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"Mathematics is the tool specially suited for dealing with abstract
concepts of any kind and there is no limit to its power in this field.
For this reason a book on the new physics, if not purely descriptive of
experimental work, must be essentially mathematical. All the same the
mathematics is only a tool and one should learn to hold the physical
ideas in one's mind without reference to the mathematical form."

P.A.M. Dirac,
The Principles of Quantum Mechanics,
Oxford University Press, Oxford, 1958.



ABSTRACT

The physical theory describing the interaction of electromagnetic
radiation with atoms and molecules, molecular quantum electrodynamics,
is applied to problems in intermolecular interactions and optical
activity.

After an outline of the basic Coulomb gauge theory in Chapter 1,
the quantum electrodynamical Maxwell field operators in the vicinity of
a molecule are derived in Chapter 2 in both the multipolar and
minimal-coupling frameworks in the Heisenberg picture. The
electromagnetic field operators are expanded in powers of the transition
moments, correct up to second order in the sources with the interaction
Hamiltonian including electric dipole and quadrupole, magnetic dipole
and diamagnetic coupling terms.

The Maxwell field operators in the multipolar form are then used in
Chapter 3 to calculate the Thompson energy density and the Poynting
vector associated with the electromagnetic field. The equivalence of the
expectation value of ©both these operators obtained wusing the
minimal-coupling Maxwell fields in the electric dipole approximation is
demonstrated.

The energy of interaction between two neutral molecules in ground
or excited electronic states is determined in Chapter 4 using molecular
response theory. The response of a polarisable test body to the electric
displacement and magnetic fields of a second source molecule is
calculated. Discriminatory interaction energies dependent upon the
handedness of the pair of molecules are found. The energy shift is
expressed in terms of pure and mixed multipole polarisabilities and is
valid for all separation distances beyond overlap of electronic

wavefunctions for molecules with fixed relative and random orientations.



The near- and far-zone behaviour is also examined.

In the final Chapter a theory for the chiroptical phenomenon
molecule induced circularly polarised luminescence is presented. The
difference in the rate of emission of a left-/right-circularly polarised
photon from an achiral molecule through intermolecular interaction with

a chiral species is calculated.
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CHAPTER 1

COULOMB GAUGE QUANTUM ELECTRODYNAMICS

1.1 INTRODUCTION

Quantum electrodynamics (QED) is the physical theory that describes
the 1interaction of matter with electromagnetic fields and the
interaction between atoms and molecules.

The origins of QED lie in the fundamental paper by Dirac [1] in
which the radiation field is treated quantum mechanically. This process,
known as second quantisation, gives rise to the quantised particle of
radiation called the photon. The need for a quantum field theory arose
from the singular failure of semi-classical theory to account for
spontaneous emission. The guantum theory of radiation not only enabled
the Einstein A- and B-coefficients to be derived in a straightforward
manner, but further accounted for previously inexplicable phenomena such
as the anomalous magnetic moment of the electron, and the Lamb shift,
where the agreement between theory and experiment has been excellent. Of
the theories currently available, QED, either formulated using
traditional field theory or the alternative space-time approach due to
Feynman [2,3], provides the most accurate description of photon-electron
interactions known so far,

The characteristic feature of QED is that the electromagnetic
field, as well as the system of particles, is quantised, so that light
and matter together constitute a closed dynamical system that is subject
to quantum mechanical rules. Instead of considering an atom or molecule
and the radiation field with which it interacts as two distinct
entities, a single system is examined whose total energy is given by the

energy of the atom alone, the electromagnetic energy of the radiation



field alone and a small term representing the coupling energy of the
particles and the field.

In chemical physics, where the problem is the coupling of radiation
with particles of low energy, a non-covariant formulation of QED is
sufficient. A theorv of the emission and absorption of radiation and of
the reaction of the radiation field on the system has been built up on
the basis of a dynamics which is not relativistic [1,4]. This is on
account of the time being treated throughout as a c-number instead of
symmetrically with the space coordinates. Molecular QED 1is the
non-relativistic limit of QED, and is applied to systems involving bound
electrons of low binding energies moving with velocities insignificant
to that of light, making it ideally suited to the study of problems of
chemical interest. To facilitate the use of molecular QED in the
non-covariant version, the Coulomb gauge condition is employed
throughout, allowing separation of the dynamic and static aspects of the
sources of the field.

QED may be formulated in either the Schrodinger or Heisenberg
representations. Almost all the applications of molecular QED to date
have been investigated in the more familiar Schrddinger picture. In this
thesis, the alternative Heisenberg viewpoint is employed in dealing with
radiation-molecule interactions.

A wide range of applications of molecular QED to problems in
theoretical chemistry have not only provided new results but also
important insight into fundamental physical processes. These include,
amongst others, light scattering, intermolecular forces, and with the
recent advent of laser sources as probes of atomic and molecular
structure, non-linear optical phenomena and quantum optics. These and
various other applications, as well as the theoretical foundations of

the subject have been discussed in texts and review articles such as



those by Power (5], Craig and Thirunamachandran [6,7], Healy [81],
Andrews et al. [9], Woolley [10], Cohen-Tannoudji et al. [11] and the
compilation by Schwinger [12].

After a brief outline of the basic QED theory in the subsequent
Section, a detailed exposition in the Heisenberg framework is given in

Chapter 2.

1.2 BASIC THEORY
Consider a collection of slowly moving charged particles a of
.9
charge ey» Mass m with position aa and velocity Qu’ interacting with

the radiation field of vector potential 2(?) subject to the Coulomb

gauge condition

=2 o

v‘a(r‘) : O. (1.201)
Classically, the total system is described by the Lagrangian [13]

N _)7 € > 2> 2 2. = Y 7\ > 3 -
L= 1/2) i -V + 2—°—f é(r’-)“-c“(ng(f))“JLda? + ﬁ*(r).&’(?)d% (1.2.2)

64

in which V is the electrostatic potential energy and 3*(?) is the

transverse part of the total current density

s
TE = e i 8-, (1.2.3)

x

The Lagrangian is expressed as the sum of three terms, one each for the

particles, for the field and for the interaction between them. The

10



Lagrangian is a function of the coordinates and velocities of the
particle and a functional of the corresponding field "coordinates and
velocities”. In the absence of interaction, only the particles
Lagrangian and the free field Lagrangian remain, with the dvnamics of
one syvstem not affecting that of the other. The two systems move
independently and have equations of motion that are not coupled to one
another. When the particles and field interact, the coupling appears as
an interaction term in the Lagrangian. The specific choice of Lagrangian
is such that it leads to the correct equations of motion. By invoking
Hamilton’s principle through the calculus of variations., the solutions
of which are Lagrange’s equations of motion [14], it can be shown, that
in this case the equations of motion lead to the Lorentz force for
particles (1.2.4) and to Maxwell’s equations, with sources, for the

radiation field (1.2.35).

.. Ay L ? >
M iy = = Fa— * oegle lay) + [a,@bla )l;) (1.2.4)
- i - -
s.g(r) = ?(r)
o
IB(r = 0
(1.2.51)
RN a.l-;-a
o >, (r)
V x e{r) = - 3t
>
¥« BT = 82,‘5” + L3,
- i)

The electric and magnetic field vectors g(?) and B(?) are related to the

vector potential through the relations

11



et (F) = —al?) (1.2.6)
B(F) = Vxa(r). (1.2.7)

> > . s
The transverse component of e(r) is a consequence of the gauge condition

{1.2.1). The charge density is

P(F) = Je B(T-,). (1.2.8)

[¢ 4

The equations of motion may be written in an alternative manner by
starting from an arbitrary gauge with the introduction of the
electromagnetic potentials [15,16]}, which also aid the subsequent
quantisation of the electromagnetic field. From the second equation of
(1.2.5) it is seen that the definition of the vector potential (1.2.7)
still holds. Substituting this into the third equation of (1.2.5) and
noting that a vector whose curl is zero can be defined as the gradient

of a scalar function,

-

S(T) + a(F) = Veo(r) , (1.2.9)

where ¢(?) is the scalar potential. The electromagnetic potentials as
defined by (1.2.6) and (1.2.7) are not unique, being determined up to an

additive gauge function X, expressed in the gauge transformation

(T) 2 alr) + 9y |
(1.2.10)

N ’
HT) > BT - g% J

a substitution which leaves the fields g(?) and g(?) invariant. Since

12



the treatment of atoms and molecules requires an explicit Coulomb

potential term in the Hamiltonian, the choice of X given by

vy = V.2 (1.2.11)

leads to the Coulomb gauge defined earlier. The equations of motion in
terms of the potentials are obtained from the remaining Maxwell
equations after decomposition of the electric field into longitudinal

and transverse parts {17], and are

2 1 82 5.5 a1,
V- T alr) = — =) (r) (1.2.12)
c at Eoc
VE(T) = -p(T) /e, (1.2.13)

The choice of Coulomb gauge thus separates the Coulombic fields from the

transverse fields;

>
SL > 3y 2

et (T) = —-a(f) ; e"(F) = Ve(D). (1.2.14)

The electrostatic field due to the charged particles is given by g"(?)
and described by the scalar potential while the radiation field g;(?) is
described by the transverse vector potential.

The Lagrangian function expressed in terms of the electromagnetic
potentials which leads to the equations of motion (1.2.12) and (1.2.13)
is

a2+ D) .2 —Jp(r)¢(r)d

\_‘,../

L = 1/22 {e %) - 2B2E

(1.2.15)
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and is known as the Coulomb gauge Lagrangian. The scalar potential ¢(?)
may be eliminated from (1.2.15) in favour of the electrostatic potential
energy V by employving the relationship of the latter to the longitudinal
electric field. This results in the Lagrangian (1.2.2), which is known
as the minimal-coupling Lagrangian.

It is possible in an alternative formulation to describe the
equations of motion using the Hamiltonian function [14], defined in

terms of the Lagrangian by

-
H= ) Dyedq + A2 - L. (1.2.16)
o

The dynamical variables are then the generalised coordinates and the
canonically conjugate momenta, which for particles and field are

respectively given by

Q

=L A@m=Z (1.2.17)
: 3%

Q

Ay

where the functional ¥ is the Lagrangian density. For conservative
systems the Hamiltonian represents the total energy. The Hamiltonian is
written in terms of the canonically conjugate variables, which are the
coordinates and the conjugate momenta for field and particles. By
grouping the charges to form electrically neutral aggregates, atoms and
molecules labelled C, the minimal-coupling Lagrangian {1.2.2) when
substituted in (1.2.16) results in the minimal-coupling Hamiltonian

H The quantum mechanical version [18] of the Hamiltonian operator is

MIN®
obtained by the replacement of the classical variables with quantum

operators subject to the canonical commutation relations

14



[ ’ 1 .
910 ()P4 (€] = 100800

S >, ] . N
a, (P11 (r )J = 1h5i4(r—r ),

where 514(?—?') is the transverse delta-dyvadic

minimal-coupling Hamiltonian [6]

HMIN = z HMOL(C) + HRAD + 2 HINT(C) * VINTER’
e ¢

with

Y 12 ,
Hyo () = ) 5 Ba(C) + V(D)

L qu
@

2,2
oo = H{IEEL e t@iin ot

0 J

2

€x » > €x 22 o
Hy (0 = = ) =2 B2 + ) 22 33 @)
(!d (X(x
and
Vinter S ve,e

The quantised radiation field Hamiltonian (191, H

(5].

(1.2.18)

(1.2.19)

Thus the

(1.2.20)

(1.2.21)

(1.2.22)

(1.2.23)

(1.2.24)

corresponds to a

set of independent quantised harmonic oscillators confined to a box of

volume V on which periodic boundary conditions are imposed. The photon

is the resulting quantised particle. The linear term in the interaction

Hamiltonian depends on the product of the particle momentum with the

15



vector potential while the second order term, quadratic in the electric
charge depends on the square of the vector potential. The potential term
appears explicitly in the Hamiltonian and is separated into intra- and
inter-molecular contributions.

The application of molecular QED to problems in chemical physics is
facilitated by the use of the multipolar Hamiltonian [20]. In this
framework radiation-molecule interactions are described solely by the
coupling of molecular multipoles to the electric displacement and
magnetic fields. The multipolar Lagrangian, used to determine the
multipolar Hamiltonian, is obtained from the minimal-coupling Lagrangian
by the addition of a total time derivative of a function of the
coordinates ([21]. The transformation uses the property that the
equations of motion derived from a Lagrangian are unaltered by just such
an addition. Lagrangians so related are said to be equivalent, but give
rise to Hamiltonians differing in form. Thus
Lyuir = Lwew — Sp)3 (F).3(F1aF (1.2.25)

where 3(?) is the electric polarisation field and is a function of the

particle coordinates. The multipolar Lagrangian is then written as

-> € >
S i1 . 2 off. = .2 223> 2| 32
LMULT = Z {EE maqa(C) - V(C)} + E—f{a(r) - ¢ (Vxa(r)) }d r
¢ Vo L
5L 5 5. 39 (3 5 o 1 25 39 s
-Ip {r).alr)dr + J{VXM(r)J.a(r)d r - E VINTER(C,C ) (1.2.26)
gL’

where 3(?), and the magnetisation field ﬁ(?), are defined by

B =) BT ﬁ@):}ﬁﬁﬁ (1.2.27)
¢ ¢

16



with

1
B =) ea(qa(i’)-Rc)IOS(r-RC-l(qa(C)-RC))dl : (1.2.28)
6
and
2> > - > 2 1 1 RGN - > )
M(C;r) = E ea{(qa(C)-RC)an(C)JJ015(r-RC-A(qa(C)-RC))dl . (1.2.29)
L4 4

These fields allow the total charge density associated with each
ensemble to be partitioned into true and polarisation charge densities,
and the total current density into true, polarisation and magnetisation
current densities [22,23]. This division of the sources necessitates the
introduction of a reference vector ﬁC’ which may conveniently be taken
as the centre of mass, an inversion centre or a local chromophore
centre.

The multipolar Hamiltonian (241, evaluated in the wusual manner

gives

Hayrr = ) Hyop (€0 + Ho, o + 2 H, (O + H (1.2.30)
¢ ¢
with HMOL(C) unchanged from (1.2.21)
H, = %Ha;(‘:” + coczﬁz(?)}da‘r’ (1.2.31)
He, p = éi—ﬂf EIE*(c;?)lzcﬁ? (1.2.32)
¢

17



and the interaction terms now given by

H () = -E;IIS(?).Q*(?)dB? - fﬁ(?).B(?)d3?
> =, 3 >, 3 >,
+ % Oéd(;,r )bi(?)bg(? ya2d’t . (1.2.33)

It should be noted that in the multipolar framework it is the transverse
electric displacement vector field 3L(?) that appears explicitly, rather
than the transverse electric field gl(?) as found in H . The

MIN

displacement vector is defined as

d(F) = e 2(F) + Bir). (1.2.34)

The quantum mechanical mode expansions for the electromagnetic fields

3;(?) and 8(?) are

1/2 B3 > — B>
) (thEO] {é(x)(E)a(x)(ﬁ)elk'r—é(x)(ﬁ)a+(l)(§)e_lk' l

J

(1.2.35)

T (Chk )P0 e (02 KT ZO0 2 F0) 20 SiklT
i &?———J b (kla " (kle"""" - b '(kla (kle °7°
ISR

(1.2.36)

A), D . . : .
( )(ﬁ) the electric polarisation of wavevector ﬁ, index of

. . . (A) = T(A), 2 . o .
polarisation *» and with a (k} and a (k) respectively annihilation

. > >(2)
and creation operators of a photon of mode (k,X). b

. e d
with e

—)
(k) is defined

through

18



The creation and annihilation operators are subject to the commutation

relation

= X' ! (1.2.38)

The first term of (1.2.33) denotes the interaction of the electric
multipoles with the transverse electric displacement field. The second
term represents the interaction of the magnetic multipoles with the

magnetic field. The modified magnetisation field is defined as

m(r) = 2 m(C;r) (1.2.39)
with

£ \
m(C;r) = 2 Y P« (C)*n"(r;r)]j. (1.2.40)

In (1.2.40) the vector field n(C;r) for a molecule C is given by

n(r) =) n(C;r) (1.2.41)

(a (C)—R;) OXO{r—R——>—(qA(O ))ax . (1.2.42)

S

The final term of (1.2.33) 1is the diamagnetisation interaction and is

quadratic in the electric charge and in the magnetic field. It is

19



defined as

oy*. (r,r'") =2 ;o>r') (1.2.43)
c,c’
<)ylC,C';r,?'l = >e (1.2.44)
[0
The term is independent of the electromagnetic field and does not

play an important role in radiative processes and for this reason is
usually neglected. It must however be incorporated into self energy
calculations as in the treatment of the Lamb shift.

The particular choice of the total time derivative in (1.2.25)
leads to the elimination of the intermolecular Coulomb interactions in
the resulting multipolar Hamiltonian describing neutral systems, a
characteristic feature of this approach. Molecules couple entirely to
the electric displacement and magnetic fields and all intermolecular
interactions are mediated by the exchange of transverse photons. Thus
retardation 1is a natural occurrence in the multipolar formalism with
signals propagating at the speed of 1light.

It has been demonstrated how the multipolar Hamiltonian may be
obtained from the minimal coupling Lagrangian by the addition of a total
time derivative followed by the construction of the Hamiltonian

from L An alternative method of obtaining H;fd’LTA is to start with

e
the minimal coupling Hamiltonian HE/IAIAN found from I’MIN and then to apply
a canonical transformation [20,25-29] on H@di to find MULL
Hamiltonians related by canonical transformations are termed equivalent.
In the quantum theory canonical transformations form part of the general

class of unitary transformations which preserve the canonical

commutation relations and the operator equations of motion. They are the

20



quantum analogues of contact transformations in classical theory

(14,18]. The transformation which results in H when applied to HMIN

MULT

is

= e By 1S (1.2.45)
with the particular choice of generator
s = /0[BT . (1.2.46)

It is clear that a and 2(?) remain unaltered by the transformation with
only the corresponding momenta changing. The resulting multipolar
Hamiltonian is that given by (1.2.30). It should be noted that although
the partitioning of the minimal- and multipolar-coupling Hamiltonians is
different in both cases, identical matrix elements are obtained for
processes where conservation of energy hold. This is a consequence of
the two forms of Hamiltonian being equivalent, thus giving equal matrix
elements "on the energy shell".

The interaction term of the Hamiltonian (1.2.33) is conveniently
expanded in terms of multipole moments to simplify its subsequent use in
the applications to be considered. The leading contributions to the
multipolar series of the polarisation and magnetisation fields, and the

ones employved in this thesis are
> > 2
m (C3T) = (m (D) + ... )8(r-Rp) (1.2.48)

and the first term of the diamagnetisation interaction may be written

21



2
4

2
2SS {2 erd B |
HDIA(C) = Z gﬁ;{(qa(C)—Rc)~b( C)J . (1.2.49)

In (1.2.47) and in the rest of this thesis, the Einstein summation
convention is wused. The -electric dipole, electric quadrupole and

magnetic dipole moments of molecule ¢ are respectively given by

o - N
o
0..00) = 2% e (3.(C)-B). (3 (0)-B.) (1.2.51)
() = 3 2 Cal OB Ee) (0, (C-Re )y 2
o

e

€ | = 2 3
n (C) = ) EE;{(qa(C)-RC)xpa . (1.2.52)
x

4

Using the definitions above in (1.2.33) and performing the volume

integral, the multipolar interaction Hamiltonian becomes

, -1= 2L, -1 1,2 - 2
HINT(C) = - a4(c).d (RC) - €y Q{j(c)védL(RC) - m(C).b(RC)
2 2
< e; f - Y S \Lu
+ Z EE; L(qa(c)—Rc)Xb(RC) (1.2.53)
x

including all terms of a similar orig?n. Assuming that the coupling
between radiation and matter is small enough to be considered as a
perturbation on the system, both the minimal-coupling and the multipolar

Hamiltonians may be suitably divided as

H=H +H (1.2.54)

22



with

H,NT = 2 + V,NTER' 11-2-56)
“

remembering that is absent in the multipolar case. The base

states are then given by the eigenstates of which are the products of

the eigenstates of the unperturbed molecular and radiation field
Hamiltonians, whose solutions are taken to be known. For processes
dependent upon time, the perturbation causes transitions between the

unperturbed states. The transition rate 1is given by the Fermi golden

rule
r = (2/h)|M_.|-p (1.2.57)
with p the density of final states, where is the matrix element

linking the initial state |i> and the final state Jjf>, and is given by

Mfi =

IT I

~ ~ Z L (EIII_EJ(EII_EP(EI_EA)
11T 1T I
(1.2.58)

23



1.3 APPLICATIONS

In the preceding Section, the construction of the minimal-coupling
and more commonly wused multipolar Hamiltonians of molecular QED
originating from the classical charged particle-electromagnetic field
Lagrangian function, was described. Both forms of Hamiltonian are
applied to the resolution of problems occurring in the areas of
intermolecular forces and optical activity.

In the following Chapter the Heisenberg representation of QED is
employed in the determination of the Maxwell fields in the vicinity of a
molecule in both the multipolar and minimal-coupling frameworks. In this
treatment both the radiation and electron wavefields are second
quantised with the fermion and boson operators explicitly dependent upon
the time. The electromagnetic radiation field operators are evaluated in
series of powers of the transition moments and the derivation given is
correct up to second order in the sources with the interaction
Hamiltonian including electric quadrupole and magnetic dipole couplings,
in addition to the electric dipole interaction term.

The electric displacement and magnetic field operators of the
multipolar formalism are then applied in Chapter 3 to the calculation of
the Thompson energy densitv and the Poynting vector associated with the
electromagnetic field. The equivalence of the matrix element obtained
for both these processes in the electric dipole approximation of the
minimal-coupling approach is demonstrated. The rate of flow of
electromagnetic energy is them compared with the spontaneous power.

In the fourth Chapter, the Maxwell fields are applied to the study
of the intermolecular interaction of two polarisable neutral molecules
using a response formalism. The response of a polarisable test body to
the field of the source leads to the energy of interaction between two

species in the ground electronic state, the dispersion potential, and

24



the interaction energy of molecules in electronically excited levels.,
Results valid for all separation distances beyond electronic overlap for
molecules with fixed relative orientations and possessing a variety of
multipole polarisability characteristics, are obtained. The limiting
near- and far-zone behaviour of molecules in the fluid phase is also
examined. This work is compared and contrasted with previous studies
carried out in the Schr2dinger picture.

In the final Chapter, a theory of molecule induced circularly
polarised luminescence is presented. The polarisation characteristics of
luminescence are altered by the presence of a chiral species. This is
interpreted in terms of the interaction bhetween achiral and chiral
molecules. The differential emission rate is evaluated wusing the

Schrodinger and Heisenberg pictures.



CHAPTER 2

ELECTROMAGNETIC FIELDS IN THE NEIGHBOURHOOD OF A MOLECULE

2,1 INTRODUCTION

As in quantum mechanics [18], QED may be formulated in, and
calculations carried out in, either the Schrddinger or Heisenberg points
of view. The time development in the former is governed by Schrodinger’s
wave equation and its solutions are time-dependent wavefunctions. In the
Heisenberg picture the states correspond to fixed vectors and the
dynamical variables to moving linear operators. The variation with time
of any dynamical variable is governed by the Heisenberg equation of
motion for the operator. The two representations are related by a
time-dependent unitary transformation and identical results are obtained
with the use of each formalism.

In Chapter 1 the quantum mechanical minimal-coupling Hamiltonian
was obtained from its classical origins through the use of the
Lagrangian function and the principle of minimal-electromagnetic
interaction, and its relationship to the multipolar Hamiltonian was
discussed. The minimal-coupling form of the theory was converted to its
multipolar counterpart by the addition of a total time derivative to the
Lagrangian, or by the application of a quantum canonical transformation
to the Hamiltonian. Similarities and differences between the two
approaches were examined by treating the charges within the framework of
first quantisation.

QED with non-relativistic sources in Heisenberg form with both
radiation and matter placed on an equal footing was elucidated in a
series of papers by Power and Thirunamachandran [30-34] with both the

electron field and the radiation field being second quantised. A
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consequence of second quantisation was the resulting change in the
equations of motion for the total system. The electron wave-field now
had Schrodinger’s equations in the presence of the electromagnetic
field. This was in direct contrast to the conventional particle
description of matter, where the equation of motion for the charges was
given by the Lorentz force law. The electromagnetic fields themselves
obeved Maxwell’s equations in both cases. The multipolar form of the
theory, advantageous for situations involving bound systems as sources
of the electromagnetic field, was then shown to follow from the
underlying quantum electrodynamical theory based on the principle of
minimal-electromagnetic coupling.

In the Heisenberg approach L was obtained from LMIN by a change

MULT
in the generalised coordinate of the electron field, amounting to the
application of a point transformation. HMIN however, was converted

directly into HMULT through the application of a quantum canonical
transformation. After extension of the theory to include molecular
assemblies, it was found that the elimination of the intermolecular
electrostatic terms in the multipolar Hamiltonian in favour of couplings
via the exchange of transverse photons was again possible, a
characteristic feature of the multipolar formalism as noted previously.
Maxwell fields in the vicinity of the sources were then derived within
the electric dipole approximation. Applications using the Heisenberg
picture included the study of intermolecular interactions and energy
transport phenomena.

In this Chapter, the electromagnetic fields in the proximity of a
molecule are obtained using both the minimal-coupling and multipolar
formalisms in the Heisenberg framework. In QED the use of the Heisenberg

formalism provides additional insight into processes conventionally

described by the more familiar Schrodinger picture.
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2.2 MAXWELL FIELDS FROM MULTIPOLAR HAMILTONIAN

The electromagnetic field in the proximity of a molecule is first
determined using the multipolar formalism of non-relativistic QED in
Heisenberg form. The multipolar Hamiltonian describing the
radiation-molecule and molecule-molecule interactions 1is written in
second quantised form. The theory 1is extended by including the
interaction term electric dipole, magnetic dipole, electric quadrupole
and diamagnetic couplings. The Maxwell fields of atoms and molecules are
found in the Heisenberg picture, in which the operators contain all the
time dependence. The electric displacement and magnetic field operators
are conveniently expanded in power series involving the +transition
moments. A complete derivation of the Maxwell fields to second order in
the sources correct to diamagnetic coupling and including all terms of
comparable order, is presented. This provides an extension of the theory
by going beyond the electric dipole approximation in the evaluation of
the quadratic fields [31] and the earlier work by Thirunamachandran [35]
where the higher order multipole moments were used to obtain the first
order fields only. The importance of the inclusion of higher multipole
moments 1s seen when applications involving chiral molecular species are
examined.

The Heisenberg field operators are found to be complicated
functions of the creation and annihilation operators for both electrons
and photons. Consequently the Maxwell field operators can either act
solely in the fermion space, or solely in the boson space or in unison
in the composite photon-electron space. The fields derived exhibit the
expected causal behaviour for distances r > ct, r being the distance
from the source of the field point.

