UCL
=

UNIVERSITY COLLEGE LONDON
DEPARTMENT OF COMPUTER SCIENCE

Synthesising Parallel Functional
Programs
to Improve Dynamic Scheduling

David J. Parrott

A thesis submitted for the degree of
Doctor of Philosophy '
in the University of London

March 1993

ProQuest Number: 10044485

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10044485
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

This work investigates novel methods for improving the efficiency of evaluating lazy
functional programs in parallel. We are specifically concerned with distributed memory
architectures in which it is expensive for processors to communicate with each other via
message passing.

Traditionally, improvements in parallel evaluation are found by experimental pro-
cesses supported by intuition and simple mathematical models and much existing re-
search has been based on improving the execution time of a number of small benchmark
programs. A key contribution of this thesis is the development of a language for synthe-
sising the low-level run-time characteristics of functional programs. Using the language,
it is possible to construct large synthetic workloads in a much shorter time-scale than
the equivalent functional programs. From an experimenter’s viewpoint the behaviour of
the synthetic workloads is more predictable than that of functional programs because it
is not distorted by compile-time transformations; it is therefore simpler to obtain specific
experimental behaviour. The language enables the granularity of workloads to be altered
in a straightforward manner and can model, under controlled conditions, instabilities due
to run-time input.

It is noted that functional language compilers ought to be able to estimate the ex-
pected time-costs of the individual functions of a program and that the time-cost in-
formation can then be used to guide dynamic scheduling strategies. Some research has
taken place in this area but no existing research adequately deals with the problems of
laziness (or, indeed, instabilities caused by run-time input). We investigate the effect
on dynamic schedulers when laziness is not taken into account. The time-cost analysis
is then improved to take account of lazy evaluation and we are able to show that the
superior time-cost information can improve efficiency.

However, large deviations from mean time-costs due to lazy evaluation and run-time
input can precipitate inaccuracies even in the more complex compile-time estimates. We
develop a number of heuristic run-time techniques to cope with these inaccuracies and

gauge their success by introducing controlled instabilities.

Acknowledgements

Many thanks are due to Chris Clack, my supervisor, whose insights, and editorial guid-
ance have been invaluable throughout this period of research. Thanks are also given to
Stuart Clayman with whom I have had many stimulating and fruitful discussions and
whose talent for detecting obscure bugs in seemingly perfect code remains unsurpassed.
I am indebted to Nigel Chapman, Stuart Clayman, Chris Clack, Simon Courtenage,
and Derek Long for giving their time to proof-read this thesis, and for the many use-
ful suggestions they have made. Funding for my research was provided by the Science
and Engineering Research Council of Great Britain and the work benefitted greatly from
the friendly surroundings of the Department of Computer Science at Univeristy College
London.

For his unswerving moral support, graphics expertise, friendship, and generally calm-
ing influence in times of stress, I am most grateful to my brother Dennis. For a safe and
comfortable haven from which to commute each day, and for their patience and enduring
support, I give heartfelt thanks to my parents. I am also indebted to my aunt Vi for her
financial support and encéﬁ.;'agement. Finally, I would like to say a big thankyou to the
friends who have been responsible for my social well-being these past three years, and

especially to Adam for providing a welcome escape to the fens on so many occasions.

Dave Parrott,

March 1993.

Contents

Abstract

Acknowledgements

Introduction

Goalsof the Research« i i i i i i it i i i i e e
Contributions of the Work

Overview of the Thesis i i i i i i i e e e e e e e e e

1 Background

1.1

1.2

13

Research Topics for Functional Languages
1.1.1 Language Design c e et e e e
1.1.2 Program Analysis and Transformation
1.1.3 Functional Language Implementation
1.1.4 Support for Functional Programmers
Parallel Architectures,
1.2.1 General Purpose Hardware
1.2.2 Special Purpose Functional Language Reduction Machines
1.2.3 Gauging the Success of Special Purpose Hardware
1.2.4 Networked Processors,
The Identification and Management of Parallelism
1.3.1 Identifying Parallelismby Hand
1.3.2 Using Strictness Analysis to Obtain Parallelism in Lazy Functional

