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Abstract

We propose the action language EPEC – Epistemic Probabilistic Event Calcu-

lus – that supports probabilistic, epistemic reasoning about narratives of action

occurrences and environmentally triggered events, and in particular facilitates

reasoning about future belief-conditioned actions and their consequences in do-

mains that include both perfect and imperfect sensing actions. To provide a

declarative semantics for sensing and belief conditioned actions in a probabilis-

tic, narrative setting we introduce the novel concept of an epistemic reduct.

We then formally compare our language with two established frameworks for

probabilistic reasoning about action – the action language PAL by Baral et al,

and the extension of the situation calculus to reason about noisy sensors and

e↵ectors by Bacchus et al. In both cases we prove a correspondence with EPEC

for a class of domains representable in both frameworks.

Keywords: Reasoning about Actions, Epistemic Reasoning, Narrative

Reasoning, Probabilistic Reasoning, Conditional Actions, Imperfect Sensing

1. Introduction

The action language EPEC – Epistemic Probabilistic Event Calculus – de-

scribed in this article combines probabilistic reasoning, epistemic reasoning,

reasoning about the general e↵ects of actions, and reasoning about particu-

lar narratives of action occurrences (i.e. events along an explicitly represented5
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time-line). Each of these topics has its own venerable history of AI research,

and notable work has already been done in some sub-combinations. For exam-

ple, the work of Moore, Scherl, Levesque, Belle, Bacchus and others concerns

epistemic (and sometimes also probabilistic) reasoning about actions (see e.g.

[1], [2], [3] [4]), the work of Ma et. al. [5] facilitates epistemic reasoning about10

narratives of events, and the work of Baral, Skarlatidis, Artikis and others fo-

cuses on probabilistic reasoning about action narratives (see e.g. [6], [7]). (See

Section 4.3 for a full discussion of related work.) However, to our knowledge

little or no previous research has been undertaken towards a full integration

of all four of these topics, and we aim to demonstrate the benefits of such an15

integration in this paper. EPEC is related to PEC (Probabilistic Event Calcu-

lus) [8], an earlier probabilistic framework for narrative reasoning that did not

contain any epistemic features. The utility of our EPEC framework is partly

illustrated by the following (imaginary) example medical scenario.

Example 1.1 (Epectisis). A doctor is 95% certain that a patient has made skin

contact with her, and 80% certain that this patient is su↵ering from epectisis,

a rare disease caused by a bacterial infection. With such contact, epectisis is

typically passed on 75% of the time. A course of epecillin is known to eliminate

the disease 99% of the time if taken before symptoms manifest themselves,

although with a 15% risk of side e↵ects. A blood test gives a pre-symptom

indication of the disease, but with a 10% false positive and a 5% false negative

error rate. The doctor decides that she will undertake the blood test, and if after

this she still has a more than 50% belief that she is infected she will take a course

of epecillin. She reasons that, assuming that she did not have epectitis prior to

contact with her patient, in this way she will eventually be at least 93.1% sure

that she does not have the disease, while giving herself only a 2.875% chance of

su↵ering epecillin’s occasional side e↵ects. (A probability tree diagram of this

domain is given in Appendix B.) [end example]

20

The scenario above has a number of interesting features, all of which can

be represented in our EPEC framework (see Appendix C for the corresponding
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EPEC domain description De and example entailments). First, it includes a

narrative, in this case containing a single probable past event – the doctor is

95% certain that she had skin contact with a patient. In deciding a course25

of action, the doctor appends two future events to this narrative – performing

a blood test and (conditionally) taking epecillin. This reflects an abductive

view of plan specification commonplace in the context of event-calculus-like

frameworks (see e.g. [9]). Second, some of the causal information about actions

is probabilistic – in general, contact has a 75% probability of causing infection,30

and taking epecillin has a 15% probability of causing a side e↵ect. Third, one

of the actions mentioned – performing a blood test – is a sensing action in that

it has an e↵ect on the doctor’s (probabilistic) knowledge, so that the doctor’s

plan has an epistemic dimension. Moreover, the sensing is imperfect, with the

possibility of false positives and negatives. Fourth, the doctor’s plan includes35

a conditional action, conditioned on a future belief state – if after performing

the blood test she has a strong belief that she is infected then she will take

the medicine. We view this as a key feature of epistemic planning, in that

sensing actions and actions conditioned on (revised) beliefs resulting directly or

indirectly from sensing outcomes must go hand-in-hand, or there is little point40

in including sesning actions within a plan. A principal advantage of EPEC is

that it allows for explicit representation and probabilistic reasoning about future

belief-conditioned actions and their consequences in domains that include both

perfect and imperfect sensing actions. This is a key contribution of our work.

The medical domain is one of a number of application areas where we envis-45

age EPEC having a useful role. Other domains in which A.I. and knowledge-

based applications have to reason with imperfect sensor input include cognitive

and mobile robotics, and physical monitoring systems. Not all of the represen-

tational features of EPEC are illustrated by the example above. Descriptions of

more complex domains may for example include non-Boolean-valued properties50

(fluents), concurrent actions, conflicting concurrent noisy sensory inputs, and,

importantly, events (probabilistically) triggered by the environment under cer-

tain conditions. This latter feature in turn allows EPEC to be used to model
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domains involving decay and analogous dynamic behaviours.

To reflect the high degree of non-determinism inherent in probabilistic mod-55

els, as well as the epistemic nature of EPEC domains, EPEC’s semantics uses a

structure of “possible worlds”, each with its own timeline and overall probability

attached. The semantics is developed in two stages. First, the “non-epistemic”

case is considered, where all action occurrences are considered to be executed by

the environment and are independent from the agent’s belief state. Second, the60

semantics is generalised to the epistemic case, where possible worlds are consid-

ered to have two components – a timeline of actual environmental conditions

and events, together with history of the agent’s sensory experience and decisions

regarding its own actions. We show how the notion of an epistemic reduct can

be used to model this second case in terms of the first, while taking into account65

the agent’s sensory input, changing belief state and associated decision making

process as time progresses.

In order to progress understanding of the space of formalisms available for

probabilistic reasoning about actions, we conclude with an investigation of the

relation of EPEC to two established frameworks in this area of research. These70

are the action language PAL developed by Baral, Tran and Tuan [6], and the

extension of the situation calculus to reason about noisy sensors and e↵ectors by

Bacchus, Halpern and Levesque [3]. In both cases we provide a general transla-

tion procedure of a class of domains written in these languages into EPEC, and

prove that probabilistic entailment is preserved under the translations.75

In summary, the main contribution of this paper is the formulation of an

action language, EPEC (Epistemic Probabilistic Event Calculus), and associ-

ated semantics that supports probabilistic, epistemic reasoning about narratives

of (potentially simultaneous) action occurrences and environmentally triggered

events, and in particular facilitates reasoning about future belief-conditioned ac-80

tions and their consequences in domains that include both perfect and imperfect

sensing actions, and potentially simultaneous and/or conflicting sensory inputs.

Additional contributions are formal comparisons with two established frame-

works for probabilistic reasoning about actions by provably correct translations
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into EPEC.85

The paper is organised as follows. Section 2 gives some general background

about the topic areas related to this research. Section 3 describes the syntax,

semantics and key properties of EPEC. Section 4 describes the translations into

EPEC of domains written in the frameworks in [6] and [3], and follows with a

wider discussion of related work. In Section 5 we briefly comment on ongoing90

experiments implementing EPEC. Section 6 concludes the paper with a final

summary and remarks about possible future directions of research.

2. Background and Overview of Approach

2.1. Reasoning About Actions and Narratives

Logic-based reasoning about actions as a field of A.I. research was arguably95

triggered in 1969 by McCarthy and Hayes’ proposal for a Situation Calculus

(SC) [10], with its ontology of situations, actions, and time-varying proper-

ties of the world potentially a↵ected by actions called fluents. Perhaps the most

well-known subsequent formulation of the SC is that of Reiter and his colleagues

(see for example [11]). Reiter’s basic action theories (BATs) support classical-100

logic reasoning about the consequences of (all) hypothetical sequences of actions

embedded in a forward-branching tree of situations. They also provide a prin-

cipled non-monotonic solution to the frame problem – roughly, the problem of

succinctly and flexibly expressing that most actions do not a↵ect most fluents

under most circumstances (see e.g. [12] for an indepth discussion of this issue).105

The basic BAT formulation and core ontology mentioned above do not how-

ever support narrative reasoning – it is not possible to assert that any particular

sequence of actions has (or has not) actually occurred or will (or will not) ac-

tually occur, because the independent flow of time is not represented and all

possible action sequences are given equal hypothetical status. The Event Cal-110

culus (EC), with its alternative ontology of actions, fluents and timepoints, was

originally developed partly to address this early limitation of the SC2. It was

2Various extensions to the SC have been subsequently developed to enable narrative rea-
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first formulated as a logic program [15], and later in classical logic (see e.g. [9]).

Because the EC includes the flow of time in its core ontology, usually as an

integer or real-number timeline, EC domain descriptions can incorporate sim-115

ple predicate assertions that particular actions (or “events”) have occurred or

will occur at particular times. For example, a non-probabilistic description of

Example 1.1 might include the sentence Happens(SkinContact ,�1.0), to assert

that skin contact occurred an hour ago. Similar assertions using future time-

points are used for EC-based abductive planning (see [16]). Depending on the120

domain or reasoning task, narratives may sometimes take into account events

in the environment as well as actions performed by an agent, and this gives rise

to another aspect of the frame problem – the problem of succinctly and flexibly

expressing that most events or actions do not occur most of the time. This is

generally solved in EC frameworks by minimisation (e.g. predicate completion125

or circumscription) of the Happens predicate or its equivalent. The inclusion of

narrative capability in the EC in a simple and natural way has made it the obvi-

ous ontological starting point for development of EPEC. Indeed, we see EPEC

as a natural development from previous EC-inspired work on PEC (Probabilis-

tic Event Calculus [8]), EFEC (Epistemic Functional Event Calculus [5]) and130

Modular-E [17]. We do however envisage that near-equivalent representations

could be formulated in SC-inspired frameworks if suitably augmented with nar-

rative capabilities.

EPEC is formulated as an action language, with its own specialised syntax

and semantics, rather than as a classical logic theory or logic program. Gelfond135

and Lifschitz [18, 19] were the first to propose this particular methodology for

research into reasoning about actions, and it has subsequently been employed

in the context of the EC in [20] and [17]. The general benefits of the action

language approach are detailed in [18, 19, 20, 17], and here we use it in order

to highlight the essential properties and features of EPEC in as simple a way140

soning, albeit at the expense of the simplicity of the original SC formulation. See for example
[13], [14] and [11] Chapter 7.
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as possible, and to distinguish between the declarative specification of the class

of domains that we wish to model and any particular implementation choice.

2.2. Epistemic Reasoning About Actions

Much of the work on combining formal theories of knowledge with theories

of action has its roots in the work of Moore [1], who merged a modal logic145

of knowledge with the situation calculus. This SC-based approach has subse-

quently been developed by a number of researchers, and notably in publications

by Scherl, Levesque and collaborators [21, 2, 22, 23, 24, 25] addressing various

issues related to sensing and acting and appropriately extending Reiter’s solu-

tion to the frame problem. Modal logic represents knowledge and the lack of it150

via an accessibility relation between possible worlds – an agent’s lack of knowl-

edge about the truth of a proposition p is modelled by making accessible both a

possible world in which p holds and a possible world in which ¬p holds. In the

SC-based theories of knowledge and action, this accessibility relation is repre-

sented as an epistemic fluent that connects corresponding situations in di↵erent155

possible worlds, and which is amenable to change via sensing actions.

The possible worlds approach to constructing a theory of knowledge and

action has also been applied to the Event Calculus. The Epistemic Functional

Event Calculus (EFEC) [5] regards possible worlds as alternative narrative time-

lines (as opposed to alternative situation trees), again connected by an epistemic160

fluent. By using its narrative ontology, EFEC allows for reasoning about knowl-

edge of the past, present and future, and incorporates the notion illustrated in

Example 1.1 of knowledge-conditioned actions embedded along a time-line. For

these reasons we have used its ontology as a starting point for the development

of EPEC, although EFEC is non-probabilistic and not able to model the related165

notions of reasoning with uncertainty, degrees of belief or imperfect sensing.

2.3. Reasoning with Uncertainty and Probability Theory

Probability theory has been a mainstream tool for A.I. applied to domains

with a degree of uncertainty since the the mid-1980s [26, 27, 28], and in par-

ticular has been employed in models of causality [29]. In the present work we170
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follow the Bayesian view of probabilities as representing (justified) degrees of

belief, and use this notion of degree of belief in place of the binary logic concept

of certain knowledge. EPEC retains the semantic structure of possible worlds

employed in the frameworks such as EFEC mentioned in Section 2.2, but relates

possible worlds in terms of a probability distribution rather than in terms of an175

accessibility relation. Temporal changes in the agent’s degree of belief in past,

present and future values of fluents, as a result of (imperfect) sensing actions, are

captured using conditional probabilities. In the remainer of this section we o↵er

the reader intuitions about how some essential ideas from discrete probability

theory, and ideas relating logic and probability, underly our approach.180

Probability theory models a discrete domain as a collection of random vari-

ables (RVs), each of which can take on one of a finite number of values. A

joint probability distribution over a set of RVs assigns a numerical probability

between 0 and 1 to each combination of values for the RVs, in such a way that

the probabilities for all combinations sum to 1. As will be seen in Section 3,185

in the case of EPEC domains, at one granularity the RVs can be taken to be

fluent/time-point pairs (each representing the value of the fluent at that time-

point), action/time-point pairs (each representing whether or not the action has

occurred at that time-point), and sensing outcomes (each representing the flu-

ent value correctly or incorrectly sensed at the point where the relevant sensing190

action occurs). However, application of the principles of default persistence of

fluent values and the closed world assumption for action occurrences (jointly

contributing to a solution to the frame problem) allows EPEC’s syntax and se-

mantics to be defined at a di↵erent granularity, in terms of a finite collection of

RVs, by considering only an initial time-point, the time-points at which there195

is the possibility of an action occurring, and the maximal change-free intervals

between such time-points. Dependencies (in the probabilistic sense) between

the RVs are indirectly captured by the domain-dependent causal and narra-

tive propositions that comprise an EPEC domain description. We make use of

some standard concepts and results from probability theory, including marginal200

and conditional probability, the sum and product rules, and Bayes’ Theorem.

8



Definitions and commentary on these can be found for example in [30].

We also make use of the concept of a probability function that assigns prob-

abilities to a set of propositional formulas in a consistent way. The definition

given here is a minor generalisation of that of Paris [31, Chapter 2, p.10], in that205

it does not require the entailment relation to which it refers to be with respect

to all interpretations of the language (i.e. classical propositional entailment),

but only that it is with respect to some non-empty set of interpretations.

Definition 2.1 (Probability Function, Conditional Probability for Formulas).

Let |=• be the entailment relation defined in the standard way with respect to

some non-empty set of interpretations of a propositional language L, and let Fset

be a set of propositional formulas of L closed under the propositional operators.

A probability function over Fset w.r.t. |=• is a function p : Fset 7! [0, 1] such

that for all ', 2 Fset:

1. if |=• ', then p(') = 1, and

2. if ' |=• ¬ then p(' _  ) = p(') + p( ).

For p( ) 6= 0, the associated conditional probability of ' given  is defined as

p(' |  ) = p(' ^  )
p( )

(1)

[end definition]

The properties of probability functions listed in [31] follow straightforwardly:210

• p(¬') = 1� p('),

• If |=• ' then p(¬') = 0,

• If ' |=•  then p(')  p( ),

• If |=• '$  then p(') = p( ),

• p(' _  ) = p(') + p( )� p(' ^  ).215

• If p( ) 6= 0, then p(· |  ) : Fset ! [0, 1] is a probability function.

Note that if p is first defined as a probability distribution over the interpretations

on which |=• is based, and the probability p(') for each ' 2 Fset is then defined

as the sum of the probabilities of the interpretations in which ' evaluates to

true, then p is automatically a probability function over Fset.220
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3. Epistemic Probabilistic Event Calculus (EPEC)

3.1. Informal Overview

The key components of an EPEC domain language (defined formally in Def-

inition 3.1 below) are (many-valued) fluents, environmental actions, agent ac-

tions, and instants (timepoints). Literals such as F =V and A= true assign225

values to fluents and truth-values to actions, and these literals are combined

into formulas using the standard propositional conectives, and ‘time-stamped’

i-formulas using an ‘@’ connective (Definitions 3.3 and 3.4 below). Sets of lit-

erals that mention each fluent and action exactly once are called states and sets

that mention each fluent but no actions are called fluent states. Subsets of (flu-230

ent) states are called partial (fluent) states (Definition 3.7 below). Finally, an

outcome O is a pair of the form (X̃, P+) where X̃ is a partial fluent state and

P+ 2 (0, 1] is a non-zero probability (Definition 3.8 below). These components

are the building blocks for the six types of propositions that comprise an EPEC

domain description (each defined formally in the next section):235

• v-propositions of the form “F takes-values hV1, . . . , Vmi” that declare

what values each fluent F may take (see Definition 3.2),

• o-propositions of the form “A occurs-at I with-prob P+
if-holds ✓” in-

dicating that environmental action A occurs at instant I with probability

P+ if formula ✓ holds (see Definition 3.5),240

• p-propositions of form “A performed-at I with-prob P+
if-believes

(✓, P̄ )” stating that agent action A is performed at instant I with prob-

ability P+ if formula ✓ is believed to hold with probability in interval P̄

(see Definition 3.6),

• c-propositions of the form “✓ causes-one-of {O1, . . . , Om}” indicating245

that for each Oi = (X̃i, P
+
i ) there is a probability of P+

i that formula

✓ will cause the changes identified in partial fluent state X̃i (see Defini-

tion 3.10),
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• i-propositions of the form “initially-one-of {O1, . . . , Om}” indicating

that for each Oi = (S̃i, P
+
i ) there is a probability of P+

i that the initial250

state of the world is the one identified in the fluent state S̃i (see Defini-

tion 3.11), and

• s-propositions of the form “✓ senses X with-accuracies M” stating that

✓ holding causes the value of the fluent or action X to be sensed with ac-

curacy given by the confusion matrix M (see Definition 3.12).255

The utility of EPEC is that, by expressing the available narrative (including

the agent’s strategy) and causal information of the domain we wish to model

in terms of these various proposition types, we are able to formally “entail”

conclusions such as those of the doctor in Example 1.1 (modelled in full in

EPEC in Appendix C). As we will see at the end of Section 3.4 below, these260

conclusions are in the form of b-propositions (‘b’ for ‘believes’) such as

at 3 believes [DocHasEpectisis= false]@3 with-probs

{ (h{((DoBloodTest ,DocHasEpectisis), false)}@1i, 0.425, 0.9314),
(h{((DoBloodTest ,DocHasEpectisis), true)}@1, {TakeEpecillin}@2i, 0.575, 0.9907)}

The first line of this proposition indicates the time-point or ‘instant’ at which the265

belief holds (‘at 3’), and the temporal formula (‘[DocHasEpectisis= false]@3’)

believed. The remaining lines of the proposition give the various alternative

strengths of belief under the various alternative ways the represented scenario

might unfold. The second line shows one possible sequence in the secenario

of sensing experiences and agent actions (‘h{((DoBloodTest ,DocHasEpectisis),270

false)}@1i’) – in this case doing a blood test at instant 1 and the result showing

negative as regards having epectisis – together with the probability of that

sequence occurring (‘0.425’), and, if that sequence does occur, the strength of

belief (‘0.9314’) the agent will then hold for as regards the first line. The third

line is similar, describing an alternative unfolding of the scenario. So in English275

the whole proposition reads “at time 3 [i.e. after the blood test and possibly

taking epicillin] there is a 0.425 probability that the blood test will have shown

negative, in which case the doctor will be 93.14% sure she does not have the

disease, and a 0.575 probability that the blood test will have shown positive,

11



in which case the doctor will have taken epecillin and will therefore be 99.07%280

confident that she no longer has the disease”.

We define our entailment relation, and prove some related properties, in the

next three sections. In Section 3.2 we give the syntax of the various proposi-

tions that make up EPEC domain descriptions. Then in Section 3.3 we give a

semantics to domain descriptions that do not contain sensing or belief condi-285

tioned actions (“non-epistemic” domains), so that the probabilities of possible

worlds can be calculated in isolation. Then in Section 3.4 we use this as a build-

ing block for the semantics of full epistemic domains. For ease of reading the

notation used in this section is summarised in Appendix A.

3.2. EPEC Syntax290

We begin with the basic vocabulary of our framework:

Definition 3.1 (Domain Language). An EPEC domain language is a tuple

hF ,A,Ae,Aa,V, vals, I,, 0̄i, where F is a finite non-empty set of fluents, A is

a finite set of actions, Ae is a finite set of environmental actions, Aa is a finite

set of agent actions, A = Ae [ Aa and Ae \ Aa = ;, V is a finite non-empty

set of values such that {false, true} ✓ V , vals is a function mapping elements

in F [ A to tuples of elements (without repetitions) from V (i.e. vals specifies

the values that each fluent and action can take), and I is a non-empty set of

instants (i.e. time-points) with a minimum element 0̄ w.r.t. a total ordering 

over I. For every A 2 A, vals(A) = hfalse, truei and for any X 2 F [ A the

expression V 2 vals(X) means that if vals(X) = hV1, . . . , Vni then V = Vi for

some 1  i  n. [end definition]

The “epectisis” example of Section 1 can be represented using three boolean-

valued fluents PatientHasEpectisis, DocHasEpectisis and DocHasSideE↵ects, an

environmental action SkinContact , and two agent actions DoBloodTest and295

TakeEpecillin. For this example there are many choices for the set I of in-

stants (e.g. the non-negative reals or integers) – for simplicity we use the finite

12



set {�1, 0, 1, 2, 3}3. See Appendix C for the full EPEC representation De of

Example 1.1, from which various example statements and expressions are taken

below.300

As mentioned above, EPEC domain descriptions are comprised of a finite

number of propositions of various types (summarised again in Appendix A on

page 81). Domain descriptions include v-propositions (‘v’ for ‘value’) such as

PatientHasEpectisis takes-values hfalse, truei (EP1)

to indicate the ordered set of values that each fluent can take. The general305

definition is:

Definition 3.2 (v-proposition). A v-proposition has the form

F takes-values hV1, . . . , Vmi (2)

where m � 1 and hV1, . . . , Vmi = vals(F ). [end definition]

EPEC uses i-literals such as [DocHasEpectisis= true]@0 to associate par-

ticular values with particular fluents, and such as [SkinContact= true]@�1 to

symbolise occurrences and non-occurrences of actions, at particular instances.310

These can be composed into i-formulas such as [SkinContact= false]@�1 !