The natural starting point for the evaluation of the Maxwell fields

in the vicinity of a molecule is the multipolar Hamiltonian [31,35]
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HMULT = j¢(q) (V )T 4+ Vig)|P(q)d q + EOJ — — tcC b (r) d r +

€
0

s -1= =31 =, e =2, .32
I¢(q)£—£0 p.g (r’ Q¢4V¢d3(r -m.B(r') + §—(q¥b(r ) ]¢(q)d q

(2.2.1)

correct up to the first diamagnetic coupling term, with self energies
being ignored, and with the point molecular multipoles located at
position ';'. In the second quantised form the electron wavefield is

expressed as
> -
¢(q,t) = ybn(t)¢n(q) (2.2.2)
n

where ¢n(a) is the orthonormal electron field mode and bn(t) is the
time-dependent fermion annihilation operator for the state |n>, of
energy En' The time-dependent mode expansions of the electromagnetic

fields are

1/2 > 2 b d >
> > - + N -1
*E = i)y [h‘zﬂ\jeo] {é‘“(k) Mg et s @M R e lk.rj
k, A
(2.2.3)
; 1/2 N N rd =
B(E,t) = i) fzfe‘k ] BN (32 (@, el BT Z 5 ), M R e KT
> 4 OCV J
B\

(2.2.4)

where a(l)(ﬁ,t) and +(k)(k t) are now time-dependent annihilation and
creation operators for a photon of mode (K,l) with 2( )(E) and g( )(ﬁ)

as defined previously. The boson operators obey the standard equal-time

quantum mechanical commutation relation
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(A}, T 2 i}
[a (K,t),a (k ,t)]_ = &32.8,, (2.2.5)

while the fermion operators satisfy the anticommutation relation
nn

* -5
b (t),b (t)|, =8 . (2.2.6)

With the aid of the expansions {2.2.2)-(2.2.4) the second quantised

multipolar Hamiltonian becomes

Hyyer = E b bnEn +AE aho
k,A
1/ NN s
. + e, ,
L5 ) e B
f:‘,x 0
n,n
1/2 NN NN
u 2+ .
‘iSE (Z?kcv) b,;,bn n™, (Bae'®' T~ Ba'e ik.r )
&
k,A °
m,n
1/2 > NN S .
) > = 3
i) 2 [ggg ] b;bHan ((iK18ae'® T = (-iKica'e ik.r,
&
K,\ o
m,n

2 1/2 172
zz hk } b'b (q.q.)™
8m ign Mm ze cv 2€ CV mon' 498

L2 . s , ) ) 3
(b.ae ~— b.a e ' )(bea e = b{a e ) (2.2.7)

where the time dependence of the electron and photon operators is
implicit as 1is the ﬁ,l-dependence of the electric and magnetic
polarisation vectors and the radiation field operators. The primed
superscript on these vectors and operators signifies the photon mode
(ﬁ',l'). In (2.2.7) the transition dipole moment matrix element is given

by
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= f@ (@) Ee (3)d°q (2.2.8)
= |¢ (q)ae (q)dq . 2.

with similar definitions for the matrix elements for the magnetic dipole
and electric quadrupole transition moments.
The time development of the operators a and bn are found from the

Heisenberg equations of motion

iha = [a,HMULT]_ (2.2.9)
and
ihbn = [bn,HMULT]_ . (2.2.10)

Using the Hamiltonian (2.2.7), the relations (2.2.5) and (2.2.6) and

introducing the operators «{t) and Bn(t) in the interaction
representation through the substitutions af(t) = a(t)e_lmt and bn(t) =
Bn(t)e_iwnt, and after performing the time integral, it follows that
alt) = «(0) + L[hek Y 73 (UG 4L m"b +(-ik,)Q"ge Je SLILIN
- h 2e v e 4 4 BT RT B
t
,ile o)t ot .
J dt e’ mn Bm(t )Bn(t )
0
o2 2 z ]1/2( hk’ 1/2 g fdt 1(m +m)t
4hm i4n kﬁﬂ.& 2e cV \ZEOCV Q;qg 4
WA o
m,n
AA, ;ﬁl _"I a ’? 7’ + -ﬁl -"I -ml I
miker gl (t')Bn(t')(béa'(t')el R P A T

(2.2.11)

and
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=, . p
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EAZ [ZEOV] f dt'p_(t’ )[(”a etony b. +(1k£)0 ﬁe Ja(t’ e
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hk’ nm ‘ .
* Bha téﬂ»ﬁﬂhl Z E (25 cv) [ZeocV] (a;ap) J dt’ g (t7)x
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k, 7
L, P + 'i >, . )/
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1"’ > l)' + ‘TZ/ -, . /)r
(bkd'(t')el g R e L Séa’ (¢ )e ik T —1(wmn-w It ),

(2.2.12)

For the present the diamagnetic contribution is ignored but will be
considered separately later. The calculation of the electric
displacement field is given first with the derivation of the magnetic
field following.

The transverse electric displacement vector dt at time t in the

Heisenberg picture is

172 > S >
> K. T-iwt — + . -ik.T+i
d(F,t) = i) (th‘ ] [e altreth Tt o (g thoTHIOL (2.2.13)
b

k,A
which is evaluated as a power series in the transition moments as

(1) =2 2) =

(0) 2 (7,0 + BN F 0 e (2.2.14)

dz(f,t) =d;” (r,t) +d;

by expanding the operators «(t) and Bn(t). The first term arises when

a(t) and Bn(t) take on their initial values at t = 0, so that
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This is the free field operator independent of the source. It can create
or destroy a single photon, operating entirely in the boson space. The

term linear in the transition moments is

I.

2 P2 _ o+ @
(1) 13 [hckc ] [e{u(l)(t)elk.r 1mt_eia»(1)(t)e iR. r+iowt

(2.2.16)

a(l)(t) is found by integrating (2.2.11) with respect to t’° subject to
oo, _ 5t Py ..
Bm(t ) = Bm(O) and Bn(t ) = Bn(O), giving
« gy = %{ ] § (u3" v b+ (- 1kg)Qlge e Sikert o
el(mmn+w)t—1
Bm(O)B ( o 0] J (2.2.17)
mn
This is inserted into (2.2.16) to obtain
(1) ,= i T (hcl ik. (r-7")
d: '(r,t) = 7 E ( ,‘][B (0)B_(0)ee ™ - 1 mne
4 ’ hﬁ,x 2V [ué at+ my b+ (- 1k£)Qé£e ] %
m,n
eiwm t_ -iwt
{ o 0] ) + H.C.]. (2.2.18)

Two necessary and key steps repeatedly used in the evaluation of
the Maxwell fields and subsequently in applications throughout the rest
of this thesis are the polarisation and wavevector summations and the
evaluation of angular integrals. For the former, by exploiting the

transverse nature of electromagnetic radiation with the use of complex
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polarisation vectors and the definition (1.2.37), it can be shown that

the following polarisation sums hold [6]

Eeim(ﬁ)ég“(ﬁ) Zb‘.‘”(ﬁ)ﬁ‘.“(ﬁ) -5 kK. (2.2.19)

A A

and

R = e kg (2.2.20)

In the continuum approximation, the number of allowed values of ﬁ

1S dense enough for the mode sum to be replaced by the integral

f ‘“‘ (2.2.21)
= Ve Y (2m)3

with dzﬁ = kzdde in spherical polar coordinates with dQ? an element of
solid angle. The angular integrals which are given below and are used in

the rest of this work are derived by noting that

- =
1 [ *ik.r,~ _ sin kr
?ﬁje do = L (2.2.22)

and by using the relation

- - - =
1, [ 4R T _ L. (0 k.7
Lo [ T40 = »i[k ™K Tao, (2.2.23)
Thus
1 _1k r 1 =
e ket Tae = FoE o F (ke ] (2.2.24)
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l-je btk Ty x——[G Sk (k) ] (2.2.25)
41I ‘(,é‘-& &e - r é r . . k
-i; (8, kK kge® +ik.Ty . ¥—[H PUTE AT (2.2.26)
1—Je ootk Tyg - [J (kr)=J,.,(kr)]. (2.2.27)
i) i 8 8%e° P AL P AR sl

The Cartesian tensors used above are defined by

F..(kr) = +(-v25. +v ¥ )Eikr— f..(kr)e KT (2.2.28)
i eikr ikr

Gy lkr) = Ee{d.ﬁvﬁ; lre (2.2.29)

H. o(kr) = AV,F. (kr) = +(=v35, 4V.9.)9 et h. ., (kr)elKF (2.2.30)

igglkr) = VeF vy G ey T hie 2.2.

J..,(kr) = 29,6, (kr) = — 1o, V¥ et (kr)elKT (2.2.31)

g kr) = VG (kr) = 2 gk R Lr = Jije ' o

The geometric tensors defined above are also repeatedly used
subsequent applications and their explicit forms are given in

Appendix at the end of this Chapter.

in

an

Returning to (2.2.18) and performing the appropriate polarisation

sum and angular integral using the relations given above,

(1) =2 1 k™ mn =
(Bt) = —5 ) (018, (O)Jdk{ LR (ko) T (k)

d
4n
m,n
k3 mn 4 1 (e_iknmCt—e-ikCt)
+ H.C. (2.2.32)
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where 3 = T-r'. Since the replacement of k by -k in the

Hermitian-conjugate term gives essentially the same contribution as the
first term but with the limits (—¢,0), the limits of the integral can be
changed from (0,®}) to (-w,®), TIllustrating explicitly for the

ti-dependent part of (2,3.32)

1 mn . . )
— E W8 (018 (0)[ dkk L kprelkP K not | by ik(p-ct)
- o i i
—fié(kp)e’lkpe‘lknmCt + ?{g(kp)e“lk‘p+°t’]
in um“B (018, (01K ufii P e ik p(P-ct) (2.2.33)

Myl

the contribution obtained being independent of the way the pole is
displaced. The other source-dependent terms are similarly evaluated with
the result that the first order electric displacement field, linear in
the transition moments is

(1) -

(B, t) 1m

1 + mn, 3
1) Bal01B 0V UM £ (ko) = T g (ko)

m,n

mn, 4 ik {p-ct)
- Qgﬁknmhijﬁ(knmp)Je nm R t > p/c

=0, t < p/c, (2.2.34)

and 1s strictly causal. Retardation is a natural occurrence of the
formalism with signals propagating at the speed of light. It is seen
that the first order field is the analogue of the classical field [(15].
It operates entirely in the electron Fock space, changing only the
molecular state.

In the procedure outlined above, the operator equation of motion is
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first integrated with respect to t’ as in (2.2.17), substituted into the
field mode expansion (2.2.16), followed by the conversion of the mode
sum to an integral over dk, which finally results in (2.2.,34}. It should
be noted however, that it is possible to evaluate EL(?,t) by changing
the order of integration. The first order field (2.2.34) can be obtained
by inserting (2.2.11) directly into the mode expansion (2.2.16),
carrying out the sum over modes and then finally performing the time
integral. This also leads to the introduction of causality without the
need for any further assumption [36].

The transverse displacement vector aL(?,t) has higher order

contributions and the second order term that depends quadratically on

the transition moments is now evaluated. This takes the form

(2) heke Y172 (2) iR.o-i0t — T(2) iR, THiot
bl . C 1K.I'-1 - ' -1K.I'tl
dL (r,t) = iE [ 5V 0] [eLa {tle —e (tle 1.

K, A
(2.2.35)

To determine a(Z)(t) it is necessary to use the solution (2.2.12) in

addition to (2.2.11}. Thus

>
o2 1 hck mn— , 1m . mn— , -ik.
(t) = § (ZEOV] (“4 g+ md bg+( 1k£)Q§£eé)e
myn
t . ‘ +
<[ ar el Cnn Ot (g0 (g (M pryagt (g 00y (2.2.36)
0

(1) 1 hek’ 1 il «
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d
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e a’ (0) o 107
pn
2, >, -ile -0t
Y 1 nPE A pn -1
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pn
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and taking the Hermitian conjugate of (2.2.37)

1/2
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i it AP o -0 ' aesn

The last two expressions are substituted into (2.2.36) and after

integrating with respect to t’, a(Z)(t) is found to be
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(2.2.39)
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(2)

+
with « (t) given by the Hermitian conjugate of (2.2.39). Substituting

for «'2)(t) into (2.2.35)
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(2.2.40)

Carrying out the polarisation sum and angular average on (2.2.40) using
the relations given earlier and by extending the limits of integration
as before, since replacing k by -k in the final two terms above gives
essentially the same contribution as the first two, and also similarly
for the Hermitian conjugate term, only the first two terms of (2.2.40)

need be retained. Thus
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+
The molecular state labels are now changed so that Bﬁ(O)Bp(O) is common.

From (2.2.41) are extracted the Fig(kp) dependent terms as follows
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Integrating the above with respect to k for o < ct and with m = p gives
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Returning to (2.2.41) and picking up the G{j terms, changing the

molecular 1labels and performing the k-integral subject to the usual

conditions results in

12 g ik.7' [ mn, nm 1 nm nm
41'[hc EZ (ZE CV] Bm(O)ﬁm(O)a(O)e {mé [uz e£+EM£ b£+(lkm)9me£1 X
A

i,
k,
3 ik{p-ct) lk (P-ct)
~ k gL-(kp)e . knmgié(k Ple .
k -k k -k
nm nm
mn_ ,1 mn . mn nm
[IJ{ ez-rcm{ b£+(1km)9£me£]mé X
3 ik(p-ct) 3 -ik_ (p-ct)
k'g. .(kple k (-k_ple nm
_ ~4.4 mn-> Lg nm 1
[ K Tk + ——r ]J + H.C. (2.2.44)
nm nm

and repeating for the H{#& terms,
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The total electric displacement field to this order is obtained by
adding the last three expressions. For the applications considered later
on it is useful to write the second order field as quadratic in the
transition moments. Extracting the individual terms for a source located

L. -, > o
at the origin so that r = 0 and ¢ = r,
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This completes the evaluation of the second order electric displacement
field in the neighbourhood of a molecule which is quadratic in the

=(0) and 3(1)’

transition moments. This operator, in contrast to d
operates in the composite photon and electron field spaces. It changes
the photon number by one, and in general changes the electron state. The

procedure outlined in the derivation above may of course be extended in

a similar manner to include higher powers of the multipole moments for
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the evaluation of higher order terms in the expansion of a(?,t).
The magnetic field bi(?,t) for a source of charges and currents can
also be found in the Heisenberg picture. The mode expansion for the

magnetic field is

N hk 1/2 'ﬁ > (ot + 'ﬁ a+.wt‘
3 . ik.r-1 = 7 -1K.r+i1
b(r,t) = i 3 ( , ] {bia(t)e ~bja (t)e } (2.2.52)

and like the electric displacement field, may also be expanded as a
series in powers of the transition moments

(0),= (1),= (2)

b.(T,t) = b (F,t) + b; " (F,t) + b, (Tyt) + ... (2.2.53)

i 4

The first term biO)

(;,t) is obtained from (2.2.52) by making the
substitution «(t) = «{(0), and is the free field operator. The first and
second order magnetic field terms are determined in a manner identical

(1)(t) and a(Z)(t)

to that used to obtain the displacement fields with «
derived earlier and respectively given by the expressions (2.2.17) and
{2.2.39) being re-emploved. The results are now given with only the most .
important steps highlighted.

For the term linear in the moments, the first order magnetic field

is obtained by inserting (2.2.17) into (2.2.52)

3 > =,
btV (E, 0 = §a§ [ZEEV)[B;(O)BH(O)bLelk‘(r ©) (TG a4 (- 1kg)Q"e 1
k,x
m,n
(eimmnt—e—imt)
+ H.C.]. (2.2.54)

i{w +w)
mn
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After performing polarisation sums and angular integrals and integrating

with respect to k

(1) 2 _ mn 1 mn, 3
(B,t) = i = 3 B (018, (0)WF™K] g, (ko) + 2wl p, (ko)
~1QMk* . ok p)letKnn!P7CY) t > p/c
j£ nm‘Ju&' nm" ) [
=0,  t<ple. (2.2.55)

It is seen that the first order magnetic field (2.2.55) is the quantum
analogue of the familiar classical field. Further, comparing (2.2.55)
with the first order displacement field (2.2.34), the associated
symmetry between the two becomes apparent: the electric field of a
magnetic dipole is the negative of the magnetic field of an electric
dipole and the electric field of an electric dipole is the same as the
magnetic field of a magnetic dipole, with ﬁmn replaced by Emn in both
cases,

For the second order magnetic field, after substituting (2.2.39)
into (2.2.53) and performing the usual polarisation sums and angular

averages, the analogue of (2.2.41) is

b2 30 = —L T3 (hck'J”Za,(O) ik .71 [Qk -i0tfg* 018 (0)x
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By changing the molecular state labels as before to ensure that
+

Bm(O)Bp(O) is common and performing the k-integral subject to the usual
requirements, the following gid’ féj and jiiﬁ dependent terms are

obtained
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The total magnetic field to this order is obtained by adding
(2.2.57)-(2.2.59). As for the displacement operator, the individual
source fields quadratic in the moments are extracted for a source

situated at the origin, and are
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Returning now to the diamagnetic coupling terms and examining the

electromagnetic fields arising from this interaction,

(2.2.11), that for a source located at the origin,

it is found from



Yty = a(0) -
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It should be noted that in the diamagnetic contribution there is no term
linear in the molecular variables, the leading molecular dependent part
being quadratic in the electric charge. Substituting (2.2.66) into the
mode expansion for di(?,t), the diamagnetic coupling contribution to the

electric displacement vector is
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After performing the usual sum over polarisations and angular average
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Integrating subject to the usual restrictions results in
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Similarly, for the diamagnetic contribution to the magnetic field, after
>
substituting (2.2.66) into the mode expansion for b(r,t) and following

the usual procedure,

2 172
(D1A) = —-ie” v [ hk - mm, T
p PN E ) s e e, ) (——] (a,a,)™8" (018 (0)x
i BNEOmc" i8n Lmn E’é 2€ cV 42 m m
e
d(O)bmkafd(kr)elk(r—Ct) + H.C. (2.2.70)

This completes the formal derivation of the time-dependent electric
displacement and magnetic field operators correct to second order in the
transition moments and including all interaction terms of a comparable
order, in the Heisenberg picture of multipolar QED. The Maxwell fields
were expanded as power series in the molecular multipole moments and
found to be complicated functions of the boson and fermion operators.
The source-independent field acts solely in the photon space, simply
creating or destroyving a single quantum of light. In contrast, the first
order electromagnetic fields, linear in the transition moments, operates
exclusively in the space of the fermion field, leading to changes of
molecular state. The first order field was shown to be the quantum
electrodynamical analogue of the classical multipole radiation field
emitted by an excited source. The second order Maxwell fields, guadratic
in the sources, however, operate in both the photon and electron Fock
spaces, changing both the photon number by unity and the state of
electronic excitation. As expected all the fields exhibit causal
behaviour, vanishing for t < r/c. The extension to even higher terms of
the multipolar series and powers of the radiation fields 1is
straightforward, but leads to progressively more complicated

expressions.



2.3 MAXWELL FIELDS FROM MINIMAL-COUPLING HAMILTONIAN

In this Section, the minimal-coupling version of the quantum
electrodynamical radiation-molecule Hamiltonian is used as the starting
point in the derivation of the Maxwell fields in the neighbourhood of a
molecule. As mentioned previously, in minimal-coupling the momentum
conjugate to the vector potential is proportional to the transverse
component of the electric field. This is in contrast to the multipolar
case where the conjugate momentum is proportional to the transverse
component of the displacement vector field [30]. Therefore, instead of
evaluating the displacement field in the vicinity of a molecule as in
the multipolar case, in the minimal-coupling approach the transverse
electric field operator is determined. Further, for a neutral system the
total electric field is equal to the transverse displacement field
outside the source since the longitudinal component of the displacement
field is zero. Also, since the transverse electric polarisation field is

non-local, 3‘(?) # Eogl(?) outside the sources. From (1.2.34) it is seen

2TOT

that d =>TOT ,2 =TOT =

(r) = €,€ (r) + p (r). This has the important consequence
that gL(?) is unretarded, in contrast to gTOT(?) which is fully retarded
[31]. The "static" contributions manifest themselves as poles at k = 0
in the evaluation of the k-integral. These additional poles are absent
in the multipolar treatment. A retarded result for gTOT(?) is finally
obtained after cancellation of the static contributions arising from
BL(?) with those from g¢(;). Although the equations of motion for the
magnetic field remain unaltered in both frameworks, the magnetic fields
derived in the previous Section using the multipolar approach do not
remain valid in the minimal-coupling case as the operator equations of

motion are different. Hence g(?,t) is also determined in

minimal-coupling.
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This treatment extends previous work in which the total electric
field was obtained to first order within the electric dipole
approximation [31], by including magnetic dipole and electric quadrupole
couplings, and by the evaluation of the magnetic field. The derivation
given takes into account the leading correction terms arising from the
inclusion of the first derivative of the vector potential. The
evaluation of the field operators is similar to that of the preceding
Section, but with several important and subtle differences which will be
indicated where they occur.

The starting point in the derivation of the Maxwell fields is the

minimal-coupling Hamiltonian in second quantised form
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where use has been made of the mode expansion of the vector potential

1/2 22 3 k.3
G0 =) i) { M @aM (&, e)elk-9 3(*’(ﬁ)a*(*’(ﬁ,t>e'1k'Q}.
> a
k,x
(2.3.2)
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The time dependence of the boson and fermion operators in (2.3.1) is
implicit as is the mode dependence of the photon creation and
annihilation operators and electric polarisation vectors. It should be
noted that in the Hamiltonian (2.3.1), the spatial variations of the
vector potential to first order have been partially accounted for by
including the first derivative of 3(3). This 1is essential for the
inclusion of magnetic dipole and electric quadrupole moments in the
evaluation of the electromagnetic radiation fields. In previous studies
{31] within the electric dipole approximation, where the radiation
wavelength is large compared with molecular dimensions, the variation of
the vector potential over the extent of the molecules is ignored. Thus
Z(a) is replaced by z(ﬁ), R being the molecular centre, usually taken to
be the origin, so that the electric dipole is the only resulting
molecular multipole interaction term. By taking the first derivative,
the field derived will include electric quadrupole and magnetic dipole
couplings as well as the contribution from the -electric dipole
interaction term.

The Heisenberg equations of motion for the electron and photon
field operators are evaluated using the analogues of (2.2.9) and

(2.2.10) along with the relations (2.2.5) and (2.2.6). Thus
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and
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(2.3.4)

In (2.3.4) the term of order e2 has been ignored since this will not be
-
> 2
required in the derivation of the fields for terms up to H, E, and 3. By
employing the interaction representation and integrating the last two

expressions with respect to time, it is found that
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It is now shown how the various multipole moments to this order of
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approximation may be extracted from the spatial variation of the vector

potential [37]. For the mnth matrix element,
(p;a)™" = %{[(piqg)“‘“ + (a1 + [(pga)™ - <qipg)"‘“1} : (2.3.7)

Using the fundamental commutator relationship between position and

momentum,

[a’HMOL] = iﬁ B (2.3.8)
results in

of" = Bl (2.3.9)

so that the first term within curly brackets of (2.3.7) becomes
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Z[PL a; +q4'_ P'] —E{h][E q qé' +Epnq4l qé] = hEmn(qiqé') .

4 4 & mp 4
(203.10)

The second term of (2.3.7) can be written as

- TS (@)™ - ihs, .8 (2.3.11
Qp; — R, o = - e plaxp)g - RO . .3.11)
Adding the last two expressions results in (2.3.7) becoming

mn _ l}im mn _ 2 =2vmn _ .
(p{'qd') =3 Emn(qiqé) Eijﬁ(qxp)ﬁ lhsi;ismn} . (2.3.12)

The above together with (2.3.9) can be converted to an identity
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explicitly involving multipole moments advantageous for future use

—e . mn _ i m mn_ 1
—Eei[pi$1k4(piq4)] = ﬁeiEmnpinxlkb m; ‘heLkgEantg (2.3.13)

=

where ﬁ, E and 3 have the usual definitions of the electric dipole,
magnetic dipole and electric quadrupole moments, and the orthogonality
of g, ﬁ and ﬂﬁ has been used.

Before going on to derive the magnetic field, the total electric
field in the neighbourhood of a molecule is obtained. Its transverse
component is proportional to the canonical field momentum in the

minimal-coupling approach, and is given by the mode expansion

> >
ej(Ft) = i) [22"‘\;)w[eia(t)eik'r'i“’t— g{a"‘(t)e-ik'?ﬁwt]. (2.3.14)
P
To evaluate the transverse electric field in series of powers of the
transition moments up to and including the electric quadrupole moment,
the operator equations (2.3.5) and (2.3.6) together with the relation
(2.3.13) are used. The first order field, linear in the transition
moments, is obtained after substituting the first order term of the
operator equation a(l)(t). This is given by the first term of (2.3.5),

that part linear in the electric charge. Inserting (2.3.13) into the

first part of (2.3.5),

(1) 1/2 §
(t) = § E [25 ckV] By (018, (0)

i(w n+m)t _

i— 1- mnje m 1

Substituting the above into (2.3.14), the first order transverse
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electric field is

-
1(1),» _ i + ik.r
e, (r,t) = 26V _}z {Bm(O)Bn(O)eie x
k,A
n
i— - 1- mn et mnt—e-lmt
[geéE # —1kb4m4 ﬁejk&Eanjé][ mmn+w ] + H.C. ..

(2.3.16)

After performing the polarisation sum and angular integration, the

electric dipole dependent contribution is found to be

L(l)

4’ !

,t) m O)B (O)k u

4ne n 4

-ik__ct -ikct
n" v

dkk (F, (kr)—Fé(kr)]e e + H.C. (2.3.17)
nm

1
2mi.
0

It is convenient when working in the minimal-coupling formalism to use
the definitions of the tensor fields Fié(kr), Gié(kr) etc., since the
occurrence of additional poles are then easily visible. Evaluating the

k-integral for r < ct gives

(1) 2> mn 1
e, (pr,t) = 4neo man (0)8 (0)“; ko (=¥ 6¢4+v¢ g)2n1r X
Jzk (eikr—e-ikr)(e_iknmCt—e-ikCt)
k(k=k )
- nm
1 mn -iknmCt ik r
= ) BL(0)B (O] (775,49, ) (e**nm"-1). (2.3.18)
0 myn

The longitudinal electric field correct up to the electric

quadrupole moment is given by
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eoef(F1t) = = (F,t) = pi(F,t) =m§n(u§“—em“v£)ﬁ (1B, ()8 (F)e™“na® .

(2.3.19)
Noting that for r # 0,
S 3 .~
SLé(r) = (5, 3T ré) (2.3.20)

4ﬂr

it follows from (2.3.19) that the first order electric dipole dependent

contribution is

-1 + mn -iw t o 3

= mEHBm(O)Bn(O)ué e nn® (8, —3r;r) /e (2.3.21)
!

By adding (2.3.21) to the transverse electric field (2.3.18), the total

electric field to this order of approximation is found to be [31]

ik (r-ct)
nm

TOT(1) 2 = _ —v3s e
T e = 4n£0 mEnB B, ()" (=775, 47,7 )2
_1 J-(l)*—‘
= Eo i ar,t) (2.3.22)

which is fully retarded. Returning to (2.3.16) and evaluating the
magnetic dipole contribution to the first order transverse electric
field, after performing the sum over polarisations and angular averages,
1(1),=» =

e; (m;r,t) =

EB (018, (0)m]" (i, 7 )7

x
4ne o€ 2Wir

ikr -ikr -ik ct -ikct
—e Y(e “"nm” —e )

k-k
nm

f&kk
-0

-1 + mn, . eiknm(r-Ct)
= 4me c manm(O)Bn(O)md (lknmeijﬁvﬁ);
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' N mn, 2 ik _{(r-ct) _ ToT(1),=> N
= Tres an”m(O)Bn(O)m:’ Kpngis(Kpprie’ nm = e, = ¢ d

(2.3.23)

which is entirelv retarded. Phvsically a magnetic dipole has no static
electric field and hence &' = 0. Algebraically this is due to the
absence of the pole occurring at k = 0 in the integrand above.