Languages i e e
133 Skeletons e

15
16
17
17

1.3.4 Managing Parallelism by Scheduling, Load Balancing, and Parti-

tloning e e e 32
2 Simulations and Experimental Stimuli 34
2.1 Simulations of Computer Systems, 35
2.1.1 Behavioural Modelling [37
2.1.2 Stochastic Simulation 000 38
2.1.3 Time-driven and Event-driven Simulations. 39
214 Emulation. L e e 40
215 Discussion e e e e e 42
2.2 Generating Experimental Workloads 42
2.2.1 High-level Source Programs 43
2.2.2 Deriving Workloads from Execution Traces 45
2.2.3 Synthetic Workloads 46
2.2.4 Examples of Synthetic Workloads 48
225 Discussion i ittt e e e e e e e 49
2.3 Monitoring Experimental Functional Workloads 50
2.3.1 Measuring Task Sizes—System Implementors Versus Application
Programmers L e 52
2.3.2 Profiling Tools for Functional Programs 55
2.4 SUMMATY it e et e e e e e e e e e e e e e e e 56
3 Modelling Functional Workloads 57
3.1 Specification of the Problem 57
3.1.1 Experimental Requirements 58
3.1.2 The Experimental Environment 59
3.1.3 Sharing and Delayed Evaluation 61
3.14 Summaryof Requirements. 64
3.2 The Paragon Workload Description Language 65
3.2.1 Task Template Graphs e e e e 66
3.2.2 Synchronising Parent and Child Tasks 68
3.23 Resource Consumption. 69
3.2.4 Describing Sharing and Delayed Evaluation 70
3.2.5 Optimising Tail-Recursion 74

3.2.6 Summarising the Paragon Instruction Set 75

3.2.7 Simulating Run-TimeInput 76
3.2.8 Formal Paragon Syntax 79
3.3 ImplementationIssues, 80
3.3.1 Choosing Between Alternate Branches of an Instruction 80
3.3.2 Making Abstract Time Units Concrete 82
3.3.3 Restrictions on Declared Sequence References 82
3.3.4 Evaluating Child Tasks Locally 83
3.3.5 Speculative Parallelism 83
34 Further Work e 84
4 Reproducing Functional Language Behaviour 85
4.1 Introduction to Paragon Verification and Validation 85
4.2 Soundnesso e e e e e e e e e e e e e e e e e 87
421 Primitive Work L o e 87
4.2.2 The Dynamic Call-Tree 88
4.2.3 Synchronisation due to BLOCK Instructions 89
424 SyntheticClosures, 0
425 Conditionals e e 92
426 SUMMATY« ¢ &t v v vt e e e e e e e e e e e e e e e e e 93
4.3 Can Paragon Describe all of the Required Stimuli? 93
4.3.1 Referential Transparency, 94
4.3.2 Sharing and Non-Strictness 96
433 DataDependenciesttt 97
434 DynamicInstability, 97
4.3.5 Higher-Order Behaviour00 98
4.4 Verifying the Implementation 100
4.4.1 Memory Consumption 101
4.4.2 Guaranteeing the Absence of Cycles e 102
443 Deadlocks i i it e e e e e 105
4.4.4 Suspension and Resumption. 106
4.5 Validating Individual Workloads 107
4.5.1 Validationby Profiling 108

4.5.2 Constructing Profilers 110

4.6 Example Algorithms oL 110

4.6.1 Divide and Conquer Algorithms 110

An Example Divide and Conquer Algorithm: Quicksort . 112

4.6.2 Tail-RecursiveLoops 118

46.3 Stream Processing 0., 120

Sequential Stream Processing 120

Parallel Stream Processing 121

4.7 Summary« i i it e e e e e e e e e e e e e e e e e 123

5 Time-cost Analysis of Paragon Workloads 125

5.1 An Introduction to the Time-cost Analysis. 125

5.1.1 Dealing with Recursion 126

5.2 A Simple Time-Cost Analysis without Sharing 127

5.2.1 First Order Recursion 129

5.2.2 Extending the Analysisto Tail Calls 129

5.2.3 Limited Simultaneous Recursion 131
5.2.4 Extending the Analysis to Task Templates with many sPAWN In-

structions L L L e 133

5.3 Reasoning about Sharing Semantics 133

5.3.1 Probabilistic Events versus Mechanistic Actions 136

5.3.2 Predicting Interaction Between Task Instances 137

5.3.3 Evaluation Points and Evaluation Intervals 137
5.3.4 Some Notation to Describe Lexical, Temporal, and Dependence

Relations i inene.. 140

5.3.5 Reasoning about the Interface between Parent and Child Tasks . . 142

536 Someexamples e e e e 142

5.4 An Analysis of Declared Sequence Evaluation 144

5.4.1 Simplifications et e 144

5.4.2 Temporal Relationships and Probabilistic Events 144
5.4.3 Determining the Necessity of Formal Parameters and Locally De-

clared Sequences 145

5.4.4 Temporal Relationships between Parent and Child Tasks 147

The Blocking Properties of an Evaluation Interval 147
The Temporal Relationship between Evaluation Points
and BLOCK Instructions 148

5.4.5 Intactness Properties of Formal Parameters and Locally Declared

Sequences e e e e e e e e e e 149

5.4.6 Evaluation Properties 152

5.5 Attributing the Time-Cost of Shared Workloads to Task Templates 153

5.5.1 The Evaluation of Non-local Declared Sequences 154

5.5.2 The Final Transformation and Analysisof G’ 156

5.5.3 Notes on the Transformed Program Graph, G’ 158

5.6 Summary e e e e e e e e e e e e e e e e e e 160

6 Techniques for Dynamic Task Management 161

6.1 Introduction to Dynamic Task Management 161
6.1.1 Compile-time Decisions Alone are Insufficient for Efficient Parallel