[DocHasEpectisis= false]@0 as shown in the following two definitions:

Definition 3.3 (Fluent and Action Literals, i-Literals). A fluent literal is an

expression of the form F =V for some F 2 F and V 2 vals(F ). A fluent

is boolean if vals(F ) = hfalse, truei. An action literal is either A= false or

A= true for some A 2 A. Where no ambiguity can arise, Z= true and Z= false

are sometimes abbreviated to Z and ¬Z respectively for a fluent or action Z. A

literal is either a fluent literal or an action literal, and an i-literal is an expression

of the form [L]@I for some literal L and some I 2 I. [end definition]

3We use �1 as the minimum instant here simply because in the scenario the SkinContact

occurrence happened in the past. The use of a negative integer has no semantic significance
for EPEC.
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Definition 3.4 (Formulas, Fluent Formulas, i-Formulas). The set of formulas,

denoted by ⇥, is the closure of the set of literals under ^, _, ¬ and !. A

formula ✓ is said to be a fluent formula if it contains no action literals. The set

of i-formulas, denoted by �, is the closure of the set of i-literals under ^, _, ¬

and !. The shorthand [✓]@I stands for the i-formula formed from the formula

✓ and the instant I by replacing all literals L occurring in ✓ by [L]@I (e.g.

[F =V ! F 0=V 0]@3 is shorthand for [F =V ]@3 ! [F 0=V 0]@3). The symbol

> stands for an arbitrary tautological formula. [end definition]

The narrative components of EPEC domain descriptions are described with315

p- and o-propositions (‘p’ for ‘performed’ and ‘o’ for ‘occurred’), which option-

ally employ formulas within their syntax to express the conditions under which

particular actions may happen at particular times. For example, the fact in Ex-

ample 1.1 that a patient (who is part of the environment) may have made skin

contact with the doctor (the agent) can be expressed with the (conditionless)320

o-proposition

SkinContact occurs-at �1 with-prob 0.95 (EP5)

and the doctor’s plan of action can be described with the two p-propositions

DoBloodTest performed-at 1 (EP10)
325

TakeEpecillin performed-at 2 (EP11)
if-believes (DocHasEpectisis= true, (0.5, 1])

More generally, o- and p-propositions may optionally have both probabilities

and conditions attached to them, as shown in the following two definitions:

Definition 3.5 (o-proposition). An o-proposition has the form

A occurs-at I with-prob P+
if-holds ✓ (3)

for some action A 2 Ae, instant I, P+ 2 (0, 1] and fluent formula ✓. For an

o-proposition o of the form (3), ✓ is called the body of o or body(o), and o is said

to have instant I and principal action A. If P+ = 1 then the “ with-prob P+”

part of the proposition may be omitted, and if ✓ is > then the “ if-holds ✓”

part may be omitted. [end definition]

330
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Definition 3.6 (p-proposition). A p-proposition has the form

A performed-at I with-prob P+
if-believes (✓, P̄ ) (4)

for some action A 2 Aa, instant I, P+ 2 (0, 1], fluent formula ✓, and (open,

half-open or closed) interval P̄ with endpoints in [0, 1] (i.e. a probability range).

For a p-proposition p of the form (4), (✓, P̄ ) is called the body of p or body(p),

and p is said to have instant I and principal action A. If P+ = 1 then the

“ with-prob P+” part of the proposition may be omitted, and if ✓ is > and

1 2 P̄ then the “ if-believes (✓, P̄ )” part may be omitted. [end definition]

EPEC uses c-propositions (‘c’ for ‘causes’) to model knowledge about the

general (probabilistic) e↵ects of actions on the agent’s environment in various

circumstances, independently from any particular narrative. An example from

the “epectisis” domain is:335

TakeEpecillin ^DocHasEpectisis causes-one-of (EP7)
{ ({¬DocHasEpectisis,DocHasSideE↵ects}, 0.1485),
({¬DocHasEpectisis}, 0.8415),
({DocHasSideE↵ects}, 0.0015),
(;, 0.0085) }340

The attached probabilities in this particular example (taken together with those

in the twin c-proposition (EP8) in Appendix C) reflect that the two potential

e↵ects of TakeEpecillin are independent4. But in general the e↵ects captured in

c-propositions need not be independent.

To give the general definition of a c-proposition we need terms for its com-345

ponents. Sets such as {¬DocHasEpectisis,DocHasSideE↵ects} of fluent literals

are partial fluent states, and a partial fluent state paired with a probability, such

as ({¬DocHasEpectisis,DocHasSideE↵ects}, 0.1485), is called an outcome. The

c-proposition above has four outcomes in its head, and, as for all c-propositions,

their combined weight (i.e. the sum of their probabilities) is 1. The next four350

definitions formalise this terminology, and give some further notation that will

be required in Sections 3.3 and 3.4 to describe EPEC’s semantics.

4In the standard sense in probability theory, i.e. that random variables A and B are
independent if for all values a and b, Pr(A = a).Pr(B = b) = Pr(A = a,B = b).
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Definition 3.7 (State, Partial State, Fluent State). A state S is a set of literals,

exactly one for each F 2 F and A 2 A. A partial state is a subset X ✓ S of a

state S. The subset of a partial state X containing exactly the fluent literals in

X is a partial fluent state, and is denoted by X�F . For S a state, S�F is called

a fluent state. The subset of X containing exactly the action literals in X is

denoted by X�A. The set of all states is denoted by S, and the set of all partial

states is denoted by X . Finally, the sets {S�F | S 2 S} and {X�F | X 2 X}

are denoted by S̃ and X̃ respectively. [end definition]

Definition 3.8 (Outcome, Projection Functions). An outcome is a pair of the

form (X̃, P+) where X̃ is a partial fluent state and P+ 2 (0, 1] (i.e. P+ is a

non-zero probability). The projection functions � and ⇡ are such that for any

outcome O = (X̃, P+), �(O) = X̃ and ⇡(O) = P+. The set of all outcomes

X̃ ⇥ (0, 1] is denoted by O. [end definition]

Definition 3.9 (Weight of a Set of Outcomes). Given a finite set of outcomes

B = {O1, O2, . . . , Om} the weight of B is defined as

⇡(B) =
mX

i=1

⇡(Oi).

(i.e. the sum of the probabilities of its elements.) [end definition]

355

We can now give the general definition of a c-proposition. In it, and for the

remainder of the paper, literals of the EPEC domain language are interpreted as

atomic propositions when using the standard propositional entailment symbol

|=, so that for example (F = true ^ F 0= false) |= F = true.
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Definition 3.10 (c-proposition). A c-proposition has the form

✓ causes-one-of {O1, O2, . . . , Om} (5)

where, for i = 1, . . . ,m, Oi 2 O, �(Oi) 6= �(Oj) when i 6= j, ✓ is a formula

such that ✓ |= (A= true) for at least one A 2 A, and ⇡({O1, . . . , Om}) = 1.

For a c-proposition c of the form (5), the formula body(c) = ✓ and the set

head(c) = {O1, . . . , Om} are the body and head of c, respectively. Outcome

Oi is often omitted from head(c) if �(Oi) = ; (leaving ⇡(Oi) implicit since

⇡({O1, . . . , Om}) = 1). [end definition]

360

To unambiguously calculate the probabilities of fluents taking particular

values after a particular series of actions, we also need to assign probabilities

to their possible initial values. EPEC domain descriptions include a unique i-

proposition (‘i’ for ‘initially’) which lists the fluent states that have a non-zero

initial probability. In Example 1.1 the doctor is reasoning on the assumption365

that she did not initially have the disease, therefore the i-proposition for that

domain is

initially-one-of (EP4)
{ ({PatientHasEpectisis,¬DocHasEpectisis,¬DocHasSideE↵ects}, 0.8),
({¬PatientHasEpectisis,¬DocHasEpectisis,¬DocHasSideE↵ects}, 0.2) }370

The general definition of the form of an i-proposition is as follows:

Definition 3.11 (i-proposition). An i-proposition has the form

initially-one-of {O1, O2, . . . , Om} (6)

where, for i = 1, . . . ,m, Oi 2O, ⇡({O1, . . . , Om}) = 1, �(Oi)2 S̃, and �(Oi) 6=

�(Oj) when i 6= j (i.e. �(Oi) and �(Oj) are mutually exclusive fluent states).

[end definition]

Finally, we introduce s-propositions (‘s’ for ‘senses’) to capture the general

e↵ects of sensing actions. The e↵ectiveness of the blood test in Example 1.1 is

represented as:375

DoBloodTest senses DocHasEpectisis with-accuracies

✓
0.9 0.1
0.05 0.95

◆
(EP9)

The leading diagonal in the accuracy (or confusion) matrix gives the probabil-

ities that the test correctly indicates the doctor’s condition (e.g. if the doctor
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has the disease there is a 95% probability that the test will correctly show this).380

A 2⇥ 2 matrix is used here because DocHasEpectisis is a 2-valued fluent. The

other two entries indicate the probabilities of false positives and false negatives,

with the order of the rows and columns as indicated in the v-proposition (EP2)

for DocHasEpectisis. The general definition for an s-proposition is:

Definition 3.12 (s-proposition). Let X 2 F [Ae and vals(X) = hV1, . . . , Vmi.

An s-proposition has the form

✓ senses X with-accuracies M (7)

where ✓ |= (A= true) for some A 2 Aa, and M is an m ⇥ m matrix with all

elements in [0, 1]. For an s-proposition s of the form (7), ✓ is called the body of s,

or body(s), and X is called the object of s, or object(s). The pair (✓, X) is called

the signature of s and denoted by sig(s). The element Mi,j in M represents the

probability that, given that Vi is the actual value of X when ✓ occurs, the value

Vj is sensed. Hence M is subject to the condition that each row adds to 1:

81  i  m,
mX

j=1

Mi,j = 1 (8)

The s-proposition “✓ senses X with-accuracies IM” (where IM is the m ⇥

m identity matrix, representing perfect sensing) is sometimes abbreviated to

“✓ senses X”. [end definition]

385

An EPEC domain description is a finite collection of the types of proposition

mentioned above (and summarised in Appendix A on page 81), but with some

restrictions to ensure that the di↵erent propositions do not contradict each

other. For example, we cannot include two o-propositions that both state that

a particular action occurs at a particular time, but with di↵erent probabilities.390

Neither can we include two c-propositions that state that the same action(s) in

the same circumstances have two di↵erent sets of outcomes. To describe these

restrictions precisely, we employ the following definition of (in)compatibility of

formulas.
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Definition 3.13 (Compatibility of Formulas). Given a partial state X and a

formula ✓, we sometimes write X |= ✓ to indicate that
V

L2X L |= ✓. Two

formulas ✓1 and ✓2 are compatible if there is a state S such that S |= ✓1 ^ ✓2,

and incompatible otherwise. [end definition]

395

We now give the definition of an EPEC domain description. As an example,

the full domain description of Example 1.1 is given in Appendix C.

Definition 3.14 (Domain Description). A domain description is a finite set D

of v-propositions, c-propositions, p-propositions, o-propositions, i-propositions

and s-propositions such that:

(i) D contains exactly one v-proposition for each F 2 F [see Def. 3.2],

(ii) D contains exactly one i-proposition [see Def. 3.11],

(iii) for any two distinct c-propositions in D with bodies ✓1 and ✓2 [see

Def. 3.10], ✓1 and ✓2 are incompatible [see Def. 3.13],

(iv) for any given A 2 Ae and I 2 I, if D contains a pair of o-propositions

“A occurs-at I with-prob P+
1 if-holds ✓1” and

“A occurs-at I with-prob P+
2 if-holds ✓2”, then ✓1 and ✓2 are

incompatible [see Defs 3.13, 3.5],

(v) for any given A 2 Aa and I 2 I, if D contains a pair of p-propositions

“A performed-at I with-prob P+
1 if-believes (✓1, P̄1)” and

“A performed-at I with-prob P+
2 if-believes (✓2, P̄2)” then ✓1 = ✓2

and P̄1 \ P̄2 = ; [see Def. 3.6],

(vi) no two s-propositions in D have the same signature [see Def. 3.12].

[end definition]

In the remainder of the paper, since by Definition 3.14 each s-proposition within

a domain description D has a unique signature (✓, X), we will sometimes refer400

to its accuracy matrix as MD(✓, X).

3.3. Semantic Entailment and Results for Non-epistemic Domains

In this section we give a semantics to non-epistemic domain descriptions

that do not contain sensing actions or belief-conditioned action occurrences:
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Definition 3.15 (Ne-domain Description). An ne-domain description (non-

epistemic domain description) is a domain description that contains no s- or

p-propositions. [end definition]

405

In what follows, L, D and N will generally signify an arbitrary domain

language, domain description and ne-domain description respectively. As an

example ne-domain, consider an 80% probable single roll of a dice which has

been painted so that once face shows ‘a’, two faces show ‘b’ and three faces show

‘c’. We model this scenario with three instants 0, 1 and 2, and supposing that,410

before the probable roll, the dice is initially showing either an ‘a’ or a ‘b’ on its

uppermost face, with equal probabilities. The ne-domain description Nd is:

Example 3.1 (Lettered Dice Roll). Nd consists of the following propositions:

Face takes-values ha, b, ci (D1)

initially-one-of {({Face=a}, 0.5), ({Face=b}, 0.5)} (D2)

Roll causes-one-of (D3)
{ ({Face=a}, 0.17), ({Face=b}, 0.33), ({Face=c}, 0.5) }

Roll occurs-at 1 with-prob 0.8 if-holds > (D4)

[end example]

For ne-domain descriptions, the key semantic structure is a world (analogous

to a modal logic possible world). Worlds are e↵ectively timelines labelled with415

all fluent values and action occurrences/non-occurrences at each instant:

Definition 3.16 (World). A world is a function W : I ! S. The set of all

worlds is denoted by W. [end definition]

In Example 3.1 there is one 3-valued fluent and one (binary-valued) action, and

hence 6 possible states in the set S. As there are 3 instants, this gives a total

of 63 = 216 (mostly nonsensical) worlds, four examples of which are:420

W1

{Face=a,Roll} {Face=b,Roll} {Face=c,¬Roll}

0 1 2

W2

{Face=a,¬Roll} {Face=b,Roll} {Face=c,¬Roll}

0 1 2
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W3

{Face=a,¬Roll} {Face=a,Roll} {Face=b,¬Roll}

0 1 2

W4

{Face=c,¬Roll} {Face=c,Roll} {Face=b,¬Roll}

0 1 2

Definitions 3.17 to 3.24 which follow allow us to distinguish between worlds425

that are compatible with the ne-domain description in question – we call these

well-behaved worlds – and those that are not. (Example 3.1 has 8 out of 216

well-behaved worlds.) We start with a notion of satifaction of an i-formula:

Definition 3.17 (Satisfaction of an i-formula, Logical Consequence for i-formu-

las). Given a world W and a literal L, W satisfies an i-formula [L]@I, written

W ||= [L]@I, i↵ L 2 W (I). Otherwise, W ||6= [L]@I. The definition of ||=

is recursively extended for arbitrary i-formulas as follows: if ' and  are i-

formulas, W ||= ' ^  i↵ W ||= ' and W ||=  , and W ||= ¬' i↵ W ||6= '. The

i-formulas ' _  and ' !  are interpreted as shorthand for ¬(¬' ^ ¬ ) and

¬(' ^ ¬ ) respectively. Given a (possibly empty) set � of i-formulas, W ||= �

i↵ W ||=  for all  2 �. Given an i-formula ' and a set � of i-formulas

� ||= ' if for all W 2 W such that W ||= �, W ||= ' also holds. For two

i-formulas ' and  ,  ||= ' is shorthand for { } ||= ', and ||= ' is shorthand

for ; ||= '. [end definition]

Examples of i-formula satisfaction for the lettered dice domain (Example 3.1)430

are W1 ||= ([Roll ]@0 ^ [Roll ]@1), W2 ||= [Face=c]@2 and W3 ||= [Roll ]@1.

The first criterion that a world must satisfy to be well-behaved with respect

to an ne-domain description N is that the action occurrences it identifies along

its timeline exactly match those represented as o-propositions in N :
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Definition 3.18 (Closed World Assumption for Actions). A world W satisfies

the closed world assumption for actions (CWA) w.r.t. an ne-domain description

N if for all A 2 A and I 2 I:

(i) if W ||= [A]@I then there exists some P+ 2 (0, 1] and fluent formula ✓

such that W ||= [✓]@I and “A occurs-at I with-prob P+
if-holds ✓” is

in N , and

(ii) for any ✓ such that W ||= [✓]@I and the o-proposition

“A occurs-at I with-prob 1 if-holds ✓” is in N , W ||= [A]@I.

[end definition]

435

Of the four worlds pictured for Example 3.1, W2, W3 and W4 all satisfy the

CWA w.r.t. Nd, but W1 fails condition (i) above since W1 ||= [Roll ]@0.

The second criterion that a world must satisfy to be well-behaved with re-

spect to an ne-domain description N is that it is compatible with one of the

alternative initial conditions identified in the domain description’s i-proposition.440

(Note that the next few definitions apply to an arbitrary domain description D,

and thus also to any ne-domain description N .)

Definition 3.19 (Initial Choice and Initial Consistency). Let D be a domain

description with (unique) i-proposition “initially-one-of {O1, O2, . . . , Om}”.

Each O1, O2, . . . , Om is called an initial choice of D. A world W is said to

satisfy the initial condition of D if there exists an initial choice Oi of D such

that W (0̄)�F = �(Oi) [See Defs 3.1, 3.7, 3.8]. In this case it is said that W and

Oi are initially consistent with each other w.r.t. D. [end definition]

For Example 3.1, W1, W2 and W3 all satisfy the initial condition of Nd since

W1(0)�F = W2(0)�F = W3(0)�F = {Face=a} = �({Face=a}, 0.5), but W4445

does not since W4(0)�F = {Face=c} which does not appear in (D2).

The last criterion that a world must satisfy to be well-behaved is that the

changes in fluent values along its time-line are explainable in terms of the domain

description’s c-propositions. To formalise this, we need to be able to identify

which c-propositions are activated at which time-points in that world:450
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Definition 3.20 (Cause Occurrence). Let ✓ be the body of a c-proposition c

in a domain description D and I 2 I. If W ||= [✓]@I then it is said that a

cause occurs at instant I in W w.r.t. to D, and that c is activated at I in

W w.r.t. D. The set occD(W ) is the set {I 2 I | a cause occurs at I in W}.

The function cprop
D

with domain {(W, I) | W 2 W , I 2 occD(W )} is defined

as cprop
D
(W, I) = c where c is the (unique) c-proposition activated at I in

W . [end definition]

In Example 3.1 the single c-proposition (D3) has body Roll . Since W1 ||=

[Roll ]@0^ [Roll ]@1, (D3) is activated at 0 and at 1 in W1, occNd
(W1) = {0, 1},

and cprop
Nd

(W1, 0) = cprop
Nd

(W1, 1) = (D3).

We next define an e↵ect choice for a given world. This selects one particular455

outcome from each c-proposition at each point that it is activated:

Definition 3.21 (E↵ect Choice). LetW be a world and D a domain description.

An e↵ect choice for W w.r.t. D is a function ec : occD(W ) ! O such that for

all instants I 2 occD(W ), ec(I) 2 head(cprop
D
(W, I)). [end definition]

In Example 3.1, one of the nine possible e↵ect choices for W1 w.r.t. Nd is the ef-

fect choice ecd1, specifed as ecd1(0) = ({Face=b}, 0.33), ecd1(1) = ({Face=c}, 0.5).

To describe the expected e↵ect of one of a c-proposition’s outcomes on the460

state in which it is activated, we define the notion of a fluent state update:

Definition 3.22 (Fluent State Update). Given a fluent state S̃ and a partial

fluent state X̃, the update of S̃ w.r.t. X̃, written S̃ � X̃, is the fluent state

(S̃  X̃) [ X̃, where S̃  X̃ is the partial fluent state formed by removing all

fluent literals from S̃ of the form F =V for some F and V 0 such that F =V 0 2

X̃. The operator � is left-associative, so e.g. S̃ � X̃ � X̃ 0 is understood as

((S̃ � X̃)� X̃ 0). [end definition]

For example, {Dice=a}� {Dice=b} = {Dice=b}, and {PatientHasEpectisis,

¬DocHasEpectisis,¬DocHasSideE↵ects}� {DocHasEpectisis} = {PatientHas-

Epectisis,DocHasEpectisis,¬DocHasSideE↵ects}.465
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We can now state our final criterion for a world to be well-behaved – it

must satisfy the justified change condition. Definition 3.23 below states that

changes in fluents’ values along a world’s time-line occur only immediately after

instants where a c-proposition is activated, and that all the fluents’ new values

must appear in a single outcome of that c-proposition. The definition thus470

encapsulates a solution to the frame problem, as it ensures that fluents not

explicitly a↵ected by the activation of a c-proposition have a default persistence.

Like all EPEC’s definitions, Definition 3.23 is stated in a manner that allows it

to be applied to continuous as well as discrete time-lines. To aid understanding,

the reader may find it helpful to first note that the e↵ect choice ecd1 described475

after Definition 3.21 provides a justification for the fluent changes along world

W1, since, for example

W1(2)�F = {Face=c} = {Face=a}� {Face=b}� {Face=c}
= (W1(0)�F)��({Face=b}, 0.33)��({Face=c}, 0.5)
= (W1(0)�F)� �(ecd1(0))� �(ecd1(1))480

Definition 3.23 (Justified Change). A world W satisfies the justified change

condition w.r.t. D if and only if there exists an e↵ect choice ec w.r.t. D such that

for all instants I and I 0 with I < I 0, ec maps the instants in occD(W )\ [I, I 0) =

{I1, . . . , In} to O1, O2, . . . , On respectively, where I1, . . . , In are ordered w.r.t.

, and
W (I 0)�F = (W (I)�F)� �(O1)� �(O2)� · · ·� �(On) (9)

If a world W satisfies the justified change condition for some e↵ect choice ec, W

and ec are said to be consistent with each other w.r.t. D. [end definition]

In fact W1, W3 and W4 all satisfy the justified change condition w.r.t Nd,

whereas W2 has an unjustified change from instant 0 to instant 1.

Definition 3.24 summarises the conditions for a world to be well-behaved:

Definition 3.24 (Well-behaved World). A world is well-behaved w.r.t. an ne-

domain description N if it satisfies the closed world assumption for actions w.r.t.

N [see Def. 3.18], the initial condition of N [see Def. 3.19] and the justified

change condition w.r.t. N [see Def. 3.23]. The set of well-behaved worlds w.r.t.

N is denoted by WN . [end definition]

485
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Therefore, by Definitions 3.18 to 3.24, W3 2 WNd
but W1,W2,W4 62 WNd

.

Note that, since the sets F , A and V of fluents, actions and values are all finite,

and a domain description contains only a finite number of propositions, the

CWA (Definition 3.18) and justified change condition (Definition 3.23) together

ensure that the set WN of well-behaved worlds is always finite, for any ne-490

domain description N .

We can use the notion of a well-behaved world to adapt the notion of en-

tailment (symbolised by ||=) given in Definition 3.17 to a specific ne-domain N .

N -entailment is symbolised by ||=N in the following definition:

Definition 3.25 (N -entailment). Given an i-formula ', a set � of i-formulas

and an ne-domain description N , � N -entails ', written � ||=N ', if for all

well-behaved worlds W 2 WN such that W ||= �, W ||= ' also holds [see

Def. 3.17]. For two i-formulas  and ',  ||=N ' is shorthand for { } ||=N ',

and ||=N ' is shorthand for ; ||=N '. [end definition]

495

For example, [Face=a]@0 ||=Nd
[Face=a]@1.