The electric quadrupole dependent part is evaluated in a manner
similar to that used for the electric dipole dependent term, and its

contribution is found to he

BT 0 = =) =87 (018 (000K (-8, 49,9 39, —L «
i 1Ty m[,néthgnl‘m “n 4 nm it 48 oy
| " (oikr_ -ikr,  -ik ct_ -ikct,
Jdk k{k-k )
—n nm
e SN T mn, 4 ik (r-ct)
= -’UTEn 2‘ ,,mfo)rn(O)Qékknmh{é&(knmr)e nm +
0 min
I N gt mn -ik ct, 2 1
47”:“ mznrm(O)Bn(O)Qé’ée nm~ - {=V ._‘;é.-l-vl;vé)v& =t {2.3.24)

From (2.3.19), the first order longitudinal electric field component due

to a quadrupole source is

- AR -1t 2
LN 67018 (010™e™ nnt(-9%5, 4.0 57, 1 (2.3.25)
dme an m n ik i A4 By

so that the total quadrupole dependent first order electric field is

2 ik (r-ct)
Tor(1) 2=, _ =1 T gt mn,_ 2 e'*nm
el (BT = Tz ) BL10)8 (01075(-975, 49,917, &
2 m,n
= L t@T, 0. (2.3.26)
S
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This completes the derivation of the first order total electric field in
-

the proximity of a molecule in terms of the source moments ﬁ, ﬁ and a in
the minimal-coupling formalism. The transverse component of g(?) was
obtained directly from the mode expansion for the canonical momentum
while the longitudinal part was found from the electric polarisation
field. The addition of these two contributions, giving the retarded
total electric field, is found to be equal to the transverse
displacement field operator of the multipolar formalism. The first order
contribution to the electric field was derived using the first term of
(2.3.5), that part linear in the electric charge.

To determine the second order electric field, quadratic in the

multipole moments, both the terms linear and quadratic in the electric

charge are needed. From (2.3.5)

(2) __e_, S(_h )%= mp_. mp,

t . ,
jdt'el(“mp*“’t ARSI TS)

1/2 1/2
_ h + -
¥ h 2 E (26 ckV] (ZEock’VJ Bm(o)ﬁp(o)eal x
JA
p

I ’

o i(mm +w—m')t_1
[e;a’(o)(l—ik£q£ +ik5q& )5 i +0-0") '
©0p

1(m +040° )t

-, .t . mp . -1
eéu (O)(l—lkéq& —1k£q ) (mmp+m+m ] ]. (2.3.27)

After substituting (2.3.6) and its Hermitian-conjugate into the first

term of (2.3.27), that part linear in e, which comes from the "B.Z" term
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of the interaction Hamiltonian, (2.3.27) becomes after carrying out the

t-integral,

« ey = [ﬁm] 22 = ckv)UZ{ZEDZk'V]mﬁl(o)ﬁp(o');é

A ’m n,p

[e}jx' (0){[pﬂnpgpﬁk,,’n(p{qm)mnpgp—ikﬁpﬁn(qué)np] x

ei(wmp+m-w’ )t 1 i(w p+m)t 1
[((mmp+m—m')(mmn—w’)] ((m p+w)(m —m’)}] +

np] x

[p?npgp—ikﬁ(p#-qﬁ) "ppP+ik’ p M(ppa,,)
ei(wmp+w_m 't -1 1 ei((‘)mn‘w)t -1 +
(mmp+m—m’)(mpn+w’) (mmn+w)(wpn+m’)

mn np_.., . mn _np_. mn np
(0){[1) p; —ikp(ppan)  py —ikgpp (piag) "] *
ei(mmp+m+m’)t 1) ei(wnp+u)t 1 .
(0 +0+0" ) (0 +w") (0 +w) (0 +w")
mp mn np mn

[0} "pp ikg(pjap) ™ b ~ikppi" (Dpan) ™1 x

el(wmp+w+w )t -1 ei(mmnﬂd)t -1
[{(w +0+0" ) (@ —w’)}—((w +w) (o —m’)]] *
mp pn mn pn
i(w  +0-0")t

. . mp,.,. mp,e ' mp
h"“sﬂi{ec" (Y (=tkgag ™ ikgay ™0 ~o07)

ey ikggg —ikgag" (@, Fo%0")

-1

+

(2.3.28)

with a(2)+(t) given by the Hermitian-conjugate term of (2.3.28). To
evaluate the second order transverse electric field, (2.3.28) is
inserted into the mode expansion (2.3.14). The leading contribution, the
quadratic electric dipole dependent transverse electric field is
obtained by retaining the (qu-)mp and constant terms of the molecular
part of (2.3.28), and with the aid of (2.3.9). There are a whole host of
identities and associated sum rules which enable minimal-coupling matrix

elements to be written explicitly in terms of molecular multipole

moments [38]. One such identity is
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2
—e?h
R z( u‘;“uzp uﬁ u"p)Jm (2.3.29)
D

n

Others will be used when needed. Thus

2) i i h h VP [ - ik.T
@t =2 3 ) Y () ) 080 ez
k'ml',k,l
'y 14D
{[ mn np ei(mmp—(‘)l)t—e—.imt elmnpt g lut
epx (O)Ll [Tipad) [ 7 7 7 ]
£ £ 74 “mn np (wm.+w—m (@ =7 (wnp+w)(wmn—m )
mn np ei"mmp-_m’)t—e—imt el¥pnt — oIt
+ H. U W @ [ 7 7 - 7 }
4 " "mn np (wmp+w—m )(mpn+w ) (wmn+m)(mpn+m )
M0, 0P_, O np ei(mmp_-m,)t—e_lmt

After carrying out the polarisation sum and angular average, the above

becomes

4ns ime h z z 2 [zg ok V]UZB;(O)BP(O)(-V 6£4+v£ 4)2; — ega’ (0) x

yAT,m,n,p

jm%(eik"—e'ik") ro (ei(kmp—k Jot_iket ik oot_ -iket
k £ nn npl(k +k-k’ )(k ~k) (k__+k)(k__-k")

-0 mp mn np mn
ik ~k")ct -ikct ik ct -ikct
+ umn np, . [e_mp__ —e _ e mn_—e :
He mn np (k +k—k )(k +k ) (k  +k)(k__+k’)

mn pn

o np. (o1 (kppk ot_ —iket
¥ 6mp(kmn“4 Hg kg “ﬁ ” )( (kptkk") )]

(2.3.31)

which when integrated gives, for r < ct,

J-(Z) -)—)‘—) _ 1/2 + . 1
B gy ) ) ) ) PR 0)eg(0) (75 59,7 )]
kKyA,m,n,p

—i(k —k)(r-ct) i(k =klct —ik (r-ct) ik _ct
[e mp —e mp e np —e_np ] +
-k)

np
{“ﬁ Hi Kanknp (koK) (k) ' koK

64



-itk ~k¥(r-ct) i{k -—klct -ik (r-ct) ik ct
nonpE g mp —e” mp , & __mn —e”mn ] +
(k__+k)(k-k ) k (k__+k)
pn mnp mn - pn

A "8 ®un np

o kg~ (r-ct)_ Lk, K)otq)
& o Knnt e~k HE H “p)[ L ]l + H.C. (2.3.32)

mp mn 4 "4 F (k—kmp)

The diagonal term from (2.3.32), needed for later applications, can be

written as

1/2
1(2) 2= =2 oo i ¥ { hek vna 925 .o vl «
ep HET ) = 2 ) (25 v} eg(01B (018 (0) (=778, 49,7 .)- x
0 0
E,A
m;n
mn nm  mn n mn nm

WHE M Y ik(r-ct) Hi M . ) )
[{Eé _ﬁU,Eﬁ +hm’elk(r ct)+ j & (k e -iket_giky ct, -ik  (r-ct)
nm nm J

nm
Azn”nm . '
- % (k /k)l o 1kCt+e_lkmnCt—elkmn(P-Ct)]]
nm
+ H.C, (2.3.33)
It mav be noted that the term with the factor elk(r-Ct) has the same
form as that of Eg1df(2)(?,t) (2.2.46), calculated using the multipolar

formalism. To obtain the second order electric dipole dependent total
electric Tfield, the electric dipole dependent polarisation field to
second order must be added to the above. The latter is extracted from

the second order term of (2.3.19), which is

{0) (0) (1)

1(2),= ,MD_Mmp L 2 —iw (1)
pI N0 = ) e at e o 10180 0480V 0l e

v (=]
m,D

/2
_ ;9 v Tl D R+ «
) E E [95 ckv] 5;,(F18_ (018 _(0)
K,A,m,n,p
[- mn mn eimmoJ'mt—e_innt
L{eﬂa (0)lpp —ik, (ppq, 1) P00l +

il —w)it -iw tl
mnye___ mp —e ~ pn

ega(O)[p$n+ikm(pgqm) (p?p—gnpv

. ) )+
1(wmn—u) J 88
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( mn mng, ) a(0)[ + k ( )np]ei(mmp_w)t e—iwnmt +
Hi = pVg)iep pp +iky (Deay i{o_ +0)
-+ n n el(mmp+w)t-e—imnmt
ep (0)[ppP-ik, (ppq, ) "] b= }] (2.3.34)
@ )

on using (2.3.6). Making use of the relation (2.3.13) and putting m = p,

(2.3.34) becomes

1/2
i B R,e) = 5 2 > (ze kV] (0187 (0)8_(0) (=775, 47,9 )L x

44 4i4'r
k,X,m n
- K MMy 4ie k k an nm_ —kb nn nm| (e lkCt—elknmCt)L
©%nm''8 “ g nm“& 4(, ptiegkpk QpeH; 88 Hj (€_—fo)
ook pIMI0 g p QUDOMG Lok p ngn lkb (i N (e”tket_giky oty
8%t FB TCSmnViete VetiepKeXy Hy ££ 8 T8 (Emn+hm)
+ H.C, (2.3.35)

from which the electric dipole contribution is found to be

, 1/2
oy e < 2 Y Y (k] [ege(01870)8, (0 (775, 49,71

4r 2e )V ig 4 4'r
k,A,m,n
umn#nm umnunm
i "B -iket_ ik __ct £ 74 -ikct_ -ik_ct
{Enm—hw(knm/k)[e e mn ] + Enm+hw(kmn/k)[e e mn lp| + H.C.

(2.3.36)

so that the second order electric dipole total electric field is

eTOT(Z) _(2)

i (B3 7yt)

(33, ,t) = J'(2)(;1;1 r,t) + ED

2 E (M)UZ 0f(O)B (0)B_(0) (=9~ 5. 499, )- x

4ns zgov @t
A,m,n
mn nm mn n mn. nm
K, Hp U # W.ou .
i R4 1k(r—ct) i "k ik (r-ct)
[{E —hw" E +hmJ tEThe (Kp/kle o
nm
mn nm
g H
ik__(r-ct)
¥ Enm-l-h(;) (knm/k)e ] + H.C. (2.3.37)
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which 1s fullv retarded and is applicable for r < ct. It is useful to

demonstrate that e T(Z)(r t) vanishes for r > ct, thus showing the

causal nature of é'“T(Z)( .t). Recalling that é—(Z)

(r,t) has static
contributions, by returning to (2.3.31) and evaluating the integral

subject to r > ct, these are found to he

i v Y 5 (_h ]“2 g" v35. +9.9 )L

Tre T AZ Z Z LZEnckV, eﬁa(O)rm(O)Bp(O)(— “ié+ L'g); -
- k,»,myn,p

J{“mn,np r 1_el(kmb—k)ct \ l_elknoct 'l

£ 74 "mn np| - - —k) ]
Hg | T« 0 ek 7 "k (kK
X mn mp np mn
, DL r 1_el(kmo—k)ct \ 1_elkmnct 1

“i "8 “mn nDL (k +k)(k—k ) k {k_ _+k) J

mp mn pn
S n — 1(k —k)ct
+ 8m (kmn#; #&‘—k 0, p)L 1 + H.C. {2.3.38)
D s mp J
which after simplifving, becomes
1/2

i S S (_h VT atios 925 491 «

ime b L 2 LZE ckVJ eg (018, (018, (0N "1tV
k,A,m,n
“zn Jm L nm \
JT2 74 K [e—xkct_elk ct] + _i____ k [elkmnCt—e-lkCth + H.C.
| k -k “mn k  +k J
. "mn mn
(2.3.39)

Adding (2.3.39) to the electric dipole dependent transverse polarisation

field (2.3.36) results in

et(Z)(ﬁﬁg?,t) + E-ipj(Z)(zﬁ;;,t) - E-1d;(2) Aa

0

>
ir,t) =0, (2.3.40)

L

so that the total electric field obtained is strictlv causal, vanishing
for t < r/c.
For the higher multipole contributions to the transverse electric

field. the remaining terms of (2.3.28) are substituted into the mode



expansion for e:(?,t) (2.3.14) after the conversion of the molecular
part to transition moments, making use of the relations (2.3.12) and
(2.3.13) and the identity [38]

2

ie” T mp _ ic_ ,, AN ND_ mn np),1 mn_Np__mn np

Thus the complete transverse electric field bilinear in the moments is

12,2 . i 1 h VY2, L+
ey (rt) =g E E 2 [Zeov] [2eock’v) epx' (0)B (0)B (0) ~

> 2 2
ik.r)| mn np - o |1 mn np_ i mn np_
[eie ‘{L{C u{ mmnwnpegi 1kﬁej([h} EmnEané{“j hsfﬁtEnpm{ “g

.\ 2 .
es np},..[i] = mn.np,.[i], mn_np
2082 mn " npj ]“{h] ®;*8Eun"npte Q‘é’&“(ﬁJ kb B nte M ] )
il —w )t —-iwt iw t -iwt
e " mp —-e _e np —e
[(w +to—0" ) (0 —") (0 +0)(0 —0')J
mp mn np mn

.\ 2 .
mn np TS TN 1 mn.np_ 1 mn np_
+ [}ld IJ'C Umnmnpej. 1k&e#- ((h] EmnEnp“d‘ Qu haEmnu#- mt

N2 .
_e mnj .11} = mn np,.{i},5 mn np
zmSMtSanmnu#- ) +1 (h} eékﬁEmnEané‘ﬁu’C +1 (ﬁ] kbéEnpmj' ].1£ ] X
i(w —w )t -jut it -iwt
(e mp —e e } +

_ mn - e
(v +00" ) (0 +0") (0 +0) (0  +0")
mp pn mn pn

he’— . mp - mn, np mn np
[{ ini%ekmIm +onp®; “nnHy He npte i)

4dica i (k_ u™QPP_j  QER,NP),f (M0, NP_ mn, Dy ei(wmp—w )t—e_imt
4§ £ np L€ ik "nn"jE L 478 T4 i "2 ((z)p-f»(;)—(;)')

+ H.C. (2.3.42)

)
Collecting together terms of the type e-;-elk'r and performing the

14
polarisation sum, angular average and the k-integral subject to r < ct

with the imposition of the diagonal condition m = p, (2.3.42) gives
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-1 hek) ' + 2 1
_)z E { ] «(0)B7 (0)8,(0) (~9°5, 47,9 )1 x

4me_he 2e V i4
° ky,A,m,n °
K> k_ K> K
{[e{kﬁ[“?nQZE[ - nm _ J+922unm( . nm _ nT}}(elk(r-ct)_glkct)
k (knm—k) k k™ (k m+k) k™

u ) k . u . .
od ﬁ&(_ng[elknm(r-ct) -ik nCt1s 5€ %k[ o )[e-lknm(r_Ct)—elknmCt]]) -
knn

k k . .
i mn_nm nm 1}, nn nm mn 1 1 ik(r-ct)__-ikct
[bé[{” mg (k(k K k] mg Hj {k(k ) kJJ(e e )

LU mn nm
_ ﬁ fk[elknm(r—ct)_e-lknmct] g [ -1knm(r—ct)_e1knmctl]} + H.C.
nm
(2.3.43)
'l‘z"
The terms with the factor ei-l;é-e1 ‘T in (2.3.42) after the polarisation
sum and k-integration, give
1/2
+ 1
e 2) B CV} eg*(0)B, (018, (0) (e ypVpr)
k A,m,n
uzn nm | mn n i, nm
i . ml ik(r-ct)_ " "4 aptroct)
{E -hmE “ihofke E ok /k)et
mn#nm
—f’—;ﬁm(k /K)etkn “"Ct)] + H.C.  (2.3.44)
nm
D 2
while the contribution from those containing e; e#ke ik.r is found to be
hek 1/2 + 2 1
4m: E ) [ZEOV} egx(0)B, (0)B (0V (=75, 49,9,) Vg >
k A,m,n
mn.nm .mn nmn mn,.nmn
He Qéﬁ Q4£p£ l ik(r-ct) -ikct He Qg ik (r-ct) -ik_ct
T —ho'E +ho (e —e ) - 7 m(knm/k)( nm - “nm )
nm nm J nm
QUM
Eiéiéa(k /k)(e n(r_Ct)—elknmCt)]
+ H.C. (2.3.45)
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The total electric field in the proximitv of a molecule correct to
second order in the sources 1is obtained bv adding the last three
expressions to the polarisation field gquadratic in the moments (2.3.35),

resulting in the individual quadratic fields

1/72
ToT(2) 222 i T % ( hek)? L o2 1
; mirae) = qres ) ) lgeny) a0V (018 101 (=778, 47,7 10
" k,X,m,n
mn_nm mn, nm, ,,in_nm
f“é "g Mg %0l ik(r-ct) _ i ™8 ik (r-ct)
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nm nm nm
mn, nm
g ui ik__(r-ct)
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- Ei-:ﬁa(—%ﬂ]elkmn(r“Ct’} # H.C.  (2.3.46)
nm N

- 1/2
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PTG o - 4nin ) \zgiij egkgx(018 (018 (0) (=778, 49,9 12
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., nm mn“nm\ mn.nm ,
rf”} “er . geH; | ikir-ct) _ " Qﬁz(fgm) ik (r-ct)
ILlEnm_ﬁ('J Enm”m’e Enm_hu\ K ’e -
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e _mg]eikmn(r-ct)1
3 E,_rhol k J
-4 © v V12 + .
= ) ) 2CK| epx(01B (018 (01(=975, 49,9 19,1 «
4 RS 2e V) m m 4 4 r
“ k.A.m,n -
mn . nm nn, nm ,, M nm
[f“f 58 %8| ikir-ct) _ e 9t Egm] ik (r-ct)
L|E —ho E +hu,e E -~hol k /e nm
. nm nm P nm
mn nm
T )
- AL “mn) il (¢ Ct’] +H.Coo (2.3.47)
nm \ /

with the quadratic electric dipole contribution given earlier in



(2.3.37). As for the electric dipole case, the instantaneous
contributions occurring in g‘, arising when the integral is evaluated
for r > ct, when added to the transverse polarisation field, results in
the total electric field in the neighbourhood of the source vanishing,
as demanded by causality.

Finally the magnetic field is determined in the minimal-coupling
formalism. The free field operator independent of the sources is the
same in both frameworks, obtained by inserting «(t) = «(0) into the mode
expansion for g(?,t) (2.2.52). The higher order contributions are
obtained using the minimal-coupling equations of motion derived earlier
in this Section when used in the evaluation of the transverse electric
field.

Substituting the equation of motion for «(t) to first order
(2.3.15) into the mode expansion for g(;,t), the minimal-coupling

magnetic field linear in the sources is

i (F,e) = 4 z > (25 cv]{B;(o)Bn(O)bLeiﬁ'F y
k A,m,n

fe E ~ikb.n™4+ie k,E Q™ e!%an’-e 10 + H.C (2.3.48)
h i m n“g i 4 D4 &' mn 4R (wmn+m) Sl e

Evaluating in the usual manner results in

(1) 2 - 1 mn, 3 _
(7,t) = 4ne E 808 (0)[u Ko iy (K om0 ()
ik {(r-ct)
lQJﬁknm 44&( mnr)]e nm , r < ct
=0, r > ct. (2.3.49)

As expected, the magnetic field is causal, confirmed by the absence of
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the pole at k¥ = 0. On comparing the above with the analogous result
obtained within the multipolar framework (2.2.55), the two first order
magnetic fields are seen to be identical. This is despite the fact that
the equations of motion (2.2.17) and (2.3.15) are different in both
approaches.

For the second order contribution to the magnetic field, d(z)(t)
given by (2.3.28) is substituted into the mode expansion for g(?,t),
with the molecular part converted to multipole moments using the

identities given earlier in this Section. Thus

. 1/2
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The contribution arising from terms with the factor b, eée1 T after

performing the polarisation sum and angular integral, is given by
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After evaluating the k-integral subject to r < ¢t and with m = p, the

quadratic electric dipole contribution is found to be

1/2
. 1,7+
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mn mn

ik(r-ct) has the same

The molecular terms with the exponential factor e
form as the corresponding term evaluated in the multipolar framework
(2.2.60). This results in the electric dipole dependent magnetic field

in the minimal-coupling framework
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Returning to (2.3.51) and evaluating the remaining terms results in the

magnetic dipole and electric quadrupole dependent contributions
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Returning to (2.3.50) and collecting terms of the tyvpe bLEéelk'r, and

> . .
evaluating in the familiar wav results in the remaining Um contributions
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o

Returning to (2.3.50) and extracting terms of the type bLe:jkﬁe1 ‘T and
_'\

evaluating in the familiar way results in the remaining 33 dependent

field being

(2) _‘3_) 1/2
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This completes the formal derivation in this Chapter of the quantum
electrodynamical Maxwell fields in the proximity of a molecule using the
multipolar and minimal-coupling Hamiltonians in the Heisenberg picture.
Specifically, the time dependent electric displacement and magnetic
field operators correct up to second order in the electric quadrupole
moment, including all interaction terms of a comparable order, have been
derived using the multipolar version of the theory. The causal
electromagnetic source fields are functions of the photon and electron
creation and annihilation operators. Since the equations of motion
describing the dynamical system in minimal-coupling are different to
those occurring in the multipolar framework, in the former approach the
transverse electric field operator, which is the canonical field
momentum in minimal-coupling, was determined as opposed to the
displacement vector field operator. The transverse electric field in
both first and second order was found to contain non-retarded
contributions, arising from the occurrence of additional poles at k = 0.
However, the total electric field, after adding the longitudinal part of
the electric field, which was evaluated from the electric polarisation

field, to the transverse component was shown to be fully retarded. The
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magnetic field operator to second order was also evaluated and compared
in both frameworks.

The zeroth order fields in both formalisms act in the photon space
only, simply being the free field operator independent of the source.
The first order transverse electric displacement and total electric
field operators were shown to be identical as were the minimal- and
multipolar-coupling magnetic fields. These operators act solely in the
electron space, leading to changes of molecular state, and correspond to
the classical radiation field emitted by an excited multipole source
undergoing real transitions. Unlike the first order minimal-coupling
Maxwell fields, the second order operators, when compared to their
multipolar counterparts, are seen not to be identically equivalent on
inspection, although similarities do exist. Despite differences between
the second order multipolar- and minimal-coupling radiation field
operators, when the latter are applied to the calculation of a physical
process or quantity for which energy is conserved, the resulting matrix
element is identical to that obtained using the multipolar formalism. In
both frameworks, the second order Maxwell fields operate in the totality
of electron and photon field spaces, changing the state of the electron,
and the photon number by unity.

These Maxwell fields are now employed in the following Chapter to
evaluate the energy density in a radiation field and the rate of flow of
electromagnetic energy from a molecule in an excited electronic state.
The equivalence of the matrix element obtained for these processes using
the electric dipole approximated multipolar- -and minimal-coupling
radiation fields is demonstrated. The multipolar Maxwell fields are then
used in the fourth Chapter to calculate the energy of interaction
between two polarisable bodies in both the ground and electronically

excited states using a generalisation of molecular response theory.
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APPENDIX

As mentioned in the text, the geometric tensors defined by
(2.2.28)-(2.2.31) are continually wused in all the applications
considered in the rest of this work and their complete, explicit forms

are now given. From (2.2.28)

1 5 eikr
.. = —(=-V75. 4V.V )=
Fié(kr) ka( 6&d+ i 4)r
. R..[ i 1 )] Ikr _ ¢ (kr)elkT (2.A.1)
[ Kr if kz 2 k3r3 ig
On inserting k = iu,
. oo i, g2 -ur _ . -ur
FLj(lur) = —(=V 5{4+V{Vé)g = fié(lur)e . (2.A.2)
u r
The following useful relations are easily deduced
fid(kr) = —fié(—kr) (2.A.3)
and
£, (-iur) = —fq(—iur) = fq(iur) = —f, ;(iur) (2.A.5)

From (2.2.29)
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From (2.2.31)
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In addition one further tensor is defined as
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CHAPTER 3

ENERGY DENSITIES AND POYNTING VECTOR

3.1 INTRODUCTION

In classical electromagnetic theory, oscillating charge and current
sources give rise to radiation fields which obey Maxwell’s equations. A
multipolar expansion of the charge distribution produces electric and
magnetic fields ©propagating from the source multipole moments
corresponding to dipole, quadrupole and higher multipole electromagnetic
radiation,

It has long been known that excited atoms and wmolecules emit
wavefields as in the electromagnetic theory, emitted by charges
vibrating with wavelengths subject to the Bohr frequency condition. In
Chapter 2 the quantum electrodynamical analogue of the classical Maxwell
field of an oscillating multipole moment was obtained by considering
atoms and molecules to be composed of constituent charges and currents
which are taken to be the sources of electromagnetic radiation. The
Maxwell fields in the proximity of a molecule were derived in both the
multipolar and minimal-coupling frameworks in the Heisenberg picture.

In this Chapter, the microscopic Maxwell fields are employed in the
evaluation of the expectation values of quadratic operators of the
electromagnetic field such as the Thompson energy density and the
Poynting vector for specified states. The electric and magnetic energy
densities are obtained to second order in the transition moments for a
molecule in both the ground and excited state using the field operators
of Chapter 2 in the multipolar formalism, extending work which was
limited to the electric dipole approximation [33}. This is followed by

the demonstration of the equivalence of the electric dipole dependent
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energy density using the total electric and magnetic Maxwell fields in
minimal-coupling. This is despite the minimal- and multipolar-coupling
Hamiltonians being different in both cases, leading to different
operator equations of motion. The importance of the electromagnetic
energy density calculation lies in its relation to the intermolecular
pair potential for a polarisable test body placed in the radiation field
of the source molecule. For two molecules in their ground states this
approach leads to the dispersion force {33}. When the source molecule is
in an excited state the intermolecular energy shift has an additional
unmodulated term including a part that has an inverse square dependence
on distance corresponding to real photon emission.

The rate of flow of electromagnetic energy, or Poynting’s vector,
is also determined in this Chapter. Poynting’s vector is a direct
consequence of the more important Poynting’s theorem of classical
electromagnetic theory, which states that the divergence of the flux of
energy (electromagnetic energy), plus the rate at which the energy
density increases with time, equals the rate at which energy is produced
[39])]. This has the form of an equation of continuity. The vector
representing the flux of energy, Poynting’s vector § = %Eocz(g X g), is
interpreted as the amount of energy crossing unit area perpendicular to
the vector, per unit time. This energy flow is calculated for sources
correct up to and including the electric guadrupole moment using the
multipolar framework Maxwell fields of the previous Chapter, while the
equivalence of the matrix element for the electric dipole case is
demonstrated using the minimal-coupling radiation fields. The relation
between the quantum mechanical rate of spontaneous emission by an
excited syvstem and the classical rate of energy loss by radiation from
an oscillating multipole is also investigated. The importance of the

calculation of the Poynting vector appears in the study of
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intermolecular energy transfer processes [40]. The simplest such
interaction being the much examined resonance coupling between two
molecules, one of which is in an excited state. The field picture
enables the transfer of excitation between the two molecules, explored
over all separation distances beyond electron overlap, to be viewed as
spontaneous emission by the excited molecule followed by absorption by
the other.

