set of languages

in the Chomsky Hierarchy). This power is not sufficient for the requirements

of natu ral language. To increase the recognition power, several au tom ata are

m ade to activate one another. They make use of three ‘control’ arcs which shift

processing from the current word to one of its neighbours. These control op­

erations are ‘ BuildPhraseO nR ight’, ‘FindRegOnLeft’, and ‘ F indRegOnRight ’.

W hen an autom aton has found all of the obligatory dependencies asso­

ciated with a given word, the final action of the autom aton is to m ark the

head ‘-fphrase’, thus indicating th a t the constituent is complete. O ther, more

specific, features may also be used, e.g. ‘isen ten c e ’, ‘in o m in a l’, ‘± m ain ’.

It is worth noting th a t au tom ata ‘know’ nothing about when and why they

were activated. This distributed control (or ‘local control’ as it is referred to

by Kielikone researchers) ensures th a t parsing is strongly data driven. Careful

ordering of function and control arcs in the autom ata is said to result in very

little backtracking being necessary.

A utom ata are fairly complex objects in the Kielikone system. The only

autom aton to be described in the Kielikone literature can be found in Lehtola

et al. (1985; 99).

6 .2 .2 A gram m ar re p r ese n ta tio n lan guage: D P L

It is not clear from the literature whether the representation language described

in this section was developed concurrently with the components covered in the

section above or whether it represents a subsequent step.

The language, ‘D PL’ (Dependency Parser Language), is a representa­

tion language developed as part of the Kielikone project (Lehtola et al. 1985;

113

Lehtola 1986). All functions, relations and autom ata were, a t one time, ex­

pressed in this unified representation language.

Given th a t DPL abbreviates ‘Dependency Parser Language’, it seems

somewhat incongruous tha t “the main object in DPL is a constituent”

(Lehtola et al. 1985: 100). However, this can be read as meaning ‘the main

object in DPL is a word plus all its properties, including its dependents’. The

gram m ar writer specifies an inventory of perm itted property names and values.

These can then be built into descriptions. A number of operators are available

to relate objects to each other and to perform actions on objects, including

the following:

= equality

:= replacement

insertion

< > mark the scope of an implicit disjunction

0 mark the scope of an implicit conjunction

—)■ perform all operations on the right

=4» term inate execution after first successful operation

The definition of Subject shown in Figure 6.3 should serve to illustrate

what a DPL entry looks like. This example is taken from Lehtola et al. (1985:

102). I shall not discuss its detail here. The im portant point to note is th a t

the gram m ar w riter is forced to write a procedural grammar. It is generally

acknowledged th a t procedural grammars — other than gram m ars for tiny frag­

ments — are much harder to write, to understand, to modify and to port than

declarative grammars so it could be argued th a t DPL is not the best represen­

tation on which to base a parser. Notice th a t the gram m ar writer is charged

with the task of defining the autom ata in DPL as well as the task of defining

the functions and relations in the grammar. Fairly minor modifications to the

gram m ar could be expected to require a lot of hard work.

114

(FUNCTION: Subject
(RecSubj -> (C := Subject))

)

(RELATION: RecSubj
((C = Act < Ind Coud Pot Imper >) (D = -Sentence +Nominal)

-> (D = PersPron (PersonP R) (PersonN R)
((D = Noun) (C = 3P) -> ((C = S) (D = SG))

((C = P) (D = PL))))
((D = Part) (C = S 3P)

-> ((C = ’OLLA)
=> (C :- +Existence))

((C = -Treuisitive +Existence))))

Figure 6.3; a DPL definition of Subject

Before moving on to examine the next development in the Kielikone project

we must note a cryptic comment buried in one of the papers describing the

DPL representation language:

An autom aton can refer up to three constituents to the right
or left using indexed names: LI, L2, L3, R l, R2 or R3
(Lehtola et al. 1985: 101).

Everything else in the Kielikone literature seems to suggest th a t the only con­

stituents in sight of the current word are its immediate left and right neigh­

bours. The above comment seems to suggest th a t the parser really has three­

cell lookahead and lookback buffers, ra ther like M arcus’s determ inistic PA R­

SIFAL system (Marcus 1980) (which has a three-cell lookahead buffer). This

would be a very im portant point if it were the case. However, since nothing

else in the literature points in this direction we must simply place a question

m ark beside the above remark, and proceed.

6 .2 .3 C o n str a in t b a sed gram m ar: F U N D P L

As I have previously observed, DPL presented the gram m ar w riter with a fairly

unwieldy formalism. The gram m ar writer was required to work out complex

control issues. This problem was acknowledged by the Kielikone team who

115

responded by designing a more user-friendly high-level representation language

called ‘FU N D PL’ (FUNctional D PL)d FUNDPL is built on top of DPL so its

functionality is exactly the same. The crucial difference is th a t the gram m ar

w riter is no longer required to worry about control issues (at least, not to the

same extent). FUNDPL is described in Jappinen et al. (1986).

FUNDPL is basically a constraint system. As such, it is claimed to be

related to other constraint-based

grammars such as LFG (Kaplan and Bresnan 1982), FUG (Kay 1985), and

GPSG (G azdar et al. 1985). In common with these systems FUNDPL allows

the gram m ar to be w ritten as a set of well-formedness constraints. Conceptu­

ally, the job of the parser is to search for an analysis of the sentence which does

not violate any constraints. However, unlike these other systems, FUNDPL

grammars are not unification grammars. FUNDPL is simply a high level in­

terpreter which maps declarative FUNDPL structures onto procedural DPL

structures. The main benefit of FUNDPL is tha t DPL, with all of its proce­

dural complexity, is no longer visible to the gram m ar writer. It is no longer

necessary to think in terms of two-way finite autom ata.

F u n c tio n a l s c h e m a ta

FUNDPL constraint structures for the description of constituents are known

as schemata. Each schema has four parts: pattern , structure, control, and

assignment, as shown in Figure 6.4

A schema is triggered by matching the properties of a constituent with

those in the W h e n slot of the schema. (Presum ably the slot is named to signify

som ething like ‘when this pattern is m atched, use the schem a’). The structure

p art of the schema lists optional and obligatory dependents for the head of the

constituent. The O rd e r slot specifies any ordering (concatenation) restrictions

which may apply. For example. O rd e r = <D1 D2 R > states th a t D1 m ust

^The pronunciation of this acronym is not known.

116

F JS C H E M A ; name
W h e n = [properties] pattern
O b lig a to ry = (functions)
O p tio n a l = (functions) structure
O rd e r = <conc.description>
T ry L e ft = <functions>
T ry R ig h t = < functions > control
D ow n
Up
A ssu m e = [properties] assignment
L ift = function(attributes))

Figure 6.4: the general form of functional schemata

precede D2 which in tu rn m ust precede the regent. Irrelevant intervening

m aterial is indicated by two consecutive dots (..). O rd e r = <D 1..R ..D 2>

requires D1 to appear somewhere to the right of R and D2 to appear somewhere

to the left of R. The O rd e r slot may be empty. The control part of the

schema consists of heuristic information to guide the parser’s search order.

This is stored in the T ry L e ft and T ry R ig h t slots. If a word’s dependents

are usually, though not necessarily always, found in particular locations, the

heuristic information can cut down average search time considerably. D ow n

and U p are used to change levels between m atrix and subordinate sentences.

Their use is not well documented. Presum ably their purpose is to prevent

constituents a t one level from being confused with those a t another level; it is

not clear how they work and no examples are available. Clearly, the designers

of FUNDPL are being somewhat optimistic when they say th a t their system

“liberates a gram m ar writer from control anxieties” (Jappinen et al. 1986).

The A ssu m e slot assigns new features (e.g. -fPhrase) to the regent once the

schema has been fully matched and bound. The L ift slot is like the A ssu m e

slot except th a t it copies features from a dependent to the regent. For example,

‘L ift= S ub ject(C ase)’ copies the Subject’s case feature to the regent.

The example shown in Figure 6.5 appears in Jappinen et al. (1986: 463).

It is the functional schema for normal Finnish transitive verbs which allow un­

limited adverbials on either side. The schema allows all ordering perm utations

117

(F JS C H E M A : VPTrA ct
W h e n = [Verb Act Ind + Transitive]
O b lig a to ry = (Subject Object)
O p tio n a l = (Adverbial*)
T ry L e ft = <Subject O bject Adverbial>
T ry R ig h t = < Object Adverbial Subject>
A ssu m e = [+Phrase + Sentence))

Figure 6.5: a schema for Finnish transitive verbs

((R = Verb Act
< (< Ind Cond Imper Pot Ilpartis > (PersonP D)(PersonN D)

-Negative -Auxiliary)
(Auxiliary Ilpartis Norn -Negative)

(Negative < (Imper Pr < (S 2P) Neg >)
(Cond Pr S 3P) (Pot Pr Neg)
(Ilpartis Nom)> -Auxiliary)>)

(D = PersPron Nom))...

Figure 6.6: the binary relation ‘Subject’

among dependents bu t it ‘prefers’ SYO order.

B in a ry re la tio n s

Notice th a t functional schem ata specify the possible components of a con­

stituen t. They do not contain any information detailing w hat might constitute

a legitim ate dependent of the regent. For example, the schema in Figure 6.5

records th a t a transitive verb requires a subject bu t it says nothing about

w hat may legitim ately serve as a subject. In the FUNDPL system, functional

schem ata — which are generalized descriptions of the structure of constituents

— are completely distinct from binary relations which define all perm itted

dependency relations which may hold between pairs of words in Finnish sen­

tences. Binary relations are boolean expressions which succeed if all conditions

are met, otherwise they fail. Unfortunately, the literature offers only half a bi­

nary relation by way of example. This half, which is part of the binary relation

‘Subject’, is shown in Figure 6.6 (Valkonen et al. 1987b).

The regent R m ust be an active verb. Further restrictions appear within

118

(CATEGORY : SynCat
< (Word)

(Noun ! Word)
(Proper ! Noun)
(Common ! Noun)

(Pronoun ! Word)
(PersPron ! Pronoun)
(DemPron ! Pronoun)
(IntPron ! Pronoun)

Figure 6.7: the ‘SynC at’ category

the disjunctive angle brackets. expresses negation. The dependent D must

be a personal pronoun. The significance of round brackets is not clear. If

the conditions for both R and D are satisfied then the value of the relation is

‘T rue’, i.e. a dependency relation can be established between them.

T ype definitions

A FUNDPL gram m ar includes type definitions of three varieties: CATE­

GORIES, FEATURES, and PROPERTIES.

CATEGORY definitions set up hierarchical relations amongst names. This

allows properties to be inherited autom atically by lower individuals from

higher individuals in the hierarchy. For example, a category SynCat, con­

sisting of a word class hierarchy, would be defined as shown in Figure 6.7

(Valkonen et al. 1987b: 219).

The ‘!’ symbol can be read as ‘isa’.

FEA TU RE definitions record the names and possible values of features.

PRO PERTIES are like features except th a t they can have default values.

For example, the following property definition (from Valkonen et al. 1987b:

219) records the fact tha t ‘Polar’ can have two values, ‘Pos’ or ‘Neg’. The

value of ‘P o lar’ is ‘Pos’ by default.

(32)

(PROPERTY: Polar < (Pos) Neg >)

119

Lexicon

The FUNDPL lexicon records idiosyncratic, non-inferrable features for words.

Thus it consists of wordrfeature structure pairings.

This concludes my sketch of the evolution of the Kielikone parser. In­

evitably, some features have not been covered. Some of these were left out

because they were minor, ephemeral suggestions. Others were left out be­

cause the literature contains insufficient or confusing information. For exam ­

ple, K ettunen 1986 mentions a parser called ‘DADA’ (an acronym from the

unlikely designation ‘Dependency Analysis is Dependency Analysis’!) and de­

scribes it as being part of the Kielikone system. The parser is never heard of

again so it is hard to tell whether it was a short-lived alternative to the older

system or simply a confusion of names.

In the next section I explain how the FUNDPL components I have described

fit together in the most recent version of the KieUkone parser.

6.3 T h e parser

The best texts describing the present state of the parser are Valkonen et al.

(1987b) and K ettunen (1989). There is not full agreement between these pa­

pers — they even disagree about the name of the parser! Valkonnen et al. call

the parser ADP and describe FUNDPL as a declarative high level language.

K ettunen consistently refers to FUNDPL as a parser, even in the title of his

paper Evaluating FUNDPL, a dependency parser for Finnish. However, since

K ettunen’s usage seems to be idiosyncratic I shall ignore it.

6 .3 .1 T h e gram m ar

The gram m ar accepted by the parser is w ritten in FUNDPL. It consists of the

four components described in the previous section, namely

1. Type definitions, consisting of definitions for categories, features and

properties.

120

2. A lexicon for associating features with words. Recall tha t

the SUOMEX system includes a morphological analyzer, MORPH

(Jappinen and Ylilammi 1986), which analyzes words into their compo­

nent morphs. The role of the lexicon in the grammar is simply to add

information which cannot be predicted from general principles.

3. B inary dependency relations which are boolean evaluation functions to

determ ine whether the features of any two words are such as to allow

them to enter a dependency relationship.

4. Functional schemata, consisting of definitions of the structure of con­

stituents. These may be under-specified so, for example, relative word

order may not be defined, thus allowing any ordering.

6 .3 .2 B la ck b o a rd -b a sed co n tro l

The structure of the parsing system is represented by the diagram in Figure 6.8

which appears in Valkonen et al. (1987a: 700) and Valkonen et al. (1987b:

221).

The account of the system ’s structure offered by its designers proceeds as

follows.

The system has two knowledge sources, a body of functional schemata and

a body of binary relations (i.e. boolean expressions). These two knowledge

sources do not communicate directly. Instead, they read from and write to

a shared data structure known as a ‘blackboard’. W hen a word becomes the

current word its properties are matched against the triggering patterns of the

functional schem ata (i.e. the values of the W h e n slots in the schemata).

Only one m atch can be entertained a t any one time. A matching schema

is used to create an ‘active environm ent’ associated with the constituent to

be built around the current word. This active environment is located on the

blackboard and is monitored by the binary relations. These are used to indicate

when the properties of a regent and a candidate dependent are such as to

121

BLACKBOARD KNOWLEDGE
SOURCES

CONTROL

control flow
data flow

Schema xxx

Binary
dependenc
relations

Functional
schemata

A scheduler for knowledge sources

Partial solutions (local trees)
/ ^

Other computational state data

An activeenvironmentdescription

Figure 6.8: architecture of the Kielikone parser

allow a dependency link to be estabhshed. W hen the prevailing conditions

allow linking, the partia l dependency tree is built by “dependency function

applications” (Valkonen et al. 1987b: 221). It is not clear what these are or

where they fit in the above diagram. This process continues until all of the

obligatory slots (and perhaps some optional slots) have been filled in the active

environment. A t this point the local partial dependency tree is complete and

processing can shift to another constituent with another active environment,

unless, of course, the constituent to be completed has a main verb (+ Sentence)

as head in which case the parse is complete.

The blackboard is a well known da ta structure in artificial intelligence

(Hayes-Roth et al. 1983; Nii 1986). The principle behind blackboard systems

is th a t several com ponent processes (or knowledge sources) can collaborate in

the construction of objects residing on the blackboard. The order in which

objects are added to the blackboard is determined by the availability of in­

form ation to the processes. Thus, a knowledge source can be thought of as

122

a demon watching the blackboard until something appears which th a t demon

is able to process. The demon writes the resulting structure to the black­

board and returns to a semi-dormant monitoring state. In this way, different

knowledge sources can collaborate to achieve some task.

An example of this kind of blackboard system is the HEARSAY-II speech

understander (E rm an et al. 1981) which used a blackboard to keep track of

the sentence analysis being developed by several different knowledge sources.

W hether or not this degree of architectural sophistication is really neces­

sary in a dependency parser is open to question. The m otivation for using a

blackboard is usually th a t it is necessary to apply several knowledge sources

to each structure in order to generate a solution. In the Kielikone parser there

are only two knowledge sources, namely the functional schem ata and the bi­

nary relations. It is not even clear th a t these need to be separate knowledge

sources. The division is not justified anywhere in the Kielikone literature and

a num ber of other dependency parsers described in this thesis seem to work

adequately w ithout any such division of labour.

6 .3 .3 T h e p a rsin g a lg o r ith m

In this section I describe the parsing algorithm. Before getting too close to

the detail it is worth attending to the designers’ high-level description of what

their system does:

In analysis two abstract levels exist. On the regent level (R-level)
are those constituents which lack dependents to fill some required
functional roles. On the dependent level (D-level) are those con­
stituents which have become full phrases (marked by the feature
-f-Phrase) and are therefore candidates for functional ro les... The
underlying abstract view is this. A word enters the parsing process
via R-level. W hen all dependents of the constituent (the word)
have been bound (from D-level), it descends to D-level. There it
remains until it itself becomes bound as a dependent. Then it
vanishes from sight (Jappinen et al. 1986).

123

The parsing algorithm is defined by a two-way finite autom aton. This is not to

be confused with the two-way finite autom ata originally used by the gram m ar

w riter to define functional schem ata and still built on the fly by the FUNDPL

interpreter. The parsing algorithm embodied in the autom aton consists of five

m ain steps, namely:

1. One of the schemata associated with the current constituent is activated.

2. Search for left-side dependents for the current constituent.

3. The current constituent is waiting for the building of the right context.

4. Search for right-side dependents for the current constituent.

5. The schema associated with the current constituent has been fully

m atched and becomes inactive. The current constituent is now a com­

pleted (partial) dependency tree.

No more than one schema may be active a t any one time, i.e. only one con­

stituen t may be a t step 2 or step 4 in the autom aton. However, any number

of constituents may be at step 3. These are term ed ‘pending’ constituents and

are implemented as a PENDING stack. Parsing starts with the first word and

proceeds to the right. A sentence is well-formed if the parsing process yields a

single constituent in step 5.

We shall now consider each step in the algorithm in greater detail:

1. All constituents have heads, whether they consist of single words or com­

plex dependency structures. A schema, whose W h e n features m atch

the head features of the constituent, is activated. It is not clear whether

m atching m ust be exact or more like unification, i.e. there is a m atch if

there is no conflict. Move to step 2.

2. Left-side dependents are searched for on the basis of the dependency

requirements stated in the active schema. There are two possible ou t­

comes:

124

(a) There are no left neighbours or left neighbours are a t step 3, pend­

ing. Go to step 3.

(b) The left neighbour is in step 5 (i.e. is a complete constituent).

Binary relation tests are carried out to establish whether or not it

is a suitable dependent. If it is then the left neighbour is subsumed

in the current constituent which re-enters step 2 (now with a new

left neighbour). If binary relations fail, the active schema enters

step 3, pending.

3. There are two possibilities here:

(a) There are no right neighbours. Go to step 5.

(b) There are right neighbours. Push the current constituent on the

PENDING stack and go to step 1 with the next constituent to the

right (i.e. read in the next word).

4. Search for right-side dependents. If binary relation tests succeed then

subsume each dependent in the current constituent. R eturn to step 3.

5. There are two possibilities:

(a) If no constituents remain other than the current constituent then

the sentence has been successfully parsed. If right-side constituents

exist then go to step 1 with the next constituent as input (i.e. get

next word from input). If neither of these succeed then go to step

4 and pop PENDING.

(b) Failure.

The control strategy autom aton is shown in Figure 6.9.

The above description has been constructed following published descrip­

tions of the Kielikone parser as closely as possible. A PARS description of the

Kielikone parsing algorithm is given below:

125

Figure 6.9: the Kielikone parser control strategy autom aton

IN IT IA L IZ A T IO N : read input words into a list;
C is the current word;
C:=l;
initialize an empty stack;
Result is the result variable;
'saturated(C)’ is a condition which succeeds iff
C's valency requirements have been satisfied.

1. IF (C = l V C-l=top(Stack))

T H E N goto(2)

ELSE IF (saturated(C-l) & C ^ C-1)

T H E N record(C -> C-1),
remove(C-l),
goto(l)

ELSE C:=top(Stack),
pop(Stack),
goto(3).

2. IF (saturated(C) v C + l= e)

T H E N goto(4)

ELSE push(C),
C:=C-1-1,
goto(l).

3. IF (saturated(C+l) & C —> C+1)

T H E N record(C C+1).
remove(C+l),
goto(2)

ELSE fail.

126

4. IF (C + l= e & C-1=0 & empty(Stack))

T H E N Result:=C,
succeed

ELSE IF C + l= e

T H E N C:= top(Stack),
pop(Stack),
goto(3)

ELSE C:=C+1,
goto(l).

A lg o r ith m 6.1: the Kielikone dependency parsing algorithm

The basic parsing strategy should be obvious. Each schema becomes active

and continues to be active until either it builds a complete constituent or it goes

to sleep to wait for the constituents it requires to be built. As the Kielikone

parser is described, an active schema is just the data structure th a t happens

to be being m anipulated a t the present moment. Active schem ata are not, of

themselves, either active or inactive: they are simply representations. They

are interpreted as being active or inactive according to whether the parser is

currently trying to satisfy the dependencies specified by them. The situation

would be completely different, if each schema were actually a process rather

than a representation. This would make for ra ther an interesting parser which

would bear a family resemblance to a Word Expert Parser (Small 1983), a

parser which consists of a set of interacting processes, each of which is an

‘expert’ on some word in the lexicon. This flavour of system is mentioned

briefly in the closing remarks of Valkonen et al. (1987a: 702):

We argue th a t our blackboard-based com putational model also
gives a good basis for parallel parsing. There should be an own
processor for each word of the input sentence. The partial depen­
dency trees would be built in parallel and sent to the main process
th a t links them into a parse tree covering the whole sentence.

For a parallel Word Expert Parser see Devos et al. (1988).

127

6 .3 .4 A m b ig u ity

Ambiguities arise in the system due to indeterminacies of three distinct kinds:

choice of analyses for homographie words, choice of schem ata, and choice of

dependency relations. In parsing, a record is kept of all choice points and

exhaustive enum eration of all possible readings of a sentence is produced by

chronological backtracking. This is not a com putationally efficient approach

to am biguity since it can result in identical structures being built m any times

over.

6 .3 .5 L ong d is ta n c e d ep en d e n c ie s

Under norm al circumstances, dependency relations are established between

imm ediately neighbouring constituents. However, this is not possible in the

case of long-distance dependencies where, by definition, part of a constituent

is moved out of its norm al position into another, inaccessible, position.

Long-distance dependency is caused by an element which has
moved from the local environment of a regent to the local envi­
ronm ent of another regent (Valkonen et al. 1987b: 220).

In order to deal with long-distance dependencies, a minor modification is made

to the gram m ar and the parser. The modification to the gram m ar involves

m arking schemata which can become possible neighbours of moved items as

having a special (optional) ‘D istantM em ber’ dependency function. This can

act as a place-holder for the moved item which is said to be ‘captured’. The

schema from which the constituent can be moved is marked with a ‘DISTA N T’

clause indicating which dependents could possibly be moved out of the imme­

diate vicinity of the constituent. For example, a schema m ight contain the

entry:

(DISTANT Object)

indicating th a t an object could be a possible candidate for movement.

128

A modification to the parser is also required. The parser is given an ex­

tra register. Any captured constituents are copied from the ‘D istantM em ber’

slot of the ‘host’ schema into the special purpose register. This register must

be checked in addition to a constituent’s im m ediate neighbours during the

parsing process. If the item in the register is found to satisfy a dependency

requirem ent of the current constituent, it can be copied from the register into

the current constituent as a dependent. (I assume — although this is not

stated explicitly — th a t the register is only checked if a dependency can not

be satisfied by more conventional means). After initially being copied into the

special register, the captured constituent is no longer visible in the constituent

which captured it. This could be described as a ‘swooping’ analysis. The ‘Dis­

tantM em ber’ dummy dependency is similar to the ‘V isitor’ relation in Word

Gram m ar (Hudson 1988b: 202ff; also 189 below). However, unlike WG, the

Kielikone solution does not appear to handle ‘island constraints’ (Ross 1967).

One such constraint stipulates th a t extraction out of a complex noun phrase

(e.g. the claim that Saddam is a wonderful host) is prohibited. There is noth­

ing in the Kielikone parser’s treatm ent of movement to stop it from accepting

a sentence with this kind of prohibited extraction, i.e. it would parse both of

the sentences in (33).

(33)

a Nobody believes the claim th a t Saddam is a wonderful host,
b *W hat does nobody believe the claim th a t Saddam is?

‘D istantM em ber’ is directly analogous to the HOLD register in Augmented

Transition Networks (Woods 1970) and is thus subject to the same kinds of

criticisms. (It is an ad hoc device, it is descriptively inadequate, etc.)

6 .3 .6 S ta t is t ic s an d p erfo rm a n ce

The most recent available figures (Valkonen et al. 1987b: 225) report th a t the

system contains 66 binary relations, 188 functional schem ata and 1800 idiosyn­

cratic lexical entries. The lexicon of the separate M ORPHO morphological

129

analyzer contains 35000 entries.

It is claimed tha t a recent modification to the parser (discussed below)

parses unambiguous sentences in linear time. This sounds impressive but is

misleading. It is not unusual for dependency parsers to operate in linear tim e

on unambiguous sentences (for example, my own parser described in C hapter 9

does so). It is also the case th a t there exists a class of ambiguous languages

(which is hard to describe in intuitively comprehensible terms) which can be

parsed in linear tim e by parsers based on context free grammars. (Some ex­

amples are given in Earley 1970). It is normal to cite worst case or possibly

average case complexity rather than best case complexity in order to evalu­

ate a parser. Unfortunately, these figures are not published for the Kielikone

system.

6 .3 .7 O p en q u estio n s

T heoretical status

Unlike some of the other dependency parsers reviewed in this thesis (e.g. the

Lexicase and Word Gram m ar parsers. Chapters 8 and 9), the Kielikone parser

is not based on a linguistically motivated theory. In spite of the fact th a t

Finnish has fairly free word order, it does not have a tradition of DC scholar­

ship as is the case with, for example, German and Russian. Indeed, Tarvainen

(1977) is one of the few texts which makes any attem pt a t analysing Finnish

syntax in terms of DG and this work is not mentioned in the (English) Kielikone

literature.

There seems to be some uncertainty as to the status of the Kielikone parser.

Obviously, it is an NLP system with a clear application in view, namely

the design of a portable natural language interface to com puter databases.

However, from the early days of the project the designers have claimed th a t

they were also developing a cognitive model (e.g. Nelimarkka et al. 1984a:

168; Lehtola et al. 1985: 106). Not everyone shares this view. For exam-

130

pie, S tarosta and Nomura (1986: 127) describe the Kielikone parser as having

“evolved from the com putational rather than the linguistic direction” . If the

claim th a t the Kielikone parser is a cognitive model is to be taken seriously

it m ust be backed up by argum entation and evidence. At the moment this is

conspicuous by its absence.

M o d u la r iz a t io n

As they stand, the parser and the gram m ar are almost distinct — but not

quite.

To begin w ith the grammar, the functional schem ata contain U p and

D o w n slots which can be interpreted as control statem ents. They also con­

tain heuristic T ry L e ft and T ry R ig h t slots whose sole purpose is to reduce

the am ount of search required of the parser. Jappinen et al. (1988b) have

recently proposed an optimization of the parsing algorithm which clearly re­

moves the boundary between grammar and parser. They do this by introducing

an ordered set of constituent types to look for (in much the same manner as

S tarosta and Nomura 1986):

The basic left-corner-up algorithm can be modified so th a t it hi­
erarchically first builds nominal LG T’s [Locally Governed Trees]
without prepositional modifiers, then LG T’s governed by preposi­
tions and postpositions, then nominal LG T’s with postpositional
modifying nominal LG T’s, and finally the LGT governed by the
finite verb (Jappinen et al. 1988b: 277).

D iv is io n o f la b o u r

One of the outstanding questions surrounding the Kielikone parser is why there

is a distinction between functional schem ata and binary relations. This might

be restated more succinctly by asking why the notion of ‘constituent’ has been

retained a t all. In the present system, the binary relations are concerned

with the kind of simple pairwise relations familiar from dependency gram m ar

whereas the functional schemata are concerned with larger objects which can

131

be identified with constituents in the traditional sense. In fact, a schema acts

just like an X immediate dominance (ID) rule.

In criticizing the Kielikone approach, K ettunen claims that:

It seems evident th a t the lexicon should be working more actively
in a dependency parser. In FUNDPL this is not the case. As
such, FUNDPL is not modelling dependency gram m ar properly
(K ettunen 1989).

This seems like a harsh criticism with which to conclude this exam ination of

the Kielikone parser. However, the Kielikone researchers have left themselves

open to criticism. Although they have been prolific in their ou tput, it has

consisted almost exclusively of descriptions of the systems they have built,

and, as has been noted above, these have not always been readily interpretable.

There has been hardly any real discussion of motives for choices or arguments

against possible alternatives. Parsers are notoriously difficult to compare and

evaluate. Bald performance figures are not very helpful. W hat is required is

a clear statem ent of the decisions which the parser embodies and some strong

argum ents for these decisions.

6 .4 S u m m ary

The Kielikone parser works from left to right, bottom -up. W ith each input

word it associates an active schema, i.e. a frame consisting of dependency

slots and heuristic information. Search proceeds from heads to dependents in

a single pass through the sentence.

The parser is based on a blackboard architecture. W hile the basic idea

of the parser is fairly clear, my a ttem pts to reconstruct the algorithm on the

basis of published accounts have not met with complete success.

The main features of the Kielikone parser are summarized in Table 6.1.

132

Table 6.1: main features of the Kielikone dependency parser

Search origin bottom -up
Search m anner depth-first
Search order left to right
Number of passes one
Search focus heads seek dependents
Ambiguity management chronological backtracking

(heuristics guide search)

133

C hapter 7

T he DLT M T system

7.1 O verv iew

In this chapter I examine the D istributed Language Translation (DLT) systems

produced by Buro voor Systeemontwikkeling (‘B SO /R esearch ’̂).

I begin w ith an overview of the DLT system. In Section 7.2 I consider

in more detail the DLT DG formalism. In Section 7.3 I review the approach

to parsing adopted in the first system prototype. In Section 7.4 I consider

the more radical solution suggested for the second prototype: a probabilistic

dependency parser.

The DLT project is a large MT project jointly funded by BSO/Research

and the Dutch M inistry of Economic Affairs. It began in late 1984 and, so

far, 50 person-years have been invested in it. The aim of the project is to

construct a semi-automatic M T system. The precise meaning of the desig­

nation ‘sem i-autom atic’ will become clear shortly. Unlike some of the other

projects described here, there is an abundance of published m aterial describ­

ing the DLT system, including a six-volume book series published by Foris and

devoted entirely to DLT. For present purposes the most interesting of these

are Schubert (1987) and Maxwell and Schubert (1989).

An im portant design consideration was the need to give the system a pow­

erful language-neutral inference engine which could be simply customized for

any language pair. The effort involved in constructing an M T system is much

^Since 1 July 1990 BSO/Research has been known as ‘BSO/Language Systems’.

134

too great to risk having to re-build the whole system every tim e a new language

is added. The design adopted in DLT ‘distributes’ the translation task into

two sub-tasks. Firstly, the source language is translated into an interm ediate

representation. Secondly, the interm ediate representation is translated into

the target language. This is not obviously a simplification since where there

might have been a single language pair, there are now two. The rationale for

this approach is th a t all th a t is required in order to add a new language to the

system is to write a sub-system for translating between th a t language and the

interm ediate representation. Once this has been done, it is possible to trans­

late from the newly added language to all of the other languages in the system

w ithout further effort. Thus, if there are ten languages in the system and a

new language is to be added, this necessitates the development of a translator

for one language pair instead of ten language pairs. The interm ediate represen­

tation used in the DLT system is a slightly modified version of Esperanto(!).

In the early prototypes English is the source language and French is the target.

Translation is semi-automatic in DLT in the sense th a t the system can seek

clarification from the user when necessary. W hen there are no difficulties, the

system can translate from source to interm ediate to target as though operating

in batch mode. W hen a problem arises in translating from source language

to interm ediate representation, the system can query the user (in the source

language). For example, if a source sentence is ambiguous, the system is able to

resolve the am biguity by asking the user to select amongst alternative readings.

The syntactic framework used in the DLT system is a version of DG. I

shall describe it in more detail in the next section. DLT is controversial in its

failure to construct explicit meaning representations for the sentences to be

translated. Most MT systems first construct a semantic analysis of the source

sentence and then use it to generate a sentence in the target language. DLT

workers have argued th a t this sort of content-oriented approach is a kind of

‘analytic overkill’. In trying to make the semantics explicit, a lot of problems

135

are raised which then have to be solved. Instead, they argue for an approach

to translation which focuses on form rather than content. Schubert writes:

There are a good deal of form correspondences, short cuts from
form to form, which can and should be used. These correspon­
dences are mostly not found in the directly visible syntactic form
of texts, bu t a t the next level of abstraction, the level of syntactic
functions th a t are inferrable from syntactic form (Schubert 1987:
202).

In order to effect the mapping from syntactic structures of one language to

Syntactic structures of another language, a higher-level, dual language ‘con­

trastive syn tax’ is required. The name by which this contrastive syntax is

known is metataxis, from Tesniere’s term ‘m etataxe’.̂

M etataxis...is a process which starts with syntactically analysed
source language texts as the input and results in a synthesis of syn­
tactically correct texts in a target language (Schubert 1987: 125).

It is claimed th a t a m etataxis approach to MT does not make no use of se­

m antics, bu t ra ther th a t the semantic information is used implicitly’.

In a m etataxis-oriented semantic transfer process, it is possible
to keep deep cases implicit and use semantic relators th a t are
ra ther straightforw ardly inferrable from syntactic functions (op,
cit.: 203).

I shall not investigate this claim here. (For more information see

Sadler 1989c.) Instead, I shall focus on the way in which DG is used to rep­

resent sentence structu re and the way in which th a t structu re is built by a

parser.

The DLT system is summarized in Figure 7.1, which is based on a diagram

in W itkam (1989: 142).

 ̂"La traduction d’une langue à l’autre oblige à faire appel à une structure différente.
Nous donnerons à ce changement structural le nom de m é ta ta x e” (Tesnière 1959: 283).

136

Translation 1 Translation 2

SYNTACTIC.
LEXICAL ■

SYNTACTIC
LEXICAL

IN T E R ­
M E D IA T E T A R G E TS O U R C E

Figure 7.1: the D istributed Language Translation system

7.2 D e p e n d e n c y gram m ar in D L T

Although the DLT system has been well-publicized, my discussion of the ver­

sion of DG on which it is based will be hampered by the fact th a t I have

not been able to find any published account of the form of dependency rules

adopted. The remarks in this section will accordingly be confined to a discus­

sion of general constraints on well-formed sentences.

M any of the constraints on well-formedness are expressed in term s of tree

geometry. In DLT, dependency structures are required to be ‘true trees’ rather

than arb itrary graphs. T ha t is, they must be rooted, directed, acyclic, and

non-convergent.

R o o te d T he root of the tree represents the single independent element to

which all other words in the sentence m ust be subordinate.

D ire c te d The directedness of the arcs indicates the direction of the depen­

dency relation holding between heads and dependents.

A cy c lic The fact th a t the tree must be acyclic precludes the possibility of

interdependence. Word A can not be head of word B in respect of one

dependency relation and dependent of word B in respect of another de­

pendency relation as this would lead to the presence of a cycle in the

tree.

N o n -c o n v e rg e n t Links in the tree may never converge on a node. The effect

of this is to prevent a word from depending on more than one other

137

word or from depending on a single word by virtue of more than one

dependency relation.

So far, this definition of well-formed dependency structures is entirely s tan­

dard. W here it differs from the conventional model is in making no use of

a projectivity or adjacency constraint. In terms of tree geometry, this would

lead to crossing arcs, were it not for the fact th a t surface word order is not

preserved in DLT dependency trees.^

Dependency syntax does not rely on the contiguity principle. Word
order may well play a role in syntactic form, but as soon as a word
by means of its syntactic form has been assigned a dependency
type label, syntactic form has fulfilled its function and need not be
rendered in the tree. Dependency trees thus do not represent word
order. They are not projective, a t least not in the present model
(op. cit.: 64).

The DLT dependency gram m ar de-couples word-order from dependency. This

is illustrated in Figure 7.2 which shows the analysis for the sentence Whom did

you say it was given to? (op. cit.: 103). (DLT dependency trees are usually

represented as Tesnierian stemmas. Arcs are labelled w ith the name of the

type of dependency relation involved, although I have om itted labels here for

the sake of readability.) Reading from right to left, notice th a t you precedes

did (unlike in the sentence), and whom is in object position in the embedded

sentence, rather than in its ‘moved’ sentence-initial position.

The arcs in a DLT tree represent dependency relations but what do the

nodes represent? The simple answer is th a t most of the tim e they repre­

sent words, where ‘word’ is defined crudely in terms of a string of characters

bounded by space characters. A node is never allowed to represent more than

one word. Nodes are even prohibited from representing frozen multi-word

foreign language borrowings such as ipso facto.

Although nodes signifying more than a single word are not allowed, a case

is made for allowing nodes to signify less than one word, i.e. a morpheme. The

^Except in the form of features indicating the word’s position in the input string.

138

did

you say

was

given

wnom

Figure 7.2: dependency analysis of the sentence Whom did you say it was given
to?

argum ents hinge around phenomena such as English clitics {can’t = can not)

and possessives {E lizabeth^ the Queen o f E n g la n d ^ and the class of German

verbs which combine a root with a participle in a single word in some contexts

but which separate them into two words in other contexts. Thus, the root and

the participle must be identified by different nodes in the dependency tree.

A more accurate characterization of the restriction on nodes is th a t they

may only be used to represent morphemes, or morpheme strings smaller than

or coextensive with the words in which they appear. It is necessary to allow

morpheme strings to be represented by nodes since it would not be helpful to

recognize a root word and its inflectional affix as separate nodes in the tree.

Things are not quite as simple as this, since the DLT gram m ar recog­

nizes punctuation symbols as having a place in the structural analysis of

sentences. For example, the period is used to m ark the end of a sentence

(van Zuijlen 1990) and the comma is used as a conjunction in coordinate struc-

139

sing

and

< <))
Î Harry

Tom Dick

Figure 7.3: the use of comma in coordinate structu re analyses

tures, such as the one shown in Figure 7.3 (Schubert 1987: 114fF; cf. Hellwig’s

use of punctuation in DG described on page 93 above).

7.3 A n A T N for parsing d ep en d en c ies

A num ber of parsing approaches have been considered in connection with the

DLT project, most of them modifications of parsing techniques well tried with

PSGs. In this section I shall briefly mention three of these — augmented PSG

(APSG), definite clause gram m ar (DOG), and augm ented transition network

(ATN) gram m ar — which were briefly investigated during the development of

the first DLT prototype.

In the early stages of the DLT project two parsers were developed for a

subset of English in order to compare their com putational efficiency. These

were based on APSGs (W inograd 1983: 377ff) and ATNs (Woods 1970;

Woods 1987). It appears th a t the ATN gram m ar performed best, I shall

discuss it further below.

Schubert (1987: 213) argues th a t far from being tied to PSG, APSG

is a general-purpose formalism for the description of trees which is “suited

for dependency parsing as well.” The APSG-based parser was imple-

140

merited in a parsing environment developed at the University of Amster­

dam (van der Korst 1988). However, it stretches the meaning of ‘dependency

parser’ somewhat to designate the APSG parser thus. R ather, it is a PSG

parser which is able to map constituent structure onto dependency structure

as it goes along. Its input is a PSG, not a DG. According to Korst the gram­

m ar contains 49 non-term inal categories and 27 lexical/punctuation categories

(op. cit.: 6-7). I shall not consider the APSG parser any further here.

Schubert argues th a t DCGs (Pereira and W arren 1981) are not inherently

inappropriate for expressing (or parsing) dependency relations. He continues:

I am not aware of an im plem entation of DCGs involving de­
pendency syntax, a t least not for a complete syntax of a lan­
guage. W ithin the DLT machine translation project, a small word
parser has been implemented (by Job van Zuijlen) which builds
up dependency trees for morphemes of complex Esperanto words
(Schubert 1987: 214).

To the best of my knowledge no further research has been done towards de­

veloping a dependency version of DCG. Van Zuijlen’s DCG morphological

analyzer is reported in van Zuijlen (1986a, 1986b)

Turning to the ATN-version of DG, we find slightly more details in the

literature. In fact, an ATN was used in the first DLT prototype which was

completed in 1988. Schubert writes:

For the DLT machine translation system, W itkam (1983: IV-
87ff) designed an ATN for Esperanto, which is basically
constituency-based and for which he had constituency trees in mind
(W itkam 1983: IV-72ff). W hen dependency syntax was chosen for
the DLT system, it was easy to equip this same ATN with tree-
building actions for dependency trees (Schubert 1986: llff, 99ff).
No rearrangem ents whatsoever were required in the ATN in order
to shift from assumed constituency trees to dependency trees (op.
cit.: 213).

very simple DCG for parsing sentences and constructing dependency trees can
be found in the file d cg .p l in Appendix A.3. The file also includes a predicate
dcg_generate which generates all strings and trees allowed by the grammar. The pro­
gram in map_to_dcg.pl (also in Appendix A.3) can be used to map an arbitrary Gaifman
grammar into an equivalent DCG.

141

SUBJ SUBJ
DOBJ DOBJ
lOBJ lOBJ
POBJ POBJ
PRED PRED
PREC PREC

VERB

ADVC ADVC
INFC INFC
PREA PREA
ADVA ADVA
SUBO VC
LIA POSTA

Figure 7.4: an ATN for parsing Danish sentences

ATNs are very simple and effective for parsing languages with an adjacency

constraint (i.e. contiguous constituents) in terms of DG. The example network

in Figure 7.4 is taken from Schubert (1987: 219). It shows the top level

network for describing the structure of simple Danish sentences. Labelled

boxes denote named networks; un boxed labels on arcs indicate words to be

consumed. Notice th a t there is considerable scope for variation of word order

amongst the dependents of the verb. Registers are used to ensure th a t a verb

has the correct number of dependents, e.g. th a t a verb has exactly one subject

(as opposed to either any number of subjects or one before, and one after the

verb). Figure 7.5 shows the separate SU BJECT network.

This dependency parser implements a top-down, left corner parse strategy.

142

NOUN

PRÜNGU:

PLACE
HOLDER

VERB

NUM

Figure 7.5: an ATN for parsing Danish subjects

ATNs impose an explicit search ordering, although in this case the relative

order of the verb’s dependents is fairly free. It could be argued th a t this works

against one of D G ’s greatest assets, namely its orientation to relationships

amongst words, ra ther than sequencing of words, which is what ATNs orient

to.

As is normally the case with ATNs, the gram m ar and the parser are con­

flated. In fact, this is a procedural grammar. In line with the prevailing view

in com puter science and com putational linguistics, I endorse the view th a t

a clean separation should be m aintained between grammars and parsers for

reasons of clarity and modifiability (e.g. see Gazdar and Mellish 1989: 95ff).

Presum ably the same conclusions have been reached by the DLT team since

they have now abandoned the use of ATNs.

7.4 A p rob ab ilistic d ep en d en cy parser

For the second prototype of the DLT system, a completely different approach

to parsing has been adopted. In the earlier prototype, fairly standard rule-

governed parsers were tried. For the second prototype, experiments are being

carried out w ith probabilistic parsing methods.

143

Probabilities can be incorporated into grammars in a t least two ways. First,

gram m ar rules can be augm ented with probabilities reflecting the probability

of each rule actually being used in a context in which it could be used. For

example, the following notation could be used to indicate th a t the rule n(det,*)

is appropriate for 60% of all nouns and the rule n(det,adj,*) for 20% of all

nouns.

Pr{n[det, *)) = 0.6

P r{n{det,ad j,*)) = 0.2

This information can be used heuristically during parsing so th a t the rule with

highest probability is tried first. Alternatively, all possible rules can be tried

and all possible analyses built for a sentence. The analysis with the highest

probabihty (calculated from the joint probabilities of all the rules used) is

selected. In this way probabilities are used to choose amongst analyses in a

language whose boundaries are fixed.

The second way in which probabilities can be built into a gram m ar dis­

penses with the dichotomy between well-formedness and ill-formedness, replac­

ing it instead with a gram m aticality continuum ranging from fairly ill-formed

constructions through very well-formed constructions. In this approach the

core rules of the gram m ar may be assigned probabilities in the fashion shown

above. Additionally, all o ther rules possible within the logic of the gram m atical

framework may be allowed with very low probability. For example, the APRIL

(‘Annealing Parser for Realistic Input Language’; Haigh et al. 1988) and RAP

(‘Realistic Annealing P arser’; Atwell et al. 1989) projects use the technique of

sim ulated annealing to reduce the am ount of search required in order to parse

w ith a gram m ar which does not rule out any structural possibilities a priori^

instead assigning very low probabilities to all tree configurations not a ttested

in the corpus. The object of this approach is to ensure th a t an analysis of

144

some kind is produced for every sentence, including those which conventional

parsers would simply reject as ungrammatical.

It is normal for the probabilities attached to rules to be derived from empir­

ical studies of text corpora. A corpus is first parsed and the analyses verified.

The frequency of application of each rule is counted and then used to com pute

the probability of each rule. These probabilities are then projected from the

‘train ing’ corpus to the rest of the language. A rationale for allowing all log­

ically possible rules with very low probability is th a t no training corpus will

ever be large enough to furnish examples of the use of all rules of a natural

language. By allowing every logically possible rule with very low probabil­

ity it may be possible to make a parser robust enough to produce reasonable

analyses, even for structures not attested in the training corpus.

As far as I am aware. Job van Zuijlen of BSO /Research is the first per­

son to implement a probabilistic dependency parser. W hile he has investigated

the theoretical possibilities of using simulated annealing in dependency parsers

(van Zuijlen 1989a, 1989b), he has in practice adopted a more straightforw ard

approach in the probabilistic dependency parser he has actually implemented

(van Zuijlen 1990). F irst of all it was necessary to obtain a syntactically an­

alyzed corpus in order to compile a set of rule probabilities. The Bilingual

Knowledge Bank (BKB) is a corpus-based knowledge source which has come

to be regarded as the heart of the DLT system (Sadler 1989a; Sadler 1989b).

P u t simply, it consists of a fully analyzed text in one language and the same

tex t fully analyzed in another language.^ This can then be treated as a resource

for working out correspondences between the languages. Since the analysis of

a language in the BKB includes preferred (hand-constructed) parse trees, it

can be used to generate rules and associated probabilities of occurrence. (For

the purposes of probabilistic parsing the fact th a t it is a bilingual knowledge

®According to van Zuijlen (personal communication) a simple rule-based dependency
parser and a graphical tree editor were used to assist the human analyzer. I have no further
information on the rule-based parser.

145

Table 7.1: different dependency links retrieved from the BKB

Word Links
you 17
can 10
remove 4
the 9
document 58
from 16
drawer 37

151

base is of no interest: only one language is examined). For his first proba­

bilistic parsing experiment (January to April 1990), van Zuijlen used a BKB

tree bank consisting of 1400 dependency trees, representing some 22000 words

from a software manual. (This is far too small a tree bank to have any sig­

nificance outside of an exploratory experiment.) Corpus-based probabilistic

parsing proceeds in four stages which are identified as Retrieval, Construction,

Generation, and Evaluation.