To complete the semantics of an ne-domain description, it remains to define

a probability distribution over the set of well-behaved worlds that properly

accounts for the various probabilities embedded in the propositions. We begin

with the notion of a trace of a well-behaved world, which is an initial choice500

coupled with an e↵ect choice that can account for the values of fluents along

the world’s time-line. We can straightforwardly evaluate the probability of

a given trace, conditional on the action occurrences in the associated world

actually taking place, by taking the product of the probabilities of the individual

outcomes selected by the trace:505
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Definition 3.26 (Trace). Let W be a well-behaved world w.r.t. N . A trace

of W w.r.t. N is a pair hic, eci where ic is an initial choice [see Def. 3.19]

consistent with W and ec is an e↵ect choice [see Def. 3.21] consistent with W .

In this case hic, eci is also a trace of N . The set traces(W,N ) is the set of all

traces of W w.r.t. N . For an arbitrary trace tr = hic, eci of N , we identify the

(unique) corresponding well-behaved world as Wtr, and define the evaluation of

tr, written ✏(tr), as:
✏(tr) = ⇡(ic) .

Y

I2occD(Wtr)

⇡(ec(I)) (10)

(Where ⇡ : O 7! (0, 1] is as defined in Definition 3.8.) [end definition]

For Example 3.1, hicd2, ecd2i is a trace for the well-behaved world W3, where ic
d
2 =

({Face=a}, 0.5) and ecd2(1) = ({Face=b}, 0.33), so that ✏(hicd2, ecd2i) = 0.165.

Note that although in this example all eight well behaved worlds have a unique

trace, in the general case a well-behaved world might have more that one trace.510

To see this, consider the following variation of the c-proposition (D3):

Roll causes-one-of (D30)
{ ({Face=a}, 0.16), ({Face=b}, 0.31), ({Face=c}, 0.47), (;, 0.06) }

indicating that very occasionally Roll fails to have any e↵ect on the dice, and

consider the well-behaved world W5:515

W5

{Face=a,¬Roll} {Face=a,Roll} {Face=a,¬Roll}

0 1 2

If (D30) replaces (D3) inNd there are two e↵ect choices ec0 and ec00 forW5, where

ec0(1)=({Face=a}, 0.16) and ec00(1)=(;, 0.06). Hence W5 has two traces.

To calculate the probability that the exact sequence of action occurrences/non-

occurrences entailed by a particular well-behaved world W actually takes place,520

we can take the product of the probabilities/complement probabilities indicated

in the corresponding o-propositions. We call this product the narrative evalua-

tion of N w.r.t. W :
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Definition 3.27 (Narrative Evaluation). Given an o-proposition o of the form

“A occurs-at I with-prob P+
if-holds ✓” and a world W , the narative eval-

uation of o w.r.t. W is defined as

✏(o,W ) =

8
><

>:

1 if W ||6= [✓]@I

P+ if W ||= [✓]@I and W ||= [A]@I

1� P+ if W ||= [✓]@I and W ||= [¬A]@I

(11)

For an ne-domain description N the above definition is extended to:

✏(N ,W ) =
Y

o2N

✏(o,W ). (12)

If N contains no o-propositions then ✏(N ,W ) = 1. [end definition]

For Example 3.1, ✏(Nd,W3) = ✏((D4),W3) = 0.8.525

We now define our probability distribution, the ne-model-function, over the

well-behaved worlds of an ne-domain description N , symbolised as Mne
N

, and

prove that it is indeed a probability distribution in Proposition 3.1 that follows.

The probability of a well-behaved world W is the product of the probability of

its narrative component (action occurrences) being true and the probability of530

the particular chosen causal e↵ects of those actions having taken place.

Definition 3.28 (Ne-model-function). The ne-model-function of an ne-domain

description N is the function Mne
N

: WN 7! [0, 1] defined for each well-behaved

world W as:
Mne

N
(W ) = ✏(N ,W ) ·

X

tr2traces(W,N )

✏(tr) (13)

The ne-model-function Mne
N

is extended to a function Mne
N

: � 7! [0, 1] over

i-formulas in the following way:

Mne
N

(') =
X

W ||='

Mne
N

(W ) (14)

and if  is such that Mne
N

( ) 6= 0, then the function Mne
N

(· |  ) : � 7! [0, 1] is

defined as:
Mne

N
(' |  ) = Mne

N
(' ^  )

Mne
N

( )
(15)

[end definition]

Using the above definition in the context of Example 3.1, we can see for example

that Mne
Nd

(W3) = 0.8⇥ (0.5⇥ 0.33) = 0.132, and since W3 (labelled as W[aRb] in
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the diagram below) is the only well-behaved world that satifies both [Face=a]@0535

and [Face=b]@2, equation (14) gives Mne
Nd

([Face=a]@0^ [Face=b]@2) = 0.132.

Inspection of the eight well-behaved worlds for Nd pictured below shows that

two of them, W[a¬Ra] and W[b¬Rb], satisfy [¬Roll ]@1, both with probability

0.2 ⇥ 0.5 = 0.1, and the first of these worlds also satisfies [Face=a]@2. So by

equation (15), Mne
Nd

( [Face=a]@2 | [¬Roll ]@1 ) = 0.1
(0.1+0.1) = 0.5.540

W[aRa] 0.8⇥ (0.5⇥ 0.17)
{Face=a,¬Roll} {Face=a,Roll} {Face=a,¬Roll}

0 1 2

W[aRb] 0.8⇥ (0.5⇥ 0.33)
{Face=a,¬Roll} {Face=a,Roll} {Face=b,¬Roll}

0 1 2

W[aRc] 0.8⇥ (0.5⇥ 0.5)
{Face=a,¬Roll} {Face=a,Roll} {Face=c,¬Roll}

0 1 2

W[bRa] 0.8⇥ (0.5⇥ 0.17)
{Face=b,¬Roll} {Face=b,Roll} {Face=a,¬Roll}

0 1 2

W[bRb] 0.8⇥ (0.5⇥ 0.33)
{Face=b,¬Roll} {Face=b,Roll} {Face=b,¬Roll}

0 1 2
545

W[bRc] 0.8⇥ (0.5⇥ 0.5)
{Face=b,¬Roll} {Face=b,Roll} {Face=c,¬Roll}

0 1 2

W[a¬Ra] 0.2⇥ 0.5
{Face=a,¬Roll} {Face=a,¬Roll} {Face=a,¬Roll}

0 1 2

W[b¬Rb] 0.2⇥ 0.5
{Face=b,¬Roll} {Face=b,¬Roll} {Face=b,¬Roll}

0 1 2

The numbers in the right of the diagram above sum to 1, and so by defini-

tion form a probability distribution over the well-behaved worlds of Nd. The550

following proposition confirms that this is true in the general case.

Proposition 3.1. Given an ne-domain description N [see Def. 3.15], the ne-

model Mne
N

: WN 7! [0, 1] [see Def. 3.28] is a probability distribution over WN .

Proof: See Appendix D.1. ⌅

Corollary 3.1. Given an ne-domain description N , the ne-model Mne
N

: � 7!

[0, 1] [see Def. 3.28] is a probability function over � w.r.t. ||=N [see Defs 2.1,

3.4, 3.25].
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Proof: The corollary follows directly from Proposition 3.1, Definitions 2.1, 3.17555

and 3.25 of a probability function, satisfaction of an i-formula and N -entailment

respectively, equation (14) of Definition 3.28, and the remarks in the last para-

graph of Section 2.3, taking i-literals as atomic propositional symbols and well-

behaved worlds as interpretations. ⌅
Specific evaluations of Mne

N
(') and Mne

N
(' |  ) using equations (14) and560

(15) of Definition 3.28 can be written in action-language-style syntax using h-

propositions. We write “N ||= ' holds-with-prob P+” to mean thatMne
N

(') =

P+, and we write Mne
N

(' |  ) = P+ as “(N |  ) ||= ' holds-with-prob P+”.

3.4. Semantic Entailment and Results for Epistemic Domains

In this section we return to consideration of full domain descriptions that565

may include p-propositions (describing belief-conditioned agent action occur-

rences) and s-propositions (describing the e↵ects of sensing actions). We also

return to using the Epectitis domain ( Example 1.1, listed in full in Appendix C)

as a running example. For convenience here, we will use the abbreviated fluent

and action names PtHaEp (PatientHasEpectisis), DrHaEp (DocHasEpectisis),570

DrHaSiEf (DocHasSideE↵ects), SkCo (SkinContact), DoBlTe (DoBloodTest)

and TkEc (TakeEpecillin). We represent the result of a sensing action as fol-

lows:

Definition 3.29 (Sensing Outcome). A sensing outcome is a pair of the form

((✓, X), V ) for some signature (✓, X) of an s-proposition [see Def. 3.12] and some

value V 2 vals(X). [end definition]

For example, the blood-test sensing outcome ((DoBlTe,DrHaEp), true) repre-575

sents an outcome of an activation of the s-proposition (EP9) (see Appendix C),

identified by its unique signature (DoBlTe,DrHaEp), in which the blood-test

(either correctly or incorrectly) shows positive.

Sensing outcomes and performances of agent actions, represent the informa-

tion potentially available to the agent, and are collected together in a sensing580

and acting history. Each sensing and acting history records a possible sequence
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of experiences and behaviour (inputs and outputs) that the agent might have

as it progresses through the time-line. Note that, this reflects our assumption

that the agent is aware of its own actions:

Definition 3.30 (Sensing and Acting History, Indistinguishable Histories). A

sensing and acting history (or history) is a function H from I to the power set

of sensing outcomes and agent actions. The set of all histories is denoted by H.

For a given instant I, two histories H and H 0 are indistinguishable up to (and

excluding) I if H(I 0) = H 0(I 0) for all I 0 < I. For a given history H and instant

I, the equivalence class of histories indistinguishable from H up to I is denoted

by [H]<I . [end definition]

585

Equivalence classes of the form [H]<I represent agent experiences which are

identical up to I, and will be used later to evaluate whether the agent will

execute belief-conditioned actions at the instant I. An example of a history

(compatible with Example 1.1) is He
1(�1) = He

1(0) = He
1(3) = ;, He

1(1) =

{DoBlTe, ((DoBlTe,DrHaEp), true)} and He
1(2) = {TkEc}. In words, the ex-590

perience that He
1 encodes is that the doctor performs the blood-test (sensing

action) at 1 which gives a positive result. In response, the doctor takes epecillin

at 2. No other actions or sensing outcomes are experienced. An alternative his-

tory (incompatible with the example) is He
2(�1) = He

2(0) = He
2(1) = He

2(2) =

He
2(3) = {TkEc} (the doctor senses nothing, but takes epecillin at every in-595

stant).

Whereas for ne-domain descriptions the key semantic structure is a world

(see Definition 3.16), in the case of epistemic domains the key semantic structure

is a world paired with a history. We call such a pairing an h-world :

Definition 3.31 (h-world). An h-world is a pair (W,H) for a world W 2 W

and a sensing history H 2 H. [See Defs 3.16 and 3.30] [end definition]

600

EPEC’s semantics identifies the set of h-worlds that contain a history and world

pair that are compatible both with each other and with the domain description

in question – these are called well-behaved h-worlds – and defines a probability

distribution over this set. Some complexity arises because at all points in the
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narrative of any particular h-world where the agent makes decisions about per-605

forming belief-conditioned actions, the strengths of those beliefs (represented as

probabilities) have to be evaluated by consideration of all h-worlds and their

respective probabilities. However, the as strengths of those evaluated beliefs

influence whether the belief-conditioned actions fire, they thus influence the

probability distribution over h-worlds on which the belief was evaluated. For610

example, in the (well-behaved) h-world (W e
1 , H

e
1) pictured below, the doctor’s

decision to take epecillin at instant 2 is based on her greater than 50% belief

that she has epectitis due to the (false) positive blood test at instant 1, and this

in turn results in her su↵ering from epecillin’s side e↵ects at instant 3. Note

that it is only the history up to instant 1 that is relevant to the doctor’s decision615

to take epecillin, and we will see that in the general case it is equivalence classes

of indistinguishable histories (see Definition 3.30) up to agent decision points

such as this that are key for defining EPEC’s semantics.

W e
1

{PtHaEp,
¬DrHaEp,
¬DrHaSiEf ,

SkCo,
¬DoBlTe,

¬TkEc}

{PtHaEp,
¬DrHaEp,
¬DrHaSiEf ,

¬SkCo,
¬DoBlTe,

¬TkEc}

{PtHaEp,
¬DrHaEp,
¬DrHaSiEf ,

¬SkCo,
DoBlTe,

¬TkEc}

{PtHaEp,
¬DrHaEp,
¬DrHaSiEf ,

¬SkCo,
¬DoBlTe,

TkEc}

{PtHaEp,
¬DrHaEp,
DrHaSiEf ,
¬SkCo,

¬DoBlTe,

¬TkEc}

-1 0 1 2 3
He

1
; ; {DoBlTe,

((DoBlTe,DrHaEp), true)}
{TkEc} ;

620

The next three definitions allow us to assign a probability to a history, and

to an equivalence class of histories (indistinguishable up to a given instant),

in both cases conditioned on a particular world. First, we define a sensing

occurrence in a particular world, and the associated mapping soccD. For a given

h-world, soccD indicates which s-propositions (if any) are activated (occur) at625

each instant, and what both the true and the sensed values of the associated

fluents are for these activations:
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Definition 3.32 (Sensing Occurrence). Let D be a domain description, s be

an s-proposition in D with body ✓, and I 2 I. If W ||= [✓]@I then it is said

that that a sensing action occurs at instant I in W w.r.t. to D, and that s is

activated at I in W w.r.t. D. Let (W,H) be an h-world. For any instant I 2 I,

soccD((W,H), I) is defined as

{((✓, X), V, V 0) | s is an s-proposition in D, sig(s) = (✓, X),
W ||= [✓ ^X=V ]@I, ((✓, X), V 0) 2 H(I)}

[end definition]

For example, the blood-test s-proposition (EP9) is activated at 1 in W e
1 w.r.t.

De, and, since W e
1 ||= [DoBlTe ^ DrHaEp= false]@1 and ((DoBlTe,DrHaEp),630

true) 2 He
1(1), then soccDe

((W e
1 , H

e
1), 1) = {((DoBlTe,DrHaEp), false, true)}.

We can now define the following well-behavedness property for h-worlds.

For an h-world to be well-behaved, it must satisfy the closed world assumption

for sensing and acting (CWSA). This ensures that the history gives exactly one

sensed value for each of the s-propositions activated in the world (condition (i)),635

no sensed values where no s-proposition is activated (condition (ii)), and also

that the history properly describes the agent’s awareness of its own actions in

the world (condition (iii)):

Definition 3.33 (CWSA). Given a domain description D, an h-world (W,H)

satisfies the closed world assumption for sensing and acting (CWSA) w.r.t. D

if for each I 2 I:

(i) for each s-proposition s activated at I in W , (sig(s), V ) 2 H(I) for

exactly one value V ,

(ii) for each ((✓, X), V 0) 2 H(I) there is an s-proposition in D with signature

(✓, X) activated at I in W , and

(iii) for each A 2 Aa, A 2 H(I) if and only if W ||= [A= true]@I.

[end definition]

Inspection of the h-world (W e
1 , H

e
1) illustrated on page 31 shows that it meets640

the three conditions above and therefore satifies the CWSA w.r.t. De.

We next address the issue of assigning an overall probability to an entire
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h-world (W,H). We start by assigning a probability to H conditioned on W ,

which we call an evaluation of H w.r.t. W . Definition 3.34 below says that the

evaluation of H given W is the product of the accuracy matrix entries for each of645

the sensing results contained in H. To aid reading of this definition, recall (from

Definition 3.12) that M(✓, X) refers to the accuracy matrix in the s-proposition

with unique signature (✓, X) (where ✓ is the condition of the s-proposition and

X is the fluent being sensed). The elementM(✓, X)i,j in M(✓, X) represents the

probability that, given that Vi is the actual value of X when ✓ occurs, the value650

Vj is sensed. Recall also (from Definition 3.32) that soccD((W,H), I) gives a

sensed value of a fluent according to H together with the actual value according

to W , which in turn identify this specific element in M(✓, X).

Definition 3.34 (History Evaluation). Let D be a domain-description, (W,H)

an h-world, and JW
H = {I | I 2 I, soccD((W,H), I) 6= ;} (i.e. JW

H is the set of

instants at which some sensing occurs). For all I 2 JW
H let

Mprod
W
H (I) =

Y

((✓,X),Vi,Vj)2soccD((W,H),I)

M(✓, X)i,j

where for each expression in this product Vi and Vj are the ith and jth elements

of vals(X) respectively. The evaluation of H given W w.r.t. D is defined as:

✏D(H | W ) =

8
><

>:

0 if (W,H) does not satisfy the CWSA

1 if (W,H) satisfies CWSA and JW
H = ;

Q
I2J

W

H

Mprod
W
H (I) otherwise

For a class [H]<I of indistinguishable sensing histories up to I, ✏D([H]<I | W )

denotes the sum: X

H0
2[H]<I

✏D(H
0 | W )

[end definition]

Note that ✏D(H | W ) is equal to 1 when (W,H) satisfies the CWSA and there655

are no sensing occurrences, because there is no uncertainty that is coming from

sensing noise. When there are sensing occurrences, the first (inner) product

in the definition allows for concurrent (and potentially conflicting) sensing at

any particular instant, whereas the second (outer) product allows for di↵erent

instants at which sensing occurs along the time-line. The use of products re-660
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flects the fact that we consider sensing acts to be probabilistically independent

(no sensing act interferes with any other, even when they are concurrent). For

the h-world (W e
1 , H

e
1) illustrated on page 31, JW e

1
He

1
= {1}, soccDe

((W e
1 , H

e
1),

1) = {((DoBlTe,DrHaEp), false, true)}, and so Mprod
W e

1
He

1
(1) = M(DoBlTe,

DrHaEp)0,1 = 0.1 (see (EP9) in Appendix C). Therefore ✏De
(He

1 | W e
1 ) = 0.1,665

and since in this particular case He
1 is the only history that can be paired with

W e
1 so that (W e

1 , H
e
1) satisfies the CWSA, ✏De

([He
1 ]<2 | W e

1 ) = 0.1.

Two key ideas underly the remaining definitions for EPEC’s semantics. The

first is the intuition that, from the point of view of an agent residing in world W

after experiencing all the events in a particular history H, the domain descrip-670

tion D can e↵ectively be “reduced” to a corresponding ne-domain description.

This is because the belief-conditioned decisions embedded in the p-propositions

will have already been made, making those p-propositions no di↵erent in retro-

spect from o-propositions with either a true or a false condition, and the relevant

probabilities from matrix entries in the s-propositions can be accounted for by675

the overall probability of the history H given the world W . This idea moti-

vates the notion of a reduct in Definitions 3.37 and 3.38 below. The second idea

is that, using the product rule p(X,Y ) = p(Y |X)p(X) for random variables

X and Y from probability theory (notation here as in [30]), we can express a

probability distribution over h-worlds in terms of a marginal probability p(W )680

for each world and a conditional probability p(H |W ) for each history given a

particular world. We already have two such candidate probability distributions,

Mne
N

and ✏D, from Definitions 3.28 and 3.34 respectively. Definition 3.36 be-

low utilises these to provide a general joint probability distribution called the

pre-model-function, written M̃N

D
, with respect to any domain description D and685

ne-domain description N . However, the subsequent focus will then be on ne-

domain descriptions N that are reducts of D in the sense described informally

above.

In order to re-express p-propositions as o-propositions in a reduct ne-domain

description, we need to re-classify agent actions as environmental actions in the690

underlying domain language:
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Definition 3.35 (Ne-transform of a Domain Language). The ne-transform of a

domain language L = hF ,A,Ae,Aa,V, vals, I,, 0̄i, written Lne, is the domain

language hF ,A,Ae [Aa, ;,V, vals, I,, 0̄i. (i.e. Agent actions are re-classified

as environmental actions.) [end definition]

We now give the definition of a pre-model function M̃N

D
. Intuitively, this is

the probability distribution over h-worlds induced by D and N which describes

the likelihood for a given world W and history H of the agent receiving the695

sensory input in H and evaluating it according to the s-propositions in D, but

acting and causing change according to W and evaluating this according to N .

As indicated above, for generality this abstract definition is for an arbitrary

D and N . But, for a given D, our objective in subsequent definitions is to

identify the unique N (the “reduct”) that mirrors the rational behaviour of the700

agent according to its full specification in D. This provides a stepping-stone

to enable the full epistemic semantics of EPEC to be couched in terms of its

non-epistemic part. Note that including o-propositions in N that mirror some

of the p-propositions in D is the key to identifying this unique N .

Definition 3.36 (Pre-model-function). Given a domain description D written

in language L and an ne-domain description N written in Lne, the pre-model-

function of D w.r.t. N is the function M̃N

D
: W ⇥H 7! [0, 1] (with H defined in

L) defined as:

M̃N

D
(W,H) =

(
✏D(H |W ) ·Mne

N
(W ) if W 2WN

0 otherwise

The domain of M̃N

D
is extended to equivalence classes of histories and to i-

formulas in the usual way:

M̃N

D
(W, [H]<I) =

X

H0
2[H]<I

M̃N

D
(W,H 0)

M̃N

D
(', H) =

X

W ||='

M̃N

D
(W,H) and M̃N

D
(', [H]<I) =

X

W ||='

M̃N

D
(W, [H]<I)

[end definition]

705

The following proposition establishes that M̃N

D
is indeed a probability dis-

tribution over the set of h-worlds.
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Proposition 3.2. Let D and N be domain and ne-domain descriptions in lan-

guages L and Lne respectively. The pre-model-function M̃N

D
of D w.r.t. N is a

probability distribution over W ⇥H, i.e.
P

(W,H)2W⇥H
M̃N

D
(W,H) = 1.

Proof: See Appendix D.2. ⌅
As an example pre-model-function, consider M̃Ne

De
, where De is the do-710

main description (EP1)–(EP11) listed in Appendix C, and Ne is the ne-domain

description that consists of propositions (EP1)–(EP8) together with the o-

propositions

DoBloodTest occurs-at 1 (EP12)

TakeEpecillin occurs-at 2 (EP13)715

Note that the world W e
1 illustrated on page 31 is a well-behaved world with

respect to Ne (i.e. W e
1 2 WNe

). Inspection of the probabilities embedded in

(EP4), (EP5), (EP6) and (EP8) of Appendix C shows that Mne
Ne

(W e
1 ) = 0.8 ⇥

0.95⇥0.25⇥0.15 = 0.0285. The calculations on page 34 give ✏De
(He

1 | W e
1 ) = 0.1,

so M̃Ne

De
(W e

1 , H
e
1) = 0.1⇥ 0.0285 = 0.00285.720

The next definition takes us a step closer to formalising the notion of a reduct

of a domain description (discussed informally on page 34) by specifying how to

either eliminate a p-proposition or convert it to an o-proposition with respect

to a probability distribution over worlds:

Definition 3.37 (Covers, Reduct of a p-proposition). Let p be the p-

proposition “A performed-at I with-prob P+
if-believes (✓, P̄ )” in the lan-

guage L, o be the o-proposition “A occurs-at I with-prob P+” in the lan-

guage Lne, and d be a probability distribution over worlds. Then d covers p if
P

W ||=[✓]@I d(W ) 2 P̄ . In this case p reduces to the singleton set {o} and {o}

is the reduct of p w.r.t. d. Otherwise p reduces to ; and and ; is the reduct of

p w.r.t. d. [end definition]

725

Clearly, for any d (EP10) reduces to {(EP12)}, and (EP11) reduces to either

{(EP13)} or ; depending on whether
P

W ||=[DrHaEp]@2 d(W ) > 0.5 or not.