Executiono 163

6.1.2 Arranging for Parallel Execution 164

(a) Forced Scheduling 165

(b) Demand Scheduling 167

6.1.3 Restricting Parallelism 168

6.1.4 Architecture Influences Scheduling Policy 170

6.2 The Environment Under Investigation 172

6.2.1 Choosing between Demand and Forced Scheduling 173

6.3 Using Time-Cost Information to Guide Strategies for Demand Scheduling 174

6.3.1 Selecting a Metric for Time-cost 174

6.3.2 An Example Scheduling Scheme Based on Time-Costs 176

6.3.3 Compile-Time Scheduling can Fail when Tasks Suspend 178

6.3.4 Making Time-cost Information Available at Run-time 179

6.3.5 Sharing Affects Decisions Based on Time-cost Information 180

An Experimental Demonstration of the Sharing Problem 182

6.3.6 Improving Time-cost Estimates by Taking Sharing into Account . 183

6.4 Instability in Functional Workloads 185

6.5 Further Improvements to Time-Cost Schedulers 186

6.5.1 Risk Aversion and the Bumble-Bee 187

6.5.2 Risk Aversion by Modal Analysis 189
6.5.3 Stochastic Learning Automata 191
6.5.4 Scheduling with Risk Aversion 193
6.5.5 Conclusions and Further Work with Risk Aversion 196
6.6 Managing Latency Periods 196
6.6.1 Improving Latency-Tolerance by Reconfiguring the Architecture . 197
6.6.2 Experiments with Latency-Tolerance 198
6.6.3 Conclusions and Further Work on Latency-Tolerance 200
6.7 Summary and Conclusions about Dynamic Task Management 203
Conclusions and Further Work 206
7.1 Summaryand Conclusions 206
7.1.1 Modelling Functional Workloads 207
7.1.2 Time-Cost Analysis 208
7.1.3 Dynamic Task Management 209
7.1.4 Experiments with Granularity 211
7.1.5 A Profiling Tool for Higher-Order, Lazy Functional Programming
Languages & . i i i e e e e e e e e e e e e e e 211
7.2 Summaryof Related Work 212
7.3 Further Work e e e 213
7.3.1 ImprovementstoParagon 213
7.3.2 Time-Cost Analysis 214
7.3.3 Lexical Profiling Tool 215
7.3.4 Extending Scheduling Techniques to DIGRESS 215
Experimental Paragon Programs 217
A.1 Program with task suspensions 217
A.2 Program with unshared, non-strict arguments 217
A.3 Program with shared, non-strict arguments e e e e e e e e e 218
A4 Program to demontrate instability in the cost oftasks 218
A5 A large, general purpose, workload 219
A.6 Program to test scheduling based on time-cost anslysis 222
A.7 Program to simulate instability for exporing risk aversion 222

A.8 Program to demonstrate loss of parallelism due to throttling. 223

B Experimental Results 224
B.1 Excessive Throttling can be Counter-productive. 224

C Implementation Details for Lexical Profiling 226
C.1 Synopsis of Lexical Profiling 226
C.2 Changes tothe Compiler. 228
C.3 The Run-time Mechanisms 230
C.3.1 Instantiating Profiled Supercombinators 233

C.3.2 Instantiating Unprofiled Supercombinators 234

C.3.3 Call-count Profiling 235

C.34 SpaceProfiling 235

C.35 TimeProfiling, 236

C.4 A Single-Stepped Example of Lexical Profiling 237
Bibliography 241

10

List of Figures

1.1 Four aspects of functional language implementation. 22
2.1 Using a simulation to simplify design and experimentation. 35
2.2 Four components of a simulated distributed system. 36
2.3 A single node in a time-driven simulation network. 40
2.4 Event-driven simulation. L0 o oo 41
2.5 How applications programmers and systems programmers relate functional
programs to their run-time behaviour. 0oL 54
3.1 The experimental environment., 61
3.2 A graphical example of non-strictness and sharing. 63
3.3 A directed, cyclic graph of task template definitions are expanded into a
call-tree of task instances at run-time. 66
3.4 A first attempt at describing the template graph of Figure 3.3(a).. 67
3.5 A concrete interpretation of abstract work units. 82
4.1 The most general combination of SPAWN and BLOCK instructions. 90
4.2 Equivalent parent/child synchronisation in a functional program. 91
4.3 An example of shared computation in a Paragonmodel. 96
4.4 Call tree depicting possible origins of declared sequence, Q5. 103
4.5 Paragon simulation of a divide and conquer algorithm. 112
4.6 Best-case and worst-case call trees for quicksort. 114
4.7 The distribution of total calls to the filter function. 116
4.8 The distribution of total calls to the ++ function. 117
4.9 A Paragon model of a tail-recursive loop with parallel sub-tasks. 119
4.10 A Paragon model of a sequential pipeline. 120
4.11 Timing diagram for a parallel pipeline of four functions. 122