R e tr ie v a l For each word in the input sentence, the corpus is searched. All

of the occurrences of the word in the corpus are identified and a record is kept

of all the different pairwise dependency relations in which the word-instances

in the corpus participate. For example, the number of different dependency

links retrieved for the input sentence You can remove the document from the

drawer is shown in Table 7.1 (all examples from van Zuijlen 1990).

In addition to the information regarding the separate dependency links

which point towards and away from the word instances, a tally is also kept of

the patterning of these links w ith each other. Thus, a record of the individual

links and the collective patterns is assembled.

C o n s tru c t io n A network is constructed by finding pairs of links which ‘fit

together’. Intuitively, these links are descriptions of the same relation from

146

different perspectives, the head perspective and the governor perspective. More

formally, a link can be added in the network if:

1. the governor label of the head link corresponds to the dependent label

of the governor link,

2. the dependent link should be present in one or more of the dependency

patterns of the governor, and

3. the position of the governor should agree w ith the direction of the de­

pendent link.

The network produced for the test sentence You can remove the document from

the drawer is represented in Figure 7.6. Dependency links are portrayed as

connected rectangles. Solid rectangles identify dependents, dashed rectangles

identify heads. The arrow points from dependent to head. Note th a t of the

original 151 links found in the corpus, only 19 have fulfilled the construction

conditions for inclusion in the network.

G e n e ra t io n In the generation phase the network is processed to remove

links which do not form part of any possible coherent parse tree which has a

single root to which all other words are subordinate. The removal of impossible

links from the network in Figure 7.6 leaves 13 links remaining in the network.

(These generate four different trees.)

Van Zuijlen has developed a method for representing multiple dependency

trees in a single graph with structure-sharing (van Zuijlen 1988). However, its

complexity is such th a t it can not be described here.

E v a lu a tio n Associated with each link in the network is a pair of numerical

values. The weight of a link is an indication of how well a dependent fits in the

dependency pa ttern of its governor, taking the governor’s other dependents into

account. The suitability of a link is an indication of how well a particular word

is suited to having a specific function with respect to a particular governor. The

147

You CcLii remove the document from the drawer

GOV

SUB. ^ov]

[GQV̂ HtNFCl

___ I OBJ

p B J “|— Rt R2

R̂EÔ-

ATRl
ATRl

DET
DET

§ov]-

PARC
PTSK
O BJ

DET
DET

Bb-j]

PCT

Figure 7.6: a dependency link network for the sentence You can remove the
document from the drawer

148

weight and the suitability measures are merged in an adjustable proportion to

yield the quality of the analysis represented by a given tree. In this way the

alternative readings for the sentence can be compared and a ‘best analysis’ can

be selected. I shall not explore the m athem atics of the ‘best analysis’ selection

m ethod here.®

This parser represents an interesting innovation in both the fields of depen­

dency parsing and probabilistic parsing. The association of probabilities with

pairwise dependencies is, to the best of my knowledge, w ithout precedent. It

will be very interesting to watch this research develop and to see what the per­

formance of the parser turns out to be when it has a reasonably large corpus

to operate on. In the meantim e judgem ent must be reserved on it until more

results become available. Because of the extent to which this parser differs

from the others in this thesis, detailed comparisons are difficult to make. I

shall refrain from presenting a more formal PARS version of the algorithm or

a worked example.

7.5 S u m m ary

This chapter has presented an overview of the D istributed Language Transla­

tion M T project which is based on the idea of m etataxis or contrastive syntax.

I have shown how the functional structures represented by dependency trees

provide a starting point for the process of m etataxis. I have briefly noted the

existence of small experimental quasi-dependency parsers based on augmented

PSG and definite clause grammar. I have looked in more detail a t a depen­

dency parser which is no more than a slight modification to a conventional aug­

m ented transition network. This implements a top-down, left-to-right parsing

strategy. Probabilities are used to decide the ‘b est’ analysis when more than

one is possible. However, the binary distinction between well-formedness and

®van Zuijlen (personal communication) says “In future work I hope to include incremen­
tal evaluation in order to control the size of the solution space during parsing” (original
emphasis).

149

Table 7.2: main features of the DLT ATN dependency parser

Search origin top-down
Search m anner depth-first
Search order left to right
Number of passes one
Search focus network navigation
Ambiguity management first parse only

Table 7.3: main features of the DLT probabilistic dependency parser

Search origin bottom -up
Search manner breadth-first
Search order unspecified, unim portant
Number of passes one
Search focus heads and dependents seek

each other simultaneously
Ambiguity m anagement highest-scoring parse selected

ill-formedness is strictly maintained.

The m ain features of the DLT ATN dependency parser are summarized in

Table 7.2.

The latest parser to be developed in the project is much more radical, being

based on the use of rules and probabilities generated ‘on the fly’ from a hand-

analyzed corpus. The parser mixes bottom -up and top-down search: the actual

words of the sentence are used to construct a gram m ar which thereafter guides

search. Direction of processing is not crucial to the parser’s control strategy

(i.e. there is nothing inherently left-to-right or right-to-left about it). R ather,

the parser begins by constructing as many minimal islands (i.e. word pairs)

as it can and then rules out those which are not consistent with a coherent

analysis or with what is known about the co-occurrence of dependency links.

The main features of the DLT probabilistic parser are summarized in Ta­

ble 7.3.

150

C hapter 8

L exicase parsers

8.1 O verv iew

Lexicase (S tarosta 1988) is a gram m atical theory developed by Stanley

S tarosta and his graduate students a t the University of Hawaii over the last

two decades. It is unique in contem porary linguistic theory for a number of

reasons. F irst, it is old. The version of the theory in use today can be traced

back to a class handout produced by Starosta in 1970 (S tarosta 1970). To

this a number of papers were soon added (e.g. S tarosta 1971a, 1971b). No

other theory of natural language mentioned in this thesis has remained so sta­

ble for such a long time.^ Second, the theory has been widely field-tested.

Lexicase gram m ars have been w ritten for significant parts of around fifty dif­

ferent languages including many so-called ‘exotic’ (i.e. not Indo-European)

languages. Apparently the theory’s longevity does not stem from the sort of

disregard for the hard facts of language of which some theories are occasion­

ally accused. A th ird fact which distinguishes Lexicase from its rivals is tha t

the theory has been all bu t ignored in the linguistic m ainstream . On first

inspection it seems strange th a t a theory which has been in existence for so

long and which can draw on such an impressive body of descriptive material

should receive so little critical attention. If the theory were worthless it ought

to have been exposed as such; if it were outstanding it ought to have been

^This may be interpreted positively as evidence of the theory’s proximity to the truth,
or negatively as evidence of the fact that the theory has not been subject to the critical
attention of the wider linguistics community.

151

praised. Neither of these things has happened to any great extent. Instead,

it has been largely ignored. This may be due in part to the fact th a t the

first book-length introduction to Lexicase theory only became available fairly

recently (S tarosta 1988). (At present the Lexicase literature runs to some 130

items.) The fact th a t this introductory volume has received some positive re­

views (e.g. Blake 1989; Fraser 1989b; Miller 1990) may signal the awakening of

interest in Lexicase (but see Turner 1990 for a searing attack on the same vol­

ume). Certainly, some of the main features which have distinguished Lexicase

from other theories for most of its existence — its lexicalism, its recognition of

head/dependent asymmetries, its extensive use of features — now form part

of the tool chest of m ainstream linguistics.

I shall not a ttem pt to evaluate Lexicase theory here. R ather, I shall sketch

the main points of the theory and examine two parsing algorithms developed

for use with Lexicase grammars. Section 8.2 provides an overview of Lexicase

theory. Section 8.3 describes the two Lexicase parsing algorithms.

8.2 L ex icase th eo ry

Starosta describes Lexicase as a “panlexicalist m onostratal dependency vari­

ety of generative localistic case gram m ar” (S tarosta 1988: 1). It is panlexi­

calist in the sense of Hudson (1981a), i.e. the rules of the gram m ar are lexi­

cal rules, expressing relations among lexical items and features within lexical

entries. Larger structures are seen as sequences of words linked by depen­

dency relations. Lexicase is monostratal in th a t it accounts for the system ­

atic relationships among words in sentences by means of lexical rules ra ther

than syntactic transform ations. The gram m ar refers to only one level of

representation — the surface level. This is a feature which Lexicase shares

with most dependency-based theories of language (for notable exceptions see

Robinson 1970; Anderson 1977; Sgall et al. 1986; Mel’cuk 1988). Dependency

in Lexicase will be described in more detail in the next section. Lexicase is

152

generative in the traditional Chomskyan sense — the rules and representations

are expressed formally and explicitly and are concerned w ith a speaker-hearer’s

linguistic competence. Lexicase is a case grammar in the Fillmorean tradition

(Fillmore 1968); every nominal constituent is analysed as bearing a syntactic-

sem antic relation to its regent. However, it has evolved away from m ainstream

case approaches in a number of respects. It is localistic (Hjelmslev 1935;

Hjelmslev 1937; Anderson 1971), th a t is, it places strong emphasis on the

use of spatially oriented semantic features. W hereas most case gram m ars are

prim arily concerned with situations and ‘deep’ analyses (e.g. Fillmore 1968;

Schank 1975), Lexicase tends towards identifying case relations with syntactic

relations (in this it accords with Anderson’s case gram m ar (Anderson 1971)).

O ther distinctive features of case in Lexicase are the feature-based formaliza­

tion and the requirement th a t every verb contain a Patien t in its case frame

(the so-called Patient Centrality hypothesis (S tarosta 1978)).

8 .2 .1 D e p e n d e n c y in L ex ica se

Starosta presents his dependency system as a highly constrained version of X

theory. However, he introduces a num ber of constraints on the form of his X

gram m ar, namely:

1. the lexical leaf constraint;

2. the optionality constraint;

3. the one-bar constraint;

4. the sisterhead constraint; and

5. the features on lexical items constraint.

Before examining these constraints, it is worth noting th a t very few discus­

sions of X theory make clear exactly how constrained an X system needs

to be. There are, of course, many possible instantiations of X grammar

(Kornai and Pullum 1990), only one of which could be said to be equivalent

to S tarosta’s DG.

153

The lexical leaf constraint

The lexical leaf constraint ensures tha t all term inal nodes are words. Through­

out the years th a t PSG has been used by linguists, term inal nodes have been

used to represent a number of different things besides words, for example

morphemes and dummy symbols. GB theory (Chomsky 1981) allows em pty

categories such as PRO and t and sub-lexical morphemes such as Tense and

AG R. Amongst dependency gram m arians the same sort of non-word nodes

have been introduced into dependency trees. For example, Robinson proposes

a sub-lexical T (tense) morpheme (Robinson 1970) and Anderson advocates a

phonetically null 0 node (Anderson 1971: 43).

It is hard to over-emphasize the im portance of the lexical leaf constraint

in Lexicase. It makes explicit the distinction between morphology and syntax:

the associated claim is tha t the morphological structure of words is irrelevant to

syntax. It rules out ‘empty category’ analyses and the possibility of handling

‘movement’ by associating moved items with ‘gaps’. S tarosta sums up the

effect of this constraint as follows:

The Lexicase representation thus sticks quite close to the lexical
ground, accepting as possible gram m atical statem ents only those
which can be predicated of the actual strings of lexical items which
constitute the atoms of the sentence. This constraint plus [the
other constraints] limit the class of possible gram m ars by exclud­
ing otherwise plausible analyses and deciding on equally plausible
analyses formulât able within the constrained Lexicase framework
(S tarosta 1988: 13).

The analysis in Figure 8.1 is prohibited in Lexicase. The lexical leaf constraint

requires this sentence to be analysed in a tree structure with exactly three

leaf nodes corresponding to the three words in the sentence; the structure in

Figure 8.2 is closer to the Lexicase analysis. We shall see the actual form

of a Lexicase tree for this sentence once we have examined the rest of the

constraints.

154

COMP

NP I NFL VP
+ TENSE
+ AGR NP

N

Stan

V

invent

lexicase

Figure 8.1: a syntactic structure with empty nodes

invented

Stan lexicase

Figure 8.2: a syntactic structure without em pty nodes

155

T he optionality constraint

The optionality constraint states th a t every non-head daughter in a rule is

optional. This is the standard understanding of ‘optionality’ as embodied in X

PSG (Emonds 1976: 16; Jackendoff 1977: 36; Kornai and Pullum 1990). No­

tice th a t this does not exclude the possibility of a phrase containing more than

one obligatory element; indeed, this is the normal case in exocentric construc­

tions such as prepositional phrases. Starosta argues th a t “unlike conventional

versions of dependency gram m ar... Lexicase does not require th a t every con­

struction have a single head” (Starosta 1988: 12). This is misleading: con­

ventional versions of DG do not require th a t every construction have a single

head; rather, they require th a t every dependent ha.ve a single head. The notion

‘head of a construction’ is at best derivative in many dependency theories .

However, Lexicase retains the idea of the construction or phrase (although it

is not clear what work it does. Most constructions are endocentric and have a

single head. The rest are exocentric and contain at least two coheads^ exactly

one of which is the lexical head and the rest of which are phrasal heads. Two

kinds of exocentric construction are recognized, namely prepositional phrases

and coordinate constructions. In prepositional phrases the preposition is the

lexical head and the noun is the phrasal head. In coordinate constructions the

lexical head is the conjunction and the conjuncts are each phrasal heads.^

It is im portant to understand S tarosta’s use of the term s ‘endocentric’,

‘exocentric’, and ‘head’. In Bloomfield’s seminal discussion of the endocen-

tric/exocentric distinction (Bloomfield 1933: 194-7) his definitions rested upon

the substitu tability of one word in a construction for the construction as a

whole. The distribution of poor John and John is identical so John is the

head of an endocentric construction. Neither in nor Wales has the same dis­

tribution as in Wales so the construction is exocentric. By Bloomfield’s defi­

nition, coordinate constructions are endocentric since fish^ chips, and fish and

'Conjuncts may, of course, be realized as single lexical items.

156

chips all have the same distribution. However, by S tarosta’s optionality-based

conjunction-as-head definition, coordinate constructions are exocentric. It is

clear th a t when Starosta refers to a ‘head’ he is referring to a relationship

which holds between a word (or words) and a whole construction. He reserves

the term ‘regent’ to describe a word in relationship with a dependent word.^

For example, in the sentence I saw big bad John^ John is the regent of big', it

is also the regent of bad; but it is the head of the whole phrase big bad John.

The one-bar constraint

The one-bar constraint states th a t “each and every construction (including the

sentence) has at least one immediate lexical head, and every term inal node is

the head of its own construction” (S tarosta 1988: 14). This has the effect of

guaranteeing th a t only single-bar phrases are possible nodes in a Lexicase tree.

Every term inal node has its own one-bar projection and every non-term inal

node is an X which is a maximal projection of its head X.

The most im portant consequence of the one-bar constraint is th a t it is no

longer possible to analyse a sentence as consisting of an NP followed by a VP.

R ather, a sentence is analysed as a V and the subject can be analysed as both

a sister and a dependent of the main verb. Starosta argues th a t the absence

of a VP removes the need to introduce an abstract INFL node to do to the

subject what the verb would have done if it were the head of the sentence.

The effect of the one-bar constraint on the sentence shown in Figures 8.1

and 8.2 is to reduce and simplify the range of possible structural analyses. The

overall shape of the tree thus constrained would be similar to th a t shown in

Figure 8.3.

^Starosta (personal communication) names the Kielikone project (described in Chapter 6)
as his source for this usage.

157

Stan lexicase

Figure 8.3: a syntactic structure constrained by the one-bar constraint

T h e s is te rh e a d c o n s tr a in t

The sisterhead constraint states th a t “lexical items are subcategorized only by

their dependent sisters” (S tarosta 1988: 20). In other words, all gram m atical

relationships are statable in terms of regent-dependent pairings. Any word

which depends directly or indirectly on X is said to be in the syntactic domain

of X.

The relationship between regents and dependents is antisymmetric; regents

are sub categorized by their dependents but dependents can not impose con­

straints on their regents. For example, a dependent could not require its regent

to precede it.

T h e fe a tu re s on lex ica l i te m s c o n s tr a in t

The ‘features on lexical items constrain t’ states th a t “features are m arked only

on lexical items, not on non-term inal nodes” (S tarosta 1988: 23). This con­

straint is the final step from a standard X gram m ar to a DG. If only the lexical

items carry features, and lexical items are sub categorized by their dependent

sisters, then clearly all the X structure is doing is relating lexical items pair­

wise. This can be clarified by simplifying the Lexicase tree representation

further. Since every node in a tree is a one-bar projection of its head lexical

item, node labels are predictable and therefore redundant. Thus the analysis

158

invented
Stan |"+y"| lexicase
[.N] - - M

Figure 8.4: a Lexicase syntactic structure

of the sentence Stan invented Lexicase can be represented finally as shown in

Figure 8.4.

This looks remarkably like a traditional dependency stem m a except for

th e presence of a feature m atrix attached to each word. In Figure 8.4 only

the word class features have been shown. However, several different kinds of

feature m ay appear in the lexical entry for a word. These are described in the

next section.

8 .2 .2 L ex ica l en tr ie s in L ex ica se

Associated with each word in the lexicon is a bundle of features. Features

can be divided into contextual and non-contextual features. Non-contextual

features are binary; a lexical item either has or has not got some property.

The presence of property P is identified thus: [+P], its necessary absence thus:

[-P]. Contextual features determine which words are dependent on which other

words. They can be viewed as well-formedness conditions on the dependency

trees associated with the words in a sentence. Contextual features can be

positive, negative, or implicational. The following exemplify some uses to

which features can be put:

159

(34)

a [-j-Det]
b [-fint]
c [-[+Det]]

d [+[+N]_]
e [+-(+N]l
f O -I+ N ll

Example (34a) is a positive non-contextual feature indicating th a t the word

bearing the feature is a determiner. Example (34b) is a negative non-

contextual feature indicating th a t the word bearing the feature is not finite.

Example (34c) is a negative contextual feature indicating th a t the word bearing

the feature does not have a dependent determ iner (relative position unstated).

Example (34d) is a positive contextual feature indicating th a t the word bearing

the feature requires a preceding dependent noun. Example (34e) is a positive

contextual feature indicating th a t the word bearing the feature requires a fol­

lowing dependent noun. Example (34f) is an implicational contextual feature

indicating th a t the word bearing the feature is expected to have a following de­

pendent noun. Under certain circumstances the expected word may be absent

(for example, in the case of ‘moved’ wh-words). Double contextual features are

prohibited. T hat is, a contextual feature may not be included within another

contextual feature. An exhaustive listing of the formal properties of lexicase;

features can be found in S tarosta (1988: 57).

If a Lexicase gram m ar were to consist solely of a number of lexical entries;

consisting of contextual and non-contextual features, then no useful general­

izations would be made. However, S tarosta takes the traditional view th a t ai

gram m ar should consist of a set of generalizations and a lexicon should be au

repository for exceptions. It just happens th a t all gram m atical rules in a Lex­

icase gram m ar are generalizations about lexical items. Accordingly, he sets 5

up rules which are responsible for inserting all predictable features into lexical 1

entries. These rules he divides into redundancy rules, sub categorization ru les,,

infiectional redundancy rules, morphological rules, derivation rules, semanticc

160

in terpretation rules, and phonological rules. This classification is purely a de­

scriptive convenience. Each type of rule has the same basic operation: if a set

of conditions is met by a word (the left hand side of the rule) then a set of

features is added to the feature m atrix of th a t word.^

We shall briefly consider the range of features utilized within Lexicase.

There are five basic types:

1. syntactic category features;

2. inflectional features;

3. semantic features;

4. case relations; and

5. case forms.

Syntactic category features

Syntactic categories are atomic. They can not be defined, for example, as

[+N,+V]. M ajor syntactic categories are drawn from a very small inventory

which contains the following items: noun (N), verb (V), adverb (Adv), preposi­

tion or postposition (P), sentence particle (SPart), adjective (Adj), determiner

(Det), and conjunction (Cnjn). These m ajor categories are divided into dis­

tributional sub categories (e.g. sub categories of N include pronoun and proper

noun) and this sub classification is indicated by the addition of extra features

(e.g. [+prnn], [-fprpn]).

As will become clear in the following discussion, syntactic category features

play a very im portant part in the functioning of a Lexicase parser.

Inflectional features

Inflectional features correspond to the traditional inflectional categories of per­

son, number, gender, case, tense, etc. These features have a central role to

play in agreement so they are also im portant in parsing.

"^Starosta’s most recent work seems to suggest that there may be some slight formal
differences amongst rule types (Starosta forthcoming).

161

Sem antic features

Semantic features serve to distinguish words from each other. It is assumed

th a t the gram m ar contains enough semantic features to distinguish every lex­

ical item from every other (non-synonymous) item in respect of a t least one

distinctive semantic feature. In parsing, semantic features have the charac­

te r of selectional restrictions. These restrictions are implicational rather than

absolute. Thus, the verb drink might expect an object m arked [+dkbl] (drink­

able) but in the absence of such an object a m etaphorical reading would be

forced. This seems very close to the position adopted in W ilks’ Preference

Sem antics (Wilks 1975).

Case relations

Lexicase assumes five ‘deep’ case relations, namely AGENT, PATIENT, LO­

CUS, CO RRESPO N D EN T and MEANS. The Patient Centrality Hypothesis

(S tarosta 1978, 1988: 128ff) asserts th a t there is a PATIENT in the case frame

of every verb, i.e. every sentence contains a PATIENT. The inventory of case

relations is kept to only five since m any of the distinctions typically made by

case relations in other Fillmorean systems are made by the semantic features

in Lexicase. S tarosta and Nomura cryptically claim that:

T h e ... reduced non-redundant case relation inventory improves
the efficiency of case related parsing procedures... It is necessary
to refer to case relations in parsing structures containing m ulti­
argum ent predicates, in accounting for anaphora and semantic
scope phenom ena and text coherence, and of course in translation
(S tarosta and Nomura 1986: 128).

U nfortunately there appear to be no published accounts of how these case

relations should be used in the parser.

162

Case forms

Unlike the other features, case forms are not atomic. R ather, they are con­

figurations of surface case markers such as case inflections, word order, pre-

and post-positions, relator nouns, etc, which function to m ark the presence of

case relations. They are grouped together according to which case relations

they identify and on the basis of shared localistic features. Case forms are

composed of gram m atical features such as ‘nom inative’ or ‘ergative’ and lo­

calistic features such as ‘source’, ‘goal’, ‘term inus’, ‘surface’, ‘association’, etc.

S tarosta and Nomura claim tha t case forms are used by the parser to recognize

the presence of particular case relations. They state th a t

this means th a t in parsing, such information is obtainable directly
by simply accessing the lexical entries of the case-markers rather
than by more complex inference procedures needed to identify the
presence of the more usual Fillmore-type case relations (ibid.).

Once again, this must be taken on trust as no documented examples are avail­

able.

At the conclusion of this overview of Lexicase, it may be observed th a t the

theory makes use of dependency, although the variety of dependency adopted

is defined in terms of a very highly constrained X system. It also makes use

of many different kinds of features, representing many different things. A

considerable num ber of pages could be devoted to exploring Lexicase’s status

as a case gram m ar but this would lead away from my prim ary objective of

investigating dependency parsing. Starosta and his colleagues have yet to

publish a detailed explanation of the place of case relations and forms in parsing

so I shall not second-guess what might be intended. A more detailed and

critical discussion of case in Lexicase can be found in Valency and Case in

Computational Linguistics (Somers 1987), although m any of the points made

therein are disputed in S tarosta’s review of th a t monograph (S tarosta 1990).

The next section investigates how some of the featural constraints of Lexi­

case are employed in parsing.

163

INPUT

Pre-processor

Placeholder
Substitution

Placeholder
Expansion

Morphological
Analyser

Det ' s
Adj ̂ s
Adv ' s

Conjunctions
Orphans

Parser

OUTPUT

Figure 8,5: components of Starosta & Nom ura’s Lexicase parser

8.3 L ex icase p arsin g

In this section I examine two Lexicase parsers. The first, and better docu­

m ented parser, was developed by Stanley Starosta and Hirosato Nomura (NTT

Research Labs, Tokyo) and reported in COLING ’86. The second is the prod­

uct of Francis Lindsey Jr., a graduate student a t the University of Hawaii. It

is described in a short technical report.

8 .3 .1 S ta r o s ta an d N o m u r a ’s p arser

The principle reference for S tarosta and N om ura’s parser is S tarosta and No­

m ura (1986).

C om ponents

The overall architecture of the parser is shown in Figure 8.5.

164

T h e p re -p ro c e ss o r The pre-processor replaces each word in the input

sentence with a feature m atrix, fully specified for all contextual and non-

contextual syntactic and semantic features. If a word form in the input sen­

tence could correspond to more than one feature m atrix then the word is

replaced with a ‘cluster’, a list of all the possible feature matrices. The out­

put of the pre-processor is a string of feature matrices and clusters of feature

matrices corresponding to the words of the input sentence.

M o rp h o lo g ic a l a n a ly z e r The pre-processor is a basic look-up system which

finds a word in the input sentence and looks it up in the grammar-lexicon. If

the word can not be found then the morphological analyzer checks to see if

the form matches any known stem-affix pattern . If a m atch is found, further

searches are carried out with the stem to see if any other affixes produce

homographie words. Once again, all of the possible feature matrices are stored

together in a cluster.

P la c e h o ld e r s u b s t i tu t io n Every cluster of feature matrices is tem porar­

ily replaced by a ‘placeholder’ which consists of the intersection of all feature

matrices. If the only thing the feature matrices have in common is the word

form then th a t is all the placeholder will consist of. The object of placeholder

substitution is to minimize the amount of processing which has to be done. A

parse can be produced for the unambiguous parts of the sentence and then,

when it becomes necessary to try to integrate different readings for the am ­

biguous parts, the placeholder can be expanded and different possibilities tried

w ithout any need to reprocess common parts of the input.

P a r s e r The parser uses the positive contextual syntactic features of head

lexical items to search for dependents. These dependents must satisfy the

criteria of the contextual features and they m ust be accessible. According

to the definition of Lexicase, dependency relations (branches in a tree) are

165

not allowed to cross, i.e. Lexicase has an explicit adjacency constraint.^ As

soon as a potential link between words is established, the negative contextual

features of the words are checked. If they are violated, the dependency link

is discarded immediately. After each word pair has been linked by means of

positive contextual features and checked and passed by negative contextual fea­

tures, the implicational semantic contextual features (selectional restrictions)

are checked. If the link violates the implicational features the analysis is not

abandoned but it is marked as semantically anomalous.

P la c e h o ld e r e x p an s io n Each string th a t contains a placeholder is ex­

panded into separate structures by replacing the placeholder clusters with sub­

clusters of items sharing more features in common. The resulting strings are

passed through the parser once more to add links th a t become possible as the

new clusters and entries become accessible. This process of placeholder expan­

sion is repeated until all placeholders are eventually resolved into their original

constituent entries. This ensures th a t all possible readings are obtained for a

sentence w ithout any sequences of words having to be reparsed.

P a r s in g a lg o r ith m

Clearly this is a multi-pass system. Pre-processing constitutes the first pass,

morphological analysis the second, placeholder substitu tion the third and then

some num ber of iterations through the parser/placeholder expansion cycle. In

principle, there is no reason why pre-processing, morphological analysis and

placeholder substitution should not take place increm entally from left to right.

However, this would not buy anything extra since the parser’s input is required

to be a string of feature matrices and placeholders corresponding to the whole

sentence.

The parser/placeholder expansion process is necessarily cyclic since the

^Since Lexicase is defined as a highly constrained X grammar, the adjacency constraint
is basic and non-negotiable. In DGs which do not owe a debt to X grammar, the adjacency
constraint is an optional extra. It can be used, not used, modified, or whatever.

166

effect of the interacting components is to maximize generalizations about the

sentence and to proceed, iteratively, to all possible specific analyses. The

process produces a maximally general analysis for the whole sentence, then it

copies the analysis and adds different, more specific, details to each copy and

then repeats the process for each copy. The process runs to completion for

each candidate sentence. The effect of the parser/placeholder expansion cycle

is similar to th a t of a chart parser in th a t it only builds structure once, no

m atter how many times it is used. However, this system lacks the elegance

and simplicity of a chart parser’s single pass through a word string. Even if

there were some way for the Lexicase parser to construct a chart-like structure

in a single pass in order to manage ambiguity, the parser is still required to

pass through the word string many times for other reasons.

The parser sweeps through the word string eight times during each iteration

of the parser/placeholder expansion cycle. This is because it tries to spot

particular kinds of word on each pass. The passes are ordered as follows:

1. Prepositions. The parser attem pts to link each preposition with an

accessible N, V, or P by means of contextual features. The object of this

pass is to link P ’s with their dependents to form P P ’s which delimit closed

domains whose internal non-head constituents are then inaccessible to

external heads or dependents. Subsequent passes may search inside or

outside these phrasal domains but they need never consider any links

between internal and external items. Recall tha t P P ’s are considered to

be exocentric and th a t P ’s and N’s have the status of coheads. W hen a P

and an N are linked to form a PP, their non-contextual features combine

to form a virtual matrix for th a t phrase. The features of both coheads

thus become available to sub categorize the head of the phrase in which

the PP is located.

2. Verbs. Verbs are linked to their dependents next to form ‘sentences’.

Once again, this has the effect of delimiting domains within which sub-

167

sequent linking may take place.

3. N o u n s . Nouns are next to be linked to their dependents.

4. D e te rm in e rs . Determiners are linked with accessible nouns next. It is

not entirely clear why this phase exists in the parser since all determiners

are dependents of nouns in Lexicase, so step 3 should already have linked

them to their regent nouns. It must be assumed th a t what is going on

is th a t determ iners select their heads rather than vice versa. This is in

direct contradiction of S tarosta and N om ura’s description of the opera­

tion of their parser: “Based on the positive contextual features of head

lexical items, the heads are linked to eligible and accessible dependent

item s” (S tarosta and Nomura 1986: 131). W hatever the status of steps

3 and 4 m ight be, their desired effect is obvious: in English determiners

m ark the left boundary of N P’s and so linking them to their head nouns

has the effect of closing off domains of government.

5. A d je c tiv e s . Link each adjective with an adjacent noun. The same

points apply here as in step 4.

6. A d v e rb s . Link each adverb with a head verb or adjective. Once again

the objections of steps 4 and 5 apply.

7. C o n ju n c tio n s . Link each conjunction w ith one or more m ajor con­

stituents. Since most of the constituents will already have been discov­

ered, the number of linking choices should be extremely limited. Since

coordinate constructions are exocentric, the non-contextual features com­

bine to form a virtual m atrix for the whole construction.

8. O rp h a n a g e . Link all remaining free nouns, determ iners, adjectives,

adverbs, prepositions and verbs with an accessible head. All unattached

lexical items will be found embedded inside other constructions and the

attachm ent possibilities will be extremely Hmited. The exceptions are

adverbs and P P ’s which tend to have more possible attachm ents available

168

to them.

Each of these passes through the sentence could take place in any direction but

it makes sense to proceed from head to dependent. Therefore, passes could

be expected to proceed from left-to-right in head first languages and from

right-to-left in head second languages.

The presence of apparent contradictions in the published description of the

parser, coupled with the general lack of published fine-grained detail, rule out

the possibility of a more explicit PARS description of S tarosta and Nom ura’s

algorithm.

Given the algorithm described here, it would not be surprising to find th a t

parsing a relatively short sentence involved something of the order of 100 passes

through the sentence! No performance figures are supplied for the parser since

it has never been implemented (although this is not made clear in any published

description). The fact th a t multiple passes are required need not hav a negative

effect on the efficiency of the parser, since the num ber of passes is fixed (i.e.

independent of input length). However, the fact th a t the same string has to

be processed tim e and again does beg several questions about the exact nature

of the data structures used and the information represented. For example, if a

subtree has been constructed somewhere in a string, does anything prevent the

algorithm looking (pointlessly) at the corresponding substring in subsequent

passes? Unfortunately, answers to im portant questions of this kind are not

supplied in any published accounts.

A fundam ental problem with this algorithm is th a t it does not m aintain

a distinction between gram m ar and parser. By building searches for specific

kinds of lexical items into the parser, Starosta and Nomura have built in the

assumptions (i) th a t all languages make use of the same inventory of word

classes and (ii) th a t the appropriate order in which to analyse them remains

constant between languages. The fact th a t the parser refers explicitly to things

called ‘nouns’ and ‘verbs’ ensures th a t it will fail to work if it is presented with

169

a perfectly good gram m ar which happens to use different word class labels

(such as ‘a ’ and ‘b ’) to identify nouns and verbs. In practice this objection

could be m itigated if the algorithm were re-designed so th a t the parse order

(e.g. P, V, N, Det, Adj, Adv, Conj, Orphans) was defined in a separate

declarative database rather than being hard-wired into the algorithm. The

parser would be invoked with two arguments: a pointer to the gram m ar to use

and a pointer to the parse order definition to use. Any inconsistency between

these two would lead to the result of the parse being not ‘succeed’ or ‘fail’, but

‘error’.

8 .3 .2 L in d se y ’s p arser

Lindsey’s parser is simpler than Starosta and N om ura’s but unfortunately even

less information is available describing it. All of the information in this section

has been gleaned from Lindsay (1987).

Lindsey’s parsing system — known as ‘FLX’ — was w ritten in Common

LISP and runs on an HP-9000 Series 300 Bobcat workstation. It is based on

Lexicase. The system consists of two prim ary components, the lexicon builder

and the parser.

The lexicon builder

The lexicon builder takes as its input a Lexicase lexicon and a set of Lexicase

rules. It uses the rules (which are, of course, statem ents of predictable infor­

m ation about lexical entries) to expand out the lexical entries to produce a

fully specified, full form lexicon. In the case of homographie entries, a m aster

entry containing as its m atrix the intersection of the features shared by the

matrices of all the words with the same form is created. A m aster entry would

have the form shown in Figure 8.6.

170

(word (category shared features)
(distribution shared features)
(other shared features)

(wordl
(category features specific to wordl)
(distribution features specific to wordl)
(other features specific to word 1)

(word2
(category features specific to word2)
(distribution features specific to word2)
(other features specific to word 2))))

Figure 8.6: a m aster entry showing the intersection of the feature sets of two
homographie words

The parser

Once again, the parser examines the contextual features of a head word in order

to establish dependencies. The parser assumes th a t each word is the head of a

phrase and th a t a phrase is complete when all dependents of a word have been

found. The parser proceeds as follows (quoted directly from Lindsey 1987: 3):

1. Find the entries for each word of the input sentence in the lexicon.

2. Elim inate from consideration all words which because of their position

or word class could not be sisters of a head.

3. Determine which words m ust be sisters of a head because of the distri­

butional requirements of the head.

4. For all words not unambiguously assigned as sisters to some head by

the above steps, determine possible alternative assignments. This step

provides for multiple parses.

5. Unpack m aster entries and determine which specific homonym success­

fully satisfies all distributional restrictions. This is done from top down,

examining the parses given by step 4.

6. P rin t out those parses in which all words of the input sentence fit into

one hierarchical structure.

171

Steps 1 through 4 set up a list of potentially successful parses which can then

be examined as the basis of alternative sentence readings once the m aster

entries have been unpacked. Thus, the algorithm allows the simple parts of

the parse to be constructed and then reused in successive attem pts to integrate

alternative readings for words.

Unfortunately, the parsing algorithm is described in term s which are too

terse to be really informative. The words “determine which words m ust be

sisters of a head because of the distributional requirements of the head” are

tantalizing in what they withhold rather than in what they tell. Lindsey’s

examples do not shed light on this process. However, it is clear th a t the parser

is distinct from the gram m ar in this system. Lindsey writes:

This complete parsing program is designed as a m odular rule ap­
plication system. The lexicon builder, given the appropriate m in­
imally specified lexicon and Lexicase rules, may be used to create
fully specified lexicons for any language... The parser is also a flex­
ible program since it is nothing more than a program to determine
possible (one-bar) dependency relationships between items in an
input string on the basis of features associated with those items
(Lindsey 1987: 4-5).

Thus, Lindsey’s system is more flexible than Starosta and N om ura’s but in­

sufficient docum entation is available to make a more informed comparison. It

is not clear, for example, whether or not there is any loss of analytic accuracy

on the part of the simpler system.

Insufficient information is available to construct a PARS description of

Lindsey’s algorithm.

8 .4 S u m m ary

In this chapter I have briefly reviewed the theory of Lexicase and two parsers

which are based on it. It is clear th a t the theory is much better developed

than the parsers based on the theory. The parsers do not make use of the full

range of Lexicase resources, such as case relations and case forms.

172

Table 8.1: main features of Starosta and Nom ura’s Lexicase parser

Search origin top-down
Search m anner breadth-first
Search order left to right
Number of passes at least eight
Search focus heads seek dependents
Ambiguity management packing/unpacking

Table 8.2: main features of Lindsey’s Lexicase parser

Search origin unspecified
Search m anner breadth-first
Search order unspecified
Number of passes multi-pass
Search focus heads seek dependents
Ambiguity management packing/unpacking

Starosta and Nom ura’s parser searches top-down for dependents for dif­

ferent classes of word on each of several passes. Unambiguous parts of the

sentence are built first and then these ‘common’ parts are copied to different

parse trees, one for each possible reading of the sentence. The main features

of Starosta and Nom ura’s parser are summarized in Table 8.1.

Very few details are available for Lindsey’s parser. It seems to share a

number of properties with Starosta and N om ura’s parser. For example, heads

seek dependents, and ambiguity is managed by packing ambiguous words into

clusters which can later be unpacked and tried in different parse trees. The

main (known) features of Lindsey’s parser are summarized in Table 8.2.

173

C hapter 9

W ord Gram m ar parsers

9.1 O verview

In 1976 Richard Hudson published a monograph introducing his theory of

‘Daughter Dependency G ram m ar’ (DDG) (Hudson 1976). This publication

was notable for two principal reasons. First, it argued th a t transform ations

were unnecessary in syntax — a heretical position in the linguistic climate of

the day. Second, it argued th a t dependency as well as constituency should

have a place in syntactic theory.

By the end of the 1970’s Hudson was arguing against what he perceived to

be an under-m otivated and artificial distinction between gram m ar and lexicon

in linguistic theories. Instead, he argued th a t all gram m atical and lexical (and

semantic) information should be stored in a single homogeneous representation

within a single component — the so-called ‘pan-lexicon’ — which could be

viewed as a body of facts about words (Hudson 1981a). Around this tim e he

also published an im portant paper in Linguistics (Hudson 1980a) arguing th a t

while dependency is necessary in syntax, constituency is not. Clearly, these

two positions — the ‘pan-lexicalist’ and ‘dependency only’ positions — are

compatible. In fact, the first implies the second since a collection of facts about

words could not include facts about supra-word constituents. The second

implies the first since a grarrunar w ithout constituents leaves the word as the

largest unit of analysis.

174

These ideas were molded into a coherent theory which came to be known as

Word Gram m ar (WG) (Hudson 1983). The first monograph-length description

of the theory appeared as Hudson (1984). Since the publication of th a t text

there has been a m ajor revision of the WG notation and a succession of papers

describing WG treatm ents of various ‘test case’ constructions such as coordi­

nation (Hudson 1988a), extraction (Hudson 1988b), gapping (Hudson 1989b),

and passives (Hudson 1989a). The state-of-the-art in WG is detailed in a re­

cent monograph (Hudson 1990), which includes a gram m ar of a substantial

fragm ent of English.

Section 9.2 introduces WG theory. Section 9.3 provides an overview of

WG parsing, and presents WG parsers developed by myself and by Richard

Hudson.

9.2 W ord G ram m ar th eo ry

9 .2 .1 F acts a b o u t w ord s

A WG consists of a body of facts about words. In this section I describe the

form th a t these facts take and the information they contain.

First of all, it is worth pointing out th a t ‘word’ in the context of WG

includes any word-length unit, however specific or general. Thus, the first

word of this sentence, the lexeme ‘PLIM SOLL’, the word-type ‘noun’ and the

relation ‘subject’ are all words.

Each lexical en try is essentially a complex feature structure. As such it

could be represented in a standard DAG format such as the one provided by

PATR-H (Shieber 1986). However, Hudson has evolved his own m etalanguage

which has a quasi-English syntax and is often simpler to read than more fa­

miliar DAG structures.

A lexical entry is viewed as a collection of propositions. Each proposition

has the general format

Argument 1 Predicate Argum ent2

175

The predicate is placed in infix position rather than the more familiar prefi>x

position

Predicated Argument 1. Argument2)

for the sake of readability. The chosen ordering is congruent w ith the normaal

SVO order of English predicate-argum ent structure. However, nothing restes

on the predicate-argum ent order of the notation. Any ordering would do s g o

long as it was used consistently.

Five predicates appear in WG propositions.^ These predicates are thae

following:

1. is

2. has

3. precedes

4. follows

5. i ^

T he predicate is

The is predicate is used to express identity between argum ents. Thus

X is Y

identifies X and Y as being alternative names for the same object. An objecct

can be identified in more than one way because of the facility for relativve

naming in W G. In the sentence OUie obeyed Ronnie shown in Figure 9.1, Olliie

could be described either as ‘word 1’ or as ‘the subject of word 2’.

Relative names are expressed in the form

(Nam el of Name2)

^It is possible to define a WG system which has only one predicate and which makes thhe
necessary distinctions in terms of features (see Section 9.2.3 below). However, for the sakke
of clarity of presentation I shall work with the five predicate system here.

176

SUBJECT O BJECT

(Ï 1
Ollie obeyed Ronnie

1 2 3

Figure 9,1: dependency structure of OUie obeyed Ronnie

W here ‘N am el’ m ust be the atomic name of a relational concept (such as

‘subject’ or ‘agent’) and ‘Name2’ may be either the atomic name of a non­

relational concept (such as ‘noun’ or ‘word2’) or another relative name. Thus,

the following are both possible:

(35)

a (subject of word2)
b (agent of (referent of word2))

The identity predicate is can be used to unify sets of propositions (alternatively

conceived of as feature structures) associated with labellings in the system. In

this way categorial, functional, and semantic information can be combined in

the property structure of a given word instance.

The predicate has

The has predicate is used for two main purposes. F irst, it is used to assign

features to words. For example,

(36)

noun has (a number)

It should be obvious th a t values can be assigned to features using is proposi­

tions:

(37)

(num ber of wordN) is singular

177

The second use of the has proposition is in specifying the dependency require­

m ents of a word. For example,

(38)

finite verb has (a subject)

Here the use of a quasi-English formalism is slightly misleading. The use of the

predicate has in (38) does not express the fact th a t some particular finite verb is

in possession of a subject. R ather, it expresses the fact th a t the prototypical

finite verb has a subject.^ Thus, it could be read as follows: ‘A finite verb

typically has a subject (slot)’.

WG has a mechanism for distinguishing optional and obligatory depen­

dents, as well as for signaling a number of more subtle distinctions. The

general form at of ‘slot’ propositions is:

A has (Q B)

where A is some named entity, B is the name of a slot (e.g. ‘subject’) and Q

is a ‘quan tita to r’. A quan tita to r (Hudson’s term) specifies the number of slots

of the variety specified by B. To date, most of H udson’s writings have made

use of the following set of quant it ators:

a a X = one X required
b ano X = at most one X allowed
c mano X = any number of Xs allowed
d many X = two or more Xs allowed
e mony X = one or more Xs allowed
f no X = X prohibited

The utility of these should be fairly obvious. (39a) is used when exactly one

filler is required, as in the case of subjects. (39b) applies when a slot is optional

bu t can never have more than one filler. For example, a noun can optionally

have a dependent relative pronoun. (39c) is the least constrained — any num ­

ber of fillers will suffice. For example, a noun can be modified by any number

of adjectives. (39d) is used when at least two fillers are required. The principle

^Hudson intends his theory to be based on the notion of ‘prototypes’ (for useful intro­
ductions see LakofF 1985 and Taylor 1989).

178

use for this is coordinate constructions where a conjunction must conjoin at

least two conjunct s. (39e) is used when at least one filler of the specified type

is required. For example, a whole has mony parts. (39f) is a simple prohibition

stating th a t a word can not have a slot of some stated kind. In general, a WG

gram m ar follows the closed world hypothesis, i.e. anything which is not explic­

itly allowed is considered to be implicitly forbidden. However, there are cases

when explicit prohibitions are required, as we shall discover in section 9.2.2.

In recent presentations of the theory, Hudson has adopted an alternative,

more flexible form of quantita tor (Hudson 1990: 23-4). The new kind of quan­

tita to r is structured ra ther than atomic. Its structure is [i-j] where i and j are

integers, i indicates the minimum number of fillers for the slot and j indicates

the maxim um num ber of fillers for the slot. Equivalences between the old and

new systems are given in (40). I shall use the old system in all examples.

(40) a a X = [I-l]
b ano X = [0-1]
c mano X = [0-_]
d many X = [2-_]
e mony X = [l-_]
f no X = [0—0]

The question of whether quant it ators have the effect of creating multiple slots

w ith identical properties or allowing single slots to have multiple fillers has to

be worked out for any implementation but it has no theoretical importance.

Constraints can be placed on the range of potential slot-fillers by means of

identity (is) propositions. For example,

(41)

a (subject of verb) is (a noun)
b (pre-adjunct of noun) is (a adjective)
c (comp of preposition) is (a noun)

In these examples, the second argument has the form (a X). This use of a

should not be confused with the use shown in (39a) and (40a). This version is

simply used to distinguish the general case X from an instance of the general

179

case (a X). The two versions appear in complementary distribution: the qman-

tita to r only appears in has propositions; the instance m arker only appearrs in

is propositions.

T h e p re d ic a te s p re c ed e s a n d follow s

precedes and follows are used to express relative linear orderings. For extam-

ple:

(42)

a (subject of word2) precedes word2
b (object of word2) follows word2

Only one of these predicates is required to express linearization constraiints.

For example, (43) shows the same facts as (42) but uses only one predicatte.

(43)

a (subject of word2) precedes word2
b word2 precedes (object of word2)

Redundancy is allowed to aid readability. There is no reason why an imjiple-

m entation should have to include both predicates. See Section 9.2.3 for furtther

examples of the use of positional constraints.

T h e p re d ic a te i ^

The isa predicate is used to relate entities to more general entities. For excam-

ple:

(44)

a A PPLE i ^ common-noun
b common-noun isa noun
c noun i ^ word

I say th a t the i ^ predicate is used to relate entities to entities, rather tlh an

entities to classes because WG assumes th a t the isa relation is a relatiom of

instances to prototypes rather than a relation of members to classes. Unilike

the is relation, the i ^ relation is antisymmetric.

180

entity

person thing relation set

situation theme

event companion

action dependent

communication

speech

word

Figure 9.2: part of the WG ontological hierarchy

So far, I have described the kinds of predicates which can appear in propo­

sitions. I have presented propositions as devices for expressing facts about

words. As it stands, this system has no mechanism for making or using gen­

eralizations. An adequate gram m ar m ust consist of more than a list of entries

specifying all the properties of every word. It must make generalizations over

collections of words. In the next section I describe how the isa predicate is

used to make generalizations by allowing the properties of general cases to be

transferred to specific instances.

9 .2 .2 G e n e ra liza tio n s a b o u t w ord s

All entities in a W G are thought of as belonging to a single, vast ontological

hierarchy. Entities in the hierarchy are related by isa relations. P art of the

top of the hierarchy is shown in Figure 9.2 (from Hudson 1990: 76).

