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"Mathematics is the tool specially suited for dealing with abstract 
concepts of any kind and there is no limit to its power in this field. 
For this reason a book on the new physics, if not purely descriptive of 
experimental work, must be essentially mathematical. All the same the 
mathematics is only a tool and one should learn to hold the physical 
ideas in one’s mind without reference to the mathematical form."

P.A.M. Dirac,
The Principles of Quantum Mechanics^ 

Oxford University Press, Oxford, 1958.



ABSTRACT

The physical theory describing the interaction of electromagnetic 

radiation with atoms and molecules, molecular quantum electrodynamics, 

is applied to problems in intermolecular interactions and optical 

activity.

After an outline of the basic Coulomb gauge theory in Chapter 1, 

the quantum electrodynamical Maxwell field operators in the vicinity of 

a molecule are derived in Chapter 2 in both the multipolar and 

minimal-coupling frameworks in the Heisenberg picture. The 

electromagnetic field operators are expanded in powers of the transition 

moments, correct up to second order in the sources with the interaction 

Hamiltonian including electric dipole and quadrupole, magnetic dipole 

and diamagnetic coupling terms.

The Maxwell field operators in the multipolar form are then used in 

Chapter 3 to calculate the Thompson energy density and the Poynting 

vector associated with the electromagnetic field. The equivalence of the 

expectation value of both these operators obtained using the 

minimal-coupling Maxwell fields in the electric dipole approximation is 

demonstrated.

The energy of interaction between two neutral molecules in ground 

or excited electronic states is determined in Chapter 4 using molecular 

response theory. The response of a polarisable test body to the electric 

displacement and magnetic fields of a second source molecule is 

calculated. Discriminatory interaction energies dependent upon the 

handedness of the pair of molecules are found. The energy shift is 

expressed in terms of pure and mixed multipole polarisabilities and is 

valid for all separation distances beyond overlap of electronic 

wavefunctions for molecules with fixed relative and random orientations.



The near- and far-zone behaviour is also examined.

In the final Chapter a theory for the chiroptical phenomenon 

molecule induced circularly polarised luminescence is presented. The 

difference in the rate of emission of a left-/right-circularly polarised 

photon from an achiral molecule through intermolecular interaction with 

a chiral species is calculated.
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CHAPTER 1

COULOMB GAUGE QUANTUM ELECTRODYNAMICS
1.1 INTRODUCTION

Quantum electrodynamics (OED) is the physical theory that describes 

the interaction of matter with electromagnetic fields and the

interaction between atoms and molecules.

The origins of OED lie in the fundamental paper by Dirac [1] in

which the radiation field is treated quantum mechanically. This process,

known as second quantisation, gives rise to the quantised particle of 

radiation called the photon. The need for a quantum field theory arose 

from the singular failure of semi-classical theory to account for

spontaneous emission. The quantum theory of radiation not only enabled 

the Einstein A- and B-coefficients to be derived in a straightforward 

manner, but further accounted for previously inexplicable phenomena such 

as the anomalous magnetic moment of the electron, and the Lamb shift, 

where the agreement between theory and experiment has been excellent. Of 

the theories currently available, QED, either formulated using 

traditional field theory or the alternative space-time approach due to 

Feynman [2,3], provides the most accurate description of photon-electron 

interactions known so far.

The characteristic feature of OED is that the electromagnetic 

field, as well as the system of particles, is quantised, so that light 

and matter together constitute a closed dynamical system that is subject 

to quantum mechanical rules. Instead of considering an atom or molecule 

and the radiation field with which it interacts as two distinct 

entities, a single system is examined whose total energy is given by the 

energy of the atom alone, the electromagnetic energy of the radiation



field alone and a small term representing the coupling energy of the 

particles and the field.

In chemical physics, where the problem is the coupling of radiation 

with particles of low energy, a non-covariant formulation of QED is 

sufficient. A theory of the emission and absorption of radiation and of 

the reaction of the radiation field on the system has been built up on 

the basis of a dynamics which is not relativistic [1,4]. This is on 

account of the time being treated throughout as a c-number instead of 

symmetrically with the space coordinates. Molecular QED is the 

non-relativistic limit of QED, and is applied to systems involving bound 

electrons of low binding energies moving with velocities insignificant 

to that of light, making it ideally suited to the study of problems of 

chemical interest. To facilitate the use of molecular QED in the 

non-covariant version, the Coulomb gauge condition is employed 

throughout, allowing separation of the dynamic and static aspects of the 

sources of the field.