Definition 3.38 below states that the reduct of a domain descriptionD w.r.t. a

history H is D itself but with all s-propositions removed, and each p-proposition
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replaced with its reduct. For each p-proposition, the probability distribution730

used in its reduction is conditional on the probability of the history H up to the

instant of the p-proposition (expressed as an equivalence class of indistinguish-

able histories). This is because it is the agent’s sensing and acting history up

to that instant that influences its belief in the condition of the p-proposition.

Definition 3.38 is stated in general terms for any probability distribution d over735

the set of h-worlds, but in subsequent definitions the probability distribution

used in the reduction will be the pre-model-function M̃N

D
[see Definition 3.36].

(Note that if d gives a zero probability for a particular equivalence class of

indistinguishable histories then any associated conditional probability is unde-

fined, so, for mathematical completeness, in this case we use the unconditional740

marginal probability d over worlds to reduce the p-proposition, although histo-

ries with zero probability do not contribute to EPEC’s semantics in subsequent

definitions.)

Definition 3.38 (Reduct of a Domain Description). Let D be domain descrip-

tion, d be a probability distribution over W ⇥ H and H be a history. Then

the reduct of D w.r.t. d and H is the ne-domain description obtained by first

removing all the s-propositions and p-propositions from D, and then for each

removed p-proposition p with instant I, conjoining the ne-domain description

with the reduct of p w.r.t. the probability distribution d( · | [H]<I) over W,

defined as follows:

d( · | [H]<I) =

8
>><

>>:

P
H02[H]<I d( · , H 0)
P

H02[H]<I d(H
0)

if
P

H02[H]<I d(H
0) 6= 0

d( · ) if
P

H02[H]<I d(H
0) = 0

[end definition]

Definition 3.39 and Proposition 3.3 below show that for a given history H745

there is at most one “reasonable” reduct of a domain description D, which we

denote RD

H . Definition 3.39 also implicitly gives a theoretical procedure for

finding RD

H , as follows: (i) Arbitrarily generate an ne-domain description N

from D by deleting all the s-propositions, replacing some of the p-propositions

by equivalent but conditionless o-propositions, and deleting the rest of the p-750
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propositions (at most 2n such N s may be generated in this way, where n is the

number of p-propositions in D). (ii) Form the pre-model-function M̃N

D
with the

arbitrarily chosen N . (iii) Reduce D w.r.t. M̃N

D
and H. (iv) If step (iii) results

in N itself, then N is in fact RD

H . If it does not, go back to step (i).

Definition 3.39 (Reduct Set). Let D be a domain description and H a history.

Then the reduct set of D w.r.t. H, denoted R(D, H), is the set of ne-domain

descriptions such that N 2 R(D, H) if and only if the reduct of D w.r.t. the

pre-model-function M̃N

D
and history H is N itself. [end definition]

755

Proposition 3.3. Let D be a domain description and H a history. Then the

reduct set R(D, H) of D w.r.t. H contains at most one element. If R(D, H) 6= ;

this unique element is denoted RD

H .

Proof: See Appendix D.3. ⌅
The intuition behind Proposition 3.3 is that for a completely specified sensor

input stream (as defined by H) the agent’s belief state is uniquely and fully

determined at every instant, and therefore, since the agent must exactly follow760

the prescription of what to perform provided by the p-propositions in D, this

will result in a unique sequence of agent action performances (re-expressed as

additional o-propositions in the reduct). The p-propositions in D not re-instated

as o-propositions inRD

H are exactly those whose belief-preconditions are not met

by the agent’s belief state w.r.t. H.765

For the “epectisis” domain De, it turns out that Ne = RDe

H1
e

[see pages 31

and 36]. This is because plugging in the condition of (EP11) into Definitions 3.37

and 3.38 and referring to the various probabilities embedded in De’s propositions

gives
P

W ||=[DrHaEp]@2 M̃
Ne

De
(W | [He

1 ]<2) = 0.9264, and this value falls within

(0.5, 1] so that (EP11) reduces to (EP13).770

We can now formally define when an h-world is well-behaved, giving a second

criterion by applying Definition 3.24 of a well-behaved world w.r.t an ne-domain

description using RD

H . (Recall that the first criterion is that the h-world satisfy

the CWSA as discussed on page 32):
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Definition 3.40 (Well-behaved h-world). Let D be a domain description. The

h-world (W,H) is well-behaved w.r.t. D if (i) it satisfies the CWSA, and (ii)

R(D, H) is non-empty and W is well-behaved w.r.t. RD

H . [end definition]

775

Since by inspection W e
1 is well-behaved w.r.t. Ne = RDe

H1
e

, then (W e
1 , H

e
1) is

well-behaved w.r.t. De.

We can now state the main overarching definition for the semantics of EPEC.

Definition 3.41 defines the model-function mapping from h-worlds to [0, 1] (anal-

ogous to the ne-model function for ne-domains – see Definition 3.28), and Propo-780

sition 3.4 immediately after confirms that the model-function is a probability

distribution over h-worlds:

Definition 3.41 (Model Function). The model-function of a domain descrip-

tion D is the function MD : W ⇥H 7! [0, 1] defined as follows:

MD(W,H) =

(
M̃

R
D
H

D
(W,H) if (W,H) is well-behaved w.r.t. D

0 otherwise
(16)

[end definition]

Proposition 3.4. Let D be a domain description. Then the model-functionMD

of D is a probability distribution over W⇥H, i.e.
P

(W,H)2W⇥H
MD(W,H) = 1.

Proof: See Appendix D.4. ⌅785

Since MD is a joint probability distribution over worlds and histories, we

can refer to marginal probabilities MD(W ), MD(H), MD([H]<I), etc. and con-

ditional probabilities MD(W | H), MD(H | W ), MD(W | [H]<I) etc. using the

standard definitions. Like Mne
N

, MD can also be straightforwardly extended to

provide probabilities for i-formulas: MD(', H) =
P

W ||='MD(W,H).790

At the beginning of Section 3 on page 10 we informally described how domain

descriptions entail b-propositions. We can now formally define this entailment,

starting with the definition of the general form of a b-proposition:
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Definition 3.42 (b-proposition). A b-proposition has the form

at I believes ' with-probs {([H1], B1, P1), . . . , ([Hm], Bm, Pm)}

for some instant I, i-formula ', and real numbers B1, . . . , Bm 2 (0, 1] and

P1, . . . , Pm 2 [0, 1] such that
Pm

i=1 Bi = 1. Each [Hi] is an equivalence class

[Hi]<I of histories represented as “hHi(I1)@I1, . . . , Hi(In)@Ini” for instants

I1, . . . , In such that, for 1  j  n, Ij < I and Hi(Ij) 6= ;, and with repetitions

of actions entailed by a sensing outcome in Hi(Ij) removed5. [end definition]

We use the model-function MD to ascertain when a b-proposition is entailed795

by a domain descripion D:

Definition 3.43 (Entailment for Domain Descriptions). The b-proposition

“at I believes ' with-probs {([H1], B1, P1), . . . , ([Hm], Bm, Pm)}” is en-

tailed by the domain description D i↵, for 1  i  m, MD(' | [Hi]<I) = Pi and

MD([Hi]<I) = Bi. [end definition]

Intuitively, if a domain description D entails a b-proposition

at I believes ' with-probs {([H1], B1, P1), . . . , ([Hm], Bm, Pm)}

this means that at instant I the agent will believe that the i-formula ' holds

with one of the probabilities P1, . . . , Pm depending on the input/output from its800

sensors/e↵ectors, which is “recorded” in [Hi] and has an associated probability

Bi of actually being experienced/executed. One example of a b-proposition

entailed by De is that on page 11, repeated here for convenience:

at 3 believes [¬DrHaEp]@3 with-probs

{ (h{((DoBlTe,DrHaEp), false)}@1i, 0.425, 0.9314),805

(h{((DoBlTe,DrHaEp), true)}@1, {TkEc}@2i, 0.575, 0.9907) }

(see page 11 for a natural language interpretation of this). Other examples are:

at 0 believes [DocHasEpectisis= true]@0 with-probs {(hi, 1, 0.57)}

which reads “the doctor currently (instant 0) has a 57% belief that she has

epectisis”, and810

5For example, {((DoBlTe,DrHaEp), false),DoBlTe}@1 has the repeated DoBlTe removed
so that it is written simply as {((DoBlTe,DrHaEp), false)}@1.
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at 0 believes [DocHasSideE↵ects= true]@3 with-probs {(hi, 1, 0.087675)}

which reads “the doctor currently (instant 0) has a 8.77% belief that she will

have side e↵ects after executing her plan (instant 3)”.

4. Comparison with Existing Formalisations

In this section we examine the relationship of our approach to existing for-815

malisations for representing dynamic probabilistic domains. In sub-sections 4.1

and 4.2 we demonstrate a formal equivalence between EPEC and two estab-

lished frameworks for probabilistic reasoning about actions, in cases where the

classes of representable domain features coincide. In both cases we do this by

showing that probabilistic entailment is preserved under a general translation820

procedure into EPEC. The two formalisations that we translate are PAL (“Prob-

abilistic Action Language”) [6], and the extended Situation Calculus framework

proposed by Bacchus, Halpern and Levesque [3] which we will refer to here

as “BHL” after its authors. In sub-section 4.3 we present a feature chart to

summarise and contrast the types of domain phenomena that these and various825

other frameworks are able to represent and reason about.

4.1. PAL and EPEC

PAL is a widely cited, probabilistic version of the language A [19], and as

such inherits a basic ontology of actions and fluents, thus supporting reasoning

about the e↵ects of (all) hypothetical action sequences arranged in a situation-830

calculus-like tree structure, as opposed to the likelyhood and likely consequences

of actual action occurrences embedded in an independent time line (i.e. proba-

bilistic narrative reasoning). Its development was motivated by a desire for an

elaboration tolerant representation of Markov decision processes, and was influ-

enced by Pearl’s work on functional causal models [29]. The authors remark that835

“our formulation can be considered as a generalization of Pearl’s formulation of

causality to a dynamic setting with a more elaboration tolerant representation”.

PAL does not support epistemic features such as sensing and belief-conditioned

actions, and so is compared here with non-epistemic EFEC.
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4.1.1. PAL Syntax and Semantics840

For readability and to avoid ambiguity, in the remainder of Section 4.1,

PAL terms appear with an overhead dot (˙) wherever they might otherwise be

confused with a similar EPEC term.

A PAL language signature is divided into four sorts: Ḟ for fluents, U̇I for

inertial unknown variables, U̇N for non-inertial unknown variables, and Ȧ for845

actions. A PAL theory is a set of propositions, each of which belongs to one

of three categories: the domain description language PALD, the probability

description language PALP , or the observation language PALO. The semantics

of PAL defines an entailment relation |=PAL between PAL theories and queries

defined in a fourth category called the query language PALQ.850

We next describe the general forms of propositions in each of these four PAL

categories, using the same conventions as in [6] – that  ̇ is a fluent formula, '̇ is

a formula of fluents and unknown variables (both inertial and non-intertial), ✓̇

is a formula of fluent and inertial variables, u̇ is an unknown variable, ȧ is an ac-

tion, and ṅ is a real value in [0, 1]. PALD consists of dynamic causal laws of the855

form “ȧ causes  ̇ if '̇”, static causal laws of the form “✓̇ causes  ̇”, and exe-

cutability conditions of the form “impossible ȧ if '̇”. PALP consists of propo-

sitions of the form “probability of u̇ is ṅ”. PALO consists of propositions of

the form “ ̇ obs after ȧ1, . . . , ȧn”, with “initially  ̇” being a shorthand for

“ ̇ obs after ȧ1, . . . , ȧn” when ṅ = 0. Finally, PALQ consists of queries of the860

form “probability of ['̇ after ȧ1, . . . , ȧn] is ṅ”.

For full formal details of the semantics of PAL the reader is referred to [6],

but we summarise them here, highlighting the parts and notation needed to

describe the relationship of PAL to EPEC. Fluents and unknown variables are

Boolean-valued, and a state ṡ is an interpretation of fluents and unknown vari-865

ables that obeys the constraints imposed by the static causal laws in PALD,

regarded as classical implications. The u-state ṡu is ṡ but excluding the inter-

pretation of fluents, the set of states İ(ṡu) is defined as {ṡ0 | ṡ0u = ṡu}, and

ṡN signifies the interpretation of only the non-inertial unknown variables in ṡ.
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Following action language convention, the propositions in PALD characterise870

a unique transition function �̇ such that �̇(ȧ, ṡ) is the set of states that may

be reached after executing action ȧ in state ṡ. �̇ is defined, and in particular

takes into account static causal laws, in much the same way as in earlier work

by McCain and Turner [32], and is recursively extended to sequences of actions

in a standard way. However, �̇ imposes no constraints on the way non-inertial875

unknown variables change during a transition, thus allowing these variables

to be used to introduce random factors into actions’ e↵ects, with frequencies

controlled by the probability distribution defined via the propositions in PALP .

Inertial unknown variables play a similar randomising role, but their values can-

not change at all during a sequence of state transitions so that they e↵ectively880

introduce an random element only to the intial state. Finally, the hypothetical

observations in PALO indirectly filter out some of the otherwise possible combi-

nations of initial values for fluents and unknown variables, so that the entailed

probabilities in queries are conditional probabilities, conditioned the probability

of initially being in a state not excluded by PALO propositions.885

Only a limited number of the EPEC propositions (EP1)-(EP11) listed in

Appendix C (modelling the Epectisis Example 1.1) are translatable into PAL.

The v-propositions (EC1)-(EC3) are implicit in PAL since all fluents and un-

known variables are Boolean. The i-proposition (EC4) is not translatable into

PAL, because PAL does not provide a mechanism to assign di↵ering probabil-890

ities to intial values of fluents.6 The narrative proposition (EP5), stating that

the doctor probably had skin contact with the patient, can also not be repre-

sented in PAL, since, although [6] includes some brief proposals about extending

PAL with narrative capabilities, these do not include the possibility of attaching

probabilities to action occurrences. And since PAL does not model epistemic895

features, (EP9)–(EP11) are also not translatable. However, PAL can encapsu-

late (EP6)–(EP8), modelling the basic causal information in this domain, in a

6One way to approximate this functionality in PAL might be to introduce an “initialising”
action into the language, with probabilistic e↵ects, and insist that each query included this
as the first action in the query’s action sequence.
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succinct fashion as follows:

˙SkinContact causes ˙DocHasEpectisis (PAL-EP1)900

if ( ˙PatientHasEpectisis ^ ˙Inertial1)

probability of ˙Inertial1 is 0.75 (PAL-EP2)

˙TakeEpecillin causes ¬ ˙DocHasEpectisis (PAL-EP3)905

if ( ˙DocHasEpectisis ^ ˙Inertial2)

probability of ˙Inertial2 is 0.99 (PAL-EP4)

˙TakeEpecillin causes ˙DocHasSideE↵ects if ˙Inertial3 (PAL-EP5)910

probability of ˙Inertial3 is 0.15 (PAL-EP6)

We can also model the assumption that the doctor does not initially have epec-

tisis with the hypothetical observation915

initially ¬ ˙DocHasEpectisis (PAL-EP7)

(PAL-EP1)–(PAL-EP7) together entail queries such as

920

probability of [ ˙DocHasEpectisis after ˙SkinContact , ˙TakeEpecillin]
is (0.5⇥ 0.75⇥ 0.01)

The 0.5 in the above proposition reflects the fact that PAL’s semantics automat-

ically assigns a 0.5 initial unconditional probability to ˙PatientHasEpectisis, as925

it does to all fluents in the absence of any static causal laws. This example also

illustrates a limitation to the sense in which PAL is elaboration tolerant: the

two possible e↵ects of taking epecillin – curing epectisis and giving side-e↵ects –

are able to be represented in two separate dynamic causal laws, (PAL-EP3) and

(PAL-EP5). But this separation relies on the fact that the two e↵ects are prob-930

abilistically independent and so can be modelled using two (probabilistically

independent) inertial unknown variables ˙Inertial2 and ˙Inertial3.

To summarise, unlike EPEC, PAL does not support the modelling of do-
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mains that include probabilistic information about initial fluent values, prob-

abilistic information about action occurrences, probabilistic events in the en-935

vironment, non-boolean fluents, concurrent actions, or epistemic features such

as sensing and belief-conditioned actions. On the other hand, EPEC does not

support counterfactual probabilistic reasoning (enabled in PAL via hypotheti-

cal observations). However, we show in the next sub-sections, culminating in

Proposition 4.1, that PAL domains where all hypothetical observations concern940

the initial state can be encoded as equivalent EPEC domains, with the action

sequences in PAL queries interpreted as simple EPEC narratives, and that in

these cases the numerical probabilities in PAL and EPEC entailments coincide.

For the remainder of Section 4.1, we assume a finite PAL language signa-

ture hḞ, U̇I , U̇N , Ȧi, a PAL theory P consisting of a finite number of PALD945

and PALP propositions and a single PALO proposition “initially  ̇0”, and a

PAL query Q =“probability of ['̇q after ȧ1, . . . , ȧk] is n”. We define a cor-

responding EPEC domain language (see Definition 3.1) with respect to P and Q

as L(P,Q) = hḞ[U̇I[U̇N , Ȧ, Ȧ, ;, hfalse, truei, {0, . . . , k}, , 0i. In other

words, we regard all PAL fluents and unknown variables as EPEC fluents, all950

PAL actions as EPEC environmental actions (because PAL is non-epistemic),

and form the set of EPEC instants from the number of actions in the PAL query

Q under consideration plus an initial instant 0. Without loss of generality we

also assume that for any two distinct dynamic causal laws “ȧ causes  ̇ if '̇”

and “ȧ causes  ̇0 if '̇0” in PALD it is the case that '̇ |= ¬'̇0, and that for each955

action ȧ there is exactly one executability condition “impossible ȧ if '̇a” (if ȧ

is always executable then '̇a = ?). 7 We will refer to a PAL theory that meets

all of these requirements as being normalised, and futhermore assume that P

is consistent in the sense that PALD permits at least one state ṡ such that

ṡ |=  ̇0 and PALP contains exactly one proposition for each unknown variable960

7Any pair of PAL dynamic causal laws “ȧ causes  ̇ if '̇” and “ȧ causes  ̇0 if '̇0” can
be re-written as the three laws “ȧ causes  ̇ ^  ̇0 if '̇ ^ '̇0”, “ȧ causes  ̇ if '̇ ^ ¬'̇0” and
“ȧ causes  ̇0 if ¬'̇ ^ '̇0”. Any pair of executability conditions “impossible ȧ if '̇a” and
“impossible ȧ if '̇a

0” can be re-written as “impossible ȧ if '̇a _ '̇a
0”.
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that specifies a unique probability in the range (0, 1).

4.1.2. PAL to EPEC Domain Encoding

We form an EPEC domain descriptionN (P,Q) from the PAL domain theory

P and query Q as follows. The unique i-proposition in N (P,Q) is

initially-one-of {(ṡ1, Ṗ (ṡ1)), . . . , (ṡn, Ṗ (ṡn))}

where {ṡ1, . . . , ṡn} is the set of PAL states (defined via the static causal laws

in PALD), and Ṗ (ṡi) is the unconditional probability of state ṡi as defined

in equation (0.7) of [6] (i.e. Ṗ (ṡ) = Ṗ (ṡu)
|I(ṡu)|

, where Ṗ (ṡu) is a simple product965

of probabilities/complement-probabilities taken from PALP propositions). For

each action ȧi appearing in Q = “probability of ['̇q after ȧ1, . . . , ȧk] is n”

we include the o-proposition “ȧi occurs-at i� 1 if-holds ¬ ˙'ai
”.

To translate each PAL dynamic causal law into a set of EPEC c-propositions,

we first define the formula only(ȧ) for each ȧ 2 Ȧ as follows:

only(ȧ) = ȧ ^

0

B@
^

ȧ02
˙
A,ȧ0 6=ȧ

¬ȧ0

1

CA

Given the dynamic causal law “ȧ causes  ̇ if '̇” in PALD, then for each state

ṡ such that ṡ |= '̇ ^ ¬'̇a and �̇(ȧ, ṡ) = {ṡ1, . . . , ˙sm}, N (P,Q) includes the

c-proposition

only(ȧ) ^ ṡ causes-one-of {(ṡ1, Ṗȧ(ṡ1 | ṡ)), . . . , ( ˙sm, Ṗȧ( ˙sm | ṡ))}

where Ṗȧ(ṡ0 | ṡ), the conditional probability of transitioning to ṡ0 due to ȧ given

ṡ, is as defined in equation (0.9) of [6] (i.e. Ṗȧ(ṡ0 | ṡ) = 2|U̇N |

|�̇(ȧ,ṡ)|
· Ṗ (ṡ0N )).8970

8There is a typographical error in equation (0.9) of [6], where 2|U̇N |

|�̇(ȧ,ṡ)| is incorrectly written

as |�̇(ȧ,ṡ)|
2|U̇N | . This is corrected by the authors in [33].
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4.1.3. Correspondence between entailments

Given the above encoding from PAL domain theories to EPEC ne-domains,

we can now state an equivalence between PAL and EPEC entailments as follows:

Proposition 4.1 (PAL/EPEC Correspondence). Let P be the normalised, con-

sistent PAL theory PALD [ PALP [ {“initially  ̇0”}, let Q be the PAL query

“probability of ['̇q after ȧ1, . . . , ȧk] is n”, let N (P,Q) be the EPEC encod-

ing of P and Q, and let ↵ be the EPEC i-formula [ȧ1]@0 ^ . . . ^ [ȧk]@k � 1.

Then P |=PAL Q if and only if

⇣
N (P,Q)

��� [ ̇0]@0
⌘

||= ↵ ^ ['̇q]@k holds-with-prob n

Proof: See Appendix D.5. ⌅975

Note that in the case where one or more of ȧ1, . . . , ȧk are non-executable, both

EPEC and PAL will calculate n as equal to 0. This is ensured in the EPEC

entailment by the inclusion of ↵ as a conjunct in the h-proposition. Conversely,

when no actions have executability conditions ↵ is true in all EPEC well-behaved

worlds and so has a probability of 1.980

Proposition 4.1 shows a general correspondence between PAL and EPEC

even when PAL domains include static causal laws (often referred to elsewhere

as ramifications). For the sake of generality, the particular EPEC encodings

of PAL domains used in Proposition 4.1 are very much less compact than the

PAL representations. However, in practice, for many domains (especially those985

without static causal laws) these EPEC representations can, by inspection, be

reduced to equivalent EPEC domains that are very much more compact. For

example, [6] includes the following probabilistic version Pys of the Yale Shooting

Problem as a PAL domain:

990

˙Shoot causes ¬ ˙Alive if ˙Loaded ^ u̇1 (PAL-YS1)

˙Load causes ˙Loaded if u̇2 (PAL-YS2)

probability of u̇1 is p1 (PAL-YS3)995
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probability of u̇2 is p2 (PAL-YS4)

initially ˙Alive ^ ¬ ˙Loaded (PAL-YS5)
1000

and shows that Pys |=PAL probability of [ ˙Alive after ˙Load , ˙Shoot ] is 1�p1.p2.