The connections between lower and higher concepts in the hierarchy rep-

181

word

noun verb adword conjunction

common proper pronoun
noun noun .

I I I
DOG SIMPSON HIM

Figure 9.3: part of the WG word type hierarchy

resent i ^ relations. The hierarchy includes non-linguistic, as well as linguistic

entities. The details need not concern us here. (For more information on

the kinds of knowledge which a WG hierarchy represents see Hudson 1985a;

Hudson 1986b; Hudson 1990: chapter 4). One part of the hierarchy of imme­

diate relevance to this discussion is th a t part which comes below the ‘word’

en tity and which could be described as the ‘word type hierarchy’. P a rt of the

word type hierarchy is shown in Figure 9.3.

The purpose of this hierarchical organization is to facilitate generalization.

Any property which is shared by most or all common nouns is stored in rela­

tion to the ‘common-noun’ node in the hierarchy ra ther than at the level of

‘D O G ’ or any other specific common noun. Any such property is said to be

‘inheritable’ by the lower node from the higher node. The simplest version of

inheritance can be defined as follows (where P is any proposition):

(45)

IF XisaY,
P is true of Y

T H E N P is true of X

Most generalizations which can be made about language have got exceptions.

Exceptions can be accommodated within the inheritance framework by stating

the exceptional properties in relation to the highest node for which they hold

182

true. The property inheritance principle is then revised as follows:

(46)

IF X i s a Y ,
P is true of Y,
not: not: (P is true of X)“

T H E N X h a s (Q P)

‘*‘It is not the case that X is prohibited from having the property P ’.

Since inheritance is overrideable, it is often referred to as default inheritance.

The usual properties are assumed for an entity unless there are good reasons

(i.e. contradictory propositions) for thinking otherwise. For example, the

usual way to form plural nouns in English is to add the S-morpheme (‘m S’) to

the noun stem. This generalization can be made for all nouns. The relevant

proposition would look something like (47).

(47)

(plural of noun) is ((stem of noun) + mS)

However, there are a small number of nouns (e.g. salmon) which exceptionally

do not follow the normal plural rule. These would have to be specially marked

so as to override the general rule. For example,

(48)

a (plural of SALMON) is < salm on>
b not: (plural of SALMON) is (< salm on> + mS)

In the case of words such as Aoo/which have coexistent default and exceptional

plural forms, a proposition such as (49) is added to introduce the exceptional

form and nothing is added to block the default form from being generated by

(47).

(49)

(plural of HOOF) is < hooves>

Thus, hoofs can be generated using (47) and hooves can be generated using

(49).

183

head dependent

predependent postdependent

subject visitor pre-adjunct complement post-adjunct

object oblique

direct indirect
object object

Figure 9.4: p a rt of the W G gram m atical relation hierarchy

Default inheritance is used in most m odern linguistic theories

(G azdar 1987), although few of them make this explicit — HPSG

(Flickinger et al. 1985; Flickinger 1987) is a notable exception. It is widely

assumed th a t the prim ary use of default inheritance in linguistics is for ex­

pressing generalizations in morphology. However, since everything is expressed

in relation to word-sized units in W G , syntax and sem antics can also make use

of default inheritance. The portion of the W G inheritance hierarchy presented

in Figure 9.4 shows how the gram m atical relations (i.e. types of dependency

relation) can also be arranged in an inheritance hierarchy.

Thus, proposition (50) implies proposition (51).

(50)

X has (a subject)

(51)

X has (a predependent)

184

Table 9.1: inheriting properties for w l
S to r e d p r o p o s it io n s A d d e d p r o p o s it io n s

DOG has (a structure)
DOG isa common-noun

common-noun isa noun

noun has (a number)
noun has (mano pre-adjunct)
noun isa word

word has (a head)
word follows (pre-dependent of word)
word precedes (post-dependent of word)

w l isa DOG

w l has (a structure)
w l isa common-noun

w l isa noun

w l has (a number)
noun has (mano pre-adjunct)
w l isa word

w l has (a head)
w l follows (pre-dependent of word)
w l precedes (post-dependent of word)

The following simple (overrideable) propositions take care of norm al English

word order.

(52)

a word has (a dependent)
b (pre-dependent of word) precedes word
c (post-dependent of word) follows word

W hen a sentence is analysed in W G, every word is assigned a unique identifier

such as w l (‘word 1’). Each word is analysed to establish its lexeme and

m orphosyntactic features. Once its lexeme has been found, the word instance

can be attached to the bo ttom of the inheritance hierarchy underneath its

lexeme. It can then inherit as many properties as possible from higher nodes.

Consider w l, the first word in sentence (53).

(53)

Dogs chase large white rabbits.

In Table 9.1, the column on the left shows propositions contained in the gram ­

m ar, while the column on the right lists the new propositions added for w l.

Only a representative sample of propositions are shown.

The effect of the inheritance process is to build up a feature set for the

word. Although absent from Table 9.1, constraints on slots are also inherited

185

during the process.

More detailed introductions to inheritance in WG can be found in Fraser

and Hudson (1990), Hudson (1990a: chapterS), and Fraser and Hudson (1992).

9 .2 .3 A s in g le -p r e d ic a te sy s te m

I have already noted th a t the predicates precedes and follows are not both nec­

essary. In fact, as Hudson points out (Hudson 1990: 24ff), only one predicate

is really required, namely the is predicate. If this predicate is instead repre­

sented with the symbol the gram m ar begins to look very similar to any

other unification-based grammar. For example, the following examples show

equivalent (a) standard W G five-predicate propositions, (b) WG one-predicate

propositions, and (c) unification gram m ar feature structures (Shieber 1986).

(54)

a DOG isa noun
b (category of DOG) : noun

DOG cat : N oun

(55)

a verb has ([1-1] subject)
b (quantity of (subject of verb)) : [1-1]

cat : Verb
argl : Subject

(56)

a (subject of verb) is (a noun)
b (subject of verb) : (a noun)

cat : Verb
subject : cat : N oun]

(57)

a (pre-dependent of word) precedes word
b (position of (predependent of word)) : before it

cat : W ord
predep : posn : before

186

r i m 1 r i
People with spare cash spend it in Capri

Figure 9.5: a WG dependency analysis

In his single-predicate version of W G, Hudson introduces extra ‘positional

nam es’: before, after, adjacent-to and next-to. ‘i t ’ identifies the word referred

to by the most deeply embedded concept to the left of the ‘:’ predicate (i.e.

‘w ord’).

The purpose of this section is to emphasize the similarities between the

expressiveness of the WG formalism and the expressiveness of other unification-

based formalisms (e.g. GPSG, LEG, and Hell wig’s DUG). This is not, however,

to claim th a t they are identical nor th a t the insights typically expressed in these

frameworks are the same. (For example, WG provides a much richer system

of quantita tors than any of the other frameworks.) The extent to which one

theory differs from another is a complex question and one which can only

be hindered by differences of notation. I have tried to show how easy it can

be to convert W G grammars into a more familiar notation. This is a first

step towards theory comparison. The next step goes beyond the scope of the

present work.

9 .2 .4 S y n ta x in W G

Syntactic structure is expressed in terms of dependencies between word pairs,

with the sole exception of coordinate constructions for which minimal con­

stituent structure is used (Hudson 1989b; Hudson 1990: chapter 14). The

sentence shown in Figure 9.5 illustrates a typical WG dependency analysis.

The sentence shown in Figure 9.6 is an example of the use of constituency

187

n i r i r ï i
{[Big Mark] and [wee Nicki]} live in Edinburgh

Figure 9.6: the use of constituency in WG

in W G. The brackets simply serve to identify the boundaries of the coordinate

structure and its component conjunct s. Dependencies between elements of

the coordinate structure and elements outside the coordinate structure are

controlled by the Dependency in Coordinate Structure (DIGS) principle. This

states that:

any word which is outside a coordination C but which is in a depen­
dency relation D to some conjunct-root of one conjunct of C must
also be in relation D to one conjunct root in every other conjunct
of C (Hudson 1990: 413).

A ‘conjunct-root’ is simply a head of a conjunct. In the case of Figure 9.6, the

conjunct-roots are Mark and Nicki.

A part from the exceptional case of coordination, all other syntactic struc­

tu re is expressed in terms of pairwise dependencies.

W G makes use of a modified adjacency principle since, under certain cir­

cumstances, words are allowed to depend on more than one head.

The A djacency Principle

D is adjacent to H provided th a t every word between D and H
is a subordinate either of H, or of a m utual head of D and H
(Hudson 1990: 117).

The sentence in Figure 9.7 shows an example of a dependency structure which

is perm itted by W G ’s adjacency principle bu t forbidden by the standard ver­

sion of adjacency as defined by Gaifman (1965) (/ i s separated from its head

to by want which does not depend on either / o r to).

188

want to leave

Figure 9.7: a structure perm itted by W G ’s version of adjacency

SUBJECT

Cats adore

VISITOR

Figure 9.8: the use of visitor links to bind an extracted element to the main
verb

The W G analysis of extraction relies upon a word having more than one

head. In this analysis, the extracted word is first bound to the main verb by

a sem antically em pty dependency link known as the ‘visitor’ relation. The

gram m ar would include rules such as those in (58).

(58)

a finite verb has (ano visitor)
b (visitor of verb) precedes (subject of verb)

Thus, in the sentence Cats I adore^ cats is bound as the visitor of adore as

shown in Figure 9.8 (visitor links are drawn below the sentence).

It is a simple m atter to use the visitor link to establish the object relation

between the verb and cats. The general form of the rule for identifying normal

189

O BJECT

SUBJECT

Cats adore

VISITOR

Figure 9.9: the use of the visitor link to relate the extracted element to the
m ain verb as its object

post dependents with the unusual visitor link is shown in (59),

(59)

(visitor of word) is (a (post-dependent of word))

This would lead to the analysis shown in Figure 9.9.

Since the visitor relation is semantically vacuous, the prepositional content

of the sentence is the same as it would be if extraction had not taken place.

However, the presence of the visitor link introduces markedness to the con­

struction, as would be expected. The example sentence does not represent a

convincing argum ent for the use of visitor links since a simple rule could have

allowed the object to depend on the verb directly w ithout the m ediation of the

visitor. (60) offers a better example since there is more intervening m aterial

between the extracted item and its head.

(60)

Cats I think you know I adore

Only one ex tra rule is required to copy the visitor link from verb to verb, thus

producing a ‘hopping’ analysis. The rule appears in (61).

(61)

(visitor of word) is (a (visitor of (complement of word)))

190

cats think you know adore

Figure 9.10: the use of visitor links to interpret the object of an embedded
sentence

This rule allows sentences like (60) to be analysed w ithout difficulty. The

resulting structure is shown in Figure 9.10.

A more detailed exposition of the use of visitor links in W G can be found

in Hudson (1988b).

A part from (i) allowing constituency in coordinate constructions, (ii) al­

lowing m ultiple heads, and (iii) providing a modified adjacency principle, WG

abides by the definition of DG supplied by Gaifman. Exceptions (i)-(iii) may

be regarded as extensions to the expressiveness of the standard dependency

formalism, whose formal properties and consequences are as yet undefined

formally.

9 .2 .5 S em a n tic s in W ord G ram m ar

Semantics in WG relies upon two basic premises:

1. V irtually every word in a sentence is linked to a single element in the

sem antic structure.

191

cl c2 c3 c4 c5 c6

Fred loves Jane for her wealth

Figure 9.11: semantic structure is very similar to syntactic structure in WG

2. There is a high degree of congruence between syntactic dependencies and

sem antic dependencies.

The elements in semantic structure to which words are linked are called ‘refer­

en ts’. These are taken to be mental concepts rather than objects in the world.

The two basic kinds of relation which may hold between referents are depen­

dency and identity. A simple example of a possible WG semantic rule which

is parasitic upon the syntactic structure, is given in (62).

(62)

(referent of (subject of LOVE)) is (actor of (referent of LOVE))

The diagram shown in Figure 9.11 (from Hudson 1990: 123) should serve to

illustrate the extent of congruence between syntactic and sem antic structures

in W G. In the diagram, the labels c l, c2, etc. are the conceptual referents of the

words to which they are linked by dotted lines. Arrows between referents show

sem antic dependencies. Equality operators between referents show identity.

This degree of isomorphism between syntax and semantics allows the se­

mantics simply to be ‘read off’ the syntactic structure in m any cases. One of

my own early WG parsers succeeded in constructing sem antic structures for

192

a respectable range of sentences with minimal effort required (Fraser 1988).

However, it would be foolish to pretend th a t all semantic analyses are equally

easy. Some difficult problems remain to be solved. To date, semantics in WG

has not received as much atten tion as syntax. It is to be hoped th a t this

imbalance will be corrected before too long. In the meantime, the only com­

puter system to a ttem pt any WG semantic analysis, other than my own, is

Gorayska’s small-scale ‘WG semantic analyzer’ (Gorayska 1987).

9.3 W ord G ram m ar parsing

In early 1985 Richard Hudson produced a very modest WG parser w ritten

in BBC Basic and running on a home com puter with just 32K of RAM

(Hudson 1985b). At th a t stage Hudson described himself as “an am ateur with

more enthusiasm than programming skills” . However modest the parser may

have been, it became the inspiration for my own larger scale parser (w ritten in

Prolog) which formed the basis of my Masters dissertation (Fraser 1985). The

m ain strengths of this system were its complete separation of gram m ar and

parser and its simple but effective implementation of default inheritance. These

features have continued to inform subsequent systems developed by Hudson

and myself a t University College London. Unfortunately, my parser failed to

solve the problem of implementing the adjacency principle and so it failed in

the most im portant task of a parser, namely building appropriate syntactic

structures.

Early in 1986 we became aware of a group of computer scientists at Im perial

College, London who were beginning to show interest in the ideas contained in

Hudson’s 1984 monograph. This group, and especially Derek Brough, wrote a

num ber of very small trial parsers (Brough 1986). Around this tim e a former

student of Hudson’s, Max Volino, also wrote a small parser based on WG.

Hudson himself had moved on from his com putational small beginnings and

was now using Prolog on a much more powerful machine. Hudson (1986a)

193

reports H udson’s first parser w ritten in Prolog.

In late 1986 I s tarted to work as Hudson’s research assistant and began

to develop some of the ideas first presented in my Masters dissertation. This

soon resulted in the production of a parser which combined an inheritance

mechanism w ith a functional (though clumsy) parsing strategy (Fraser 1988).

Like all WG parsers developed up until then, this one incorporated an explicit

check on the adjacency of words to be linked. This was very expensive com­

putationally so the parser ran rather slowly. It was the first WG parser to

build simple semantic structures as well as syntactic structures. Later tha t

year, B arbara Gorayska (a former doctoral student of Hudson’s) produced a

more sophisticated WG semantic analyzer (Gorayska 1987) although it was

not part of a parsing system. Parsers loosely based on WG were also produced

as final year projects by Francis Bell, an undergraduate a t Westfield College in

London and, in 1987, by Phil G rantham , a postgraduate student at Sheffield

Polytechnic (G rantham 1987).

During the period 1987-8, the two largest scale WG parsers produced to

date were being developed in parallel a t University College London by Hudson

and myself. While we exchanged views and insights on theoretical m atters

during this period, we kept the im plem entational and algorithmic details of the

systems to ourselves, thus ensuring th a t two distinct im plem entations evolved.

In the remaining sections of this chapter, these two parsers are described in

more detail.

9 .3 .1 F ra ser’s p a rser

O bjectives of the parser

I had two main objectives in writing my parser. The first objective, which it

shared with my earlier WG parsers, was simply to see what a WG parser would

look like. Could it be a minor modification of an existing parsing algorithm

or would it involve distinct problems requiring distinct solutions? Once a few

194

trial systems had been constructed I felt tha t I was in a position to identify

some problems which seemed to be common to all of the parsers. Solving these

problems became the principal focus of the parser I report here.

The m ain difficulty which plagued the early WG parsers was the time

they took to parse sentences. They ran very slowly, even when working with

small gram m ars on powerful machines. My best WG parser up to th a t time

had taken 254 seconds to find a first reading for the seven word sentence

This sentence was analyzed by a computer^ even though the grammar-lexicon

contained little more than what was required to process the sentence and in

spite of the fact th a t the program was running on a single-user Sun workstation

(Fraser 1988: 58). At least part of the reason for the poor performance could

be a ttribu ted to some features of the version of Prolog I was using. My program

had made extensive use of the a s s e r t and r e t r a c t predicates to add facts to,

and remove facts from the Prolog database. Alarmed by the poor performance

times, I carried out a series of benchmark tests and discovered th a t it was

much quicker to m aintain a record of the current state of the parse in long

environment lists which could be passed between predicates than to write to

and erase from the Prolog database. This problem was easily solved, and the

parser described here seldom asserts and never retracts during parsing.

However, not all speed-related problems sprung from the m undane details

of the implem entation. Some had more significant theoretical origins. Chief

amongst these were the role of the adjacency constraint in the parser and the

question of how best to generate all readings for a sentence.

In all of the WG parsers available up to th a t tim e, the adjacency constraint

was implemented as an explicit permissibility check on a hypothesized depen­

dency relation between two words, no doubt because th a t is the way in which

it is presented in Hudson (1984). In this respect these parsers differ from all

of the other parsers described in this thesis which either have no adjacency

constraint or which build the constraint into the parser’s control strategy. By

195

profiling my earlier parsers I discovered th a t most of the processing tim e was

devoted to selecting potential word pairs, checking th a t they could contract a

dependency relation, checking whether potential dependency pairs were adja­

cent and then discovering th a t they were not. Given an n word sentence, it is

possible to hypothesize dependency relations between any word and every one

of the other words in the sentence, i.e. n — 1 other words. The sentence as a

whole (assuming no lexical ambiguity) could generate a maximum num ber of

n{n — 1) hypothetical relations. Most of these relations would be rejected by

the adjacency constraint (and, of course, by the dependency requirements of

each word). It struck me th a t this was approaching the problem the wrong way

round. If a parser were constructed in such a way th a t it never hypothesized

a relation between two words unless they were adjacent, this ought to avoid a

considerable am ount of wasted effort.

The solution to this problem was to construct the parser around an ex­

plicit stack and to stipulate tha t the only place which could be searched for

a dependent or head for the current word was a t the top of the stack. The

m ain difficulty for this approach was in establishing dependencies between

word pairs when one of the words had been extracted. The solution I adopted

was to separate dependency relations into those which had to be discovered by

search and those which could be derived from the dependency relations already

in existence.

The second problem I addressed in my parser was how to increase effi­

ciency in the discovery of all possible readings for a sentence. I did not want

to use a chart because I was unsure how to represent discontinuous groups

of dependents and, more problematically, how to deal with the uncertainties

raised by the possibility of multiple headedness. Choosing a completely differ­

ent approach I decided to construct a backtracking parser which was designed

in such a way as to spot implausible analyses as early as possible, thus keeping

to a minimum the amount of useless structure which would be built. Needless

196

to say, this could not prevent the parser from duplicating effort in some cases.

T h e p a r s e r

As we have seen, one of the central claims of DG in general and WG in par­

ticular is th a t a gram m ar need only refer to word-sized units. However, there

is no theoretical reason why a WG parser should share the same restrictions

as the gram m ar it uses. I propose th a t, while a gram m ar may only refer to

word-sized items, a parser should be allowed to refer in addition to two other

kinds of da ta structure, namely molecules and stacks.

Following the example of Tesnière, I draw an analogy from molecular chem­

istry and the process of chemical bonding. An atom with an overall positive

or negative charge is called an ion and is said to have a valency. Similarly, a

single word is said to have a valency. W here ions have positive charge, words

have a requirem ent for dependents; where ions have negative charge, words

have a requirem ent for a head. W hen a positively charged ion meets a neg­

atively charged ion (and other factors perm it) the two ions bond to form a

single molecule. Any imbalance in charge between the two ions remains as

a property of the molecule (although ultim ately it is the property of a single

nucleus). In similar fashion, a word which requires (or allows) a dependent

can bond with a word which requires a head to form a molecule unless any

constraints prevent it. Any dependency slots (charges) not involved in this

bond remain as properties of the molecule. Molecules can bond with other

molecules. Well-formedness is analogous to molecular stability in chemistry

— in my model a molecule with saturated valency can serve as a sentence (so

long as its root does not require a head).

For obvious reasons, the parsing procedure presented here is called the

bonding algorithm.

M o lecu le s A molecule is a structure consisting of a root word plus all of its

subordinates discovered so far. Molecules are 4-tuples of the form shown in

197

(63).

(63)

[Negative-list, Positive-list, Subordinates, Derivable]

Negative-list is a list of unfilled head slots. Positive-list is a list of unfilled

dependent slots. The general form of a slot is shown in (64).

(64)

[NUMBER, TYPE, SLOT-LABEL, SLOT-TYPE, POSITION]

NUM BER is a unique identifier for the word which has the slot (e.g. w5).

T Y P E is th a t word’s word type (e.g. verb). SLOT-LABEL identifies the kind

of dependency relation which must hold between the word and its slot filler

(e.g. subject). SLOT-TYPE is the word type required of the slot filler (e.g.

noun). POSITION indicates the filler’s position relative to the word which has

the slot. There are three values for POSITION, namely b e fo re , a f t e r and

e i th e r .

There is, of course, a certain amount of arbitrariness in the association of

positive charge with dependency requirements and negative charge with head

requirem ents ra ther than vice versa. The significant point to note is th a t they

are m utually a ttractive opposites.

Subordinates is a structured list containing a record of all of the root w ord’s

subordinates and the dependency relations involved.

Derivable is a list of slots and information detailing how to derive their

fillers from existing dependency relations.

S ta c k s The bonding algorithm makes use of a single parse stack, and only

molecules may be pushed onto it. The way in which the stack is used ensures

th a t only adjacent words can be bonded.

P re l im in a r ie s The parser works in a left-to-right, bottom -up, single-pass

m anner. The parser reads one word at a time, constructing for each word a

198

frame of slots and constraints on fillers. The information which is used to build

a frame is obtained from the grammar by a process of property inheritance.

For example, the propositions shown in (65) could be inherited for the first

word of sentence (66).

(65)

word-1 i ^ proper-noun

word-1 has (a head)
word-1 has (mano pre-adjunct)
word-1 has (ano post-adjunct)

(pre-adjunct of word-1) is (a adjective)
(post-adjunct of word-1) is (a preposition)
(pre-adjunct of word-1) precedes word-1
(post-adjunct of word-1) follows word-1

(66)

John loves Mary

The same information can be expressed much more compactly when it is con­

verted into molecule format. The molecule which would be constructed for

word-1 is shown in (67).

(67)

[[[1, proper-noun, [a, head], word, either]],
C [1, proper-noun, [mano, pre-adjunct], adjective, before],

[1, proper-noun, [ano, post-adjunct], preposition, after]],
[].
[]

]
(68) shows the molecule initially constructed for the second word of sentence

(66).

(68)

[n.
[[2, finite verb, [a, subject], noun, after],

[2, finite verb, [a, object], noun, after]],
[],
[]]

For the sake of simplicity I have ignored the requirement in English for subject-

verb agreement. This can be accommodated in the framework but it would

199

require some digression.

M o le c u la r b o n d in g At the heart of the parser lies a process for combining

molecules to form larger molecules. In general, if some element of the Positive-

list of one molecule can be combined with some element of the Negative-list

of another molecule then the second molecule can be merged into the first to

produce a new, larger molecule.

In order to facilitate description of the process of molecular bonding, I shall

identify the elements of Positive-lists and Negative-lists by means of the names

given in (69).

(69)

[number, type, [quantitator, slot], slot-type, order]

An attem pt can be made to bond (67) and (68) by trying to unify an ele­

m ent from one Negative-list with an element from the Positive-list of the other

molecule. We shall say th a t the two unify if the following conditions hold:

1. A i ^ B, where A is the Negative-list ty p e and B is the Positive-list

s lo t - ty p e ; and

2. C ÎM D, where C is the Positive-list ty p e and D is the Negative list

s lo t - ty p e ; and

3. the Positive and Negative orders unify (b e fo re unifies with b e fo re ,

a f t e r unifies with a f t e r , e i t h e r unifies with anything, but b e fo re

and a f t e r will not unify with each other).

Let us consider the first element of the Positive-list of (68) and the first (and

only) element of the Negative-list of (67). These are shown in (70).

(70)

-fve [1, proper-noun, [a, head], word, either]
-ve [2, finite verb, [a, subject], noun, before]

W hen we try to unify these lists we find that:

200

1. ‘proper-noun noun’ succeeds; and

2. ‘finite verb isa word’ succeeds; and

3. ‘unify e i t h e r with b e fo re ’ succeeds

therefore all of the conditions are satisfied and the molecules may bond. The

structure of the resulting molecule is shown in (71).

(71)

[□,
[[2, finite verb, [a, object], noun, after],

[1, proper-noun, [ano, post-adjunct], preposition, after]],
[subject, 2, 1],
[]]

Several interesting things have happened here. First of all, the m atching el­

ements — a Negative element of (67) and a Positive element of (68) — have

collapsed into a single element which is recorded in the Subordinates list (read

this as ‘the subject of word-2 is word-1’). In addition, two Positive elements

of (67) have been deleted. The reason for this will soon become apparent.

U sin g th e s ta c k Only two molecules are available for bonding at any time,

namely the top two molecules on the parse stack. I shall refer to the top-most

molecule as M l and the next one down as M2. To begin with, a test is made

to see if M2 can depend on M l (i.e. if some element in M l’s Positive-list will

unify with some element in M2’s Negative-list). If this test succeeds then the

two molecules bond to form a new molecule. If not, then a test is made to

see if M l can depend on M2 (i.e. if some element in M l’s Negative-list will

unify with some element in M2’s Positive-list). Again, if they unify, the two

molecules bond to form a new one. This becomes the new M l and the next

highest stack element becomes available as M2. If two molecules will not bond,

then the stack remains unchanged. The next word of the sentence is read and

a new molecule is constructed and added to the parse stack.

By the end of a sentence, there should be exactly one molecule left on the

stack. If there is more than one then the parser has failed to find a single

201

dependency structure for the input string.

The parser only ever searches its immediate left context. In this way the

operation of the stack implicitly applies the adjacency constraint. Thus, one

of the objectives of the parser has been satisfied: the parser never attem pts

to establish a dependency relationship between a pair of words unless they

are adjacent. Note also, th a t (unlike in earlier WG parsers) there is no search

involved. There is only one place to look for a head or for a dependent, namely

M2. If it is not there then there is no need to look any further.

Another strength of this stack-based approach is th a t it provides neat ways

of identifying and closing down doomed search paths as early as possible —

thus satisfying the other main objective of the parser. Recall th a t when we

combined molecules (67) and (68), we produced a new molecule (71). However,

in the process, we lost the two slots shown in (72).

(72)

a [1, proper-noun, [rnsmo, pre-adjunct], adjective, before]
b [1, proper-noun, [emo, post-adjunct], preposition, after]

It should be obvious th a t the first word of a sentence can not possibly have

a pre-adjunct. However, it is possible to appeal to a more general principle

which states th a t any M l which has optional slots for dependents w ith the

before order feature, will have these options closed if it is found th a t there is

nothing else on the stack. This is because there are not, and never will be, any

available fillers. This accounts for the disappearance of slot (72a). Likewise,

if M l has non-optional slots for preceding fillers and there is nothing else on

the stack, then no single dependency structure will ever be able to link all

of the words in the string into a coherent sentence. This fact can be used

to spot impossible analyses before further structure is built fruitlessly. If this

heuristic were not applied, parsing could continue until the end of the input

string before the problem was spotted.

The reason for the erasure of the post-adjunct slot (72b) is th a t there is a

rule which states th a t when an MI becomes the head of an M2, any optional

202

* 1

Figure 9.12: a prohibited dependency structure

a f t e r slots the M2 may have had are removed. This is because structures of

the sort shown in Figure 9.12 can not occur.

Had the slot been obligatory and not just optional, this would have signalled

th a t further processing would be pointless: no successful parse could ever

result.

Thus, a t the cost of two simple tests a t bonding time, the am ount of need­

less processing can be significantly reduced. I shall show below how the parser’s

efficiency can be further enhanced by examining the gross characteristics of the

stack whenever a molecule is pushed onto it.

F irst, though, here is a PARS description of my parsing algorithm.^

^It is necessary to define an extra condition ‘obligatory_slots(X ,Y)’ for this PARS de­
scription. This condition succeeds if word Y has any obligatory slots in position X (e.g.
obligatory_slots(before, C)), otherwise it fails. It is also necessary to define a special action
‘strip_optionalj5lots(X ,V)’ which strips out any optional slots belonging to Y with positional
feature X (e.g. strip_optional_slots(after, C)).

203

IN IT IA L IZ A T IO N : read input words into a list
(in molecule format);
C is the current word in the list;
C := l;
X is a pointer;
X := l;
initialize an em pty stack;
the result is stored in the variable Result.

1. IF empty(Stack)

T H E N IF obligatory_slots(before, X),

T H E N fail

ELSE strip_optional_slots(before, X),
push(X),
C:=C+1 ,
X:=C,
goto(2)

ELSE IF X top(Stack)

T H E N IF obligatoryjslots(after, top(Stack))

T H E N fail

ELSE strip_optional_slots(after, top(Stack)),
record(X —> top(Stack)),
pop(Stack),
goto(l)

E LSE IF top(Stack) X

T H E N IF obligatory_slots(before, X)

T H E N fail

ELSE strip_optional_slots(before, X),
record(top(Stack) —> X),
X:=top(Stack),
goto(l)

ELSE push(X).
C:=C+1,
X:=C,
goto(2).

204

2. IF C=e

T H E N Result:=top(Stack),
pop(Stack),

IF empty(Stack)

T H E N succeed

ELSE fail

ELSE goto(l).

A lg o r ith m 9.1: Fraser’s ‘bonding’ algorithm

D e riv e d d e p e n d e n c y re la tio n s Consider sentence (73), in which the ob­

ject the thesis has been extracted out of its normal post-verbal position.

(73)

The thesis I wrote

At a certain point in the analysis of this sentence, M l will be the molecule

I wrote (headed by wrote) and M2 will be the molecule the thesis (headed

— according to normal WG practice — by the determiner the). Recall from

our discussion of visitors th a t a tensed verb may have a preceding visitor. In

this case, the (thesis) is recognized as the visitor of wrote. W hen the (thesis)

becomes visitor of wrote it is absorbed into the molecule headed by wrote and

disappears from view. However, it is still necessary to identify the (thesis) as

the object of wrote. This is where the ‘Derivable’ component of a molecule

finds its use. The Derivable list contains identity propositions. In this case,

there is a proposition which equates the object of a tensed verb w ith the visitor

of th a t tensed verb. The Derivable list is checked after each new dependency

relation is established and any additional relations which may be derived are

added to the parse record. In this way, the parser is able to build all of the

multiple-headed structures which are sanctioned by WG theory.

205

A d d itio n a l o p tim iz a tio n s The root of a sentence differs from all of the

other words in a sentence in tha t it has an em pty Negative-list (i.e. it does not

require a head). This makes it easily identifiable during parsing. One useful

consequence of the adjacency constraint is th a t no (non-derived) dependency

relation will ever cross the root. Therefore, when the root is pushed onto the

stack, the stack must be empty, otherwise the molecule or molecules left on

the stack will never be integrated into the molecule headed by the root. This

is a robust test which, together with those already mentioned, contributes to

the parser’s early recognition of fruitless search paths.

There is a t least one fragile — but nonetheless useful — heuristic which

can also improve the average performance of the parser. A part from the hand-

analyzed BKB corpus compiled for the DLT project (7), the only corpora

analyzed in term s of dependency structure known to me were constructed

by Dick Hudson, Monika Pounder and myself at University College London.

These were very small, exploratory corpora, which had no claims whatsoever

to statistical significance. However, a striking feature of the dependency trees

was observable. If an arbitrary word in any of the corpora were chosen, and

it were assumed th a t the sentence were being parsed by an incremental, left

to right parser like the one I have just described, then at the chosen point

in the analysis, the maximum number of unsatisfied dependencies hardly ever

exceeded three, and certainly never exceeded four. If this result could be shown

to be valid for a corpus of significant size, it would have implications for the

design of backtracking parsers. If it is valid, then the chances of a successful

result would be very slim from a parser sta te in which four or more molecules

were resident on the stack. This constraint is fragile — after all, it is possible

to stack up arbitrarily many adjectives before a noun — but it may prove to

have a useful heuristic function in the m ajority of cases.

Im p le m e n ta t io n d e ta i ls The parser is implemented in Poplog Prolog on a

Sun 3/52 workstation. It can analyze a wide range of English constructions

206

while m aintaining consistently high levels of efhciency. The parser analyzes

sentences left to right incrementally in real tim e — it takes 0.23-0.25secs to

establish a dependency relation, with a vocabulary of approximately 500 lex­

ical items. This is roughly 1/64 of the tim e taken by the parser’s immediate

predecessor.

C o m p le x ity The absolute tim e taken by the parser is, of course, depen­

dent on the hardware and software platforms used. Some implementation-

independent measure of performance is more desirable. In particular, the

asym ptotic complexity of the parser is of interest. It is worth pointing out

th a t the optimizations to the bonding algorithm described above do not affect

the asym ptotic complexity; they only affect the size of the constant in the

calculation.

Assuming for a moment th a t the parser operates with a completely unam ­

biguous gram m ar, the maximum am ount of work required to find the depen­

dents of a word and the head of a word is constant for all words. Therefore the

parser takes tim e proportional to n, i.e. it operates in linear time. Although no

formal complexity proof has been constructed, it is hard to see how the formal

result could differ from the one arrived at informally here. Empirical experi­

ments with the parser support this result. (The average tim e of 0.23-0.25 secs

taken to establish a dependency relation was constant even for sentences of

more than forty words in length.)

Given the prevalence of ambiguity in natural language, it is unrealistic to

suppose th a t a practical version of the parser would be able to operate without

being forced to backtrack. Like most parsers which make no use of charts, the

tim e taken to find every reading for an ambiguous sentence is proportional to

n ” in the worst case. The effects of stack-related early recognition of failure

have not been taken into consideration in arriving at this figure. It seems

likely th a t addition of a chart to the parser would result in polynomial tim e

complexity.

207

9 .3 .2 H u d so n ’s p arser

O bjectives of the parser

Hudson had two main objectives in writing his WG parser. First, he was inter­

ested in developing a tool which would help him to write consistent large scale

gram m ars of natural languages. It is very difficult when writing realistically-

sized gram m ars to m aintain internal consistency and to anticipate all the con­

sequences of the addition of some new gram m ar rule or rules. One solution to

this problem is to build a com putational environment, a ‘gram m arians work­

bench’, which allows the gram m ar writer to modify the gram m ar and then to

check the consequences of the modification by parsing a set of test sentences.

The test sentences have previously been parsed ‘by hand’ so the target struc­

tures are known. Ideally, any modifications to the gram m ar should increase the

num ber of test sentences which the parser analyses correctly. Since Hudson’s

workbench is designed to be used by linguists rather than com puter scientists,

gram m ar rules can be w ritten in a slightly modified dialect of the WG notation

reviewed above. This is autom atically compiled into a denser, less readable

system -internal representation. It is not necessary to be familiar with this rep­

resentation in order to understand the algorithm. A gram m arian’s workbench

should be usable with a range of grammars so th a t alternative analyses can be

tried. This requires th a t the analysis system be completely separate from the

gram m ar. In Hudson’s system (as in my own) the parser and the gram m ar

are clearly distinct, even to the extent of residing in different com puter files.

The gram m ars are collections of declarative facts which can be slotted into the

procedural parser. The only linguistic objects th a t the parser knows about are

very general objects (which are not specific to any language or construction)

such as ‘dependent’, ‘head’ and ‘word’.

H udson’s second object in writing his parser was to produce a model of

hum an sentence processing. The desire to produce a parser which is, in some

sense, a cognitive model leads to a design strategy which eschews parsing

208

techniques which are com putationally efficient but cognitively unm otivated. In

so far as WG has ambitions to be a theory with claims to make about cognition

— and it does — the aim of building a com putational cognitive model should be

satisfied by following the theory as closely as possible in the implementation.

The theory calls for increm ental processing of sentences and the generation

of all possible alternative analyses for each sentence. This is a considerable

simplification of what humans seem to do. There is evidence tha t while people

do process sentences incrementally, they do so by entertaining several analyses

for a limited period only before selecting some particular reading for a word.

This means th a t most of the tim e alternative analyses are not carried all the

way through a sentence. One consequence of this is th a t it is possible to

make a wrong decision which subsequently has to be undone. Garden path

sentences (Marcus 1980) illustrate this phenomenon. Hudson’s parser is thus

only a model of certain aspects of increm entality and ambiguity handling since

it always processes incrementally and always builds all possible readings for

a sentence in parallel. W hat is perhaps W G ’s most interesting cognitively-

m otivated principle, the ‘Best Fit Principle’ (B FP), is not modelled a t all in

the parser. The BFP is designed to allow the gram m ar to be used to analyse

sentences which are to some extent ill-formed. T hat is, they do not reflect

anything in the competence gram m ar directly. The B FP is worded as follows:

The B est Fit Principle

An experience E is interpreted as an instance of some concept C if
more information can be inherited about E from C than from any
alternative to C (Hudson 1990: 47).

In effect, the B FP is a pragm atic principle which always steers processing

in the direction of the greatest net gain in information (in this respect it is

ra ther like the Principle of Relevance of Sperber and Wilson 1986). It calls

for constraint relaxation in matching a word instance to its model in the isa

hierarchy since it is accepted th a t the m atch may not be exact. (For a review

of some constraint relaxation techniques in natural language processing see

209

Fraser and Wooffitt 1990.) This could be expected to have a profound effect

on the design of a computer model. Sadly, all WG parsers produced to date

implement an ‘Exact Fit Principle’ rather than a BFP. It is to be hoped th a t

the next generation of WG parsers will tackle this problem.

The parser

Hudson’s parser is w ritten in Prolog2 and runs on an IBM XT. It processes

each sentence from left to right, one word at a time. W hen a word is read into

the system it is first analyzed morphologically into a stem and (optionally)

an affix. The stem is used to locate where to a ttach the word instance in th e

inheritance hierarchy. The affix (or absence of one) is used to determ ine the

word’s m orphosyntactic features. I shall not describe the morphological an a ­

lyzer here. Details can be found in Hudson (1989c: 327ff; a fuller trea tm en t

of morphology in W G can be found in Hudson (1990a: Appendix 8). Each

word is assigned a unique identifier which, for convenience, is an integer cor­

responding to the position of the word in the input string. Additionally, each

reading of a word is assigned a distinct number which is also an integer. T h e

first reading found is assigned the identifier 1, the second reading is assigned

2, etc. Thus, any word in the system is identified by a two element list. T h e

first element identifies its position, the second element identifies its reading. Im

sentence (74), the first occurrence of saw would have a nominal and a verb ad

reading. Thus, two distinct words would be identified: [2,1] and [2,2]. T h e

second occurrence of saw similarly has two readings, distinguished as [4,1] an d

[4,2]. (In the la tte r case the ambiguity is only local).

(74)

I saw his saw

Next, the parser has to inherit properties for each reading identified. It is no>t

clear whether it is be tte r to inherit properties all at once or in a demand-drivem

way. In this parser all inheritable properties are collected together at once ancd

210

built into a feature structure associated with the word instance. The feature

structure includes properties inherent to the word such as tense, number, etc.

It also includes information about the word’s possible dependents and, more

controversially, about its head. T hat is, most words other than finite verbs

will have associated with them a proposition such as

(75)

[6,1] has (a head)

and possibly an additional proposition which identifies the kind of word which

may serve as a head:

(76)

(head of [6,1]) is (a noun)

The algorithm always tries to link a word to a preceding word. It never searches

the right context. It begins by trying to find a dependent for the current word,

starting with the closest preceding headless word and working back towards

the first word. This process continues until all dependents are found for the

current word or until no more options are available. Next, the current word

searches the previous context trying to find another word (only roots of partial

trees are considered) which could serve as its head. If it is successful then the

next word is read in, morphologically analysed, assigned default properties and

made the current word in the parser. If no head is found for the current word

then checks are made to see whether (on the basis of local knowledge) the

current word could possibly be the sentence root or, alternatively, if it could

depend on a word which has not been read in yet. If either of these options is

not ruled out then the next word becomes the current word. If neither option

is possible then an a ttem pt is made to take the current word as the root of a

conjunct in a coordinate structure. If this is possible then it is necessary to

copy any dependency relations which hold between any other conjunct roots

and words outside the coordinate structure. If none of these tests succeeds

then the parse has failed. The parse succeeds when the final word has been

211

processed and all of the words are subordinate to a single root.

Hudson describes his algorithm as follows (quoted from Hudson 1989c:

334):

1. try to take the nearest preceding word X th a t has no head as a dependent

of W.

(a) If successful, repeat 1, with reference to the last word before X tha t

has no head;

(b) Otherwise, go to 2.

2. Try to take a root of the nearest preceding word Y as head of W.

(a) If successful, stop.

(b) Otherwise, go to 3.

3. Try to take W as a word which need not have a preceding head, either

because it needs no head at all, or because it may have a following head.

(a) If successful, stop.

(b) Otherwise, go to 4.

4. Try to take W as the root of a conjunct which shares its external relations

with earlier conjunct-roots of a coordination.

(a) If successful, stop.

(b) Otherwise, fail.

Algorithm 9.2 presents a PARS description of H udson’s parsing algorithm

(om itting the conjunct root test for simplicity).

212

IN IT IA L IZ A T IO N : read input words into a list;
C is the current word in the list;
C := l;
initialize a stack, Stack;
push(Stack, C);
C:=2;
X is a global variable;
the result is stored in the variable Root;
the action ‘roo t(R oot)’ succeeds if Root
does not require a head.

1. IF C = e

T H E N goto(3)

ELSE IF empty(Stack)

T H E N goto(2)

ELSE IF C ^ top(Stack)

T H E N record(C top(Stack)),
remove(top(stack)),
pop(Stack),
goto(l)

ELSE X:=C-1;
goto(2).

2. IF X = 0

T H E N push(C),
C:=C+1 ,
goto(l)

ELSE IF X -> C

T H E N record(X -4 C),
C:=C+1,
goto(l)

ELSE X:=X-1 ,
goto(3).

213

3. Root:=top(Stack),
pop(Stack),

IF (root(Root) & empty(Stack))

T H E N succeed

ELSE fail.

A lg o r ith m 9.2: H udson’s dependency parsing algorithm

Unlike H udson’s previous parsers (Hudson 1985b; Hudson 1986a), this one

includes no explicit adjacency test. Instead, adjacency checking is implicit

in the parsing algorithm. This is interesting since Hudson is concerned with

cognitive modelling. By making the adjacency principle inhere in the parser,

he is making the claim th a t the adjacency constraint applies in all languages.

This would be an unreasonable claim to make for the traditional version of the

adjacency constraint. However, it may not be unreasonable given Hudson’s

revision of the principle. This is an empirical question which awaits further

investigation.

We have seen how structured names for word instances distinguish them

on the basis of position and reading. However, this does not cover all possible

ambiguities. There may also be ambiguities of attachm ent. For example, in

sentence (77) the phrase with a telescope could modify either saw or the man.

The alternative analyses are shown in Figures 9.13 and 9.14. (The standard

W G analysis requires nouns to depend on determiners ra ther than vice versa.)

(77)

I saw the m an with a telescope.

To distinguish the different attachm ents, it is necessary to add another

component to a word instance’s identifier. So, for example, the instance of

with which depends on saw might be identified as [5,1,1], whereas the instance

which depends on telescope would be identified as [5,1,2]. Although not shown

in the formal specification of the algorithm, the parser m ust generate new

214

saw the man w ith a telescope

Figure 9.13: with a telescope depends on saw

saw the man with

1
a telescope

Figure 9.14: with a telescope depends on the man

identifiers during the parse to cope with cases like this. Needless to say, two

instances sharing the same position in the sentence may not enter into any

dependency relationship with each other whatsoever.

By means of the above naming convention, all possible readings for the

sentence are generated breadth-first. The parser consequently runs ra ther

slowly but, given its academic rather than engineering motivations, this is not

a serious fault.

To date, the parser has been tested with a fairly small gram m ar bu t it

has been able to handle an impressive range of English constructions. These

include a variety of different kinds of complement and adjunct structures,

shared dependent (a.k.a. m ultiple head) structures, negatives, and coordinate

constructions, including examples with gapping.

9.4 S u m m ary

Both parsers described here work bottom -up, left to right, with a single pass.

Furtherm ore, bo th alternate between dependent-seeking and head-seeking.

215

Table 9.2: main features of Fraser’s Word Grammar parser

Search origin bottom -up
Search manner depth-first
Search order left to right
Number of passes one
Search focus heads seek dependents;

then dependents seek heads
Ambiguity management chronological backtracking;

(early identification of failure)

Table 9.3: main features of Hudson’s Word Gram m ar parser

Search origin bottom -up
Search manner breadth-first
Search order left to right
Number of passes one
Search focus heads seek dependents;

then dependents seek heads
Ambiguity management all trees constructed in parallel

This is made possible by the fact th a t WG words are subcategorized for: heads

as well as for dependents. The parsers differ in respect of their tre a tm e n t

of ambiguity. My parser aims to produce a first parse as quickly as pmssible

by spotting problems early and backtracking over the shortest possib)le dis­

tances. Hudson’s parser is much slower and much more thorough, generating

all possible parses breadth-first w ithout the help of a chart.

The main features of my parser are summarized in Table 9.2. Thiose of

H udson’s parser are summarized in Table 9.3.

216

C h a p ter 10

C o v in g to n ’s parser

1(0 1 O verview

In I tlhis chapter I describe a dependency parser w ritten by Michael Covington,

a irefsearch scientist at the University of Georgia, USA. Covington is unusual

in tlhat he brings together expertise in classics and history of linguistics with

mcone contem porary interests in artificial intelligence. A comparison of two of

hiss ^publications. Syntactic Theory in the High Middle Ages (Covington 1984)

anid Prolog Programming in Depth (Covington et al. 1987), serves to illustrate

hiss mnusual blend of interests.

Section 10.2 presents a brief review of some of Covington’s work on me-

diaiewal gram m ar which informs his work in DO. Section 10.3 describes the

uniifiication-based gram m atical formalism Covington assumes, and Section 10.4

defsciribes his dependency parser.

1(0-2 E arly d ep en d en cy gram m arians

Co)viington’s work in the history of linguistics is more pertinent to the concerns

of thiis thesis than might at first be apparent. Covington traces the origins

of D'G back to the M odistae, a group of mediaeval gram m arians starting with

Maarttin of Dacia in the mid 1200s who a ttem pted to make ‘modes of signifying’

thœ Ibasis of all gram m atical analysis (Covington 1984: 25). One of the most

im p o r ta n t principles of modistic syntax is th a t the relation between two words

217

in a construction is not symmetrical; one of the words is the dependens, the

other is the terminans. Thomas of Erfurt offers a metaphorical definition in

his Grammatica Speculativa:

Just as a composite entity in nature consists of m atter and form,
of which one is actual and the other is potential, in the same way
construction in language comes about through the exerting and
fulfilling of dependencies. The dependent constructible is the one
th a t by virtue of some mode of signifying seeks or requires a te r­
minus to fulfill its dependency; the term inant is the constructible
th a t by virtue of some mode of signifying gives or supplies tha t
term inus (Covington 1984: 48, Covington’s translation).