11

4.12

5.1
5.2
5.3
5.4
5.5

5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15

6.16

A Paragon approximation of a pipeline of interleaved functions. 123
A small Paragon program with mutually recursive task templates. 128
The graph of the Paragon program shown in Figure 5.1. 128
A series of BLOCK instructions acting on a child task instance. 140
Dividing a task template into its evaluation intervals.. 141
An example of a recursive Paragon program with declared sequence eval-

uation and parameterpassing.. 154
The graph, G, representing the Paragon program shown in Figure 5.5. . . 155
Expanding G to G* by a collecting interpretation. 156
Expanding G* to G’ by pathanalysis. 157
The final mapping of costs to the original program graph. 158
Task templates with inconsistent tail-call modifiers. 159
Coping with inconsistent tail-call modifiers. 159
Distributing work to parallel processing elements. 166
Alternative memory organisationsfor GRIP. 172
Asymptotic time-complexities for two algorithms. 175
Exporting tasks in descending order of their time-costs. 177
Compile-time scheduling may fail when tasks suspend. 179
Global scheduling outperforms localised scheduling when tasks suspend. . 181
The disruption of scheduling mechanisms by sharing. 182
An effect of sharing on schedulers which use time-cost analysis. 184
Improving Dynamic Scheduling by Accounting for Sharing. 185
Tasks made unstable by sharing and run-time input. 186
The equivalence between foraging insects and PEs looking for work. . . . 188
A possible source of intransitive time-cost comparisons. 189
Mean time-costs calculated for Program A.7. 193
Risk aversion is at least as good and can be better than scheduling with

mean time-cost information. e e e e e e e 194
Increasing the number of PEs per physical processor to improve latency-

tolerance. e 197
The effects of varying the architectural configuration.. 200

12

6.17 Mapping the technique to 1 PE per physical processor with many task

poolsper PE. e 203
B.1 Loss of parallelism when the throttling threshold is toolow. 224
C.1 The profiling framework. L oL 228

C.2 An example of an unprofiled function which is shared by two profiled

functions. L o L 229
C.3 Duplicating the shared function. 230
C.4 Profiling the shared function in itsown right. 230
C.5 A naive attempt at profiling lazy, higher-order functions. 231
C.6 Lexical profiling using boxed arguments. 232
C.7 A fully augmented graphcell. 232
C.8 Instantiating a profiled supercombinator.. 234
C.9 Instantiating an unprofiled supercombinator. 235
C.10 Lazy, higher-order profiling., 238

13

List of Tables

3.1
3.2

4.1
4.2
4.3

5.1

6.1

B.1

Cl1

Paragon manges. e e e e e e 78

BNF syntax table for Paragon. 81

Counting primitive operations using lexical and dynamic profiling styles. . 109

Summary of quicksort profiles. L. 113
Normalising the beta distribution. 117
An initial set of qualified T; » Tjsymbols. 143
The real costs of executing the tasks given in Figure 6.7 183
Profile results for quicksort., 225
A summary of colouring information. L., 240

14

Introduction

Declarative programming languages are designed for describing what is required of a
programming solution rather than how to perform the low-level computations which
ultimately achieve the solution [DGP91]. In particular, functional languages liberate the
programmer from such concerns as memory management and the undesirable properties
of side effects [Hug89]. The lack of side effects ensures that an expression can be replaced
by its value at any time during the execution of a program without altering the final
outcome. This feature, known as referential transparency, is one of the reasons that
functional languages are promoted as good tools for programming parallel and distributed
systems [Bur90a].

In the absence of side effects, concurrent threads of execution can be constructed
automatically, without the need for explicit synchronisation and communications an-
notations in the source code. This allows programmers with no special knowledge of
the underlying architecture to write parallel programs. Functional programs which exe-
cute on sequential processors should execute on parallel processors without modification,
although to make best use of the hardware, inherently parallel algorithms are recom-
mended. The importance of referential transparency, implicit memory management, and
automatic synchronisation in reducing programming complexity is apparent when paral-
lel programs written in functional languages are compared with those written in parallel
imperative languages such as Occam [Ker87].

Most modern functional languages have lazy evaluation semantics. That is, an expres-
sion is evaluated only when it is guaranteed that the result of the evaluation is needed.
This is a powerful tool for programmers because it allows algorithms to be expressed in
elegant and novel ways [BW88, Hug89]. However, laziness is one of the greatest challenges
for researchers who wish to build efficient implementations of functional languages. Un-

derstanding and coping with the effects of laziness play a large part in the work presented

15

in this thesis.

Goals of the Research

The ultimate goal of our research is to provide improved dynamic scheduling techniques
for a newly developed parallel reduction machine called DIGRESS [Cla92a]. DIGRESS
has a loosely-coupled architecture. To achieve this goal it is necessary to make a careful
study of the way that functional workloads behave on loosely-coupled parallel machines.
The complexity of automatically scheduling lazy functional workloads is especially chal-
lenging.