Before going on to calculate the energy density and the Poynting
vector associated with the quantum electrodynamical Maxwell field, the
electric displacement and magnetic fields obtained in Chapter 2 are
written in a form which facilitates their application to the
calculations to be performed in this Chapter, and in the evaluation of
the interaction energy between two neutral polarisable molecules in
Chapter 4. As matrix elements involving quadratic operators of the
radiation field are being determined, it is necessary to include the
second order source fields which are quadratic 1in the transition
moments. Contributions arise from the product of the first order fields,
and from the interference of the vacuum field with the second order
field. In the latter contribution, only that part of the quadratic field
that is diagonal in the electron space is required since 5(0) operates
entirely in the photon space and cannot change the state of the
molecule. By taking the diagonal matrix element for a state !p) of the
molecule, the second order Maxwell fields then operate solely in the
photon space. This is done for the individual second order electric
displacement and magnetic source fields derived in Chapter 2, and are
now given below along with the definitions of the appropriate tensor
fields. The benefit of writing the fields in the following fashion will

become apparent when calculations are carried out.
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In the above the (f,l) dependence of the photon variables ha$ been

omitted with the tensor fields defined as
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3.2 ENERGY DENSITY USING MULTIPOLAR MAXWELL FIELDS
3.2.1 Electric Energy Density

The energy density associated with the electric displacement vector

field is

347,017 = d O F oed P E 0hd B F e

_ L0400, df 14(0), {014 1) 4 (14 (1) 4014214204001,
—lvg " hd ~ - A ~ - hd -
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using the expansion of the field in successive powers of the transition
moments correct up to second order in the sources. The important
contributions to the energy density arise from the last three terms of
(3.2.1). It is clear that the first term of (3.2.1) cannot contribute as
the free field is independent of all sources. The second and third terms
do not contribute to the expectation value for a state since they lead
to a change in the photon number. The first contribution to be retained
and used in calculations is the fourth term of (3.2.1), the product of
the first order fields. The last two terms correspond to the
interference of the vacuum field and second order field. The expectation
value of the electric energy density for the molecular state [p) and the

radiation field in the vacuum state, is

1

L (l)d(1)+d(0)d(2)+d(2)d(0)
"o

4 4 4 4 L 4

<0;p|(d )| p;0>. (3.2.2)

3.2.1(a) Electric Dipole Contribution

The leading source-dependent term of the electric energy density is that
arising from the electric dipole dependent displacement field. This
particular example has been dealt with by Power and Thirunamachandran
[33] and 1is given in complete detail here as a preliminary to the
calculation of higher order terms. The contribution from the product of
the first order field is now evaluated using (2.2.34). Recalling that
the field linear in the sources operates entirely in the electron Fock
space, the contribution from the electric dipole dependent displacement

field to the electric energy density is

1
32n

1 (1), 2 . (1),= _ \ ,pn np 6 %
7 Z old{ i moanfal i [ = ) H3 T Uk gtk

pn 44 Dpn

|\

€
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For the contribution from the zeroth and second order fields, use is now
made of the diagonal matrix elements of the quadratic fields given in

Section 3.1. Using (3.1.1), the last two terms of (3.2.2) are

1 | L
Ze, AE 1<0;p1di?" o5, 2> <R,25p]d 2 ps05 +
R,

<0;pld} 2! ps R0 <K, 2500 d 0 [p; 05

1 ¥ [hek iR T 1.2
- C 1K. I — - -1k.r
- 8ne ) ( ZVJleie egdpi * eggiee l. (3.2.4)

k, A

The first term of (3.2.4}, after the polarisation sum and angular

average using (2.2.19) and (2.2.24), is

he

N
1 3 - =
T Jai® LR g (er1F g (ke 1, (3.2.51

8] 0

Using the definition (3.1.13) for the tensor field ﬂﬁ{ and collecting

terms with the same denominator, (3.2.5) can be written

1 S pn np PV * 3
S HiHg S j dkk ™ x
2 L4 T4 2mi
32n £, W o
T 3= 33 o o-ilk +k)ct
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kpnfi£(kr)fij(kpnr)e e ' pn
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+k GEgler)E il rle ik{r+ct) -ik  (r-c ’]

(3.2.6)

where use has been made of the j,8-index symmetry to eliminate the term
without an exponential dependence. Expression (3.2.6) contains both
time-independent and time-dependent terms. The abbreviation PV denotes
the Cauchy principal value, which is taken since exact resonances are
excluded in the k-integral when making the continuum approximation to
the mode sum. The evaluation of the integral depends on the sign of kpn
and is carried out by transforming the integral from one along the real
axis to one along the imaginary axis in the complex plane. For a state
for which Ep > En’ after making the substitution k = -iu, the

time-independent part of (3.2.6) is

LY, T S on gk r)
ﬁ 15

172 F pn 44
64m £, .
1 YT pn np[)duu e cur . . -
+ ) U5 H ————— 2k __f..{iur)f.,{iur). (3.2.7)
ban’c G ¢ Bl 22 T £
0 0 pn

The time-dependent part is given hy

pn,np, 3 Jm 3
; ML oHg ( kpn) duu

64n3€ il 4
o 0 -uc(t-r/c)
Tk r)eikpn(r-Ct)f. (~iur)®—
i ik u + ik
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- ik (r-ct)= . € e
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ik (rect) -uc{t-r/c)
np f

+fié(kpnr}e {E(—iur) ——
pn
. -uc({t+r/c)
T, (k r)elknp(r—Ct)f-ﬁ(—iur)-e———._].
ii “pn 4 u - lkpn

(3.2.8)

The time-dependent terms tend to zero for t » r/c as the integrals have
exponentially decreasing values for large t. In addition, the average of
(3.2.8) over a finite time interval tends to zero because of the
. +ik ct . .
modulation factors e pn . These oscillatory terms are ignored

henceforth. Returning to (3.2.6) and evaluating the integral for the

case knp > 0, the pole contribution is

_1 V\‘ Ipnllnp '6 7
64n2£ L Ag - kpnfiﬁ(kpnr]fig(kpnr) . (3.2.9)
o B

The u-integral part is identical to that obtained in the second term of
(3.2.7). Use has been made of the relations (2.A.3)-(2.A.6) given in the
Appendix to Chapter 2 regarding the geometrical tensors.

It is important to note that the first term of (3.2.7) has the same
sign as the corresponding term arising from the first order fields
(3.2.3). However, for those states n with En > ED, the pole contribution
has opposite sign as indicated by (3.2.9), and cancels with the
corresponding term of (3.2.3). The reinforcing and cancelling of pole
contributions from the zeroth and second order fields with terms from
the product of the first order fields is a striking characteristic
throughout the calculations carried out in this Chapter. This is a
direct consequence of the inclusion of the second order fields; its
importance was first shown by Power and Thirunamachandran [31,33]

concerning the relation between the spontaneous emission rate and
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Povnting vector energy flow. These authors showed that the Poynting
energy flow from the quantum first order fields was equal to one half of
the spontaneous power. Inclusion of the second order fields doubled the
flow, demonstrating that the spontaneous rate and the Poynting vector
flow are equal when quantum fields to second order are used.

The second term of (3.2.4) is simply the complex conjugate of the
first so that the total contribution to the electric energy density due

to an electric dipole source is

1 pn np, 6 =
2 MOMURPKY T gtk edf (K r)

1 T  pn np mduu e—Zur . )
+ é HoHp — kanf.ilur)fié(lur). (3.2.10)
L

i 2 ] id
0 + lxpn

This general expression is applicable to transitions from the initial
state !p> with summation carried out over a complete set of intermediate
states ]n). The two terms given in (3.2.10), whose properties are
markedly different, are now examined in detail.

When the initial state is the ground state, only the second term of

(3.2.10) remains, which is

m - o 2a 20t . ,+Y . 27 . Y.
he J duuse Zuradg(iu)[ £ it + iR T4k + i# 45]

3 2(2 33 4 4 5 5 & 6
3271 € u r ur ur ur ur
D0
(3.2.11)
with
2K “9quno
v ~
«pliu) = ) ——99;1—4§- , (3.2.12)
4 fho(k® +u”)
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the ground state dynamic polarisability expressed in terms of imaginary

frequencies, with the dvadics defined as

a{j = (5L§_Pirj) ; Yij = (5L4+3rir4). (3.2.13)
The expression (3.2.11) applies for fixed molecular orientation. To deal
with species in a fluid phase a rotational average is required. By

following the standard procedure (41], (3.2.11) becomes

o0
h T = 1
¢ [auu’e Zurd(iu)[ L, 2, 2, 8,3 5| - (3.2.14)
16m ¢

00
It is instructive to examine the asymptotic behaviour of (3.2.14) in the
limits of large and small distances r. In the far-zone limit r is much

larger than the wavelength of the molecular transition. After performing

the u-integral {42], the far-zone asymptote is found to be

23hca(0)

: (3.2.15)
64ﬂ3€0r7

where «(0) is the static polarisability of the source. In the near-zone
r is much smaller than characteristic transition wavelengths, resulting
in kr « 1. Retaining the leading term after setting the exponential

factor to unity, the near-zone limit is found to be

(3.2.16)

which is in fact the electric energy density of a static electric dipole

source.
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Returning now to the general result (3.2.10). the first term is the
additional contribution arising from real photon emission bv a molecule
in an excited state. After expanding the deometrical tensors and

rotational averaging, this term is found to be

16n € n r k r r k r
" EE oo pn bn pn
P n
1 Y% yzpny2,6 [ 1 1 3 1 .
= — )Pk 5= (3.2.17)
24m”e 0 k™ r k k_ r
E >E pn pn pn
P n

This term falls of as r—z for large r, being associated with real photon

emission. The energv in a large spherical shell of unit thickness is

TS 2
) [EP A (3.2.18)
i

and is independent of the radius of the shell. The r-2 term of (3.2.17)
obviously dominates the far-zone density since the second term of
(3.2.10) was shown to produce an r-? dependence. Both terms of (3.2.10)
liowever, exhibit an r-e dependence for small r. with the contribution

from the first term of (3.2.10), found from (3.2.17), given by

[aPm |, (3.2.19)

> N > 2
P —— ) 1) (3.2.20)

95



4 direct manifestation of the electromagnetic energyv density determined
above is the intermolecular interaction energy of a test polarisable
body placed in the radiation fields of the source. The response of a
polarisable test molecule in the <¢ground state, with static electric
dipole polarisabilitv GTFCT(O) to the far-zone limit of the electric

energy densitv (3.2.15) is

242
0™ = —=—= « (0Yx(Q) (3.2.21)

7 TTEST

which is the familiar Casimir dispersion energy at large separation
distances [43]. The far-zone response of a polarisable test hody to the

energy densitv of an excited source using (3.2.18) is found to be

AN

)y |EPn e (k' (3.2.22)
fi en

>

N
— ) | PR 2y (0) (3.2.23)
n

and is recognisable as a London tvpe dispersion potential, also
obtainable using electrostatic coupling. This particular aspect of the
calculation of intermolecular potentials is examined in greater detail
in the following Chapter where a generalised version of response theory
is used to obtain the energy of interaction between molecules in both

ground and electronicallv excited states directly.

96



This completes the evaluation of the electric energy density due to
an electric dipole source, correct to second order in the transition
moments. The next contribution to the energy density to be considered is
that arising from a mixed electric dipole-magnetic dipole source. The
electric and magnetic energy densities from this source, along with
molecules with mixed electric dipole-quadrupole and mixed magnetic
dipole-electric quadrupole moments are found to vanish on orientational
averaging and are not considered any further. The next non-zero
contribution to the electric energy density arises from a pure magnetic
dipole source, whose method of calculation, along with the pure electric
quadrupole source and the remaining magnetic energy densities, follows

that outlined above for the electric dipole case.

3.2.1(b) Magnetic Dipole Contribution
The electric energy density due to a magnetic dipole source is the

expectation value of

d(l) d(2) d‘°’+3(°).3‘2’ >

5%—[8 (F,t;mm1° 3‘1’ (m+d %) @m). (m) ).

(3.2.24)

The contribution from the product of the first order magnetic dipole

dependent electric displacement field is found using (2.2.34) to be

1 (1 (1) 1 nPn, 0P
— < N >< > = e—— ! k k . k
e Y <olal M @ n><nlal @ ]p — é ny png&é< onTIEig k)

=y

(3.2.25)

while the contribution from the product of the zeroth and second order

fields using (3.1.3) is
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it
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Evaluating the terms above using the polarisation sum (2.2.19), the
angular integration (2.2.25) and making use of the definition of the
tensor field Zki given by (3.1.16), and noting the respective adding and
cancelling of the pole terms when kpn > 0 and kpn < 0 with (3.2.25), the

total electric energy density due to a magnetic dipole source is

L Vb mPMngPke 7k rig gk )
167% ¢ & pn>44 “pn "4£ Tpn
E >E
p 'n
0. 6 -2ur
1 3 pn_np( duu e . .
y — meom ——— 2k g, .(iur)g,(iur) (3.2.27)
32u35002 & £ { e i np-44 ik
ALL E_ b

which is the oriented result. For a randomly oriented molecule the first
term of (3.2.27), the contribution from real photon emission due to the

source being in an excited state, is

1 S pn iy ~T 1 1
—_— ) m kS e, rr { =+ }
2 2 /L Mg pn 440 CiBtTs L NENE N

16n e ¢ n 4
E <E bn bn
n p
1 3 I+pn'2 6 [ 1 1 ]
DN S o™ ‘K + ) (3.2.28)
24n’e ¢° pn kznrz k“nr4
E >E D p
p ' n

The far-zone limit of the energy density in a large spherical shell is
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=y [P %] (3.2.29)
6mE ¢ pn

A= g |

and is independent of the radius of the shell, while the near-zone
behaviour shows an r dependence on distance. Examining the second term

of (3.2.27), the u-integral is

-2ur

-1 PN duu e [ 1 2 1 ]
My LIyl % 3 2k =+ +
3om’e o Z j ﬁ € iko" L;t LJ N np{ 2.2 33 44
0 0 np
ur, , . 1 2 1
= jduu e X(lu)[ e T 4] (3.2.30)
167 ¢ ur ur ur
0” o
where
|mP" | ®
xtiu) = £ ) —99——————— (3.2.31)
n ﬁc(k +u“)

is the isotropic magnetic susceptibility of the molecule in excited
state |p>. The far-zone limit of (3.2.30} after evaluating the

u-integral is

-7hx(0)

! (3.2.32)

3
A€
64 oCT

where X(0) is the u = 0 limit of (3.2.31), corresponding to the static
excited susceptibility. When the initial state is the ground state only
upward transitions are possible and the first term of (3.2.27) does not
contribute. The u-integral term is seen to give (3.2.32) but %(0} now
being the ground state static magnetic susceptibility. The response of a
polarisable test body to the far-zone limit (3.2.32) then gives the

dispersion interaction between an electric dipole polarisable molecule
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and a magnetic dipole source as

1 212 7h
252 GTEST(O)d = EE;E:E——; TECT(O)X(O) (3.2.33)
o €

which is repulsive, while for an excited source the interaction varies

-2 ,
as r as 1n

+pn12 ,4
NEIIENE ] e g OV (3.2.34)
F4 0C r

on making use of (3.2.28).

3.2.1(c) Electric Quadrupole Contribution

The final contribution to the electric energy density to be
considered is that arising from an electric quadrupole source. This is
evaluated from

-

1 SL(F’ 3312 = 3(01,3(0) 3(2)

{3‘1’<6) d‘l’(o)+d‘2’(Qe) d (QQ)]

1
2€

(3.2.35)

Using the electric quadrupole dependent part of the displacement field
linear in the sources (2.2.34), the contribution from the product of the

first order fields is

1 1 )3
= Y<p]d! ’(0)|n><nid '@ > = 5 Qb gk

O.l_l

2 Dn &ﬁg(k r)hbmﬂ(kpnr)'

four

(3.2.36)

The contribution to the energy density from the interference of the
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vacuum and second order fields is determined using (3.1.6},

< o
gl- N l<0,pld(2)|p,k,l><k,l;pld£0)!p;0> +
B,
<0:p|d; (0)) 5.8, 0, x,p]d(2)|
T Bme, Z zv legknTemieie *eie etkmfzbmil' (3.2.37)

k,X

Evaluating the two terms above after the polarisation sum, using the
angular integral (2.2.26) and the tensor field definition (3.1.21), the

total electric energy density due to an oriented electric quadrupole

source is
1 pn.np
0% ,Q k h (k )h. k )
Len’e ? 48°em pn"i8§ “pn" ime pn"
E >E
p
-2ur
1 pn.np duu e . .
b =L zo Q&J 2k, hug(1ur)hyppliur). (3.2.38)
32n€ n
~ ALL E

For a molecule in the ground state only the second term of (3.2.38)
survives, which after multiplying the geometrical tensors, whose
explicit form are given in an Appendix at the end of this Chapter, can

be written as

he 4&&m g&&m 4&(@ 3&6m g&ﬂm gébm g&&m]

Jduuae_“ure. (iu)
3 484m 2 33 44 665 66 77 8.8

32n €5 o u r ur ur ur ur ur ur

(3.2.39)

where eg&&m(iU) is the quadrupole polarisability expressed in terms of
imaginary frequencies. To obtain the 1isotropic energy density a

rotational average is taken. Utilising the fact that the quadrupole
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moment tensor is traceless, the average entails the product of

1 . ‘ .
56(-28§£§6m+364 §&m+36fm5££) with each of A}&&m to Gi&&m’ (3.2.39) then

becomes
Rad 8 -2ur .
1 N QOnQnO duu e 2k 6 . 36 . 162, 504, 972 1080, 6540
3 Z AR 2 2 nal 22 233 44 585 66 7 7 8 8)"
9601 € u + k ur ur ur ur ur ur ur
0 0 no
(3.2.40)

The far-zone result is obtained by retaining all such terms and taking

2 .2 2 } .. . .
u +k = krlO while the near-zone limit requires the retention of only

no
the G4££m1 part. After the usual approximations the u-integrals can be

evaluated to give the asymptotic values

1593hc o

(0) (3.2.41)
1280m°e ¢° M

for the far-zone and

9 ¥ .0n_.no
—_— s ) @, 0 (3.2.42)
16H2€0r8 Z AuTAU

for the near-zone. For an excited state |p> both terms in (3.2.38)
contribute to the energy density. Taking into account that the
quadrupole polarisability for an excited state includes both positive
and negative contributions, the structure of the second term 1is
unaltered. After expanding the tensors which are given in the Appendix
under (3.A.2), the first term of (3.2.38) after orientational averaging

becomes
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1 V‘pnnpa[l 3 18 +901 ,
BOHZE ‘IZI‘ Q:\}JQ)\M pn k2 2 + 4 4 + k6 6 kB BJ (3.2.43)
® ESE pn pn pn pn
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so that the near- and far-zone asymptotic behaviour are respectively

given by
9 pn,np ,
> 5 z QluQXu ) {3.2.44)
8n o o n
E >E
pn
1 E pn_np, €
—_— QT @, k. {3.2.45)
801!280r2 n M XH o
E>E
P n

The far-zone auadrupole dependent electric energy density (3.2.41) leads
directly to the intermolecular energy of interaction in the presence of
a test electric dipole polarisable molecule
1K 1
1593hc (016

1280H3£2r9 TEST AUAY

(0) . (3.2.46)

With the source in an excited state, the near- and far-zone energy

shifts using (3.2.43) are respectively found to be

=9 pn.np .
5 ) e (0060Q5R (3.2.47)
8n €T n

E >E
p’n
-1 S pn.np, 6
—_— o g (0)Qy @, k_ . {3.2.48)
80H26§r2 & TEST ATAU pn
E >E
D n

This completes the evaluation of the electric energy density for
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electric dipole, magnetic dipole and electric quadrupole sources.

3.2.2 Magnetic Energy Density
The magnetic energy density associated with these sources is now
calculated.
3.2.2{a) Electric Dipole Contribution
The magnetic energy density correct to second order in the electric
dipole moments is computed from
2(1)

leocz[ﬁ(?,t;ﬁﬁ)lz ~Le 2.8

>(0) 3(2) =2 2(2) 2(0)
2 20 )

(8)+D (e +5 .

(3.2.49)

Using the magnetic field linear in the electric dipole moment (2.2.55),

the first term of (3.2.49) is

soczz <p!bil)(A)ln><n|b (u)|p> =

n 32H

Q] P2

pn
Z us u kpn Lé(k r)gLﬁ(kpnr)'

(3.2.50)
Using the diagonal matrix element for the second order magnetic field of
an electric dipole source (3.1.7), the contribution from the zeroth

order and quadratic fields is

Lo .2 E [<0;plbf;0)Ip;ﬁ,lﬂf,-‘-;plbimIp;0> +

—'}
k,x
<03 plb )’p l\,'X)(k A Ulb(O)!p10>J
o _ _ = =
B SHE L ( }{b elk Pe&’ﬁi+e€‘£¢b¢e lk.r]' (3.2.51)
k’\

Evaluating the above in the usual way, making use of (3.1.22), the total
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contribution to the magnetic energy density from an electric dipole

source is

1sn;e Z PPPEPE 2k rig (k)
E, <E_
E upn “p “aun’e 20 2k _g..(iur)g, p(iur) (3.2.52)
son’e u? K2 pn44 ik o
ALL E pn

which as expected, is similar to the result obtained for the electric
energy density of a magnetic dipole source (3.2.27) since the magnetic
field of an electric dipole is the negative of the electric field of a
magnetic dipole with 3 replaced by ﬁ. Thus the magnetic energy density

for the ground state is

‘ )
hg Iduuse_zuruéé(iu)gig(iur)giﬁ(iur), (3.2.53)

32n €5 o

which for an isotropic molecule reduces to {33]

—h
c fd Zurw(iu)[ 1, 2, 414], (3.2.54)
167° £, ur ur ur

and which in the far-zone gives the asymptotic value

=7Thca(0)

S = (3.2.55)
64mn E,T

After expanding the tensors in the first part of (3.2.52) and
rotationally averaging, the additional contribution to the energy

density due to downward transitions is
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AN 2.6 1 1 -
pn
> ) readl kpn[ — + — 4] (3.2.56)
& .
SE pn pn

p n
exhibiting r"2 and r‘4 far- and near-zone behaviour respectively.
Analogous to the calculation in (3.2.33) of the asymptotic
intermolecular energy between an electric dipole polarisable molecule
and a magnetic dipole polarisable molecule, the interchange of source
and test bodies leads to the intermolecular energy of repulsion
2 7h

— 1 > 3 .
= XTEST(O)b = s XTEST(O)G(O) (3.2.57)

2 2
2€ ¢ 64n €,CT

in agreement with (3.2.33). For a source in an electronic excited state,
the near- and far-zone interaction energies are found using (3.2.56) to

be

-1 E ’—.*pn 2 2
NERIER B "X pap (00K (3.2.58)
2.2 2 4 TEST pn
48n Eoc r n
E >E
pn
-1 Y j2pn2 4
anlee2p? é | XTEST(O)kpn . (3.2.59)
E >E
p ' n

3.2.2(b} Magnetic Dipole Contribution

Since the magnetic field of a magnetic dipole has the same
functional form as the displacement field of an electric dipole, the
expressions for the magnetic energy density from a magnetic dipole
source are similar to those of the electric energy density from an

electric dipole source found earlier. To second order in the moments,
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%Egczlg(?,t;ga)Jz ~ %Eocz[B +B‘0’,8‘2’(ﬁﬁ)j.

2 B ) 3 +8 %) (om0

(3.2.60)

Evaluating the first term using the ﬁ-dependent part of g(l)(?,t) given

by (2.2.55),

1. 2 (1) = {1),=> 1 n
Le c E(prL (@ [n><nlbi @ o> = -————--E PO PPKE T (K ot gtk or)

il 3271 £,c I pn 44

[\

(3.2.61)

while the contribution from the product of the free field and the

quadratic field (3.1.9) is

1 2 (2)y .2 ? (0)
5€oC AE [<O;plbi |P;k,l><k,l;p[bi |p;0> +

k,\
<0;p|b£0)lp;ﬁ,l><ﬁ,l;plb(2)|p;0>J
1 hk ~ -ik.T iR re =
" 8me c AE (iv]lbﬁﬂxib{e + be by, 1. (3.2.62)

’

Adding the contribution from (3.2.61) to (3.2.62), the total magnetic
energy density from an oriented magnetic dipole source is given by the

expression

16ﬂ2€ C2 14

1 nPPnP =
—_— Z kpnftﬁ(kpnr)f"(kpnr)
0

>

E
D
1 pn_np mduuse
S m, m
som’e & o u- 1
ALL E_ P

E

-2ur

+ 2kpnfig(iur)fi£(iur). {3.2.63)

The u-integral term, applicable to both upward and downward transitions,

becomes after averaging
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fa s
h - 6 -2ur._,. 1 2 5 6 3
= duu e X(lu)[ >t 53¢t R - 6} {3.2.64)
16 £ ¢ u r ur ur ur ur
0~ 0
giving the asymptotic limits
__ggﬁligl_ (3.2.65)
3 7
64n € cr
0
for the far-zone, and
1 I%pn,z
> % m (3.2.66)
16 e ¢’ r n
0
for the near-zone. The additional contribution from downward

transitions, the first term of (3.2.63), after orientational averaging,

is found to be

24n°e c° A N
o E pn bn pn

p n

1 -pn| 2, 6 1 1 3
— Z [aPn| kpn[ b=t — 5] (3.2.67)
>

E

with the overall far-zone density dominated by

AN 2
Fl_z—z ) |;;P“|’k;n (3.2.68)
in e c'r it
E >E
P n

while the near-zone behaviour, like that from the u-integral term, has

-6
an r dependence.
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3.2.2(c) Electric Quadrupcle Contribution
The final contribution to the magnetic energy density to be
determined is that arising from the electric quadrupole source. This is

evaluated from

. >
1e P, 6817 = Le B (@ .51 332 @ .50 30 52 G,
(3.2.69)

Using the quadrupole-dependent part of the magnetic field linear in the

sources (2.2.55), the first term of (3.2.69) is

(1) (1)

<o)|n><nlb (Q)I > =

1 np
; &thnkpn EPPLLNWIE s .

%Eoc2$<p
i 321r“£ n

(3.2.70)

while the contribution from the interference of the source independent

field with the quadratic field (3.1.12) is obtained from

1. .2¥ (2)) 2, 2 (0)
25° ) (<0splb, ' |p; K, A><K,A5p b, ' |p;05 +
k,A
0) <2)
- C hk -ik.T ik. 7=
= 871'50 42 (ZV)le'ek ) '(’”H.b e +b4-'e ezl\m {’"'LLJ (3.2-71)
k,x

Evaluating the above in the usual manner, making use of (3.1.30), the

total magnetic energy density from an electric quadrupole source is

L_ ¥ gpognpy (Kpu" gom Kpnt) +
16H2€ % 4 Ihn 48 nt'itm pnr
E <E
np
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LS gengno fdw e G, () (3.2.72)
N L "8 me‘J > 5 2k i gliur)i ey (iur 2.7
32me n p uw ot knp

T ALL E

n

After multiplving the geometric tensors in the first term above, which
is given bv (3.A.6) in the Appendix, the pole contribution on rotational

averaging is

1 S APn,ND, 8 [ 1 3 9 ] -
Qy O,k + + (3.2.73)
] /
gor’e i M MR S A S
" E SE L ! p
p n
with the near-zone limit
9 L .pn.np, 2 -
—> = ) 9,0k (3.2.74)
gor’e r°  f M M 7pn
- E >E
n

A%
) QPghby (3.2.75)
a
P4

with the energv densitv in a spherical shell at large r being

1 N
20me 2.
n
>

pn,np, & -
- Qluglﬁkpn . (3.2.76)

E JE

p n

The u-integral part of (3.2.72), after expanding the geometric tensors,
which is ¢iven by (3.A.8) in the Appendix. and orientational averaging,

becomes
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o 8 ~2ur
1 ; QPRnP J duu e i [ 1 + 6 + 15 18 + 9 ]
160m°c i AT 2Kl R A p® ®p®
4] np
{3.2.77)
After the usual approximations, the far-zone limit is
—2The o uf0)- (3.2.78)
1280m7 e r-

This completes the evaluation of the electric and magnetic Thompson
energy densities correct to second order in the electric dipole,
magnetic dipole and electric quadrupole transition moments in the
neighbourhood of a molecule using the multipolar Hamiltonian. Each
resulting expression for the energy density is composed of two terms; a
u-integral term and one applicable only to downward transitions from the
initial state. For a molecule in an excited state, the overall far-zone
behaviour is dominated by this latter contribution, exhibiting an r-z
distance dependence in all cases, corresponding to real photon emission,
For a molecule in its ground state, the u-integral term is the sole
contribution to the energy density. The energy density is directly
observable as an intermolecular energy shift when a test polarisable
body is placed in the fields of the source.