Superimposed on the dependens-terminans relation is another, the relation of

primum to secundum. Covington notes tha t

the relation of primum to secundum is similar to the basic relation
posited by modern dependency grammar, in th a t the secundum
presupposes the presence of the primum (Covington 1986: 31).

This concern of Covington’s with the origins of gram m atical theory in general

and DG in particular informs his work in parsing. In introducing his parser

he ties it to the work of the Modistae:

In a sense, the algorithm is not new; there is good evidence th a t
it was known 700 years ago. But it has not been implemented on
com puters [before] (Covington 1990a: 1).

To say th a t Covington’s work is informed by mediaeval gram m atical theory is

not to say th a t his parser slavishly follows its dictates. His parser is n o t an

im plem entation of the gram m atical theory of Thomas of Erfurt!

10.3 U n ifica tion -b ased d ep en d en cy gram m ar

Covington bases his DG on a variation of Miller’s ^D-rules’ (Miller 1985). In­

stead of using atomic symbols like N and V he uses feature structures of the

218

kind th a t are commonly used in unification-based gram m ars (Shieber 1986).

The following rule:

(78)
category : X ■ category : Y -
gender : a gender : a
number : N number : N
case : a . case : a

indicates th a t a word of category Y with gender G, number N and case C can

depend on a word of category X with gender G, num ber N and case C. The

rule says nothing about word order. By convention the head is always w ritten

first. If the feature structure corresponding to some word unifies w ith the left

hand side of the rule and the feature structure corresponding to some other

word unifies with the right hand side of the rule, the two words can enter into a

dependency relationship in which the head is the word whose feature structure

m atches the left hand side of the rule.

A simple semantics can be built into this framework as follows:

(79)
category : noun
number : N
person : P
sem antics : Y
case : nom

category : verb
number : N
person : P
semantics : X{ Y^ Z)

This rule allows subjects to depend on verbs and also ensures th a t the subject

becomes the verb’s first argument.

This kind of simple semantics is used to m anage optionality and obliga­

toriness in the grammar. If an argum ent is obligatory then it is also unique.

Once an obligatory argum ent is found it instantiates a variable in the feature

m atrix which can not be subsequently reinstantiated. Therefore there can not

be multiple matches. If this semantic constraint were not present, the above

rule could be used to provide the verb with as m any ‘subjects’ as there were

nouns in the sentence. There must be an explicit check at the end of parsing

to ensure th a t no semantic arguments remain uninstantiated . In order to add

219

optional dependents to a word, the rules relating to these dependents must

be w ritten so as to add feature-value pairs rather than to supply values for

existing features.

Even variable word order languages place some constraints on order such

as the requirem ent th a t prepositions precede their nouns. This is handled by

marking rules where necessary as ‘head first’ or ‘head la s t’ and requiring the

dependents to be ordered accordingly. The gram m ar and parser Covington

describes do not provide a mechanism for handling strict contiguity require­

ments. Covington proposes a scheme for implementing these by marking the

head of the constituent in question with a feature contig which would be copied

recursively to all its dependents. An explicit check would ensure th a t all words

bearing this feature were contiguous.

10.4 C o v in g to n ’s parser

Covington declares his principal objective in writing his parser to be the in ­

vestigation of parsing techniques for languages with variable word order and,

in particular, languages with discontinuous constituents. The parser is im ple­

mented in V M /Prolog on an IBM 3090 Model 400-2VF computer.^ There iis

no morphological analyser; all forms of a word are stored in the lexicon. Thie

features used in lexical entries include:

p h o n the w ord’s phonological or orthographic form;

c a t the word’s syntactic category;

case , n u m , g en , p e rs gram m atical agreement features;

id a unique identifier for each word;

d e p an open list containing pointers to the feature structures of all the word ’s
dependents.

The parser makes an initial pass through the sentence, looking up each word iin

the lexicon and replacing the word in the input string w ith its feature structurée.

^Covington’s paper describing his parser (Covington 1990a) won first prize in the Socital
Sciences, Humanities and Arts section of IBM’s Supercomputing Competition (see Thhe
Finite String 16:3, September 1990, page 31; LSA Bulletin 129, October 1990, page 16).

220

There is no reason why this lexical scan phase should not be interleaved with

the linking procedure in an incremental parser.

Two lists are m aintained by the parser: ‘PrevW ordList’ which contains all

words th a t have been input to the parser so far, and ‘H eadList’ which contains

only words which are not dependents of other words. At the start of parsing

both of these lists are empty. At the end, HeadList should contain a single

item, the only word w ithout a head left in the sentence, i.e. the sentence root.

Parsing proceeds by processing each of the words in the sentence in turn,

as follows (quoted from Covington 1990a: 19):

C ovin gton ’s parsing algorithm

1. Search PrevW ordList for a word on which the current word can depend.

If there is one, establish the dependency; if there is more than one, use

the most recent one on the first try; if there is none, add the current

word to HeadList.

2. Search HeadList for words th a t can depend on the current word (there

can be any num ber), and establish dependencies for any th a t are found,

removing them from HeadList as this is done.

221

IN IT IA L IZ A T IO N : read input words into a list;
C is the current word in the list;
C:=l;
initialize two empty stacks: Stackl and Stack2;
push(Stackl, C);
C:=2;
Root is the result variable;
X is a global variable;
X:=l.

1. IF C=e

T H E N goto(4)

ELSE IF X=0

T H E N push(Stack2, C),
goto(2)

ELSE IF X C

T H E N record(X C).
goto(2)

ELSE X:=X-1,
goto(l).

2. IF empty(Stackl)

T H E N goto(3)

ELSE IF C top(Stackl)

T H E N record(C —> top(Stackl)),
pop(Stackl),
goto(2)

ELSE push(Stack2, top(Stackl)),
pop(Stackl),
goto(2).

3. IF empty(Stack2)

T H E N X:=C,
C:=C+1,
goto(l)

ELSE push(Stackl, top(Stack2)),
pop(Stack2),
goto(3).

222

4. Root:=top(Stackl),
pop(Stackl),
IF empty(Stackl)
T H E N succeed
ELSE fail.

A lgor ith m 10.1: Covington’s dependency parsing algorithm
(no adjacency requirement)

Notice th a t the parser begins by searching for a word on which the present

word may depend and afterwards searches for words which can depend on

the present word. This is unusual; for example, my own dependency parser

and those of Hudson, and Starosta and Nomura all begin by searching for

dependents for the current word and thereafter proceed to searching for a

head for the current word. The reason for proceeding in this way is simple.

If a word has both a head and a dependent occurring on the same side, the

dependent is almost always closer to the word than the head. By searching for

the dependent first, the possibility of considering the dependent as a potential

head is ruled out. Perhaps this difference is not yet relevant to Covington’s

system since he has so far tested his algorithm only against d a ta from Russian

and Latin, both of which have variable word order and rich case systems.

As the parser stands, it could be expected to produce spurious parses for a

fixed order, virtually case-free language like English. Covington claims th a t his

parser could be modified to respect the sort of adjacency required for English

by modifying his two algorithm steps as follows:

M odifications to algorithm to introduce adjacency *

1. W hen looking for the word on which the current word depends, consider

only the previous word and all words on which it directly or indirectly

depends.

2. W hen looking for potential dependents of the current word, consider only

a contiguous series of members of HeadList beginning with the one most

recently added.

223

A PARS description of Covington’s modified algorithm is given below.

IN IT IA L IZ A T IO N : read input words into a list;
C is the current word in the list;
C;=l;
initialize two empty stacks: Stackl and Stack2;
push(Stackl, C);
C:=2;
Root is the result variable;
X is a global variable;
Top is a global variable;
H is a local variable
(it is not bound between subroutine calls).

1. IF C=e

T H E N goto(5)

ELSE IF C-1 C

T H E N record (C-1
goto(3)

E LSE X:=C-1,
goto(2).

2. IF H - , X

T H E N IF H - , C

T H E N record(H —
goto(3)

E LSE X:=H,
goto(2)

ELSE push(Stack2, C),
goto(3).

C) ,

C).

224

3. I F empty(Stackl)

T H E N goto(4)

E L S E Top:=top(Stackl),

IF C -> Top

T H E N record(C —> Top),
pop(Stackl),

IF top(Stackl)=(Top-l)

T H E N goto(3)

ELSE goto(4)

ELSE pop(Stackl),
pop(Stackl),

IF Top(Stackl)=(Top-l)

T H E N push(Stack2, Top),
goto(3)

ELSE push(Stackl, Top),
goto(4).

4. IF empty(Stack2)

T H E N C:=C+1,
goto(l)

E LSE push(Stackl, top(Stack2)),
pop(Stack2),
goto(4).

5. Root:=top(Stackl),
pop(Stackl),
IF empty(Stackl)
T H E N succeed
ELSE fail.

A lg o r ith m 10.2: Covington’s dependency parsing algorithm
(including adjacency requirement)

Covington’s claim is th a t with these requirements added, the algorithm

would be equivalent to th a t of Hudson (1989c). Certainly, the algorithms are

similar in spirit although Hudson’s parser can deal with phenomena such as

coordination and movement which Covington’s can not handle. Links would

225

not be established in the same order in both parsers since, as I have already

pointed out, Hudson’s parser searches for dependents first and Covington’s

parser searches for heads first. This difference is not trivial. In many cases it

leads to Covington’s parser failing to find an analysis where Hudson’s parser

succeeds. Consider sentence (80).

(80)

I like blue cheese

W hen cheese is being parsed, the algorithm requires blue to be considered as

its head. This fails. Since only blue and any word on which blue depends (in

this case none) may be considered as a head for cheese^ cheese m ust be added

to HeadList. Next HeadList is searched in order to find dependents for cheese.

The only dependent which is found is blue so it is removed from HeadList.

There are no more words in the sentence so parsing term inates. However,

cheese has not been linked to its head like. The parsing algorithm has failed to

find a structure for (80). Having read an earlier draft of this chapter, Covington

accepts these criticisms. A modified version of his parser, in which dependents

are searched for first, has now been published (Covington 1990b). It appears

to work unproblematically.

Covington’s main interest, however, is in the version of his parser which

has no adjacency constraint. He points out th a t though his parser is capable

of finding discontinuous constituents, it nonetheless ‘prefers’ analyses in which

constituents are continuous. This is because it always begins searching as close

as possible to the current word, and works backwards. W hen an analysis fails,

the parser uses Prolog’s backtracking facility to ‘unpick’ what has been built

back to the point where the wrong choice was m ade and then starts building a

new analysis. This approach to recovery from failure (it is also the mechanism

which produces exhaustive enum eration of all possible readings of the sentence)

is com putationally expensive since there is no way of preventing backtracking

from discarding structure which will have to be rebuilt. In Covington’s favour.

226

it m ust be said th a t he presents his parser as a prototype so it is probably too

early to criticize it on grounds of im plem entational inefficiency.

Covington does, however, address the question of the time complexity of his

parser. The tim e required to parse an n-word sentence using the most efficient

C FPSG algorithms, is proportional to a t most n^. Covington suggests tha t

the same is true of any dependency parser with an adjacency constraint. He

makes his case as follows (quoted from Covington 1988):

1. A dependency parser must attach every word in the sentence (except the

m ain verb) to some other word.

2. W ithout backtracking, this would require, at most, examining every com­

bination of two words, checking whether a dependency relation between

them is possible. There are such combinations.

3. However, the dependency parser may have to backtrack, i.e., discard

attachm ents already made and replace them with other possibilities. At

worst it must repeat all its previous work every time it parses another

word, thus introducing another factor of n. Hence the to tal worst-case

tim e is proportional to n^.

Inevitably, parsing without an adjacency constraint will be more complex since

the search space will be larger. Covington suggests a worst case tim e propor­

tional to n ” . In defence of a parser with such a high complexity he notes th a t

(i) the complexity is due to allowing discontinuous constituents, not to the use

of dependency; (ii) worst case complexity is irrelevant to natural language pro­

cessing (after all, humans are typically unable to process ‘worst cases’); (iii)

the complexity can be reduced by putting arb itrary limits on how far away

from the current word the search for heads and dependents may proceed.

However, even if we were to accept his observations, it is still the case

th a t, o ther things being equal, the parser with the lowest complexity is to be

prefered over any alternatives. The arguments he offers could be made for

227

any high-complexity parser so they do not distinguish his parser from others

of similar complexity. Neither do they justify the selection of this parser over

others of lesser complexity.

Covington acknowledges th a t coordinate constructions pose a problem for

DGs; his parser does not handle them. Since he has placed special em pha­

sis on producing a variable word order parser, it can be argued th a t he has

selected the task to which dependency parsers are best-suited. After all, his

parser operates with the minimum of constraints; it spots possible dependency

pairs and thereafter has no further constraints to check to see if the words

are accessible to each other. The parsing complexity may be high but the

algorithmic complexity is low. If, on the other hand, he modifies his parser

so th a t it embodies an extra adjacency constraint, the search space is reduced

but the algorithmic complexity is increased. Furtherm ore — in addition to the

problems I have already noted — the adjacency constraint he proposes is not

sufficient to allow the parser to produce correct analyses of normal movement

phenom ena in English. W hat is required is an adjacency constraint plus some

principled way of analysing the small number of discontinuous constituents

which regularly occur in fairly fixed word order languages like English.

10.5 S u m m ary

Covington’s parser is loosely inspired by the work of the medieval Modistae.

It has as its prim ary objective the parsing of variable word order languages.

I have presented two versions of the parser. W hereas the first version has

no adjacency constraint a t all, the second version does include one. Both

parsers implement left to right, bottom -up, depth-first search. They both also

establish dependencies by first seeking heads and then seeking dependents. As

I have observed, this results in the failure of the version with an adjacency

constraint to parse some sentences correctly. Each version yields one parse

only, although it is possible to produce all parses by forced backtracking.

228

Table 10.1: main features of Covington’s first two dependency parsers

Search origin bottom -up
Search m anner depth-first
Search order left to right
Number of passes one
Search focus dependents seek heads;

then heads seek dependents
Ambiguity management chronological backtracking

The main features of both versions of Covington’s parser are summarized

in Table 10.1.

A more recent version reverses the order of search so th a t dependents are

searched for before heads. This algorithm is virtually identical to th a t of

Hudson, as described in PARS in the last chapter.

229

C hapter 11

T he CSELT la ttice parser

11.1 O verview

In this chapter I describe the SYNAPSIS parser developed at the Centro Studi

e Laboratori Telecomunicazioni^ (CSELT) in Turin, This is not the only parser

to be produced at CSELT which makes use of the notions of dependency, or at

least valency. A system called SHEILA (‘Syntax Helping Expectations In Lan­

guage Analysis’) analyzes and ‘understands’ information from a news agency

wire by using a m ixture of PSG and DC (Danieli et al, 1987), PSG is used

to construct the m ajor phrases of a sentence; DG is used to establish depen­

dencies between m ajor phrases. The rational for this approach is th a t phrase

structure parsing is well-understood and consequently should be used where

possible and effective, i,e, in building immediate constituents. However, de­

pendency is useful for linking the m ajor constituents of the sentence because,

by and large, syntactic and semantic dependencies are isomorphic. This is

claimed to assist in early disambiguation since sem antic constraints can be

brought to bear immediately a syntactic dependency is postulated. This sys­

tem bears a striking similarity to Niedermair’s divided valency-oriented parser

(Niedermair 1986; briefly described on page 64, above).

The object of the SYNAPSIS parser differs significantly from th a t of all

the other parsers described here: it is designed speciflcally for the purpose

of analyzing spoken rather than w ritten language. The difference turns out

^The research division of the Italian telecommunications company.

230

to be non-trivial as we shall see in Section 11.2. The parser is described in

Section 11.3.

11.2 T h e problem : la tt ic e parsing

One of the most im portant differences between spoken language and w ritten

language is the markedness of word boundaries. In w ritten language, word

boundaries are clearly indicated by the presence of a space. In computer sys­

tems it is normal to regard the space not simply as a gap — an absence of

writing — but rather, as an explicit boundary marker. In spoken language,

while pauses may occur between words, there are no guarantees th a t this will

happen in every case. R ather the opposite is the case: it is normal for words to

be run together to the extent th a t the final segment of a word is coarticulated

with the initial segment of the following word. Thus, the speech recognition

problem does not consist solely in the identification of what lies between word

boundaries; it also requires the hypothesization of the boundaries themselves.

If the set of hypotheses is to include the correct segmentation then it is likely

to have to contain some alternatives. For example, a short speech signal could

be segmented as I see or icy. Given the limitations of present speech recog­

nition technology, most sentences are analysed in terms of many alternative

segmentations and, for the signal chunk between each hypothesized pair of

word boundaries, there will be several different word candidates. Far from

ou tputting a single string of words, a connected speech recognizer typically

outputs a lattice o f hypothesized paths, one of which hopefully corresponds to

the ‘correct’ analysis of the sentence. Figure 11.1 shows a very simple lattice

based on the two words I know. This is a portion of a larger lattice presented in

Phillips (1988). In reality, most lattices are likely to be much more complicated

than this.

Not all paths through a lattice are equally likely. W hen a speech recognizer

constructs a word hypothesis it weighs the evidence for and against the validity

231

inner, honour, owner, army

in, an, on, own, iron, oh, or, are, air,
earn, him,am, aim, arm________ ear,our,hour

I, eye, oh,our,hour, know, no, nor, now,near,
are, or,her, air, ear mayor, more,near,mere

Figure 11.1: a simple lattice for the uttered words I know

of the hypothesis and assigns a numeric ‘confidence score’ to the hypothesis.

If the confidence score is greater than some threshold then the hypothesis is

entered in the lattice, otherwise it is discarded. Since all words in the lattice

have an associated confidence score, it is possible to rank-order paths through

the lattice on the basis of confidence scores. In an ideal system operating

under ideal circumstances, the highest-scoring path would correspond to the

‘correct’ analysis. However, there are no guarantees th a t this will be the case.

In fact, there are no guarantees th a t the ‘correct’ analysis will be represented

in the lattice a t all, although parts of it almost certainly will. We shall see in

the next section how the SYNAPSIS parser is able to analyze some sentences

correctly, even when certain words are missing from the lattice.

Clearly, most of the paths through the lattice will be incoherent a t the

levels of syntax and semantics. Ideally there will be a single path through

the lattice which satisfies the higher level constraints, although the possibility

of there being more cannot be ruled out a priori. The task of recognizing a

spoken sentence should thus reduce to the task of constructing a lattice and

232

then parsing every path to find the syntactically and semantically coherent

one(s).

There is a simple reason why this approach is im practical for most purposes:

there are too m any possible paths through the lattice. Speech understanding is

a real tim e activity. Most speech interfaces are conceived with the aim of facil­

ita ting rapid hands-off interaction with a computer. There may simply be in­

sufficient tim e for all possible paths to be considered (assuming the constraints

of state-of-the-art computing technology) if the speech interface is to produce

an in terpretation within the limits of the desired response time. In the case of

‘conversational’ com puter systems such as the Sundial system (Peckham 1991),

rapid response m ay be necessary for other reasons. For example, it has been

shown th a t in everyday hum an-hum an conversation, speakers seldom leave un­

filled pauses of more than about 1 second (Jefferson 1988). If speaker A asks

speaker B a question and speaker B does not respond within the crucial %1

second period, speaker A will feel compelled to take the initiative and begin

a new conversational turn . There are certainly exceptions to this general­

ization and it is unlikely th a t the phenomenon transfers exactly to human-

com puter conversations. However, initial results from ‘W izard of Oz’ experi­

ments (Fraser and Gilbert 1991b) in which subjects conversed with a simulated

com puter, suggest th a t a related phenomenon can be found in hum an-com puter

interactions (Fraser and Gilbert 1991a, Fraser et al. forthcoming). Clearly, a

conversational com puter must be able to understand an utterance and generate

a reply before the hum an user starts responding verbally to an ‘accountable

silence’.

The lattice to be searched by a speech recognizer is typically very large

indeed. A ten word sentence, analysed as a lattice consisting of ten edges, each

having four competing hypotheses, would yield more than a million possible

paths. Most speech recognition systems construct lattices containing many

more than four hypotheses for each edge. For example, the CSELT speech

233

recognizer constructs lattices containing approximately fifty times the number

of actual words u ttered . I shall use a much lower figure to illustrate the nature

of the lattice parsing problem. Suppose a ten word sentence is analysed as a

lattice containing ten competing hypotheses for each word. This lattice would

yield more than ten billion possible paths. Phillips reports th a t “An actual

parser I have used would usually find a parse [for a ten word sentence] after

trying a couple of hundred million paths — an average of six or seven words

for each position” (Phillips 1988). Assuming it were possible to produce one

hundred parses per second for a ten word sentence, it would take about eleven

and a half days to produce one hundred million parses!

According to G azdar and Mellish, “Ambiguity is arguably the single most

im portan t problem in N LP” (Gazdar and Mellish 1989: 7). It introduces the

possibility of multiple syntactic analyses of parts or all of a sentence. However,

the word class or word sense ambiguity which preoccupies most com putational

linguists and to which Gazdar and Mellish refer, is normally considered from

the starting point of a string of distinguished words. W hen the starting point is

a lattice, and the indeterm inacy of the acoustic signal is compounded with the

indeterm inacy of the gram m ar, the combinatory explosion of possible paths

from signal to analysis is alarming.

It is unrealistic to expect a parser to search a lattice and find a solution by

‘bru te force’ within a reasonable time period. The m agnitude of the problem

precludes the use of such a technique. The CSELT SYNAPSIS parser is an

a ttem pt to solve the problem by applying appropriate ‘intelligence’ ra ther than

‘b ru te force’. It is an a ttem pt to use the information to be found in the acoustic

signal to limit the search space of the parser, and the information contained

in the gram m ar to constrain the search space of the word recognizer. As

such, its concerns are different from those of the other parsers I have described

and it is not readily comparable with them a t an algorithmic level. However,

the fact th a t it is bo th based on DG and algorithmically innovative makes

234

it particularly relevant to our present concerns. It also serves to illustrate a

promising application of DG in NLP.

11.3 T h e so lu tion : th e S Y N A P S IS parser

Section 11.3.1 provides a brief overview of the SYNAPSIS parser. This is

followed in Sections 11.3.2 to 11.3.4 by a more detailed examination of the

form of syntactic and semantic information used by the parser. Section 11.3.5

describes the basic SYNAPSIS parsing strategy and Section 11.3.6 outlines a

suggestion for parallelizing the parser.

11 .3 .1 O v erv iew o f S Y N A P S IS

The SYNAPSIS (SYNtax-Aided Parser for Semantic In terpretation of Speech)

parser is part of a larger question-answering system for extracting information

from a database by means of relatively unconstrained spoken natural lan­

guage requests (Fissore et al. 1988). The database used during development

contained information about the geography of Italy. The earliest references

to SYNAPSIS in the literature are dated 1988, although SUSY, the overall

speech understanding system (recognizer + parser -f generator -f synthesizer)

of which SYNAPSIS is just one part, is described in Poesio and Rullent (1987).

The principle m otivating the design of SYNAPSIS was th a t syntactic, and

indeed, semantic constraints should be brought to bear as early as possible

in the interpretation of a lattice. T hat is, knowledge of syntax and semantics

should provide expectations to guide search in the lattice, thus ensuring tha t

syntactically or semantically impossible structures were not considered. The

parser had to implement a top-down strategy. On the other hand, since it was

observed th a t correct words were usually — though not always — amongst the

highest confidence-scoring words, a useful search strategy would be to consider

the highest-scoring words first. Therefore, the parser should embody bottom-up

features as well.

235

Since the search space is so large, it was considered appropriate to apply

as many top-down constraints on search as possible. Semantic constraints, as

well as syntactic constraints should be allowed to trickle down. A semantic

representation based on caseframes (Fillmore 1968) was adopted, for reasons

which have as much to do with the specific problems of speech recognition as

they have to do with the usual range of issues which confront linguists. The

conventional motivations for choosing caseframes concern the requirement tha t

the semantics be formally explicit, descriptively adequate, and compositional.

Caseframe semantics satisfy these criteria. A first speech-related m otivation is

th a t the semantics be word-based, ra ther than phrase-based. Since the primi­

tive units in the lattice are words, it is desirable th a t single words should trig­

ger semantic rules. This is true of caseframes which are associated w ith single

words. (Effectively the caseframe expresses the semantic valency of the word).

Another m otivation is the desire to “correlate semantic significance with acous­

tic certainty” (Giachin and Rullent 1989: 1538). It is claimed th a t caseframes

facilitate this because “the header word, being the most ‘meaningful’ one,

tends to be u ttered more clearly, and hence is easily recognized with good

acoustical score” (ibid.). For these reasons, caseframes have been adopted in a

num ber of speech understanding systems (e.g. Brietzm ann and Ehrlich 1986;

Hayes et al. 1986).

Caseframes encode only semantic slots for a given word, and constraints

on the semantic type of each slot-hller. However, it is not sufficient to rely

on semantic constraints alone. For example, the semantic caseframe for the

verb put will indicate th a t it requires a PATIENT of some m aterial type (i.e.

the thing which is ‘p u t’) and a GOAL of type LOCATION (i.e. where the

PATIENT is ‘p u t’). This says nothing about the realization of these cases.

For example, it places no constraints on the relative ordering of put, its PA­

TIEN T and its GOAL. It is necessary to combine syntactic constraints with

sem antic constraints in order to maximize the useful inform ation in top-down

236

predictions.

The way in which syntactic and semantic information is combined is of

vital im portance. One approach would be to add simple positional features

to the case slots, after the fashion of Conceptual Dependency (Schank 1975;

Schank and Riesbeck 1981). This would produce a ‘semantic gram m ar’. There

are a num ber of arguments against this way of tackling the problem. Firstly, it

misses a lot of syntactic generalizations. Most semantic grammars are w ritten

piecemeal with new ‘concepts’ being added when required and (usually barely

adequate) word order features being added to each new semantic entry. There

is typically no principaled way of dealing with general types of construction

such as relative clauses. Secondly, the gram m ars are necessarily tied to some

sem antic domain. A semantic gram m ar developed in the context of Italian

geography could not readily be ported to a stock control application in spite of

the fact th a t m any sentence types would be common to bo th domains. Thirdly,

sem antic gram m ars are not readily modifiable since syntactic and semantic

constraints tend to be mixed up together in a collection of ad hoc rules. (For

a discussion of the shortcomings of semantic gram m ars see Ritchie 1983.)

The approach adopted in SYNAPSIS is to keep a sharp distinction be­

tween syntax and semantics during gram m ar development and to ensure tha t

appropriate generalizations are made within distinct knowledge bases. In this

way, formal rigour and consistency can be m aintained. W hen the syntax and

the semantics are completed for some phase of the project, they are auto­

m atically compiled into a unified framework similar to a feature gram m ar

w ith mixed syntactic and semantic features. Grishman observes th a t parsers

based on conceptual dependency can be characterized as being “guided by se­

m antic ...patterns and then applying (limited) syntactic checks, whereas most

parsers are guided by syntactic patterns and then apply semantic checks”

(Grishm an 1986: 121). SYNAPSIS treats neither syntax nor semantics as

prim ary, but instead it merges the two into a genuinely mixed gram m ar which

237

is nonetheless easily portable and modifiable.

Syntax in SYNAPSIS is expressed in term s of DG. The choice is n a tu ­

ral, given the adoption of caseframe semantics. Both systems are word-based

and both directly encode the notion of a head or governor and a set of de­

pendents or modifiers. I have already observed th a t syntactic and semantic

dependencies are isomorphic in many cases. Hudson’s description of W G can

be taken as a particularly em phatic expression of a widely-held view amongst

DG practitioners:

The parallels [between syntactic structure and semantic structure]
are in fact very close — virtually every word is linked to a single
element of the semantic structure, and the dependency relations
between the words are typically m atched by one of two relations
between their meanings: dependency or identity. Moreover, if word
A depends on word B, and the semantic relation between them is
dependency, then the dependency nearly always goes in the same
direction as in the syntax — the meaning of A depends on th a t of
B (Hudson 1990: 123).

In order to avoid terminological com m itm ent to regarding either syntax or

semantics as basic, rules containing merged syntactic and semantic constraints

are given the neutral name knowledge sources?

These knowledge sources are used by the parser in a mixed top-down and

bottom up control strategy which embodies the principles of best-first search.

1 1 .3 .2 D e p e n d e n c y g ra m m a r

The DG used in SYNAPSIS is defined as a tuple

D G = {C ,R }

in which C is a set of lexical categories and R is a, set of rules of the form:

(81)

a jY0 — .A 1 , 2 ,..., ^
b = *

^Although the term ‘knowledge source’ is typically associated with blackboard systems,
the SYNAPSIS system is not described as such in any of the published accounts I have seen.

238

Xi G C and n > 0.

S tandard constraints on sentence well-formedness apply. This is a very slight

m odification to the Gaifman rule form at. Notice th a t because the gram m ar is

defined as a tuple, rather than as a 4-tuple, it is not possible to refer to specific

words in the gram m ar. This makes it difficult to express the strongest possible

predictions which the gram m ar ought to be able to make, namely predictions of

single words. For example, the English verb depend requires a nominal subject

and a complement which must be the word on. This observation is very robust

and could be used to direct word recognition with pinpoint accuracy. It would

be simple to express the rule in a 4-tuple DG as follows:

(82)

depend = NOUN * on

The best th a t can be done in a DG of the sort used in the SYNAPSIS project

is the following:

(83)

DEPEND = NOUN * ON

where ‘D EPEN D ’ and ‘ON’ are classes which each possess exactly one member.

Gaifman form at rules and their immediate notational relatives may be ap­

propriate for describing formal languages but, like standard phrase structure

rules, they are ill-equipped for making the full range of generalizations relevant

to the syntax of natural languages. In order to cope with phenomena such as

m orphosyntactic agreement, it is necessary to augm ent the basic rule set. Pre­

vious chapters have documented how a popular approach has been to define

DGs in term s of complex feature sets which are combinable by unification.

The approach adopted in SYNAPSIS is to a ttach conditions to rules. These

conditions take the form of a word class label (which must be present in the

rule) followed by arbitrarily m any feature-value pairs. Instead of a value, a

variable (a character preceded by ‘?’) may be used. W here the same variable

is used in two conditions applying to the same rule, coreference is indicated.

239

For example,

R u le : VERB = ART ADJ NOUN * ART ADJ NOUN

C o n d itio n s : VERB: (PERSON (3)) (NUM BER ?X)
ART: (NUMBER ?X) (GENDER ?Y)
ADJ: (NUMBER ?X) (GENDER ?Y)
NOUN: (NUMBER ?X) (GENDER ?Y)
ART: (NUMBER ?Z) (GENDER ?W)
ADJ: (NUMBER ?Z) (GENDER ?W)
NOUN: (NUMBER ?Z) (GENDER ?W)

The rule and conditions indicate th a t if the head verb is in the th ird person,

the article, adjective, and noun preceding it must agree with it in number and

w ith each other in gender. The article, adjective, and noun following the verb

are not required to agree with it at all but they m ust agree with each other in

gender and number. (This example is appropriate for Italian but not wholly

appropriate for English’s much sparser agreement system). Published accounts

do not make clear how the particular symbol in a rule (e.g. one of the two

‘NOUN’ symbols) is distinguished in the conditions.

It would be straightforward to convert a gram m ar expressed in this form

into a unification-based representation such as PAT R-II

(Shieber 1986).

1 1 .3 .3 C asefram es

A caseframe represents the sem antic valency of a head word. It contains any

num ber of case slots (i.e. roles) and constraints on the types of possible

slot fillers. Some slots must be filled; others are optional; they correspond to

necessary parts of the state, action, or entity the caseframe describes but they

do not necessarily have to be made explicit in linguistic accounts of the state,

action, or entity. (This is reminiscent of W ilks’ (1875) Preference Semantics.

Caseframes in SYNAPSIS are represented in terms of Conceptual Graphs

(Sowa 1984). A detailed introduction to the conceptual graph notation is

unnecessary for the purposes of the present discussion. The example shown

240

[LOCATED-IN-REGION]
(AGNT:Compulsory) [MOUNT+PROVINCE+LAKE]

—> (LOC:Compulsory) — [REGION]

Figure 11.2: a SYNAPSIS caseframe

in Figure 11.2 should serve to illustrate what a caseframe looks like. (The

example is taken from Giachin and Rullent 1989: 1538.)

This indicates th a t the word whose meaning is identified as ‘[LOCATED-

IN-REGION]’ requires an AGENT of type MOUNT or PROVINCE or LAKE

and a LOCATION of type REGION. Neither slot may be left unfilled in a

semantically well-formed utterance. Notice th a t both the syntax and the se­

m antics are expressed in declarative formalisms.

1 1 .3 .4 K n o w led g e so u rces

The dependency rules and the caseframes are not used serially, with one rule

set producing an initial analysis which is passed to the other for comple­

tion. Instead, the syntactic and semantic rules are combined to form a unified

syntactico-sem antic gram m ar in which both types of constraint apply at the

same time. In principle, the combining of syntactic and semantic constraints

could be done ‘on the fly’ during sentence processing, thus creating the re­

sources to meet the particular needs of the moment. In practice, this would

almost certainly be costly in terms of processing tim e and it could result in the

same combination having to be performed many times during a single recogni­

tion session. The obvious solution — and the one adopted in SYNAPSIS — is

to pre-compile the syntactic and semantic information into its unified format.

Figure 11.3 shows parts of a syntactic dependency rule. It refers to a present

indicative verb with two dependents, one preceding it and the other following

it. The following noun must agree in number with the verb. Comments are

preceded by

Figure 11.4 is a caseframe indicating th a t the word whose meaning is iden-

241

VERB(prop) = NOUN(interr-indir-loc) <GOVERNOR> NOUN(subj)
;; Features and agreement
<GOVERNOR> (MOOD ind) (TENSE pres) (NUMBER ?X) ...
NOUN-1 ...
NOUN-2 (NUMBER ?X)

Figure 11.3: a SYNAPSIS dependency rule

[TO-HAVE-SOURCE]
—> (AGNT:Compulsory) — [RIVER]
— (LOC:Compulsory) — [MOUNT]

Figure 11.4: another SYNAPSIS caseframe

tified as ‘[TO-HAVE-SOURCE]’ requires an AGENT of type RIVER and a

LOCATION of type MOUNTAIN. Neither slot may be left unfilled in a se­

m antically well-formed utterance.

Combining the semantic information expressed in Figure 11.4 with the

syntactic information shown in Figure 11.3 produces the knowledge source

(KS) shown in Figure 11.5. (All of these data structures are taken from

Giachin and Rullent 1988: 198.)

The ‘com position’ entry indicates th a t the syntactico-semantic head, which

is of semantic type TO-HAVE-SOURCE, must be preceded by an element of

sem antic type MOUNT and followed by an element of semantic type RIVER.

The first ‘constrain t’ entry states th a t the head word must be a present in­

dicative verb and th a t the MOUNT element m ust be realized as a noun. The

;; Composition
TO-HAVE-SOURCE = MOUNT <HEADER> RIVER
;; Constraints
<HEADER> -MOUNT ((H-cat VERB) (S-cat NOUN) (H-feat MOOD ind TENSE
pres...)...)
<HEADER> -RIVER ...
;; Header activation condition
ACTION(TO-HAVE-SOURCE)
;; Meaning
(TO-HAVE-SOURCE ! * agnt 1 loc 0)

Figure 11.5: a SYNAPSIS knowledge source

242

‘header activation condition’ is a flag to tell the parser how to use the KR.

The ‘m eaning’ entry is used to construct the compositional semantics of the

construction headed by a verb of semantic type TO-HAVE-SOURCE.

Having examined the knowledge representations used in SYNAPSIS, we

are now ready to consider the parsing procedures it uses. Two versions of the

parser will be presented: a straightforward sequential parser and a parallel

version designed to decrease the am ount of time required to produce plausible

in terpretations of spoken sentences.

1 1 .3 .5 T h e se q u e n tia l p arser

The input to the parser is an entire lattice. In other words, syntactic and

sem antic constraints are used together to find a plausible pa th through an

existing lattice; they are not used to guide the construction of the lattice. One

argum ent in favour of left-to-right incremental processing is th a t a real-time

system cannot afford to wait until the end of the sentence has been reached

before starting to analyse what has been said. The argum ent advanced by the

SYNAPSIS designers is th a t a real-time system cannot afford to s tart parsing

as soon as the left-hand-side of the lattice has been built since there is always

the possibility tha t word recognition may be locally poor and this would lead

to a lot of wasted effort. It is much more prudent, they argue, to wait until the

end of the sentence and then begin parsing from the word in the lattice with

the highest confidence score. There is a reasonable chance th a t the highest

scoring word will have been recognized correctly, and this allows fairly reliable

top-down predictions to be used to guide search in the less well-scored parts of

the utterance. Their claim is th a t this non-linear increm ental process results in

a quicker and, more im portantly, a more reliable result than would be produced

by a left-to-right analysis. It is worth flagging one problem w ith the CSELT

approach, namely the fact th a t identifying the end of a spoken utterance is

a non-trivial task. Full stops are not typically vocalized! It is possible to

imagine a number of heuristics which might be useful, such as timing pauses

243

against some threshold, or arbitrarily insisting th a t a sentence may not exceed

n seconds in duration. However, none of these would be foolproof. It is not

clear how SYNAPSIS copes with this problem.

W hat I have just outlined is a best-first parsing strategy which begins with

the highest-scoring word hypothesis and uses it to generate predictions which

can be tested against the next highest-scoring hypotheses and so on. A parser

scheduler controls the process by means of a number of operators:

A C T IV A T IO N This operator selects the highest-scoring word hypothesis

and finds a KS for which it could be the header. The word hypothesis

and the prediction are combined to produce a tree-structured deduction

instance (DI), The tree structure derives from the fact th a t the instan ti­

ated header has unfilled case slots. One way of viewing Dis is as phrase

hypotheses.

V E R IF Y This operator is used to fill a case slot in the current DI with a

word hypothesis.

M E R G E This operator is like VERIFY except th a t it is used to fill a case

slot in the current DI with another DI ra ther than a word hypothesis.

In other words, it is used to merge two tree structures.

P R E D I C T IO N This operator is used if the current DI is a/ac^, i.e. it has no

unfilled slots. If the DI is of type T, then this can be used to instantiate

another DI having a slot for a filler of type T.

At least one other operator, SUBGOALING, is available. It is ra ther more

complex since it is used to decompose and rearrange existing tree structures.

It is not necessary to be familiar with its action in order to appreciate the

general strategy of the parser.

Roughly speaking, parsing proceeds as follows. To begin with, the highest-

scoring word is used to construct a DI (ACTIVATION). Next, the em pty

slots in the DI are used to generate predictions. For example, a slot may

244

require a filler which is syntactically a NOUN and semantically a REGION.

All the word hypotheses in the lattice are checked using the VERIFY operator.

W hen several hypotheses meet these conditions, the best scoring hypothesis

is activated while the others are stored in a ‘w aiting’ list until such tim e as

the current score is worse than their score. In the meantime, the best-scoring

hypothesis is used as the filler for the relevant case slot.

W hen a word is used to create a new DI, the word’s confidence score is

assigned to the DI where it is known as the quality factor of the DI. W hen a

word is added to an existing DI, the confidence score of the word hypothesis

and the quality factor of the DI are combined to produce a new quality factor

for the DI. The best way to compute this new quality factor is an open research

question. Versions of SYNAPSIS have been tried out which calculate quality

factors on the basis of joint probabilities (i.e. the sum of the word hypotheses

scores), and of score density (with or without shortfall) (Woods 1982).

Once there is at least one DI available in the system, control passes back

and forth between deduction and activation cycles. Deduction s tarts from the

highest-scoring DI and tries to extend it in the following ways:

1. if it is a fact DI (i.e. it has no empty slots), by making it the filler for a

slot in another DI (PRED ICTIO N), or

2. finding a filler in the word lattice for one of its case-slots (VERIFY), or

3. merging it w ith another DI (M ERGE).

The highest-scoring candidate is always chosen first, whether it is a DI or a

word hypothesis. W hen the best DI has a quality factor worse than the best

word hypothesis, the activation cycle begins and a next highest-scoring word

in the lattice is extracted and used to construct a new DI (ACTIVATION).

The parse is complete when a single DI with no unfilled compulsory case

slots covers the same tim e period as the entire lattice.

The parser is described as following a best-first search strategy but the

(available) SYNAPSIS literature does not indicate whether a depth-first or a

245

breadth first strategy is adopted at choice points with no measure of ‘goodnesss’

available to guide the choice. For example, it is not clear from the literatu ire

how indeterminacies caused by lexical ambiguities are resolved. One soluticon

might be to rank order knowledge sources having the same header type amd

to insist th a t the highest-ranking knowledge source be used first. Taking thiis

suggestion further, knowledge sources having the same header type could Ibe

assigned probabilities relative to each other (established on the basis of co>r-

pus analysis). These probabilities could potentially be used to weight lexic:al

confidence scores in the com putation of quality factors.

The way in which SYNAPSIS constructs analyses bears a certain similair-

ity to the m ethod of the HWIM system (Woods 1982) which builds an ‘islan<d’

around the highest-scoring word in the lattice. The crucial difference is t h a t

the SYNAPSIS system does not require phrases to be contiguous, whereas a

standard island parser does.^ Presum ably the possibilities for building spiu-

rious discontinuous constituents are less for Italian than for English becauise

of the additional explicit m orphosyntactic agreement in Italian. More im por­

tantly, the co-presence of semantic constraints and syntactic constraints ought

to rule out most of the spurious discontinuities a purely syntactic parser would

allow. Desired discontinuities (e.g. questions, topicalizations) would be parsed

without difficulty.

Jo llie s

Function words cause serious problems for all speech recognition systems. B e­

cause most function words are both short and typically unstressed, they are

often not recognized at all. If the function words are not recognized they are

absent from the lattice. This can cause problems for parsers when they try

to build constructions which require function words. Even if the presence of

a function word is spotted, it may be very difficult to identify which function

Perhaps SYNAPSIS should be termed an ‘archipelago parser’ rather than an ‘island
parser’.

246

word it is. In general, the longer a word is, the easier it is to identify with con­

fidence. The shorter a word is, the harder it is to recognize. So, for example,

it is much easier to recognize hippopotamus than an (which could be confused

with on, and, a, at, ant, etc.).

In the SYNAPSIS system, words which are considered to have only a func­

tional role are known by the charming name jollies. A robust speech parser

ought to be able to proceed w ithout jollies in most cases. On the other hand, it

ought to be able to find them if they are present in the lattice since some jollies

make a useful contribution to parsing. For example, if they are recognized they

help to ensure th a t the correct path through the lattice is temporally coherent.

Not all jollies are short, and some may have good confidence scores associated

w ith them , so it is desirable to use them when they are available.

In SYNAPSIS, “the general philosophy is to ignore a jolly unless there

are substantial reasons to consider i t” (Giachin and Rullent 1988: 199). All

jollies are treated as term inal slots in their KS. There m ay be syntactic or even

sem antic constraints on them but they do not contribute to the compositional

semantics. Since they are assumed to have no semantic predictive power, jollies

are not available for m anipulation by the standard operators. Instead, a special

operator, JV ER IFY is used specifically for the purpose of filling jolly slots.

The operation of JV ERIFY depends on the JOLLY-TYPE of a jolly slot.

There are three JOLLY-TYPES: SHORT-OR-INESSENTIAL, LONG-OR-

ESSENTIAL, and UNKNOWN. The type of the jolly slot is worked out during

parsing on the basis of “the lexical category assigned to the jolly slot, the tem ­

poral, morphologic and semantic constraints imposed on th a t slot by other

word hypotheses, and the availability of such d a ta” (ihid.).

If the jolly is of type LONG-OR-ESSENTIAL, it m ust be found in the

lattice. Failure to find it will result in the parse failing just as though it were

a content word which were missing.

If the jolly is of type SHORT-OR-INESSENTIAL, it is ignored. T hat is.

247

the lattice is not searched in order to find it. However, it is necessary to assign

a short time period to the slot, ju st in case a jolly is present. If this time

period were not inserted, the correct path through the lattice would not be

tem porally coherent. To allow for a range of durations the time period is given

fuzzy boundaries.

If the jolly is of type UNKNOWN, it is treated much as though it were

of type SHORT-OR-INESSENTIAL, but this is followed by a brief search of

the lattice to see if any jollies of greater duration than the maximum dummy

duration can be found in the lattice. This is done just in case a long jolly with

a good confidence score is present. If one is found, it is entered in the slot;

otherwise the dummy is left in place.

Figure 11.6 shows a simplified DI, based on the KS in Figure 11.5 and

the sentence Da quale monte nasce il Tevere? (“From which m ountain does

the Tiber originate?”). (The example is taken from Giachin and Rullent 1988:

198.) The DI shows nasce as root, with monte and Tevere as slot fillers.

Monte has two slots, neither of which has yet been filled. The SPEC slot

will eventually be filled w ith quale, while the JOLLY slot corresponding to da

may remain unfilled unless it is judged to be of type LONG-OR-ESSENTIAL.

Tevere also has a JOLLY slot bu t the jolly has already been classified as

‘missing’. Notice th a t this does not necessarily mean th a t it is absent from the

lattice, although th a t may be the case. W hat it means is th a t the jolly has

been judged to be superfluous to requirements.

S tatistics

The sequential SYNAPSIS parser was implemented in Common Lisp. It makes

use of around 150 KSs and has a 1011-word lexicon. No details of the linguis­

tic coverage are available, although the gram m ar is said to have a branching

factor of about 35. SYNAPSIS was tested on 150 lattices produced from nor­

mally intoned continuous speech recorded in an office environment. Overall,

248

Type : TO-HAVE-SOURCE
Header: N A S C E

Left :MOUNT Right : RIVER

Type : MOUNT Type : RIVER
Header: M O N T E Header: T E V E R E

Left : JOLLY SPEC Right:none Left:JOLLY Right:none
(to be solved)^^^/ [missing]

(to be solved)

Figure 11.6: a simplified DI showing jolly slots

about 80% of the u tterances were analyzed correctly. About 75% of lattices

w ith missing jollies were analyzed correctly. This figure did not increase sig­

nificantly as the number of missing jollies per u tterance increased. Thus, the

SYNAPSIS parser may be judged to be a very successful lattice parser by

current standards.

1 1 .3 .6 T h e p a ra lle l p a rser

A crucial factor in parsing spoken language is processing speed. The sequential

version of SYNAPSIS took an average of about 40 seconds to parse sentences

in the test set. (The average sentence length was 7-8 words). This is clearly

too long for most practical purposes. In response to the need for b e tte r speed

results, the developers of SYNAPSIS implemented a parallel version of their

parser. W hile a full exposition of its detail would be inappropriate here, it is

w orth m entioning a few of its main features.

The sequential parser is based on a processor which uses the KSs to build

Dis. The parallel parser consists of n processors called distributed problem

solvers (DPSs), each with the full inferencing capabilities of the sequential

parser. However, each DPS only has access to a subset of KSs. Thus, each

DPS can be viewed as the expert on a small num ber of syntactico-sem antic

249

Figure 11.7: a single parse tree

constraints. In most cases it will be necessary for the experts to collaborate in

order to solve a parsing problem.