It was recognised in the initial stages of the research that it is unrealistic to develop
many large-scale functional programs specifically for the purpose of providing workloads
to stimulate the scheduler. This is a common problem faced by many researchers when
attempting to evaluate the success of an infrastructure for executing functional programs
in parallel. It is often the case that a limited number of trivial test programs are used
to demonstrate general properties of implementations. We therefore attempt to pro-
vide a fast mechanism for building workloads by synthestsing the run-time behaviour of
functional programs. The aim is to be able to construct workloads whose behaviour is
well-defined, and which take only a fraction of the time required to build real functional
programs.

One of the primary methods proposed for the design of scheduling algorithms is to
derive time-cost information at compile-time to guide decisions made at run-time. Recall
that we are dealing exclusively with lazy functional workloads. Existing time-complexity
analyses often claim to deal with lazy languages [BH89, San90, Wad88] but in truth they
are limited to call-by-name languages because they fail to take sharing semantics fully
into account [Mah90]. One of our aims is to exploit the fact that we have an abstraction
of functional language behaviour to devise a time-cost analysis of synthetic workloads
that will make sensible approximations in the presence of non-strictness, sharing, and
parallel evaluation. We then intend to use the results of the analysis to investigate the
utility of the improved information for scheduling purposes.

Finally, given that even the best compile-time analysis cannot be expected to have
detailed knowledge of run-time inputs to the workload, we aim to develop and test a

number of heuristics for making the use of time-cost information more reliable.

16

Contributions of the Work

In realising the goals stated above, the following contributions are made to research in

parallel implementations of functional programming languages:

e We develop a method for rapidly constructing well-defined, low-level workloads

with which to stimulate experimental architectures.

e Time-cost analysis of workloads in the presence of sharing semantics is explored.
We are able to comment on the suitability of this analysis for improving sc}iedﬁling

algorithms, and consequently the efficiency of program execution.

e Scheduling algorithms for use with the chosen parallel architecture are designed
and tested.

e The experiments conducted with scheduling algorithms and synthetic workloads
enable us to quantify the minimum acceptable workload granularity for efficient

parallel execution of functional programs to be achieved on our chosen architecture.

e A technique for profiling lazy functional programs is implemented. We use the
resulting profiler to characterise real functional workloads in order to construct
realistic synthetic workloads. We demonstrate the strengths and weaknesses of two

different types of profiling tool in this context.

Overview of the Thesis

The main topics of this research are the design and analysis of synthetic functional
workloads, and their use in developing new scheduling strategies for the DIGRESS parallel
architecture. In Chapter 1 we provide a general background to current research topics
in functional programming. We also discuss parallel architectures and to the way in
which parallelism within functional programs is identified and managed. In Chapter 2
the discussion concentrates on the topics of simulating experimental computer systems
and their workloads. Methods commonly employed to record tﬁe results of the associated
experiments are also explored in this chapter.

In Chapter 3, we develop a workload description language called Paragon which will
be used to provide synthetic workloads that model key features of the behaviour of real,

lazy functional programs. The Paragon language forms the basis for much of the work

17

in the remaining parts of the thesis. In Chapter 4 we provide evidence that Paragon
workloads perform as expected and demonstrate examples of synthetic workloads that
behave in a similar manner to a number of common functional language constructs. A
profiling tool for higher-order, lazy functional languages was developed to support this
work, the implementation details of which are presented in Appendix C.

Chapter 5 is devoted to the theory of analysing lazy workloads at compile-time. We
start with a small subset of the Paragon language which bans lazy evaluation and move
towards an almost complete subset where laziness is tackled by a series of transformations
on the original program graph. In Chapter 6 a number of dynamic scheduling algorithms
are presented. These are related to existing algorithms and improvements are depicted
graphically. Finally, in Chapter 7 the work is reviewed and conclusions are drawn.

At the conclusion of each chapter, a summary is given, including proposals for further
work where appropriate. The proposals are reiterated, briefly, in the review of Chapter 7.
Related work is discussed in the introductory chapters and in the introductions to each
major section of the thesis. A summary of related work with references to the more

complete discussions is given in Chapter 7.

18

Chapter 1

Background

To put our research into context, and to explain some of the terms used in the intro-
duction, this chapter provides a brief description of the sort of research that is currently
being conducted in connection with functional languages. General purpose parallel ar-
chitectures and architectures constructed specifically for executing functional programs
are also discussed. In the final part of the chapter, we deal with methods for identifying
and managing parallelism within functional programs.

1.1 Research Topics for Functional Languages

Research into functional programming languages can be arranged into a number of broad
categories such as language design, program analysis, functional language implementa-
tion, and programmer support. The work reported in this thesis is related to all four of

these categories.

1.1.1 Language Design

There are many functional languages in existence and yet more currently in development.
Some of the earlier languages were constructed primarily to learn about the nature of
functional languages per se and to experiment with compilation techniques (e.g. Ponder
[Fai85] and FP [Bac78]). Other languages such as ML [MCP93, HMM86, Wik87] and
Haskell [HPJW+91] have been designed more with the end-user in mind, but have also
been the subject of vast amounts of theoretical research. Haskell is the most recent of
the large functional languages and its design is still incomplete at the time of writing. Its

main innovation is a general purpose overloading mechanism [HPJW+91, NS91, Ber92]

19

which allows the same function name to be re-used for different types of input, with the
support of a meta-type (or class) mechanism [HB91]. Novel features, such as functional
arrays [HS85] have also been included into the Haskell definition.