In the following Section, the electric and magnetic enersgy
densities due to an electric dipole source are evaluated in the
minimal-coupling formalism in the Heisenberg picture. The densities

calculated using the total electric field and the magnetic field are

shown to be equivalent to those obtained using the multipolar framework.
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3.3 ENERGY DENSITY USING MINIMAL~-COUPLING MAXWELL FIELDS

In this Section the total electric field and the magnetic field in
the proximitv of a molecule obtained in the last Chapter in the
minimal-coupling approach are used to calculate the energy densities due
to an electric dipole source. They are shown to be identical to those
derived within the multipolar framework.

Considering terms second order in the sources, the expectation
value of the electric energy densitv for the electromagnetic field in
the state where no photons are present, with the molecule in a state
|p>, is
1

—50<0;p!e

T0T{]1) TOoT(1l), (Q) TOT(2) TOT(2)
5 . e. +e. e, te.

4 4 1 4 4

e!p:05. (3.3.1)

The first term of (3.3.1), the contribution from the product of the
first order total electric field of an electric dipole source is exactly
the same as the corresponding term in the multipolar calculation

(3.2.3), namely

1
2
32n 29

< -
pn, np, & .
é HoHg kpnfig(kpn

q

r)fié(kpnr) s (3.3.2)

since the first order transverse displacement field was shown in the
second Chapter {(see (2.3.22)) to be €, times the total electric field.
It was also pointed out then, that the second order minimal-coupling
Maxwell field operators were not equivalent to their multipolar
counterparts. That the minimal-coupling fields quadratic in the sources
result in identical expectation values will now be demonstrated
explicitly. Bv taking the diagonal matrix element for the electron state

of the second order total electric field due to an electric dipole
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source (2.3.37) in complete analogy with that carried out in Section 3.1
for the multipolar fields, results in an operator acting solely in the

photon space

| _ToT(2) i ¥ ( hek)''? i ot
<ple; " (F,t:ii) | p> = T, AZ \ZVEOJ legx(0)e A3L egd T(0re Agi]
kgx
(3.3.3)
with
pn _np 4
wu k :
‘ i & _ “np itk _+kict
A£¢ E F —ho [ 4(kr) o Fié(knpr)e pn
T “np
',JPn'unP k4
Anilav's -3 -
2 3 .\ _ _bn i i{k__-kilct
+ é Enp+hm [k -4(kr) K Fié(kpnr)e pn R (3.3.4)

in contrast to ﬂﬂi (3.1.13) in the multipolar case. Using the mode
expansion for the zeroth order electric field and (3.3.3), the last two

terms of (3.3.1) are

<
%Eo ) 1<0sple; T ik, 0 R, ‘,ple(O)lp,0> +
K.»
0:ple! O pi%, 0, 2 iplel 2T pr0>
1 © (hek - -ik.r _ iK.T - = i
= 8HEO AZ L—V_J[eﬁAﬁieie +e{e eg é{l. (3.3.5)
Y

After performing the polarisation sum and angular integral, the first

term of (3.3.5), using (3.3.4) becomes

1 he

T S [ ki ke )-F y(kr) 14
321 €

o 0
) 2

_ lnl PPN

) 1 ) ui“uzp 252 l ﬁﬁk Ik f,glkr)f, (kr)elikT
SZH“EO i ; np i
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4 . ik(r+ct) ik (r-ct)
(knp/k)fiﬁ(kr)fij(knpp)e e np

4 - i -ik(r-ct) ik (r-ct)
+(knp/k)fL&(kr)fié(knpr)e e np ]

4

2ikr

00 3
nnp PV [ dkk® [ 3 )
Sug® st | 5% K78 (kr )£ (kr)e
0

= |
I=
e}
=

pn

4 ) ik{r+ct) ik _ (r-ct)
‘(kpn/k)fLé(kr)fij(kpnr)e e pn

4 = ] -ik{r-ct) ik (r-ct)
+(kpn/k)féglkr)fig(kpnr)e e pn ].

(3.3.6)

Evaluating the integral for downward transitions from p, with kpn > 0,

1 pn np, 5 = .
2 P Bk e (k)

©, 6 -2ur
,bn, np [ duu e . .

pnyge [dawe 2k £ liur) £ Ciur), (3.3.7)
o o U + kD

pn
4

+
w
= N

n

For kpn < 0, the u-integral term remains unchanged while the pole

contribution changes sign,

r. ' (3.3.8)

-1 pn np, s -
ULk ok ). .(k
64n260 Z Hi M8 “pnisFpn" i on

The second term of (3.3.5) is simply the complex conjugate of the first
so that the total electric energy density in electric dipole

approximation in the minimal-coupling approach, after adding the

contribution from the product of the first order fields (3.3.2) is

1 < ,.pn onp, 6 '
Lnle / Hy Mg kpnfiﬁ(kpnr)fig(kpnr) +
E >E
pn
0 6 =2ur
1 S ,pnnp [ dune *T0 _ ‘
3o e Z “g He J z | kg" ~kpnfié(1ur)fié(1ur), (3.3.9)
0 n 0 u pn
ALL En
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in agreement with expression (3.2.10)} obtained using the electric
displacement field of the multipolar framework.

The magnetic energy density in minimal-coupling is determined from
!é(l).§(1)+g(2) =(0) 4(0) (2)|p,0>

1. 2
5€4C <05p|b +b

2 (3.3.10)

The contribution from the product of the first order electric dipole

dependent magnetic field is easily seen to be

I |-

np .
- Z PPPEPKC g (kg K ) (3.3.11)
0

as the minimal-coupling magnetic field linear in the sources (2.3.49)
was shown to be identically equal to its multipolar analogue (2.2.55).
For the evaluation of the remaining two terms of (3.3.10), the diagonal
matrix element over the molecular space is required for the magnetic

field quadratic in the electric dipole moments. From (2.3.53),

(2),» . > i ©(hg Y2 it iots
<p‘bL (r,t;00) |p> = Tre AZ [EE;EVJ leﬁa(O)e B&. - eﬁa (0)e &ij
o 77y
(3.3.12)
where
0P K
N ik +klct
S N _ __2 i
Bg, = Z T —ho é(kr) G, al(k rle” “pn ]
T “np
uptutP *
L “pn ~i{k_—klct
¥ Z B+ [ Gy jlkr) — =Gtk rle = Tpn ], (3.3.13)

in contrast to 5£L of (3.1.22)., Using the mode expansion for the free
field and (3.3.12), the contribution to the magnetic energy density

arising from the interference of the vacuum and quadratic fields is
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2 - > 0
eoc 3 [<O;p|b£2)|p;k,x><k,l;p,bi )Ip;0> +

_\A...
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<o,p[b‘0’]p K, <K, Ap|b

- e )
sl (g%}tengibLe ey e ik, FE&B£¢J (3.3.14)
0

2= v

I

Performing the polarisation sum and angular average and using (3.3.13),

the first term of (3.3.14) is

< = f dkk[G,g(kr)+G, 4 (kr) 1By,
3a2n E
0
1 A\ pn np _PV * dkk 2ikr
= > ) K — [k g.o{kr)g. .(krle
qonle & i "8 omi J k—k__ knp iR if

0
4 ) ik{r+ct) ik (r-ct)}
(knp/k)gtﬁ(kr)gié(knpr)e e np

—ik{r-ct) ik _(r-ct
—(k /k)QLé(kr)g Uk rle tk{r-ct) ik  (r-c )]

-1 pn np PV (" _dkk® [, 3 oikr
3am’e Z Hite omi J Kk __ [k ggkrig; (kre
0
ik(r+ct) ik __(r-ct)
(kpn/k)giﬁ(kr)gié(kpnr)e e “pn
(k /k)gw(kr)g d(k r)e'lk(r"‘ct)elkpn(r--ct)].

(3.3.15)

Evaluating the integral subject to kpn < 0, corresponding to upward

transitions from Ip),

N pn p g P

fd aggtiu)gié(iur)géﬁ(iur) (3.3.16)

is obtained, while for an > 0, the pole term changes sign,
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Y P, p
é ué ﬁ Lﬁ(k r)gij(k r) (3.3.17)

with the u-integral remaining unaltered. Evaluating the second term of
(3.3.14), which is the complex conjugate of the first and adding the
part from the fields linear in the sources, the total magnetic energy

density is

1 pn
k (k )g. o(k )
Ep)En
By 6 -2ur
1 A\ pn,, p duu e
+ 75 —————————-Zk g A(iur)g.pliur}) , (3.3.18)
ALL E_ P

in agreement with the multipolar result (3.2.52).

Despite the separation of the minimal- and multipolar-coupling
Hamiltonians being different in both cases as shown in Chapter 1,
leading to different Heisenberg equations of motion for the operators,
although the first order fields were seen to be identical in both
formalisms, identical matrix elements are obtained for the
electromagnetic energy density. This is a direct consequence of the two
forms of Hamiltonian being equivalent, thus giving equal matrix elements
"on the energy shell".

The remainder of this Chapter is devoted to the calculation of the
Poynting vector in both formalisms and its relation to the transition

rate for spontaneous emission.
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3.4 ENERGY FLUX USING MULTIPOLAR MAXWELL FIELDS
The quantum mechanical Hermitian operator for the Povnting vector

S(7,t) is (31,33]

$i7,t) = g¢ ST R 0« Bt - BRe ¢ 2T 0] (3.4.1)
d

-

As noted earlier, for a neutral molecule. € times the total electric
field is equal to the transverse displacement vector outside the source,
so that in the multipolar formalism molecules couple to the displacement
field and not to the electric field as in the minimal-coupling
framework. Thus

2

> c 12 > - i > )

The multipolar electric displacement and magnetic fields in the
Heisenberg picture obtained in Section 2.2 therefore provide a suitable
basis for the calculation of the energy flux from a molecule in an
excited state. The Povnting vector can, of course, still be evaluated in
the minimal-coupling version of QED by utilising the total electric and
magnetic fields in the neighbourhood of a molecule derived in Section
2.3. This is carried out in the following Section where the equivalence
of matrix elements for the nprocess obtained from both methods is
demonstrated for the electric dipole case.

The expectation value of the Poynting vector for the radiation
field in the vacuum state with the molecule in an excited state ]p>,
after expansion of the field in successive powers of the multipole

moments., 1s
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<0:p|s,(r,t)|p;0>

2

= g sij£<0:p!(d20)+d;1)+d;2) O et 2 0 pi0> 4 cuc.
2
=% e, g<0ipldy ot 4d P g0 ed P g 0500 4 e (3.4.3)

concentrating only on terms second order in the transition moments. As
for the <calculation of the electromagnetic energy density, the
individual contribution to the energy flow arising from the pure
electric dipole dependent fields, the mixed electric-magnetic dipole
dependent fields, pure magnetic dipole dependent fields etc., for all
possible permuatations up to and including the electric quadrupole
moment, are evaluated.

Beginning with the contribution to the Povnting vector from the
electric dipole dependent terms of the electromagnetic field, the first

term of (3.4.3) using (2.2.34) and (2.2.55), is

2

c’ (1) = (1) (1) (1)

,,5<0 ipld, (b (Dbt (Hhd gt () [p30>

ol

nby!) (1)),

d

= £ A\ lip 1 e T = 4 < -l
=S g ) FpHe K | Ttk g (K rikeg (keI (ki

Ip> + <p,b&1)|n><n|d

(3.4.4)

Using the definitions of the tensor fields ij(kr) and g{#(kr) as given
bv (2.A.1) and (2.A.7) from the Appendix to Chapter 2, the terms of
{3.4.4) can be simplified to give

pn,, nD S

—s ¢ H
16nc r’ 4& Bmmtm Z
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After orientational averaging and contracting the tensors, the
contribution to Sj(?,t) tfrom the product of the first order fields is

T 2.4 " .
—— P v (3.4.6)
24m’e r- W =

The contribution to the rate of energv loss out of a sphere at any

radius is

27 - Q 2
Anr®r <8 (Rt = g ) | AP 2 (3.4.7)
n

with the summation including both upward and downward transitions from
!p). The r-z dependence on separation distance in (3.4.6) is consistent
with the conservation of energyv reqguirement that the energy flow through
a spherical surface be independent of the radius, as seen in {3.4.7).

The contribution to the Povnting vector from the interference of
the zeroth order field with the quadratic field, remembering that both
these fields are linear in the photon creation and destruction
operators, using (3.1.1) and {(3.1.7), is

v T 0V 2. .2 (2) =
3 giéﬁAZ L<0;p|d4 Ipsk, 2> <k, by” () [p30> +

<0;p!d;2)(3§)Ip;§,1><ﬁ,l;plbé0)!p;0>] + c.c.

2 > = - -
v hke” iker— = — -iKk.r
= ) 16kg v E‘.gé[eéel em,‘,’,m& + emsﬁwébge ik r] + c.C. (3.4.8)
n o L mom n4 4

The first term of (3.4.8) and its complex conjugate, after performing
the polarisation sum and angular average using (2.2.19) and (2.2.24)

respectively, and the definition of the tensor field im£ (3.1.22), 1is
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e pn
d

3
+kpn ym(kr)ea{(k rle

+ c.c. {3.4.9)

where index manipulation has been used to eliminate the terms without an
exponential dependence. The k-integration involved in +the Poynting
vector can be evaluated exactly for the time independent part by
extending the integration limits to (—»,x}), This results in the pole

contributions
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64n2£ Tm Cpnogm = bn
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c - Y pn np, & = . . -
S ik ) M R Epn m gt B epgr) s ey O
s

Such an extension of the limits however, 1is not possible in the
determination of the energy densities occurring earlier. Therefore there
are no terms involving a u-integral occurring in (3.4.10). Evaluating
the remaining terms of (3.4.8) in a manner identical to that illustrated

above, the contribution from the vacuum and second order fields is

€ e ) (sen k_)BunPS [F 0k rigy (k ri+g, (k. r)f.,(k r)
Tigg L 75 Tpn TE Tm \an 42 Spn" "58m Fpnt  TE8m Rpn T e KpnT |

32ﬂ26n id& n

(3.4.11)

The total contribution to the Povnting vector from the electric dipole

devendent fields [31,33] is given by the sum of (3.4.4) and (3.4.11},

c o S ennne 5o CreE. (k -
161'(2‘— H‘;é‘ﬁ ‘é Hp ,J,!n l\anfé-}:(l\pnr)gEm(l\pnl")'*'g&m(kpnr)fj-le(kpnl‘)_'
E >E
P n
- SN gpm2e
= e ) [ 2P Koo (3.4.12)
E >E
D n

It is seen that the contribution from upward transitions from !p) comes
with opposite sign to the term from the product of the fields linear in
the moments. resulting in complete cancellation; downward transition
contributions however, are identical to (3.4.4) and consequently double
in magnitude, as given by (3.4.12)., The adding and cancelling of pole

contributions from the interference of the second order field with the
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vacuum field., with terms arising from the product of the first order
fields is, as in the energy density calculations carried out in the
previous Sections, a characteristic feature in the calculation of the
Povynting vector. The rate of flow of electromagnetic energy from a
radiating electric dipole source (3.4.12) can also be calculated from
the spontaneous decav rate of a molecule in an excited state. By
determining the matrix element for the spontaneous emission of a photon
from an excited molecule and using the Fermi golden rule, the transition
rate can be used to determine the power loss through a spherical surface
bv spontaneous emission, leading directly to (3.4.12). The importance of
the inclusion of the quadratic field is evident since the Poynting
energy flow from the first order fields gives only one half of the
spontaneous power rate. Including the second order field doubles the
flow., resulting in the eqguivalence of the spontaneous rate and the
Povnting vector flow.

Having calculated the leading contribution to the energy flow, that
arising from the electric dipole dependent fields above, the next
contribution to be evaluated is from the mixed electric-magnetic dipole
dependent radiation field. The method outlined in the first example is
followed throughout the rest of this Section.

The contribution from the product of the first order fields to the
Povnting vector energv flow from a chiral molecule is, using (2.2.34)

and {(2.2.55)

SR (1), (1), (1), (1),=
£k % [(pldé (1) |n><nfbg™ (m)fp> + <p|b£ (m)|n>(n|dd ()| p>

[\-1Te)

+ cold! @ enlogt (@ (e 4 <p[bél)(z)|n><n|d(1)(;)Ip)]
y | - y )

123



The above vanishes for an isotropic chiral source. The contribution from

the free and second order fields, evaluated from

™~

(0 )lp 1k, X><k LS DIb (ﬂm)!p;0> +
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(3.4.14)

also vanishes for an isotropic source.

The next contribution to the Povnting vector comes from the
magnetic dipole dependent Maxwell fields. Using the fields linear in the
sources (2.2.34) and (2.2.55), the contribution from the product of the

first order fields, is
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which becomes. after simplifying the <geometric tensors, whose

definitions were given in the Appendix to Chapter 2,
T
Ay '
ijA%§2e"s % e Om kpn“éwl (3.4.16)

which after rotational averaging results in

1

LN > -~
) I kg (3.4.17)
24n g cr W

The contribution from the zeroth and quadratic fields is

2 R 0010 B ao<E (2)
% “ij / L<0;p!d; Ipik, %<k, xiplby |p;0> +
K2
2 > , 1
<0;p|d;“)!p;k,x><K,x;p|béO’|p;0>J ‘ col
* D[ [ee * B b By e T 4 (3.4.18)
~ 8ne 4«}& Q..), \ZV/ Lj'e Yot a3 {uté ‘Ee | C.C., 4.
K,

where use has bheen made of the free field (2.2.15), and (3.1.3) and
(3.1.9). On evaluating the four terms above, it is found that (3.4.18)

becomes

-1

2
32n7e ¢

¢ N pn np 6 c T 7.k
-‘;d-k -r_{a mz mm kpn(sgnkpn) gd}:(kpnr‘)fﬁm(kpnr‘)+g4£(l\pnr)f&m(kpnr) .
0

(3.4.19)
Comparing (3.4.19) with the contribution from the product of the first
order fields (3.4.15), it 1s seen that when kpn < 0, corresponding to

upward transitions from !p), the two terms come with opposite sign and

cancel on addition. Only downward transitions, for which kpn > 0,
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contribute to the Povnting energy flow, so that

N _ -1 -\ .pn np 4 :
Si(r’t) = '81175—2' Ei.g’ﬁez;'{oro 2‘ mp m,, kpndﬁ’m , (3.4.20)
T oEglr EugEn

from which the energy flow across a spherical surface is calculated as

1 A\ =pn;2, 4
e s ) [nP? koo (3.4.21)
° g%
P n

which, as expected, is independent of the radius of the shell. The flux
(3.4.21) is exactly equal to the power loss from a molecule in an
excited state undergoing spontaneous emission.

The rate of flow of electromagnetic energy from an electric
dipole-quadrupole source is the next contribution to the Poynting vector
to be examined. Using the electric dipole and guadrupole dependent terms
of the radiation fields (2.2.34) and (2.2.55), the term from the product

of the first order fields is

(1)

AN (1),
£iib {;l—(pldo u)ln><n|b3_ <®)|p> + <p!dé (Q)|n><n|b£ (A)|p>-| + c.c.

(\S11e}
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" one “Lglé,l_z, L “mm an \“&mn “on 744 Tpn #¢ "on “Amn Tpn )

'hd'ﬂlﬂ(k F)gﬁz(kpnf)+g££(kLJllr) ,"m/n' DHP)J]
(3.4.22)

which after expanding the geometric tensors and averaging, gives zero.
The contribution from the source independent field and the quadratic

field, determined from
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+ c.cC. (3.4.23)

similarly disappears, as expected for dipole-quadrupole coupling.

The next contribution to the Povnting vector, that arising from the
magnetic dipole-electric quadrupole interaction term, also vanishes on
averaging. The contribution from the product of the first order fields

for an oriented source is given by

(1) (1)

ol >
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(3.4.24)
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while the contribution from the interference of the vacuum and second

order fields is found from
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on using (3.1.5) and (3.1.11), and is simply twice (3.4.24) for downward
transitions and zero for upward transitions from !p).

The last non-zero contribution to be considered is that arising
from the electric quadrupole coupling term, with the product of the

first order fields giving

S e s Z|< ‘“(m]n><n|b‘“(o) p> <p|b‘1’(o)|n><n|d‘1’(o)| >]
= ¢ S @BRonPy® (H (k_r)jg (k ri=Tz (k rih, (k r|
- 391 2¢ {; é em® 'nnpn "g8m “pn" ' T8nn' “pn" ' Enn Fpn" ' iem Spn” |

0
(3.4.26)

Evaluating the geometrical tensor product occurring in parenthesis above
using (2.,A.12) and (2.A.16) results in

N A A

N N QBNQhP ’
5 ik 8on /) m%nkpn YmTeF sT (3.4.27)
n

Rotational averaging and contracting the tensors results in

C T .pn.np -
—— . ..
8om e p- é QXFQXAkpn 4 (3.4.28)
n

The contribution from the free field and the second order field 1is
determined from,

«
Sep ) [<0 pld(O)Ip K, 0K, 0iplbg?

A
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Evaluating the four terms above in the now familiar way, the Poynting

vector from a quadrupole source is

2, o _dc Y QB8 [f -
S;(r.t) = N 7] Z ngg%ynkpn(h}&m(kpnr)Jgfwltk-nr)
"o E %
D n
—J&nﬂ(k r)hfﬂm(kp r)]
= —C S gPngnPy s (3.4.30)
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with only downward transitions contributing to the flow. The energy flux

through a spherical surface is then

C $ .pn.np, €
10me 2 QlﬁQlukpn
- Vg

E
P n

) (3.4.31)

-

and is independent of the radius of the shell and is in agreement with
the conventional calculation of the spontaneous power across a spherical
surface using the Fermi rule transition rate for spontaneous emission.
The final contribution to the Povnting vector to be examined under
the approximations considered is that arising from the diamagnetic
coupling term. The electric displacement and magnetic fields due to the
diamagnetic interaction were obtained at the end of Section 2.2.
Recalling that both these fields are quadratic in the electric charge,

there are no first order diamagnetic correction terms. Thus

~ o -
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(3.4.32)

using (2.2.69) and (2.2.70). Converting the four terms of (3.4.32) into
k-integrals, after carrying out the polarisation sum and angular
average, the four terms vanish on addition.

This completes the evaluation of the Povnting vector from a
radiating multipole source correct up to terms quadratic in the electric
quadrupole coupling term in the multipolar formalism of QED. It has been
shown that the onlv non-zero contributions to the energy flow arise from
sources possessing only electric dipole transition moments, or only
magnetic dipole or only electric quadrupole transition moments, with
contributions from isotropic mixed multipole moments, bilinear in the
sources, vanishing.

In all cases the Povnting vector exhibits an inverse square
dependence on distance. as expected for an excited source undergoing
real photon emission. The r_z dependence is consistent with the local
conservation of energy requirement that the energy flow across a
spherical surface be independent of the radius. The quantum mechanical
rate of spontaneous decay of an excited molecule from which the power
loss through a spherical surface is determined, is in agreement with the
rate of energy loss by radiation from an oscillating multipole source as
calculated by the Povnting vector. It has been confirmed that only the
spontaneous allowed transitions contribute to the total power. The
importance of the inclusion of the electromagnetic radiation fields

second order in the transition moments in the calculation of the
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Povnting vector has also been demonstrated. Use of the first order
fields alone gives onlv one-half of the spontaneous power. Adding the
contribution from the quadratic fields doubled the flow, resulting in
the equalitv of the spontaneous rate and Poynting energy flow to quantum

fields of second order.

3.5 ENERGY FLUX USING MINIMAL-COUPLING MAXWELL FIELDS

In the previous Section the rate of flow of electromagnetic energy
from a set of oscillating multipole moments was calculated in the
multipolar framework using the electric displacement and magnetic fields
of Section 2.2. In this Section the Maxwell field in the neighbourhood
of a molecule obtained using the minimal-coupling approach, is used to
demonstrate the equivalence of the expectation value for the Povnting
vector with that obtained using the multipolar formalism in the electric
dipole approximation.

In the minimal-coupling approach, the Povnting vector is given bv

5, (Fyt) = —é—sgczeééi[e;‘n(?,t)b£(?‘,t) + bé(?,t)e;OT(?,t)]

L 12 T ror(1) 2 (1) = 7T0T(2) 3 (0}, (0) (2) == 1]

* 5ELC E‘Q#ILezf' (H)by (,J)+eé- (HE) by te, by (rl,l)J[ + c.c.
(3.5.1)

concentrating only on terms second order in the electric dipole moments.
The first term above, that arising from the product of the fields linear
in the sources is given by (3.4.4) as the first order minimal-coupling
Maxwell fields are equivalent to their multipolar counterparts. Using
the mode expansions for the zeroth order fields, (3.3.3) and (3.3.12),

the second and third terms above become
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The first term after performing the sum over polarisation, angular

average and using (3.3.4) is
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Evaluating the time-independent part of the k-integral bv extending the

limits as before, results in the pole contributions
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The second term of (3.5.2), making use of (3.3.13) is
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Adding (3.5.4) and (3.5.6) and the complex conjugate terms to the
contribution from the product of the first order fields, noting that
only downward transitions contribute to the radiated energy, the

Poynting vector due to an electric dipole source is
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E
p n
which is seen to be identical to (3.4.12) obtained with the multipolar
Hamiltonian. The above calculation provides a demonstration of the
equivalence of the expectation value for the Povnting vector using the

minimal~-coupling and multipolar formalisms.
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APPENDIX

In this Appendix to Chapter 3, the explicit form of the product of
the gdeometric tensors occurring in the expressions for the energy
densities is presented. The tensors are required for the rotationally

averaged near- and far-zone limits to be ascertained.

A B. C, D, E. F. G.
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CHAPTER 4

INTERACTION OF TWO POLARISABLE MOLECULES

4.1 INTRODUCTION

Intermolecular forces are responsible for almost all of the
chemical and physical properties exhibited by matter. Consequently,
their understanding through a combination of theoretical prediction and
experimental verification is of the greatest importance. The common aim
of such studv is the evaluation of the interaction energy between atomic
and molecular systems and of its inherent dependence upon R, the
separation distance between conveniently chosen centres.