Distributing the knowledge base does not autom atically yield a speed-up. If

anything, the opposite could be expected since there is now a communications

overhead. To effect a speed-up it is also necessary to distribute the tasks

in such a way th a t the DPSs are working concurrently. This is achieved by

breaking up the parse trees (i.e. the Dis) into one-level sub-trees. For example,

the tree in Figure 11.7 would be represented as a collection of sub-trees, as

shown in Figure 11.8. (The representation used here is non-standard. Lines

connect lower dependents to higher heads. The reason for employing this

graphical device is similar to th a t which motivated the use of non-standard

trees in the DLT project, namely the need to represent dependency structure

independently of word order. Each node in this tree represents a single word.

Left to right ordering is not significant.)

Since a parse tree (1)1) can now be distributed amongst several DPS, it is

possible for different parts of it to be developed concurrently. For example,

one processor might know about KSs of type MOUNT while another knows

about KSs of type RIVER. The left and right branches of the DI shown in

Figure 11.6 above could now be grown in parallel.

250

Figure 11.8: a distributed representation of the same parse tree

The parallel version of SYNAPSIS has been implemented on a pool of

Symbolics Lisp Machines communicating via E thernet. The system has been

shown to work but the relatively slow Ethernet is a m ajor hindrance to record­

ing significant speed-ups. In fact, no parsing speeds for parallel SYNAPSIS

are reported in the literature. The designers have signalled their intention to

implement the parser on a Transputer-based distributed architecture.

This sketch of the parallel version of SYNAPSIS has necessarily been brief.

More details can be found in Giachin and Rullent (1989).

11.4 S um m ary

SYNAPSIS is unique amongst the parsers reported in this survey in address­

ing the distinctive problems of parsing spoken, ra ther th an w ritten language.

Instead of starting from an input w ith distinguished words it is necessary to

s ta rt from a mesh of alternative hypotheses which may not even include all

of the words uttered. SYNAPSIS uses a language model based on DO a t the

251

syntactic level and caseframes at the semantic level. DG builds on th e no ­

tion of lexical combination; caseframes build on the notion of lexical concept

combination. In order to bring together syntactic and semantic constrain ts at

parse time, DG rules and caseframes are combined to form syntactico-sem anltic

knowledge sources. It is also possible to conceive of the two being brought to ­

gether elegantly in a unification DG. For example, a unification-based version

of Lexicase, w ith its battery of syntactic, semantic, and case features womld

provide a theoretically m otivated base for a SYNAPSIS-type parser.

The special requirements of speech parsing have led to the developm ent of

a parallel version of the SYNAPSIS parser. This also marks SYNAPSIS o>ut

as unique in this survey of DG parsers.

I have not provided a formal PARS description of the SYNAPSIS parsimg

algorithm. PARS is designed for the description of text parsers and womld

have to be extended significantly to do justice to SYNAPSIS. The purpose of

expressing algorithms in PARS is to facilitate comparison of different d e p e n ­

dency parsing algorithms. SYNAPSIS is so different from the other p a rsers

th a t a PARS description would not be of much assistance. This difference is

underlined by the observation th a t although the other parsers differ in respeîct

of the order in which they construct parse trees, each individual parser is onily

capable of constructing a parse tree in one order for each grammar. If SYNAIP-

SIS were to be used to parse several different utterances of a test sentence, it

would most probably add branches to its parse tree in a different order eacch

time. This is because SYNAPSIS is strongly guided by acoustic confidenice

scores, as well as by the grammar.

In spite of the differences, an exam ination of SYNAPSIS is profitable iin

serving to illustrate some novel ways in which DGs can be applied in tlhe

solution of practical problems.

The main features of the serial SYNAPSIS parser are summarized in Tra­

hie 11.1.

252

Table 11.1; main features of the SYNAPSIS dependency parser

Search origin bottom , then mixed
Search m anner best-first
Search order score-driven
Number of passes one
Search focus heads and dependents seek each other
Ambiguity management best-scoring parse only

253

C hapter 12

E lem ents o f a taxonom y o f
dependency parsing

Let the teacher, or the man of science who does not always fully
appreciate gram m ar, consider for a moment the m ental processes
a boy is pu tting himself through when he parses a sentence, and
he will see th a t there is in intelligent and accurate parsing a true
discipline of the understanding. (Laurie 1893: 92)

In this chapter I examine a number of dependency parsing param eters to see

how they compare with the corresponding param eters of PSG parsing. In so

doing, I outline the elements of a first general taxonom y of dependency parsers.

My approach is driven by the results of the preceding survey of existing

dependency parsers. The param eters I shall investigate are those I have used

in summarizing the properties of each parser surveyed, namely origin o f search

(Section 12.1), manner o f search (Section 12.2), order o f search (Section 12.3),

number o f passes (Section 12.4), focus o f search (Section 12.5), and ambigu­

ity management (Section 12.6). In addition, I shall examine the role of the

adjacency constraint in dependency parsing (Section 12.7).

12.1 Search orig in

In PSG parsing, search can proceed bottom -up, top-down, or some m ixture of

the two. At a coarse level, the same is true of dependency parsing. Table 12.1

records the origin (and direction) of search for each of the parsers surveyed.

254

Table 12.1: origin of search—summary

D e p e n d e n c y P a r s e r S e a r c h o r i g i n

Hays (bottom -up) bottom -up
Hays (top-down) top-down
Hellwig (P l a i n) bottom -up
Kielikone (a d p) bottom -up
DLT (A T N) top-down
DLT (probabilistic) bottom -up
Lexicase (Starosta) top-down
Lexicase (Lindsey) unspecified
WG (Fraser) bottom -up
WG (Hudson) bottom -up
CSELT (S y n a p s i s) bottom , then mixed
Covington (1 & 2) bottom -up

Do the familiar terms ‘bottom -up’ and ‘top-down’ have their usual mean­

ings when applied to dependency parsers?

A first answer must be ‘yes’. Bottom -up parsing starts from the words in a

string and uses a gram m ar to combine the words into constructions. In the case

of PSG, the constructions are phrases; in the case of DG, the constructions are

head-dependent relata. Top-down parsing starts from the rules in a grammar

and a ttem pts to find realizations of structures generated from the rules in the

string.

A second answer, however, must be ‘no’, the terms do not mean exactly

the same for dependency and constituency parsers. W hereas in PSG there

may be a tree of arb itrary depth between a gram m atical s ta rt symbol a t the

‘top ’ and the word instances a t the ‘bottom ’, in DG this is not the case. The

s ta rt symbol of a DG is a word or, a t worst, a word class. There are no nodes

interm ediate between the ‘top’ (start) node and the ‘bo ttom ’ (word) node

attached to it. The number of nodes in a dependency tree may not exceed the

num ber of words in the sentence whose structure the tree describes. Whereas

PSG trees can be arbitrarily deep (unless the PSG is expressly constrained to

prevent this), DGs — in just the way indicated — are necessarily shallow.

255

In the three following subsections I shall examine these concepts in more

detail.

1 2 .1 .1 B o tto m -u p d e p e n d e n c y p arsin g

It is immediately noticeable th a t the m ajority of the parsers listed in Table 12.1

search bottom -up, i.e. eight out of twelve, with one unspecified. This probably

reflects the general word-centred view adopted by dependency grammarians,

A bottom -up PSG parser a ttem pts to take some contiguous group of words

and replace them by a single phrase; a bottom -up DG parser a ttem pts to take

a group of words (in many cases, exactly two words), and replace them by

whichever word is deemed to be the head. Thus, both kinds of parser effect

a reduction. Since a DG parser can only effect reductions by discarding one

or more words while retaining a lexical head, there is a strict upper bound on

the number of reduction steps required (ignoring any requirements for back­

tracking), i.e. n -1 , where n is the number of words in a sentence. No such

upper bound can be placed on a PSG parser, unless the rules the gram m ar

uses are restricted so tha t, for a rule of the form a —> 5̂, where a and /? are

non-terminals, \/3\ > |a |.

Shift-reduce bottom -up dependency parsing

A shift-reduce dependency parsing algorithm can be defined as follows:

1. Let G be a DG in Gaifman format, except th a t in the body of each

rule is replaced by the symbol corresponding to the head of the rule.

2. Let S be an input string.

3. Shift a word from S onto a stack unless S is empty, in which case go to

step 5.

4. Check whether one or more words a t the top of the stack exactly matches

the body of one of the rules in G. There are two possible outcomes:

256

(a) they m atch, in which case pop the m atching words off the stack and

push the word which matched the head of the rule back onto the

stack. Repeat step 4.

(b) they do not m atch, in which case repeat step 3.

5. If there is exactly one element on the stack then succeed, otherwise fail.

This is essentially the algorithm implemented in Prolog in the file

s h i f t_ r e d u c e .p l in Appendix A.3.

In cases where there are equivalent PSG and DG analyses of a sentence,

the num ber of reductions required is identical for shift-reduce parsers of both

varieties.

P S G D G
V N V P [1] v(n,*,p)
N A N [2] n(a,*)
P P N [3] P(*,n)

[4] *(v)

PSG and DG analyses of the sentence Tall people sleep in long beds are shown

in Figure 12.1.

The PSG shift-reduce parse trace is given below. Word class assignments

are not shown. The number of each rule used to effect a reduction is given in

square brackets. (‘Ü’ indicates the bottom of the stack.)

□ A
□ A N
□ N [2]
□ N V
□ N V P
□ N V P A
□ N V P A N
□ N V P N [2]
□ N V P [3]
□ V [1]

The DG shift-reduce parse trace is given below.

257

A N V A NP
Tall
a

people
n

sleep
V

in
p

long
a

beds
n

Figure 12.1: PSG and DG analyses of the sentence Tall people sleep in long
beds

□ a

□ a n

□ n [2]
□ n V

□ n V p

□ n V p a

□ n V p a n

□ n V p n [2]
□ n V p [31
□ V [1]

In this case, the numbers of shift and reduce operations are identical for

PSG and DG systems. The num ber of shift operations is fixed for all ver­

sions of shift-reduce parsing, i.e. it is equal to the num ber of words in the

sentence being parsed. The smallest num ber of reduce operations possible for

any sentence is also the same, in principle, for PSG and DG, namely 1. This

is because it is possible either to make all words in a sentence belong to a

single phrase, or to make all words in a sentence depend on a single head. The

maximum number of reduction operations is also the same for PSG parsing

and DG parsing, with one im portant exception which I shall describe shortly.

258

In PSG parsing, the number of reductions equals the number of phrases. The

maximum number of phrases for an arbitrary sentence is achieved with a bi­

nary branching phrase structure tree. The number of phrases in a binary

branching tree for an n-word sentence is n — 1. In DG parsing, the number

of reductions equals the num ber of prim ary dependencies in the sentence. (I

use the term primary dependencies to mean dependencies which are found by

search, ra ther than by derivation from existing dependencies, as in the case

of dependent-sharing.) The maximum number of prim ary dependencies — in

fact, the required num ber of prim ary dependencies — in an n word sentence

is n — 1.

This equivalence excludes those PSGs which allow unit rewrite rules, i.e.

productions having the form

a ^

in which both a and jd are single non-term inal symbols. In this case, the

m axim um num ber of reductions required is not bounded, given an arb itrary

sentence and an arb itrary grammar. I know of no version of DG which would

not place an upper bound of n — 1 on the number of reductions.

Increm ental bottom -up dependency parsing

The shift-reduce dependency parser I have just described is a reasonably faith­

ful DG version of a well-known PSG parsing algorithm. However, none of the

bottom -up DG parsers described in the preceding survey uses this kind of al­

gorithm . The shift-reduce dependency parser is required to wait until all of

the dependents of some head are available in a contiguous block a t the top of

the stack before it can effect a reduction. All of the other bottom -up depen­

dency parsers I have described estabhsh dependency links between heads and

dependents as soon as both become available, and independently of any other

dependency relations involving the same head. This results in the increm ental

259

building of dependency structures. This process is centred on relations ra th e r

than constructions.

I believe tha t the difference between shift-reduce dependency parsing and

increm ental bottom -up dependency parsing can be characterized in the fol­

lowing way. In shift-reduce parsing, words (or word class labels or feature

structures) are put on the stack and gram m ar rules are used to license reduc­

tions. In incremental parsing, sentence words are used to pick out rules headed

by these words and these rules are then put on the stack. A slightly more com­

plex general rule is then used to effect reductions. A first characterization of

the Rule of Reduction is given below. The rule has 2 clauses, as follows (a and

(3 are arb itrary strings of dependent symbols, including the em pty string):

The R ule o f R eduction

1. If a rule of the form X(o:,Y,*,yd) is the top element of a stack and the next

element is a rule of the form Y(*), then pop the top two stack elements

and push a new element of the form X(a,*,/?) onto the stack.

2. If a rule of the form X (*,o) is the top element of the stack and the

next element is a rule of the form Y(*,X,^d), then pop the top two stack

elements and push a new element of the form Y(*,a,/d) onto the stack.

If all words in the input sentence have been read and the only rule on the stack

has the form X(*) and there is a rule of the form *(X) in the gram m ar then

succeed. Otherwise fail.

A trace of the bottom -up increm ental parse of the sentence Tall people

sleep in long beds, using the same gram m ar as before, is presented below.

Stack items are separated by means of the ‘|’ marker. The bracketed numbers

indicate which clause of the Rule of Reduction has been applied.

260

□ a(*) tall
□ a(*) I n(a,*) people
□ n(*) [1]
□ n(*) I v(n,*,p) sleep
□ v(*,p) [1]
O v(*,p) I p(*,n) in
□ v(*,n) [2]
□ v(*,n) I a(*) long
□ v(*,n) I a(*) I n(a,*) beds
□ v(*,n) I n(*) [1]
□ v(*) [2]

The similarities with functional application in CG should be readily ap­

parent. Clause [1] of the Rule of Reduction is the dependency correlate of CG

backward application and clause [2] of the Rule of Reduction is the dependency

correlate of CG forward application.

An im plem entation of an incremental shift-reduce

dependency parser which makes use of the Rule of Reduction can be found

in incremental_shift_reduce.pl in Appendix A.3.

In conclusion, DG provides a framework which is compatible with both

PSG-style shift-reduce parsing (in which the DG formalism provides an upper

bound on the num ber of reductions which the PSG formalism does not) and

CG-style (weakly incremental) shift-reduce parsing.

1 2 .1 .2 T o p -d o w n d e p e n d e n c y p a rsin g

The less explored terrain of top-down dependency parsing offers several inter­

esting divergences from PSG parsing.

Three of the parsers in the survey of DG parsers are classified as top-

down parsers in Table 12.1. These each implement top-down search in distinct

ways which I shall call deep top-down parsing, shallow top-down parsing, and

category-driven top-down parsing.

261

D eep top-dow n parsing

The DLT ATN parser is an example of a deep top-down dependency parser.

Parsing is successful if it is possible to traverse the main v e r b network, using

the words of the sentence. The (simplified) main v e r b network for English

would consist of a s ta rt state, a jum p arc to the s u b j e c t network, a verb arc,

a jum p arc to the o b j e c t network, and a final state. The s u b j e c t network

could involve a number of jum p arcs to other networks which could themselves

contain jum p arcs, and so on. Thus, it is possible for the parser to build

quite a deep search tree on the basis of the network before the first word is

ever examined. W hen th a t word is examined, it has the function of either

falsifying the hypothesis developed during the preceding search, or allowing

the hypothesis to be developed further.

A bstracting away from the detail of the ATN im plem entation of this search

m ethod, I shall try to show how it m ight work given a more conventional

Gaifman type DG. First though, I shall reconsider non-ATN top-down PSG

parsing. A top-down left to right PSG parser begins by selecting the s tart

symbol and expanding each successive left-most symbol until a term inal is en­

countered. E ither this matches the first word of the sentence or the hypothesis

has been falsified and another m ust be tried.

For example, Figure 12.2 shows a PSG analysis of the sentence A cat sleeps

on the computer. A top-down PSG parser would begin by selecting the s ta rt

symbol (S) and seeing how it could be expanded (S —> NP V P). It selects the

left-most symbol (NP) and finds an expansion for it (NP —> Det N). Once

again, the left-most symbol is selected bu t this time it corresponds to a term i­

nal. (For ease of exposition I ignore the distinction between words and word

classes.) Now, for the first time, it is possible to establish contact between the

hypothesized structure and the actual words of the sentence. An examination

of the first word in the sentence reveals th a t it is a determ iner, so the hypoth­

esis may be extended w ith the expansion of the next left-most symbol, and so

262

Det N V PP

NP

Det

A cat sleeps on the computer

Figure 12.2: phrase structure of A cat sleeps on the computer

on.

If this process is used directly with a DG, problems are encountered. The

s ta r t symbol (v) corresponds to a term inal (sleeps), but this word is not located

a t the s ta r t of the sentence. There are two possible courses of action here.

E ither the parser can look for a rule to expand for the s ta rt symbol, or it can

search for the s ta rt symbol in the sentence. In this section I shall explore the

first course of action, and in my discussion of shallow top-down parsing I shall

explore the other.

Assume th a t the gram m ar contains a rule

(84)

v(n, *, n)

The left-most symbol can be selected. Like all symbols in a DG, this one must

identify a word. Thus, it is necessary to see whether or not this matches the

first word in the sentence. Since it does not, it is necessary to find a rule

headed by n, e.g. (85).

(85)

263

The cat sleeps on the computer

Figure 12.3: dependency structure of A cat sleeps on the computer

n(det, *)

Once again, the left-most symbol must be compared w ith the first sentence

word. This time a m atch is found. It is still necessary to check whether or not

‘de t’ may occur without left side dependents, before going any further. If it

can (it can), then it is necessary to try to find the next left-most dependent.

This involves selecting the left-most of de t’s right side dependents (if it has

any) and then expanding leftward once again, testing each expansion against

the first headless word in the sentence.

Figure 12.3 shows the dependency structure of the sentence. Before word

1 can be parsed, it is necessary to hypothesize word 3 and word 2 (although

their actual position in the sentence as words 3 and 2 is not known until pars­

ing successfully completes). Since this parsing m ethod builds a structure of

arb itrary depth before it finds a sentence word, I call it deep top-down parsing.

This m ethod of dependency parsing has not previously been described in the

literature, although it is closely related to top-down PSG parsing. U nfortu­

nately it carries an overhead not found in top-down PSG parsers, namely the

necessity to check each left-most symbol against the first sentence word after

every expansion.

A right to left variety of deep top-down dependency parser could also be

defined.

264

It is possible for a deep top-down parser to enter a loop from which it can

not escape. The following rules illustrate this, assuming th a t a right to left

deep top-down parser is being used.

(86)

a p(*,n)
b n(*,p)
c n(*)

W hen searching for an ‘n ’, the first ‘n ’-headed rule the parser encounters tells it

to hypothesize a ‘p ’ (86b). In order to find a ‘p ’ it is necessary to hypothesize

an ‘n ’ (86a). So the loop is entered. Since the maximum num ber of heads

possible in a dependency structure is equal to the number of words in the

sentence minus one, the length of the hypothesized path may never exceed

this number. This test can be used to term inate fruitless searches, whether

caused by looping or some other reason.

Shallow top-dow n parsing

All top-down PSG parsing is ‘deep’ in the sense I have indicated. However,

as I shall show in this section, it is possible to define a ‘shallow’ top-down

dependency parser.

Shallow top-down parsing also begins by selecting the s ta rt symbol (i.e.

the root symbol). Assume th a t the s ta rt symbol is v and once again the

sentence to be parsed is A cat sleeps on the computer. S tarting from the left,

the sentence is scanned in order to find a v. W hen sleeps is reached there is a

match. This word becomes the hypothesized sentence root. Now the gram m ar

is searched for a rule headed by v. If one is found (e.g. v(n, *, n)), the left-most

dependent is selected and the part of the sentence prior to sleeps is searched.

This process continues recursively until the first word is found and there is no

more left context to search. At this stage, the most deeply embedded right

context is selected and searched, once more from the left. W hen all words

in th a t right context are accounted for, control passes back to the next most

265

deeply embedded process which has a right context to search. In this way all

of the words to the left of the root can be parsed. The same process can now

begin for the roo t’s right context. Parsing succeeds when heads have been

found for all the words in the left and right contexts of the root (and the left

and right contexts of all the roo t’s subordinates).

A positive feature of this parser is th a t it never makes an hypothesis w ithout

checking immediately th a t it is a t least lexically plausible. In this way a certain

am ount of spurious structure-building can be avoided.

The basic operation of the parser is simple: call the parsing procedure

d iv id e -c o n q u e r with inputs S and W, where S is a symbol and W is a word

list. Initially, S is the root symbol. For descriptive simplicity I assume here

th a t no word may have more than one preceding and one following dependent.

(This is not a PARS description.)

P R O C E D U R E divide-conquer(S,W)

IF S is in W

T H E N call the string to the left of S W';

call the string to the right of S W";

search the gram m ar for left side (L) and right side (R) dependents

for S ;

if L exists, call divide-conquer(L,W ');

if R exists, call divide-conquer(R,W ")

E L S E fail.

This description is intended to convey a basic sense of how shallow top-down

parsing works by recursively calling the same procedure with a shorter word

string to search in each call. For obvious reasons I call shallow top-down

dependency parsing ‘divide and conquer’ parsing. The above description omits

a num ber of details which are necessary to the functioning of the parser. In

particular, it fails to describe how the algorithm works when confronted w ith

266

rules allowing more than one dependent on each side of the head. A somewhat

more complex algorithm is required to deal with this. It functions, when more

than one dependent is hypothesized in the same string, by successively applying

the basic divide-conquer procedure, with each dependent and the part of the

string still unaccounted for serving as inputs on each procedure call. The parse

succeeds if each dependent accounts for different parts of the string, and all of

the string is accounted for. A Prolog implementation of the full algorithm can

be found in the file d iv id e _ c o n q u e r .p l in Appendix A.3,

Suppose th a t it takes some constant am ount of tim e k to check a word to

see whether or not it is the word being sought. In the best case, the word

being sought will always be a t the s ta rt of the string, so the tim e taken to find

each word will be exactly k. The time taken to parse an n-word sentence with

an unambiguous gram m ar is therefore in the order of n in the best case. In

the worst case, the word being sought will always be a t the end of the search

string. Thus, for an n word sentence, it will take kn to find the sentence root.

The next tim e the divide-conquer procedure is called there will be n-1 words

to search so this will take time k {n - l) . In the worst case, the tim e taken to

parse a sentence, given an unambiguous gram m ar will be:

kn -j- k(^n — 1) 4- k(^n — 2) -j- ■ ■ ■ T 2A: T k

Thus, divide and conquer parsing with an unambiguous gram m ar takes, a t

worst, tim e in the order of n^.

Now assume th a t the gram m ar is ambiguous. In the worst case, any word

in a string could be the root of th a t string. Thus, the tim e required to find

every reading for the sentence is proportional to:

kn X k{n — 1) x k{n — 2) x - • • x 2k x k

The tim e required to find every parse of an n word sentence w ith an ambiguous

gram m ar is, in the worst case, proportional to n\. Presum ably this figure can

be improved by the use of a chart.

267

The divide and conquer variety of shallow top-down dependency parsing

has not previously been described in the literature, unless this is what Hays

intended by his top-down parser. As I noted earlier, Hays provides only an

outline sketch of his top-down parser and it is not clear if he ever implemented

it.

The attraction of the divide and conquer variety of parser lies not in the

serial version of the algorithm, but rather in the parallel version. W hat the

parser does is to take a string, divide it in two, decide what to search for in

each half, and then proceed to repeat this process for each half. Once a string

has been halved, search in one half can take place independently of search in

the other. It is necessary for both searches to succeed in order for the original

search to succeed, but otherwise there is no connection between the two. Thus,

every time a process divides a string it can activate two new processes, one for

each substring. The original process simply has to wait to receive the root of

the subtrees describing its left and right contexts, in which case it can succeed

and inform the process which created it. Alternatively, one of the processes

it spawned will fail to find what it was looking for, in which case the original

process will die.

Consider the case of parallel divide and conquer parsing with an unambigu­

ous grammar. Each newly created process is assigned to a processor dynami­

cally. The best and worst case parsing times remain the same. In the best case

the word being searched for is always found first (On). In the worst case the

word being searched for is always at the end of the string (On^). However, the

average time ought to be cut significantly because of the possibility of doing

at least some search in parallel.

A number of interesting options exist for coping with ambiguity. In prin­

ciple, it ought to be possible to assign to each word in the sentence as many

processes as there are different readings for that word. Each process would then

be required to find all possible dependents for a word, given a dependency rule.

268

Thus, all possible dependency trees of depth one would be found concurrently.

In this approach, time would be consumed mostly in inter-process communi­

cation, rather than in search. Much more work needs to be devoted to this

problem before any results can be reported.

Shallow top-down dependency parsing, such as divide and conquer parsing,

in its capacity to divide a string into two substrings, each with a separate

‘things to look out for’ list, appears to have no counterpart in PSG parsing.^

Category-driven top-down parsing

In describing their Lexicase parser, Starosta and Nomura make the following

claim:

Lexicase parsing is bottom-up in the sense tha t it be­
gins with individual words rather than some ‘root’ node S
(Starosta and Nomura 1986: 132).

It is true tha t their parser does not proceed by trying to expand the

sentence root. However, it does try to expand nodes which have been

designated a priori. For example, the first step of their algorithm reads:

“Link each preposition by contextual features with an accessible N, V, or P ”

(Starosta and Nomura 1986: 131). W hat is this if not an attem pt to build all

of the prepositional phrases top-down?

In recognition of the fact that this is not standard top-down parsing, and

certainly not standard bottom-up parsing, I call it category-driven top-down

dependency parsing. It works by effecting one-level expansions to designated

categories in a designated order, not necessarily starting with the root symbol.

12.1 .3 M ixed top -dow n and b o tto m -u p d ep en d en cy
parsing

The CSELT parser implements a mixed top-down and bottom-up strategy. It

begins by selecting a word in the sentence, not on the basis of some distin-

 ̂Notice that this kind of parsing has got a lot of similarities to old-fashioned schoolroom
parsing: ‘first find the main verb, then find its subject and its objects, then.., ’

269

guished s ta rt symbol in the grammar but rather, on the basis of the recognition

confidence score associated with the word. The gram m ar is then searched to

find a rule headed by this kind of word. W hen a rule is found, it is associated

with the word in the lattice. The rule is used to search top-down for depen­

dents for the word. W hen dependents are found, the cycle repeats itself for

each of the dependents of the original word.

The attraction of dependency gram m ar for mixed top-down and bottom-

up parsing is th a t the distance between ‘top ’ and ‘bo ttom ’ is so small tha t

opposite search approaches can be interleaved very simply and efficiently.

W hat each of these top-down, bottom -up, and mixed dependency parsing

methods illustrates is the proximity of ‘to p ’ and ‘bo ttom ’ in dependency struc­

tures. T he s ta rt symbol (and every other symbol in the dependency tree) is

also a symbol in the string. Here then is potential cause for confusion, even

— as we have just seen — amongst designers of dependency parsers. And

here, too, is something which clearly distinguishes dependency parsers from

PSG parsers. It is this proximity of ‘to p ’ and bo ttom ’ which makes shallow

top-down dependency parsing possible. It may be possible to implement a

shallow top-down PSG parser, for example, one which uses an X or lexicalized

gram m ar to identify the sentence root and each of its subordinates. However,

it is clearly impossible with a conventional CFPSG.

Dependency parsers are tied to the words of the sentence. But, as the

deep top-down dependency parser dem onstrates, it is possible to ignore this

constraint and parse — at least for a while — on the basis of hypothesized,

ra ther th an actual words. However, unlike some top-down PSG parsers, a deep

top-down dependency parser may never loop indefinitely since every search

path which contains more hypothesized symbols than there are actual symbols

in the sentence, must be term inated.

The principal differences between the origin of search for conventional PSG

parsers and dependency parsers may be summarized as follows:

270

1. The search path between the start symbol in a PSG and the string to be

parsed may be arbitrarily long (unless an additional constraint on the

gram m ar prevents this). In a DG, the start symbol is an element o f the

string. The only search which has to be done is th a t required to associate

a specific instance of a symbol with a general reference to th a t symbol

in the grammar.

2. The only exception to the above generalization obtains in the case of

deep top-down dependency parsers which may construct longer search

paths involving hypothesized words. The number of hypothesized words

is, however, bounded by the number of words in the input string.

3. The co-presence of bottom -up and top-down constraints in actual words,

allows dependency parsing search to a lternate simply and usefully be­

tween proceeding top-down and proceeding bottom -up.

12.2 Search m anner

There seem to be no significant differences between m anner of search (depth-

first versus breadth-first) for PSG parsers and m anner of search for dependency

parsers. E ither a parser extends one search path as far as possible (depth-first)

or it extends all possible search paths in parallel (breadth-first). The CSELT

parser implements best-first search, a variety of depth-first search in which

the best-scoring option is selected a t each choice point. This too has an exact

correlate in PSG parsing. It is to be expected th a t all other manners of search­

ing problem spaces can also be employed in dependency parsers, e.g. beam

search which takes a middle line between depth-first and breadth-first search,

selecting a maximum of n paths (the ‘beam w idth’) to develop in parallel.

Table 12.2 summarizes the m anner of search properties of the dependency

parsers surveyed.

271

Table 12.2; manner of search—summary

D e p e n d e n c y P a r s e r S e a r c h m a n n e r

Hays (bottom-up) depth-first
Hays (top-down) unspecified
Hellwig (P l a i n) depth-first
Kielikone (a d p) depth-first
DLT (ATN) depth-first
DLT (probabilistic) breadth-first
Lexicase (Starosta) breadth-first
Lexicase (Lindsey) breadth-first
WG (Fraser) depth-first
WG (Hudson) breadth-first
CSELT (S y n a p s i s) best-first
Covington (1 & 2) depth-first

12.3 Search order

There is a limit to the number of possible search orders for an n word sentence.

(By ‘search order’ I mean the order in which words are considered for inclusion

in a sentence structure.) In practice, most parsers implement either left to

right or right to left search orders. In the survey of dependency parsers —

summarized in Table 12.3 — eight out of twelve parsers operate left to right,

with three search orders unspecified. None operates right to left, but I can see

no reason in principle why any of these parsers should not be able to search

in this way with equal success.

An obvious attraction of searching from left to right is that this is usu­

ally the order in which sentences are presented to the parser and it is not

necessary to wait until the last word has been typed or spoken before pars­

ing can begin. There is particular interest in left to right parsing when the

parser not only considers the words in the order in which they appear in the

sentence, but also adds them to the developing syntactic structure in (more

or less) that order, thus allowing the sentence to be interpreted incremen­

tally left to right. Interest in incremental interpretation is shared by cogni-

272

Table 12.3: order of search—summary

D e p e n d e n c y P a r s e r S e a r c h o r d e r

Hays (bottom -up) left to right
Hays (top-down) unspecified
Hellwig (P l a i n) left to right
Kielikone (a d p) left to right
DLT (A T N) left to right
DLT (probabilistic) unspecified, unim portant
Lexicase (Starosta) left to right
Lexicase (Lindsey) unspecified
W G (Fraser) left to right
WG (Hudson) left to right
CSELT (S y n a p s i s) score-driven
Covington (1 & 2) left to right

tive scientists who believe this to be the way th a t people process sentences

(e.g. Marslen-W ilson and Tyler 1980) and com putational linguists who want

to build real tim e speech or language understanding systems.

A strand of research in CG instigated by M ark Steedm an has investigated

the possibility of combining categories using logical devices called combinators

(Curry and Feys 1958; Turner 1979). This variety of CG is known as Combi­

natory Categorial G ram m ar (CCG) (Steedm an 1987). An interesting feature

of combinators is th a t the order in which they apply is unim portant; the re­

sult is always the same. This (along with the rules of functional composition

and type raising) leads to the possibility of producing a stric t left to right

word-by-word in terpretation of any sentence (Haddock 1987; Steedm an 1990).

U nfortunately, since combinators may apply in any order, they may apply

in every order. This leads to the so-called spurious ambiguity problem (also

known as the derivational equivalence problem): weighed against the advan­

tage of being able to in terpret a sentence left to right increm entally is the

disadvantage of having to deal with (i.e. fend off) all of the o ther possible

ways of arriving a t the same conclusion. Thus, most effort in the develop­

m ent of CCG parsers has been devoted towards trying to solve the spurious

273

ambiguity problem (Hepple 1987). Different proposed solutions include:

1. Inserting only one of each set of semantically equivalent analyses in

a chart (Pareschi and Steedman 1987). This carries an equivalence-

checking overhead.

2. Only computing normal form derivations (Hepple and Morrill 1989).

This carries a normal form checking overhead.

3. Compiling a left-branching grammar out of a CCG (Bouma 1989). This

carries an initial compilation overhead, and possibly increases the size of

the grammar.

DGs allow what may be termed ‘weak incremental interpretation’, by which

I mean the following: as soon as two words which bear a direct dependency

relation to each other become available in a sentence (i.e. as soon as the second

word is read), the words can be related and accordingly interpreted. Thus, a

subject can be interpreted as a subject and its referent can be interpreted as

ACTOR, or whatever, as soon as the verb is encountered. There is no need

to wait for the construction of a VP or anything else before interpretation can

take place.^

All of the surveyed DG parsers which operate left to right with a single

pass, support incremental interpretation in the weak sense defined above.

The CSELT SYNAPSIS and DLT ATN parsers embody unusual search

orders. The CSELT parser always selects the highest-scoring word to process

next, regardless of its position. The probabilistic DLT parser enters edges in a

graph and then tries to navigate through the graph. There is no necessity for

the edges to be entered in any specific order, and it is easy to imagine edges

being added for all words in parallel.

Order of search options appear to be generally the same as for conven­

tional PSGs, with most parsers opting for a left to right approach in practice.

^Except in the case of shift-reduce dependency parsers of the sort shown in
sh ift_red u ce .p l in Appendix A.3.

274

Starosta and Nomura suggest th a t the choice of search order should be guided

by the prevailing direction of dependencies in the language to be parsed.

[The Lexicase parser] scans from left to right or vice versa, de­

pending on whether the language is verb-initial, verb medial, or

verb final, but in fact it is a mechanism which works from head

to dependent ra ther than primarily from one end to the other.

(S tarosta and Nomura 1986: 132)

Order of search is not crucial to the correctness of parses produced but it may

have a significant effect on parsing efficiency. This also depends on the search

focus of the parser. A left to right parser in which heads seek dependents

would have to read up to the final word of a sentence in which all dependents

precede their heads before it could build any structure. A left to right parser in

which dependents seek heads would build almost all structure before reaching

the final word. A parser in which heads and dependents seek each other would

not be sensitive to variation in the order of search.

12.4 N u m b er o f p asses

The number of passes made by parsers in the survey, by which is meant the

num ber of times the read head of each parser scans a sentence during the parse,

is summarized in Table 12.4.

Nine of the parsers make a single pass through the sentence. Recall tha t

confining the number of passes to one is a prerequisite for increm ental inter­

pretation.

The parsers of Hellwig, Lindsey, and S tarosta and Nomura all require more

than one, and possibly very many passes. S tarosta and Nom ura’s parser is

particularly profligate, since it requires a t least eight passes on each placeholder

expansion cycle and there may be many such cycles. In general, increasing the

num ber of passes increases the inefficiency of a parser (since the same symbols

have to be checked many times) and is best avoided.

275

Table 12.4: number of passes—summary

D e p e n d e n c y P a r s e r N U M B E R 0 F p a s s e s

Hays (bottom -up) one
Hays (top-down) one
Hellwig (P l a i n) at least two
Kielikone (a d p) one
DLT (A T N) one
DLT (probabilistic) one
Lexicase (Starosta) at least eight
Lexicase (Lindsey) multi-pass
WG (Fraser) one
WG (Hudson) one
CSELT (S y n a p s i s) one
Covington (1 & 2) one

In respect of possibilities and consequences, varying the number of passes

of a DG parser appears to be identical to varying the num ber of passes of a

PSG parser, except where this interacts with certain search focus variables, as

the next section will explain.

12.5 Search focus

So far, the main difference noted between DG parsing and PSG parsing is in

the nature of the top-dow n/bottom -up distinction. This section introduces

another m ajor difference which I have chosen to discuss under the heading

‘search focus’. A discussion of PSG parsers would not contain such a section

because it is not generally recognized to be of significance for them.^

The basic operation in DG parsing is the establishing of binary dependency

relations between words. Suppose th a t X and Y are two words; there are a

num ber of ways in which they might be considered as candidates to be related

by dependency. These differences depend upon what I shall call the ‘focus of

search’. The parsers surveyed identify eight different foci of search. These are

summarized in Table 12.5.

^HPSG parsing offers the exception to this generalization.

276

Table 12.5: focus of search—summary

D e p e n d e n c y P a r s e r S e a r c h f o c u s

Hays (bottom -up) pair-based
Hays (top-down) heads seek dependents
Hellwig (P l a i n) dependents seek heads
Kielikone (a d p) heads seek dependents
DLT (ATN) network navigation
DLT (probabilistic) heads and dependents seek

each other simultaneously
Lexicase (Starosta) heads seek dependents
Lexicase (Lindsey) heads seek dependents
WG (Fraser) heads seek dependents;

then dependents seek heads
WG (Hudson) heads seek dependents;

then dependents seek heads
CSELT (S y n a p s i s) heads and dependents seek each other
Covington (1 & 2) dependents seek heads;

then heads seek dependents

1 2 .5 .1 N e tw o rk n a v ig a tio n

In network navigation parsers, search is focussed on finding an appropriate

next token in the sentence to allow a transition network arc to be traversed.

Network navigation parsers are of marginal interest in this context since they

focus search on a da ta structure in the gram m ar-parser, rather than on the

words of the sentence being parsed. The only example of a network navigation

parser in the survey is the DLT ATN parser.

1 2 .5 .2 P a ir se le c tio n

Pair selection parsers operate by selecting two words in the sentence to be

parsed and consulting a look-up table to find out whether or not a pair of words

of the chosen types may contract a dependency relationship. H ays’ bottom-

up parser is pair-based. He defined the two m ajor operations required in his

parser to be ‘pair selection’ and ‘agreement testing’. Pair selection involved

selecting an adjacent pair of words. Agreement testing involved looking up a

277

4000 X 4000 matrix to find out whether or not the words could be linked and,

if so, which was the head and which was the dependent.

The focus of search is thus a pair of words. As we shall see, all of the other

parsers focus search in a single word.

12 .5 .3 H eads seek d ep en d en ts

Dependent-seeking parsers (Hays’ top-down parser, the Kielikone parser, the

Lexicase parsers of Starosta and Nomura, and Lindsay, my Divide and Conquer

parser) always search for dependents for the current word. In the course of

searching for a dependent (A) for the current word (B), the word which, in

reality, should be the current word’s head (C) may be tested to see if it can be

a dependent of the current word. The test will fail and search will move on to

consider another word. The inverse dependency relationship will not be tested

until word C becomes the current word, a t which point the original word B

will be found as a dependent for C.

Notice tha t this approach to search is not tied to either top-down or

bottom -up processing, as the surveyed systems illustrate. Starosta and No­

m ura’s parser is a category-driven top-down parser; the parsers of Hays and

myself operate in a shallow top-down fashion; the Kielikone parser operates

bottom-up.

As far as I can ascertain, the same strategy is embodied in Proudian and

Pollard’s top-down HPSG parser.

In HPSG it is the head constituent of a rule which carries the sub­
categorization information needed to build the other constituents
of the rule. Thus parsing proceeds head first through the phrase
structure of a sentence, rather than left to right through the sen­
tence string. (Proudian and Pollard 1985: 168-9)

12 .5 .4 D ep en d e n ts seek heads

Hellwig’s parser illustrates the fact tha t a diametrically opposite search focus

also works. In his parser, all search is directed towards finding a head for the

278

current word. Notice, however, tha t in his system words do not subcategorize

for their heads. Rather, it is necessary to go and look in the subcategorization

frames (slots) of other words in order to see if the current word can depend on

a word (i.e. can fill another word’s slot).

12.5 .5 H eads seek d ep en d en ts or d ep en d en ts seek
heads

As we have seen, the SYNAPSIS lattice parser alternates between top-down

and bottom-up processing, according to the current state of the parse and

the lattice. It also alternates between searching for dependents (VERIFY and

MERGE operations) and searching for heads (the PREDICTION operator).

The exact progression from one search focus to the other can not be defined a

priori since this depends on the recognition confidence scores in the lattice.

12.5 .6 H eads seek d ep en d en ts and d ep en d en ts seek
heads

The DLT probabilistic parser works by searching an annotated corpus for every

occurrence of each word in the sentence. A record is made of all of the upward

and downward dependency relations in which each word is found to partic­

ipate. These relations then serve as templates of relations into which each

sentence word could possibly enter. Some pairs of templates will be inverse

copies of each other, and these select each other during a process analogous to

unification. Thus, all words search for all of their heads and dependents, and

they do so — at least in principle — simultaneously.

12.5 .7 H eads seek d ep en d en ts th en d ep en d en ts seek
heads

The WG parsers written by Hudson and myself begin by searching for depen­

dents for the current word. Once all available (i.e. adjacent) dependents have

been found, the focus of search shifts, and a head is sought for the current

279

word. The insight embodied in this strategy is tha t, under normal circum­

stances in a relatively fixed word order language like English, the head of a

word does not intervene between th a t word and its dependents whereas the

dependents may intervene between the word and its head.

The rationale for changing the focus of search for the current word is that

it allows the parser to construct as much structure involving the current word

as could possibly be constructed, given what has been processed so far. In

fact, it makes it possible to build structure incrementally in a single linear

pass through the sentence. This is not possible with either of the strategies of

searching for dependents only or heads only.

The parsers which search for dependents only are Hays’ top-down parser,

the Kielikone parser, the Lexicase parsers of S tarosta and Nomura, and Lind­

say, and my Divide and Conquer parser. I have previously described Hays’

top-down parser and my Divide and Conquer parser as single pass parsers, but

this is slightly misleading since the single pass tracks not from left to right,

bu t from root to leaves of the dependency tree. This point was also made

by Proudian and Pollard (1985) and quoted above. I have also described the

Kielikone parser as a single pass system but this too disguises some im portant

details. W henever a dependent can not be found for the current word, search

suspends (the currently active schema is pushed on the PENDING stack) and

another word becomes current. Thus, while words enter the parser one a t a

tim e from the left and there is never any attem pt to perform the same op­

eration on the same word more than once, words do not become current in

strict linear order from left to right through the sentence. The same word

can become current for several non-consecutive periods of time. W ithout the

ability to suspend processing of the current word, the Kielikone parser would

not be able to parse most sentences. Both of the Lexicase parsers make many

passes through the sentence. The motivations and effect are much the same as

for the Kielikone parser, although the Kielikone parser achieves its goal with

280

much greater efficiency.

Only Hellwig’s parser searches for a head for the current word without

searching for dependents. Once again, experience shows th a t this strategy

will not work for a single pass parser. Hellwig’s parser makes multiple passes

through a sentence.

The WG parsers stand in stark contrast to these parsers. By searching

first for dependents and then for heads for each word, they are able to parse

in a single linear pass from the beginning to the end of the sentence. Once

a word ceases to be the current word, it will never become the current word

again. Thus, the strategy of seeking dependents and then seeking heads for

the current word facilitates weak incremental processing interpretation.

12 .5 .8 D e p e n d e n ts seek h ea d s th e n h ea d s seek d e p e n ­
d en ts

A similar approach is adopted in Covington’s parsers, except th a t they search

for a head for the current word and then for its dependents. I have shown how

this strategy, while being perfectly adequate in a parser w ith no adjacency

constraint, fails to work when an adjacency constraint is employed. Covington

agrees with this analysis and now advocates searching for dependents before

searching for heads (Covington 1990b).

12.6 A m b ig u ity m an agem en t

The ways in which the surveyed parsers manage am biguity is summarized in

Table 12.6.

This thesis provides descriptions of a dozen dependency parsers, introduces

some new ones and mentions quite a few more in passing. Clearly, a significant

am ount of effort has been and is being directed towards extending what is

known about dependency parsing. However, very little of this effort has yet

gone towards developing techniques for managing am biguity in dependency

parsing.

281

Table 12.6: ambiguity management—summary

D e p e n d e n c y P a r s e r A m b i g u i t y m a n a g e m e n t

Hays (bottom -up) first parse only (heuristics guide search)
Hays (top-down) unspecified
Hellwig (P l a i n) W EST (‘phrases’ may be discontinuous)
Kielikone (a d p) chronological backtracking

(heuristics guide search)
DLT (A T N) first parse only
DLT (probabilistic) highest-scoring parse selected
Lexicase (S tarosta) packing/ unpacking
Lexicase (Lindsey) packing/unpacking
WG (Fraser) chronological backtracking

(early identification of failure)
WG (Hudson) all trees constructed in parallel
CSELT (S y n a p s i s) best scoring parse only
Covington (1 &: 2) chronological backtracking

Some information is available on am biguity m anagem ent for eleven of the

parsers surveyed. Of these, four output a t most one parse tree, regardless of

how m any possible analyses there are for the sentence being parsed. The DLT

ATN parser either finds an analysis or fails. It can not undo any incorrect

choices which may have led to a dead end in the parsing of an otherwise ac­

ceptable sentence. H ays’ bottom -up parser also delivers a t best a first parse,

bu t it makes use of some simple heuristics in an a ttem p t to make the best

choices a t each choice point. Both of the other systems which deliver a t most

one parse have the capability to deliver a larger number. In fact they may

build all or most of any possible alternative parse trees. The DLT probabilis­

tic dependency parser selects the parse which has the best global score, which

is some function of the corpus-derived ‘likelihoods’ of all of its component de­

pendencies. The SYNAPSIS lattice parser delivers the parse which is ‘b est’ in

respect of its global score, which is some function of the recognition confidence

scores of its component words.

The Lexicase parsers embody a novel approach to am biguity m anagem ent.

In slightly different ways they bo th package up different readings for a word in

282

terms of a ‘‘placeholder’ or ‘m aster en try’ which contains only the intersection of

all of the different readings. (Since the gram m ar is fully lexicalized there is no

formal difference between lexical and syntactic ambiguity.) As much structu re

as possible is built on the basis of the partially specified placeholders /m aster

entries. O n each successive cycle, placeholders/ master entries are unpacked to

form disjoint structures which then re-enter the parsing-placeholder expansion

cycle independently. The rationale for this process is th a t as much common

structure as possible should be build in a generic and underspecified parse tree

before it is split into some number of disjoint more specific structures. This

calls for m ultiple parser passes, but it is supposed to deliver all readings for

a sentence, so this may be tolerable. Unfortunately, no published examples

are available of this am biguity management strategy in operation. I have been

unable to re-create it to my satisfaction.

Four parsers use chronological backtracking to undo mistakes and, if re­

quired, to generate all possible parses. Both of Covington’s parsers make use

of Prolog’s backtracking facility. The Kiehkone parser uses heuristics to guide

search so th a t backtracking on the way to a first parse is minimized. Of course,

if all parses are required, the benefit of the heuristics will be lost. My Bond­

ing parser also uses backtracking to undo mistakes and to generate multiple

parses. It uses heuristics, not to guide choice in structure-building, but to spot

doomed partia l parses and so force backtracking as early as possible, thereby

cutting down on the am ount of effort devoted to developing fruitless paths.

All of these backtracking systems work, but they are far from the s ta te of

the a rt in am biguity m anagem ent for PSG parsing.