It has long been recognised that functional languages are both elegant and concise.
This is partly due to the nature of the lambda calculus on which functional languages are
based and partly due to the efforts of language designers to ‘sugar’ the lambda calculus.
For example, the following notational style is typically used to construct a list of values

related by generator functions and constraints:

[(x, y) | x <- ordinates, y = f x, 0 <= x <= 20]

This expression describes a list of coordinate pairs (z, y), based on the equation y = f(z).

The expression very closely resembles the mathematical set notation
{(z,9)|z€ X, y= f(z), 0 < =z < 20}

for the set of ordinates, X.

The above is an example of a design feature which aids programming ‘in the small’.
Another aspect of language design is the consideration of programming ‘in the large’;
i.e. large scale issues such as the management of program modules and their associated
interfaces. Both the ML and Haskell design committees have paid much attention to this,
in order to make the languages attractive for serious software development employing
teams of programmers.

For our research we are concerned primarily with the behaviour of functional programs
at run-time rather than their high-level descriptions. When a program is compiled and
executed it becomes a workload. The programming languages mentioned above are all
used to provide semantic descriptions of the workload. Later (in Chapter 3) a language is
developed which aims to provide pragmatic descriptions of workloads, paying no attention
to their semantics. These will then be used in place of real functional workloads to drive

our experiments.

1.1.2 Program Analysis and Transformation

There are potentially unlimited ways in which computer programs can be analysed. Func-
tional programs are especially amenable to analysis because of their mathematical basis

[FH88]. Some examples of analyses that can be performed on functional programs are:

20

Strictness analysis We attempt to discover which arguments of a function are defi-
nitely going to be required when the function is executed [CPJ85, HY86, JL89b,
DW89]. This can improve efficiency because closures do not have to be constructed
to represent the arguments in their unevaluated state [Myc81]. Strictness informa-

tion is also important for obtaining parallelism (see Section 1.3, below).

Time-complexity analysis Predictions of the algorithmic complexity of a program
[BH89, Le 85, Le 88, Ros89, San90, Wad88, Weg75] can help to determine the
success or failure of a program transformation that was meant to improve efficiency.
Also, if a measure of the absolute costs of the sub-components of a program can
be determined then parallel execution can be made more efficient [Mah90] (see

Chapter 6).

Sharing analysis Knowing whether or not the result of a computation is shared [Gol87]
allows a compiler to optimise the object code for a program [BPJR88, FW87).
Knowledge of sharing properties can also be used to improve garbage collectors
[Hud86]. We use sharing information in Chapter 5 to improve the quality of infor-

mation derived from a time-cost analysis.

Partial evaluation A functional program which takes no run-time input can be eval-
uated in full at compile-time. Most functional programs do, however, read input
at run-time but portions of many programs can be isolated from run-time input
and can often be evaluated by the compiler [BHY89, HG84, Lau91, H592, NN89,
WCRS91].

And there are many others. The analyses most relevant to this thesis are those for time-
complexity and sharing. A time-cost analysis for the synthetic workload language of
Chapter 3 is developed in Chapter 5. This analysis takes sharing into account and the
results are used to test dynamic scheduling algorithms of Chapter 6. We shall develop a
number of workloads in Chapter 6 which correspond to workloads generated by functional
language compilers. They represent the final output of the compiler and it is assumed

that no further transformations take place.

21

2
|I%|l%$
2 #-# , &
+ - 6
+ % 4
% 7
%
7 4
7 4 4
%
Il%ll%A
< 89
- 27 +
% %
+ % ,
4

#-#3 2

%
44

+ +

%

%

% %
7%

% % -

((

4

+ %

—+

89

44

+ %

Debugging

Unlike imperative languages where it is possible to insert ‘print’ statements to follow
the actions of the program, functional languages are side-effect free and produce all of
their output as the result of the whole program. An attempt to add side-effect output
to functional programs in a referentially transparent manner was made in [PC90] but
quickly abandoned because of the difficulty in interpreting the lazily generated output.
It is often the case that the side-effect style of output bears scant resemblance to the
order envisaged by the programmer because of the evaluation order imposed by lazy
evaluation semantics [HHO90].

Another example of a debugging tool is that of [HO85] which provides a method for
transforming a functional program into an equivalent program which carries debugging
information in the form of shadow variables. Using this, traces of the execution can be
constructed and examined on completion of the whole program or when breakpoints are
reached. This work also suggests the use of an interactive environment in which functions
can be redefined and tested an arbitrary number of times. An interactive environment is
offered by many modern functional language compilers. The Standard ML of New Jersey
compiler [TD90] and the Haskell [HPIW*91] compilers from the universities of Yale and
Chalmers are now packaged with facilities for intelligent program editing, compiling,
execution, and debugging via the GNU Emacs editor [Sta86].

