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"Mathematics is the tool specially suited for dealing with abstract
concepts of any kind and there is no limit to its power in this field.
For this reason a book on the new physics, if not purely descriptive of
experimental work, must be essentially mathematical. All the same the
mathematics is only a tool and one should learn to hold the physical
ideas in one's mind without reference to the mathematical form."

P.A.M. Dirac,
The Principles of Quantum Mechanics,
Oxford University Press, Oxford, 1958.



ABSTRACT

The physical theory describing the interaction of electromagnetic
radiation with atoms and molecules, molecular quantum electrodynamics,
is applied to problems in intermolecular interactions and optical
activity.

After an outline of the basic Coulomb gauge theory in Chapter 1,
the quantum electrodynamical Maxwell field operators in the vicinity of
a molecule are derived in Chapter 2 in both the multipolar and
minimal-coupling frameworks in the Heisenberg picture. The
electromagnetic field operators are expanded in powers of the transition
moments, correct up to second order in the sources with the interaction
Hamiltonian including electric dipole and quadrupole, magnetic dipole
and diamagnetic coupling terms.

The Maxwell field operators in the multipolar form are then used in
Chapter 3 to calculate the Thompson energy density and the Poynting
vector associated with the electromagnetic field. The equivalence of the
expectation value of ©both these operators obtained wusing the
minimal-coupling Maxwell fields in the electric dipole approximation is
demonstrated.

The energy of interaction between two neutral molecules in ground
or excited electronic states is determined in Chapter 4 using molecular
response theory. The response of a polarisable test body to the electric
displacement and magnetic fields of a second source molecule is
calculated. Discriminatory interaction energies dependent upon the
handedness of the pair of molecules are found. The energy shift is
expressed in terms of pure and mixed multipole polarisabilities and is
valid for all separation distances beyond overlap of electronic

wavefunctions for molecules with fixed relative and random orientations.



The near- and far-zone behaviour is also examined.

In the final Chapter a theory for the chiroptical phenomenon
molecule induced circularly polarised luminescence is presented. The
difference in the rate of emission of a left-/right-circularly polarised
photon from an achiral molecule through intermolecular interaction with

a chiral species is calculated.
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CHAPTER 1

COULOMB GAUGE QUANTUM ELECTRODYNAMICS

1.1 INTRODUCTION

Quantum electrodynamics (QED) is the physical theory that describes
the 1interaction of matter with electromagnetic fields and the
interaction between atoms and molecules.

The origins of QED lie in the fundamental paper by Dirac [1] in
which the radiation field is treated quantum mechanically. This process,
known as second quantisation, gives rise to the quantised particle of
radiation called the photon. The need for a quantum field theory arose
from the singular failure of semi-classical theory to account for
spontaneous emission. The guantum theory of radiation not only enabled
the Einstein A- and B-coefficients to be derived in a straightforward
manner, but further accounted for previously inexplicable phenomena such
as the anomalous magnetic moment of the electron, and the Lamb shift,
where the agreement between theory and experiment has been excellent. Of
the theories currently available, QED, either formulated using
traditional field theory or the alternative space-time approach due to
Feynman [2,3], provides the most accurate description of photon-electron
interactions known so far,

The characteristic feature of QED is that the electromagnetic
field, as well as the system of particles, is quantised, so that light
and matter together constitute a closed dynamical system that is subject
to quantum mechanical rules. Instead of considering an atom or molecule
and the radiation field with which it interacts as two distinct
entities, a single system is examined whose total energy is given by the

energy of the atom alone, the electromagnetic energy of the radiation



field alone and a small term representing the coupling energy of the
particles and the field.

In chemical physics, where the problem is the coupling of radiation
with particles of low energy, a non-covariant formulation of QED is
sufficient. A theorv of the emission and absorption of radiation and of
the reaction of the radiation field on the system has been built up on
the basis of a dynamics which is not relativistic [1,4]. This is on
account of the time being treated throughout as a c-number instead of
symmetrically with the space coordinates. Molecular QED 1is the
non-relativistic limit of QED, and is applied to systems involving bound
electrons of low binding energies moving with velocities insignificant
to that of light, making it ideally suited to the study of problems of
chemical interest. To facilitate the use of molecular QED in the
non-covariant version, the Coulomb gauge condition is employed
throughout, allowing separation of the dynamic and static aspects of the
sources of the field.

QED may be formulated in either the Schrodinger or Heisenberg
representations. Almost all the applications of molecular QED to date
have been investigated in the more familiar Schrddinger picture. In this
thesis, the alternative Heisenberg viewpoint is employed in dealing with
radiation-molecule interactions.