The initial quantum mechanical calculation of the interaction
between two neutral ground state molecules assumed the coupling between
them to be Coulombic in origin. Use of second order perturbation theory
then resulted in the characteristic R_6 dependence on separation
distance of the interaction commonlvy known as the London-van der Waals
dispersion energv [44-46]. The results obtained, however, applied only
to intermolecular separations small compared with wavelengths of
molecular electronic transitions. This is a direct consequence of the
neglect of retardation effects, namely 1ignoring the fact that
electromagnetic phenomena propagate with the finite velocity of light.
To deal adequately with intermolecular interactions at all distances
outside the regions of overlap of electronic wavefunctions, the
inclusion of the radiation field in the total Hamiltonian is essential.
Not onlv is retardation then a natural occurrence, but intermolecular
interactions in regions where the separation is of the order of the
transition wavelength, where the effects of retardation become

important. are also determined correctly.
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Bv fullv incorpvorating the radiation field and retardation effects,
Casimir and Polder [431, prompted bv the experimental observations of
Overbeek and Verwev 1471, first showed that the retarded dispersion
energy obeved an R'? power law dependence at large intermolecular
separations. The London result was found to be applicable only at short
separation distances. The use of the Coulomb potential energy term alone
is therefore not sufficient to describe the interaction in the radiation
zone. That a weakening of the potential occurred at large separations
and could be attributed to retardation effects has been firmly
established theoreticallv [48-52] and also confirmed experimentally
[53,54].

Bv treating both radiation and matter on an equal footing, QED is
ideally suited to the investigation of retarded dispersion forces and
the interaction between molecules in electronicallv excited states. The
commonlv held picture is one where all intermolecular interactions are
viewed as arising from radiation-molecule couplings. Intermolecular
interaction is mediated bv the radiation field through the exchange of
transverse virtual photons. In this exchange, the absorption and
emission processes violate the principle of energy conservation. This is
rationalised bv appeal to the time-energy Heisenberg uncertaintv
principle; for small intervals of time, energy mavbe "borrowed" from the
electromagnetic vacuum permitting the participation of virtual states.
Dispersion interactions are seen as being caused bv vacuum fluctuations,
a direct manifestation of the ever present zero-point energy of the
guantised electromagnetic field.

The dispersion interaction between neutral molecules has been
investigated thoroughly in the Schrddinger picture of QED, at first
solelyv  within the electric dipole approximation giving the

Casimir-Polder result 15,6,55], and later by including magnetic dipole

138



and electric quadrupole couplings 138]., Use of the multipolar form of
the theorv is advantageous as neutral molecules couple among themselves
solelv via the radiation field since all electrostatic, and therefore
instantaneous interactions, have been eliminated from the multipolar
Hamiltonian. The dispersion force was interpreted as arising from the
exchange of two virtual photons, the energy shift calculation requiring
the use of fourth order time-dependent perturbation theorv. Results were
expressed in terms of molecular polarisabilitv tensors, and were valid
for the entire range of separation outside electron overlap. The
limiting values at long and short separation distances were also given.
In this Chapter, an alternative approach to the calculation of the
energyv shift between two neutral molecules is presented. This method
relies on the use of the time dependent Maxwell fields evaluated in
Chapter 2. The picture is one in which a molecule is thought of as a
polarisable test bodv placed in the electromagnetic field produced by a
second, source molecule. The response of the first to the Maxwell field
of the second is then calculated directlv using the quantum mechanical
analogue of the expression for the classical interaction energv. The
leading term, corresponding to the use of the electric dipole source
fields, g¢ives the historically important Casimir-Polder potential
132,34|. This response formalism is now extended. bv presenting for the
first time in the Heisenberg method. a comprehensive calculation of the
energyv of interaction between neutral molecules in the ground state and
in electronically excited states for molecules possessing a variety of
multipole polarisability characteristics up to and including the
diamagnetic coupling term. These higher order interactions are important
when considering molecules with a small electric dipole polarisability
and for molecules whose opticallv allowed levels are accessible from the

ground state by non-zero magnetic dipole and electric quadrupole matrix
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elements. The inclusion of multipole moments other than the electric
dipole is also important when the interaction between chiral molecules
is examined. In such optically active species, the dispersion force
depends on the relative handedness of the pair, a phenomenon termed
chiral discrimination [56]. The derivation of the complete potential ip
the Heisenberg representation 1is given for the first time. The
equivalence of this result and of others obtained in this Chapter,
including their asymptotic behaviour at the limits of large and small
separation, is shown with previous work carried out in the Schrddinger
picture.

In order to expréss the energy of interaction between two molecules
in terms of their molecular polarisabilities, it is necessary to include
the second order source fields which are quadratic in the transition
moments as in the determination of the energyvy densitv and the Povnting
vector., In the calculation of interaction energies, contributions arise
from the product of the first order fields, which are linear in the
moments, and from the interference of the vacuum field with the second
order field. To evaluate the latter contribution, use is made of the
diagonal electron space matrix elements of the electromagnetic field
overators given in Section 3.1.

The energy shift between two neutral polarisable molecules is given

bv the expression

=2

_ gbd - L4 —AEV‘&—TEVH—%@(V&‘)E A (4.1.1)

Do —

representing the interaction of a molecule possessing a specific
polarisability characteristic with the radiation field of a second
source molecule. The leading term, corresponding to electric dipole

coupling has been treated bv Power and Thirunamachandran [32,34] and is
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given here for the sake of completeness and as an introduction to the

response formalism. The calculation of higher order terms follows.

4.2 THE INTERACTION BETWEEN TWO ELECTRIC DIPOLE POLARISABLE MOLECULES
The first interaction to be considered is that between two electric
dipole polarisable molecules. Recalling that the electromagnetic fields
in the vicinity of a molecule can be expressed as series in powers of
the multipole moments, the interaction energy between two non-identical
electric dipole polarisable molecules A and B in initial states |p> and

- -
!q> respectively, with A-B separation R = |R —Rpl, correct to second

A

order in the moments. is
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The prime superscript in (4.2.1) implies that the virtual photon
(non-resonant) contributions are not double counted, and applies to all
interactions considered in this Chapter. The first term of (4.2.1)
represents the response of molecule A through its dynamic polarisability

{ ), at frequency wqm for molecule A in state ]p>, to the

. (B
14 am
first-order electromagnetic fields associated with the electric dipole

transitions to the intermediate states !m> from the initial state !q) of
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molecule B. A similar interpretation applies to the remaining terms of

(4.2.1). The dynamic polarisability at frequencv © is defined by

vf#?nu?p Tl 2E__p2Mu0P
G ENE he TE dhef T T (4.2.2)
i4 ﬁLEnp hw ° E ‘+hm| £ )2

The terms listed in (4.2.1) are the important contributions to the
interaction energy as the first three terms arising from the expansion
of the field in series of powers of the moments do not contribute. The
product of the free field is independent of the source, simply being the
zero-point energy contribution, while the term arising from the
interference of the zeroth order field with the first order field does
not contribute to the expectation value since the number of photons
change. The first contribution to be retained and evaluated is that
arising from the product of the field linear in the source. Using the
electric dipole dependent part of the first order electric displacement
field (2.2.34}, the expectation value of the first two terms of (4.2.1)
over the molecular state |q> and |p> respectively, with the radiation

field in the vacuum state, is

-1\ A am, ma, 5 =
AF = .. s “k . . {
AE 32“_25: % a‘vé(kqm),—ig ,J'K l\qu‘.‘&(kqu)f’{(kqu)
...1 © n pn np 6 —
x,p(k etk f,.(k RIf,.(k R}, (4.2.3)
R

To determine the contribution to the energy shift from the product of
the vacuum field with the second order field, use is made of the
diagonal matrix elements of the electromagnetic field operators
quadratic in the moments given in Section 3.1. Using the definition of

the free field (2.2.15) and (3.1.1), the contribution from the last two
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terms of (4.2.1) can be written as

==l § [hck ik.R- < — -ik.R
AE = gre Z ( zv] 4(0)[9 € evﬂvé + eﬁd{iege 1+
“o k.x
o 7 B _ _ P 3
sngz AZ \hcs]( gelllege He edip t eigiéefelk'Rl- (4.2.4)
o k,X

For the moment, concentrating on the very first term of (4.2.4), the

polarisation sum (2.2.19) and angular average (2.2.24), give

2 o

-1 % (hck) » ik.Ry
A fHjejereidee N,
o k,x
“he
= S = fdkk op () [F o (KRIF o (KR) 1, . (4.2.5)
san’e? 2

Using the definition (3.1.13) for Q&j’ (4.2.5) becomes
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where use has been made of the #,£-index symmetry to eliminate the term
> E , after
m

For a state for which Eq

without an exponential dependence.
making the substitution k = —iu, the time-independent part of (4.2.6) is

mays gk RV gk R)

-1 N\ A qm
2 2 ) q(k )“ lJf .
gan-e> & ‘4 am £ 72 “qm 4
\{n s -9
+ b4:§gz J du Ce uURazé(icu)azt(icu)fié(iuR)fje(iuR) (4.2.7)
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and the time-dependent part is given bv

) 64Ni£ ; u%m#zq(_kzm)jmduuga:é(icu)Y
L?{{(kmqa)eikqm<R-ct1féﬁ(_iuR)Q%E;£§%2331
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(4.2.8)

The time-dependent terms tend to zero for t » R/c as the integrals have
In addition, the average of

zero because of the

exponentially decreasing values for large t.

interval tends to

(4.2.8) over a finite time
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. +ik ct . .
modulation factors e am . These oscillatory terms are ignored

henceforth. Returning to (4.2.6) and evaluating the integral for the

case kmq > 0, the pole contribution is found to be

—t

Y am, ma ‘
= ) K PRy E g (R RVE K R). (4.2.9)

The u-integral part is identical to that obtained in the second term of
(4.2.7). Use has been made of the relations (2.,A.3) and (2.A.4) given in
the Appendix to Chapter 2 for the geometrical tensors.

It is important to note that the first term of (4.2.7) has the same
sign as the corresponding term arising from the first order fields
(4.2.3). However, for those states m with Em > Eq, the pole contribution
has opposite sign as indicated by (4.2.9), and cancels the corresponding
term of (4.2.3). This addition and cancellation of pole contributions
from the zeroth and second order fields with terms from the product of
the first order fields is once again a common characteristic throughout
the calculations carried out in this Chapter.

After evaluating all the remaining terms in (4.2.4), the energy of

interaction between two excited electric dipole polarisable molecules is

-1 AN qm mg
AE = = ) ajv(k k t (k R)f (k R)
16?Th.€2 & L4 5 f am i£ {
E >E
am
-1 A\ pn np
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When both molecules are in the g¢ground electronic state, the first
two terms of (4.2.10)} disappear since onlv upward transitions from the
initial state are possible, leaving the u-integral as the sole
contribution to the dispersion interaction. After multiplving the

geometric tensors and averaging, this term can be expressed as

6 -2uR
©» duu e k
-1 T j=20m;2,2n0,2 mé no
AE = ———>— ) [ 7] f 5
36m Eoﬁc n - (km0+u )(kno+u )
r1 5 6 3
I + + + + (4.2.11)
Lquz u3R3 u4R4 uSRS eRe

and is the familiar Casimir-Polder potential (43]. It is instructive to
examine the asyvmptotic behaviour of (4.2.11) in the limits of large and
small intermolecular separation. In the far-zone limit the molecules are
separated byv a distance R much larger than the wavelengths of the
molecular transitions. In the denominators of (4.2.11) u2 may be ignored
in relation to kmo and kno' After performing the u-integral, the

far-zone result is found to be

—23hca (012 (0)

3 2.7
64n EDR

(4.2.12)

where now the g¢round state static polarisabilities appear. In the
near-zone the separation is much smaller than characteristic transition
wavelengths, resulting in kR « 1. Retaining the leading term of (4.2.11)

after setting the exponential factor to unity gives the near-zone shift

R

-1 ©

> ) , — (4.2.13)
24ﬂ2€“R6 = (EmD+En0)

0" m,n
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more commonlv known as the London dispersion energy. It is worth
pointing out at this stage, that the near-zone result may be obtained
from second order perturbation theorv when the interaction is
represented by an electric dipolar coupling term. This is examined in
more detail in the final Section of this Chapter. The dispersion
potential is identical to that obtained in previous studies using both
methods 16,32], and is in agreement with the interaction energies
obtained in Section 3.2 resulting from the response of a test molecule
to the displacement field of the source,.

If for example molecule A is taken to be in its ground state while
B remains excited {571, only the first and third terms of (4.2.10)
survive. Examining the first term of (4.2.10), after multiplying the
tensors and rotational averaging, the additional contribution from

downward transitions is found to be

N 1
oMl [FIM2E [ 1,1 . _3 J (4.2.14)
1 k > R°

It is important to note that for large R the leading term of (4.2.14)

-2 . . . .
has an R dependence corresponding to real photon emission, given by

N A
Y otk | (4.2.15)
& am am
>

This is the dominant contribution to the interaction energy at large
-7

separations since the virtual photon terms exhibit the familiar R

dependence in this limit. The virtual photon contribution is essentially

the same as that of the upward transitions given in (4.2.11)
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where the summation over m 1includes both wupward and downward

transitions. The asymptotic behaviour of (4.2.16) at large R is

—23hca” (0™ (0)
2 2 7
64T € R

Q

(4.2.17)

where now the static excited polarisability of B appears. For small R,

the dominant term of (4.2.16) is

jamy 2| 7ne ) 2
[ |
sgn(f ) ————— (4.2.18)
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/
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a

while that from (4.2.14) is

—)qmlz
.

A
o (k (4.2.19)
q u

n'l
Adding the last two expressions results in the total small R limit

- Dy - 2
inqml—lnﬂol-
| i~ i
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24m"e R” myn (E_+ E )
0 no mag

in which both real- and virtual-photon terms contribute to the
interaction energy. The limits (4.2.15) and (4.2.20) are in agreement

with the energy shifts (3.2.22) and (3.2.23) respectively, obtained when
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a test polarisable bodv interacts with the electric energy density due
to an electric dipole source.

If both molecules are in electronicallvy excited states, all three
terms occurring in (4.2.10) contribute to the energy shift. The first
term is given by (4.2.14), the second term of (4.2.10) can similarly be

written as

son 2 1
P ) |EP) %8 [ L | (4.2.21)
K

while the third term of (4.2.10) can be expressed as

r - r
| duuee zuRflA(icu)aB(icu)l 917 + 2 + 5 + 6 + 3 ].
0

Ly 'R” u R u R u R uSR6

(4.2.22)

This interaction energy can be decomposed into three types of terms
depending on whether the transitions m «— ¢ and n — p are both upward,
one upward and one downward, or both downward. The first two cases have
alreadv been examined, respectively giving the dispersion interaction
and the energy shift between one ground and one excited state molecule.
For the third tvpe due to downward transitions, the near-zone limits of

(4.2.14), (4.2.21) and (4.2.22) are respectively

pn; 21=>qm; 2 2pni2i=>qm; 2
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For large R the dominant term is proportional to R and arises solely

from the real-photon exchange terms of (4.2.14) and (4.2.21), giving

[pam 2 1anp 2
-1 < 1 | 2
— — ) E B (B +E E 4E ). (4.2.24)
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The response method [34,57] described above has the additional
advantage of being able to treat the interaction of electronically
excited molecules in a single formulation from which the dispersion
interaction is also easily obtainable. These potentials are not readily
calculable by more conventional methods due to the presénce of
intermediate state resonances. In the response formalism these
resonances are easily isolated and automatically accounted for since the
source fields include contributions arising from real transitions. This
completes the derivation of the energv shift between two electric dipole
polarisable molecules in both ground and electronically excited states.
The methods outlined form the basis of the rest of the calculations

carried out in this Chapter.
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4.3 THE INTERACTION BETWEEN A CHIRAL MOLECULE AND AN ELECTRIC DIPOLE
POLARISABLE MOLECULE

The dominant transition§occurring in most atoms and molecules that
undergo optical processes are those due to electric dipole allowed
transitions. However, the inclusion of the magnetic dipole coupling term
is necessary for the satisfactorv treatment of optically active
molecules. The energy shift between an electric dipole polarisable
molecule A and a molecule B with electric and magnetic dipole moments is

given by

-1 N A, {1) ] (1),=>, (1)y,=2,, (1) =,
e Z Jij(uqm)[ i (I am d;’ (m,mqm) +d; (m’uqm)d;}' (u,oqm)]
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=1 d(u){dio’ dz’mm) +al? (;.m)d(orl
250 f,l §
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(4.3.1)
with mixed electric-magnetic dipole dvnamic polarisability
Gppl®) ){uzmmzq ;m#zu S Zhwugmm%q (4.3.2)
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Using the ﬁ- and E—dependent parts of the first order displacement field
(2.2.34) and the ﬁ—dependent term of the magnetic field linear in the
sources {(2.2.55), the contribution to the energy shift (4.3.1) from the

first order fields is
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The remaining two terms of (4.3.1), the contribution from the zeroth and

second order fields, making use of (3.1.1), (3.1.2) and (3.1.7), are

87I£2 > Lt
0 k,A
-1 Y (k)2 [ -ik.E- = ik.R
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On evaluating the terms of (4.3.4) in the familiar manner, noting that
the last two terms in each expression are complex conjugates of the
first two, and adding the contribution from the first order fields
{(4.3.3), the energy of interaction between a chiral molecule and an

electric dipole polarisable molecule is

1 AN qm_ mq
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When both molecules are in their ground states, only the u-integral term

of (4.3.5) survives, and is
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with the dvadics a{é and ﬁ{g defined as
P ‘ P

after multiplication of the geometric tensors, and is in agreement with
the result obtained using diagrammatic techniques [38]. The dispersion
potential (4.3.6) disappears on averaging, resulting in no
discrimination in the fluid phase,

If molecule B is in an excited state while A remains in the ground
state, only the first and third terms of (4.3.5) contribute. The energy

shift for an oriented pair is then

-1 AN qm_maq, 4 -
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(4.3.8)

On rotational averaging, both terms of (4.3.8}) vanish since €L}5 is
antisymmetric to index interchange in contrast to g and BL& which are
symmetric. When both molecules are excited, all three terms of (4.3.5)
contribute with the geometric part of the second term of (4.3.5) similar

to that of the first term of (4.3.8), while the u-integral term is

identical to that occurring in (4.3.6), but with both molecules now
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excited. Once again the energy shift vanishes for isotropic source and

test bodies.

4.4 THE INTERACTION BETWEEN AN ELECTRIC DIPOLE POLARISABLE MOLECULE
AND AN ELECTRIC DIPOLE-QUADRUPOLE POLARISABLE MOLECULE

For a consistent treatment of intermolecular interaction energies
between neutral molecules, the effects arising from the inclusion of the
electric quadrupole coupling term is now investigated. The magnetic
dipole and electric quadrupole are both of the same order, being a
factor of the fine structure constant smaller than the electric dipole
interaction.

Bv utilising the Maxwell fields which depend upon an electric
quadrupole source, the number of interaction energy shifts to be
determined between molecules with differing polarisability
characteristics, now greatly increases. Bearing in mind that only terms
of a comparable order are being studied, the number of electric dipole
dependent interactions occurring between the two centres is restricted

to a minimum of two. The energy shift is determined from
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where A&{m(w) is the mixed electric dipole-quadrupole tensor defined by

ar qr ra qr.rq
udrehe QIR 2 147"
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-

Using the ﬁ— and 6-dependent parts of the displacement field linear in
the sources (2.2.34), the contribution from the product of the first

order fields is found to be
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Employing (3.1.1)} and (3.1.4), the contribution from the zeroth and

second order fields is
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Evaluating (4.4.4) in the usual manner and taking account of (4.4.3)
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Examining the u-integral term of (4.4.5), the sole contribution if both

molecules are in the ground state, leads to the dispersion potential

-1 On nO om.mo i duu’ e_ZUR
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with the tensors Aig&thn to Fij&lhn given in the Appendix to this Chapter.
Expression (4.4.6) vannishes on averaging. If B is in an excited state,

the second term of (4.4.5) does not contribute. The first term of

(4.4.5) however, after multiplving the geometric tensors, can be written

p—

S o (K ) ugigh k ra{gﬁém‘bijﬁﬂmlcigéﬂm, Lg&ﬂm.ggiﬁbm Lg&fmq
G am TR Tom ”"’Lk“ R K r® k'R k®RY KRS kR -
am am qm qm

E >E am
m

[§8)

2

167 ¢

(IR N]

»

(4.4.7)

The near-zone result has an R_7 dependence while the far-zone varies as
R—Z, with (4.4.7) vanishing on averaging. The u-integral term from
{(4.4.5) is analogous to (4.4.6) with B excited. When both molecules are

excited, all three terms of (4.4.5) contribute for oriented A and B.
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4,5 THE INTERACTION BETWEEN TWO CHIRAL MOLECULES
The energv shift between two non-identical chiral molecules with

each centre possessing an electric and a magnetic dipole moment, is

given by
AT = 5 T Y S (1),= (1) = (1) = (1) =,
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including all terms second order in the transition moments. The
contribution to the interaction energy from the product of the first
order fields is evaluated using the electric and magnetic dipole
dependent terms of the Maxwell fields linear in the sources (2.2.34) and

(2.2.55), and is

. - T A 8 am_mqs _
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For the contribution from the zeroth and second order fields, use is
made of the free fields (2.2.15) and (2.2.52), and the diagonal matrix

elements of the quadratic fields (3.1.2) and (3.1.8), giving
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Evaluating the terms of (4.5.3) using the appropriate polarisation sums,
angular integrals and definitions of the tensor fields and adding the
contribution from the first order fields (4.5.2), the interaction energy

between two chiral molecules is

| T LA 6 am_mas _
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When both molecules are in the ground state only the u-integral term of
(4.5.4) survives, which when written explicitly in terms of transition

moments after multiplication of the geometric tensors, is
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The expression (4.5.5) applies when the orientations of molecules A and
B are fixed relative to each other. It mayv also be written in terms of

the molecular polarisability tensor G{é(w),

’\m
2 > duu6 ZUR A (1cu)G££(1cu)Y
16n7 e _c
[rijae b;jse , Cigat dijee | eLg&&l (4.5.7)
L qu2 u3R3 u4R4 uSR5 u R ’
or in terms of the rotatorv strength Ri; = 1 #OS ;D. To deal with

molecules in the fluid phase. a rotational average of (4.5.5) is needed.
By following the standard procedure [41], the dispersion interaction for
two freelv rotating chiral molecules valid for all separation distances

beyond electron overlap, is

_ 1 ‘)" |ﬁ0 —\mOI I-»On -no [' du uqe_ZUR 1+ 6 + 3 ]
3 2 | 2 2_21°
187° hcR? mén St ywiac ) b R R
n
(4.5.8)
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After the usual approximations, the far-zone limit is [48]

=0m ->mo,; 20n ->no
3 o lEha E e
8B, = —%5 ) e (4.5.9)
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while the near-zone shift is [48,58]

lﬁDm'EmGIIEOn.EnO!

_1 S‘ !
AE = .
z 12N2£§czR6 msn Em0+En0

(4.5.10)

This completes the evaluation of the dispersion interaction between two
chiral molecules, originating from the third term of (4.5.4), The result
for all R is given by (4.5.8) while the results at large and small
intermolecular separations are respectively given by (4.5.9) and
(4.5.10). This interaction potential is discriminatory, dependent upon
the relative chirality of the molecules of the pair. The polarisability
(@) changes sign with enantiomer since ﬁ, a polar vector, is

4
antisymmetric to inversion, in contrast to m which is symmetric. For

tensor GL

molecules with absolute configurations R and S, the A(R}-B{(R) and
A(R}-B(S) interactions differ in sign. Since the rotatory strength maybe
either greater or less than zero, it is not possible to determine the
absolute sign of the interaction when the molecules are chemically
distinct. For chemically identical molecules however, the energy shift
for opposite isomers is attractive while that for 1like isomers 1is
repulsive. The complete ground state interaction, along with the R-9
far-zone and R-6 short range dependences agree with work carried out in
the Schrodinger picture [6,38,58] and the calculation performed by
Mavrovannis and Stephen [48]| in the Lorentz gauge, in which only the

limiting results were given. It is worth noting that the near-zone
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result mayv be obtained from second order perturbation theory when the
interaction is represented by an electric and a magnetic dipolar
coupling term and the mixed electric-magnetic cross term is extracted
[58]. This is examined in more detail in the final Section to this
Chapter.

Returning to the general result (4.5.4) and examining the case in
which molecule B is in the ground state and A is excited, the additional

contribution from downward transitions from |p> from the second term of

(4.5.4) is
-1 TGSy 1a0E RRL I IART L2 A
81!2650“ g - pn 4t 4 pn k® R?
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which for an isotropic source and test becomes
N N
-—L Y i n)lﬁp“.m“plksn[ S e l (4.5.12)
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E > pn pn pn
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The far-zone limit of (4.5.12) is
1 v B =pn =2npi, 4
-——— ) Gk |77k (4.5.13)
222 L pn DN
6m £, R 2

-2 . . .
exhibiting an R dependence, being associated with real photon
emission. This is also the dominant contribution as the asymptotic

-9
behaviour of the u-integral term shows an R dependence as demonstrated
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earlier. For small R, the near-zone limit of (4.5.12}) is

GB(k )lup“ anP| (4.5.14)

|
D N |
I\J

ane?c7R®
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pn

while that from the u-integral is

Agm Amg

.J ll#pn AHD{

+E_ ')

I s (Em0 |

both terms exhibiting R-6 dependences. The sum of (4.5.14) and {(4.5.15)

gives the total small R limit

=>0m —‘m“

Lo Ay e

5 2 2.8 ) (4.5.16)
12n@ €,C R m'n (Em0+ En )
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which is composed of both real and virtual photon terms.
If both molecules are in electronically excited states. all three
terms of (4.5.4) contribute. The first term of (4.5.4), the additional

contribution due to excited molecule B is

(4.5,17)

with the second term of (4.5.4) given bv (4.5.12), remembering that B is
now excited, while the u-integral term can be written analogous to

(4.5.8) as
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For large R the interaction energy has an inverse square dependence on
separation, arising from the addition of the real photon exchange terms
(4,5.12) and (4.5.17). In the near-zone, the downward transition

contributions to the interaction energy shift are

- ’]; 2 v)‘ GA(kQ )'_)qm mq' - 2 ‘1) 2 6 \; GB( )I_‘Dn'énn
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which simplifies to
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4.6 THE INTERACTION BETWEEN AN ELECTRIC DIPOLE POLARISABLE MOLECULE
AND A MAGNETIC DIPOLE POLARISABLE MOLECULE

For molecules with small electric dipole polarisability and large
magnetic susceptibilityv, the most important interaction is that between
an electric dipole polarisable molecule and a magnetic dipole
polarisable molecule, which is now examined. The energy of interaction

is given by

163



o d M me 1t M me )
am am 4

>

]

"
st~

s\

€

a

B (1)

RN (1)
3 é‘ Xge @y bg

(y0 dbp™ (0 )

- <
LY d(“)[d(mdéz}(ﬁ) d(Z)(mm)d(O)]

20 T
1S 8 T2y s 2) (0
k!l

where the magnetic susceptibility tensor Xig(w) is defined as

m m. m: m. m:- m
X () = M _;m E”' by _m 4 (4.6.2)
4 By ) g g o)

Using (2.2.34) for the electric displacement field of a magnetic dipole
and (2.2.55) for the magnetic field of an electric dipole source, the

contribution to the energy shift from the product of the first order

fields is
-1 Y A gm_maq
o
i S N R T o ) S
32n2£2c2 % Xﬁi(kpn)Fi H k {E(kan)ggt(kan)’ (4.6.3)
0

Emploving (3.1.4) and (3.1.7)}, the contribution from the free and second

order fields is
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Evaluating the terms of (4.6.4), noting that upward and downward
transitions from both |q> and 'p) respectively cancel and reinforce with
the corresponding terms from (4.6.3), the energy shift is

_ 1 Y A qm mq; & =
AR = — > é aij(k )M£ £ kqmg'{"@(kqu)g#{(kqu)
>
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jd uu e 4(ICU)X€£(ICU) 4{(lUR)gL£(1UR) (4.6.5)
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When both molecules are excited, all three terms of (4.6.5) contribute,

which after expanding the geometrical tensors, becomes
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which after rotational averaging becomes for isotropic source and test

bodies
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The first two terms of (4.6.7) exhibit R™® far-zone and R’ near-zone
dependences, in agreement (3.2.58) and (3.2.59), the energy shifts
resulting from a test magnetic dipole polarisable molecule to the
magnetic energy density of an electric dipole source field. The

asvmptotic behaviour of the u-integral term of (4.6.7) is readily found

to be
. e (fg | |22 | mA™| 2
AE. = 2 (sgnE_ )(sgnE )IE_||E
N7 72Hzﬁzh2C4R4 mn np ma np mq (IEnp! + Iqu,)
(4.6.8)
h .
AE_ = Z — «*(01%°(0) (4.6.9)
64n EncR

where «(0) and %(0) represent isotropic static susceptibility tensors
for the excited molecules. The far-zone limit of the intermolecular
interaction energy (4.6.9) is identical to (3.2.33), the latter having
been derived from the energy density. The R.4 near-zone dependence is a
direct consequence of the absence of static coupling between an electric
and a magnetic dipole, in contrast to the R-6 small 1imit found in
Section 4.2 when dealing with two electric dipole polarisable molecules.