More recently, algorithmic debugging has come to the fore [NF92]. Here, trace in-
formation gathered for a program run is used to drive a question and answer session to
determine where an error might have occurred in the design of the algorithm. At each
stage, the user is presented with a portion of the call-tree for the program, and the known
results at that stage, and has the option of descending further into the call-tree if the
results are incorrect or moving back up the tree if expected results are found. In this
way, errors in the algorithm can be pin-pointed. The main problem with the technique

is the large volume of information presented to the user [HHO90].

Profiling

Profiling differs from debugging in that summaries of a program executions are presented
to the programmer rather than intermediate results, or complete traces. Traditionally,

profilers report mermory usage, execution times, and the number and variety of function-

23

calls made (e.g. [GKM82]). For higher-order, lazy functional languages there are many
problems associated with profiling. Consider, for instance, the possibility that a computa-
tion is described within the definition of one function, A, but at run-time is evaluated by
another function, B, (a very common occurrence under lazy evaluation). We must decide
whether the function-calls, memory-usage, and time taken to execute the stray compu-
tation should be attributed to A or B [CPC91]. Higher-order languages cause problems
for profiler implementation because it is not known at compile-time which function is to
be called when higher-order variables are used [ADMS88].

Currently, research into profiling functional languages is particularly active. At
present, even the interface which allows the programmer to specify what is to be profiled
has not reached a steady state. The profiler of [SPJ92] chooses to annotate individual
expressions in the source code (in a manner similar to that of [PC90]) while that of
[CPC91] chooses to profile on function boundaries, reporting on functions whose names
are specified directly to the compiler. Both of these profilers report their measurements in
close correspondence to the source code (i.e. for the above example the cost of executing
the stray expression is attributed to function A).

The work by Runciman and Wakeling [RW90, RW92] has paid close attention to the
study of memory usage, making a clear distinction between the functions which produce
data objects and the constructor functions which define the shape of the objects. Also,
for the example above, the memory used by the stray expression is reported according
to the locality of its execution, thus attributing the memory usage to function B.

It is clear that much further work is required to standardise functional language
profilers, and to bring together the innovations that have been developed separately at
disparate research sites.

Profiling tools have an obvious use for the construction of synthetic workloads: we
wish to ensure that the pragmatic descriptions specified are equivalent to those generated
by real functional programs. This is demonstrated in Chapter 4 and implementation

details for the profiler described in [CPC91] are given in Appendix C.

1.2 Parallel Architectures

In order to experiment with the execution of functional programs in parallel it is first

necessary to choose a suitable architecture on which to base the research. Parallel com-

24

putations may belong to either of the following categories:

Process-parallel — a MIMD (multiple instruction, multiple data) architecture is re-
quired. Programs are decomposed into separate tasks whose control flow is mutually
independent. Data dependencies may exist between tasks which imply synchroni-

sations, but the execution of separate tasks is otherwise independent.

Data-parallel — a SIMD (single instruction, multiple data) architecture is required.
In this case, complex data structures provide the vehicle for parallelism. A sin-
gle instruction is applied simultaneously to a subset of the components of a data

structure [HS86].

For certain special purpose parallel computations there is the possibility of using more
exotic hardware such as systolic arrays and associative memory which implement fixed
algorithms on data whose structure is pre-defined [QD84]. For the most part the work
of this thesis is concerned with MIMD parallel architectures.

1.2.1 General Purpose Hardware

There are now many examples of general purpose parallel machines, ranging from multi-
processor workstations, for which individual programs have little or no control over the
exploitation of parallelism, up to the large vector processing machines such as the Cray
X-MP, software for which requires extensive vectorisation work [BH92]. Functional lan-
guage implementations have been reported for the Intel iPSC hypercube [GH86, Gol88]
and for transputers [Bur90a, KLB91, GWW89, SK84, MS90, MS87, BBC*90].

1.2.2 Special Purpose Functional Language Reduction Machines

In the 1950s and 1960s, high level languages were developed in response to a crisis in
software construction (e.g. Lisp (1959), Fortran (1954-57), Cobol (1959-60), and Algol
(1958-68) [Bar88, Wex81]). From then until the present day new languages have been
constructed to solve different classes of problems. The primary purpose of the earliest
high-level langunages was to replace assembly language programming. Consequently, these
languages encourage programmers to express algorithms in an imperative style which is
similar to that of assembly code because compilers can more easily construct efficient
assembly programs when the high level imperative source program behaves in a similar

manner to the target program.

25

Functional programs pose new problems for compiler writers because they provide
new facilities such as higher-order functions, delayed evaluation, and sharing seman-
tics. At the same time, functional languages ban many of the features traditionally
found in imperative languages such as assignment statements. The task of mapping lazy,
higher-order functional languages to a machine language instruction set that is inherently
imperative can therefore be complex and subject to inefficiency. A popular solution has
been to construct special purpose hardware whose low level instruction sets are targeted
towards the requirements of functional languages so that the mapping from high level
functional language to machine level code is simplified. Examples of special purpose

architectures are described below.