A wide range of applications of molecular QED to problems in
theoretical chemistry have not only provided new results but also
important insight into fundamental physical processes. These include,
amongst others, light scattering, intermolecular forces, and with the
recent advent of laser sources as probes of atomic and molecular
structure, non-linear optical phenomena and quantum optics. These and
various other applications, as well as the theoretical foundations of

the subject have been discussed in texts and review articles such as



those by Power (5], Craig and Thirunamachandran [6,7], Healy [81],
Andrews et al. [9], Woolley [10], Cohen-Tannoudji et al. [11] and the
compilation by Schwinger [12].

After a brief outline of the basic QED theory in the subsequent
Section, a detailed exposition in the Heisenberg framework is given in

Chapter 2.

1.2 BASIC THEORY
Consider a collection of slowly moving charged particles a of
.9
charge ey» Mass m with position aa and velocity Qu’ interacting with

the radiation field of vector potential 2(?) subject to the Coulomb

gauge condition

=2 o

v‘a(r‘) : O. (1.201)
Classically, the total system is described by the Lagrangian [13]

N _)7 € > 2> 2 2. = Y 7\ > 3 -
L= 1/2) i -V + 2—°—f é(r’-)“-c“(ng(f))“JLda? + ﬁ*(r).&’(?)d% (1.2.2)

64

in which V is the electrostatic potential energy and 3*(?) is the

transverse part of the total current density

s
TE = e i 8-, (1.2.3)

x

The Lagrangian is expressed as the sum of three terms, one each for the

particles, for the field and for the interaction between them. The

10



Lagrangian is a function of the coordinates and velocities of the
particle and a functional of the corresponding field "coordinates and
velocities”. In the absence of interaction, only the particles
Lagrangian and the free field Lagrangian remain, with the dvnamics of
one syvstem not affecting that of the other. The two systems move
independently and have equations of motion that are not coupled to one
another. When the particles and field interact, the coupling appears as
an interaction term in the Lagrangian. The specific choice of Lagrangian
is such that it leads to the correct equations of motion. By invoking
Hamilton’s principle through the calculus of variations., the solutions
of which are Lagrange’s equations of motion [14], it can be shown, that
in this case the equations of motion lead to the Lorentz force for
particles (1.2.4) and to Maxwell’s equations, with sources, for the

radiation field (1.2.35).

.. Ay L ? >
M iy = = Fa— * oegle lay) + [a,@bla )l;) (1.2.4)
- i - -
s.g(r) = ?(r)
o
IB(r = 0
(1.2.51)
RN a.l-;-a
o >, (r)
V x e{r) = - 3t
>
¥« BT = 82,‘5” + L3,
- i)

The electric and magnetic field vectors g(?) and B(?) are related to the

vector potential through the relations

11



et (F) = —al?) (1.2.6)
B(F) = Vxa(r). (1.2.7)

> > . s
The transverse component of e(r) is a consequence of the gauge condition

{1.2.1). The charge density is

P(F) = Je B(T-,). (1.2.8)

[¢ 4

The equations of motion may be written in an alternative manner by
starting from an arbitrary gauge with the introduction of the
electromagnetic potentials [15,16]}, which also aid the subsequent
quantisation of the electromagnetic field. From the second equation of
(1.2.5) it is seen that the definition of the vector potential (1.2.7)
still holds. Substituting this into the third equation of (1.2.5) and
noting that a vector whose curl is zero can be defined as the gradient

of a scalar function,

-

S(T) + a(F) = Veo(r) , (1.2.9)

where ¢(?) is the scalar potential. The electromagnetic potentials as
defined by (1.2.6) and (1.2.7) are not unique, being determined up to an

additive gauge function X, expressed in the gauge transformation

(T) 2 alr) + 9y |
(1.2.10)

N ’
HT) > BT - g% J

a substitution which leaves the fields g(?) and g(?) invariant. Since

12



the treatment of atoms and molecules requires an explicit Coulomb

potential term in the Hamiltonian, the choice of X given by

vy = V.2 (1.2.11)

leads to the Coulomb gauge defined earlier. The equations of motion in
terms of the potentials are obtained from the remaining Maxwell
equations after decomposition of the electric field into longitudinal

and transverse parts {17], and are

2 1 82 5.5 a1,
V- T alr) = — =) (r) (1.2.12)
c at Eoc
VE(T) = -p(T) /e, (1.2.13)

The choice of Coulomb gauge thus separates the Coulombic fields from the

transverse fields;

>
SL > 3y 2

et (T) = —-a(f) ; e"(F) = Ve(D). (1.2.14)

The electrostatic field due to the charged particles is given by g"(?)
and described by the scalar potential while the radiation field g;(?) is
described by the transverse vector potential.