The EPEC encoding procedure described above encodes (PAL-YS1) and (PAL-

YS2) as a total of 12 separate c-propositions, and includes each of the 16 PAL

states as an initial outcome in the EPEC i-proposition. However, clearly in this

case the domain can be reduced to an equivalent EPEC ne-domain Nys that1005

dispenses with the unknown variables, as follows:

Shoot ^ ¬Load ^ Loaded causes-one-of {({¬Alive}, p1), (;, 1� p1)} (YS1)

Load ^ ¬Shoot causes-one-of {({Loaded}, p2), (;, 1� p2)} (YS2)1010

initially-one-of {({Alive,¬Loaded}, 1)} (YS3)

Load occurs-at 0 (YS4)
1015

Shoot occurs-at 1 (YS5)

It is straightforward to show thatNys ||= [Alive]@2 holds-with-prob 1�p1 ·p2.

4.2. BHL and EPEC

We now turn our attention to the “BHL” extension of the Situation Calculus1020

(SC) described by Bacchus, Halpern and Levesque in [3] to enable probabilistic

reasoning about noisy sensors and e↵ectors. BHL builds upon the SC-based

solution to the frame problem employed in Reiter’s basic action theories (BATs)

(see e.g. [11]). We assume here that the reader is somewhat familiar with this

standard variant of the situation calculus, and so restrict ourselves to a few1025

summarising remarks9. BATs are sorted classical logic theories with sorts for

actions and situations. Boolean-valued fluents are represented by predicates and

non-Boolean fluents by functions, and in both cases these are parameterised by

9Additionally, Bacchus et al. o↵er a concise four page summary of BATs in Section 2 of [3].
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a situation argument thus allowing their (truth-)value to change from situation

to situation. For example, the formula10 Holding(x, s) ^ ¬Broken(x, s) might1030

represent that the agent is holding unbroken object x in situation s. The term

do(a, s) represents the situation arising from performing action a in situation

s, so that do(drop(x), s) might signify the situation resulting from dropping

object x in situation s. Foundational axioms ensure that all situations are either

initial11 or equal to a nested do term rooted at an initial situation, that there1035

is an actual initial situation S0 and that situations rooted at di↵erent initial

situations or arising from di↵erent action sequences are distinct. A unique

precondition axiom for each action A of the form Poss(A, s) ⌘ �(A, s) for some

formula � specifies the necessary and su�cient characteristics of A and s for A

to be executable in s, e.g. Poss(drop(x), s) ⌘ Holding(x, s). The various ways1040

in which actions cause changes in the world are captured by e↵ect axioms, such

as Poss(drop(x), s)! Broken(x, do(drop(x), s)). Reiter’s solution to the frame

problem involves mechanically transforming the collection of e↵ect axioms into

a set of successor-state axioms, one for each fluent, that completely specify

the state of each fluent after any particular executable action is performed in1045

any particular situation. For example, the successor state axiom for Broken

might be Poss(a, s)! [Broken(x, do(a, s)) ⌘ (a=drop(x)_ (Broken(x, s)^ a 6=

mend(x)))]. BATs also include uniqueness-of-names axioms for actions and,

optionally, axioms (partially) describing the initial situation.

In addition to building on BATs, BHL utilises notation developed to repre-1050

sent “complex”, possibly non-deterministic actions in the SC-based golog pro-

gramming language [34]. Complex action abbreviations are defined recursively

using the primitive actions in BATs as a base case. The abbreviation Do(�, s, s+)

signifies that s+ is a possible situation arising from executing the complex ac-

tion � in situation s. For a primitive (deterministic) action a, Do(a, s, s+) is1055

10In all formulas, free variables are taken to be implicitly universally quantified with maxi-
mum scope.

11This is a relaxation of Reiter’s original constraint that there be a unique initial situation
S0, necessary to model epistemic domains.
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an abbreviation for Poss(a, s) ^ s+ = do(a, s). golog, and hence BHL, rep-

resents a non-deterministic action as an arbitrary choice among a collection of

deterministic actions. In particular, if �x is an action term containing the free

variable x then the complex action term ⇡x.�x represents the more specific action

formed by arbitrarily choosing a particular value for x. Hence Do(⇡x.�x, s, s+)1060

is an abbreviation for 9x.Do(�x, s, s+). Other complex action abbreviations

are defined via the Do predicate in a similar way: Do(�1, s, s+) _ Do(�2, s, s+)

abbreviates to Do(�1 | �2, s, s+) to represent non-deterministic binary choice,

and Do([�1; �2], s, s+) is an abbreviation for 9s0.(Do(�1, s, s0) ^ Do(�1, s0, s+)),

to represent sequencing.1065

Bacchus et al. illustrate BHL’s approach to representing noisy sensors and

e↵ectors with a running example of a robot moving along an unbounded one-

dimensional surface, supposing that the robot has only imperfect control of its

movement via a “noisy-advance” action, and only imperfect ability to ascertain

its current position via a “noisy-sense-position” sensing action. We employ this1070

same example to summarise BHL’s features here. The fact that in attempt-

ing to move x units the robot might in fact move y units is modelled with the

definitional axiom noisy-advance(x)
def
= ⇡y.advance(x, y), where the primitive ac-

tion advance(x, y) means “actually move y units while attempting to move x

units”. A bound b on the numerical di↵erence between x and y is achieved1075

with the Poss predicate: Poss(advance(x, y), s) ⌘ |x � y|  b. The robot can

only perform advance(x, y) indirectly via noisy-advance(x). A similar mechanism

is employed to model the robot’s limited ability to sense its current position.

The primitive sensing action sense-position(x, y) means “sense that the posi-

tion is x when the actual position is y”. In this case the robot has no direct1080

control over either x or y, since y is defined by the current situation and x

by the degree of reliability of its sensor. Hence the robot can only directly

perform a parameter-free noisy-sense-position action defined by the expression

noisy-sense-position
def
= ⇡x, y.sense-position(x, y), with an associated precondi-

tion axiom Poss(sense-position(x, y), s) ⌘ y = position(s) ^ |x � y|  c.1085

We refer here to actions such as noisy-advance(x) and noisy-sense-position that
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directly correspond to activations of the robot’s a↵ectors and sensors as agent-

performable. We follow BHL terminology in referring to the first x argument

in advance(x, y) and sense-position(x, y) as the nominal value of these primitive

non-agent-performable actions, and the second y argument as the actual value.1090

The epistemic features of BHL build upon the work of Moore [1] and Scherl

and Levesque [21]. A binary fluent K is included in the language as a dynamic

accessibility relation between situations. An agent is deemed to know in situa-

tion s that a situation-parameterised formula � is true precisely if it is true of

all situations s0 such that K(s0, s). The formula 8s0.K(s0, s)! �[s0] expressing1095

this is abbreviated in BHL to Know(�[sknow ], s), where sknow is a special “place-

holder” situation term. The successor-state axiom for K is a modification of the

successor-state axiom in [21] that takes into account the agent’s awareness of

the imprecision of its e↵ectors (ordinary actions) and sensors (sensing actions)

using a notion of observational indistinguishability (OI), explained below.1100

Observational indistinguishability is modelled using a ternary predicate Oi.

The expression Oi(a, a0, s) signifies that in situation s the agent cannot distin-

guish between actions a and a0. A BHL theory is assumed to include a collec-

tion of observation-indistinguishability-axioms (OIAs) of the form Oi(a, a0, s) ⌘

�(a, a0, s), one for each primitive action a. An agent-performable complex action1105

that includes the possibility of executing a must therefore also include the alter-

native possibilities of executing any action observation-indistinguishable from a.

In the robot example, the OIA for advance is Oi(advance(x, y), a0, s) ⌘ 9y0.a0=

advance(x, y0), and the OIA for sense-position is Oi(sense-position(x, y), a0, s) ⌘

9y0.a0=sense-position(x, y0), reflecting that the robot is only aware of the nomi-1110

nal values, and not the actual values, of these two actions. The successor-state

axiom for K, which takes observational indistinguishability into account and

reflects the fact that noisy actions decrease the precision of knowledge, is:

Poss(a, s)!
[K(s0+, do(a, s)) ⌘ 9a0, s0.(Poss(a0, s0)^s0+=do(a0, s0)^Oi(a, a0, s)^K(s0, s))]1115

To allow the addition of probabilistic information to a domain description,

51



BHL incorporates two real-valued functions, p and `. The functional fluent

p(s0, s) is analogous to K(s0, s) and represents the relative degree of belief

or weight the agent assigns situation s0 from the standpoint of s. The ini-

tial relationship between p and K is given by the extra foundational axiom

8s.p(s, S0) � 0 ^ (¬K(s, S0) ! p(s, S0) = 0), ensuring that initial situations

known to be impossible are given a zero weighting. The additional logical ap-

paratus involving the function ` described below ensures that analogous con-

straints continue to hold in all subsequent situations. The agent’s degree of

belief in a formula � when in situation s is written Bel(�[sknow ], s), which is an

abbreviation for the expression:

P
{s0:�[s0]} p(s

0, s)
P

s0 p(s
0, s)

Although it is not part of the notation in [3], in the discussion below we will

refer to the denominator
P

s0 p(s
0, s) in this expression as Prob(s), noting that

Bel(�[sknow ], s) is undefined when Prob(s)=0. For a complex action term � we

will write Prob(�, s)=r as an abbreviation for Do(�, s, s0)! Prob(s0)=r.1120

The expression `(a, s) (“`” for “likelihood”) is the probability of primitive

action a being selected for execution among all its OI alternatives when an agent-

performable action encapsulating these alternatives is executed. ` is constrained

to be a probability distribution over each OI set of actions in every situation,

via a set of domain-dependent action-likelihood axioms of the form `(a, s) =1125

z ⌘ �(a, s). For example, in the robot domain the action-likelihood axiom for

advance might be `(advance(x, y), s) =Normal((y � x)/�), where Normal is a

discrete appoximation of a Gaussian probability distribution. The successor-

state axiom for p is defined in terms of Poss, Oi and ` as follows:

Poss(a, s)! p(s0+, (a, s)) =1130

if 9a0, s0.(s0+=(a0, s0) ^ Poss(a0, s0) ^ Oi(a, a0, s))
then p(s0, s)⇥ `(a0, s)
else 0

This axiom combined with the constraints put on ` ensures that, for any situa-

tion S↵ rooted at S0 and such that Prob(S↵, S0)>0, Bel(· , S↵) is a probability1135
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function (in the sense of Definition 2.1) with respect to the set of situations K-

related to S↵ (regarded as interpretations of the fluents in the domain).

To summarise, a BHL extended action theory extends a standard BAT with:

(i) axioms for describing the initial situation in terms of the fluents K and p,

(ii) successor state axioms for K and p, (iii) one observation-indistinguishability1140

axiom for each action, (iv) one action-likelihood axiom for each action, (v)

axioms to ensure that Bel is a probability function, and (vi) abbreviations for

Know, Bel and Do and for agent-performable complex actions.

4.2.1. An Example BHL Domain and its EPEC Counterpart

Before demonstrating a formal correspondence between BHL and EPEC, we1145

give a preliminary intuition about the relationship between BHL and EPEC

representations by formulating an example domain in both frameworks. This is

a finite-domain version of the one-dimensional robot example in [3], elements of

which have already been discussed above. In what follows, we assume that the

arguments of advance are of sort {�20, . . . ,�1, 1, . . . , 20} and that the function1150

position and the arguments of sense-position are of sort {0, . . . , 20}, i.e. that

the robot can move backwards and forwards among positions 0 to 20. We

make appropriate adjustments to the precondition and action-likelihood axioms

accordingly. The domain-dependent part of the BHL theory is:

Initial beliefs:1155

Bel(position(sknow) = 10, S0) = 4/13
Bel(position(sknow) = 11, S0) = 8/13
Bel(position(sknow) = 12, S0) = 1/13

Precondition axioms:1160

Poss(advance(x, y), s) ⌘ (0  position(s)+y  20)
Poss(sense-position(x, y), s) ⌘ y=position(s)

Successor-state axiom:
Poss(a, s)! position(do(a, s)) =1165

if 9x, y.a = advance(x, y) then position(s) + y else position(s)

Observation-indistinguishability axioms:
Oi(advance(x, y), a0, s) ⌘ 9y0.a0=advance(x, y0)
Oi(sense-position(x, y), a0, s) ⌘ 9y0.a0=sense-position(x, y0)1170
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Action-likelihood axioms:
`(advance(x, y), s) =

if (0 < x+position(s) < 20) then
{ if y=x then 0.5 else if |y � x|=1 then 0.25 else 0 }1175

else if x+position(s)=0 then

{ if y=x then 0.75 else if y=x+1 then 0.25 else 0 }
else if x+position(s)=20 then

{ if y=x then 0.75 else if y=x�1 then 0.25 else 0 }
else if x+position(s)<0 then1180

{ if y+position(s)=0 then 1 else 0 }
else if x+position(s)>20 then

{ if y+position(s)=20 then 1 else 0 }

`(sense-position(x, y), s) =1185

if (0 < x < 20) then
{ if y=x then 0.5 else if |y � x|=1 then 0.25 else 0 }

else if x=0 then

{ if y=0 then 0.75 else if y=1 then 0.25 else 0 }
else if x=20 then1190

{ if y=20 then 0.75 else if y=19 then 0.25 else 0 }

Agent-performable complex actions:
noisy-advance(x)

def
= ⇡y.advance(x, y)

noisy-sense-position
def
= ⇡x, y.sense-position(x, y)1195

We will call the BHL extended action theory that includes the axioms

above TR. To translate TR into an EPEC domain description DR, we take

the set Aa of agent actions to be {NoisySensePosition,NoisyAdvance(�20), . . . ,

NoisyAdvance(�1),NoisyAdvance(1), . . . ,NoisyAdvance(20)} corresponding to1200

all ground instances of agent-performable actions in TR. As with PAL, and

since EPEC allows for concurrent action execution, we need notation to express

that only a single action is executed in a particular context. Once again we use

only(a) as an abbreviation for the formula a ^
V

a02Aa,a0 6=a¬a0. For brevity the

c-propostions specified below are expressed in terms of schemas, taking x and1205

z as meta-variables appropriately instantiated in individual propositions, and

regarding arithmetic expressions as evaluated to specific integers. DR is:

v-proposition:
Position takes-values h0, . . . , 20i
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1210

i-proposition:
initially-one-of

{({Position=10}, 4/13), ({Position=11}, 8/13), ({Position=12}, 1/13)}

c-proposition schemas:1215

for 0 < x+ z < 20:
only(NoisyAdvance(x))^Position=z causes-one-of {({Position=z+x}, 0.5),

({Position=z+x�1}, 0.25), ({Position=z+x+1}, 0.25)}

for x+ z = 0:1220

only(NoisyAdvance(x)) ^ Position=z causes-one-of

{({Position=0}, 0.75), ({Position=1}, 0.25)}

for x+ z = 20:
only(NoisyAdvance(x)) ^ Position=z causes-one-of1225

{({Position=20}, 0.75), ({Position=19}, 0.25)}

for x+ z < 0:
only(NoisyAdvance(x)) ^ Position=z causes-one-of {({Position=0}, 1)}

1230

for x+ z > 20:
only(NoisyAdvance(x)) ^ Position=z causes-one-of {({Position=20}, 1)}

s-proposition:
only(NoisySensePosition) senses Position with-accuracies M1235

where matrix M represents the distribution given by `(sense-position(x, y), s),

i.e.:

M =

0

BBBBBBBBB@

0.75 0.25 0 . . . 0 0 0
0.25 0.5 0.25 0 . . . 0 0
0 0.25 0.5 0.25 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 0.25 0.5 0.25 0
0 . . . . . . 0 0.25 0.5 0.25
0 . . . . . . . . . 0 0.25 0.75

1

CCCCCCCCCA

To describe the relationship between Bel formulas entailed by TR and b-1240

propostions entailed by DR, it is convenient to define a new BHL complex

action abbreviation noisy-sense-position(x)
def
= ⇡y.sense-position(x, y). Although

x-instantiations of noisy-sense-position(x) are not agent-performable (since the

agent cannot choose the values that its sensors detect), the agent-performable
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noisy-sense-position action can be “unfolded” into the set of all x-instantiations1245

of noisy-sense-position(x) such that Prob(noisy-sense-position(x)) > 0, each of

which corresponds to a sensing component of a particular EPEC sensing and

acting history. To illustrate, we consider the agent-performable action sequence

[noisy-advance(1); noisy-advance(�1); noisy-sense-position], which for convenience

we further abbreviate to na(1)na(�1)nsp. The abbreviation na(1)na(�1)nsp(x)1250

is similar but with noisy-sense-position action replaced by noisy-sense-position(x).

We model na(1)na(�1)nsp in EPEC by augmenting DR with a narrative

embedded in a four-instant timeline {0, 1, 2, 3} as follows:

NoisyAdvance(1) performed-at 0

NoisyAdvance(�1) performed-at 11255

NoisySensePosition performed-at 2

Let us suppose that we are interested in discovering the extent to which the

agent believes it is at position 11 after executing na(1)na(�1)nsp. Unfolding

this action sequence into all possible x-instantiations of na(1)na(�1)nsp(x) such

that Prob(na(1)na(�1)nsp(x), S0)>0 gives us the following 9 BHL entailments:1260

TR |= Do(na(1)na(�1)nsp(7), S0, s)! Bel(position(sknow)=11, s)=0

TR |= Do(na(1)na(�1)nsp(8), S0, s)! Bel(position(sknow)=11, s)=0

TR |= Do(na(1)na(�1)nsp(9), S0, s)! Bel(position(sknow)=11, s)=0

TR |= Do(na(1)na(�1)nsp(10), S0, s)! Bel(position(sknow)=11, s)=34/103

TR |= Do(na(1)na(�1)nsp(11), S0, s)! Bel(position(sknow)=11, s)=136/2351265

TR |= Do(na(1)na(�1)nsp(12), S0, s)! Bel(position(sknow)=11, s)=17/41

TR |= Do(na(1)na(�1)nsp(13), S0, s)! Bel(position(sknow)=11, s)=0

TR |= Do(na(1)na(�1)nsp(14), S0, s)! Bel(position(sknow)=11, s)=0

TR |= Do(na(1)na(�1)nsp(15), S0, s)! Bel(position(sknow)=11, s)=0

That is to say, for example, that after attempting to advance one unit forwards1270

followed by one unit backwards and then sensing its position to be 12 the robot

will believe that the probability that it is in position 11 to be 17/41. The

collection of BHL entailments above corresponds to the single EPEC entailment:
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DR ||= at 3 believes [Position=11]@3 with-probs

{(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,1275

{((NoisySensePosition,Position), 7)}@2i, 1/208, 0),
(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,

{((NoisySensePosition,Position), 8)}@2i, 1/26, 0),
(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,

{((NoisySensePosition,Position), 9)}@2i, 109/832, 0),1280

(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,
{((NoisySensePosition,Position), 10)}@2i, 103/416, 34/103),

(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,
{((NoisySensePosition,Position), 11)}@2i, 235/832, 136/235),

(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,1285

{((NoisySensePosition,Position), 12)}@2i, 41/208, 17/41),
(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,

{((NoisySensePosition,Position), 13)}@2i, 67/832, 0),
(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,

{((NoisySensePosition,Position), 14)}@2i, 7/416, 0),1290

(h{NoisyAdvance(1)}@0, {NoisyAdvance(�1)}@1,
{((NoisySensePosition,Position), 15)}@2i, 1/832, 0)}

Note that, unlike EPEC’s b-proposition, the BHL entailments provide only the

probabilistic belief in a formula given a particular sequence of sensed values,1295

and not the associated probability of experiencing those particular sensed val-

ues. However, using our additional “Prob” notation we can also generate en-

tailments such as TR |= Prob(na(1)na(�1)nsp(12), S0)=41/208 to confirm that

these associated probabilities correspond in both BHL and EPEC.

4.2.2. A General Correspondence Between BHL and EPEC1300

The translation of the one-dimentional robot domain from TR to DR gener-

alises to a wide class of finite BHL representations, as we show next.

To guarantee translatability, we impose the following restricitions on a BHL

extended action theory T . We assume the T is written in a sorted predi-

cate calculus where all sorts except the sort of situations are finite, and in1305

particular that there are a finite number of actions and fluents, with all flu-

ents being functional and taking values over finite sets. We assume T distin-

guishes between physical actions and sensing actions, with dedicated sorts for

each. Furthermore, for each agent-performable action (e.g. noisy-advance and
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noisy-sense-position) we assume there exist auxiliary actions (e.g. advance and1310

sense-position) whose purpose is to specify the error profile of the corresponding

agent-performable action. In more detail, we assume that physical actions have

the form noisy-a(x)
def
= ⇡x.a(x, y) where x is the nominal (intended) value and y is

the actual value. For these actions we assume an observation-indistinguishability

axiom of the form Oi(a(x, y), a0, s) ⌘ 9y0.a0 = a(x, y0). Similarly, we assume1315

that sensing actions have the form noisy-sense-f
def
= ⇡x, y.sense-f(x, y) where

where x is the nominal value read on the sensor and y is the actual value,

and that there is an associated observation-indistinguishability axiom of the

form Oi(sense-f(x, y), a0, s) ⌘ 9y0.a0 = sense-f(x, y0). The agent-performable

action noisy-sense-f implicitly represents the sensing of fluent f . We assume1320

that the action-likelihood axioms in T have been written in such away that

non-executable actions are given zero likelihood, i.e. that T |= ¬Poss(a, s) !

`(a, s) = 0. Finally, we assume that the initial situation is fully specified in

terms of Bel in the sense that T includes a collection of axioms of the form

Bel(�i(sknow), S0) = pi for 1  i  n, such that
Pn

i=1 pi = 1 and each �i is a1325

maximally consistent conjunction of fluent literals (corresponding to an EPEC

state). We will refer to an extended action theory with these characteristics as

a normalised theory.