Hudson’s parser builds all possible parse trees in parallel. Again, this works,

bu t it is not a viable engineering solution since the same sub-structures can be

built m any times over in the course of a parse.

Hellwig’s dependency W EST parser has the only system for managing am ­

biguity in this survey which could form the basis of an efficient solution. W EST

283

parsing is known to be an effective way of avoiding duplication of effort in

finding all possible parses for some sentence. W FSTs have traditionally been

thought of as graphs in which edges span contiguous phrases. Hellwig offers

a solution to the problem of how to represent discontinuous collections of de­

pendents in a table. However, there is currently no known solution to the

problem of how to represent overlapping collections of dependents — of the

sort introduced in shared dependent analyses — in a table.

As mentioned in C hapter 2, Hays offers a brief schematic description of a

recognition algorithm based on a W FST (Hays 1964: 516-17). A Prolog recon­

struction of th a t algorithm can be found in h a y s_ x e c o g n ize r.p l in Appendix

A.3. A parser based on the same principles of W FST usage to minimise search

can be found in h a y s_ p a rse r .p l in Appendix A.3.

W FST parsers offer a considerable efficiency improvement on most parsers

which do not check a da ta structure of interm ediate results before searching.

However, even greater efficiency can result if a table is used to record current

hypotheses as well as well-formed sub-strings. Such a system is usually known

as an active chart parser (often abbreviated to ‘chart parser’). The same

hypothesis may be relevant in several different analyses of the same substring.

By recording the hypothesis only once, effort can be saved much sooner than in

a W FST in which only complete substrings (the result of chains of hypotheses)

are entered. The classic reference on chart parsing is Kay (1986).

W hat does a hypothesis look like in a standard PSG chart parser? Suppose

tha t ‘S —> NP V P ’ is a rule of the grammar. The following hypotheses may be

recorded in a chart.

(a) S .NP VP
(b) S NP .VP
(c) S ^ NP VP.

Hypothesis (a) indicates th a t a sentence (S) consisting of an noun phrase (NP)

followed by a verb phrase (VP) has been hypothesized, but no evidence has yet

been found to support it. Hypothesis (b) is similar, except th a t the movement

284

of the dot in the right hand side of the rule to a position after NP indicates th a t

an NP has been found, thus offering partial support for the hypothesis. The

position of the dot a t the right extreme of the right hand side in (c) indicates

th a t evidence has been found to support the hypothesis in its entirety; an S

consisting of an NP followed by a VP has been found in the string.

Each hypothesis must be associated with a particular substring. It is nor­

m al in chart parsing to identify sub-strings as edges in a graph. Thus, the

first word in a string is usually identified by the edge which goes from node

0 to node 1; the second word goes from node 1 to node 2, etc. The string

consisting of the first three words is represented by the edge which goes from

node 0 to node 3. Following G azdar and Mellish (1989: 194ff), I shall represent

hypotheses on edges as follows:

< h h H >

where i is the s ta rt node, j is the end node, and H is a, dotted rule.

To initiahze a chart, an inactive edge (i.e. an edge in which the dot is a t

the extrem e right hand side of the rule hypothesis) can be placed in the chart

for every word class assignment allowed by the gram m ar for the words in the

sentence.

Search m ay proceed in a number of different ways. Here I shall mention

only one of these. Proceeding bottom -up, the following rule may be applied

to introduce fresh hypotheses:

B ottom -up rule of PSG chart parsing

If you are adding edge < i,j,A —>W1.> to the chart, then for every

rule in the gram m ar of the form B—>A W2, add an edge < i,i,B —>.A

W 2> to the chart. A and B are categories and W1 and W2 are

(possibly em pty) sequences of categories or words. (A dapted from

Gazdar and Mellish 1989: 197.)

The fact th a t the new edge begins and ends a t the same node simply results

285

from the fact th a t no part of it has yet been a ttested in the string.

The way in which hypotheses are developed once they enter the chart is by

means of application of what Kay calls the fundamental rule:

Fundam ental rule of PSG chart parsing

If the chart contains edges < i,j,A -^W l.B W 2> and < j,k ,B ^ W 3 .> ,

where A and B are categories and W l, W2 and W3 are (pos­

sibly empty) sequences of categories or words, then add edge

< i,k ,A —>W1 B.W 2> to the chart (G azdar and Mellish 1989: 195).

A version of Gazdar and Mellish’s Prolog im plem entation of a bottom -up chart

parser, slightly modified to enable it to run as a single file under Quintus

Prolog, can be found in the file g a z d a r jn e l l i s h .p l in Appendix A 3. (The

reason for its inclusion will become clear shortly.)

We could go about reconstructing the notion of a chart parser in the context

of dependency parsing in a number of different ways. In w hat follows I shall

adopt a fairly conservative approach which maximizes similarities w ith PSG

chart parsing. First, let us assume th a t a dot may be placed in the body of

a DG rule with the interpretation th a t everything to the left of the dot has

already been attested and nothing to the right of the dot has yet been attested.

Thus the following sample dotted dependency rules are possible.

(a) verb(.noun,*,prep)
(b) verb (noun,.*,prep)
(c) verb(.noun,*,.prep)
(d) verb(.noun,*,prep.)

(Let ‘*’ be a variable instantiated to the same category as the head of the rule

in which it occurs.)

Example (a) hypothesizes a verb with a preceding nominal dependent and

a following prepositional dependent; no part of the hypothesis has yet gained

support. In example (b), the noun has been found, and in (c), the head verb

has also been found. In example (d), the dot is a t the extrem e right hand

side of the body of the rule, thus indicating th a t the whole structure has been

286

attested and the edge is now inactive.

The bottom -up and fundam ental rules of PSG chart parsing can also be

given a dependency reconstruction,

B ottom -up rule o f dependency chart parsing

If you are adding edge < i,j,A (W l.)> to the chart, then for ev­

ery rule in the gram m ar of the form B(A,W 2), add an edge

< i,i,B (.A ,W 2)> to the chart. A and B are categories and W l

and W2 are sequences of categories or words.

Fundam ental rule o f dependency chart parsing

If the chart contains

edges < i,j,A (W l,.B , W 2)> and < j,k ,B (W 3.)> , where A and B

are categories and W l, W2 and W3 are sequences of categories or

words, then add edge < i,k ,A (W l,B ,.W 2)> to the chart.

If these rules of dependency chart parsing are applied, all possible depen­

dency structures (and sub-structures) for an input string can be produced effi­

ciently given a dependency gram m ar in Gaifman form. The file nm f_chart .p i

in Appendix A.3 contains an implementation of this kind of bottom -up depen­

dency chart parser. Careful comparison of this file with g a z d a r_ m e llish .p l

will reveal th a t the two are virtually identical in most respects, and partic­

ularly in respect of the core parsing algorithm. The only difference worth

noting is th a t dependency gram m ar rules of the form X(*) have no direct PSG

correlates. They can not be used as the basis for hypotheses — equivalent

hypotheses have already been entered in the chart a t initialization — so they

differ from unit rewrite PSG rules which do generate hypotheses. However,

this difference does not interfere with the basic control structu re of the pars­

ing algorithm.

We shall return to a discussion of this parser in the last chapter.

287

12.7 A djacency as a constraint on search

Most of the parsers surveyed assume an adjacency constraint. The effect of

such a constraint is to limit severely the search space of the parser. This is

clearly illustrated in the case of parsers like my Bonding parser which only

needs to look at the top of a stack. This constraint is also built into most

PSG parsers, since phrases are typically contiguous. At the opposite extreme,

parsers like Covington’s adjacency-free parser — which makes no use of an

adjacency constraint — must search anything up to the whole of the rest of a

sentence in order to find the word they are looking for.

Systems like Kielikone and Hudson’s parser operate within the constraints

of an adjacency constraint but use a dummy relation (e.g. ‘visitor’) to capture

an otherwise non-adjacent word (such as an extracted wh-word) and establish a

link between it and its actual head. This requires the principles of dependency

to be defined so as to allow a word to depend on more than one head or to

depend on the same head by means of more than one dependency relation (i.e.

the moved word must be related by the dummy relation to one head and by

the meaningful relation to that head or another head).

I believe that one of the major strengths of DG is that it makes a num­

ber of constraints explicit which are usually implicit in PSG. In this way, it

allows the grammar writer and the parser designer to consider each constraint

independently and to experiment with different versions of the constraints.

For example, Hudson found the adjacency constraint to be too tight for his

purposes so he revised it. He is not alone; almost all DG theories and a num­

ber of DG parsing systems customize the basic DG mechanism in some ways.

Tinkering with the basic constraints of PSG in this way is almost unheard of

(although when someone does this it tends to revolutionize the way linguists

conceive of problems — witness X grammar and GPSG).

I suggest that a potentially fruitful area of research involves refining the

adjacency constraint, so as to minimize the search space of a parser while max­

288

imizing the number of phenomena which can be covered. The strict adjacency

constraint built into many of the parsers surveyed is too strict to allow for the

parsing of variable word order languages. However, even variable word order

languages do not allow clauses to intermingle, so some constraints must still

apply. The definition of these constraints is a live research topic.

Hellwig has taken an interesting step in exploring one way in which well-

formed structures violating the strict adjacency constraint may be parsed.

This involves increasing the search space during parsing so tha t the top stack

element is not the only one to be examined. However, search in his system is

not unconstrained, as in Covington’s system. Instead, Hellwig’s parser searches

the top stack element in a first parsing cycle, and then searches the next-to-top

element in the next parsing cycle. Thus, the claim implicit in the design of the

parser is tha t an element which is not immediately accessible to its head will

not be separated from its head by more than one subtree. In this way, head-

dependent pairs which are not adjacent in the standard sense can be found, so

long as they conform to the ‘next-but-one constraint’.

However, a cautious note must be sounded here. If real progress is to

be achieved in this area, modifications and extensions to the basic Gaifman

format of DG rules must be formally defined. W ithout explicit definition of

the systems assumed, all results will be uncertain at best and useless at worst.

Regrettably, strict formal definition has been the exception rather than the

rule in DG studies. It is to be hoped tha t as interest in dependency parsing

increases, the discipline imposed by the requirements of computers for formal

rigour will help to overcome this shortcoming.

12.8 Sum m ary

In this chapter, drawing on the survey of dependency parsers in the preceding

chapters, I have tried to identify some of the dimensions of variation in depen­

dency parsing and to draw out some principles and techniques. Variation was

289

found in search origin, search manner, search order, number of passes, search

focus, ambiguity management, and in the use of an adjacency constraint on

search. Substantial similarities with standard PSG parsing were found. The

main differences concern search origin, search focus, and the use of an adja­

cency constraint.

DG trees can be seen as a special case of PSG trees in which every node di­

rectly dominates exactly one terminal symbol. One consequence of this is that

traditional terms relating to the origin of search in constituency parsing, such

as ‘top-down’ and ‘bottom -up’, can not be borrowed into dependency parsing

without some specialization of meaning. I have tried to define these terms

for the purposes of dependency parsing, and have added some new distinc­

tions, such as the distinction between ‘deep’ top-down parsing and ‘shallow’

top-down parsing.

Search, in dependency parsing, can focus on a variety of different things.

For a given word, the object of search may be to find a head for the word, or

a dependent for the word, or both. In my discussion I identify eight different

search foci, although others may be possible. The issue of what to search for

seems to be particular to dependency parsing. I have shown how the choice

of search focus can determine a number of design features, and may even

determine whether or not the parser is able to parse successfully.

An adjacency constraint can reduce a large search space so that it could

hardly be smaller. An adjacency constraint can also prevent a parser from

discovering valid analyses. I have shown how different parsers embody different

attem pts to balance the requirements of constrained search within the context

of natural language phenomena. I have also advocated DG as a particularly

useful framework for exploring this problem.

Most importantly, I have identified work which still needs to be done. The

management of ambiguity warrants special mention here, since very few depen­

dency parsing systems take this problem seriously. The special requirements

290

of a t least some extended versions of DG mean tha t, for them , existing tools

for the management of ambiguity in constituency parsers are likely to be in­

appropriate.

291

Chapter 13

Conclusion

“Use your head!”
Traditional.

At the beginning of this thesis I set out the formal properties of DCs, as defined

by Gaifman. I reported that his version of DG is equivalent to a subclass of

the CFPSGs, namely the class in which every phrase contains exactly one

category which is a projection of a lexical category. It is exactly this subclass

of CFPSGs which most linguists assume in analyses of natural language. The

differences between the grammatical systems, then, are not significant either in

terms of their formal power or their adequacy for describing natural language.

However, it must be added that many — perhaps the majority — of theoretical

linguists who use DG have added extensions to the basic formalism, thereby

creating new kinds of system of uncertain formal power. In this thesis I have

focussed on those dependency systems which have a discernible core which

may be expressed in terms of a Gaifman grammar.

The field of PSG parsing evolved — in computer science and in compu­

tational linguistics — with the assumption tha t PSG rules do not distinguish

one item in a phrase (the head) as having privileged status. It is only com­

paratively recently (within the last decade or so) tha t most phrase structure

grammarians have come to assume that every phrase does, indeed, have a

head. Thus, head-driven parsing using PSGs has emerged as a live research

292

topic even more recently. The principal difference between DG and PSG is

that DG rules necessarily identify the head of each construction, whereas PSG

rules only identify the head of a phrase if some additional constraint is supplied

(as in the case of versions of X grammar). Head-marking is intrinsic to DG,

but extrinsic to PSG as originally defined. One would therefore expect to find

a much longer record of work on head-driven parsing in the field of dependency

parsing.

Unfortunately, what emerges from this survey of existing dependency pars­

ing systems does not satisfy these expectations. There has been very little

emphasis in the dependency parsing literature on exploring what is distinctive

about parsing with head-marked rules. Some parsers, (for example, the DLT

ATN and DOG systems) make no special use of heads a t all. On the other

hand, there have been hardly any visible attem pts to relate developments in

dependency parsing to well known and understood results in phrase structure

parsing. Only Hellwig’s WFST parser stands as a deliberate attem pt to bor­

row an existing PSG parsing technique while attem pting to make use of the

headedness of DG rules.

The empirical evidence furnished by this survey is tha t almost all depen­

dency parsers constructed so far operate bottom-up incrementally. The basic

operation of these parsers is to construct pairwise dependency relations. The

discovery of larger constructions (phrases) follows as a consequence of this, not

as the result of special phrase-building operations. However, there is nothing

in all this which could not have a PSG parsing correlate.

By categorizing as many of the parsers surveyed as possible using fairly well-

understood parsing terms (e.g. top-down, depth-first search), I have begun to

explore the space within which dependency parsing algorithms are located.

The most im portant conclusion to draw here is tha t the space is — on almost

every count — the same as tha t occupied by PSG parsing algorithms. It has not

been necessary to introduce completely new terms to describe what is going on

293

in dependency parsing algorithms; existing terms will suffice. However, some

minor divergences have come to light as, for example, in the case of top-down

parsing which I have subcategorized into deep and shallow variants. Whereas

deep top-down parsing can be implemented either in a dependency framework

or any PSG framework, shallow top-down parsing appears to be particular to

head-marking frameworks.

Thus, what emerges from the survey is the beginnings of a taxonomy of

dependency parsing algorithms, in which it is clear that some configurations

of properties have been much more thoroughly explored than others. In this

way, I have identified certain clusters of properties which, though commonly

reported in the the PSG parsing literature, are not represented in this survey.

I have attempted to make good some of these deficits by describing what

a dependency solution would look like and, especially, by supplying Prolog

instantiations of these solutions in the Appendix.

And so we turn to the hypotheses introduced at the start of the thesis to

help point up the similarities and differences between dependency parsing and

standard PSG parsing.

H ypo thesis 1

It is possible to construct a fully functional dependency parser

based directly on an established phrase structure parsing algorithm

without altering any fundamental aspects of the algorithm.

I have offered at least two existence proofs of this hypothesis in the text. In

the first case, I showed how a shift-reduce parsing algorithm as standardly

applied in PSG parsing could be taken over into dependency parsing. The

PSG and DG versions of the algorithm differ only trivially in the way in which

they represent knowledge. Otherwise, they are identical. If PSG and DG

parses are followed through for the same sentence with equivalent grammars,

the operation of the parsers is identical, shift for shift, reduction for reduction.

As an even clearer proof of the truth of Hypothesis 1, I borrowed Gazdar

294

and Mellish’s existing implementation of a PSG bottom-up chart parser and

showed how, with only the most modest of changes to the code, and none at all

to the basic algorithm, it could work given an arbitrary dependency grammar.

This should not be surprising, since this is a very weak hypothesis. It is well

understood that dependency rules include phrasal information so what is to

stop them working in combination with phrase-building algorithms? However,

it is not the case that arbitrary PSG rules incorporate dependency information.

This is the motivation for the stronger hypothesis. Hypothesis 2.

H ypothesis 2

It is possible to construct a fully functional dependency parser using

an algorithm which could not be used without substantial modifi­

cation in a fully functional conventional phrase structure parser.

An existence proof for this hypothesis is provided by the divide-conquer algo­

rithm. This works on the principle tha t top-down parsing need never hypothe­

size an expansion without inunediately checking it in the string. It works solely

because every rule in the dependency grammar explicitly mentions a lexical

head, which can always be identified in the rule. This is not the case in an

arbitrary PSG. This algorithm is particularly attractive by virtue of the pos­

sibilities it raises for dividing up the parse problem and solving (conquering)

the different parts in parallel.

However, though Hypothesis 2 has been proven literally, it misses an impor­

tan t point. It is difficult to study the subject of dependency parsing without

being drawn to this conclusion: it is invidious to contrast PSG parsers with

dependency parsers; the more profitable comparison is tha t between parsers

which make use of the notion ‘head’ and those which do not. While most of the

standard PSG parsing algorithms are not head-driven, a small number (which

use head-marked versions of PSG) are. Conversely, although a dependency

rule without head-marking is inconceivable, this survey has shown that by no

means all dependency parsers make significant use of information about heads.

295

The overwhelming weight of opinion in linguistic theory supports the mark­

ing of heads in phrases, but remarkably little progress has yet been won by

the introduction of explicitly marked heads in parsing systems. Parsing in the

dependency grammar tradition, which ought to be a rich information source,

turns out to be generally disappointing, not least because the systems which

have been developed have never been systematically related to any other (more

mainstream) parsing results. I offer this thesis as a first step towards the inte­

gration of dependency parsing with mainstream work on head-driven parsing.

296

A p p en d ix

P ro lo g L istin gs

A .l In tro d u ctio n

The programs listed in this appendix are w ritten in Quintus Prolog (version

3.0.1). A restricted sub-set of Quintus built-in predicates has been used to

encode the algorithms described in the m ain text. This sub-set is entirely con­

sistent with standard ‘Edinburgh’ syntax (Clocksin and Mellish 1987). How­

ever, a small num ber of non-standard predicates has been utilised to set up

the environment in which the main algorithms are located. The most com­

mon of these is ensureJLoaded/1 which is broadly equivalent to ‘Edinburgh’

reconsult/1. It is used to load the predicates defined in another file. The ar­

gum ent of ensure J.oaded/1 may be either a filename (minus Quintus Prolog’s

compulsory ‘.pi’ extension) or a term of the form library (X), where X is the

name of a Q uintus library file. The only such file to be loaded is files which

provides a collection of predicates for m anipulating tex t files. The particu­

lar library predicate used in the programs listed here is f ile_exists/l which

takes as its argum ent the nam e of a file. The predicate succeeds if the file

exists (i.e. can be found in the current directory by the Prolog system). Most

practical Prologs provide a broadly equivalent predicate, although predicate

names differ from system to system.

Q uintus Prolog requires th a t all dynamic predicates (i.e. predicates which

m ay be asserted or retracted a t runtim e) be explicitly declared. This is usu­

ally done a t the beginning of the file containing the relevant assert/1 or

retract/1 predicate calls. Dynamic predicate declarations have the following

form:

dynamic Predicate/N.

297

Predicate is the name of the dynamic predicate; N is its arity. Both

Predicate and N must be instantiated. Each dynamic predicate declaration

may simply be commented out for use with Prologs which do not require such

declarations.

The listings set out below present a diverse range of recognition and pars­

ing algorithms which are united in their use of dependency grammars, but

divided in the ways in which they manipulate their data structures, includ­

ing their internal representation of grammars. For this reason a compilation

methodology has been used for those algorithms which make use of Gaifman-

style dependency grammars (see Chapter 2 for details). The grammar writer

writes a Gaifman dependency grammar using Gaifman’s standard notation.

This is subsequently compiled into the Prolog-internal representation most

appropriate (i.e. efficient) for each algorithm. The compilation process only

restructures grammar rules — it does not add or subtract information. The

code for the Gaifman dependency grammar rule compiler is listed in the file

dg_com pile.pl.

Section A.2 indexes each predicate which appears in the listing according

to the file in which it is defined. The files themselves are given in alphabetical

order according to file name in Section A.3. A sample grammar to illustrate

some basic features of the parsers appears in Section A.4.

298

A .12 In d ex o f p red ica tes

P r e d ic a te F ile
addjspans Jncluding_trees/3 hays.parser.pl
allowed_char/l dg_compile.pl
alpha_num eric/1 dg.compile.pl
ap p en d /3 lib.pl
assert Jf_new/1 lib.pl
begin_new J in e / 0 map.to_dcg.pl
build _catJist/2 hays.generator.pl
concat/3 lib.pl
conquer/5 divide.pl
construct .assignments /0 m ap.to.dcg.pl
construct.assignm ents/2 map.to_dcg.pl
construct_call/ 0 map_to_dcg.pl
construct_embedded_call/0 map_to_dcg.pl
construct j:ules / 0 map_to_dcg.pl
cross .p roduct/3 lib.pl
dep_write/3 map_to_dcg.pl
dcg.generate/0 dcg.pl
dcg.parse/0 dcg.pl
dg_com pile/l dg_compile.pl
dg_compile Joop / 2 dg_compile.pl
divide/4 divide.pl
di vide.conquer / 0 divide.pl
div ide.conquer/1 divide.pl
dot lib.pl
drule/3 dg_compile.pl
each jn em b er/2 lib.pl
each .tree / 4 hays.generator.pl
embedded .s tag e .t w o/3 hays.generator.pl
embedded .x .p roduct/3 lib.pl
enum erate /0 hays .generator, pi
en um erate /1 hays .generator, pi
enum erate Joop / 0 hays.generator.pl
enum erate .surface/1 hays.generator.pl
ex tract.anyjsub jstring_w ith.trees/4 hays_parser.pl
extract jsubjstring-and_trees/5 hays_parser.pl
ff_druIe/3 dg_compile.pl
flush.com m ent / 3 dg_compile.pl

299

flushline/2 dg_compile.pl
generate_one_root /1 dcg.pl
generate_tree/l hays_generator.pl
get^ lL chars/1 dg_compile.pl
get_alLchars2/3 dg_compile.pl
gram m ar.present / 2 dg_compile.pl
g roup/4 dg_compile.pl
in_word/2 lib.pl
incorporate/2 dg_compile.pl
in it/1 divide.pl
initialize_parse_table / 2 hays_parser.pl
known_tree/l hays_generator.pl
lower_case/l dg_compile.pl
map_to_dcg/2 map_to_dcg.pl
m ultiJine/1 dg_compile.pl
note_grammar_present / 2 dg_compile.pl
num eric /1 dg_compile.pl
padding_char/l dg_compile.pl
parse Jncreasing_substrings /1 hays_parser.pl
prin t_set/l dcg.pl
purge_grammar_rules / 0 lib.pl
read Jn /1 lib.pl
read w ord/3 lib.pl
restsent/3 lib.pl
return_admissible_trees/2 hays_parser.pl
reverse/2 lib.pl
reverse/3 lib.pl
rfF_drule/3 dg_compile.pl
root/1 dg_compile.pl
sa tu ra te /2 dg_compile.pl
sentence Jen g th /1 hays_parser.pl
sep ara to r/1 dg_compile.pl
show_complete_tree/0 hays_parser.pl
spans/3 hays_parser.pl
speciaLchar/1 dg_compile.pl
sr_recognize/0 shift_reduce.pl
sr_recognize/1 shift_reduce.pl
sr_recognizeJoop/2 shift_reduce.pl
sr_reduce/2 shift_reduce.pl
stage_one/l hays .generator, pi
stage_two/2 hays_generator.pl
surface/2 hays_generator.pl

300

tabular _parse/0 hays_parser.pl
tokenize/1 dg_compile.pl
upper_case/l dg_compile.pl
w hittle /5 divide.pl
word_class/2 dg_compile.pl
word_classify/2 divide.pl
word.exs / 3 map_to_dcg.pl
write_sentenceJist /1 lib.pl
w riteln/1 lib.pl

301

A .3 C od e listin gs

%%%
%
% FILENAME: dcg.pl
%
% WRITTEN BY: Noriticin M. Fraser
%
% DESCRIPTION: A definite clause grammar incorporating some
% notions from dependency grammar. For more
% information on definite clause grammars see
% Pereira and Warren (1980).
%
% VERSION HISTORY: 1.0 November 28, 1992
%
%%<

%
% LOAD DECLARATIONS
:- ensure_loaded(lib).
%
%%:

/ * «

*

* dcg_parse/0.
*

* Pêürse a string using a definite clause grammar. Return a dependency
* tree if the parse succeeds.
* For example, typing :
*

* I ?- dcg_parse.
* I: the big mouse chased the timid cat.
*

* produces the result :
*
* Parse tree: verb(noun(det(*),adj(♦),*),*,noun(det(*),adj(♦),*))
*
* /
dcg_parse

read_in(String),
!,
root(Root),
Rule =.. [Root,Tree],
phrase(Rule,String,[*.’]),
writeln([’Parse tree: ',Tree]),
nl.

dcg.parse :-
writeln(’PARSE FAILED’),
nl.

/***
*
* dcg_gen erate/0 .

302

*
* Generate all strings (and associated syntactic parse trees) defined
* by the DCG.
*/
dcg_generate

setof(Root,root(Root),Set),
generat@_one_root(Set),
nl.

/***
*
* generate_one_root(+RootList).
*
* Generate all possible strings for a given sentence root.
*/
generate_one_root([]).
generate_one_root([First I Rest]) :-

Rule =.. [First,Tree],
setof([String,Tree],phrase(Rule.String).Set).
print_set(Set).
generate_one_root(Rest).

/***
*
* print_set(+ResultList).
*
* Print out a list of String/Tree generation result pairs, one
* pair at a time.
*/
print_set([])

nl.
print_set([[String.Tree]I Rest])

writeln(['String : ’.String]).
writeln([’Tree: ’.Tree]),
nl,
print_set(Rest).

%%
%
% THE GRAMMAR
% A very simple definite clause grammeir to illustrate how to
% build dependency trees using DCGs.
%
%%

adj(X) — > [Head].
{ class(Head.adj).

X = adj(*) }.

det(X) — > [Head].
{ class(Head.det).

X = det(*) }.

303

noun(X) — > det(Det), [Head],
{ class(Head,noun),

X = noun(Det,*) >.
noun(X) — > det(Det), adj(Adj), [Head],

{ class(Head,noun),
X = noun(Det,Adj,*) }.

i_verb(X) — > noun(Noun), [Head],
{ class(Head, i_verb),

X = i_verb(Noun,*) }.

t_verb(X) — > noun(Nounl), [Head], noun(Noun2),
{ class(Head,t_verb),

X = t_verb(Nounl,*,Noun2) }.

%%
%
% VALID SENTENCE ROOTS
%
%%

root(i_verb),
root(t_verb).

%%
%
% WORD CLASS ASSIGNMENTS
%
%%

class(big,adj).
class(fierce,adj).
class(timid,adj).

class(a,det).
class(the,det).

class(cat,noun).
class(dog,noun).
class(mouse,noun).

class(snored,i_verb).
class(ran,i_verb).

class(chased,t_verb),
class(likes,t_verb).

304

a%%

r.
y, FILENAME: dg_compile.pl
r.
K WRITTEN BY: Norman M. Fraser
%
y, DESCRIPTION: Compile a standard Gaifman format dependency
% grammar into several different forms, namely :
% Gaifman Prolog form, full form, and reversed
y, full form.
I
% VERSION HISTORY: 1.0 August 12, 1992
%
%%
%
% LOAD DECLARATIONS
% library(files) is a Quintus Prolog library. To run with other
'/, prologs replace call to file_exists/l in dg_compile/2 with the
% local equivalent.
%
: - ensure_loaded(library(files)).
: - ensure_loaded(lib),
%
%%
%
% DYNAMIC PREDICATE DECLARATIONS
:- dynamic multi_line/l.
:- dynamic root/1.
:- dynamic word_class/2.
: - dyneunic drule/3.
:- dynamic ff_drule/3.
:- dynamic rff_drule/3.
:- dynaunic grammar_present/2.
%
%%

/***
*
* dg_compile(+File).
* dg_compile(+Compilation,+File).
*
* Compile a Gaifman dependency grsimmar into a variety of
* Prolog-readable forms. Three compilations are supplied.
*
* Gaifman dependency grammars allow rules of the following three
* varieties:
*
* (i) *(X)
* (ii) X(*)
* (iii) X(Yl,Y2,...,Yi,*,Yj...,Yn-l,Yn)
*
* GAIFMAN PROLOG FORM
* Gaifmsui Prolog Form (GPF) is the simplest Prolog implementation of

305

* Gaifman's rule system, therefore it may be regarded as the
* canonical implementation. A grammeir in standard Gaifman form can be
* compiled into GPF as follows:
*
* (1) Replace every rule of type 1 with a GPF rule of type ’root(X).’
* (2) Replace every rule of type 2 with a GPF rule of type
* ’drule(X, [],[]).'
* (3) Replace every rule of type 3 with a GPF rule of type
* ’drule(X,A,B).’ where A is a Prolog list consisting of Yl-Yi in
* the same order as they appear in the original rule, eind B is a
* Prolog list consisting of Yj-Yn in the same order as they appear
* in the original rule. If nothing precedes in the original rule,
* then A = [] ; if nothing follows in the original rule then B = [].
*
* To compile a Gaifman grammar contained in a file called 'grammar1' into
* GPF, use:
*
* dg_compile(gpf,grammar1).
*
* Since GPF is the default compilation, the same result may be achieved
* using:
*
* dg_compile(grammar1).
*
* FULL FORM
* Full form dependency rules are produced using the following mapping :
*
* (1) Replace every rule of type 1 with a full form rule of type 'root(X).'
* (2) Replace every rule of type 2 with a full form rule of type
* ’ff_drule(X,[X]).'
* (3) Replace every rule of type 3 with a full form rule of type
* 'ff_drule(X,A).’ where A is the Prolog list consisting of the
* concatenation of Yl-Yi, X, and Yj-Yn in that order.
*
*
* To compile a Gaifman grammar contained in a file called 'grammar1' into
* full form, use:
*
* dg_compile(ff,grammar1).
*
* REVERSED FULL FORM
* Rerersed ull form dependency rules are produced using the following
* mapping:
*
* (1) Replace every rule of type 1 with a full form rule of type 'root(X).'
* (2) Replace every rule of type 2 with a full form rule of type
* 'rff_drule(X,[X]).'
* (3) Replace every rule of type 3 with a full form rule of type
* 'ff_drule(X,A).' If A is a Prolog list consisting of the
* concatenation of Yl-Yi, X, and Yj-Yn in that order, then A1
* is the mirror image of that list.
*
* To compile a Gaifman grammar contained in a file called 'grammar1' into
* reversed full form, use:
*

306

* dg_compile(rff,grammarl).
*
* To compile the same source file into all three formats at the same
* time use:
*
* dg_compile(all.greimmarl).
*
* The output of dg_compile/l eind dg_compile/2 is written directly to
* the Prolog internal database (user).
*/
dg_compile(File)

dg_compile(gpf,File).

dg_compile(Compilâtion,File) :-
(
file_exists(File)
I
writeln([’Unknown file: ’.File]),
abort
).
writeln([’Compiling ’.File,’ into ’.Compilation,’ format.’]),
see(File),
retract2uLl(multi_line(_)),
assert(multi_line(off)),
tokenize(FirstRule),
dg_compile_loop(Compilation,FirstRule),
told,
note_grammar_present(Compilation,File),
close_all_streams,
writeln(’Grammar compilation completed.’).

dg_compile_loop(Compilation,eof([])).
dg_compile_loop(Compilation,eof(Rule)) : -

dot,
phrase(valid_rule(X),Rule),
incorporate(Compilâtion,X).

dg_compile_loop(Compilation,[]) :-
tokenize(Rule),
dg_compile_loop(Compilâtion,Rule).

dg_compile_loop(Compilâtion,FirstRule) :-
dot,
phrase(valid_rule(X).FirstRule),
incorporate(Compilâtion,X),
tokenize(NextRule),
dg_compile_loop(Compilât ion,NextRule).

incorporâte(all,dependency_rule(Head,Before,After)) :-
assertz(drule(Head,Before,After)),
append(Before,[Head I After].Phrase),
assertz(ff_drule(Head,Phrase)),
reverse(Phrase,RevPhrase),
assertz(ff_drule(Head,RevPhrase)).

incorporâte(gpf,dependency_rule(Head.Before,After)) :-
assertz(drule(Head,Before,After)).

307

incorporâte(gpf_sat,dependency_rule(Head,Before,After))
saturate(Before,BefOrel),
saturate(After,After1),
assertz(gpf_sat_drule(Head,BefOrel,Afterl)).

incorporâte(ff,dependency_rule(Head,Before,After)) :-
append(Before,[Head 1 After],Phrase),
assertz(ff_dmle(Head,Phrase)).

incorporâte(ff_sat,dependency_rnle(Head,Before,After))
saturate(Before,Beforel),
satnrate(After,After1),
Headl =.. [Head,*],
append(BefOrel,[Head I After1],Phrase),
assertz(ff_sat_dnile(Headl,Phrase)),

incorporâte(rff,dependency_rnle(Head,Before,After))
append(Before,[HeadlAfter],Phrase),
reverse(Phrase,RevPhrase),
assertz(f f _dmle(Head,RevPhrase)).

incorporât e (rf f _sat, dependency_mle (Head, Before, After))
saturate(Before,BefOrel),
saturate(After,Afterl),
Headl =.. [Head,*],
append(Before1,[Head IAfterl],Phrase),
reverse(Phrase,RevPhrase),
assertz(rff_sat_drule(Headl,RevPhrase)).

incorporâte(_,sentence_root(Root))
assertz(root(Root)).

incorporât e(_,class_ass ign(_,[])).
incorporate(_,class_assign(Class,[FirstWordjRest]))

assertz(word_class(FirstWord,Class)),
incorporate(_,class_assign(Class,Rest)).

note_gramm2ur.present (all, Granunar)
note.grammar.present(gpf,Grammar),
note.grammar.present(ff,Grammar),
note.grammar.present(rff,Grammar).

note.grammar.present(Format,Grammar) :-
assert (grammar.present (Format, Grammair)).

saturate([],□).
saturate([First I Rest],[New I Result]) :-

New =.. [First,*],
saturate(Rest,Result).

%%
%
% TOKENIZE A DEPENDENCY GRAMMAR
%
%%

/***
*
* tokenize(-ListOfTokens)
*

308

* Produce a list of tokens for the current line in the standard input,
♦/
tokenize(Result)

get_all_chars(ListOfChars),
group (ListOf Chars, [] , [] , Result).

/***
*
* get_all_chars(+Filename,-ListOfChars)
*
* Construct a list of all legitimate characters on the current line
* (in reverse order).
*/
get_all_chars(AllChars)

getO(C),
get_all_chars2(C,[],AllChars).

get_all_chars2(C,Result,eof(Result))
end_of_file(C).

get_all_chars2(C,Result,Result) :-
multi_line(off),
newline(C).

get_all_chars2(C,Current,Result)
comment(C),
flushline(C,Cl),
get_all_chars2(Cl.Current,Result).

get_all_chars2(ThisChar,[LastChar I Current].Result)
asterisk(ThisChar).
oblique(LastChar).
flush_comment(120.120.C1).
get_all_chars2(Cl.Current.Result).

get_all_chars2(C.Current.Result) : -
close_curly(C).
retractall(multi_line(_)).
asserta(multi_line(off)).
getO(Cl),
get_all_cheurs2(Cl. [CI Current] .Result),

get_all_chars2(C .Current.Result) :-
open_curly(C).
retractall(multi_line(_)).
asserta(multi_line(on)).
getO(Cl).
get_all_chars2(Cl.[CI Current].Result),

get_all_chars2(C.Current.Result) :-
allowed_char(C).
getO(Cl).
get_all_chars2(Cl.[CI Current].Result).

get_all_chars2(C.Current.Result) :-
write(M Illegal character ignored: ’),
put(C).
writeC (ASCII '),
write(C).
write(’)’),
nl,

309

getO(Cl),
get_all_chars2(Cl.Current.Result).

/* *** *(**:***+**
*
* group(+Inlist.?Current_Word.+Current_List.-Result)
*
* Tokenize a list of character codes,
*/
group(eof(Anything).One.Two.eof(Result))

group(Anything.One.Two.Result).
group([] . [] .Result .Result).
group([] . Current_List .So_Far. [Current_Atom| So_Far]I)

name(Current_Atom.Current_List).
group([HIT].n.So_Far.Result)

special_char(H).
name(Current_Atom.[H]).
group(T.[].[Current_AtomlSo_Far] .Result).

group([HiT] .[] .So_Far.Result)
padding_char(H).
group(T. □ .So_Far.Result).

group([HIT].Current_List.So_Far.Result) : -
alpha_numeric(H).
group(T.[HiCurrent_List].So_Far.Result).

group([HIt] .Current_List.So_Far.Result) : -
separator(H).
name(Current_Atom,Current_List),
group([HIT].□ .[Current_Atom|So_Far].Result).

/***
*
* Character manipulation utilities and definitions
*
***/

/***
*
* flushline/0.
*
* Flush the input buffer to the next end of line.
*/
flushline(C.C)

end_of_file(C),
flushline(C.Cl)

newline(C).
getO(Cl).

flushline(_.C)
getO(Cl).
flushline(Cl.C).

/ *] | c * * * * * * * * *

*

310

* :llush_comineiit(+CurrentChar,+PreviousChar,+ReturnChar).
*
* IFlush the input buffer to the end of the next multiline comment,
*/
flush_comment(C,_,C)

end_of_file(C).
flush_comment(C,Cl,C 2)

oblique(C),
asterisk(Cl),
getO(C2).

flush_comment(Cl,_,C3)
getO(C2),
flush_comment <C2,Cl,C3) .

allo)wed_char(C)
padding,_char(C).

allO)wed_char(C) : -
alpha_numericCC)

allowed_char(C)
special_char(C).

separator(C)
padding_char(C).

separator(C)
special_char(C).

padding_chax(C)
space(C).

padding_char(C) :-
tab_char(C).

padding_char(C) :-
comma(C).

padding_char(C)
period(C).

padding_char(C) :-
newline(C).

alpha_numeric(C)
lower_case(C) .

alpha_numeric(C)
upper_case(C) .

alpha_numeric(C)
underscore(C).

alpha_numeric(C)
numeric(C).

lower-case(C)
C >= 97,
C =< 122.

^PP9r_case(C)
C >= 65,
C =< 90.

311

numeric(C)
C >= 48,
C =< 57.

special_char(C)
open_bracket(C).

special_char(C)
close_bracket(C)

special_char(C) :-
colon(C).

special_char(C)
asterisk(C).

special_char(C)
open_curly(C).

special_char(C)
close_curly(C).

special_char(C)
oblique(C).

end_of_lile(-l), % EOF
tab_char(9). % tab
newline(lO), % nl
space(32). % ' »
comment(37). % %
open_bracket(40). % (
close_bracket(41). %)
asterisk(42), % *
comma(44), % ,
dash(45). % -
period(46). % .
oblique(47), % /
colon(58). % :
underscore(95). % _
open_curly(123). % {
close_curly(125). % >

%%
%
% A DEFINITE CLAUSE GRAMMAR FOR DEPENDENCY GRAMMAR RULES
%
%%

%
% VALID RULE TYPES
%
valid_rule(X) — >

dependency_rule(X).
valid_rule(X) — >

class_assignment(X).
valid_rule(X) — >

root_declaration(X).

%

312

% WORD CLASS ASSIGNMENT RULES
%
class_assignment(X) — >

[A], colon_string(B), set_of_words(C),
{atom(A),
X = class_assign(A,C)}.

colon_string(X) — >

set_of_words(X) — >
open_set(A), word_list(X), close_set(C).

open_set(X) — >
[' { '] .

close_set(X) — >
[»>’].

word_list(X) — >
[A],
{atom(A),
X = [A]>.

word_list(X) — >
[A], word_list(B),
•Catom(A),
X = [A|B]>.

%
% SENTENCE ROOT RULES
%
root_declaration(X) — >

asterisk_string(A), open_brkt_string(B), [C], close_brkt_string(D),
{atora(C),
X = sentence_root(C)>.

asterisk_string(X) — >
[' * '] .

open_brkt_string(X) — >
[' ('] .

close_brkt_string(X) — >
[’) ’] .

%
% DEPENDENCY RULES
%
dependency_rule(X) — >

[A], open_brkt_string(B), asterisk_string(C), close_brkt_string(D),
{atom(A),
X = dependency_rule(A, □,[])}.

dependency_rnle(X) — >
[A], open_brkt_string(B), word_list (C), asterisk_string(D),
close_brkt_st:ring(E),

313

■Catom(A),
X = dependency_rule(A,C,[])}.

dependency_rule(X) — >
[A], open_brkt_string(B), asterisk_string(C), word_list(D),
close_brkt_string(E),
■Catom(A),
X = dependency_rule(A, □ ,D)>.

dependency_rule(X) — >
[A], open_brkt_string(B), word_list(C), asterisk_string(D),
word_list(E), close_brkt_string(F),
■Catom(A),
X = dependency_rule(A,C,E)}.

314

'/%%%

FILENAME: divide_conquer.pl

WRITTEN BY: Norman M. Fraser

DESCRIPTION: Divide & Conquer, A shallow top-down dependency
parser.

VERSION HISTORY: 1.0 December 17, 1990
1.1 August 8, 1992 (NMF)
1.2 January 16, 1992 (NMF)

%
%%
%
% LOAD.DECLARATIONS
:- ensure_loaded(library(files)).
:- ensure_loaded(lib).
%
%%

/**
*
* divide_conquer/l.
* divide_conquer/0.
*
* Parse a string. Version with filenzime argument loads a Gaifman Prolog
* Form grammar. The parser is based on the 'divide and conquer' algorithm.
* The basic idea is to use the head of a rule to split the string to be
* parsed in two and then to recurse down each half in turn.
*/
divide_conquer(File) :-

(
file.exists(File),
purge_grammax_rules,
dg_compile(File)
I
writeln(['ERROR ! Non-existent grammar file : ',File,'.']),
abort
),
divide.conquer.

divide.conquer :-
write('Type the sentence to be parsed (end with a full stop)'),
nl,
write(': '),
read_in(Sentence),
word.classify (Sentence, Class.List),
init(Class.List).

divide.conquer :-
writeln(['*** PARSER FAILED ♦*♦»]).

315

/*********************************%*#**************************************
*
* word_classily(+Classless,-Classifi€ed),
*
* Take a list of unclassified words eand return a list of word classes,
* basing assignments on the current (grammar.
*/
word_classify([.], □).
word_classif y([Word I Rest_Words] , [Clasîs I Class_List]) : -

word_classify(Rest_Words, (Class_List),
word_class(Word,Class).

/***
*
* init(+String).
*
* Begin the parse.
*/
init(List)

root(Start),
drule(Start, Left_Deps, Rightc_Deps),
divide (List, Left, Right, Start)),
conquer (St art. Left, Left _Deps,, [] , Report 1),
conquer (Start,Right,Right _Depps, [] , Report 2) ,
writeln([’Root = ’,Start]),
writeln([’Leftside = ’,Reporttl]) ,
writeln([’Rightside = ’,Reporrt2]),

/***
*
* divide (+String, -Lef tPart, -RightParrt, +Head).
*
* Find Head in String emd return thee substring to its left as LeftPart
* and the substring to its right as Right Part.
*/
divide([] ,_,_,_).
divide([H|T],[],T,H).
divide([HIT],[HiLeft],Right,Root)

divide(T,Left,Right,Root).

/ * * * * * % * s t * * * * * * * * * * * * *

*
* conquer(+Head,+String,+Dependents;,-Remainder.of.Substring,-Report).
*
* Find trees rooted in each of the [Dependents in String. These will
* each depend on Head. Return a n y oif String not accounted for as
* Remainder. Report what has been fdound.
*/
conquer (_,[],[],[],[]). % SUCCEED : all satisfied
conquer (_,[],[_ I _] ,_,_) : - % FAIL: deps but no words

!,
fail.

:316

conquer(Head,[Dep],[Dep],[],[(Dep.HHead)])
druleCDep, [],[]). % SUCCEED: only dep matches only word

conquer(Head,String,[Dep].Remainderr, [(Dep,Head)I Reports]) : -
drule(Dep,Left_Deps,Right_DDeps) ,*/, ONE DEP: divide aind conquer
divide(String,Left,Right,Deep),
conquer (Dep, Left, Lef t_Depps, □, Report 1) ,
conquer(Dep, Right, Right_DDeps,Remainder,Report2),
append(Report1, Report2, ReeportS).

conquer(Head,String,[First_Dep|Restt_Deps].Remainder,Reports) :- % MANY DEPS
drule(First_Dep, Left_Deps,, Right_Deps),
divide(String,Left,Right,Fiirst_Dep),
conquer(First_Dep,Left.Leftt_Deps,[],Report1),
whittle(First.Dep, Right, RRight_Deps, Remainder2,Report2),
conquer(Head, Remainder2, RRest_Deps,Remainder1,Reports),
append(Report1,Report2,Repoor13),
append(Reports,Reports,Repoort5).

conquer(Head,[First_WordIRest_Wordsg],[First_DepIRest_Deps].Remainder,
[(First_Dep,Head)I Report1]) :-

drule(First_Dep, □,[]),
conquer(Head,Rest_Words,ResSt_Deps,Remainder,Report 1).

/***
*

* whittle(+Head,+String,+Dependentss,-Remainder,-Report).
*

* A reduced version of conquer/5 fcor whittling down String when
* more than one tree must be found I in it.
* /
whittle(_. Remainder, [], Remainder,,_).
whittle(Head,[DeplIRest_Words],[DepilIRest_Deps] .Remainder,[(Depl.Head)I Report1])

drule(Depl, [],[]),
whittle(Head,Rest_Words,Restt_Deps,Remainder,Report1).

whittle(Head,String,[DeplIRest_Deps]],Remainder,Reports) :-
drule(Depl,Left_Deps,Right_DDeps),
divide(String,Left,Right,Deppl),
conquer(Depl.Left,Left_Deps,,[],Report1),
conquer(Depl.Right.Right_Depps.Remainder,Report2),
append(Report1,Report2,ReporrtS).