The Lagrangian function expressed in terms of the electromagnetic
potentials which leads to the equations of motion (1.2.12) and (1.2.13)
is

a2+ D) .2 —Jp(r)¢(r)d

\_‘,../

L = 1/22 {e %) - 2B2E

(1.2.15)
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and is known as the Coulomb gauge Lagrangian. The scalar potential ¢(?)
may be eliminated from (1.2.15) in favour of the electrostatic potential
energy V by employving the relationship of the latter to the longitudinal
electric field. This results in the Lagrangian (1.2.2), which is known
as the minimal-coupling Lagrangian.

It is possible in an alternative formulation to describe the
equations of motion using the Hamiltonian function [14], defined in

terms of the Lagrangian by

-
H= ) Dyedq + A2 - L. (1.2.16)
o

The dynamical variables are then the generalised coordinates and the
canonically conjugate momenta, which for particles and field are

respectively given by

Q

=L A@m=Z (1.2.17)
: 3%

Q

Ay

where the functional ¥ is the Lagrangian density. For conservative
systems the Hamiltonian represents the total energy. The Hamiltonian is
written in terms of the canonically conjugate variables, which are the
coordinates and the conjugate momenta for field and particles. By
grouping the charges to form electrically neutral aggregates, atoms and
molecules labelled C, the minimal-coupling Lagrangian {1.2.2) when
substituted in (1.2.16) results in the minimal-coupling Hamiltonian

H The quantum mechanical version [18] of the Hamiltonian operator is

MIN®
obtained by the replacement of the classical variables with quantum

operators subject to the canonical commutation relations

14



[ ’ 1 .
910 ()P4 (€] = 100800

S >, ] . N
a, (P11 (r )J = 1h5i4(r—r ),

where 514(?—?') is the transverse delta-dyvadic

minimal-coupling Hamiltonian [6]

HMIN = z HMOL(C) + HRAD + 2 HINT(C) * VINTER’
e ¢

with

Y 12 ,
Hyo () = ) 5 Ba(C) + V(D)

L qu
@

2,2
oo = H{IEEL e t@iin ot

0 J

2

€x » > €x 22 o
Hy (0 = = ) =2 B2 + ) 22 33 @)
(!d (X(x
and
Vinter S ve,e

The quantised radiation field Hamiltonian (191, H

(5].

(1.2.18)

(1.2.19)

Thus the

(1.2.20)

(1.2.21)

(1.2.22)

(1.2.23)

(1.2.24)

corresponds to a

set of independent quantised harmonic oscillators confined to a box of

volume V on which periodic boundary conditions are imposed. The photon

is the resulting quantised particle. The linear term in the interaction

Hamiltonian depends on the product of the particle momentum with the

15



vector potential while the second order term, quadratic in the electric
charge depends on the square of the vector potential. The potential term
appears explicitly in the Hamiltonian and is separated into intra- and
inter-molecular contributions.

The application of molecular QED to problems in chemical physics is
facilitated by the use of the multipolar Hamiltonian [20]. In this
framework radiation-molecule interactions are described solely by the
coupling of molecular multipoles to the electric displacement and
magnetic fields. The multipolar Lagrangian, used to determine the
multipolar Hamiltonian, is obtained from the minimal-coupling Lagrangian
by the addition of a total time derivative of a function of the
coordinates ([21]. The transformation uses the property that the
equations of motion derived from a Lagrangian are unaltered by just such
an addition. Lagrangians so related are said to be equivalent, but give
rise to Hamiltonians differing in form. Thus
Lyuir = Lwew — Sp)3 (F).3(F1aF (1.2.25)

where 3(?) is the electric polarisation field and is a function of the

particle coordinates. The multipolar Lagrangian is then written as

-> € >
S i1 . 2 off. = .2 223> 2| 32
LMULT = Z {EE maqa(C) - V(C)} + E—f{a(r) - ¢ (Vxa(r)) }d r
¢ Vo L
5L 5 5. 39 (3 5 o 1 25 39 s
-Ip {r).alr)dr + J{VXM(r)J.a(r)d r - E VINTER(C,C ) (1.2.26)
gL’

where 3(?), and the magnetisation field ﬁ(?), are defined by

B =) BT ﬁ@):}ﬁﬁﬁ (1.2.27)
¢ ¢

16



with

1
B =) ea(qa(i’)-Rc)IOS(r-RC-l(qa(C)-RC))dl : (1.2.28)
6
and
2> > - > 2 1 1 RGN - > )
M(C;r) = E ea{(qa(C)-RC)an(C)JJ015(r-RC-A(qa(C)-RC))dl . (1.2.29)
L4 4

These fields allow the total charge density associated with each
ensemble to be partitioned into true and polarisation charge densities,
and the total current density into true, polarisation and magnetisation
current densities [22,23]. This division of the sources necessitates the
introduction of a reference vector ﬁC’ which may conveniently be taken
as the centre of mass, an inversion centre or a local chromophore
centre.