QED may be formulated in either the Schrodinger or Heisenberg 

representations. Almost all the applications of molecular QED to date 

have been investigated in the more familiar Schrodinger picture. In this 

thesis, the alternative Heisenberg viewpoint is employed in dealing with 

radiation-molecule interactions.

A wide range of applications of molecular QED to problems in 

theoretical chemistry have not only provided new results but also 

important insight into fundamental physical processes. These include, 

amongst others, light scattering, intermolecular forces, and with the 

recent advent of laser sources as probes of atomic and molecular 

structure, non-linear optical phenomena and quantum optics. These and 

various other applications, as well as the theoretical foundations of 

the subject have been discussed in texts and review articles such as



those by Power [5], Craig and Thirunamachandran [6,7], Healy [8], 

Andrews et al. [9], Woolley [10], Cohen-Tannoudji et al, [11] and the 

compilation by Schwinger [12].

After a brief outline of the basic QED theory in the subsequent 

Section, a detailed exposition in the Heisenberg framework is given in 

Chapter 2.

1.2 BASIC THEORY

Consider a collection of slowly moving charged particles ot of 

charge e^, mass m^ with position q^ and velocity q^, interacting with 

the radiation field of vector potential a(r) subject to the Coulomb 

gauge condition

'7, a( r ) = 0. (1.2.1)

Classically, the total system is described by the Lagrangian [13]

-j. £ ^
L = 1/22 "V + ja(r)“-c“(̂ >̂ a(r) )“jd“r + Jj (r).a(r)dr (1.2.2)

in which V is the electrostatic potential energy and j'*’(f) is the 

transverse part of the total current density

j(r) = • (1.2.3)
a

The Lagrangian is expressed as the sum of three terms, one each for the 

particles, for the field and for the interaction between them. The
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Lagrangian is a function of the coordinates and velocities of the 

particle and a functional of the corresponding field "coordinates and 

velocities". In the absence of interaction, only the particles 

Lagrangian and the free field Lagrangian remain, with the dynamics of 

one system not affecting that of the other. The two systems move 

independently and have equations of motion that are not coupled to one 

another. When the particles and field interact, the coupling appears as 

an interaction term in the Lagrangian. The specific choice of Lagrangian 

is such that it leads to the correct equations of motion. By invoking 

Hamilton's principle through the calculus of variations, the solutions 

of which are Lagrange's equations of motion [14], it can be shown, that 

in this case the equations of motion lead to the Lorentz force for 

particles (1.2.4) and to Maxwell’s equations, with sources, for the 

radiation field (1.2.5).

v i a  " - (1.2.4)

e( r ) P(r)

u.b(r) = 0

(1.2.5)

at

The electric and magnetic field vectors e(r) and b(r) are related to the 

vector potential through the relations

11



e'*"(r) = —à(r) (1.2.6)

^(r) = V*â(r). (1.2.7)

The transverse component of e(r) is a consequence of the gauge condition 

(1.2.1). The charge density is

p(r ) = ^e^0(i;-q^). (1.2.8)
a

The equations of motion may be written in an alternative manner by

starting from an arbitrary gauge with the introduction of the

electromagnetic potentials [15,16], which also aid the subsequent 

quantisation of the electromagnetic field. From the second equation of

(1.2.5) it is seen that the definition of the vector potential (1.2.7) 

still holds. Substituting this into the third equation of (1.2.5) and 

noting that a vector whose curl is zero can be defined as the gradient 

of a scalar function,

e(r) + a(r) = -V#(r) , (1.2.9)

where 0(r) is the scalar potential. The electromagnetic potentials as 

defined by (1.2.6) and (1.2.7) are not unique, being determined up to an 

additive gauge function X, expressed in the gauge transformation

a(r) ^ a(r) + ?X i

$(rl =» <t>(r) - i

a substitution which leaves the fields e(f) and b(r) invariant. Since

12



the treatment of atoms and molecules requires an explicit Coulomb 

potential term in the Hamiltonian, the choice of X given by

leads to the Coulomb gauge defined earlier. The equations of motion in 

terms of the potentials are obtained from the remaining Maxwell 

equations after decomposition of the electric field into longitudinal 

and transverse parts [17], and are

a(r) = ---- ĵ'*’(r) (1.2.12)

V“0(?) = -p(?)/Eg. (1.2.13)

The choice of Coulomb gauge thus separates the Coulombic fields from the 

transverse fields;

e‘*'(r) = -à(r) ; é”(r) = -'̂ 0(r). (1.2.14)

The electrostatic field due to the charged particles is given by e"(r) 

and described by the scalar potential while the radiation field e^(r) is 

described by the transverse vector potential.