2317

%%

%
% FILENAME: gazdar_mellish.pl
%
% WRITTEN BY: Gerald Gazdar & Chris Hellish, with minor
% modifications by Norman M. Fraser.
%
% DESCRIPTION: Contains the concatenation of several files
% (ncimely: buchartl.pl, chrtlibl.pl, library.pl,
% psgrules.pl, lexicon.pl, examples.pi) from the
% program listings in Gazdar & Hellish (1989).
% Some minor changes have been made to mahe the
% program run under Quintus Prolog. A few
% predicates which are irrelevant here have
% been removed (mostly from library.pl).
%
% VERSION HISTORY: Jcmuary 16, 1993 (date created in this form)
%
%%
%
% ORIGINAL NOTICE FOLLOWS:
%
% %

% Example code from the book "Natural Language Processing in Prolog" %
% published by Addison Wesley %
% Copyright (c) 1989, Gerald Gazdar & Christopher Hellish. %
% % % % % % % % % % % % % % % % */. %
%
% Reproduced by kind permission.
%

/ * /

%
% buchartl.pl A bottom-up chart parser
%
/ * /

parse(VO,Vn,String) :-
8tart_chart(V0,Vn,String). % defined in chrtlibl.pl

%
add_edge(VO,VI,Category,Categories,Parse) :-

edge(VO,VI,Category,Categories,Parse),!.
%
add_edge(Vl,V2,Category1,[],Parse) :-

assert_edge(Vl,V2,Categoryl,[],Parse),
foreach(rule(Category2,[CategorylI Categories]),

add_edge(Vl,VI,Category2,[CategorylI Categories],[Category2])),
foreach(edge(VO,VI,Category2,[CategorylI Categories],Parses),

add_edge(VO,V2,Category2,Categories,[Parse I Parses])).
add_edge(VO,VI,Categoryl,[Category21 Categories],Parses) :-

assert_edge(VO,VI,Categoryl,[Category21 Categories],Parses),
foreach(edge(VI,V2,Category2,[],Parse),

add_edge(VO,V2,Categoryl,Categories,[ParseI Parses])).

318

/**/
%
% chrtlibl.pl Librêiry predicates for database chart parsers
%
/**/

%
start_chart
uses add_edge (defined by particular chart parser) to insert inactive
edges for the words (and their respective categories) into the chart

%
start.chart(VO,VO,[]).
st£irt_chart(VO,Vn, [Word I Words])

VI is VO+1,
f oreach(word(Cat egory,Word),

add_edge(VO,VI,Category,[],[Word,Category])),
steurt.chart (VI, Vn, Words).

% test
% allows use of test sentences (in examples.pi) with chart parsers
%
test(String)

VO is 1,
initial(Symbol),
parse(VO,Vn,String),
f oreach(edge(VO,Vn,Symbol,[],Parse),

mwrite(Parse)),
retractall(edge(_,_,_,_,_)).

%
% foreach - for each X do Y
%
foreach(X,Y)

X,
do(Y),
fail.

foreach(X,Y)
true.

do(Y) Y , !.
%
% mwrite prints out the mirror image of a tree encoded as a list
%
mwrite(Tree)

mirror(Tree,Image),
write(Image),
nl.

%
% mirror - produces the mirror image of a tree encoded as a list
%
mirror (□,[]) !.
mirror(Atom,Atom)

atomic(Atom).
mirror([X1|X2],Image)

mirror(Xl,Y2),
mirror(X2,Y1),

319

append(Y1,[Y2],Image).
%
% assert_edge
% asserta(edge(...)), but gives option of displaying nature of edge crreaated
%
assert_edge(Vl,V2,Categoryl,[],Parsel)

asserta(edge(Vl,V2,Categoryl,[],Parsel)).
% dbgwrite(inactive(Vl,V2,Categoryl)).
assert_edge(VI,V2,Category1,[Category21 Categories].Parsel)

asserta(edge(Vl,V2,Categoryl,[Category21 Categories],Parsel)).
% dbgwrite(active(VI,V2,Categoryl,[Category21 Categories])).
%

/***%*************'****/
%
% library.pl A collection of utility predicates
%
/**#+***/

%
% '---> ’ an arrow for rules that distinguishes them from D<CG (’— >') iruiles
%
?- op(255,xfx,-- >).
%
% definitions to provide a uniform interface to DCG-style :fule format:
% the 'word' predicate is used by the RTNs and other parse.rs
% the 'rule' clause that subsumes words is used by the cheurt parsers
%
word(Category,Word)

(Category ---> [Word]).
%
rule(Category,[Word])

use_rule,
(Category ---> [Word]).

%
% in order for the clause above to be useful,
% use_rule. needs to be in the file.
%
rule(Mother,List_of.daughters) :-

(Mother ---> Daughters),
not(islist(Daughters)),
conj tolist(Daughters,List.of.daughters).

%
% conjtolist - convert a conjunction of terms to a list off terms
%
conjtolist((Term,Terms), [TermIList.of.terms]) !,

conjtolist(Terms,List.of.terms).
conjtolist(Term,[Term]).
%
% islist(X) - if X is a list, C&M 3rd ed. p52-53
%
islist(D) !.
islist([. I .]) .
%

320

*/h rread in(X) — convert keyboard input to list X, C&M 3rd ed. plOl-103
VL
r:eaad_in([Wordll Words])

getO(CCharacterl),
readwcord(Characterl ,Word,Character2),
restseent(Word,Characters,Words).

%
res3tsent(Word,,Character, [])

lastwcord(Word),!.
resstsent(Wordll .Character 1, [WordS I Words]) : -

readwoord(Characterl,Word2,Character2),
restseent(Word2,Characters,Words).

•/.,
rea^dwordCCharaacterl.Word,Characters)

singlee_character(Characterl). !.
nameCWWord.[Character1]).
ge10(CCharact er2).

reac.dword(Charaacterl.Word,Characters)
in_worcd(Characterl,Character3).!.
getO(CCharacter4).
restwoord(Character4.Characters.Characters).
name(WWord,[Character31 Characters]).

reacdwordCCharaacterl.Word,Characters)
getO(CEharacter3),
readwonrd(Character3.Word,Characters).

%
resttword(Charaacterl.[Characters I Characters].Character3) :-

in_wordd(Characterl.Characters).!.
getO(Chharacter4).
restworrd(Character4.Characters,Character3).

rest:word(Characcter. [] .Character).
%
sing;le_characteer(33). % !
s ing;l e_charact e er (44). % .
sing;le_characteer(46). % .
s ing;le_charact esr (58) . % :
sing;le_characteBr(59). % ;
sing;ie_charactesr(63). % ?
%
in_wcord (Char act t er. Charact er) : -

Chêuractèer > 96.
Charact6er < 123. % a-z

in_word (Charact e er. Charact er)
Characteer > 47,
Characteer < 58. % 1-9

in_word(Characteerl.Characters) :-
Charact6erl > 64.
Characteerl < 91.
CharacteerS is Characterl + 32. % A-Z

in_wo>rd(39.39). ' % '
in_wo>rd(45.45). ! % -
%
lastword(’. *) •
lastW'ord(’ ! ’).
lastword(’) .

321

%
% testi - get user’s input and pass it to test predicate, then repeat
%
testi :-

writeC’End with period and <CR>’),
read_in(Words),
append(String,[Period],Words),
nl.
test(String),
nl,
testi.

%
% dbgwrite - a switchable tracing predicate
%
dbgwrite(Term)

dbgon,
write(Term),
nl, ! .

dbgwrite(Term).
%
dbgwrite(Term,Var)

dbgon,
integer(Var),
tab(3 * (Var - 1)),
write(Term),
nl, ! .

dbgwrite(Term,Var)
dbgon,
write(Term), write(" "), write(Var),
nl, ! .

dbgwrite(Term,Var).
%
dbgon. % retract this to switch dbg tracing off

/**/
%
% psgrules.pl An example set of CF-PSG rules
%
/**/

%
% DCG style format
%
/* op(255,xfx,--->). */
%
initial(s). % used by chart parsers
%
s ---> (np, vp).
np ---> (det, nb).
nb ---> n .
nb ---> (n, rel).
rel ---> (wh, vp).
vp ---> iv.
vp ---> (tv, np).

322

' ([xreui* J9ii*o:v‘3[onp‘B*eAB3‘ireuio/i‘9iiq.])3,saq.
^as9q.

’ ([P8%P '99%' M91I^' XpWSS ' M91I^' UIT::(])q.S9Q.
-: e^s9îi

• ([i[0np‘‘B*û9S‘it pires])5.S9Q.
-: C:̂ S9q.

' ([P9Tp‘urp3[])îlS9q.
-: T̂ S9Q.

%
%9SZT2d JOJ P9UTJ9P 9q qSTlUI <̂ S9q.< 9q.%0Tp9J:d - S9"[dureX9 Ŝ9q. JO Q.9S V %

/**/
%

S9%durex9 q.s9q. jo q.9s v ld*s9xdurex9 %
%

/**/

' [/i9in[] <--- AS
• [psptreq] <--- AP

*[9a u3] <--- AP
•[9AU8] <--- Aq
•[aus] <--- Aq
• [8»12] <--- Aq
• [eau] <--- AT

*[P9TP] <--- AT
■ [o^] <--- d

• [q.uqq] <--- qa
•[oqa] <--- qa

• [ireuioft] <--- u
• [ireui] <--- u

• [3[oup] <--- u
[X9umsuoo] <--- u

•[^e^] <--- qsp
• [9q%] <--- qsp

•[u] <--- qep
•[pu9xq] <--- du

• [9SX] <— — du
*[Xpires] <--- du

• [UIt5l] <--- du

/* •(<--- ‘xjx‘533)do -i */

/**/
%

UOOTX9X 9xdurex9 uv xd'iio^TXsX %
%

/**/

•(du *d) <—
•(s ‘AS) <—

(dd ‘du ‘Ap) <—

%
dd
dA
dA

t e s t s
test([lee,handed,a,duck,that,died,to,the,woiticin])

%

/**/
%
% Necessary addition for Quintus Prolog compatibility
%
/**/

not(X) :-
\+X.

324

%%

FILENAME: hays_parser.pl

WRITTEN BY: Norman M. Fraser

DESCRIPTION: A tabular dependency parser based on the
recognition algorithm described by David Hays
in Language 40(4):516-S17, 1964.

VERSION HISTORY: 1.0 August 15, 1992

%%

LOAD DECLARATIONS
- ensure_loaded(lib).

%%

DYNAMIC PREDICATE DECLARATIONS
dynamic sentence_length/l.
dynamic spsois/S.

/***
*
* tabular_parse/0.
*
* Parse a string. After initializing the table with each category
* licensed by the string and the grammar, make multiple passes, on
* each pass considering only sub-strings one word longer than in the
* last pass. For each saturated dependency, record (i) the creation
* of a new saturated head and (ii) the tree rooted in that head.
* To conclude, signal either success or failure and, if success,
* return all well-formed trees which span the entire input string.
♦/
tabular.parse : -

retractall(sentence_length(_)),
retractall(spans(_,_,_)),
read_in(String),
initialize_pcirse_table(String),
parse_increasing_substrings(l),
(
show_complete_tree
I
writeln('PARSE FAILED')
).

/***
*
* initialize_parse_table(+String).
*
* Given a list of words, initialize the sub-string table with all
* their possible category assignments.

325

*/
initialize_parse_table(WordString) :-

initialize_parse_table(WordString,0).

% initialize_parse_table/2.
initialize_parse_table([.],N)

assert(sentence_length(N)).
initialize_parse_table([First I Rest],M) : -

f indall(Class,word_class(First,Class).Bag),
N is M+1,
add_spsms_including_trees(Bag,M ,N),
initialize_parse_table(Rest,N).

add_spans_including_trees([]
add_spcins_including_trees([First I Rest] ,M,N)

assert(spans(M,[First,*],N)),
add_spaiis_including_trees(Rest,M ,N).

/***
*
* parse_increasing_substrings(+Length).
*
* Extract all strings of length Length from the table euid attempt to
* parse them. If parsing succeeds record the head and the dependency
* structure in the table.
♦/
parse_increasing_substrings(N)

sentence_length(N).
parse_increasing_substrings(N) :-

gpf_ s at _drule(H e ad,Before,After),
append(Before,[Head I After].Body),
length(Body,N),
extract_sub_string_amd_trees(N,Start,Body.Trees,Finish),
NewHead =.. [Head,*],
NewTree =.. [HeadI Trees],
assert_if_new(spans(Start,[NewHead,NewTree].Finish)),
fail.

parse_increasing_substrings(M)
N is M+1,
parse_increasing_substrings(N).

/***
*
* extract_sub_string_and_trees(+N,-Start,-Result,-Trees,-Finish).
*
* Extract a sub-string from the table, N units long where each unit
* is a single word or a fully-connected dependency tree. Returns both
* sub-string auid the corresponding trees. Also returns the Start and
* Finish addresses of the sub-string.
*/
extract_sub_string_and_trees(N,Start,Result,Trees,Finish) : -

extract_any_sub_string_with_trees(Start,Result.Trees,Finish),
length(Result.N).

326

% extract_amy_sub_string_with_trees/4.
extract_2üiy_sub_str ing_with_trees (Start, [Label] , [Tree] , Finish) : -

spans (Stcirt, [Label,Tree] ,Finish).
extract_ajiy_snb_string_with_trees(Start,[LabelI Substring],[TreelTreeList].Finish)

spans(Start,[Label,Tree].Intermed),
extract_émy_sub_string_with_trees(Intermed,Substring,TreeList.Finish).

/***
*
* show_complete_tree/0.
*
* Succeeds if a root edge (and associated tree) spans the whole sentence
* in the sub-string table. Writes out all spanning trees to the standard
* output,
*/
show_complete_tree

sentence_length(N),
findall([Label I Tree],spans(0,[Label I Tree],N).TreeBag),
return_admissible_trees(TreeBag.Admit).
writeln('PARSE SUCCEEDED'),
each_member(Admit.writeln),

return_admissible_trees([] . []).
return_admissible_trees([[Label,Tree]I Rest], [Tree I Result]) : -

Label =.. [Root I_],
root(Root),
return_admis8ible_trees(Rest.Result).

return_admissible_trees([First I Rest].Result)
return,admissible_trees(Rest.Result).

327

%%
%
% FILENAME: hays_recognizer.pl
%
% WRITTEN BY: Norman M. Fraser
%
% DESCRIPTION: A recognizer for detrmining whether an arbitrary
% string belongs to the language generated by a
% given grammar. This is an implementation of the
% algorithm described by David Hays in Lsinguage 40(4) :
% 516-517, 1964.
%
% VERSION HISTORY: 1.0 August 8, 1992
%
%%
%
% LOAD DECLARATIONS
:- ensure_loaded(lib).
%
%%
%
% DYNAMIC PREDICATE DECLARATIONS
:- dynamic sentence_length/l.
:- dynamic spans/3.

/***
*
* recognize/0.
*
* Try to recognize a string. After initializing the table with each
* category licensed by the string and the grammar, madce multiple
* passes, on each pass considering only sub-strings one word longer
* than in the last pass. For each new saturated dependency, record
* the creation of a new saturated head. Signal either success or
* failure in recognizing the string.
*/
recognize :-

retractall(sentence_length(_)),
retractall(spans(_,_,_)),
read_in(String),
initialize_table(String),
apply_rules_of_increasing_length(1),
(
complete_spain ->

writeln('PARSE SUCCEEDED')
I
writeln('PARSE FAILED')
).

/***
*
* initialize_table(+CatStr).
*

328

* Given a list of words, initialize the sub-string table with all
* their possible category assignments.
*/
initialize_table(WordString)

initialize_table(WordString,0).

% initialize_table/2.
initialize_table([.],N)

assert(sentence_length(N)).
initialize_table([First I Rest],M) :-

findall(Class,word_class(First,Class),Bag),
N is M+1,
add_spems(Bag,M,N),
initialize_table(Rest,N).

add_spans([]
add.spans([First I Rest],M ,N)

assert(spans(M,First,N)),
add_spans(Rest,M ,N).

/***
*
* apply_rules_of_increasing_length(+Length).
*
* Extract all strings of length Length from the table and attempt to
* parse them. If parsing succeeds record the head aind boundaries of
* the new edge in the table.
*/
apply_rules_of_increasing_length(N)

sentence_length(N).
apply_rules_of_increasing_length(N)

gpf_sat_drule(Head,Before,After),
append(Before,[HeadI After],Body),
length(Body,N),
extract_sub_string(N,Start,Body,Finish),
New =.. [Head,*],
assert_if_new(spans(Start,New,Finish)),
fail.

apply_rules_of_increasing_length(M) : -
N is M+1,
apply_rules_of_increasing_length(N).

/***
*
* extract_sub_string(+N,-Start,-Result,-Finish).
*
* Extract a sub-string from the table, N units long where each unit
* is a single word or a fully-connected dependency tree. Also returns
* the Start emd Finish addresses of the sub-string.
*/
extract_sub_string(N,Start,Result,Finish) :-

extract_ainy_sub_string(Start,Result,Finish),
length(Result,N).

329

% extract_any_sub_string/3.
extract_cOiy_sub_string(Start, [Label] .Finish) : -

spans(Start.Label,Finish).
extract_any_snb_string(Start,[Label I Substring].Finish) :-

spans(Start.Label.Intermed).
extract_any_sub_string(Intermed.Substring.Finish),

/***
*
* complete_span/0.
*
* Succeeds if a root edge spans the whole sentence in the sub-string table.
♦/
complete.span

8 ent enc e_1ength(N),
spéins(0,Label,N),
Label =., [Root,*],
root(Root).

330

%%

FILENAME: hays_generator.pl

WRITTEN BY: Norman M. Fraser

DESCRIPTION : Given a dependency grammar in Gaifman Prolog
Form, enumerate all the strings generated by
the grammar. This is an implementation of the
algorithm described by David Hays in Language
40(4): 514-515, 1964.

Like many other classes of grammar, Gaifman
grammars can use recursion to produce
infinitely long strings. When presented with
a grammar having this property. Hay’s algorithm
will never halt. The version here restricts
enumeration to the set of dependency trees of
depth less than Max, where Max is defined
using max_tree_depth/l.

VERSION HISTORY: 1.0 August 8, 1992

%%

LOAD DECLARATIONS
libraryCfiles) is a Quintus Prolog library. To run with other
prologs replace call to file_exists/l in enumerate/1 with the
local equivalent.

: - ensure_loaded(libreury(f iles)).
: - ensure_loaded(lib).
: - ensure_loaded(dg_compile).
%
%%
%
% DYNAMIC PREDICATE DECLARATION
:- dynamic known_tree/l.
%
%%

/***
*
* enumerate(+File).
*
* The top level predicate. Enumerates all the strings generated by a
* dependency grammeur in Gaifman Prolog Form contained in File.
*/
enumerate(File) :-

(
file_exists(File),
purge_grammar_rules,
dg.compile(gpf,File)

331

writeln([’ERROR! Non-existent grammar file: ’ .File,’.’]),
abort
).
retractall(known_tree(_)),
enumerate_loop.

/***#***********************
*

* enumerate/0.
*
* An alternative top level predicate. Enumerates all the strings generated
* by the dependency grammar in Gaifman Prolog Form which has already
* been compiled.
*/
enumerate

(
grammar.present(gpf,_)
I
writeln(’ERROR ! GPF grammar not loaded.’),
abort
),
retractall(known.tree(_)),
enumerate.loop.

/**»*************************
*
* enumerat e_loop/0.
*
* A failure-driven loop which forces backtracking through all possible
* strings generated by the grammar.
*/
enumerate.loop :-

generate.tree(Tree),
(
known_tree(Tree) ->

fail
I
assert(known.tree(Tree)),
build_cat_list(Tree,CatStr)
).
enumerate.surface(CatStr),
fail,

enumerate.loop.

/***
*
* generate.tree(-Tree).
*
* Generating a dependency tree is a two-stage process as described by
* Hays.
*/

332

g;enerate_tree(Tree) : -
stage_one(Root),
stage_two(Root,Tree).

/***
*
* stage_one(-Root).
*
* The first stage retrieves a permissible sentence root from the
♦ grammar.
* /
Stage_one(Root)

root(Root).

/***
*
* stage_two(+Root,-Tree).
* stage_two(+Root,-Tree,+N).
*
* The second stage constructs a Tree rooted in Root and well-formed
* according to the rules of the grammar being used. N is a counter
* which keeps track of the depth of the tree. When max_tree_depth(Max),
* N = Max, enumeration is aborted.
*/
stage_two(Root,Tree) :-

stage_two(Root,Tree,1).

stage_two(Root,Tree,_) ;-
drule(Root, [],[]),
Tree =.. [Root,*].

stage_two(Root,Tree,N)
drule(Root,Before,After),
embedded_stage_two(Before,BeforeTrees,N),
embedded_stage_two(After,AfterTrees,N),
append([Root IBeforeTrees],[*IAfterTrees],ListOfTrees),
Tree =.. ListOfTrees.

embedded_stage_two(_,[],Max) ;-
max_tree_depth(Max),
writeln(’Maximum depth reached in search tree. Pruning...’),
! .

embedded_stage_two([] ,[],_).
embedded_stage_two([Head|Tail],[HeadTreeITailTrees],M) :-

N is M+1,
stage.two(Head,HeadTree,N),
embedded_stage_two(Tail,TailTrees,M).

/***
*
* max_tree_depth(-Integer).
♦
* This is required to avoid infinite looping. The maximum may be reset

333

* to smy positive integer value, as required.
* /
max_tree_depth(20).

/ *

*

* build_cat_list(+Tree,-CatList).
*

* Given a dependency Tree, produce a list of word categories in
* the correct surface order for that tree.
* /
build_cat_list([] ,_).
build_cat_list(Tree,CatList)

Tree =.. [Root I Rest],
each_tree(Root,Rest,[],CatList),
! .

each_tree(_, [] ,Result,Result).
each_tree(Root, [*I Rest],Current,Result) ;-

append(Current,[Root],New),
each_tree(_,Rest,New,Result).

each_tree(Root,[Terminal I Rest],Current,Result) : -
Terminal =.. [Name,*],
append (Current, [Naune] ,New),
each_tree(Root,Rest,New,Result).

each_tree(Root,[Tree I Rest],Current,Result) :-
build_cat_list(Tree,Res1),
append(Current,Resl,New),
each_tree(Root,Rest,New,Result).

/***
*
* enumerate_surface(+CatList)_.
*
* Find all grammatically possible surface strings which instamtiate a
* list of word categories. Write each of these to the standard output.
*/
enumerate_surface(CatList)

findall(String,surface(CatList,String),All),
each_member(All,write_sentence_list),
! .

/***
*
* surface(+CatList,-SurfList).
*
* Return a single list of surface forms (words) for a given list
* of word categories.
*/
surface ([] , []).
surface([Cat I Rest],[Word I Result])

word_class(Word,Cat),
surface(Rest,Result).

334

" (a.tidTii)9SJBd"nqx
*(qndui)UT“p99j

*(, ;,)9qxj:ft
*iu

*(,p9sx-ed 9q oq. 3uxxqs 9dXq. 9S99Xd,)9qxxfl
9SX9d"x9qTi9m9X3iix

/ *
•X9sxed 9qq oqux 3uxjq.s 9qq ss9j -3uxxqs qndux tits xoj qduioxj *

*

" 0 /9 S T e d " X 9 q % I9 U I9 X 3 lI X *

*

* /

• 9SXT2d“ XTBqU9UI9X0UX

‘ (
qaoq9

‘ ([‘ ■ <‘®ITd‘ t :®ITÎ JTBUiurex3 qu9asxx9-uofi
I

u ix o j 3 o x o x d xremjxBj) u x ® */,*/, (9 x x d) 9 x x d u io o “ 3 p
* S9XTlX“XBUIUrex3~93xTld

‘ (®ITd)sîiSTX®"®ITJ:
)

- : (9 X x j)9 S X 9 d ” x^Q^^®ï“®-i3UT
/*

• 0/®SXTBd“XT2qU9ra9XOUX *
XTT23 U9 qq ‘u u o j 3oxoxj ireuijx^D ux 9XTJ vhoxj X9 tmirex3 Xoti9 pu9 <j9 p 9 p9 oq *

*
■ (®ITi+)®s^«I“Î 3̂ ti9m9Xoux *

*
++***+************++***/

%%
%

' ((s9 X T f)X x 9 x q x x)p e p s o x " e z T i8 ii9
' (qxx)pepT20x"e%Ti8U9

* (9XTduiOO“ 3 p) p 9 p 9 0 X “ 8-Itl8U9 - :

SNOiiVTiviDaa av o i %
%

%%
%

Z661 ‘ 8 ^^8Ti3tiv O'T :AH01SIH N0ISH3A %
%

X9SX9d %
Aou9 pu9 d9 p 90np9X-qjxiis dn-uioq:ioq XTeq.Ti8 ui9 X0 UX uv : NOLldiaOSaa %

%
X9S9XJ 'M U9UIX0M : AS. NaiXIdW %

%
Xd*9onp9X“q3:xqs“x®̂ Ti®ui9JOiix ^aWVNaild %

%
%%

/*********************** ** *********
*
* ibu_parse(+Input).
*
* The top level parse predicate,
*/
ibu_parse(Input)

ibu_parse_loop(Input, □),
write(’Parse succeeded’),
nl.

ibu_parse(_)
write(’Parse failed’),
nl.

/**
*
* ibu_parse_loop(+Input,-Result).
*
* The main parse loop. There are three possibilities: termiinate,
* reduce, and shift. Result reporting is suppressed here too emphasize
* the simplicity of the algorithm,
*/
ibu_parse_loop([.] , [dr(Root, [],[])]) */,'/, TERMINNATE

root(Root),
ibu_p2irse_loop(Input, [First I [Second I Rest]]) : - */,*/, REDUCEE

reduce_inc(First,Second,Result),
ibu_parse_loop(Input,[Result I Rest]).

ibu_parse_loop([Word I Rest] , Stack) : - */,*/, SHIFT '
word_class(Word,Class),
drule(Class,Before_Deps,After_Deps),
reverse(Before_Deps,Before_Depsl),
ibu_parse_loop(Rest,[dr(Class,Before_Depsl,After_Depps)I Stack]),

/**
*
* reduce_inc(+StackTop,+StackNext,-NewTop).
*
* The rules of reduction. The second and third rules basiccally do the
* same thing but two clauses are required because of the wway in which
* Prolog constructs lists,
*/
reduce_inc(dr(X, [YI Alpha] ,Beta) ,dr(Y, [],[]),dr(X, Alpha,Betaji)),
reduce_inc(dr(X, □ ,Alpha),dr(Y, □ ,[X]),dr(Y,[],Alpha)),
reduce_inc(dr(X, □ , Alpha) ,dr(Y, [] , [XI Beta]) ,dr(Y, [] , [Alpha I]| Beta])),

336

%%%
%
% FILENAMME: lib.pl
%
% WRITTENf BY: Norman M. Fraser
%
% DESCRIPTTION: A library of mostly general-purpose predicates.
% Originally designed for use with a variety
% of programs making use of dependency grammars,
% hence the presence of more specific predicates
% such as gpf_rules_present/0.
%
% VERSIONf HISTORY: 1.0 August 8, 1992
%
%%%

y**
*
* append(+**Listl,+*List2,+*Result).
*
* Append Liistl and List2 to form Result. Can also be used in reverse
* to split]Result into pairs of sub-lists.
♦/
/*
append(□ ,Liist.List).
append([HeadilTaill].List,[Head|Tail2]) :-

appesnd(Tail1.List,Tail2).
*/

/**
*
* assert_ifJ_new(+Clause).
*
* If clause ! exists in the database then do nothing; otherwise add it.
*/
assert_if_neww(Clause) :-

Clausse =,. [Head I Body].
clausse(Head,Body).
! .

assert_if_neww(Clause) :-
asserrt(Clause).
I

/**
*
* concat(?Prcefix.+Suffix,?Whole).
*
* Append a clharacter string to an atom.
*/
coneat(Prefix;,SuffixChars,Whole) : -

ncime(IPrefix.PrefixChars).

337

append(PrefixChars.SullixChars,WholeChars),
nsone (Whole, WholeChars).

/***
*
* cross_product(+Listl,+List2,-Result).
*
* Produces the cross product of two lists. List 1 and List2.
*/
cross .product (□,_,[]).
cross_product([H|T],In,Out)

embedded_x_product(In,H ,Intermedl),
cross_product(T,In,Intermed2),
append(Intermedl,Intermed2,Out).

% embedded_x_product/3.
embedded_x_product ([],_,□).
embedded_x_product([HIT],Const, [[Const,H]I Result]) :-

embedded_x_product(T,Const,Result).

/***
*
* dot/0.
*
* Write a dot to the standard output. Used for registering activity
* lengthy processes.
♦/
dot ; -

write(user,’. ’),
flush.output(user).

/***
*
* each_member(+List,+Predicate).
*
* Applies a Predicate of arity=l to each item in List. Predicate
* will normally have side effects. For example, a typical usage
* would be to write each member of a list: each.member(List,write).
*/
each_member(□ ,_).
each_member([Argument I Rest],Predicate)

Term =.. [Predicate,Argument],
call(Term),
each_member(Rest.Predicate).

/***
*
* purge_grammar_rules/0.
*
* Retract dependency grammar rules (of all formats) from the Prolog
* database.

338

*/
purge_grammar_rules : -

r e t r a c t a l l (d r u l e ,
retractall(gpl_sat_drule(_,_,_)),
retractall(ff_drule(_,_)),
retractall(rff_drule(_,_)),
retractalKroot (_)),
retractall(word_class(_,_)).

y***
*
* read_in(-ListOfAtoms).
*
* Read a sentence terminated by a legitimate last character from the
* standard input. Convert input to lower case and filter excluded
* characters. Return a list of atoms terminated by a fullstop.
*
* From Clocksin & Mellish (1987) Programming in Prolog. Berlin:
* Springer-Verlag. (3rd Edition). 101-103.
*/
read_in([Word I Words])

getO(Characterl),
readword(Characterl,Word,Character2),
restsent(Word,Character2,Words).

% Given a word and the word after it, read in the rest of the
% sentence.
restsent(Word,Character,[])

lastword(Word),!.
restsent(Wordl,Character1,[Word21 Words]) :-

readword(Charact er1,Word2,Charact er2),
restsent(Word2,Character2,Words).

% Read in a single word, given an initial character, emd remembering
% that the character came after the word.
readword(Characterl,Word,Character2)

single_character(Characterl), !,
ncime(Word, [Characterl]),
getO(Character2).

re adword(Charact er1,Word,Charact er2)
in_word(Characterl ,Chéiracter3), !,
getO(Character4),
restword(Character4,Characters,Character2),
name(Word,[Character31 Characters]).

readword(Character1,Word,Character2)
getO(Chéiracter3),
readword(Charact er3,Word,Charact er2).

restword(Characterl, [Chêiracter21 Characters] ,Character3)
in_word(Characterl,Character2),!,
getO(Character4),
restword(Character4,Characters,Character3).

restword(Character,[],Character).

339

% These cheuracters form words on their own.
single_character(33). % !
single_ charact er(44)
s ingle_charact er(46)
s ingle_character(58)
s ingle_character(59)
single_character(63)

% These characters can appear within a word. The second in_word clause
% converts characters to lowercase.
in_word(Character,Character) :-

Character > 96,
Character < 123. % a-z

in_word(Character,Character) :-
Character > 47,
Chsoracter <58. % 1-9

in_word(Characterl ,Chcuracter2) : -
Characterl > 64,
Characterl < 91,
Ch«uracter2 is Characterl + 32. % A-Z

in_word(39,39). % ’
in_word(45,45). % -

% These words terminate a sentence.
lastword(’.’).
lastword(’!’).
lastword(’? ’).

/***
*
* reverse(+ForwêirdList ,-BackwaxdList).
*
* Reverse ForwardList to produce BackwsurdList.
*/
reverse(In,Out) :-

reverse (In, [] ,Out).
reverse([],Gut,Out).
reverse([First 1 Rest],Temp,Out) :-

reverse(Rest,[First I Temp],Out).

y***
*
* writeln(+Data).
*
* Write Data to the standard output ending with a newline, where Data
* is either an atom or a list of atoms.
*/
writeln([]) :-

nl.
writeln([H|T]) :-

write(H),
writeln(T).

340

writeln(X)
write(X),
nl.

/***
*
* write_sentence_list(List).
*
* List is a list of atoms. Write each atom to the standard output,
* separated by a space character.
*/
write_sentence_list([])

nl.
write_sentence_list([First I Rest]) : -

write(First),
write(' *),
write_sentence_list(Rest).

341

%%
%
% FILENAME: map_to_dcg,pi
%
%
•/
y
y

WRITTEN BY: Norman M. Fraser

DESCRIPTION: Map a Gaifman-format dependency grammar into
a definite clause grammar.

VERSION HISTORY: 1.0 January 19, 1993

%%
%
% LOAD.DECLARATIONS
:- ensure_loaded(lib).
:- ensure_loaded(dg_compile).
%
%%
%
% DYNAMIC PREDICATE DECLARATIONS
:- dynêunic max_no_deps/2.

/***
*
* map_to_dcg(+InFile,+OutFile).
*
* Read a Gaifman format dependency grammar from InFile. Write a definite
* clause grammar to OutFile.
*/
map_to_dcg(InFile,OutFile) :-

dg_compile(InFile),
tell(OutFile),
write('%%% DCG GENERATED FROM THE DEPENDENCY GRAMMAR: ’),
write(InFile),
writeC’ */,*/,*/.’),
nl, nl,
write(':- ensure_loaded(lib).’),
nl, nl,
write(’*/,•/, PARSE PREDICATES ’) ,
nl,
construct_call,
nl, nl,
retractall(max_no_deps(_,_)),
write(»•/;/, RULES'),
nl,
construct_rules,
nl, nl,
write('%% WORD CLASS ASSIGNMENTS’),
nl,
construct_assignments,
told.

342

/ ***
*
* construct_call/0.
*
* Construct a ’dcg_parse* predicate for parsing with the grammar.
*/'
coinstruct_call

write(’dcg.paxse
begin_new_line,
write(*write(*’Please type the sentence to be parsed’’),’),
begin_new_line,
write(’nl,’),
begin_new_line,
write(’read_in(Input),’),
begin_new_line,
write(’dcg_parsel(Input).’),
nl, nl,
construct_embedded_call.

/***
*
* construct_embedded_call/0.
*
* Construct a parse predicate for each different type of root
* allowed by the DG.
♦/
construct_embedded_call :-

retract(root(Root)),
write(’dcg_parsel(Input) :-’),
begin_new_line,
write(’phrase(rule_’),
write(Root),
write(’(Tree),Input,[.]),’),
begin_new_line,
write (’ write (’ ’ PARSE SUCCEEDED : ”),’),
begin_new_line,
write(’write(Tree),’),
begin_new_line,
write(’nl, nl.’),
nl,
construct_embedded_call.

construct_embedded_call :-
write(’dcg_parse :-’),
begin_new_line,
write (’ writ e (’ ’ PARSE FAILED”),’),
begin_new_line,
write(’nl, nl.’),
nl.

343

/**#**********:**
*
* begin_new_line/0.
*
* Initialize a new line of Prolog code.
*/
begin_new_line

nl,
tab(8).

/**:***********'**:
*
* construct_rules/0.
*
* Add a DCG rule for every DG rule in the grammar. Ensure that DCG
* rules return a parse tree as their result.
*/
construct_rules

retract(drule(Head,Pre,Post)),
write(’rule_’),
write(Head),
write(’(X) — > ’),
dep_write(Pre,’A ’,1),
write(' ’),
write(*word_’),
write(Head),
write(’,’),
dep_write(Post,’B ’,1),
nl.
tab(8),
write(’{ X =.. [’) ,
write(” ”) ,
write(Head),
write(*’*’),
retract(max_no_deps('A ',Amax)),
write_exs(’A ’,1, Amax),
write(*,*’),
retract(max_no_deps(’B ’,Bmax)),
write_exs(’B *,1,Bmax),
writeC’] }.’),
nl,
construct_rules.

construct_rules.

/***
*
* dep_write/3.
*
* Map a list of dependents for a head onto a list of calls to DCG
* rules.
*/
dep_write([].Prefix,N)

344

aj.ssert(max_no_deps(Prefix,N)),
dep_writej ([[First I Rest] , Prefix, M) : -

wri.te(* ’),
wri.te(’rule_*),
wrri.te(First) ,
wrri;te(’ (') ,
w:ri:te(Pref ix) ,
w]ri te(M),
wa:iite(*),’),
N is M+1,
d«ep_ write (Rest, Prefix, N).

/ *

*
* write_exs/3.
*
* Write result variables from all DCG rules which are called within
* some rmle).
* /
write_exs(_,Max,Max) .
write_exs(Prefix,M,Max)

writ«(»,»),
write(Prefix),
write(M),
N is M+1,
write_exs(Prefix,N,Max).

/ * * * * * * * * * * * * i | (: | i ^ : (c * * * * * *

*
* construct__assignments/0.
* construct_assignraents/2.
*

* Generate a set of DCG word class assignment rules corresponding to
* the DG word class assignments.
* /
construct_assignments

word_class(Word,Class),
setof(X,word_class(X,Class),Bag),
construct_assignments(Bag,Class),
retractall(word_class(_,Class)),
construct_assignments,

construct_assignments,

construct_assignments(□ ,_)
nl.

construct_assignments([WordlRest],Class)
write('word.’) ,
write(Class),
write(’ — > [’),
write(Word),
write(’].’),
nl,
construct_assignments(Rest,Class).

345

%%

%
FILENAME: nmf_chaxt.pi

WRITTEN BY: Norman M. Fraser
Based in very large measure on a program
written by Gerald Gazdar & Chris Mellish.
All significant differences are identified.

DESCRIPTION: Contains the concatenation of parts of several
files (naunely: buchartl.pl, chrtlibl.pl,
library.pl) from the program listings in Gazdar
& Mellish (1989).
Some minor chainges have been made to make the
program run under Quintus Prolog. A few
predicates which are irrelevant here have
been removed (mostly from library.pl).

The most significant difference between this and
the program written by Gazdar and Mellish is that
their chart parser presupposed a phrase structure
grammar whereas this one presupposes a dependency
grammar.

VERSION HISTORY: January 16, 1993 (date created in this form)

%%
% ORIGINAL NOTICE ON GAZDAR & MELLISH’S MATERIAL FOLLOWS :

%% %

Example code from the book "Natural Language Processing in Prolog"
published by Addison Wesley

Copyright (c) 1989, Gerald Gazdar & Christopher Mellish.
% %
Reproduced by kind permission

:- ensure_loaded(dg_compile).

:- dynamic edge/4.

/ * /

%
% buchartl.pl A bottora-up chart parser
%

/ * /

%
% This new initialization predicate loads a dependency grammar (as
% defined in File) in full form.
%
initialize_dchart(File) :- %% NEW PREDICATE

346

(
file_exists(File),
purge _ grammar,rule s ,
dg_compile(ff ,File) '/,*/, load a DG in full form
I
writeln([’ERROR! Non-existent grammar file: ’.File,’.’]),
abort
) .

dchart_parse(VO,Vn,String)
start_chart(VO,Vn,String). % defined in chrtlibl.pl

%
a d d _ e d g e [’* ’],_). */.*/. NEW CLAUSE - no dependents
add_edge(VO,VI.Category.Categories.Parse)

edge(VO,V1.Category.Categories.Parse).I.
add_edge(Vl,V2.Categoryl.[].Parse)

assert_edge(Vl.V2.Categoryl.[].Parse).
foreachCrule(Category2.[Categoryl|Categories]).

add_edge(Vl.VI,Category2.[CategorylI Categories].[Category2])).
foreach(edge(VO.VI,Category2.[CategorylI Categories].Parses).

add_edge(VO,V2.Category2.Categories.[ParseI Parses])).
add_edge(VO.VI.Categoryl.[Category21 Categories].Parses)

assert_edge(VO,VI.Categoryl.[Category21 Categories].Parses).
foreach(edge(Vl.V2.Category2.[].Parse),

add_edge(VO.V2,Categoryl.Categories.[ParseI Parses])).

/ * /

%
% chrtlibl.pl Library predicates for database chart parsers
%

/ * /

%
start_chart
uses add_edge (defined by particular chart parser) to insert inactive

% edges for the words (and their respective categories) into the chart
%

start_chart(VO.VO.[]).
start_chart(VO.Vn.[WordlWords])

VI is VO+1,
foreach(word(Category.Word).

add_edge(VO,Vl.Category,[].[Word.Category])).
start_chart(VI.Vn.Words).

% test
% allows use of test sentences (in examples.pl) with chart parsers
%

test(String)
VO is 1.

% initial(Symbol). %% OLD VERSION
root(Symbol). %% NEW VERSION
dchart_parse(VO.Vn.String). */,*/. NAME CHANGE
foreach(edge(VO.Vn.Symbol.[].Parse).

mwrite(Parse)),
retractall(edge(_,_._._,_)).

347

%

% foreach - for each X do Y
%

foreach(X,Y)
X,
do(Y),
fail.

foreach(X,Y)
true.

do(Y) Y,!.
%

% mwrite prints out the mirror image of a tree encoded as a list
%

mwrite(Tree)
mirror(Tree,Image),
write(Image),
nl.

%

% mirror - produces the mirror image of a tree encoded as a list
%

mirror ([],[]) ! .
mirror(Atom,Atom)

atomic(Atom).
mirror([XIIX2],Image)

mirror(XI,Y2),
mirror(X2,Yl),
append(Y1,[Y2],Image).

%

% assert.edge
% asserta(edge(...)), but gives option of displaying nature of edge created
%

assert_edge(VI,V2,Categoryl,[],Parsel)
asserta(edge(Vl,V2,Categoryl,[],Parsel)),

%

dbgwrit e(inactive(Vl,V2,Categoryl)).
assert_edge(VI,V2,Category1,[Category21 Categories],Parsel)

asserta(edge(Vl,V2,Categoryl,CCategory21 Categories],Parsel)),
%

dbgwrite(active(Vl,V2,Categoryl,[Category21 Categories])).
%

/**/
%

% library.pl A collection of utility predicates
%

/**/

%

% *--->* an arrow for rules that distinguishes them from DCG (’— > ’) rules
%

?- op(255,xfx,--->).
%

word(Category,Word)
% (Category > [Word]). %% OLD VERSION

348

word_class(Word,Category) . */.*/• NEW VERSION
7.
7rule(Mother,List_of.daughters) %% OLD VERSION
% (Mother --- > Daughters),
% not(islist(Daughters)),
% conj tolist(Daughters,List_of.daughters).
rule(Head,['*']) %% NEW VERSION

ff.drule(Head,[Head]).
rule(Head,Dependents)

ff.drule(Head,Dependents),
Dependents \== [Head].

%
% conjtolist - convert a conjunction of terms to a list of terms
% (NOW REDUNDANT)
%conjtolist((Term,Terms), [Term1List.of.terms]) !,
% conjtolist(Terms,List.of.terms).
y.conj tolist (Term, [Term]).
%
% islist(X) - if X is a list, CAM 3rd ed. p52-S3
%
islist ([]) !.
islist([.|.]).
%
% read.in(X) - convert keyboard input to list X, CAM 3rd ed. plOl-103
%
read.in([WordlWords])

getO(Characterl),
readword(Characterl,Word,Character2),
restsent(Word,Character2,Words).

%

restsent(Word,Character,[])
lastword(Word),!.

restsent(Wordl,Characterl,[Word21 Words]) : -
readword(Characterl,Word2,Character2),
restsent(Word2,Character2,Words).

%

readword(Characterl,Word,Character2)
single.character(Characterl), !,
name(Word,[Characterl]),
getO(Character2).

readword(Characterl,Word,Character2)
in.word(Charac t er1 ,Character3),!,
getO(Ch2Lracter4) ,
restword(Character4,Characters,Character2),
neune(Word, [Character31 Characters]) .

readword(Character1,Word,Character2)
getO(Ch2uracter3) ,
readword(Character3,Word,Character2).

%

restword(Characterl,[Character21 Characters],Character3)
in.word(Characterl,Character2),!,
getO(Character4),
restword(Character4,Characters,Character3).

restword(Character,[],Character).
%

349

single_character(33). % !
single_character(44). % ,
single_character(46). % .
single_character(58). % :
single_character(59). % ;
single_character(63). '/, ?
%

in_word(Character,Character)
Character > 96,
Character < 123. % a-z

in_word(Character,Character)
Character > 47,
Character < 58. % 1-9

in_word(Characterl,Character2)
Characterl > 64,
Characterl < 91,
Character2 is Characterl +32. % A-Z

in_word(39,39). % ’
in_word(4S,4S). % -
%

lastwordC’.’)•
lastwordC * !’).
lastwordC’? *).
%

% testi - get user’s input and pass it to test predicates, then repeat
%

testi
write(’End with period and <CR>’),
read_in(Words),
appendCString,[Period],Words),
nl,
test(String),
nl,
testi.

%

% dbgwrite - a switchable tracing predicate
%
dbgwrite(Term) :-

dbgon,
write(Term),
nl, ! .

dbgwrite(Term).
7.
dbgwrit e(Term,Var) :-

dbgon,
integer(Var),
tab(3 * (Var - 1)),
write(Term),
nl, ! .

dbgwrite(Term,Var) :-
dbgon,
write(Term), write(" "), write(Var),
nl, ! .

dbgwrite(Term,Var).
%

350

dbgon. % retnracct this to switch dbg tracing off

%

% examples.pi A set of test examples
%

/ * * * * * * * * * * * * # * /

% A set of test examples - predicate ’test’ must be defined for parser
%

testi :-
test([kiim,died]).

test2 :-
test(Csaandy, saw, a , duck]) .

t e s t s : -
test (Ckiim,knew, seindy,knew,lee,died]).

test4 :-
test(['thie,woman,gave,a,duck,to,her,mam]) .

t e s t s
test([!le?e,handed,a,duck,that,died,to,the,woman]) .

%

/ * * * * * * * * * * * * * # * % * /

%

% Necessaury acddlition for Quintus Prolog compatibility
%
/*************#*:<***/

not(X) :-
\+X.

351

%%
%
% FILENAME: shift_reduce.pl
%

% WRITTEN BY: Norman M. Fraser
7.
% DESCRIPTION: A non-incremental shift-reduce dependency
% recognizer,
%

% VERSION HISTORY: 1.0 August 8, 1992
%

%%

%

% LOAD DECLARATIONS
% library(files) is a Quintus Prolog library. To run with other
% prologs replace call to file_exists/l in enumerate/1 with the
% local equivalent.
%

:- ensure_loaded(library(files)).
:- ensure_loaded(lib).
:- ensure_loaded(dg_compile).
%

%%

/***
*

* sr_reduce(+File).
*

* The top level predicate. Recognize a string in non-incremental bottom-up
* shift-reduce fashion, using the Gaifman dependency grammar defined in
* File.
*/
sr_recognize(File) :-

(
file_exists(File),
purge _ grammar,rule s ,
dg_compile(rff_sat,File)
I
writeln([’ERROR! Non-existent grammar file: ’.File,’.’]),
abort
).
read_in(Input),
sr_recognize_loop(Input,[]).

/***
*

* sr_recognize/0.
*

* An alternative top level predicate. Assumes a Gaifman dependency
* grammar in saturated reversed full form has already been loaded.
*/
sr_recognize :-

352

(
graminar_present(rlf_sat,_)
I
writelnC’ERROR! Saturated reversed full form DG not loaded’),
abort
) ,
read_in(Input),
sr_recognize_loop(Input,[]).