The translation of T into EPEC is with respect to a given arbitrary sequence

of agent-performable actions ↵, and is written D(T ,↵). For each functional1330

fluent f of sort {v1, . . . , vn}, D(T ,↵) includes the v-proposition

F takes-values hv1, . . . , vni

and D(T ,↵) includes the i-proposition

initially-one-of {(�1, p1), . . . , (�n, pn)}

corresponding to the collection of Bel axioms regarding S0 mentioned above.1335

To specify the c-propositions in D(T ,↵) we use the e↵ect axioms relating to

physical actions from which the successor-state axioms of T have been gener-

ated. For a given agent-performable action noisy-a(x) and associated primitive

actions a(x, y) we assume these are of the general form:
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Poss(a(x, y), s) ^  1(s)! F1(do(a(x, y), s)) = v1(y)1340

...
Poss(a(x, y), s) ^  m(s)! Fm(do(a(x, y), s)) = vm(y)

and that the action-likelihood axiom for a(x, y) is of the general form

`(a(x, y), s) = if �1(x, s) then p1(x, y)
else if �2(x, s) then p2(x, y)1345

...
else if �n(x, s) then pn(x, y)
else pn+1(x, y)

Without loss of generality, we further assume that { 1(s), . . . , m(s)} can be

partitioned as { 1(s), . . . , m1(s)}[ . . .[{ mn+1(s), . . . , m(s)}, in such a way1350

that { 1(s), . . . , m1(s)} is maximally consistent with �1(x, s), { m1+1(s), . . . ,

 m2(s)} is maximally consistent with ¬�1(x, s) ^ �2(x, s), and so on, ending

with { mn+1(s), . . . , m(s)} being maximally consistent with ¬�1(x, s) ^ · · · ^

¬�n(x, s). This ensures that the preconditions of the c-propositions in the

translation are mutually exclusive. Then the following c-proposition schemas1355

are included in D(T ,↵), where groundings of x range over all values in its sort:

only(NoisyA(x)) ^ �1(x) ^  1 ^ · · · ^  m1 causes-one-of

{({F1=v1(x, g), . . . , Fm1 =vm1(x, g)}, p1(x, g)) | g is a grounding of y
in a(x, y) s.t. p1(x, g)>0}

1360

only(NoisyA(x)) ^ ¬�1(x) ^ �2(x) ^  m1+1 ^ · · · ^  m2 causes-one-of

{({Fm1+1=vm1+1(x, g), . . . , Fm2 =vm2(x, g)}, p2(x, g)) | g is a grounding of y
in a(x, y) s.t. p2(x, g)>0}

...
only(NoisyA(x)) ^ ¬�1(x) ^ · · · ^ ¬�n�1(x) ^ �n(x) ^  mn�1+1 ^ · · · ^  mn

1365

causes-one-of

{({Fmn�1+1=vmn�1+1(x, g), . . . , Fmn
=vmn

(x, g)}, pn(x, g)) | g is a grounding
of y in a(x, y) s.t. pn(x, g)>0}

only(NoisyA(x)) ^ ¬�1(x) ^ · · · ^ ¬�n(x) ^  mn+1 ^ · · · ^  m causes-one-of1370

{({Fmn+1 = vmn+1(x, g), . . . , Fm = vm(x, g)}, pn+1(x, g)) | g is a grounding
of y in a(x, y) s.t. pn+1(x, g)>0}

To generate s-propositions for the sensing action noisy-sense-f, we assume an

action-likelihood axiom for sense-f of the following general form:1375
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`(sense-f(x, y), s) = if y 6= f(s) then 0
else if �1(s) then p1(x, y)

...
else if �n(s) then pn(x, y)
else pn+1(sense-f(x, y))1380

The following s-propositions are included in D(T ,↵):

only(NoisySenseF ) ^ �1 senses F with-accuracies M1

only(NoisySenseF ) ^ ¬�1 ^ �2 senses F with-accuracies M2
...1385

only(NoisySenseF )^¬�1 ^ · · ·^¬�n�1 ^�n senses F with-accuracies Mn

only(NoisySenseF ) ^ ¬�1 ^ · · · ^ ¬�n senses F with-accuracies Mn+1

where Mi is defined for each i 2 {1, . . . , n} as:

Mi =

0

BBB@

pi(v1, v1) . . . pi(vm, v1)
...

...
...

pi(v1, vm) . . . pi(vm, vm)

1

CCCA

and v1, . . . , vm are the values fluent F can take, ordered as in the corresponding

v-proposition.

The agent-performable action sequence ↵ translates straightforwardly to an1390

EPEC narrative. If ↵=[noisy-act1; . . . ; noisy-actk] then we assume a timeline of

instants {0, 1, . . . , k} and include the following p-propositions in D(T ,↵):

NoisyAct1 performed-at 0
...

NoisyActk performed-at k � 11395

Proposition 4.2 below shows how entailments from T and D(T ,↵) corre-

spond. In the statement of the theorem, the notation T ([H]), where [H] is a

history component within a b-proposition, signifies the BHL action sequence ex-

tracted from [H] in which nominal (sensed) values of sensing actions have been

instantiated to match the corresponding sensed values in [H]. (For example, if1400

[H]0 = h{NoisyAdvance(4)}@0, {((NoisySensePosition,Position), 6)}@1i then

60



T ([H]0) is [noisy-advance(4); noisy-sense-position(6)]).

Proposition 4.2 (BHL/EPEC Correspondence). Let T be a normalised ex-

tended action theory and let ↵ be an executable sequence of n agent-performable

actions. Let � = {↵1, . . . ,↵m} be the maximal set of distinct executable ac-

tion sequences such that for each ↵i 2 �, Prob(↵i, S0) > 0 and ↵i has been

obtained from ↵ by replacing each noisy sensing action, say ⇡x, y.sense-f(x, y),

with ⇡y.sense-f(v, y) for some sensed value v for the nominal variable x. Then

for all 1  i  m, T |= Do(↵i, S0, s)! Bel(�[sknow ], s) = Pi

if and only if

D(T ,↵) ||= at n believes [�]@n with-probs P

where P = {([H1], B1, P1), . . . , ([Hm], Bm, Pm)} is such that for each 1  i  m

T ([Hi])=↵i and Bi=Prob(↵i, S0).

Proof: See Appendix D.6. ⌅

4.2.3. Representing the Epectitis Example in BHL1405

We conclude our discussion of BHL by examining the extent to which Exam-

ple 1.1 (epectisis) can be represented as a BHL extended action theory, in order

to give some additional insight into the relationship between BHL and EPEC.

As is the case for PAL, not all of the EPEC propositions (EP1)-(EP11) for this

domain (listed in Appendix C) are translatable into BHL. BHL does not include1410

mechanisms to model arrative information, i.e. information about what actions

actually occur at di↵erent timepoints, such as that contained in (EP5), (EP10)

and (EP11). Moreover, the occurrence of SkinContact is probabilistic in this

narrative (with a probability of 0.95 that it occurred), and the occurrence of

TakeEpecillin is probabilistic-belief-conditioned. The capacity of an SC-based1415

framework to model these additional types of action characteristics has, to our

knowledge, not yet been explored.

We therefore focus on representing the e↵ects (modelled in (EP6)–(EP8))

of actions SkinContact and TakeEpecillin, and of sensing action DoBloodTest
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(described in (EP9)). Both of these actions are non-deterministic, and so in1420

BHL need to be represented by a collection of obesrvationally-indistinguishable,

deterministic primitive actions, one for each possible non-deterministic outcome.

The action TakeEpecillin may or may not cure epectisis and may or not

cause side e↵ects, so four BHL primitive action versions are needed to cover

the possible combinations of these eventualities. We therefore define the agent-1425

performable action take-epecillin as:

take-epecillin[ ] | take-epecillin[¬e] | take-epecillin[s] | take-epecillin[¬e,s]

where the symbols ¬e and s in [ ]’s indicate the eventualities of curing epectisis

and causing side e↵ects respectively. Similarly, we have:

skin-contact
def
= skin-contact[ ] | skin-contact[e]1430

For this domain we can assume all primitive actions are always executable, i.e.

8a, s.Poss(a, s). So the successor-state axioms for the fluents docHasEpectisis

and docHasSideE↵ects are:

docHasEpectisis(do(a, s)) ⌘ (a=skin-contact[e] _
(docHasEpectisis(s) ^ a 6= take-epecillin[¬e] ^ a 6= take-epecillin[¬e,s]))1435

docHasSideE↵ects(do(a, s)) ⌘
(docHasSideE↵ects(s) _ a= take-epecillin[s] _ a= take-epecillin[¬e,s])

Observation-indistinguishability (OI) axioms are need for each primitive action,

all of the same general form. For example, the OI axiom for take-epecillin[ ] is:1440

Oi(take-epecillin[ ], a0, s) ⌘ (a0= take-epecillin[ ] _
a0= take-epecillin[¬e] _ a0= take-epecillin[s] _ a0= take-epecillin[¬e,s])

The probabilistic information contained in (EP6)–(EP8) is encapsulated in six

action-likelihood axioms:

`(skin-contact[e], s) = if patientHasEpectitis(s) then 0.75 else 01445

`(skin-contact[ ], s) = if patientHasEpectitis(s) then 0.25 else 1

`(take-epecillin[¬e,s], s) = if docHasEpectitis(s) then 0.1485 else 0

`(take-epecillin[¬e], s) = if docHasEpectitis(s) then 0.8415 else 0

`(take-epecillin[s], s) = if docHasEpectitis(s) then 0.0015 else 0.15

`(take-epecillin[ ], s) = if docHasEpectitis(s) then 0.0085 else 0.851450

To represent (EP9) in BHL, we need two versions of DoBloodTest , so we
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define do-blood-test
def
= do-blood-test[�] | do-blood-test[+] where do-blood-test

is agent-performable, and the primitive actions on the righthand side of the

definition represent the blood test actions that return negative and positive

results respectively. Their observation-indistinguishability axioms are:1455

Oi(do-blood-test[�], a0, s) ⌘ a0=do-blood-test[�]

Oi(do-blood-test[+], a0, s) ⌘ a0=do-blood-test[+]

and the likelihood axioms for each are:

`(do-blood-test[�], s) = if ¬docHasEpectitis(s) then 0.9 else 0.05

`(do-blood-test[+], s) = if ¬docHasEpectitis(s) then 0.1 else 0.951460

Finally, we can translate the initial conditions in (EP4) to:

Bel(patientHasEpectitis(sknow) ^ ¬docHasEpectitis(sknow)
^ ¬docHasSideE↵ects(sknow), S0)=0.8

Bel(¬patientHasEpectitis(sknow) ^ ¬docHasEpectitis(sknow)1465

^ ¬docHasSideE↵ects(sknow), S0)=0.2

It is straightforward to confirm that for this domain EPEC and BHL entail-

ments also coincide, for those parts of the narrative that can be approximated

with a BHL Do term. For example, if we label the above BHL encoding as Te
then we have:1470

Te |= Do([skin-contact; do-blood-test[�]], S0, s)!
Bel(docHasEpectisis(sknow), s)=1/13

Te |= Prob([skin-contact; do-blood-test[�]], S0)=39/100
1475

Te |= Do([skin-contact; do-blood-test[+]], S0, s)!
Bel(docHasEpectisis(sknow), s)=57/61

Te |= Prob([skin-contact; do-blood-test[+]], S0)=61/100

These entailments coincide with:1480

(De | [SkinContact= true]@�1) ||=
at 2 believes [DocHasEpectisis= true]@2 with-probs

{(h{((DoBloodTest ,DocHasEpectisis), false)}@1i, 39/100, 1/13),
(h{((DoBloodTest ,DocHasEpectisis), true)}@1i, 61/100, 57/61)}
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Classical logic formalism X X X
Action language X X X X X

Supports narratives X X X X X X X
Functional fluents X X X X X

Elaboration tolerant X X* X X X
Supports ramifications X X X
Supports qualifications X X
Probabilistic reasoning X X X X X X X X
Epistemic reasoning X X X X X
Concurrent actions X X X X X X
Triggered actions X X X
Imperfect sensing X X X

Reasoning about knowledge

of past, present and future
X X

Belief conditioned actions XX X X
Supports continuous

probability distributions
X XXX

Supports only knowing X
Mixes probabilities

and non-determinism
X X X

Table 1: A ‘feature chart’ of frameworks for Reasoning About Actions and some of the domain
features they support. The double checkmark (XX) indicates that EPEC can model actions
whose epistemic precondition incorporates strengths of belief. The triple checkmark (XXX)
indicates that BHL can deal seamlessly with discrete and continuous probability distributions.
The checkmark with star (X*) indicates that Modular-E is both ‘modular’ and elaboration
tolerant and argues the inseparability of these properties.
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4.3. Other Related Work and a Feature Chart1485

To conclude this section, we provide a brief survey of other languages for

Reasoning About Actions that also support some form of uncertain reasoning.

In particular we compare these in Table 1 in terms of the domain features

they support. Although our focus is on probabilistic reasoning, Table 1 also

lists two non-probabilistic languages that have influenced our work, Modular-1490

E [17] and EFEC [5], since they include features such as the ability to reason

about knowledge of past, present and future, and support for resolving conflicts

between concurrent actions.

BHL [3], already discussed in detail in Section 4.2, is a cornerstone of early

work integrating probabilistic degrees of belief with logical aparatus for reason-1495

ing about actions, and has served as an inspiration for similar approaches (e.g.

[35]). Although it does not support narrative reasoning and belief-conditioned

actions, it has been extended and enriched with several other features not pro-

vided for by EPEC. For example, [4, 38] add support for continuous (as well as

mixed) probability distributions, and [39] applies BHL and these extensions to1500

the problem of localisation, i.e. to the case where an agent moves in a (multi-

dimensional) world and can sense its position. The problem of extending BHL

with a modality known as ‘only knowing’, which allows for a precise specification

of what is and what is not known within a logical theory of actions, has also been

tackled in [40]. The Probabilistic Situation Calculus [35] (‘PSC’ in Table 1) is1505

similar to BHL in that it is based on Reiter’s Situation Calculus, and supports

continuous probability distributions and observations. Its semantics is given in

terms of randomly reactive automata and implemented in Mathematica.

PAL, already discussed in detail in Section 4.1, provides an action-language

representation for Markov Decision Processes. Although it is ontologically close1510

to the Situation Calculus, it allows for a limited class of non-probabilistic nar-

ratives. Additionally, it incorporates a degree of elaboration tolerance – the

end-user can define additional random variables alongside an existing theory

provided these variables are probabilistically independent. PAL does not sup-

port sensing or epistemic reasoning, and so in these repects the planning-oriented1515
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action language E+ [37] is an advance. E+ supports both sensing and belief-

conditioned actions, and the authors of [37] provide algorithms for the e�cient

computation of plans, which makes it an advanced tool for epistemic planning.

However, sensing actions are always assumed to be perfect and so the associ-

ation of a confusion matrix (see EPEC’s Definition 3.12) with its semantics is1520

not supported.

The Event Calculus has not been enhanced with any form of probabilistic

reasoning until more recently. To our knowledge, the first attempts to do so are

MLN-EC [36] and the closely related Prob-EC [7]. These two languages give a

probabilistic semantics to the Event Calculus, respectively using Markov Logic1525

Networks [41] and a recent probabilistic dialect of Prolog called ProbLog [42].

Both are based on a discrete-time reworking of the Event Calculus and applied to

the task of event recognition, where a set of complex activities must be detected

when a set of time-stamped short-term activities is received as input. They

provide separate support for causal rules (MLN-EC) and probabilistic events1530

(Prob-EC), which in EPEC are integrated together. These two frameworks

have opened the way for other probabilistic extensions of the Event Calculus.

For example, [43] extends Prob-EC to deal with uncertain event observations,

uncertain e↵ects, and uncertain composite event definitions.

Outside of the immediate sub-field of Reasoning about Actions, the area of1535

Contingent Planning deals with the problem of (e�ciently) generating plans in

non-deterministic environments, sometimes under uncertainty [44, 45, 46]. As in

the domains EPEC aims to model, this leads to the necessity of including sensing

actions in plans, and generates plans that branch according to each possible

outcome of these sensing actions. Although the main focus of this area of1540

research is on procedures for planning rather than on knowledge representation,

we envisage that the problem of synthesizing plans in EPEC could fruitfully

exploit this body of work.
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5. Implementation of EPEC

Although full technical descriptions and evaluations of implementations of1545

EPEC are beyond the scope of this paper, in this section we briefly outline

our implementation experiments to date12. Prior work in [8] describes a prov-

ably exact implementation of PEC (a subset of the non-epistemic fragment of

EPEC), using the Answer Set Programming grounder and solver Clingo [47] to

generate well-behaved worlds and determine their probability mass in order to1550

answer temporal projection queries. However, as discussed elsewhere (see e.g.

[36]), similar implementations do not scale well for a wide set of domains. For

this reason, other implementations have been developed and/or are currently

under development with a view to answering queries e�ciently. A runtime ASP

version of the implementation proposed in [8], augmented with epistemic capa-1555

bilities, is currently being developed within the context of the AVATEA project

[48], where it is being used for recognising and reacting to high-level activities

detected from data-streams annotated with probabilities. In this runtime ver-

sion, only queries about the present state of the world are allowed. To adjust

for this constraint, new events are recompiled in a new i-proposition as they1560

are received. This makes the reasoning task lighter and allows for e�cient com-

putation of exact probabilities, at the expense of the ability to reason about

the past. An ASP implementation of the full EPEC is also available, which

exploits Clingo’s integration with Python to implement the reduct mechanism.

Preliminary experiments indicate that it su↵ers from scalibility issues similar to1565

those of [8], but we envisage that it might be used e↵ectively for applications

where the system is not required to produce immediate answers, e.g. for story

understanding.

In order to provide an implementation for application areas that require

12Some of the existing implementations are publicly available: see https://github.com/
dasaro/pec for the ASP implementation of the non-epistemic fragment of EPEC, https:
//github.com/dasaro/pec-anglican for the approximate Anglican implementation of the
non-epistemic fragment of EPEC, https://gitlab.com/fdasaro/pec-runtime for the runtime
ASP version, or https://gitlab.com/fdasaro/epec-vanilla for an ASP implementation of
full EPEC.
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scalability, we have also experimented with approximate inference methods.1570

Our experiments have involved transforming EPEC domains into corresponding

partially observable Markov decision processes (POMDPs) [49] (or MDPs in the

case of non-epistemic domains) and then sampling from them. We have used

Anglican [50], a probabilistic programming language, for this, since it allows

one to describe a model and then use in-built sampling algorithms to perform1575

probabilistic inference.

6. Summary, Discussion and Future Work

This paper presents and describes the action language EPEC – Epistemic

Probabilistic Event Calculus – that combines epistemic, probabilistic, causal

and narrative reasoning within a natural and intuitive syntax. A key feature1580

of EPEC is that it supports the representation of, and reasoning about, un-

certain (i.e. probabilistic) information concerning narratives which can contain

two di↵erent types of events: environmentally triggered action occurrences, and

belief-conditioned agent action executions. In particular, agent actions may si-

multaneously trigger changes in the environment and allow fluent values to be1585

perfectly or imperfectly sensed by the agent. Both environmental and agent ac-

tions may occur concurrently, and the underlying time structure can be either

discrete or continuous. Concurrent sensing conflicts are appropriately resolved.

The semantics of EPEC takes advantage of both a modal logic possible-worlds

approach to reasoning about knowledge, and a Bayesian view of probability that1590

generalises the notion of knowledge (true belief) to that of justified belief. The

resultant formalism allows us to model and reason about an important class of

domains that to our knowledge are not easily or adequately representable by

existing frameworks. For example, a large proportion of medical and other tech-

nical information is both probabilistic and causal in nature, and it is common to1595

take a scenario- or narrative-based approach to reasoning about such domains.

Our future work plans include experimenting with EPEC as a decision support

tool in such contexts, for example by developing appropriate front-end inter-
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faces that allow it be be used directly by patients choosing between alternative

courses of treatment for medical conditions.1600

The syntax and associated semantics of EPEC could in future be expanded

in a number of ways. In particular, the reduct mechanism employed within

the semantics in Section 3.4 relates an agent’s sensing history to the actual

environmental history in a global, non-temporally directed way, and this opens

the possibility of extending EPEC in order to model agent actions conditioned1605

by beliefs about future as well as past states. For example, an expanded syntax

might include p-propositions containing i-formulas rather than formulas, such

as
A performed-at I with-prob P+

if-believes (do-results-in ', P̄ )

A performed-at I with-prob P+
if-believes (dont-do-results-in ', P̄ )

where the i-formula ' potentially refers to instants both before and after I.

Although the focus of this paper has been in providing a logical formalism1610

for the declarative specification of a class of domains, we are mindful of the

need to engineer implementable frameworks. [8] describes an Answer Set Pro-

gramming (ASP) approach to implementing an earlier (slightly more restrictive)

class of ne-domain descriptions. We have already made progress in expanding

this implementation to epistemic domains (see the footnotes in Section 5 for1615

availability of code), and aim to empirically evaluate the e�ciency of this im-

plementation using a variety of domains and automated tasks. We have also

experimented with computing approximate EPEC entailments using the prob-

abilistic programming language Anglican. Emprical comparisons of these two

types of implementation will allow us to investigate the trade-o↵, if any, between1620

ine�ciency and approximation.

Finally, we would like to explore various modes of reasoning using EPEC as

an undelying semantic foundation. As mentioned in Section 5 we have developed

a preliminary translation of EPEC domains into partially observable Markov de-

cision processes (POMDPs) [49], which opens the possibility of developing an1625

EPEC-based approach to epistemic planning building upon the growing body

of existing work on probabilistic planning using POMDP models, probabilistic
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programming and related techniques, e.g. [51, 52, 53]. Moreover, as manu-

ally encoding domains to represent real world problems raises concerns around

imprecision and cost, we also aim to explore methods for approximating real1630

world domains from observed narratives. Most straightforwardly, we envisage

combining a pre-defined EPEC domain description template with associated

observed narratives to perform probabilistic inference (e.g. see [30]) on free-

parameters within the template, such as the probabilities of a c-proposition13.