The overall far-zone behaviour is dominated by the additional

. . . Py ey e -2 .
contributions from downward transitions, exhibiting R distance

166



dependence due to real photon emission, since the u-integral term was
-7 . .
shown to produce an R dependence as seen in (4.6.9%). From the first

two terms of (4.6.7), the far-zone limit is
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___1 AR l;‘lp! llmq’ r4 4
2 2 2.2 . 4 5 5 EFo * EnoEnal (4.6.10)
36m°e2c?R(he)? mim E° - E° in"“np p ma|.
° E > P am
P n
E >E
a m

The overall near-zone behaviour for two excited molecules arises from
contributions from all three terms of (4.6.7).

If, for instance molecule B is in the ground state while A remains
excited, the second and third terms of (4.6.7) contribute to the energy
shift with |q> = 0, the behaviour of the two terms having already been
discussed. When both molecules are in the ground state, the u-integral

term of (4.6.7) survives to give the dispersion potential

1 ; |-§n0|zll—n>m0|2‘m duuﬁe_ZUR Kk [ 1 + 2 1 ]
22 3 /1 i | 2 .2 2 2 mo no| 2_2 3.3 4_4
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giving the limiting results
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where the susceptibilitv tensors now signifv molecules in the ground

state. These asymptotic values could of course have been obtained
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directly from (4.6.8) and (4.6.9) on inserting |p> = lq> = |0>. The
calculation of the dispersion energy between an electric dipole
polarisable molecule and a magnetic dipole polarisable molecule when
both molecules are in their d<round electronic states, is in agreement
with previous studies [35,38,48]. It should be noted that this
intermolecular interaction energy is repulsive. Further, the above
result is incomplete since no account has been taken of the diamagnetic
coupling term, which is one of the same order. This interaction term

will be considered in a later Section.

4.7 THE INTERACTION BETWEEN AN ELECTRIC DIPOLE POLARISABLE MOLECULE
AND AN ELECTRIC QUADRUPOLE POLARISABLE MOLECULE

The next interaction to be discussed is that hetween an electric
dipole polarisable molecule and an electric quadrupole polarisable

species. The energy of interaction between the two is given by
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where the definition of the quadrupole polarisability tensor is given by
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The contribution arising from the product of the first order fields is
—)

obtained from the ﬁ- and a-dependent parts of (2.2.34}, and is
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The contribution to the energy shift from the zeroth and second order

fields using (3.1.1) and (3.1.6) is
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Evaluating the terms of (4.7.4) using the tensor field definitions
(3.1.13) and (3.1.21) and adding to the contribution from the [irst

order fields (4.7.3), results in the energy shift
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When both molecules are in the ground state, only the final term of

{(4.7.5) remains, which when expressed in terms of transition moments is
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(4.7.6)

after multiplication of the geometric tensors, whose explicit form in

terms of A etc., are ¢given in the Appendix at the end of this

ijRLmm
Chapter. Expression (4.7.6) is applicable at all separation distances
outside electron overlap for an oriented molecular pair. To obtain the
interaction in the fluid phase, a rotational average is taken. The
average entails the product of 5&4b-zéétqmnfssﬁmﬁﬁmf38&n6&m) with each
After the usual approximations, the u-integrals

of A to G

ij8L8mmn ijREmm’

can be evaluated to give the asymptotic values
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where the ground state static polarisabilities appear in (4.7.7). These
results are in agreement with previous studies [35,38], and with that
obtained from the response of an electric dipole polarisable test body
to the electric energy density due to a quadrupole source (3.2.46).

If molecule A is in the ground state, the second term of

(4.7.5)does not contribute. The first term of (4.7.5) is
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with tensors aigﬁfmmq to g{gﬁfmvn given in the Appendix. After rotational

averaging, (4.7.9) becomes
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exhibiting R near-zone behaviour,
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in agreement with (3.2.48). The term (4.7.12) 1is the dominant
contribution to the interaction energy at large separations since the
virtual photon contribution from the wu-integral produces an R-g

devendence as seen in (4.7.7). The small R limit obtained from the

analogue of the u-integral (4.7.6) when B is excited is
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When both molecules are excited, all three terms occurring in
(4.7.5) contribute to the energy shift. The first term is given by

{4.7.10), with the second term of (4.7.5) similarly expressed as
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The total near-zone limit 1s obtained from the addition of the leading
small R terms from the last two expressions to the limit (4.7.11),

resulting in
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For large R the dominant term is proportional to R =, obtained from the

addition of (4.7.12) to the large R limit of (4.7.15).

4.8 THE INTERACTION BETWEEN TWO ELECTRIC DIPOLE-ELECTRIC QUADRUPOLE
POLARISABLE MOLECULES

In the last interaction to be considered, that bhetween a dipole
polarisable molecule and a quadrupole polarisable bodv, each centre
consisted of pure multipole moments. In this Section, the possibility of
splitting up that particular configuration is examined with each centre
now possessing both an electric dipole moment and an electric quadrupole

moment. The energyv shift is
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Using the L~ and G-dependent parts of (2.2.34), the contribution to the

energy shift from the product of the field linear in the moments is
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(4.8.2)

Using (3.1.4), the contribution from the free and guadratic fields is
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Evaluating the terms of (4.8.3) using the tensor fields (3.1.17) and

(3.1.18) and the additional angular integral

o oaid |
+ f(su k, k )kﬁkze 0 [L e KrIT g (ke ] (4.8.4)

with Iaééi(kr) defined at the end of the Appendix to Chapter 2, the

interaction energy is
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and applies when both molecules are excited. If for example A is in the
ground state. the second term of (4.8.5) vanishes, with the additional

contribution from downward transitions from B being

1 A\ A qm.mgq
A Lk pdmema®
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® EE
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(4.8.6)
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with pij&&mwm_vigézmwm defined in the Appendix. For freely rotating
molecules, this result. like that when both molecules are excited,
vanishes after averaging. Examining the third term of (4.8.5), which is
the sole contribution when considering the interaction between molecules

in the ground state,

-1 L on,.no Cm,.moO * duuge—ZUR k k
—3 2 )#4_" Qi&“’{ Q/m/n_ 5 o 2 o no mo x
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u R u R uR u R u R u R u R

(4.8.7)

is obtained. This is the general result for oriented molecules which
also vanishes on averaging, as expected for a dipole-quadrupole coupling

at each centre.

4.9 THE INTERACTION BETWEEN AN ELECTRIC DIPOLE POLARISABLE MOLECULE
AND A MAGNETIC DIPOLE-ELECTRIC QUADRUPOLE POLARISABLE MOLECULE

In Section 4.7 the interaction between an electric dipole
polarisable molecule and an electric quadrupole polarisable molecule was
discussed. An interaction of a similar order to that is obtained if one
of the electric quadrupoles is replaced by a magnetic dipole moment,
resulting in the interaction between an electric dipole polarisable body
with a mixed magnetic dipole-electric quadrupole molecule, which is now

calculated. The energy shift is

- -
21T 8 (1) = (1) 3 (1 3, (1) =
A = o, . . M . e . () " .
AE 202 % L4( qm)[dL (m,wqm)dé (Q,uqm) +d; (Q’Lqm)dd (m,mqm)]
a
1.8 . ()a (1) 2. g (1) 3 (1))
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where T&&m(u)’ the mixed magnetic dipole-electric quadrupole tensor is

defined as

QP rqg QP rag qr.rq

m/ Q 2homs Q

T..,(0) = S 45 4£ L 1 S ———————ié (4.9.2)
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Emploving the displacement field (2.2.34) and the ﬁ-dependent part of
the magnetic field (2.2.55)}, the contribution from the product of the

first order fields is

e S A qm —
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-1 \ .8 PN, np
321 €,c o
(4.9.3)

The contribution to the energy shift from the interference of the zeroth

and second order fields is obtained using (3.1.1), (3.1.5) and (3.1.7),
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Evaluating the terms of (4.9.4) using the tensor field definitions
(3.1.13), (3.1.19), (3.1.20) and (3.1.22), and adding the contribution

from (4.9.3), the energy shift is
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(4.9.5)

If molecule A is in the ground state, the second term of (4.9.5)
disappears. The first term, the additional contribution from downward

transitions from B, can be written as

-1 A\ gm.maq «
é g(kqm) 2 Q&mkqm x
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exhibiting R‘2 far-zone and R.6 near-zone behaviour. This result

vanishes on orientational averaging, as does the u-integral term. When
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both molecules are in the ground state, the u-integral is the only

contribution, the potential for oriented molecules being

~h r";u 7_-2uR A

(1cu)T&&m(1cu) X
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00
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and which also vanishes on averaging.

4.10 THE INTERACTION BETWEEN A CHIRAL MOLECULE AND AN ELECTRIC
DIPOLE-QUADRUPOLE POLARISABLE MOLECULE

The final interaction to be considered is that between an electric
dipole-magnetic dipole polarisable molecule and an electric
dipole-quadrupole polarisable molecule, the last possible case where at
least two electric dipole moments are present, either entirely at one
centre, or as in this example, split between the two. The interaction

energv is calculated from
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The contribution to the energy shift from the first order displacement
—)

field (2.2.34) and the 3— and a—dependent part of the first order

magnetic field (2.2.55) is

AR am_maq - '
Aigé(k Yup m,, k [hiék(k R)gum(kqu) ng}kqu)hézk(kqu)

S[~"]

32n e ¢

[=JN]

_i(fi{(kqu)J £(k R) +j (kqu)fii(kqu))]

imA

1l B ..P“ npy
— $G£m(k ek [1fh(k oV iglk RIHHpg (k Rig,. (k R)I.

(D N
=

(4.10.2)

Using (3.1.2), (3.1.4) and (3.1.10), the contribution to the interaction

energy from the zeroth and second order fields is determined from
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Evaluating the terms of (4.10.3) in the usual manner, the energy shift

is found to be
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The first term of (4.10.4) can be expressed as
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the explicit form of q{}&&m—uL}&bm given in the Appendix, which is the
additional contribution from excited B, with a similar term occurring
from the second term of (4.10.4) when A is excited. The result (4.10.5)
disappears after orientational averaging. When both molecules are in the

ground state, only the u-integral of (4.10.5) survives, which is
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with Q{4££m1 etc., given in full in the Appendix. This also vanishes

after rotational averaging.
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4,11 CONTRIBUTION FROM THE DIAMAGNETIC COUPLING TERM

The discussion outlined so far in this Chapter is still incomplete
in the sense that no account has vet been taken of the diamagnetic
coupling term which is one of a similar order as the electric quadrupole
and magnetic dipole interaction terms. For a comprehensive treatment of
intermolecular interactions to this order of approximation, the effects
arising from the inclusion of the diamagnetic coupling term 1in the
interaction Hamiltonian must therefore be investigated.

For a freely rotating source, the diamagnetic coupling term is

= & (4.11.1)

with the resulting interaction energy arising from (4.11.1) for a

molecule in the ground state given by

N

50 520,502 100 10.05; (4.11.2)

12m <0:0]<q*>°(B
(4.11.2) is seen to be similar to the last term of (4.6.1) from the
interaction between an electric dipole polarisable molecule and a
magnetic dipole polarisable molecule. The [ield dependent part above is

identical to that occurring in Section 4.6, resulting in

_.2 A\nl S ..LII‘ F _I
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In the far-zone, (4.11.3) reduces to [35]
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illustrating that at large intermolecular separations. the diamagnetic
contribution to the dispersion interaction varies as R™7. This result
mav be combined with that obtained in Section 4.6 where the far-zone
limit was also expressed in terms of the static polarisability of

molecule A. From (4.6.13) and (4.11.4),

- o 10)1x" 2(0) (4.11.5)

where the new, modified magnetic susceptibility tensor takes the

definition
, B _yB _e .z
X (0) = X (0) o <a > . (4.11.6)

Although both «(0) and X(0) are positive for molecules in the ground
state, X' (0) maybe either positive or negative depending on the relative
sizes of the two terms in (4.11.6). A molecule is termed diamagnetic if
X"{0) < 0. Returning to (4.11.3) and examining the near-zone behaviour,

after the usual approximations, the leading term is found to be

=2n0|2, 2.8 -
|25 7™ k. (4.11.7)

>
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Comparing (4,11.7) with the corresponding limit (4.6.12) obtained
between electric dipole and magnetic dipole polarisable molecules, the

ratio of the two is given by

AENZ(ax)

A ToTAT kR . (4.11.8)
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In the near-zone, where kR « 1, the contribution from the diamagnetic

coupling term dominates the interaction.

4.12 NEAR-ZONE LIMIT TO THE DISPERSION INTERACTION

So far throughout this Chapter, the dispersion interaction and the
interaction between two molecules in electronically excited levels has
been investigated using the multipolar formalism of QED 1in the
Heisenberg picture. Results for oriented and completely rotationally
averaged molecules, valid for the entire range of separation distance
bevond electron overlap have been obtained for molecules possessing a
varietv of multipole polarisability characteristics up to and including
the magnetic dipole and electric quadrupole moments with complete
account being taken of all retardation effects. The asvmptotic behaviour
of the energy shift between two neutral molecules in the limits of large
and small intermolecular separation has also been studied.

It was mentioned in Section 4.2 that the near-zone results mav be
obtained from second order perturbation theorv when the interaction term
is represented bv a Coulomb’s law tvpe coupling [59]. In this Section,
second order perturbation theory with an electrostatic multipolar
interaction term is used to obtain the near-zone limits to the energy
shifts calculated in Sections 4.2, 4.4 — 4.5 and 4.7 - 4.8.

The attraction between two neutral molecules in ground electronic
states was first discussed bv London in terms of virtual molecular
transitions. For intermolecular separations small compared with
characteristic wavelengths of molecular electronic transitions, use of
second order perturbation theorv with electrostatic dipolar coupling

-8 . . .
resulted in the R dependence on distance of the dispersion energy.
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This interaction was interpreted as arising from the induction of a
dipole in one molecule by a dipolar fluctuation of electric charge in
the other molecule. In the present treatment the static electric dipole
coupling approximation is relaxed with the effects of static magnetic
dipole-magnetic dipole, electric dipole-electric quadrupole and electric
quadrupole-electric quadrupole couplings fullv incorporated.

Molecules A and B are again taken to be non-identical many-level
systems separated by a distance ﬁ, with intermediate states n and m
respectively. The dispersion energy is easily calculated using second
order perturbation theory,

A B A B B _A A _B
<E_.E|H 'En,Em><Em,Ean |E B>

AE N o’ INT!
T ). E +E
m,n mo no

T (4.12.1)

with the interaction Hamiltonian representing the static multipolar

coupling dgiven by
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The leading contribution to the dispersion interaction for small
separation distances corresponds to the use of the first term of
(4,12.2) in (4.12.1), giving

AI

A B A B B A A B _A B
0l“i“&’En,Em><Em’En'”dA£IEO’EO>

Em0+En0

1t
|
—
b}

AE

8] [} 0
1 o HoH e
- i g o ’
*—=3% ) T T§ 3B BisPie (4.12.9)
PR mG no

AE = — Y — (4.12.10)

which is the familiar London dispersion energy (44], identical to the
near-zone result {(4.2.13) obtained from the full quantum

electrodvnamical expression.
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The next short range interaction to be evaluated corresponds to the
near-zone limit of the chiral discrimination dispersion potential
determined in Section 4.5. This is obtained by extracting the cross term
after including the first two contributions to the interaction
Hamiltonian (4.12.2). The leading term has already been derived above,
being the pure electric dipole case, while the pure magnetic analogue is
ignored to this order of approximation. The electric-magnetic cross term

is given by
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which after averaging becomes [58]

< JmE e
A = ) (4.12.12)
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in agreement with (4.5.10).

If the first and third terms of the interaction (4.12.2) are
retained, and the cross term extracted again, the resulting interaction
corresponds to the near-zone 1limit obtained in Section 4.4 between an
electric dipole polarisable body and a mixed electric dipole-quadrupole

polarisable molecule. The energy shift is given by
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On using the definition of aiéﬁ from (4.12.7) and comparing {(4.12.13)
with the Figébm term of (4.4.6), after performing the u-integral, with
Fij&&m given in the Appendix under (4.A.5), the two results are seen to
be identical. (4.12.13) like its counterpart from Section 4.4, vanishes
on averaging.

If only the third term of (4.12.2) is retained and used in the
second order perturbation theorv expression, the resulting energy shift
corresponds to the near-zone result of the interaction energy between an
electric dipole polarisable molecule and an electric gquadrupole
polarisable molecule investigated in Section 4.7. Using (4.12.5) in
(4.12.1), the energy shift is

- <E Eolp ®£{|E E ><E E lute® gt
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(4.12.14)

Using the definition (4.12.7), the above is seen to be identical to the

part of {(4.7.6), after performing the u-integral, with G

Gigﬁfmyn ijRLmm

given in full in the Appendix under (4.A.6). Rotationallvy averaging

(4.12.14), and contracting the geometrical tensors results in

(4.12.15)
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which is equivalent to the near-zone shift (4.7.8),

When the second term of (4.12.2) is excluded and the electric
dipole-dipole electric quadrupole-quadrupole cross term extracted along
with the mixed electric dipole-quadrupole contribution, the resulting
interaction corresponds to the near-zone result obtained in Section 4.8
between two electric dipole-electric quadrupole polarisable molecules.

The total energy shift from the two contributions is given by
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which corresponds to the V term of (4.8.7) and which similarly

ij88mm
vanishes after orientational averaging.

In this Chapter, the energy of interaction between two neutral
polarisable molecules has been calculated using molecular response
theory. The response of a test body through its dynamic polarisability
to the Maxwell field of a second source molecule is determined for
ground state and electronically excited molecules. In all the examples
considered, the energy shift for two excited molecules consists of three
terms: a u-integral term applicable for both upward and downward

transitions from the initial state, corresponding to virtual and real

photon transitions, and two additional unmodulated terms applicable only
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to downward transitions from the initial state, corresponding to real
photon emission. For two molecules in the ¢round state, the u-integral
term is the sole contribution to the dispersion energy, intermolecular
interaction mediated by the electromagnetic field through virtual
transitions. The energy shifts are expressed in terms of generalised
molecular polarisabilities and are valid for the entire range of
separation distance beyond regions of overlap of molecular electronic
wavefunctions for both oriented and completely rotationally averaged
source and test bodies. The asymptotic behaviour in the limits of large
and small intermolecular separation, where the effects of retardation
are most clearly distinguished, is also investigated. This is evident in
the dispersion interaction between two electric dipole polarisable
molecules and two chiral molecules, amongst others, where the far-zone
dependences are respectively R_'7 and R‘g, in direct contrast to the R-6
power law predicted for both cases by a London tvpe calculation using
static intermolecular coupling, which applies only to small separation
distances, and which is the near-zone 1limit to the fully retarded
interaction.

When both molecules are excited, the additional contributions to
the energy shift arising from downward transitions dominate, and can
result in a repulsive force. In the far-zone an inverse square distance
dependence is found in all the cases examined, corresponding to real
photon emission from a molecule in an excited state. If only one of the
pair 1is excited, the sign of the potential depends on the relative
magnitudes of the relevant transition energies of the two molecules.

The use of time dependent Maxwell fields in the vicinity of a
source and molecular response theory leads directly to the

intermolecular energy shift for a pair of molecules, and has obvious

physical appeal.
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APPENDIX

Throughout this Chapter, the energy of interaction between two
polarisable molecules has been expressed in terms of molecular
susceptibility tensors, whose definitions were given in the text, and in
terms of products of various geometric tensors. The definitions of each
of the tensors used here were given in the Appendix to Chapter 2. In
this Appendix to Chapter 4, the explicit form of the product of the
geometric tensors is given; the definitions of the various tensors
denoted by Ai}é( etc., in the text, are stated here in complete form.
These are required in order to determine the dependence of the
interaction energy on separation distance in the near- and far-zones.
The number of indices associated with each tensor is sufficient to
remove any ambiguity regarding the use of any particular tensor in any
specific calculation.

In Section 4.2 the products fi-(kR)fﬁz(kR) and fi.(iuR)fﬁz(iuR) are

¢ ;

required. From their definition (2.A.1),
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In Section 4.4, the following products are required
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bijgem = % 0020 zR +~sz§+5& Rc’ 6RgR Ry =R, j%808m

A A A

r‘é[(zég’CR +8 R£+6£mR{)—6R£R£Rm]

A A A

e jgtm = 0
and
y B, C,, D, E; iz F,
f;;(iuR)hgp  (iuR)= 1| Ligeem + ,géfm + Liéfm + ”iﬁgm + Liwfm +4€£fm1
44 - L y%g? u R” u R u R u R u R
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A A A

a,mRm[s(é R£+8L£R +5A£R I-15R,R Rl +

A A A

Aligem = ’Jifuﬁm
Biigtm = Ba;g‘"uém*“q‘ 28 4 oRy 8 g+ pRg=ORgR 4R, )
Cijglm = B:;fuﬁm*‘s&{ém‘3“1;{'2"3{4“5&4:).“!‘3‘ fﬁg’*‘smﬁé( 3o tB)
—( 15al;4+6,8{4 ) agézﬁm

D:;g&{m = 8£{§m(3aq+59.4)+(6£ §,+8£ RQ)(SG +4B; ) (15a, +21!)’ )fzéfc{fz
Eijgom = 681 (500Rn*OgmRo+S nRg =308, fz&fe{fz
F{j&'ﬁ’m = 38, (5&‘;}2 +5 R/piﬂg Rﬁ) 15,— IAQ&I%{IA% (4.A.5)
In Section 4.7, the following products are required
h{-ﬁ(iuR)h{mn(iuR) =
l AL igemn B{jﬁ&nn . Ci;’&&fnm . Di,g'ﬁtrmn N Ei;jﬁtmn . Fii!é{fnvn Gi.g'&{/mn]
L u2R2 u3R3 u4R4 uSRS uSRS u7R7 uBRB
where
Ajjgbmn = ’"’Lg"m&&én
Bl;;jlé»ﬁmn = dagRﬁ(z“&mRm {an+8ﬂnn§£—6§€§mén) ¥

oz{,ml?tﬂt 25{4%"6&6& +8 '&ai"sé{ﬁg’é&)
C{g&tm/n = a&§§£[3(5£m§n+5 Rm+6fmn&1’ )—15§£§m§nj *

c!/mﬁm[S(S R8+3 ﬁR +0 QR )- 15;2 R §£] +

(28, Ry#S, gR 48 4R —6R,RRy) (280 R, +80 R, 46, Ry=GR,R R, )
Dy igemmn = 4R£I3(6£MR 48, R 45 Rp)~15R,R R, | +

A A ~

(28 R£+5 QR 48 ﬁR —6R. RR}S)[B(S{mR R£+SH{R )= 15R£R ]+

A A

[3(’5{}R£+5‘L£R4+545R£) ~15R RREJ(ZSMR +<$MR,m n
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A A A A~ A

Eijgomn = (2 R£+5V£R +5A£R —6RR R30S, R +<S,CQR@+5,MR£) 15R R, R I+

A A

[3(8; 4%*’3&3 +8. 1‘ER )= 1oR R Rﬁj[s R *5{an*‘34nn ¢)-15ReR R ]

A A A A A A

+ [3(3; 4R£+6 &R +5 £R )-15RR RQI(ZS{MRH+8£HRM+5”"RR£ 6RpR_ R, )
“ _ A

(4.A.6)

and

h{&(,(kR)hjm(kR) =

[ &, j8Lmm . bq&&m . Cii8emn . d&g}iﬂrnm . €ij8Lmn . f&j&&fnm . gi;j&(ﬁ/mxn]

L k%R® KR> k'R K°r° k°R°® k'R’ k°r®
where
A jhemn Giﬁa;jme{Rn

~ ~

bi,;,ilé{mn = idUiR{(ZéymRn+6ﬂnfnRg+6;fner-6R4Rmen) -

~A A A

A A

Cijgemn —aiﬁR«C[3(84mRn+6mnR4+8n4Rm) 15R;,«R/mRn] -

A A A

J,mRm[B(GU@R{Jr(Sg{R +<S_£R£) ~15R, RaRz] +

s -~ -~ _ N A A -~ -~ -~

’!F.R. )

dq&&mn = —iai_&R{[‘g(84mRn+5mﬂR4+63nR@) 15R4R,mRm] +

A A A A A

i(2%,; ﬁR{+8 £R£+53£R —6R . R£R{)[3(5ymRmeMMJ%+5?nRW” 15R5RmRﬂJ—

A A A

1[3(6 ﬁR,P+88,€R +5. {R&) 15R. R&R{](Z& mRn"'&man'l'(S# R —6R4R R )

A A A

A A A ~ -~
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A A A A A A

(35, &R£+5££R +AV£R£) 15R, RﬁR{][B(SmeﬂfémMJ2+5$anﬂ ISR# R, 1

A A A -~

- [3(6 &RI."};&{R +5. !Rg) 15R. Rngl(Zﬁ ’InRﬂ+6”7lﬂRé+v;}ﬂR'm—6RéRmRn)

fi,aiﬁﬂfnm =0
= [3(8, ﬁR,+6“R +5L£R&) 15R,; R£R£][3(6 R_+f°~ R46. R )-15RR _R_]

gii8emn mmn 4 Jnom jmm

{(4.A.7)
In Section 4.8, one of the products required is

£, (kB Lgpmn (KR) =

[hig'&&mn . ii;;&bmn N ‘jé;jkaﬁfmn . ki,gi&aﬁmn . lt;iﬁ&nm N nij8mn N ni;j&&mm]
KR KR’ k'R K°R° k°R° k'R’ k°R°

where

~ -~

hijgemn = % 8e8mfn

Lijgtmn = —1a%( edmn~ 4aﬁtémén_8£m§{E{n—a&n[;{ﬁm_éﬁmﬁ&ﬁn_é&lé&am
RgRp+ 10RGRGR R —iﬁqauémfzn