The Lagrangian function expressed in terms of the electromagnetic 

potentials which leads to the equations of motion (1.2.12) and (1.2.13) 

is

L = 1/2^ +^|]V(r) - -Jp(?)<(.(?)d^?
cc

(1.2.15)

13



and is known as the Coulomb gauge Lagrangian. The scalar potential 0(r) 

may be eliminated from (1.2.15) in favour of the electrostatic potential 

energy V by employing the relationship of the latter to the longitudinal 

electric field. This results in the Lagrangian (1.2.2), which is known 

as the minimal-coupling Lagrangian.

It is possible in an alternative formulation to describe the 

equations of motion using the Hamiltonian function [14], defined in 

terms of the Lagrangian by

H = ^ Pg.q^ + Jrt(r).a(r)d^r - L. (1.2.16)
Of

The dynamical variables are then the generalised coordinates and the 

canonically conjugate momenta, which for particles and field are 

respectively given by

P« = ; rt(r) = ^  , (1.2.17)

where the functional % is the Lagrangian density. For conservative 

systems the Hamiltonian represents the total energy. The Hamiltonian is 

written in terms of the canonically conjugate variables, which are the 

coordinates and the conjugate momenta for field and particles. By 

grouping the charges to form electrically neutral aggregates, atoms and 

molecules labelled C» the minimal-coupling Lagrangian (1.2.2) when 

substituted in (1.2.16) results in the minimal-coupling Hamiltonian 

^MiN* quantum mechanical version [18] of the Hamiltonian operator is

obtained by the replacement of the classical variables with quantum 

operators subject to the canonical commutation relations

14



(1.2.18)

= ih5^:(r-r'), (1.2.19)

where 5"̂ -(f̂ r') is the transverse delta-dyadic [5]. Thus the 

minimal-coupling Hamiltonian [6]

'«IN = I "MOl'CI + «RAD + I ^I N T E R ’ (1.2.20)

with

+ V(C) (1 .2 .2 1 )

,  ̂ 1 
RAD 2 (1.2.22)

-  2 3d(C).3(3«ic)i
a a

(1.2.23)

and

ViNTER - 1 V(Ç.C').
C<C'

(1.2.24)

The quantised radiation field Hamiltonian [19], H^^Q, corresponds to a 

set of independent quantised harmonic oscillators confined to a box of 

volume V on which periodic boundary conditions are imposed. The photon 

is the resulting quantised particle. The linear term in the interaction 

Hamiltonian depends on the product of the particle momentum with the

15



vector potential while the second order term, quadratic in the electric 

charge depends on the square of the vector potential. The potential term 

appears explicitly in the Hamiltonian and is separated into intra- and 

inter-molecular contributions.

The application of molecular OED to problems in chemical physics is 

facilitated by the use of the multipolar Hamiltonian [20]. In this 

framework radiation-molecule interactions are described solely by the 

coupling of molecular multipoles to the electric displacement and 

magnetic fields. The multipolar Lagrangian, used to determine the 

multipolar Hamiltonian, is obtained from the minimal-coupling Lagrangian 

by the addition of a total time derivative of a function of the 

coordinates [21]. The transformation uses the property that the 

equations of motion derived from a Lagrangian are unaltered by just such 

an addition. Lagrangians so related are said to be equivalent, but give 

rise to Hamiltonians differing in form. Thus

^«ULT = L„in - (1.2.25)

where p(r) is the electric polarisation field and is a function of the 

particle coordinates. The multipolar Lagrangian is then written as

^ULT = 2 - VC)} +
C ' a

-Jp'*’( r ).à(r)d^r + J^9xW(r)j.a(r)d^r - 2  ̂ (1.2.26)
C<C'

where p(r), and the magnetisation field M(r), are defined by

p(r) = y p(C;r); M(r) = ^ M(C;r) (1.2.27)
C C

16



with

p(Ç;r) = J e^(q^(C)-S-)| 6(r-t--X(q^(Ç)-R.))dX , (1.2.28)
oc

and

M(Ç;?) = 2 >^^(r-3ç-X(q„(Ç)-Sç))dX . (1.2.29)

These fields allow the total charge density associated with each 

ensemble to be partitioned into true and polarisation charge densities, 

and the total current density into true, polarisation and magnetisation 

current densities [22,23]. This division of the sources necessitates the 

introduction of a reference vector which may conveniently be taken

as the centre of mass, an inversion centre or a local chromophore 

centre.