More ambitiously, we would like to explore how domain descriptions might be1635

automatically or semi-automatically learned at a deeper structural level.
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A. Notation and Notational Conventions Used in Section 3

Symbol(s) Used For See Def(s)

I the set of all instants Def. 3.1 (p. 12)

I, I 0, I1, I 00, I2, . . . elements of I (instants) Def. 3.1 (p. 12)

A, Ae, Aa

the sets of all actions,
environmental actions and agent

actions
Def. 3.1 (p. 12)

A,A0, A1, A00, A2, . . . elements of A (actions) Def. 3.1 (p. 12)

F the set of all fluents Def. 3.1 (p. 12)

F, F 0, F1, F 00, F2, . . . elements of F (fluents) Def. 3.1 (p. 12)

V the set of all values Def. 3.1 (p. 12)

V, V 0, V1, V 00, V2, . . . elements of V (values) Def. 3.1 (p. 12)

⇥ the set of all formulas Def. 3.4 (p. 14)

✓, ✓0, ✓1, ✓00, ✓2, . . . formulas Def. 3.4 (p. 14)

� the set of all i-formulas Def. 3.4 (p. 14)

','0,'1,'00,'2, . . . i-formulas Def. 3.4 (p. 14)

P, P 0, P1, P 00, P2, . . .
real values in [0, 1]
(probabilities)

P+, P+
1 , P+

2 , . . .
real values in (0, 1] (non-zero

probabilities)

S the set of all states Def. 3.7 (p. 16)

S, S0, S1, S00, S2, . . . elements of S (states) Def. 3.7 (p. 16)

X the set of all partial states Def. 3.7 (p. 16)

X,X 0, X1, X 00, X2, . . . elements of X (partial states) Def. 3.7 (p. 16)

S̃ the set of all fluent states Def. 3.7 (p. 16)

1800

table continued on next page
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Symbol(s) Used For See Def(s)

S̃, S̃0, S̃1, S̃00, S̃2, . . . elements of S̃ (fluent states) Def. 3.7 (p. 16)

X̃ the set of all partial fluent states Def. 3.7 (p. 16)

X̃, X̃ 0, X̃1, X̃ 00, X̃2, . . .
elements of X̃ (partial fluent

states)
Def. 3.7 (p. 16)

�F , �A restriction operators for states
and partial states

Def. 3.7 (p. 16)

O the set X̃ ⇥ (0, 1] of all outcomes Def. 3.8 (p. 16)

O,O0, O1, O00, O2, . . . elements of O (outcomes) Def. 3.8 (p. 16)

�, ⇡
projection functions for

outcomes, weight for a set of
outcomes

Defs 3.8, 3.9
(p. 16)

D, D0, Dx, etc. domain descriptions Def. 3.14 (p. 19)

N , N 0, Nx, etc. ne-domain descriptions Def. 3.15 (p. 20)

W the set of all worlds Def. 3.16 (p. 20)

W,W 0,W1, . . . elements of W (worlds) Def. 3.16 (p. 20)

||= satisfaction/entailment for
worlds/i-formulas

Def. 3.17 (p. 21)

CWA
Closed World Assumption for

Actions
Def. 3.18 (p. 22)

ic, ic0, etc. initial choice Def. 3.19 (p. 22)

occD(W )
the set of instances for which a

cause occurs in W
Def. 3.20 (p. 23)

cprop
D
(W, I)

the c-proposition activated at I
in W

Def. 3.20 (p. 23)

ec, ec0, etc. e↵ect choice Def. 3.21 (p. 23)

S̃ � X̃ update of S̃ w.r.t. X̃ Def. 3.22 (p. 23)

WN

the set of well-behaved worlds
w.r.t. N Def. 3.24 (p. 24)

table continued on next page
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Symbol(s) Used For See Def(s)

||=N N -entailment Def. 3.25 (p. 25)

tr, tr0, . . . trace Def. 3.26 (p. 26)

✏(tr) evaluation of a trace Def. 3.26 (p. 26)

✏(N ,W ) evaluation of a narrative Def. 3.27 (p. 27)

Mne
N

ne-model-function Def. 3.28 (p. 27)

((✓, X), V ) sensing outcome Def. 3.29 (p. 29)

H the set of all sensing and acting
histories (histories)

Def. 3.30 (p. 30)

H,H 0, H1, H 00, H2, . . . elements of H (histories) Def. 3.30 (p. 30)

[H]<I
class of histories

indistinguishable from H up to I
Def. 3.30 (p. 30)

(W,H) h-world Def. 3.31 (p. 30)

((✓, X), V, V 0) sensing occurrence Def. 3.32 (p. 32)

soccD((W,H), I)
the set of sensing occurrences in

(W,H) at I
Def. 3.32 (p. 32)

CWSA
closed world assumption for

sensing and acting
Def. 3.33 (p. 32)

✏D(H | W )
history evaluation (of H given

W w.r.t. D)
Def. 3.34 (p. 33)

M̃N

D

pre-model-function of D w.r.t.
N Def. 3.36 (p. 35)

R(D, H) reduct set of D w.r.t. H Def. 3.39 (p. 38)

RD

H reduct of D w.r.t. H
Prop. 3.3
(p. 38)

MD model-function Def. 3.41 (p. 39)

table continued on next page1805
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Proposition Proposition Form Intuitive meaning

v-proposition F takes-values hV1, . . . , Vmi
Declares what values
fluent F may take

o-proposition
A occurs-at I with-prob

P+
if-holds ✓

Environmental action
A occurs at instant I
with probability P+ if

formula ✓ holds

p-proposition
A performed-at I

with-prob P+
if-believes

(✓, P̄ )

Agent action A is
performed at instant I
with probability P+ if
formula ✓ is believed to
hold with probability
in the interval P̄

c-proposition ✓ causes-one-of {O1, . . . , Om}

For each Oi = (X̃i, P
+
i )

there is a probability of
P+
i that formula ✓ will
cause the changes
identified in partial

fluent state X̃i

i-proposition initially-one-of {O1, . . . , Om}

For each Oi = (S̃i, P
+
i )

there is a probability of
P+
i that the initial

state of the world is
the one identified in
the fluent state S̃i

s-proposition
✓ senses X

with-accuracies M

✓ holding causes the
value of the fluent or
action X to be sensed
with accuracy given by
the confusion matrix

M
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B. Probability Tree Diagram for the Epectisis Example

Figure 1: Tree diagram of potential events in the epectitis Example 1.1. Columns refer to key
aspects on which the narrative may di↵er, and forks indicate narrative branches with branching
probabilities given. Nodes labelled: ? indicate that the infection status of the patient can take
either value; DrCaEp ( ¬DrCaEp) indicate that the Doctor does (does not) catch Epectitis
from the patient; +ve (-ve) indicate a positive (negative) blood test; and DrHaEp (¬DrHaEp)
indicate that the doctor has (does not have) epectitis at the final instant. Other labels reuse
shorthand introduced in Section 3.4.
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C. Domain Language and Description for Example 1.1

This is the EPEC domain language and domain description De for the Epectisis

example, for simplicity taking the set of instants to be a finite set of integers.1810

Domain language: hFdoc,Adoc,Adoc
e ,Adoc

a ,Vdoc, valsdoc, Idoc,,�1i, where

• Fdoc = {PatientHasEpectisis,DocHasEpectisis,DocHasSideE↵ects},

• Adoc
e = {SkinContact},

• Adoc
a = {DoBloodTest ,TakeEpecillin},1815

• Vdoc = {true, false},

• Idoc = {�1, 0, 1, 2, 3}.

Domain description De:
1820

PatientHasEpectisis takes-values hfalse, truei (EP1)

DocHasEpectisis takes-values hfalse, truei (EP2)

DocHasSideE↵ects takes-values hfalse, truei (EP3)1825

initially-one-of (EP4)
{ ({PatientHasEpectisis= true,DocHasEpectisis= false,

DocHasSideE↵ects= false}, 0.8),
({PatientHasEpectisis= false,DocHasEpectisis= false,1830

DocHasSideE↵ects= false}, 0.2) }

SkinContact occurs-at �1 with-prob 0.95 (EP5)

(SkinContact= true ^ PatientHasEpectisis= true) (EP6)1835

causes-one-of { ({DocHasEpectisis= true}, 0.75), (;, 0.25) }

TakeEpecillin= true ^DocHasEpectisis= true causes-one-of (EP7)
{ ({DocHasEpectisis= false,DocHasSideE↵ects= true}, 0.1485),
({DocHasEpectisis= false}, 0.8415),1840

({DocHasSideE↵ects= true}, 0.0015),
(;, 0.0085) }

TakeEpecillin= true ^DocHasEpectisis= false causes-one-of (EP8)
{ ({DocHasSideE↵ects= true}, 0.15),1845

(;, 0.85) }
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DoBloodTest= true senses DocHasEpectisis (EP9)
with-accuracies

✓
0.9 0.1
0.05 0.95

◆
1850

DoBloodTest performed-at 1 (EP10)

TakeEpecillin performed-at 2 (EP11)
if-believes (DocHasEpectisis= true, (0.5, 1])1855

Example EPEC entailments:

“The doctor currently has a 57% belief that she has epectisis”:
De ||= at 0 believes [DocHasEpectisis= true]@0 with-probs {(hi, 1, 0.57)}

1860

“At time 3 [i.e. after the blood test and possibly taking epicillin] there is a 0.425
probability that the blood test will have shown negative, in which case the doc-
tor will be 93.14% sure she does not have the disease, and a 0.575 probability
that the blood test will have shown positive, in which case the doctor will have
taken epecillin and will therefore be 99.07% confident that she no longer has1865

the disease”:
De ||= at 3 believes [DocHasEpectisis= false]@3 with-probs

{ (h{((DoBloodTest ,DocHasEpectisis), false)}@1i, 0.425, 0.9314),
(h{((DoBloodTest ,DocHasEpectisis), true)}@1, {TakeEpecillin}@2i, 0.575, 0.9907)}

1870

“The doctor currently has a 8.77% belief that she will have side e↵ects after
executing her plan”:
De ||= at 0 believes [DocHasSideE↵ects= true]@3 with-probs {(hi, 1, 0.087675)}
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D. Proofs of Propositions1875

D.1. Proof of Proposition 3.1

The statement of the proposition is:

Proposition 3.1. Given an ne-domain description N [see Def. 3.15], the ne-

model Mne
N

: WN 7! [0, 1] [see Def. 3.28] is a probability distribution over WN .

We prove this using a series of auxilliary definitions, notation, lemmas and

corollaries as follows.1880

Definition D.1 (Restricted Domain Description). Let N be an ne-domain de-

scription. NI denotes the ne-domain description obtained from N by remov-

ing all o-propositions with instants > I, N<I denotes the ne-domain descrip-

tion obtained by removing all o-propositions with instants � I, and N; de-

notes the ne-domain description obtained by removing all o-propositions, i.e.

N; = N<0̄. [end definition]

Definition D.2 (Fluent-indistinguishable, Indistinguishable). Let W and W 0

be worlds and I be an instant. W is fluent-indistinguishable from W 0 up to I

i↵ W (I 0)�F = W 0(I 0)�F for all I 0  I. W is indistinguishable from W 0 up to

I i↵ it is fluent indistinguishable from W 0 up to I and W (I 0) = W 0(I 0) for all

I 0 < I. [end definition]

Definition D.3 (Occurence Narrative). An occurrence narrative (usually de-

noted as N with appropriate subscript/superscript) is a finite set of o-

propositions. For N an ne-domain description, the occurrence narrative

narr(N ) is the set of o-propositions in N . As an extension of Definition 3.27,

the evaluation of an occurrence narrative N w.r.t. a world W , denoted ✏(N,W ),

is defined as: ✏(N,W ) =
Y

o2N

✏(o,W ).

If N contains no o-propositions then ✏(N,W ) = 1. [end definition]

Definition D.4 (InstantOf). For an o-proposition o, instantOf (o) signifies the

instant o has, and for an occurrence narrative N this is extended to:

occInstants(N) = {instantOf (o) | o 2 N} [end definition]
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Notation D.1 (Expanded Notation for a Trace). [see Def 3.26] We will some-

times write the trace hic, eci of W w.r.t. N as the tuple hic, ec(I1), . . . , ec(In)i

of outcomes, where {I1, . . . , In} = occD(W ) and Ij < Ij+1 for all 1  j < n.

1885

The transition function in the following definition gives the probability of

moving from state S to the fluent state S̃0 within N , independently of its par-

ticular narrative:

Definition D.5 (Transition Set, Transition Function). Given an ne-domain

description N , a state S and a fluent state S̃0, the transition set tsetN (S, S̃0) is

defined as follows:

• if N contains a (unique) c-proposition c such that S |= body(c), then

tsetN (S, S̃0) = {O 2 head(c) | (S�F)� �(O) = S̃0},

• if there is no such c-proposition and S�F = S̃0 then tsetN (S, S̃0) = {(;, 1)},

• otherwise, tsetN (S, S̃0) = ;.

The transition function for N is the function tN : S ⇥ S̃ ! [0, 1] defined by

tN (S, S̃0) = ⇡(tsetN (S, S̃0)) [with ⇡ as in Definition 3.9]. [end definition]

The transition function is used in the following lemma to express Mne
N

(W )1890

in terms of the model of a well-behaved world w.r.t. an appropriately restricted

domain description:

Lemma D.1. Let N be an ne-domain description and W a world such that

occN (W ) = {I1, . . . , In} 6= ; where I1, . . . , In are ordered w.r.t. , and let c be

the c-proposition activated in W at In w.r.t. N . Then W is well-behaved w.r.t.

N if and only if (i) there exists a unique world W 0 well-behaved w.r.t. N<In

which is indistinguishable from W up to In, (ii) for all I > In, W (I)�F = S̃W
>In

where S̃W
>In

= (W (In)�F) � �(O) for some outcome O 2 head(c), and (iii) W

satisfies the CWA for actions w.r.t. N .

Furthermore, if W is well-behaved w.r.t. N , and putting N 0 = N<In , then

Mne
N

(W ) =
✏(N ,W )

✏(N 0,W 0)
·Mne

N 0(W 0) · tN (W (In), S̃
W
>In) (17)

Proof:

“Only if” subproof:1895
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Let W be well-behaved w.r.t. N . Let tr = hic, ec(I1), . . . , ec(In)i be an arbitrary

trace of W w.r.t. N and consider the tuple tr0 = hic, ec(I1), . . . , ec(In�1)i. Since

W is well-behaved w.r.t. N , since N and N<In di↵er only by one or more o-

propositions occurring at In, and since tr0 does not mention any instant strictly

greater than In�1, it is possible to construct a world W 0 well-behaved w.r.t.1900

N<In which has trace tr0 w.r.t. N<In and which is fluent-indistinguishable from

W up to instant In, by putting W 0(I) = W (I) for all I < In, W 0(I)�F =

W (In)�F for all I � In, and ¬A 2 W 0(I) for all I � In and A 2 (A). W 0

is well-behaved by construction, and unique because N<In does not contain

o-propositions with instants greater than In�1 so that no other assignment of1905

states to W 0(I) for I � In will satisfy the CWA and justified change condition

w.r.t. N<In . Condition (ii) is satisfied since W satisfies the justified change

condition w.r.t. N , and condition (iii) is satisfied by definition since W is well-

behaved.

“If” subproof:1910

Let W 0 be well-behaved w.r.t. N<In and let occN<In
(W 0) = {I1, . . . , In�1}. Let

tr0 = hic, ec(I1), . . . , ec(In�1)i be a trace of W 0 w.r.t. N<In and construct the

tuple tr = hic, ec(I1), . . . , ec(In�1), Oi for the outcome O 2 head(c) such that

(W (I)�F) = (W (In)�F)� �(O) for all I > In. Since W 0 is well-behaved w.r.t.

N<In and indistinguishable from W up to In by hypothesis (i), then tr is a1915

trace of W w.r.t. N . Since N and N<In share the same i-proposition then W

satisfies the initial condition of N . By hypothesis (ii) W satisfies the justified

change condition w.r.t. N , and so by hypothesis (iii) W is well-behaved.

“Furthermore” subproof:

Let S̃W
>In

and c be as in the statement of the proposition. The above subproofs1920

show that any trace tr of W w.r.t. N can be constructed from a trace tr0 of an

appropriate W 0 by appending some O 2 head(c) such that S̃W
>In

= (W (In)�F)�

�(O) for the mapping at In, i.e. some O 2 tsetN (W (In), S̃W
>In

).
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Definition 3.28 now implies

Mne
N

(W ) = ✏(N ,W ) ·
X

tr2traces(W,N )

✏(tr)

= ✏(N 0,W 0) · ✏(N ,W )

✏(N 0,W 0)
· ⇡(tsetN (W (In), S̃

W
>In)) ·

X

tr02traces(W 0,N 0)

✏(tr0)

=
✏(N ,W )

✏(N 0,W 0)
· tN (W (In), S̃

W
>In) ·

0

@✏(N 0,W 0) ·
X

tr02traces(W 0,N 0)

✏(tr0)

1

A

=
✏(N ,W )

✏(N 0,W 0)
· tN (W (In), S̃

W
>In) ·M

ne
N 0(W 0)

This is well defined since ✏(N 0,W 0) > 0 for any ne-domain description N 0 and

well-behaved world W 0. ⌅1925

Corollary D.1. Let N be an ne-domain description and let I be an instant.

Then W is well-behaved w.r.t. NI if and only if (i) there exists a unique world

W 0 well-behaved w.r.t. N<I which is indistinguishable from W up to I, (ii)

for all I 0 > I and, if I 2 occNI
(W ), some O 2 head(cprop

NI
(W, I)), then

W (I 0)�F = S̃W
>I where

S̃W
>I =

8
><

>:

(W (I)�F)� �(O) if I 2 occNI
(W )

W (I)�F otherwise

and (iii) W satisfies the CWA for actions w.r.t. NI .

Furthermore, when W is well-behaved w.r.t. NI :

Mne
NI

(W ) =
✏(NI ,W )

✏(N<I ,W 0)
·Mne

N<I (W
0) · tN (W (I), S̃W

>I) (18)

Proof:

If I 2 occNI
(W ) then the corollary follows directly from Lemma D.1 since the

domain description DI satisfies all of its hypotheses. If I 62 occNI
(W ) then

the if and only if parts of the corollary follow directly by setting W = W 0, and1930

as no c-proposition is activated in W at I and therefore W has the same traces

w.r.t. both NI and N<I , equation (18) follows since ✏(NI ,W ) = ✏(N<I ,W ),

Mne
NI

(W ) = Mne
N<I

(W ), and tN (W (I), S̃W
>I) = 1. ⌅
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Lemma D.2 (Transition Function Normalisation). For any ne-domain descrip-

tion N and any state S,
X

S̃02S̃

tN (S, S̃0) = 1.

Proof:1935

Proof is by cases:

Case 1. If there is no c-proposition c such that S entails body(c), then it

follows from Definition D.5 that
X

S̃0
2S̃

tN (S, S̃0) = tN (S, S�F) = ⇡((;, 1)) = 1

Case 2. Let c be the unique c-proposition such that S |= body(c). Then

applying the definition of tN from Definition D.5 gives1940

X

S̃02S̃

tN (S, S̃0) =
X

S̃0
2S̃

⇡(tsetN (S, S̃0)) (19)

Notice that for a fixed outcome O, it is impossible to have O 2 tsetN (S, S̃0) and

O 2 tsetN (S, S̃00) for two distinct fluent states S̃0, S̃00 as this would imply S̃0 =

(S�F)��(O) = S̃00. Hence it is su�cient to show that {O 2 tsetN (S, S̃0) | S̃0 2

S̃} = head(c), as this implies that the sum (19) equals 1, since ⇡(head(c)) = 1

by definition of a c-proposition.1945

By definition of a transition set, {O 2 tsetN (S, S̃0) | S̃0 2 S̃} ✓ head(c).

Conversely, for any O 2 head(c), O 2 tsetN (S, S̃0) for S̃0 = (S�F) � �(O),

hence head(c) ✓ {O 2 tsetN (S, S̃0) | S̃0 2 S̃}. ⌅

Lemma D.3 (Occurrence Narrative Normalisation). Let N be an ne-domain

description, I be an instant and NI be the (possibly empty) occurrence narra-

tive that contains exactly those o-propositions in N that have instant I. Let

{W1, . . . ,Wm} be a maximal set of well-behaved worlds w.r.t. N such that

Wi(I)�F = Wj(I)�F for all 1  i, j  m and Wi(I) 6= Wj(I) when i 6= j. Then

mX

j=1

✏(NI ,Wj) = 1

Proof:1950

Fix a maximal set {W1, . . . ,Wm} as in the hypothesis and let S̃ be the fluent
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state such that S̃ = Wi(I)�F for all 1  i  m. Let {o1, . . . ,ok} be a maximal

set of o-propositions in NI of the form

Ai occurs-at I with-prob P+
i if-holds ✓i

such that S̃ |= ✓i and P+
i < 1, for all 1  i  k.

From maximality of {W1, . . . ,Wm} and the CWA for actions it follows that1955

m = 2k, with every world in this set having a di↵erent assignment of actions

A1, . . . , Ak to truth values at instant I. Let x̄ = hx1, . . . , xki be a k-dimensional

vector representing a specific assignment of A1, . . . , Ak to truth values, where

each xi 2 {0, 1}. Therefore the sum
Pm

j=1 ✏(NI ,Wj) evaluates to:

X

x̄

 
kY

i=1

(P+
i )xi

�
1� P+

i

�1�xi

!
=

kY

i=1

�
P+
i + (1� P+

i )
�
= 1

⌅1960

Lemma D.4 (Causality). Let N be an ne-domain description and N 0 be an ne-

domain description such thatN 0 = N[NI0 whereNI0 is an occurrence narrative

such that all o-propositions in NI0 have instant I 0, and all o-propositions in N

have instants less than I 0. Then, for any I < I 0 and any formula ✓,

Mne
N 0([✓]@I) = Mne

N
([✓]@I)

Proof:

In the summations in the equations below, W ranges over the set w.r.t. well-

behaved worlds w.r.t. N , W 0 ranges over the set of well-behaved worlds w.r.t.

N 0, [W ]I
0

N 0 signifies the set of well-behaved worlds w.r.t. N 0 that are indistin-1965

guishable fromW up to I 0, and S̃W 0

>I0 is as defined in Corollary D.1. Corollary D.1

and Lemma D.2 yield:

Mne
N 0([✓]@I) =

X

W 0
||=[✓]@I

Mne
N 0(W 0)

Cor.D.1
=

X

W ||=[✓]@I

X

W 02[W ]I
0

N 0

✏(N 0,W 0)

✏(N ,W )
·Mne

N
(W ) · tN 0(W 0(I 0), S̃W 0

>I0)

=
X

W ||=[✓]@I

Mne
N

(W )
X

W 02[W ]I
0

N 0

✏(N 0,W 0)

✏(N ,W )
· tN 0(W 0(I 0), S̃W 0

>I0)

According to Corollary D.1 every world in [W ]I
0

N 0 can be reconstructed from its
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state at instant I 0 and the single persisting state that it takes at instants strictly

greater than I 0. Let {W 0

1, . . . ,W
0

m} be a maximal set of well-behaved worlds in1970

[W ]I
0

N 0 such that W 0

i (I
0) 6= W 0

j(I
0) when i 6= j for 1  i, j  m. Then the above

chain of equalities continues as follows:

=
X

W ||=[✓]@I

Mne
N

(W )
mX

j=1

X

S̃02S̃

✏(N 0,W 0

j)

✏(N ,W )
· tN 0(W 0

j(I
0), S̃0)

=
X

W ||=[✓]@I

Mne
N

(W )
mX

j=1

✏(N 0,W 0

j)

✏(N ,W )
·
X

S̃02S̃

tN 0(W 0

j(I
0), S̃0)

Lem.D.2
=

X

W ||=[✓]@I

Mne
N

(W )
mX

j=1

✏(N 0,W 0

j)

✏(N ,W )

Lem.D.3
=

X

W ||=[✓]@I

Mne
N

(W ) = Mne
N

([✓]@I)

and notice that we can apply Lemma D.3 since ✏(N 0,Wj)
✏(N ,W ) = ✏(NI0 ,Wj). ⌅

We can now prove Proposition 3.1, re-stated again here:

Proposition 3.1. Given an ne-domain description N [see Def. 3.15], the ne-

model Mne
N

: WN 7! [0, 1] [see Def. 3.28] is a probability distribution over WN .
1975

Proof:

We need to show that
X

W2WN

Mne
N

(W ) = 1 (20)

This is proved by induction on the size of occInstants(narr(N )):

Base Case: Suppose occInstants(narr(N )) = ;, i.e. N contains no o-

propositions. Since each W 2 WN satifies the CWA w.r.t. N , occN (W ) = ;.

So each W 2 WN has a unique trace of the form hici for some initial choice

of N , and can be written as Whici. by Definition 3.27, ✏(N ,W ) = 1 for every1980

world W , so that by Equation (13) of Definition 3.28:

X

W2WN

Mne
N

(W ) =
X

Whici2WN

✏(hici)

By Definition 3.19 each initial choice ic is an Oi taken from the unique i-

proposition “initially-one-of {O1, . . . , Om}” of N , so by Definition 3.11 and
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Definition 3.26:
X

Whici2WN

✏(hici) =
mX

i=1

⇡(Oi) = 1

Inductive step: Suppose that occInstants(narr(N )) = {I1, . . . , In} where1985

I1, . . . , In are ordered w.r.t. , so that N = NIn . Let N 0 = N<In so that by

the inductive hypothesis
P

W2WN 0 M
ne
N 0(W ) = 1. Since the i-formula [>]@0̄ is

satisfied by every world W [see Definitions 3.4 and 3.17] then by Lemma D.4:

X

W2WN

Mne
N

(W ) = Mne
N

([>]@0̄) = Mne
N 0([>]@0̄) =

X

W2WN 0

Mne
N 0(W ) = 1

⌅

D.2. Proof of Proposition 3.21990

The statement of the proposition is:

Proposition 3.2. Let D and N be domain and ne-domain descriptions in lan-

guages L and Lne respectively. The pre-model-function M̃N

D
of D w.r.t. N is a

probability distribution over W ⇥H, i.e.
P

(W,H)2W⇥H
M̃N

D
(W,H) = 1.

and we prove this via the following lemma and corollary.