The SKIM Reduction Machine

The SKIM reduction machine [CGMN80] (and later, SKIM II [SCN84]) is an example
of a SISD processor. It is not a parallel machine but is one of the earliest attempts
to build specialised hardware for functional languages. It was designed at Cambridge
following Turner’s idea [Tur79] that S, K, and I combinators could be used as a low
level representation of functional programs. The operations of a small set of combinators
are microcoded into the hardware so that the machine language has applicative charac-
teristics and is more suitable for the execution of functional programs than traditional
hardware. Further optimisations centre on the way that memory is organised. Each
memory cell contains a head and a tail part, which provides a natural data structure for
functional language implementation, and a single bit that is used for garbage collection
(a single bit is sufficient for mark/scan and one-bit reference count garbage collectors

[Coh81]).

NORMA

The NORMA reduction machine [Sch86] is similar in nature to SKIM. It is a SISD
architecture with specially configured memory to support data structures (all memory
cells contain head and tail fields), garbage collection, and graph reduction techniques
such as pointer reversal [CPJ86, PJ87b]. The machine is microprogrammable and the
initial graph reduction implementation is based on extended Turner combinators. A
novel feature of this architecture is that special hardware is provided to inspect status

(or tag) bits in the memory cells to determine the next operation to be performed on

26

the graph. Traditionally, this testing imposes a significant overhead on graph reduction
[PJI8T7a).

COBWEB

The COBWEB architecture [HOS85, AHK+87, BBK87] is designed to utilise the VLSI

fabrication technique of wafer-scale integration. Normally, many identical integrated cir-
cuits are constructed on a single wafer and separated, tested, and packaged as individual
components. With wafer-scale technology, the separation does not take place: proces-
sors constructed on a wafer remain in their original configuration and the whole wafer
is used as a fine-grained parallel machine. The COBWEB reduction mechanism uses
variable-sized tokens to encode function definitions, and final and intermediate results of

reduction.

Alice and Flagship

The Alice project [DR81, CFR86] concentrated on the implicit parallelism within declar-
ative programming languages. Programs are represented as a graph where each node is
a packet containing a function applied to a vector of arguments. The packets are aug-
mented with a number of status entries which determine how they are to be executed.
The architecture consists of a complex interconnection (switching) network attached to
a number of processing agents. The system is controlled by a central, shared processor
responsible for the distribution of work between processing agents. A prototype Alice
was implemented using transputer chips microcoded in Occam; the intention was to move
to custom designed processors at a later stage.

The Alice project was later superseded by the Flagship project [WWW+88, WW87b,
Det86]. This was also influenced by the Manchester Dataflow Computer [GKWS85,
Gur85], an architecture designed for the parallel evaluation of data-driven computa-
tions. Flagship continues to use the packet-based representation of functional programs
designed for Alice but the hardware is modified so that memory is closely coupled to the
processing elements in order to reduce the bottleneck of the interconnecting switching
network. The Flagship hardware is designed to execute programs written in a number of

different styles including functional, dataflow, and logic languages.

27

The GRIP Multiprocessor

The GRIP architecture [PJCSH87] was designed at University College London. It consists
of a number of parallel processing elements, each with a small amount of local memory,
and a number of intelligent memory units (IMUs), closely coupled via a futurebus in-
terface. A GRIP machine consists of a number of boards, each of which contains four
processing el?ments and a single IMU. Fast communication is achieved between the units
of a single board via an internal bus. The IMUs are the main innovation of GRIP; rather
than limiting memory operations to data storage and retrieval, the units are microcoded
to perform high level tasks such as graph manipulation. This leads to interesting design

decisions regarding the balance of intelligence between processing elements and IMUs.

Machine 4 Réduction Symbolique (MaRS)

The MaRS project [CCC*88] combines many of the features of the architectures listed
above. Like SKIM it uses a combinatorial machine language; like Alice it employs a
tightly coupled interconnection network; and like GRIP the machine contains a num-
ber of memory processors which are intelligent enough to carry out dynamic allocation
and garbage collection activities. The processing and memory nodes communicate via

message passing. MaRS therefore resembles a distributed memory architecture.

1.2.3 Gauging the Success of Special Purpose Hardware

The special purpose graph reduction machines listed above have all been used as the basis
for advanced research into graph reduction techniques (e.g. [Rob89, WW87b, HPJ91,
HPJ92]). The GRIP multiprocessor, now at Glasgow, has even been made available
to the wider research community for the parallel execution of experimental programs
[HPJ90].

However, none of the machines have been adopted by a major manufacturer for mass
production. There are many reasons for this, one of which is that it is time consuming
(and therefore expensive) to adapt existing applications to run on the new hardware.
Gradual evolution is preferable to sudden changes and is the reason that C is able to
replace Fortran as the most widely used, general purpose, computer language. Many of
the original Fortran libraries were easily converted to C and in some cases C and Fortran

may be interfaced together so that the original libraries can be used without modification.

28