The multipolar Hamiltonian [24], evaluated in the usual manner

gives

"MULT = 1 + «RAD + 1 + "sELF '1'^'^0>c c
with unchanged from (1.2.21)

H - 1 “rad 2 + G„c"b"(?))>d"r (1.2.31)
0
(r)  ̂, 2-2 -

O "  ' '■ J

H s e l f  = (1.2.32)

17



and the interaction terms now given by

j p (  r ). d'*’( r )d“r - J m (  f). b( r  )d^r

+ ^|o^--(r,r')b^(r )b .(r')d^rd^r'. (1.2.33)

It should be noted that in the multipolar framework it is the transverse 

electric displacement vector field d'*’(r) that appears explicitly, rather 

than the transverse electric field e^(r) as found in The

displacement vector is defined as

d(r) = Egéfr) + p(r). (1.2.34)

The quantum mechanical mode expansions for the electromagnetic fields 

d (r) and b(r) are

k, k
(1.2.35)

k,X
(1.2.36)

with é^^^(k) the electric polarisation of wavevector k, index of 

polarisation X and with a/^^(k) and a^^^^(k) respectively annihilation 

and creation operators of a photon of mode (k,X). b^^^(k) is defined

through

18



The creation and annihilation operators are subject to the commutation 

relation

= X' ' (1.2.38)

The first term of (1.2.33) denotes the interaction of the electric 

multipoles with the transverse electric displacement field. The second 

term represents the interaction of the magnetic multipoles with the 

magnetic field. The modified magnetisation field is defined as

m(r) = 2 m(C;r) (1.2.39)

w i th

f \
m(C;r) = 2 “ P«(C)*n^(r;r)j. (1.2.40)

In (1.2.40) the vector field n(C;r) for a molecule C is given by

n(r) = ) n(C;r) (1.2.41)

n^(C,r) = > e^(a (C)-R.) X0{ r-R-->-( q^( O ) )dX . (1.2.42)
OC t _ O C J C  ^ 0 s

oc

The final term of (1.2.33) is the diamagnetisation interaction and is 

quadratic in the electric charge and in the magnetic field. It is

19



defined as

Oŷ .(r,r') = 2 ; r» r') (1.2.43)
C,C'

<)ylC,C';r,?'l = >• (1.2.44)
(X

The term is independent of the electromagnetic field and does not

play an important role in radiative processes and for this reason is 

usually neglected. It must however be incorporated into self energy 

calculations as in the treatment of the Lamb shift.

The particular choice of the total time derivative in (1.2.25) 

leads to the elimination of the intermolecular Coulomb interactions in 

the resulting multipolar Hamiltonian describing neutral systems, a 

characteristic feature of this approach. Molecules couple entirely to 

the electric displacement and magnetic fields and all intermolecular 

interactions are mediated by the exchange of transverse photons. Thus 

retardation is a natural occurrence in the multipolar formalism with 

signals propagating at the speed of light.

It has been demonstrated how the multipolar Hamiltonian may be 

obtained from the minimal coupling Lagrangian by the addition of a total 

time derivative followed by the construction of the Hamiltonian 

from L„.,,̂ . An alternative method of obtaining Ĥ ,,, ̂  is to start withM U L T  MU L T

the minimal coupling Hamiltonian Ĥ ^̂ , found from L, and then to applyMIN MIN
a canonical transformation [20,25-29] on Ĥ ,̂ , to findMIN MULL
Hamiltonians related by canonical transformations are termed equivalent. 

In the quantum theory canonical transformations form part of the general 

class of unitary transformations which preserve the canonical 

commutation relations and the operator equations of motion. They are the

20



quantum analogues of contact transformations in classical theory

[14,18]. The transformation which results in when applied toMULl M IN

is

H «ult = - (1 -2 -4 5 )

with the particular choice of generator

S = l/hjp^(r).a(r)d"r . (1,2.46)

It is clear that q and à(r) remain unaltered by the transformation with 

only the corresponding momenta changing. The resulting multipolar 

Hamiltonian is that given by (1.2.30). It should be noted that although 

the partitioning of the minimal- and multipolar-coupling Hamiltonians is 

different in both cases, identical matrix elements are obtained for 

processes where conservation of energy hold. This is a consequence of 

the two forms of Hamiltonian being equivalent, thus giving equal matrix 

elements "on the energy shell".