The multipolar Hamiltonian (241, evaluated in the wusual manner

gives

Hayrr = ) Hyop (€0 + Ho, o + 2 H, (O + H (1.2.30)
¢ ¢
with HMOL(C) unchanged from (1.2.21)
H, = %Ha;(‘:” + coczﬁz(?)}da‘r’ (1.2.31)
He, p = éi—ﬂf EIE*(c;?)lzcﬁ? (1.2.32)
¢

17



and the interaction terms now given by

H () = -E;IIS(?).Q*(?)dB? - fﬁ(?).B(?)d3?
> =, 3 >, 3 >,
+ % Oéd(;,r )bi(?)bg(? ya2d’t . (1.2.33)

It should be noted that in the multipolar framework it is the transverse
electric displacement vector field 3L(?) that appears explicitly, rather
than the transverse electric field gl(?) as found in H . The

MIN

displacement vector is defined as

d(F) = e 2(F) + Bir). (1.2.34)

The quantum mechanical mode expansions for the electromagnetic fields

3;(?) and 8(?) are

1/2 B3 > — B>
) (thEO] {é(x)(E)a(x)(ﬁ)elk'r—é(x)(ﬁ)a+(l)(§)e_lk' l

J

(1.2.35)

T (Chk )P0 e (02 KT ZO0 2 F0) 20 SiklT
i &?———J b (kla " (kle"""" - b '(kla (kle °7°
ISR

(1.2.36)

A), D . . : .
( )(ﬁ) the electric polarisation of wavevector ﬁ, index of

. . . (A) = T(A), 2 . o .
polarisation *» and with a (k} and a (k) respectively annihilation

. > >(2)
and creation operators of a photon of mode (k,X). b

. e d
with e

—)
(k) is defined

through

18
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quantum analogues of contact transformations in classical theory

(14,18]. The transformation which results in H when applied to HMIN

MULT

is

= e By 1S (1.2.45)
with the particular choice of generator
s = /0[BT . (1.2.46)

It is clear that a and 2(?) remain unaltered by the transformation with
only the corresponding momenta changing. The resulting multipolar
Hamiltonian is that given by (1.2.30). It should be noted that although
the partitioning of the minimal- and multipolar-coupling Hamiltonians is
different in both cases, identical matrix elements are obtained for
processes where conservation of energy hold. This is a consequence of
the two forms of Hamiltonian being equivalent, thus giving equal matrix
elements "on the energy shell".

The interaction term of the Hamiltonian (1.2.33) is conveniently
expanded in terms of multipole moments to simplify its subsequent use in
the applications to be considered. The leading contributions to the
multipolar series of the polarisation and magnetisation fields, and the

ones employved in this thesis are
> > 2
m (C3T) = (m (D) + ... )8(r-Rp) (1.2.48)

and the first term of the diamagnetisation interaction may be written

21



2
4

2
2SS {2 erd B |
HDIA(C) = Z gﬁ;{(qa(C)—Rc)~b( C)J . (1.2.49)

In (1.2.47) and in the rest of this thesis, the Einstein summation
convention is wused. The -electric dipole, electric quadrupole and

magnetic dipole moments of molecule ¢ are respectively given by

o - N
o
0..00) = 2% e (3.(C)-B). (3 (0)-B.) (1.2.51)
() = 3 2 Cal OB Ee) (0, (C-Re )y 2
o

e

€ | = 2 3
n (C) = ) EE;{(qa(C)-RC)xpa . (1.2.52)
x

4

Using the definitions above in (1.2.33) and performing the volume

integral, the multipolar interaction Hamiltonian becomes

, -1= 2L, -1 1,2 - 2
HINT(C) = - a4(c).d (RC) - €y Q{j(c)védL(RC) - m(C).b(RC)
2 2
< e; f - Y S \Lu
+ Z EE; L(qa(c)—Rc)Xb(RC) (1.2.53)
x

including all terms of a similar orig?n. Assuming that the coupling
between radiation and matter is small enough to be considered as a
perturbation on the system, both the minimal-coupling and the multipolar

Hamiltonians may be suitably divided as

H=H +H (1.2.54)

22













































































































































































































































































































































































































































































































