/ *

*

* sr_recognize_loop(+String,+Stack).
*

* The main program loop. Clauses 1 and 2 trap the succeed and fail
* cases. Clause 3 attempts to reduce the stack. If all else fails,
* clause 4 shifts the next word from the input onto the stack.
* /
sr_recognize_loop([.],[TreeRoot]) :-

TreeRoot =.. [Root I_],
root(Root),
writelnC’RECOGNIZED’).

sr_recognize_loop([.],[_])
writelnC’NOT RECOGNIZED’).

sr_recognize_loopCInput,Stack) : - % Reduce
sr_reduce(Stack,Result),
sr_recognize_loop(Input,Result).

sr_recognize_loop([WordI Rest],Stack) % Shift
word_class(Word,Class),
sr_recognize_loop(Rest,[Class I Stack]).

/ *

*

* sr_reduce(+BeforeStack,-AfterStack).
*

* Perform reductions on BeforeStack as licenced by dependency grammar
* rules in saturated reversed full form.
* /
sr_reduce([],_)

!,
fail.

sr_reduce(Stack,[Head I Result]) :-
appendCStr,Result,Stack),
rff_sat_drule(Head,Str).

353

A .4 Sam ple gram m ar

%%

%

FILENAME: grammarl

WRITTEN BY: Norman M Fraser

DESCRIPTION: A very basic dependency grammar.
Gaifman-type dependency grammars allow rules of
the following three varieties:

(i) *(X)
(ii) X(*)
(iii) X(Y1,Y2,...,Yi,*,Yj...,Yn-l,Yn)

(i) is used to declare permited sentence roots ;
(ii) is used to declare words that may occur
without any dependents ; (iii) is used to indicatte*.
that Yl-Yn may depend on X in the order shown.

To these I have added rules of the form:

(iv) C: {Wl, W2,...,Wn>

This is used to assign Wl-Wn to category C.

VERSION HISTORY: 1.0 August 12, 1992

%%:%%%

% EXAMPLES
%

The cat sat on the mat.
The big cat slept near the fire.
The big fat cat slept on the mat by the fire

The big cat saw the mouse on the mat.
Who was on the mat?

The cat saw the mouse with the waistcoat near the fire.
What was near the fire?

The big cat gave the mouse a nice little waistcoat.
The little mouse gave a big waistcoat to the cat by the fire.

7.
% SENTENCE ROOT
%

*(DTV)
*(IV)
♦ (TV)

354

•/ % DEPENDENCY RULES
•/ %
Ü A(*)

EDet(*,N)

DDTV(Det,*,Det,Det)
D DTV(Det,♦,Det,Prep)

IIV(Det,*,Prep)

NN(*)
NN(A,*)
NN(A,A,*)
NN(*,Prep)
NN(A,*,Prep)
NN(A,A,*,Prep)

PPrep(*,Det)

TTV(Det,*,Det)
TTV(Det,*,Det ,Prep)

•//. CATEGORY ASSIGNMENT

{big, fat, little, nice}Ai:

Deet :

DTTV:

IW;

Nr:

Prrep:

TV/:

{a, the}

{gave}

{sat, slept}

{cat, fire, mat, mouse, waistcoat}

{by, near, on, to, with}

{cuaght, saw}

355

%%

%

% FILENAME: grammarl.deg
%

% WRITTEN BY: generated automatically by map_to_dcg/2.

CREATION DATE: January 19, 1993

%%

%%% DOG GENERATED FROM THE DEPENDENCY GRAMMAR: grammarl %%%

:- ensure_loaded(lib).

•/.*/. PARSE PREDICATES
dcg_parse :-

write(’Please type the sentence to be parsed’),
nl,
read_in(Input),
dcg_parsel(Input),

dcg_parsel(Input) :-
phrase(rule_DTV(Tree),Input,[.]),
write(’PARSE SUCCEEDED : ’),
write(Tree),
nl, nl.

dcg_parsel(Input) :-
phrase(rule.IV(Tree),Input,[.]),
write(’PARSE SUCCEEDED : ’),
write(Tree),
nl, nl.

dcg_parsel(Input) :-
phrase(rule_TV(Tree),Input,[.]),
write(’PARSE SUCCEEDED : ’),
write(Tree),
nl, nl.

dcg_parse :-
write(’PARSE FAILED’),
nl, nl.

%% RULES
rule_A(X) — > word.A,

{ X =.. C’A ’,*] }.
rule.Det(X) — > word.Det, rule.N(Bl),

{ X =.. [’Det’,*,B1] }.
rule.DTV(X) — > rule.Det(Al), word.DTV, rule.Det(Bl), rule.Det(B2),

{ X =.. C’DTV’,A1,*,B1,B2] >.
rule.DTV(X) — > rule.Det(Al), word.DTV, rule.Det(Bl), rule.Prep(B2),

{ X =.. C’DTV’,A1,*,B1,B2] >.
rule.IV(X) — > rule.Det(Al), word.IV, rule.Prep(Bl),

{ X =.. C’lV’,A1,*,B1] }.
rule.N(X) — > word.N,

{ X =. . C’N ’ ,*] }.

356

rule_N(X) — > mle_A(Al), word_N,
•C X =. . [»N’ ,A1,*] }.

rule_N(X) — > rule_A(Al), rule_A(A2), word_N,
{ X =.. [»N’,A1,A2,*] }.

rule_N(X) — > word_N, rule_Prep(Bl),
{ X =.. [»N’ >.

rule_N(X) — > rule_A(Al), word_N, rule_Prep(Bl),
■C X =. . [’M ’ ,A1,*,B1] >.

rule_N(X) — > nile_A(Al), rule_A(A2), word_N, rule_Prep(Bl),
{ X =.. ['N',A1,A2,*,B1] }.

rule_Prep(X) — > word_Prep, rule_Det(Bl),
•C X =. . [’Prep’ ,*,B1] }.

rule_TV(X) — > rule.Det(Al), word.TV, rule.Det(Bl),
{ X =.. [’TV’,A1,*,B1] }.

rule.TV(X) — > rule.Det(Al), word.IV, rule.Det(Bl), rule.Prep(B2),
{ X =.. [’TV’,A1,*,B1,B2] }.

*/.'/, WORD CLASS ASSIGNMENTS
word.A — > [big].
word.A — > [fat].
word.A — > [little].
word.A — > [nice].

word.Det — > [a].
word.Det — > [the].

word.DTV — > [gave].

word.IV — > [sat].
word.IV — > [slept].

word.N — > [cat].
word.N — > [fire].
word.N — > [mat].
word.N — > [mouse].
word.N — > [waistcoat].

word.Prep — > [by].
word.Prep — > [near].
word.Prep — > [on].
word.Prep — > [to].
word.Prep — > [with].

word.IV — > [cuaght].
word.IV — > [saw].

357

Bibliography

Ades, A. and M. Steed man (1982). On the order of words. Linguistics
and Philosophy, 4: 517-58.

Ajdukiewicz, K. (1935). Die syntaktische konnexitat. Studia philosoph-
ica, 1: 1-27. English translation by H. Weber in S. McCall (ed) Polish
Logic, 1920-1930, 207-31. Oxford: Oxford University Press.

Anderson, J. M. (1971). The Grammar o f Case: Towards a localistic
theory. Cambridge Studies in Linguistics 4. Cambridge University Press,
Cambridge.

Anderson, J. M. (1977). On Case Grammar: Prolegomena to a theory of
grammatical relations. Croom Helm, London.

Anderson, J. M. and J. Durand (1986). Dependency phonology. In J. Du­
rand, editor. Dependency and Non-linear Phonology, pages 1-54. Croom
Helm, London.

Andry, F. and S. Thornton (1991). A parser for speech lattices using a
UCG grammar. In Proceedings o f the 2nd European Conference on Speech
Communication and Technology, pages 219-22, Genova.

Andry, P., N. M. Fraser, S. McGlashan, S. Thornton, and N. J. Youd
(1992). Making DATR work for speech: lexicon compilation in SUNDIAL.
Computational Linguistics, 18(3): 245-67.

Arnold, D. (1986). Eurotra: a European perspective on MT. Proceedings
o f the IEEE, 74: 979-92.

Arnold, D. and L. des Tombe (1987). Basic theory and methodology in
Eurotra, In S. Nirenburg, editor. Machine Translation, pages 114-35.
Cambridge University Press, Cambridge.

Arnold, D. and L. Sadler (forthcoming). The theoretical basis of MiMo.
Machine Translation.

Atkinson, M., D. Kilby, and I. Roca (1982). Foundations o f General Lin­
guistics. Allen and Unwin, London.

358

Atwell, E ., T . O ’Donoghue, and C. Souter (1989). The COMMUNAL
RAP: a probabilistic approach to natural language parsing. Technical
report, University of Leeds.

Avgustinova, T. and K. Oliva (1990). Syntactic description of free word
order languages. In CO LING 90, pages 311-13, Helsinki.

Bar-Hillel, Y. (1953). A quasi-m athem atical notation for syntactic de­
scription. Language, 29: 47-58. Also in: Y. Bar-Hillel (ed) Language and
Inform ation. Reading, Mass.: Addison-Wesley. 61-74.

Bar-Hillel, Y., H. Gaifman, and E. Shamir (1960). On categorial and
phrase struc tu re grammars. Bulletin o f the Research Council o f Israel, 9:
Section F ,l-1 6 . Also in: Y. Bar-Hillel (ed) Language and Information.
Reading, Mass.: Addison-Wesley.

Baum , R. (1976). Dependenzgrammatik: Tesniere’s Modell der
Sprachbeschreibung in wissenschaftsgeschichtlicher und kritischer Sicht.
Niemeyer, Tubingen.

Blake, B. J . (1989). Review of Stanley Starosta: The Case for Lexicase.
Language, 65: 614-22.

Bloomfield, L. (1914). An Introduction to the Study o f Language. Henry
Holt and Co, New York.

Bloomfield, L. (1933). Language. Holt, Rinehart, and W inston, New York.

Bouma, G. (1989). Efficient processing of flexible categorial grammar.
In Proceedings o f the Fourth Conference o f the European Chapter o f the
Association fo r Computational Linguistics, pages 19-26, Manchester.

B rietzm ann, A. and U. Ehrlich (1986). The role of semantic processing in
an au tom atic speech understanding system. In COLING-86, pages 596-
98, Bonn.

Brough, D. R. (1986). Word Gram m ar — parsing methods. Imperial
College London ms.

Bruce, B. and M. Moser (1987). Case grammar. In S. C. Shapiro, ed­
itor, Encyclopedia o f Artificial Intelligence, pages 333-339. John Wiley,
Chichester. Volume 1.

Chomsky, N. (1956). Three models for the description of language. IE EE
Transactions on Information Theory, 2: 113-24.

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague.

359

Chomsky, N. (1962). A transformational approach to syntax. In Proceed­
ings o f the Third Texas Conference on problems o f linguistic analysis in
English, pages 124-58, Austin.

Chomsky, N. (1981). Lectures on Government and Binding. Foris, Dor­
drecht.

Clocks in, W. and C. Mellish (1987). Programming in Prolog. Springer-
Verlag, Berlin, third edition.

Covington, M. A. (1984). Syntactic Theory in the High Middle Ages:
Modistic models of sentence structure. Cambridge University Press, Cam­
bridge.

Covington, M. A. (1986). Grammatical theory in the middle ages. In
T. Bynon and F. Palmer, editors. Studies in the History o f Western Lin­
guistics. Cambridge University Press, Cambridge.

Covington, M. A. (1988). Parsing variable word order languages with
unification-based dependency grammar. Technical Report ACMC 01-0022,
Advanced Computational Methods Center, University of Georgia.

Covington, M. A. (1990a). A dependency parser for variable word order
languages. Technical Report AI-1990-01, Artificial Intelligence Program,
University of Georgia.

Covington, M. A. (1990b). Parsing discontinuous constituents in depen­
dency grammar. Computational Linguistics, 16: 234-6.

Covington, M. A., D. Nute, and A. Vellino (1987). Prolog Programming
in Depth. Scott, Foresman, Glenview, Illinois.

Curry, H. B. and R. Feys (1958). Combinatory Logic, volume 1. North
Holland, Amsterdam.

Dahl, Osten. (1980). Some arguments for higher nodes in syntax: a reply
to Hudson’s ‘Constituency and Dependency’. Linguistics, 18: 485-8.

Danieli, M., F. Ferrara, R. Gemello, and C. RuUent (1987). Integrating
semantics and flexible syntax by exploiting isomorphism between gram­
matical and semantical relations. In Proceedings of the Third Conference
of the European Chapter o f the Association for Computational Linguistics,
pages 278-83, Copenhagen.

de Groot, A. W. (1949). Structurele Syntaxis. Service, The Hague.

Devos, M., G. Adriaens, and Y. Willems (1988). The Parallel Expert
Parser (PEP): a thoroughly revised descendant of the Word Expert Parser
(WEP). In COLING-88, pages 142-7.

360

Dowty, D. R. (1982). Gram m atical relations and M ontague grammar. In
P. Jacobson and G. Pullum , editors, The Nature o f Syntactic Representa­
tion. D. Reidel, Dordrecht.

Dowty, D. R. (1988). Type raising, functional composition and non­
constituent conjunction. In R. Oehrle, E. Bach, and D. Wheeler, ed­
itors, Categorial Grammar and Natural language Structures. D. Reidel,
Dordrecht.

Dowty, D. R., R. E. Wall, and S. Peters (1981). Introduction to Montague
Semantics. D. Reidel, Dordrecht, Holland.

Earley, J. (1970). An efficient context-free parsing algorithm. Communi­
cations o f the Association fo r Computing Machinery, 13: 94-102.

Emonds, J. E. (1976). A Transformational Approach to English Syntax.
Academic Press, New York.

Engel, U. (1977). Syntax der deutschen Gegenwartssprache. Schmit,
Berlin.

Engel, U. and H. Schumacher (1976). Kleines Valenzlexicon deutscher
Verben. Narr, Tubingen.

Engelen, B. (1975). Untersuchungen zu Satzbauplan und Wortfeld in der
geschriebenen deutschen Sprache der Gegenwart. Hueber, Munich.

Erm an, L. D., F. Hayes-Roth, V. R. Lesser, and D. R. Reddy (1981).
The Hearsay-II speech-understanding system: integrating knowledge to
resolve uncertainty. In N. J. Nilsson and B. L. Webber, editors. Readings
in Artificial Intelligence, pages 349-89. Morgam Kaufmann, Los Altos,
Ca.

Fabricius-Hansen, C. (1977). P rojektet “Danisch-Deutsch kontrastive
G ram m atik” . In Kontrastiv grammatik i Danmark, pages 170-83. Statens
hum anistiske forskningsràd, Copenhagen.

Fillmore, C. J. (1968). The case for case. In E. Bach and R. Harms,
editors, Universals in Linguistic Theory, pages 1-88. Holt, R inehart and
W inston, New York.

Fillmore, C. J. (1977). The case for case reopened. In P. Cole and
J. Sadock, editors. Syntax and Semantics, Volume 8: Grammatical re­
lations, pages 59-81. Academic Press, New York.

Fissore, L., E. P. Giachin, P. Laface, G. Micca, R. Pieraccini, and C. Rul-
lent (1988). Experim ental results on large vocabulary speech recognition
and understanding. In IGASSP-88, New York.

361

Flickinger, D. P. (1987). Lexical rules in the hierarchical lexicon. PhD
thesis, Stanford.

Flickinger, D. P., C. J. Pollard, and T. Wasow (1985). Structure-sharing
in lexical representation. In Proceedings o f the 23rd Annual Meeting o f the
Association for Computational Linguistics, pages 262-7, Chicago.

Fraser, N. M. (1985). A word grammar parser. M aster’s thesis. University
College London.

Fraser, N. M. (1988). A word grammar parser: progress report 2. Techni­
cal report. University College London.

Fraser, N. M. (1989a). Parsing and dependency grammar. In R. Carston,
editor, UCL Working Papers in Linguistics 1, pages 296-319. University
College London.

Fraser, N. M. (1989b). Review of Stanley Starosta: The Case for Lexicase.
Computational Linguistics, 15: 114-15.

Fraser, N. M. and G. Gilbert (1991a). Effects of system voice quality
on user utterances in speech dialogue systems. In Proceedings o f the 2nd
European Conference on Speech Communication and Technology, pages
57-60, Genova.

Fraser, N. M. and G. N. Gilbert (1991b). Simulating speech systems.
Computer Speech and Language, 5: 81-99.

Fraser, N. M. and R. A. Hudson (1990). Word Grammar: an inheritance-
based theory of language. In W. Daelemans and G. Gazdar, editors. Pro­
ceedings o f the International Workshop on Inheritance in Natural Lan­
guage Processing, pages 58-64, Tilburg.

Fraser, N. M. and R. A. Hudson (1992). Inheritance in word grammar.
Computational Linguistics, 18(2): 133-58.

Fraser, N. M. and R. C. Woofhtt (1990). Orienting to rules. In N. Gilbert,
editor. Proceedings of the American Association for Artificial Intelligence
Workshop on Ethnomethodology, Complex Systems and Interaction Anal­
ysis, pages 69-80, Boston.

Fraser, N. M., G. N. Gilbert, G. S. McGlashan, and R. C. Woofhtt (forth­
coming). Analyzing Information Exchange. Routledge, London.

Gaifman, H. (1965). Dependency systems and phrase-structure systems.
Information and Control, 8: 304-7.

362

Garey, H. B. (1954). Review of Lucien Tesniëre: Esquisse d ’une Syntaxe
Structurale. Language, 30: 512-13.

Gazdar, G. (1987). Linguistic applications of default inheritance struc­
tures. In P. W hitelock, H. Somers, P. Bennet, R. L. Johnson, and M. M.
Wood, editors. Linguistic Theory and Computer Applications, pages 37-
67. Academic Press, London.

Gazdar, G. (1988). Applicability of indexed grammars to natural lan­
guages. In U. Reyle and C. Rohrer, editors. Natural Language Parsing
and Linguistic Theories, pages 69-94. D. Reidel, Dordrecht.

Gazdar, G. and C. S. Mellish (1989). Natural Language Processing in
PROLOG. Add is on-Wes ley, Wokingham.

Gazdar, G., E. Klein, G. K. Pullum, and I. Sag (1985). Generalized Phrase
Structure Grammar. Basil Blackwell, Oxford.

Gazdar, G., A. Franz, K. Osborne, and R. Evans (1987). Natural Language
Processing in the 1980s. CSLI, Stanford, CA.

Giachin, E. P. and C. Rullent (1988). Robust parsing of severely corrupted
spoken utterances. In GOLING-88, pages 196-201, Budapest.

Giachin, E. P. and C. Rullent (1989). A parallel parser for spoken natural
language. In IJGAI-89, pages 1537-42, Detroit.

Goldschlager, L. and A. Lister (1982). Computer Science: a m odem in­
troduction. Prentice-Hall, Englewood Cliffs, N.J.

Gorayska, B. (1987). Word G ram m ar semantic analyser. Technical report,
IBM UK Scientific Centre.

G rantham , P. R. (1987). N atural language understanding, a Word Gram ­
m ar approach to the problems. M aster’s thesis, Sheffield C ity Polytechnic.

Grishman, R. (1986). Computational Linguistics. Cam bridge University
Press, Cambridge.

Gross, M. (1964). The equivalence of models of language used in the fields
of mechanical translation and information retrieval. Inform ation Storage
and Retrieval, 2: 43-57.

Haddock, N. J. (1987). Increm ental interpretation and com binatory cate­
gorial gram m ar. In Proceedings o f the Tenth International Joint Confer­
ence on Artifical Intelligence, pages 661-3, Milan.

363

Haigh, R., G. Sampson, and E. Atwell (1988). Project APRIL — a
progress report. In Proceedings o f the 26th Annual Meeting o f the As­
sociation for Computational Linguistics, pages 104-112, Buffalo.

Hajic, J. (1987). RUSLAN — an MT system between closely related lan­
guages. In Proceedings o f the Third Conference o f the European Chapter of
the Association for Computational Linguistics, pages 113-17, Copenhagen.

Hajicova, E. (1988). Reasons why we use dependency grammar. In
COLING-88, page 451, Budapest.

Harris, Z. S. (1951). Methods in Structural Linguistics. University of
Chicago Press, Chicago.

Hayes, P. J., A. G. Hauptmann, J. G. Carbonell, and M. Tomita (1986).
Parsing spoken language: a semantic caseframe approach. In COLING-86,
pages 587-92, Bonn.

Hayes-Roth, F., D. Waterman, and D. Lenat (1983). Building Expert
Systems. Addison-Wesley, Reading, Mass.

Hays, D. G. (1961a). Basic principles and technical variations in sentence-
structure determination. In C. Cherry, editor, Information Theory, pages
367-76. Butterworths, London.

Hays, D. G. (1961b). Grouping and dependency theories. In H. Edmund-
son, editor. Proceedings o f the National Symposium on Machine Transla­
tion, pages 258-66. Prentice-Hall, London.

Hays, D. G. (1961c). Linguistic research at the RAND corporation. In
H. Edmunds on, editor. Proceedings o f the National Symposium on Machine
Translation, pages 13-25. Prentice-Hall, London.

Hays, D. G. (1964). Dependency theory: a formalism and some observa­
tions. Language, 40: 511-25.

Hays, D. G. (1965). An annotated bibliography of publications on depen­
dency theory. Technical Report RM-4479-PR, The RAND Corporation.

Hays, D. G. (1966a). Connectability calculations, syntactic functions, and
Russian syntax. In D. G. Hays, editor. Readings in Automatic Language
Processing, pages 107-125. American Elsevier, New York.

Hays, D. G. (1966b). Parsing. In D. G. Hays, editor. Readings in Auto­
matic Language Processing, pages 73-82. American Elsevier, New York.

Hays, D. G. (1967). Introduction to Computational Linguistics. Macdon­
ald, London.

364

Hays, D. G. and T. W. Ziehe (1961). Studies in machine translation 10:
Russian sentence-structure determ ination. Technical Report RM-2538,
The Rand Corporation, Santa Monica, Ca.

Helbig, G. and W. Schenkel (1969). Wôrterbuch zur Valenz und Distribu­
tion deutscher Verben. Bibliographisches Institu t, Leipzig.

Hellwig, P. (1974). Formal-desambiguierte repraesentation. Vorueber-
legungen zur maschinellen bedeutungsanalyse auf der grundlage der valen-
zidee. University of Heidelberg dissertation.

Hellwig, P. (1985). Program system PLAIN: examples of application.
Technical report. University of Surrey, UK.

Hellwig, P. (1986). Dependency Unification G ram m ar (DUG). In
COLING-86, pages 195-8, Bonn.

Hellwig, P. (1988). C hart parsing according to the slot and filler approach.
In COLING-88, pages 242-4, Budapest.

Hepple, M. (1987). Methods for parsing com binatory grammars and the
spurious am biguity problem. M aster’s thesis. University of Edinburgh.

Hepple, M. and G. Morrill (1989). Parsing and derivational equivalence.
In Proceedings o f the Fourth Conference o f the European Chapter o f the
Association for Computational Linguistics, pages 10-18, Manchester.

Herbst. T ., D. Heath, and H.-M. Dederding (1980). G rim m ’s Grandchil­
dren: Current opics in German linguistics. Longman, London.

Heringer, H .-J. (1970). Theorie der deutschen Syntax. Max Hueber Verlag,
Munich.

H ietaranta, P. (1981). On multiple modifiers: a further remark on con­
stituency. Linguistics, 19: 513-16.

Hirschberg, L. (1961). Le repâchement conditionnel de l’hypothèse de
projectivité. Technical Report CETIS Report No. 35, EURATOM, Ispra,
Italy.

Hj elms lev, L. (1935). La catégorie des cas. Acta Jutlandica, 7: 1-184.

Hjelmslev, L. (1937). La catégorie des cas. Acta Jutlandica, 9: 1-78.

Hockett, C. F. (1958). A Course in M odem Linguistics. Macmillan, New
York.

Huddleston, R. D. (1984). A n Introduction to the Grammar o f English.
Cambridge U niversity Press, Cambridge.

365

Huddleston, R. D. (1988). English Grammar: An Outline. Cambridge
University Press, Cambridge.

Hudson, R. A. (1971). English Complex Sentences: An introduction to
Systemic Grammar. North-Holland, Amsterdam.

Hudson, R. A. (1976). Arguments for a Non-Transformational Grammar.
University of Chicago Press, Chicago.

Hudson, R. A. (1980a). Constituency and dependency. Linguistics, 18:
179-98.

Hudson, R. A. (1980b). A second attack on constituency: a reply to Dahl.
Linguistics, 18: 489-504.

Hudson, R. A. (1981a). Pan-lexicalism. Journal o f Literary Semantics, 2:
67-78.

Hudson, R. A. (1981b). A reply to H ietaranta’s argumants for con­
stituency. Linguistics, 19: 517-20.

Hudson, R. A. (1983). Word Grammar. In Proceedings of the X lllth
International Congress o f Linguists, pages 89-101, Tokyo.

Hudson, R. A. (1984). Word Grammar. Basil Blackwell, Oxford.

Hudson, R. A. (1985a). Some basic assumptions about linguistic and non-
linguistic knowledge. Quaderni di semantica, 6: 284-7.

Hudson, R. A. (1985b). Towards a computer testable implementation of
word grammar. University College London ms.

Hudson, R. A. (1986a). A Prolog implementation of Word Grammar.
In Speech, Hearing and Language: Work in Progress 2, pages 133-50.
University College London.

Hudson, R. A. (1986b). Sociolinguistics and the theory of grammar. Lin­
guistics, 24: 1053-78.

Hudson, R. A. (1988a). Coordination and grammatical relations. Journal
o f Linguistics, 24: 303-42.

Hudson, R. A. (1988b). Extraction and grammatical relations. Lingua,
76: 177-208.

Hudson, R. A. (1989a). English passives, grammatical relations and de­
fault inheritance. Lingua, 79: 17-48.

Hudson, R. A. (1989b). Gapping and grammatical relations. Journal of
Linguistics, 25: 57-94.

366

Hudson, R. A. (1989c). Towards a com puter-testable Word G ram m ar of
English. In UCL Working Papers in Linguistics, Volume 1, pages 321-39.
University College London.

Hudson, R. A. (1990). English Word Grammar. Basil Blackwell, Oxford.

Hudson, R. A. (forthcoming). Do we have heads in our minds? In G. G.
C orbett, N. M. Fraser, and S. McGlashan, editors. Heads in Grammatical
Theory. Cambridge University Press, Cambridge.

Husserl, E. (1900). Logische Untersuchungen. Halle, Niemeyer. Trans­
lated by J.N. Findlay as Logical Investigations. Routledge & Kegan Paul,
London, 1970.

Jackendoff, R. S. (1977). X Syntax: A study o f phrase structure. MIT
Press, Cambridge, Mass. Linguistic Inquiry Monograph 2.

Jappinen, H. and M. Ylilammi (1986). Associative model of morphological
analysis: an empirical inquiry. Computational Linguistics, 12: 257-72.

Jappinen, H., E. Nelimarkka, A. Lehtola, and M. Ylilammi (1983). Knowl­
edge engineering approach to morphological analysis. In Proceedings o f the
First Conference o f the European Chapter o f the Association for Compu­
tational Linguistics, pages 49-51, Pisa.

Jappinen, H., A. Lehtola, and K. Valkonen (1986). Functional structures
for parsing dependency constraints. In COLING-86, pages 461-63, Bonn.

Jappinen, H., A. Lehtola, E. Nelimarkka, and K. Valkonen (1987). Depen­
dency analysis o f Finnish sentences. Selected reprints. SITRA Foundation,
Helsinki.

Jappinen, H., T. Honkela, A. Lehtola, and K. Valkonen (1988a). Hierar­
chical multilevel processing model for natural language database interface.
In Proceedings o f the Fourth Conference on Artificial Intelligence Applica­
tions, pages 332-7, San Diego. IEEE.

Jappinen, H., E. Lassila, and A. Lehtola (1988b). Locally governed trees
and dependency parsing. In COLING-88, pages 275-7, Budapest.

Jefferson, G. (1988). Prelim inary notes on a possible metric which pro­
vides for a ‘standard m axim um ’ silence of approxim ately one second in
conversation. In D. Roger and P. Bull, editors. Conversation, pages 166-
96. Multilingual M atters, Clevedon, PA.

Johnson, R., M. King, and L. des Tombe (1985). EUROTRA: A multilin-
guial system under development. Computational Linguistics, 11: 155-69.

367

Kacnel’son, S. (1948). 0 grammaticeskoj kategorii. Vestnik Leningrad-
skogo Universiteta, 2: 114-134.

Kaplan, R. M. and J. Bresnan (1982). Lexical functional grammar: a for­
mal system for gram m atical representation. In J. Bresnan, editor. The
M ental Representation o f Grammatical Relations, pages 173-281. MIT
Press, Cambridge, Mass.

Kay, M. (1965). Large files in linguistic computing. Technical Report
P-3136, Rand Corporation, Santa Monica.

Kay, M. (1985). Parsing in functional unification grammar. In D. R.
Dowty, L. K arttunen, and A. M. Zwicky, editors. Natural Language Pars­
ing, pages 251-78. Cambridge University Press, Cambridge.

Kay, M. (1986). Algorithm schem ata and data structures in syntactic pro­
cessing. In B. J. Grosz, K. Sparck Jones, and N. L. W ebber, editors. Read­
ings in Natural Language Processing, pages 35-70. M organ Kaufmann, Los
Altos, CA. (First appeared in 1980).

K ettunen, K. (1986). On modelling dependency-oriented parsing. In
F. Karlsson, editor. Papers from the Fifth Scandanavian Conference on
Computational Linguistics, pages 113-20, Helsinki. University of Helsinki.

K ettunen, K. (1989). Evaluating FUNDPL, a dependency parser for
Finnish. University of Helsinki ms.

Kiefer, F. (1968). Mathematical Linguistics in Eastern Europe. American
Elsevier, New York.

Kirschner, Z. (1984). On a dependency analysis of English for autom atic
translation. In P. Sgall, editor. Contributions to Functional Syntax, Se­
mantics and Language Comprehension, pages 335-58. Academia, Prague.

Kodam a, T. (1982). Constituency gram m ar and dependency gram m ar.
In Studies in Foreign Literature 55, pages 15-46. Ritsum eikan University,
Kyoto.

Kornai, A. and G. K. Pullum (1990). The X-bar theory of phrase structure.
Language, 66: 24-50.

Kunze, J. (1975). Ahhdngigkeitsgrammatik. Akademie-verlag, Berlin.

Lakoff, G. (1985). Women, Fire and Dangerous Things: What categories
reveal about the mind. Chicago University Press, Chicago.

Lambek, J. (1958). The m athem atics of sentence structure. American
Mathematical Monthly, 65: 154-70.

368

Laurie, S. (1893). Lectures on Language and Linguistic Method in the
School James Thin, Edinburgh.

Lecerf, Y. (1960). Analyse autom atique. In Enseignement Préparatoire
aux Techniques de la Documentation Automatique, pages 179-245. EU­
RATOM, Brussels.

Lehtola, A. (1986). DPL - a com putational method for describing gram ­
mars and modelling parsers. In F. Karlsson, editor. Papers from the
Fifth Scandanavian Conference o f Computational Linguistics, pages 151-
60, Helsinki. University of Helsinki.

Lehtola, A., H. Jappinen, and E. Nelimarkka (1985). Language-based
environment for natural language parsing. In Proceedings o f the Second
European Conference o f the Association for Computational Linguistics,
pages 98-106, Geneva.

Lesniewski, S. (1929). Grundziige eines neuen systems der grundlagen der
m athem atik. Fundamenta Mathematicae, 14: 1-81.

Levelt, W. J. (1974). Formal Grammars in Linguistics and Psycholinguis­
tics, volume II: Applications in linguistic theory. Mouton, The Hauge.

Lindsey, F. (1987). Report on a lexically-driven phrase-building parser.
Technical report. University of Hawaii.

Lyons, J . (1968). Introduction to Theoretical Linguistics. Cambridge Uni­
versity Press, Cambridge.

M anaster-Ram er, A. and M. B. Kac (1990). The concept of phrase struc­
ture. Linguistics and Philosophy, 13: 325-62.

Marcus, M. P. (1980). A Theory o f Syntactic Recognition fo r Natural
Language. MIT Press, Cambridge, Mass.

Marslen-Wilson, W. and L. Tyler (1980). The tem poral structure of spo­
ken language understanding. Cognition, 8: 1-74.

M artem ’yanov, Y. (1961). The coding of words for an algorithm for syntac­
tic analysis. In Doklady ne Konferentsii po Obrabotke Informatsii, Mashin-
nomu Perevodu i Avtomaticheskomu Chteniyu Teksta. In stitu te of Scien­
tific Information, Academy of Sciences, Moscow.

M aruyama, H. (1990). S tructural disam biguation w ith constraint propa­
gation. In Proceedings o f the 28th Annual Meeting o f the Association for
Computational Linguistics, pages 31-8, Pittsburgh.

369

M atsunaga, S. and M. Kohda (1988). Linguistic processing using a depen­
dency structure gram m ar for speech recognition and understanding. In
COLING-88, pages 402-7, Budapest.

M atthews, P. H. (1981). Syntax. Cambridge University Press, Cambridge.

Maxwell, D. and K. Schubert (1989). Metataxis in Practice: Dependency
syntax fo r multilinguial machine translation. D istributed Language Trans­
lation 6. Foris, Dordrecht.

McGlashan, S. (1992). Dependency unification grammar. PhD thesis.
University of Edinburgh.

Mel’cuk, I. A. (1962). Ob algoritme sintaksicheskogo analiza yazykovykh
tekstov (obshchie printsipy i nekotory itogi). Mashinny Perevod i Priklad-
naya Lingvistika, 7: 45-87.

Mel’cuk, I. A. (1979). Dependency syntax. In I. A. Mel’cuk, editor. Studies
in Dependency Syntax, pages 3-21. Karoma, Ann Arbor.

Mel’cuk, I. A. (1988). Dependency Syntax: Theory and practice. SUNY
Press, Albany.

Mel’cuk, I. A. and A. K. Zolkovkij (1970). Towards a functioning
‘M eaning-Text’ model of language. Linguistics, hi: 10-47.

Miller, J. (1985). Syntax and Semantics. Cam bridge University Press,
Cambridge.

Miller, J. (1990). Review of S. Starosta: The Case for Lexicase. Journal
o f Linguistics, 26: 235-41.

Nagao, K. (1990). Dependency analyzer: a knowledge-based approach to
structural disambiguation. In COLING-90, pages 282-7, Helsinki.

Nelimarkka, E., H. Jappinen, and A. Lehtola (1984a). Parsing an in­
flectional free word order language with two-way finite autom ata. In
T. O ’Shea, editor. Advances in Artificial Intelligence. (Proceedings o f the
6th European Conference on Artificial Intelligence), Pisa. N orth Holland.

Nelimarkka, E., H. Jappinen, and A. Lehtola (1984b). Two-way finite
au tom ata and dependency theory: a parsing m ethod for inflectional free
word order languages. In C O LIN G ’84, Stanford.

Nichols, J. (1978). Double dependency? Proceedings o f the Chicago L in­
guistics Society, 14: 326-39.

Nichols, J. (1986). Head-marking and dependent-m arking gram m ar. Lan­
guage, 62: 56-119.

370

Niedermair, G. T. (1986). Divided and valency-oriented parsing in speech
understanding. In COLING-86, pages 593-5, Bonn.

Nii, H. (1986). Blackboard systems: the blackboard model of problem
solving and evolution of blackboard architectures. The A l Magazine. Sum­
mer: 38-53; August: 82-106.

Nikula, H. (1976). Verhvalenz: Untersuchungen am Beispiel des deutschen
Verbs m it einer kontrastiven Analyse Deutsch-Schwedisch. Acta Uni vers i-
ta tis Upsaliensis, Studia Germanica Ups aliens ia 15. Almqvist and Wiksell,
Uppsala.

Owens, J. (1988). The Foundations o f Grammar: A n introduction to m e­
dieval Arabic grammatical theory. John Benjamins, Amsterdam.

Papp, F. (1966). Mathematical Linguistics in the Soviet Union. Mouton,
The Hague.

Pareschi, R. and M. Steed man (1987). A lazy way to chart parse with
categorial grammars. In Proceedings o f the 25th Annual Conference o f the
Association fo r Computational Linguistics, pages 81-8, Stanford.

Peckham, J. (1991). Speech understanding and dialogue over the tele­
phone: an overview of the ESPRIT SUNDIAL project. In Proceedings
o f the D ARPA Workshop on Speech and Language, pages 14-27, Pacific
Grove, CA.

Pereira, F. (1981). Extraposition grammars. American Journal o f Com­
putational Linguistics, 7: 243-56.

Pereira, F. C. and D. H. W arren (1981). Definite clause grammars for
language analysis — a survey of the formalism and a comparison with
augm ented transition networks. Artificial Intelligence, 13: 231-78.

Pericliev, V. and I. Ilarionov (1986). Testing the projectivity hypothesis.
In COLING-86, pages 56-8, Bonn.

Petkevic, V. (1988). New dependency based specification of underlying
representations of sentences. In COLING-88, pages 512-14, Budapest.

Phillips, J. D. (1988). Using explicit syntax for disam biguation in speech
and script recognition. University of Tiibingen ms.

Pickering, M. and G. Barry (1990). Sentence processing w ithout em pty
categories. Language and Cognitive Processes, 6: 229-59.

Poesio, M. and C. Rullent (1987). Modified caseframe parsing for speech
understanding systems. In IJCAI-87, pages 622-5, Milan.

371

Pollard, C. and I. A. Sag (1988). Information-based Syntax and Semantics.
CSLI Lecture Notes 13. CSLI, Stanford, CA.

Proudian, D. and C. Pollard (1985). Parsing head-driven phrase structure
grammar. In Proceedings o f the 23rd Annual Meeting of the Association
for Computational Linguistics, pages 167-71, Chicago.

Pullum, G. K. (1985). Assuming some version of the X-bar theory. Tech­
nical Report SRC-85-01, University of California, Syntax Research Center,
Cowell College, University of California, Santa Cruz.

Ritchie, G. (1983). Semantics in parsing. In M. King, editor. Parsing
Natural Language, pages 199-217. Academic Press, London.

Robins, R. (1979). A Short History o f Linguistics. Longman, London,
second edition.

Robinson, J. J. (1967). Methods for obtaining corresponding phrase struc­
ture and dependency grammars. In Proceedings o f the Second Interna­
tional Conference on Computational Linguistics, Grenoble.

Robinson, J. J. (1969). Case, category, and configuration. Journal of
Linguistics, 6: 57-80.

Robinson, J. J. (1970). Dependency structures and transformational rules.
Language, 46: 259-85.

Ross, J. R. (1967). Constraints on variables in syntax. PhD thesis, Mas-
sachusets Institute of Technology.

Sadler, V. (1989a). The Bilingual Knowledge Bank, a new conceptual
basis for MT. DLT report, BSO/Research, Utrecht.

Sadler, V. (1989b). Translating with the Bilingual Knowledge Bank
(BKB). DLT report, BSO/Research, Utrecht.

Sadler, V. (1989c). Working with Analogical Semantics. Foris, Dordrecht.

Saito, M. (1989). Scrambling as semantically vacuous A ̂ -movement. In
M. R. Baltin and A. S. Kroch, editors. Alternative Conceptions o f Phrase
Structure, pages 182-200. University of Chicago Press, Chicago.

Schank, R. C. (1972). Conceptual dependency: a theory of natural lan­
guage understanding. Cognitive Psychology, 3: 552-631.

Schank, R. C. (1975). Conceptual Information Processing. Fundamental
Studies in Computer Science 3. North-Holland, Amsterdam.

372

R. C. Schank and C. K. Riesbeck, editors (1981). Inside Computer Under­
standing: Five programs plus miniatures. Lawrence Earlbaum Associates,
Hillsdale, NJ.

Schubert, K, (1986). Syntactic tree structure in DLT. Technical report,
BSO/Research.

Schubert, K. (1987). Metataxis: contrastive dependency syntax for ma­
chine translation. D istributed Language Translation 2. Foris, Dordrecht.

Schumacher, H. (1988). Valenzbibliographie. In stitu t fiir deutsche Sprache,
Mannheim.

Sgall, P. (1963). The interm ediate language in machine translation and
the theory of grammar. In 26th Annual Meeting o f the American Docu­
mentation Institute, pages 41-2, Chicago.

Sgall, P. and J. Panevova (1987). Machine translation, linguistics, and in­
terlingua. In Proceedings o f the Third Conference o f the European Chapter
o f the Association fo r Computational Linguistics, pages 99-108, Copen­
hagen.

Sgall, P., E. Hajicova, and J. Panevova (1986). The Meaning o f the Sen­
tence in its Sem antic and Pragmatic Aspects. Academia, Prague.

Shieber, S. M. (1986). An Introduction to Unification-based Approaches to
Grammar. CSLI Lecture Notes, 4. CSLI, Stanford.

Slutsker, G. (1963). Poluchenie vsekh dopustim ykh variantov sintaksich­
eskogo analiza teksta pri pomoshchi mashiny. Problemy Kibernetiki, 10:
215-25.

Small, S. L. (1983). Parsing as co-operative distributional inference. Un­
derstanding through memory interactions. In M. King, editor. Parsing
Natural Language, pages 247-76. Academic Press, London.

Somers, H. L. (1987). Valency and Case in Computational Linguistics.
Edinburgh Information Technology Series 3. Edinburgh University Press,
Edinburgh.

Sommerfeldt, K.-E. and H. Schreiber (1974). Wôrterbuch zur Valenz und
Distribution deutscher Adjektive. Bibliographisches Institu t, Leipzig.

Sommerfeldt, K.-E. and H. Schreiber (1977). Wôrterbuch zur Valenz und
Distribution deutscher Substantive. Bibliographisches In stitu t, Leipzig.

Sowa, J. F. (1984). Conceptual Structures. Addison-Wesley, Reading, MA.

373

sparck Jones, K. and M. Kay (1973). Linguistics and Inform ation Science.
Academic Press, London.

Sperber, D. and D. Wilson (1986). Relevance: Communication and cogni­
tion. Basil Blackwell, Oxford.

Starosta, S. (1970). Verbs and case subcategorization. Handout, Linguis­
tics 651, University of Hawaii.

Starosta, S. (1971a). Lexical derivation in a case gram m ar. University o f
Hawaii Working Papers in Linguistics, 3: 83-101.

Starosta, S. (1971b). Some lexical redundancy rules for English nouns.
Glossa, 5: 167-201.

Starosta, S. (1978). The one per Sent solution. In W. Abraham , edi­
tor, Valence, Semantic Case, and Grammatical Relations. John Benjamins
B.V., Amsterdam. Studies in Language Companion Series 1.

Starosta, S. (1988). The Gase for Lexicase: An Outline o f Lexicase Gram­
matical Theory. P inter, London.

Starosta, S. (1990). Review of H.L. Somers, Valency and Case in Compu­
tational Linguistics. Machine Translation, 5.

S tarosta, S. and H. Nomura (1986). Lexicase parsing: a lexicon-driven
approach to syntactic analysis. In GOLING-86, pages 127-32, Bonn.

S tarosta, S. (forthcoming). Lexicase. In E. Brown, editor. The Encyclope­
dia o f Language and Linguistics. Pergamon Press and Aberdeen University
Press, Oxford and Aberdeen.

Steed man, M. J. (1985). Dependency and coordination in the gram m ar of
dutch and english. Language, 61: 523-68.

Steed man, M. J. (1987). Combinatory grammars and parasitic gaps. N at­
ural Language and Linguistic Theory, 5: 403-39.

Steed man, M. J. (1990). Gram m ar, interpretation, and processing from
the lexicon. In W. Marslen-Wilson, editor. Lexical Representation and
Process. MIT Press, Cambridge, MA.

Tarvainen, K. (1977). Dependenssikielioppi. Gaudeamus, Helsinki.

Taylor, J. R. (1989). Linguistic Categorization: A n essay in cognitive
linguistics. Oxford University Press, Oxford.

Tesniere, L. (1953). Esquisse d ’une Syntaxe Structural. Librairie Klinck-
sieck, Paris.

374

Tesnière, L. (1959). Éléments de Syntaxe Structurale, Librairie Klinck-
sieck, Paris.

R. H. Thomason, editor (1974). Formal Philosophy: Selected papers o f
Richard Montague. Yale University Press, New Haven.

Turner, D. A. (1979). A new implementation technique for applicative
languages. Software Practice and Experience, 9: 31-49.

Turner, K. (1990). Review of Stanley Starosta: The Case for Lexicase.
Linguistics, 28: 635-36.

Valkonen, K., H. Jappinen, and A. Lehtola (1987a). Blackboard-based
dependency parsing. In IJCAI-87, pages 700-702, Milan.

Valkonen, K., H. Jappinen, A. Lehtola, and M. Ylilammi (1987b). D eclara­
tive model for dependency parsing - a view into blackboard methodology.
In Proceedings o f the Third European Conference o f the Association for
Computational Linguistics, pages 218-225, Copenhagen.

van der Korst, B. (1988). SE PARSER II: An a ttrib u te gram m ar for
technical English. DLT report, BS0 / Research, University of Amsterdam.

van Zuijlen, J. M. (1986a). Comparison of an ATN and a DCG perform­
ing the first stage of the IL word analysis. DLT report, BSO/Research,
U trecht.

van Zuijlen, J. M. (1986b). A DCG for the first stages of the IL-word
gram m ar. DLT report, BSO/Research, Utrecht.

van Zuijlen, J. M. (1988). A technique for the compact representation of
m ultiple analyses in dependency grammar. DLT report, BSO/Research,
U trecht.

van Zuijlen, J. M. (1989a). The application of simulated annealing to
dependency gram m ar parsing. DLT report, BSO/Research, Utrecht.

van Zuijlen, J. M. (1989b). Probabilistic methods in dependency parsing.
In Proceedings o f the International Workshop on Parsing Technologies,
pages 142-51, Pittsburgh. Carnegie Mellon University.

van Zuijlen, J. M. (1990). Notes on a probabilistic parsing experiment.
DLT report, BSO /Language Systems, Utrecht.

Vater, H. (1975). Toward a generative dependency grammar. Lingua, 36:
121-45.

W hitehead, A. and B. Russell (1925). Principia Mathematica. Cambridge
University Press, Cambridge.

375

Wilks, Y. (1975). An intelligent analyser and understander of English.
Communications o f the Association for Computing Machinery, 18: 264-
74.

Winograd, T. (1983). Language as a Cognitive Process, volume 1: Syntax.
Addison-Wesley, Reading, MA.

W irth, N. (1975). Algorithms + Data Structures = Programs. Prentice
Hall, Englewood Cliffs, NJ.

Witkam, A. (1983). Distributed language translation. Feasibility study of
a multilingual facility for videotex information networks. Technical report,
BSO/Research.

Witkam, A. (1989). Distribited Language Translation, another MT sys­
tem. In I. D. Kelly, editor. Progress in Machine Translation: Natural
Language and Personal Computers, pages 133-42. Sigma Press, Wilmslow.

Woods, W. A. (1970). Transition network grammars for natural language
analysis. Communications o f the Association for Computing Machinery,
13: 591-6.

Woods, W. A. (1982). Optimal search strategies for speech understanding
control. Artificial Intelligence, 18: 295-326.

Woods, W. A. (1987). Augmented transition network grammar. In S. C.
Shapiro, editor. Encyclopaedia o f Artificial Intelligence, pages 323-33. Wi­
ley, New York.

376