’“@4[6‘5%‘1{;‘@*5 BB *® pmR R+ R g+ ReRp 1498 R R,

‘ji;j&&mn = £n

Zééﬁqmﬂfséméﬁn. &m g 4ORgR R, R-]—B{ £€ mmn 45&£Rm3ﬂ. &mRtRn
_ ~ ~ _ -~ ~ ~ ~ ~ A~ _ R ~ ~
8§nR£Em 6£mR£Rn. CnRﬁRmr 4mnR£R£+10R£R€ nl)’%4a££&m3n

kiai&{mn = 1o 130000 +opmBontOom®pn ) T1OSRgR SR, R +16(8ggR, R, 48

&mRﬂR

A A A A A A A A

Som RﬁR +5mR&R *5%%% *95££R R=28 858~ gm® on=SemSgn=
45R£R€RmRnJ +1ﬁ [6££ mm.48é£RmRn, @mRCR é&anRm,é&mRQ&n—

-{nRQRm ,m,nRéR{HORBR{R R ]
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Ljgemn= (B (3(0ge8pn+8gn 8y 480, 80, )+105RgR,R, R, ~15(5g,R R, +
S&mRﬁRn+5&nR£Rmf6€m§£éﬂf6£ﬂ§§émf6mmﬁ£§£)]+
’81;5[6‘55411&{&@.*'6&41&{&. & o g S enRgR 5 RgRg 1498, R, B, =

26££5mmf6ém5£n—8&m5£nf4SﬁﬁﬁﬁﬁmﬁﬂJ

mijgemn ~ 0

ngemn = Fijl3CeelmntPemlent®en’en )+105RgR oR, R, ~15 (SR R +

Jé,mRzR +~£nR{R +6£mR&Rm+6€nR£R +6m1:t£f2£)]. (4.A.8)

Since

f&j(kR)lﬁfhwn(kR)+l££mm1(kR)f{j(kR) Z(théfhmn L§££mm1+lig&£mmn+négﬁfmvn)

and

h g (KRVBgy,, (kR)#E, g (kR)hp, o (KR) = 2(a

ig &é&&ﬂM@ VgﬁﬁmM1+eLg££mmm+géé&tmmm)’

the tensors written in (4.8.6) are defined as

Dijgemn ~ 2(aij££mm1+h{§££mwn)

Fiiglmm = Z(Cvgﬁimw1 -Agﬁﬁmvn)

tigéﬁmyn - Z(eLj££WW1 tgﬁfmwm
Viigemn = 218 pemntMiiglmn
U gemn = Sijemn = Yijgemn = O (4.A.9)

Also required in Section 4.8 is
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f--(iuR)lﬁgli(iuR) =

if
[Hqun..m , Liggemn  Jijgemn  Rijgemn | Lijgemn  Mijgemn Nq&&m]
L ou’R? u’R> u'r? u’R® u’r® u'R’ ur®
where

A A

HALg'&{mn = —aig'aﬁi.Rmen
o o S e e
Lijgemn = % %80%mn™400Rn Ry *LORGRgR R, 55  ReR —80 RoR =5, RAR,

®enBeRnOmnleRe )8 g Rr Ry,
Jigk&nn = a{;j[—s ( 6£mR£Rn+5£nR{Rm+6£mR£Rln £nR£Rm mnRﬁRi)_QSAﬁ{RmRn"'
A AA A oA a A
220 00mn*em®ent 208 Com 45RgRRy R, 148 (0000, =40 g pR R+

A A A

10RGR Ry, Ry, =S R Ry =8 R R =8 o ReRy =80 ReR, mnRsRcl‘BL‘g“uRmRn

Kijgemn = 1300800 mn* e en*Pem? g =15 (SgeRB +0 g gRp 55k Rt
Cp RﬁR +f5},ﬂ;{£§m mﬂRﬁR{HlOSﬁ&l}{f{ R ]+Bi.[-6(5£m§{§n+5£nft£§m+
S pmBeR, +-!nR£R,m+~mn;%£§{) 96MR R +2“££ mntamd {n+5£n5£m+45§£§{§’m§n]+
Piil%e%mn 46“& R +10§3§{§ R, 5QMR{R vﬁnl’i{Rm—fS{mR&Rﬂ—
é&lélééfm_gmnﬁ &Ea{ ]
Lijgemn = (géfﬁl;g)[?’(éé{ +& g8 entComan )+105§£§,§ R, 15(6M§m§,ﬂ+

~ A A A A A A A A A

’S& R[R +bng!R +'J)M)_R8R +VJ)’F!.R£R +F R£R£)]+B [ 8& R{R +"£/nR,PR +
A A a A 5 PO _ -~ R PO

A A A

Mijemn = 2P;;13052p0mn*08mO0n*Opndom )+105RgRgR R, =15 (84 R R, 4

SpmieRnt “&nRﬂRm+6£mR£Rn+6{nR5Rﬂn+ SmnPgle!]

Nijgemn * B ;;I 300 mnt O m P entOanom *105RgRoR R, =15 (80 oR R ¢

A A A A

SgmRoR, +5g RoR 48 RAR +8, RoR 46 BRI, (4.A.10)

The tensors used in (4.8.7) take on the definitions



Uijgemn = Fijgemn * Mijgemn

xigkﬁmvn = Gigﬁﬁmwl * Nig&{mwn ' (4.4.11)
In Section 4.9, the required products are
gij(kR)hﬁihn(kR)—gég(kR)héihn(kR) =
( ighLtm Lj&&m,+ iigﬁim.+ jijﬁﬁm.+ kijgem
L yu 2 k3R3 k4R4 kSRS k6R6 |
where
i 8em = K Lo BRR ™ m
h‘.é&(’m = 0
[(25&£Rm+ R3+"§ R{) —6RgR R, I
Jijgem =0
and
s Hogem | Lijeem  Tijeem  Rijse

) ) 488 ij8Lm i488m i 488m i4884m

gég(lUR)hélhn(1UR) - L u2R2 3.3 T T aa Y7585 t e ]

u R uR u' R u R

where

~ A

Giigem = 16588
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A A A

Hijgem = 4oRA[“25 {R +5, R{*"S Ra) 6RgR R, }+x {R 1

Jijgem = 21 R IB(GE{R +8£mR,+6£mR£) 15RgRpR, |

A A A

In Section 4.10, one of the terms needed is

j{gﬁ(kR)f{hn(kR)+ij£(kR)f{hn(kR) =

liigem Mijgem "ijgem  ©ijklm  Pijtm
2.2 + 3.3 + 4_4 + 8. & + 6_6
kR KR k'R k°R® k°R

where

A A

l{gﬁkhn = —zsigoathnRoRﬁ
MiBlm =
niigem = 2500 B emP Re*P ot emF ot
i jgem = 0

Pijgem = 260 P okPom (4.A.14)

so that the geometrical part of (4.10.4), as written in (4.10.5), can be

expressed as

(KR 4] . &(kR)flhn(kR)] =

rd ngn Tightm | Sijgem tq&m - 4%:1}
L K°r> k'r* k°R® k°R®
where

199



U gem = Zijglm t lijgem
rijgbm = Nijgem * 1Migem = 0
Siiem = lijgem t igem
tigem = Jijgem * Ougem = O

uiigem = Kijgem t 1Pijgem

Also required in Section 4.10 is the product

Lijgem . M igem . Nijgem | 0ij8em

(4.A.15)

ij; .p(iuR)f, (iuR) = [ Z
it m ¢ u’R® u’r® u'r®

where

A A

Li,g’&fﬂn - ig{;joa{mRoR&

Migem = 1505 PomP ReemP g

Nigem = 1900 PomP Re B pPom=P g%m?
- —93

Oigem = ~21 P otfom

Pijgem = _igigoﬁoﬁﬁthn
so that the geometrical part of (4.10.6) is given hy

1j{;£(iuR)f6m(iuR)+g{d(iuR)h££m}iuR) =

r‘%;&{m Rijgem = Sijsem . Tijsem \ Uijlé{fm]
u R u3R3 u4R4 uSR5 u5R6

—

Oijgem = Cijgem * Lijgen
Rijgem = Hijgem * Mijgem
Sijeem = Lijgem * Nijgem
Tijgem = Jijgem * Ciigem

Uijgem = Kijgem * Pijgem
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CHAPTER 5

MOLECULE INDUCED CIRCULARLY POLARISED LUMINESCENCE

5.1 INTRODUCTION

Circularly polarised luminescence [60| is defined as the difference
in rates of spontaneous emission of left- and right-handed circularly
polarised light from a chiral molecular species in an isotropic medium.
A closely related phenomenon is molecule induced circularly polarised
luminescence which is the differential circular emission rate arising
from chirality induced in an achiral molecule through intermolecular
interaction with a chiral molecule.

Circularly polarised emission spectroscopy is increasingly used in
the determination of molecular stereochemistry and electronic structure
with circularly polarised luminescence observables reflecting the
chirality of molecular emitting states and providing configurational and
conformational structure information. This complements techniques used
to probe naturally optically active systems in the ground state such as
optical rotation, optical rotatorv dispersion, circular dichroism and
circular intensity differential scattering, each of which also has a
firm basis in theory, ranging from early semi-classical treatments given
bv Rosenfeld [61] and Condon (62}, to fully quantum field descriptions
bv Barron and Buckingham {63], by Power and Thirunamachandran [64] and
by Atkins and Barron [65]. Riehl and Richardson [66] have given the
general quantum electrodynamical theory of circularly polarised emission
and magnetic circularly polarised emission, the latter being the
emission analogue of magnetic circular dichroism [67].

In addition to natural optical activity, there is a related class

of phenomena in which an achiral molecule acquires optical activity
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through interaction with a chiral molecule. A well known example is
molecule induced circular dichroism (68], whose theoretical derivation
was given bv Craig et al [69] . This theory was presented using QED in
the Schrddinger picture where the time dependence is contained entirely
within the state function for the radiation-matter systenm.
Intermolecular interaction involved the exchange of a virtual photon,
expressed in terms of retarded potentials. An equivalent formulation
based on the Heisenberg picture, where the time dependence is contained
entirely within the operators, was later presented by Power and
Thirunamachandran [70]. In this viewpoint, the coupling of the
transition moment of the achiral species to the electromagnetic fields
produced by the chiral molecule was examined.

In this Chapter, the theory of molecule induced <circularly
polarised luminescence is developed using both the Schrodinger and
Heisenberg pictures of QED. Chirality in the achiral molecule A is
induced dvnamically by the coupling of virtual transitions in the chiral
molecule C to those of molecule A, with the result that a real photon of
circular polarisation is emitted spontaneously. The essential feature
which enables the phenomenon to be observed is that luminescence occurs
at a frequency characteristic of a transition in the achiral molecule,
the chiral species being transparent at that frequencv. QED provides a
suitable framework for the study of emission phenomena; the radiation
field is quantised and forms part of the dynamical system, in contrast
to semi-classical theory, which fails to correctly account for
spontaneous emission. In both the Schrddinger and Heisenberg pictures,
the multipolar form of QED is best suited for the study of molecule
induced circularly polarised luminescence. Molecules couple with the
electromagnetic field solelv through electric and magnetic multipole

moments mediated by the exchange of photons.
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The theory is first outlined within the Schrddinger picture and
used to determine the matrix element for molecule induced circularly
polarised emission. The theory is then presented using the Heisenberg
formalism and the matrix element calculated is shown to be identical to
that obtained using the Schrédinger approach. Either of the two matrix
elements can then be used to determine the differential emission rate.
The results are applicable whether A and C are held fixed withl?Spect to
the intermolecular join corresponding to the fully locked in case, or
are allowed to rotate as a single entity relative to the wavevector of
the emergent ray, or are permitted to be completely randomly oriented.
The dependence of the rate expression on intermolecular separation is
examined after each stage of averaging. The two methods are compared and
contrasted to gain insight into the nature of radiation-molecule

interactions in QED.

5.2 EVALUATION OF MATRIX ELEMENT IN THE SCHRODINGER PICTURE

The total Hamiltonian for the svstem of molecules interacting with
the electromagnetic field in multipolar framework is given by (1.2.30).
Since molecule induced circularly polarised emission is a one photon
process, only the terms linear in the electromagnetic field appearing in
the interaction Hamiltonian (1.2.33) can contribute. The last term of
(1.2.33), being quadratic in g(?) is ignored to this order of
approximation. The interaction Hamiltonian to dipole approximation may

then be written as

-1 -

(ﬁ“)-e ‘#(C).B‘L(ﬁc)—fn}(c‘).g(Rc). (5.2.1)
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Strictly the electric quadrupole interaction term, being of the same
order as —ﬁ.g, must also be included in (5.2.1)., However, the
contribution from this term to the differential rate is zero for
randomly oriented molecules, and is thus omitted.

The transitions in C are both electric and magnetic dipole allowed
whereas that in A is only electric dipole allowed. Let the emitted
photon of 1left- or right-circular polarisation be of mode (ﬁ,L/R)
corresponding to an electric dipole allowed transition of the achiral
molecule A. The energy levels are assumed to be non-degenerate and their
wavefunctions are chosen to be real. The extension to the degenerate
case is straightforward. Let the energy levels of the chiral molecule be
|En>. The transition rate corresponding to the transition ng,Eg) —
|E;,Eg> in the achiral molecule, with no overall change in the state of

the chiral molecule, is given by the Fermi golden rule (1.2.57). The

initial and final states for the process are specified as

[i>

A C -
!Em,EO;O(k,L/R)> (5.2.2)

|£> = |E,E;; 1(K,L/R)) (5.2.3)
corresponding to A in the mth excited state initially, in the ground
state with one circularly polarised photon finally, and with C remaining
unchanged in the ground state overall.

The calculation of the probability amplitude Mf.1 in the Schrddinger
picture is facilitated by the use of time-ordered graphs. The leading
contribution to Mfi for the transition |final) <« |initial) is of first

order corresponding to the graph in Fig.5.1., which shows spontaneous

emission by A, from which
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( V12 2
W DL/R) Lth , eiL/R)(k)uim(A) (5.2.4)
0 }

choosing A to be situated at the origin of the molecular coordinate
frame. To first order there is no effect arising from the chiral nature
of C, the transition rate based on (5.2.4) being identical for photons
of a definite helicity. Higher order contributions include the
interaction between A and C via the exchange of virtual photons. The
leading contribution taking account of such interaction is of third
order corresponding to one-photon exchange. This is described completely
by six graphs, one of which is shown in Fig.5.2.

The third order process involves virtual excitation to the states
IEn> of the chiral molecule and the exchange of a virtual photon hetween
C and A. The total contribution to the third order matrix element is
obtained by considering all possible time-ordered sequences and is
calculated wusing conventional time-dependent perturbation theory.
Diagrams in which the virtual photon propagates from A to C contribute

(5.2.5)

Cfhek ) V30 (he on 1(p K).R
I[ZEOV) AZ [ ] o (A)(hcn-hck)
r p,-}\ (‘u?n no ‘LoannO N
SIL/R) 3, (0 = =(0) = 97 " N
e e (Pleg (PV\E—heK'E__+hek|
on no Dn no
(L "m,  m, Moo
IS(L/RY 2y (M) 2,50 P4 44|
AT )Z{E e e/
n\no no
on_no on no
L5 IL/RY )6 M (3)gi) *)“(#? VIR (5.2.5)
b (Ke, PV \E__Thok'E__~hek| e
no J

> .
to the matrix element in which the photon of wavevector k is circularly
polarised and is associated with the real photon emission. The virtual

> . . . .
photon wavevector p and polarisation index * are both summed, along with
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Fig. 1. First order graph for luminescence.

2
(A,L/R)
(p,A)
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Fig. 2. Tvpical third order graph for luminescence.



all the allowed virtual states. Use has also been made of the fact that

for real wavefunctions, zng = ﬁgn and 3“0 = _Eﬂn. The polarisation sums
in expression (5.2.5) may be performed with the aid of (2.2.19) and
(2.2.20), and by use of the identity [6]

BB R - 23RN, (5.2.6)

The molecular terms within the square brackets of (5.2.5) correspond to

the electric dipole polarisability d{4Ud) and the mixed electric

dipole-magnetic dipole analogue Gjéﬁd), whose definitions were given by

(4.2.2) and (4.3.2). dig“d) is the same for a chiral molecule and its

enantiomer. G, (@) is of opposite sign for a chiral molecule and its
2

enantiomer since the magnetic dipole matrix element does not change sign

under inversion. 1in contrast to the electric dipole matrix element.

Expression (5.2.5) may now be rewritten as

Cfhek VY22 (L/R) - LI (hcp Ve -i{k-p).R
ltZEDVJ €4 (K Hg (A ) \2¢€ \J (hcp—hck)
8 ST 1(‘ - 1 ¢ -] = 0
l( A&'—D D&)[m- (U)LG/‘ (U)' + E~d££p£6¢j(J)J (5.2.7)

where the upper and lower signs refer to L and R respectivelv. The
contribution from the other three time-ordered graphs where the virtual

photon travels from C to A 1is

T
[ﬁck e ~(L/RY 2,,0m S fhep ]e‘l(k+p"R
eyv) % g (A )lzfn», (Rop+hok)
A
r ~on 1 ~ 1
L 646 D, pB)IN é(o)+—GJ fw)] + Eggétszég‘“)J' (5.2.8)

Adding expressions (5.2.7) and (5.2.8) and converting the B—sum to an

207



integral using (2.2.21) results in the following for the total third

order matrix element

q(3VL/RY | fhek )P (L/R) 3 -ik. ﬁr Lo, (0)FG. (o
Med = 1(2£DV] i (k)A Mare -;(U)nggi(U)]

2 n 2 2 > = 3
x|——(-45—p pg)leP e Bydo
“(k*-p (2m)

D}) 2 _.") d 3> 1
T ol ke 506y (J)]r———(elp'R—e ip-&) d "3J. (5.2.9)
/ (k*-p°) (2m)

The integrals appearing in (5.2.9) occur in the study of

intermolecular interactions [6]. The relevant integrals are

>
v 1 (.iD. R -10 R\ 2>
A S T
ety D D~ /(27[)
1 L8, 1-ikR )~ K’ 2p2 kR _ V%.(k,ﬁ) (5.2.10)
4ne R
and
_ik 1 (eip'R + e-lp'R\ d3§
2¢ ¢ a€ 4‘% 8*‘1 b tp_k p+k J (21!)3
A kR =Y
- _4_@_5 1-ikrle ¥® = U, (k. B) (5.2.11)
4me cR ‘4

with the dvadics a{é and Big defined by (4.3.7). Véj(k,ﬁ) arises from
the matrix element representing the resonance coupling between two
systems, one in the ground state and the other in excited state and is
known as the retarded electric dipole-electric dipole interaction
tensor; U{g(k’ﬁ) is the electric dipole-magnetic dipole analogue for
chiral svstems in which both electric and magnetic interaction terms

contributing to intermolecular coupling are included. This enables
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(5.2.9) to be written as

(3)(L/R) hek )''?=(L/R),», om -ik.R
- _.{hc - > m -ik.R
Mfi = 1{§§;VJ e; (k)u£ e
i . C s . -

Before proceeding to calculate the difference in emission rates it is
shown how the matrix element above may be evaluated in the Heisenberg
picture. This provides additional insight into chiral-achiral

interactions.

5.3 EVALUATION OF MATRIX ELEMENT IN THE HEISENBERG PICTURE

In this Section the matrix element for molecule induced circularly
polarised luminescence is obtained using the Heisenberg picture and the
result is shown to be identical to that obtained with the Schrodinger
method in the previous Section.

As has been shown thus far in this thesis, intermolecular
interactions in the Heisenberg framework are calculated directly from
the Maxwell fields derived in Chapter 2. In the present problem, the
emission rates are determined from the coupling of the electric dipole
moment of the achiral molecule to the source fields of the chiral
molecule.

The total Hamiltonian is now given by (2.2.7) leading to the
derivation of the fields as described in the second Chapter. Only the
electric displacement vector field in the vicinity of the chiral
molecule as given by (2.2.47) is needed in this calculation since the

electric dipole of A can only couple to the electric displacement



radiation field of the chiral molecule. For the application to molecule
induced emission in which the chiral molecule remains in its ground
electronic state overall, it is necessary for the fermion operators of
the quadratic field., representing the electronic state of the chiral
molecule, to be set to the lowest level E . Further, those terms in
{2.2.47) exhibiting a sinusoidal time-variation when at near resonance,
where thev are almost stationary, may be ignored. This enables the
second order displacement field to be written in terms of molecular

polarisabilities as in expression (5.3.1)

(2),~ . _ iV (hek )P iRR T 1 2
d{ (r,t) = ngzx(zvgg] \e d(O)l[eﬁddﬁ(w)+5b£G4£(w)](—V 6L4+VLVJ)
1 . . ik((r-R)-ct) Y
+ —C- [eé(}&#(w)](llxe'(«d‘ev{):ler_R + HoC'JL .
(5.3.1)

If it is assumed that the transition 0 ¢« m of A is electric dipole

allowed, the leading contribution to the coupling is
(R, ). (5.3.2)

The matrix element is then given by

1=

= <1(K,L/R);E,Ep ]~ Ha).d"

M(y/R)

i (ﬁA,t)]E;,Eg;O(ﬁ,L/R)> (5.3.3)

where use is made of the power series expansion of the field of molecule

2(0)

A, As d and 3(2) depend linearly on the photon creation and

-
annihilation operators, both contribute to the matrix element. d(l)
however, does not change the photon number and so does not contribute to

(5.3.3). Using the expression for the free field (2.2.15) and (5.3.1),
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L

W 1(L/R) _ . fhek ]”2 om

—(L/R) 2, ik.R,
Mei |Ze v) Mo (Ade, T (kle A (5.3.4)

and
W3V LR fhek VP om  iKE [ (L/R) 1, (L/R), 5
Mei = Lza v} Hp (Alemmicifeg™ a0l bg™ TG (o) ]x
1k(R -R ) 1k(R —R )
¢ 1=(L/R), .
(=V~ 5L4+ ivd)R R + E eg G& (L)(lkgljz {) RF ]
(5.3.5)
which on addition gives for the total matrix element
(L/R) hek } V2 KR, [S(L/R) ik R =(L/R)
= —'an I 1 -1 Is :
Mfi = —id (A)(26 v J e »l : (k)+ [fe'& Jﬁ(o)
ikR lkR
L (L/R), e 1= (),
+= b& &““)“"v Z,+V{V2’-)§ t e Gé (w)(ike, 97 Vel R }
3.6)

correct up to third order in the transition moments, with ﬁ = ﬁ -ﬁp. By
noting that the geometrical tensors Vi-(k,ﬁ) and Uéd(k,ﬁ) given earlier

in the expressions (5.2.10) and (5.2.11), can also be obtained from the

relations
N ; eikR
V, (k,R) = (-V785. 4V.V )= (5.3.7)
4 4me i 4 4'kR
0
and
ke . . ikR
. > - J_gﬁ g
Uié(k,R) = ImE o V@ R ) (5.3.8)



and with use of the relation (5.2.6), it is seen that the matrix element
(5.3.6) is now identical to that obtained by the addition of (5.2.4) and

(5.2.12) in the Schridinger picture.

5.4 EVALUATION OF DIFFERENTIAL EMISSION RATE

Either of the matrix elements calculated in the previous two
Sections can now be used to calculate the differential emission rate for
molecule induced circularly polarised luminescence. The difference in
emission rate between left- and right-circularly polarised light 1is

found using the Fermi rule

r(L/RY _ Z IM(I)(L/R) + ;?)(L/R)'u (5.4.1)

Taken by itself the third order term, like the first order term on its
own, does not give rise to a difference in the rates of luminescence.
The first order amplitude when combined with the third order
contribution however, results in an interference term which depends on
the handedness of C and leads to different emission rates for left- and
right~-circularly polarised radiation. The‘ leading contribution comes
from the first order-third order cross term

rL_rR_ 270 @“(1)(L)—(3)(L) Z(1)(L), (3M(L) (1) (RIZ(3)(R) (1)(R)M(3)(R)]

PR E R (M Mpy My My My M £i Fi
(5.4.2)

where the overbar indicates the conjugate complex quantity. With the aid
of the first and third order matrix elements (5.2.4) and (5.2.12) the

difference in emission rate occurring within an element of solid angle
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d® around the direction of propagation of the emergent ray is

o ;.rz '4 [(6 é—k k e (~)(Rev,m&1( + e )

mj
roe, kLo, (0)(ReV, 41~ 16 (@) (Rel 5)J(e1k'R - o ik.R (5.4.3)

where Re denotes the real part and where use has been made of the

identity
_ - ~
o LW/R) ()3 LR ) %[(5 kK k)T i, k. (5.4.4)
(53 4

The differential rate (5.4.3) applies when the orientations of A and C
are held fixed relative to § with ﬁ itself fixed relative to the

direction of propagation k;. On substituting (5.4.5) for the density of

states
ydo
P o= -h——gz— (5.4.5)
(2m) he

and performing a tumbling average, that 1is, averaging under the
assumption that all directions of ﬁ are equally probable, the molecule

induced differential spontaneous emiss. ion rate is

4

L,_.rBy _ (—iua ] ,mFTO{[‘ sinkR R..(coskR smkRJ-l

(2} (ReV,_p)
4 R “igl 1 2R3 J m4 €Vms

\nsoh
coskR sinkR} . . .
( - ][dﬁm(u)(ReVm&)—lem(w)(Rebm&)JL

Ty 2.2 m J' (5-"1'6)
b kR k'R™ ¢

-1
ice t;;nR
The rate is a modulation of a power law by sinusoidal terms depending on

-1 .
the wavelength k and products of various molecular structure factors

expressed as transition dipole moments. When kR is small, the limiting



behaviour of the rate is found to be

.3
—iw ,,0m mo - . S .
PEERTRCRY ) Pmgl2Gp (@) + icey Rpka,
1 0 IC

()] (5.4.7)
whose leading term has an R_3 dependence on intermolecular separation.
The result is not independent of k as is usually the case in the near
zone limit kR « 1. If experiments are carried out in the fluid phase a
further average of (5.4.6) is needed. This 1involves performing a
rotational average over relative orientations A-C in a given pair.
Further, for a system in thermal equilibrium the average should be

weighted by a Boltzmann factor as in

«Thy—crBys = JJ<FL>—<FR>exp(-VAC(ﬁ,Q,Q')/kT)deQ' (5.4.8)

JJexp(—vAc(ﬁ,Q,Q')/kT)deQ’

where VAP(ﬁ,Q,Q') is the intermolecular potential, a function of the
-

separation R and of sets of Eulerian angles for the two molecules.

The random unweighted average is computed, corresponding to the

leading term in the expansion of (5.4.8) being independent of VAC in the

limit kT » V, . Using the standard method [41] results in

3 ' \
1 16 =0m 3
Ty = — 0 3!#0'12Gxx(w){sin2kR{i— -2 )+ ScosZkRl,
36n“£;hc R N kR kR k"R” J
(5.4.9)
The asvmptotic behaviour of (5.4.9) for small kR gives
8ik" som) 2
L 2776, (0) (5.4.10)

135n2£§th
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as the leading contribution, exhibiting R_l separation dependence.

The differential emission rate for molecule induced circularly
polarised luminescence for a chiral-achiral pair has been derived using
the Schrddinger and Heisenberg pictures within the framework of QED.
Discriminatorv effects occur since chirality is induced in the achiral
molecule via intermolecular coupling with the chiral molecule. Despite
differences in the calculational procedure, the results obtained from
the two methods have been shown to be identical. The Schrodinger
treatment employs perturbation theory in the calculation of the matrix
element, interpreted in terms of the interference of transition
amplitudes. The picture is one where intermolecular coupling is viewed
as the exchange of a virtual photon, expressed in terms of the retarded
potentials. In the Heisenberg representation, the calculation is more
direct; the matrix element representing the coupling of the dipole
moment of the achiral molecule to the causal source fields of the chiral
species is determined.

The differential transition rate in the region where the
intermolecular separation is much smaller than the reduced wavelength of
the radiation depends on the inverse separation due to the inclusion of
the magnetic dipole coupling term in addition to the electric dipole

interaction.
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