Lemma D.5. Let D be a domain description, (W,H) be an h-world satisfying

the CWSA w.r.t. D, I 2 I, and let JW
H be as defined in Definition 3.34. Then,

✏D([H]<I | W ) =
Y

I02J
W

H
,I0<I

0

@
Y

((✓,X),Vi,Vj)2soccD((W,H),I0)

M(✓, X)i,j

1

A

Proof:1995

In all of the following equations I 0 ranges over (the finite set) JW
H . By Defini-

tion 3.34,

✏D([H]<I | W ) =
X

H0
2[H]<I

✏D(H
0 | W )

=
X

H02[H]<I

0

@
Y

I02J
W

H

0

@
Y

((✓,X),Vi,Vj)2soccD((W,H0),I0)

M(✓, X)i,j

1

A

1

A
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Recall that [H]<I is the equivalence class such that if H 0, H 00 2 [H]<I then

H 0(I 0) = H 00(I 0) for all I 0 < I. So, for any X 2 F [ A, Vi 2 vals(X) and

I 0 � I, if ((✓, X), Vi) 2 H(I 0) then for all Vj 6= Vi such that Vj 2 vals(X) there2000

exists some other H 0 2 [H]<I such that (W,H 0) also satisfies CWSA w.r.t. D

and ((✓, X), Vj) 2 H 0(I 0). Therefore the above sum can be rewritten as:

Y

I0<I

0

@
Y

((✓,X),Vi,Vj)2soccD((W,H),I0)

M(✓, X)i,j

1

A

| {z }
common factor to all H 2 [H]<I

Y

I0�I

0

@
X

((✓,X),Vi)2H(I0)

0

@
mX

j=1

M(✓, X)i,j

1

A

1

A

and since (by Equation (8) of Definition 3.12)
Pm

j=1 M(✓, X)i,j = 1 the lemma

is proved. ⌅

Corollary D.2. Let D be a domain description and W a world. Then
X

H2H

✏D(H | W ) = 1.2005

Proof:

The Corollary follows directly from Lemma D.5 by considering the equivalence

class [H]
<0̄ = H. ⌅

We can now prove Proposition 3.2, re-stated again here:

Proposition 3.2. Let D and N be domain and ne-domain descriptions in lan-

guages L and Lne respectively. The pre-model-function M̃N

D
of D w.r.t. N is a

probability distribution over W ⇥H, i.e.
P

(W,H)2W⇥H
M̃N

D
(W,H) = 1.

2010

Proof:

The proof follows directly from the product rule and Definition 3.36 of M̃N

D
,

since Mne
N

is a probability distribution over W [Proposition 3.2] and, for each

W 2W, ✏D(· | W ) is a probability distribution over H [Corollary D.2]. ⌅

D.3. Proof of Proposition 3.32015

The statement of the proposition is:

Proposition 3.3. Let D be a domain description and H a history. Then the

reduct set R(D, H) of D w.r.t. H contains at most one element. If R(D, H) 6= ;

this unique element is denoted RD

H .
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Proof: Proof is by contradiction. Let N and N 0 be two distinct ne-domain

descriptions in R(D, H). Since N and N 0 can di↵er only in their o-propositions,

without loss of generality we can assume that there is an o-proposition o with2020

instant I such that o 2 N and o 62 N 0, and that there is no o-proposition with

instant less than I on which N and N 0 di↵er. Furthermore o must be the reduct

of some p-proposition p 2 D. Let p have body (✓, P̄ ). Since o 2 N and o 62 N 0,

M̃N

D
(✓ | [H]<I) 2 P̄ and M̃N

0

D
(✓ | [H]<I) /2 P̄ implying

M̃N

D
([✓]@I, [H]<I)

M̃N

D
([H]<I)

6= M̃N
0

D
([✓]@I, [H]<I)

M̃N 0
D

([H]<I)

To prove that this is not the case, it su�ces to show that M̃N

D
([✓]@I, [H]<I) =2025

M̃N
0

D
([✓]@I, [H]<I) for an arbitrary ✓, as this also accounts for M̃N

D
([H]<I) =

M̃N
0

D
([H]<I) by setting ✓ = >. Let {W1, . . . ,Wm} be a maximal set of dis-

tinct representatives of classes of indistinguishable worlds up to I that are well-

behaved w.r.t. N , and let [W1]IN , . . . , [Wm]I
N

be the classes they represent. For

each [Wi]IN let '[Wi]IN
be an i-formula mentioning only instants less than I2030

that uniquely characterises [Wi]IN in the sense that W ||= '[Wi]IN
if and only if

W 2 [Wi]IN (such formulas exist because in the limit whole states can be char-

acterised as conjunctions of literals, and well-behaved worlds can be uniquely

identified by finite conjunctions of states at action points and states that persist

between action points). Furthermore let 'i = [✓]@I ^ '[Wi]IN
. Then,2035

M̃N

D
([✓]@I, [H]<I) =

X

W ||=[✓]@I

✏D([H]<I | W ) ·Mne
N

(W )

=
mX

i=1

0

@
X

W ||='i

✏D([H]<I | W ) ·Mne
N

(W )

1

A

Lemma D.5 shows that ✏D([H]<I | W ) depends only on instants up to I. There-

fore, for each 'i, ✏D([H]<I | W ) has the same value for allW such thatW ||= 'i,

so we can denote this value by by ✏D([H]<I | 'i). The above sequence of equal-

ities therefore continues as follows:

=
mX

i=1

✏D([H]<I | 'i)

0

@
X

W ||='i

Mne
N

(W )

1

A =
mX

i=1

✏D([H]<I | 'i) ·Mne
N

('i)
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Since the two ne-domain descriptions N and N 0 disagree only on o-propositions2040

having instant � I, Mne
N

('i) = Mne
N 0('i) for all 1  i  m and therefore the

above sequence of equalities continues:

=
mX

i=1

✏D([H]<I | 'i) ·Mne
N 0('i) = M̃N

0

D
(✓, [H]<I)

which contradicts the assumption that N and N 0 are distinct and therefore
completes the proof by contradiction. ⌅

D.4. Proof of Proposition 3.42045

The statement of the proposition is:

Proposition 3.4. Let D be a domain description. Then the model-functionMD

of D is a probability distribution over W⇥H, i.e.
P

(W,H)2W⇥H
MD(W,H) = 1.

To prove this, we first adapt Definitions D.3 and D.4 to p-propositions:

Definition D.6 (Performance Narrative). A performance narrative (usually

denoted as P with appropriate subscript/superscript) is a finite set of p-

propositions. For D an EPEC domain description, the performance narrative

pnarr(D) is the set of p-propositions in D. [end definition]

Definition D.7 (InstantOf for p-propositions). For a p-proposition p,

instantOf (p) signifies the instant p has, and for a performance narrative P

this is extended to:

perfInstants(P) = {instantOf (p) | p 2 P} [end definition]

2050

We will also need the following definitions and lemma:

Definition D.8 (Reducts of Domain Description). For any EPEC domain de-

scriptionD, the set of reducts w.r.t. D, written R(D), is the set {RD

H 2 R(D, H) |

H 2 H, R(D, H) 6= ;}. [end definition]

Definition D.9 (History Class). Let D be an EPEC domain description. Let

{H1, . . . , Hn} be a maximal set of histories such that R(D, Hi) 6= R(D, Hj)

when i 6= j and R(D, Hi) 6= ; for all 1  i  n. The associated equivalence

classes [H1]D, . . . , [Hn]D are called history classes of D. [end definition]
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Lemma D.6. Let D be an EPEC domain description and let [H1]D, . . . , [Hn]D

be its history classes. Then,

X

(W,H)

MD(W,H) =
X

W

X

1in

Mne
RHi

(W )✏D([Hi]D | W )

Proof:

In the following, the h-worlds considered in the sums range over the set of h-

worlds that are well-behaved w.r.t. D (since those that are not do not contribute

to the sum):

X

(W,H)

MD(W,H) =
X

(W,H)

M̃RH

D
(W,H) =

X

(W,H)

Mne
RH

(W ) · ✏D(H | W )

=
X

W

X

1in

X

H2[Hi]D

Mne
RHi

(W ) · ✏D(H | W )

=
X

W

X

1in

Mne
RHi

(W )
X

H2[Hi]D

✏D(H | W ) =
X

W

X

1in

Mne
RHi

(W )✏D([Hi]D | W )

⌅2055

We can now prove the principal proposition, restated here for convenience:

Proposition 3.4. Let D be a domain description. Then the model-functionMD

of D is a probability distribution over W⇥H, i.e.
P

(W,H)2W⇥H
MD(W,H) = 1.

Proof:

By induction on perfInstants(pnarr(D)).

Base case: Let perfInstants(pnarr(D)) = ;. Therefore, there are no p-

propositions in D, and for all H 2 H, R(D, H) = {N} for an ne-domain de-

scription N which is equal to D with all the s-propositions removed. Then,

X

(W,H)

MD(W,H) =
X

(W,H)

M̃N

D
(W,H) =

X

(W,H)

Mne
N

(W ) · ✏D(H | W )

=
X

W

Mne
N

(W )
X

H

✏D(H | W ) =
X

W

Mne
N

(W ) = 1
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Inductive case: Let perfInstants(pnarr(D)) = {I1, . . . , In} and let D0 be2060

the EPEC domain description D with all the p-propositions having instants

� In removed.

The inductive hypothesis is:

X

(W,H)

MD0(W,H) = 1

Let D\D0 = {p
1
, . . . ,p

k
} (possibly empty) and let o1, . . . ,ok be the correspond-

ing converted o-propositions. Then, for 1  i  n, the reduct RD

Hi
is obtained

from one of the reducts in R(D0) by adding zero or more o-propositions from2065

{o1, . . . ,ok}.

Let R(D) = {RD

H1
, . . . ,RD

Hn
} and R(D0) = {RD

0

H0
1
, . . . ,RD

0

H0
m

}, with n � m.

Let RD

Hi
= RD

0

H0
ri

[ {oi1 , . . . ,ori} for each 1  i  n. Viceversa, each RD
0

H0
k

2

R(D0) is a member of multiple reducts RD

Hk1
, . . . ,RD

Hkt
k

2 R(D) (in the sense

that RD
0

H0
k

✓ RD

Hk1
, . . . ,RD

0

H0
k

✓ RD

Hkt

). Then,

X

(W,H)

MD(W,H) =
X

W

X

1in

Mne
R

D
Hi

(W )✏D([Hi]D | W )

=
X

W

X

1km

Mne
R

D0
H

0
k

(W 0

W )✏D0([H 0

k]D0 | W 0

W )

0

B@
X

1itk

Mne
R

D
H

ki

(W )

Mne
R

D0
H

0
k

(W 0

W )
·
✏D([H 0

ki
]D | W )

✏D0([H 0

k]D0 | W 0

W )

1

CA

where W 0

W is the unique world well-behaved w.r.t. RD
0

H0
k

which is indistinguish-

able from W up to In (see Corollary D.1).

Let

t̃k,i(W, I) =
✏(RD

Hi
,W )

✏(RD0
Hki

,W 0

W )
· tRD

Hi

(W 0

W (I), S̃W
>I)

where S̃W
>In

is the fluent state taken by W at instants > I (see Corollary D.1).

Then from Corollary D.1 we have that:

Mne
R

D
H

ki

(W )

Mne
R

D0
H

0
k

(W 0

W )
=

✏(RD

Hi
,W )

✏(RD0
Hki

,W 0

W )
· tRD

Hi

(W 0

W (In), S̃
W
>In) = t̃k,i(W, In)
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In the following, for a fluent state S̃ we write WW 0

S̃,I
for the world that is equal

to W 0 up to I and has persisting fluent state S̃ at instants > I. Then note that

applying Lemmas D.2 and D.3 gives:

X

S̃

t̃k,i(W
W 0

S̃,I
, I) = 1

Then the above chain of equalities continues:

=
X

W 02W

X

1km

Mne
R

D0
H

0
k

(W 0)✏D0([H 0

k]D0 | W 0)

0

@
X

1itk

X

S̃

t̃k,i(W
W 0

S̃,In
, In) ·

✏D([H 0

ki
]D | WW 0

S̃,In
, In)

✏D0([H 0

k]D0 | W 0)

1

A

and note that for all 1  i  tk

✏D([Hki
]D | WW 0

S̃,In
, In) = ✏D0([H 0

k]D0 | W 0) · ck,i

for some appropriate constant ck,i (according to the outcomes being possibly2070

sensed in Hki
at instants I such that In�1  I < In), and for any fixed k, note

that
P

1itk
ck,i = 1 as WW 0

S̃,In
is sensed in every possible way.

However, the constant ck,i does not depend on the fluent state S̃, since the

information according to which the two reducts RD

Hki

and RD

Hkj

(for i 6= j) are

obtained must have been sensed at some instants � In�1 and < In. Therefore,

=
X

W 0

X

1km

Mne
R

D0
H

0
k

(W 0)✏D0([H 0

k] | W 0)

0

@
X

1itk

ck,i
X

S̃

t̃k,i(W
W 0

S̃,In
, In)

1

A

=
X

W 0

X

1km

Mne
R

D0
H

0
k

(W 0)✏D0([H 0

k]D0 | W 0)

0

@
X

1itk

ck,i

1

A

and finally

=
X

W 0

X

1km

Mne
R

D0
H

0
k

(W 0)✏D0([H 0

k]D0 | W 0) =
X

(W,H)

MD0(W,H) = 1

via the inductive hypothesis. ⌅
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D.5. Proof of Proposition 4.1

The statement of the proposition is:2075

Proposition 4.1 (PAL/EPEC Correspondence). Let P be the normalised, con-

sistent PAL theory PALD [ PALP [ {“initially  ̇0”}, let Q be the PAL query

“probability of ['̇q after ȧ1, . . . , ȧk] is n”, let N (P,Q) be the EPEC encod-

ing of P and Q, and let ↵ be the EPEC i-formula [ȧ1]@0 ^ . . . ^ [ȧk]@k � 1.

Then P |=PAL Q if and only if

⇣
N (P,Q)

��� [ ̇0]@0
⌘

||= ↵ ^ ['̇q]@k holds-with-prob n

Proof:

Let Qp = “'̇q after ȧ1, . . . , ȧk” be the multi-action plan contained in the query

Q, let O = “initially  ̇0” be the single hypothetical observation in P, and let

N = N (P,Q). Then by Definition 3 in [6] and Definition 3.28, it is su�cient

to show that Ṗ (Qp | O) = Mne
N

(↵^ ['̇q]@k | [ ̇0]@0). Using definitions 1–3 and

equations (0.7)–(0.16) in [6] to expand Ṗ (Qp | O) gives:

Ṗ (Qp | O) =
X

ṡ

Ṗ (ṡ | O)Ṗ (Qp | ṡ) [by (0.16)]

=
X

ṡ

Ṗ (ṡ)Ṗ (O | ṡ)Ṗ (Qp | ṡ)
.X

ṡ

Ṗ (ṡ)Ṗ (O | ṡ) [by (0.15)]

=
X

ṡ|= ̇0

ṡ(i)2�̇(ȧi,ṡ
(i�1))

ṡ(k)
|='̇q

Ṗ (ṡ)Ṗȧ1(ṡ
(1) | ṡ) · · · Ṗȧk

(ṡ(k) | ṡ(k�1))
. X

ṡ|= ̇0

Ṗ (ṡ) [by (0.13)]

=
X

ṡ|= ̇0

ṡ(i)2�̇(ȧi,ṡ
(i�1))

ṡ(k)
|='̇q

Ṗ (ṡu)

|İ(ṡu)|

0

@
kY

i=1

2|U̇N |

����̇(ȧi, ṡ(i�1))
���
· Ṗ
⇣
ṡ(i)N

⌘
1

A
. X

ṡ|= ̇0

Ṗ (ṡu)

|İ(ṡu)|

[by (0.7),(0.9)]
(A)

Expanding Mne
N

(↵ ^ ['̇q]@k | [ ̇0]@0) using the definitions in Section 3.3 and
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Appendix D Section D.1 gives:

Mne
N

⇣
↵ ^ ['̇]@k

��� [ ̇]@0
⌘

=
Mne

N
(↵ ^ ['̇]@k ^ [ ̇]@0)

Mne
N

([ ̇]@0)

=
Mne

N
(↵ ^ ['̇]@k ^ [ ̇]@0)

Mne
N<0

([ ̇]@0)
=

P
W ||=↵^['̇]@k^[ ̇]@0 M

ne
N

(W )
P

W ||=[ ̇]@0 M
ne
N<0

(W )

=

P
W ||=↵^['̇]@k^[ ̇]@0 M

ne
N<0

(W (1))
⇣Qk

i=1 tN
⇣
W (i� 1), S̃W (i+1)

>i�1

⌘⌘

P
W ||=[ ]@0 M

ne
N<0

(W )
(B)

where for a given W , for each i, W (i+1) is the unique world that is well-behaved

w.r.t. N<i and indistinguishable from W up to instant i.

That expressions (A) and (B) are equal follows because:

• Mne
N<0

(W (1)) evaluates to Ṗ (ṡu)

|İ(ṡu)|
when the fluent state W̃ (0) = ṡ.2080

• The product of transition functions
⇣Qk

i=1 tN
⇣
W (i� 1), S̃W (i+1)

>i�1

⌘⌘
eval-

uates to 0

@
kY

i=1

2|U̇N |

����̇(ȧi, ṡ(i�1))
���
· Ṗ
⇣
ṡ(i)N

⌘
1

A

when the fluent state and action in W (i � 1) are set to ṡ(i�1) and ȧi

respectively, and the fluent state S̃W (i+1)

>i�1 = ṡ(i).

• The sum in the numerator of (B) evaluates to 0 when any one of ȧ1, . . . , ȧk

is non-executable, as satisfying the corresponding non-executability pre-

condition would render the CWA unsatisfied, so that the set of well-2085

behaved worlds such that W ||= ↵ ^ [�̇]@k ^ [ ̇]@0 would be empty.

⌅

D.6. Proof of Proposition 4.2

The statement of the proposition is:
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Proposition 4.2 (BHL/EPEC Correspondence). Let T be a normalised ex-

tended action theory and let ↵ be an executable sequence of n agent-performable

actions. Let � = {↵1, . . . ,↵m} be the maximal set of distinct executable ac-

tion sequences such that for each ↵i 2 �, Prob(↵i, S0) > 0 and ↵i has been

obtained from ↵ by replacing each noisy sensing action, say ⇡x, y.sense-f(x, y),

with ⇡y.sense-f(v, y) for some sensed value v for the nominal variable x. Then

for all 1  i  m, T |= Do(↵i, S0, s)! Bel(�[sknow ], s) = Pi

if and only if

D(T ,↵) ||= at n believes [�]@n with-probs P

where P = {([H1], B1, P1), . . . , ([Hm], Bm, Pm)} is such that for each 1  i  m

T ([Hi])=↵i and Bi=Prob(↵i, S0).

2090

Proof:

For brevity, D in this proof is shorthand for D(T ,↵). We prove the propo-

sition by showing the equivalence for an arbitrary i, 1  i  m, between

Bel(�[sknow ], s) and MD([�]@n | Hi), for an arbitrary s such that Do(↵i, S0, s).

Let s = do([a1; . . . ; an], s00) for primitive actions a1, . . . , an and some initial

situation s00 such that p(s00, S0) > 0. By definition, Bel(�[sknow ], s) is shorthand

for P
s0:�[sknow/s0] p(s

0, s)
P

s0 p(s
0, s)

which, in turn, using the successor-state axiom for p is equal to

P
s0=do(a0

n
,s0

n�1):�[sknow/s0] p(s
0

0, S0) ·
Qn

i=1 `(a
0

i, s
0

i�1)P
s0=do(a0

n
,s0

n�1)
p(s00, S0) ·

Qn
i=1 `(a

0

i, s
0

i�1)
(21)

where the s01, . . . , s
0

n�1, a
0

1, . . . , a
0

n are situations and actions satisfying the con-2095

ditions in the if part of the successor-state axiom for p, i.e. s01 = do(a01, s
0

0),

Oi(a1, a01, s
0

0), s
0

2 = do(a02, s
0

1), Oi(a2, a02, s
0

1) and so on up to n.

Notice that D does not contain any p-propositions with epistemic precon-

ditions. Therefore it only has one reduct independently of any specific sensing

history, say R. By definition, the model function (for well-behaved h-worlds)
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expands to:

MD(W,Hi) = M̃RD
D

(W,Hi) = ✏D(Hi | W )Mne
R

(W )

We are interested in MD([�]@n | Hi). This evaluates to:

MD([�]@n | Hi) =

P
W ||=[�]@n ✏D(Hi | W )Mne

R
(W )

P
W2W

✏D(Hi | W )Mne
R

(W )
(22)

Recall from the proof of Proposition 4.1 in Appendix D.5 that Mne
R

(W ) can be

written as

Mne
R<0

(W (1))

 
kY

i=1

tR
⇣
W (i� 1), S̃W (i+1)

>i�1

⌘!

So (22) evaluates to:

P
W ||=[�]@n ✏D(Hi | W )Mne

R<0
(W (1))

⇣Qk
i=1 tR

⇣
W (i� 1), S̃W (i+1)

>i�1

⌘⌘

P
W2W

✏D(Hi | W )Mne
R<0

(W (1))
⇣Qk

i=1 tR
⇣
W (i� 1), S̃W (i+1)

>i�1

⌘⌘ (23)

That (21) and (23) are equal then follows since:2100

• The value of p(s00, S0) equals one of p1, . . . , pn as they appear in the trans-

lation to an EPEC i-proposition on page 58, depending on what is true

in the possible situation s00. By definition of an i-proposition there ex-

ists some W such that this also equals Mne
R<0

(W (1)). (Again using the

notation from Appendix D.5.)2105

• If ai is not a sensing action, then `(a0i, s
0

i�1) is obtained by applying one of

the functions p1(·, ·), . . . , pn+1(·, ·) as they appear in the action-likelihood

axiom on page 59 to a0i. ai has e↵ects as specified in its e↵ect axioms,

whose preconditions are relative to s0i�1. By translation there is a W such

that (i) W (i� 1) contains the agent-performable action corresponding to2110

ai together with the state representation of s0i�1, and (ii) the result of ai is

captured in S̃W (i+1)

>i�1 . This is reflected in the term tR
⇣
W (i� 1), S̃W (i+1)

>i�1

⌘
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in (23).

• If ai is a sensing action, then `(a0i, s
0

i�1) is taken into account within

✏D(Hi | W ), by unfolding Definition 3.34 and considering the entry corre-2115

sponding to ai in the matrix resulting from its translation.

⌅
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