The interaction terra of the Hamiltonian (1.2.33) is conveniently 

expanded in terms of multipole moments to simplify its subsequent use in 

the applications to be considered. The leading contributions to the 

multipolar series of the polarisation and magnetisation fields, and the 

ones emnloyed in this thesis are

p.(C;D = (u.(Ç) - Q;;(C)V- + . ..)5(r-a_) (1.2.47)

râ (C;r) = (m^(C) + ...)0(r-R^) (1.2.48)

and the first term of the diamagnetisation interaction may be written

21



e r 'i
«D1A<^> = z 8y'9«'0-Rg)xb(R^)j . (1.2.49)

(Y

In (1.2.47) and in the rest of this thesis, the Einstein summation 

convention is used. The electric dipole, electric quadrupole and 

magnetic dipole moments of molecule C are respectively given by

= 2 (1.2.50)

8 ^ / 0  = i I (1.2.51)

\

Using the definitions above in (1.2.33) and performing the volume 

integral, the multipolar interaction Hamiltonian becomes

= - £'’m (C).3-"(Sç ) - e'’Q^^(C)V <j;J;(Sç) - mlC).b(g^l

+ y 5 ^  |(q^(C)-fiç)xb(Rç)| (1.2.53)
- -’"a a

including all terms of a similar origîfi. Assuming that the coupling 

between radiation and matter is small enough to be considered as a 

perturbation on the system, both the minimal-coupling and the multipolar 

Hamiltonians may be suitably divided as

H = H q +H,^t <1-2-54)

22



with

H,NT = 2 + V,NTER' '1-2-56)c
remembering that is absent in the multipolar case. The base

states are then given by the eigenstates of which are the products of 

the eigenstates of the unperturbed molecular and radiation field 

Hamiltonians, whose solutions are taken to be known. For processes 

dependent upon time, the perturbation causes transitions between the 

unperturbed states. The transition rate is given by the Fermi golden 

rule

r = (2%/h)|M_.|-p (1.2.57)

with p the density of final states, where is the matrix element

linking the initial state |i> and the final state jf>, and is given by

M fi =

II I

^  ^  Z L  (E,„-EJ(E,,-Ep(E,-E^)
III II I

(1.2.58)

23



1.3 APPLICATIONS

In the preceding Section, the construction of the minimal-coupling 

and more commonly used multipolar Hamiltonians of molecular OED 

originating from the classical charged particle-electromagnetic field 

Lagrangian function, was described. Both forms of Hamiltonian are 

applied to the resolution of problems occurring in the areas of 

intermolecular forces and optical activity.

In the following Chapter the Heisenberg representation of QED is 

employed in the determination of the Maxwell fields in the vicinity of a 

molecule in both the multipolar and minimal-coupling frameworks. In this 

treatment both the radiation and electron wavefields are second 

quantised with the fermion and boson operators explicitly dependent upon 

the time. The electromagnetic radiation field operators are evaluated in 

series of powers of the transition moments and the derivation given is 

correct up to second order in the sources with the interaction 

Hamiltonian including electric quadrupole and magnetic dipole couplings, 

in addition to the electric dipole interaction term.

The electric displacement and magnetic field operators of the 

multipolar formalism are then applied in Chapter 3 to the calculation of 

the Thompson energy density and the Poynting vector associated with the 

electromagnetic field. The equivalence of the matrix element obtained 

for both these processes in the electric dipole approximation of the 

minimal-coupling approach is demonstrated. The rate of flow of 

electromagnetic energy is then compared with the spontaneous power.

In the fourth Chapter, the Maxwell fields are applied to the study 

of the intermolecular interaction of two polarisable neutral molecules 

using a response formalism. The response of a polarisable test body to 

the field of the source leads to the energy of interaction between two 

species in the ground electronic state, the dispersion potential, and

24



the interaction energy of molecules in electronically excited levels. 

Results valid for all separation distances beyond electronic overlap for 

molecules with fixed relative orientations and possessing a variety of 

multipole polarisability characteristics, are obtained. The limiting 

near- and far-zone behaviour of molecules in the fluid phase is also 

examined. This work is compared and contrasted with previous studies 

carried out in the Schrodinger picture.

In the final Chapter, a theory of molecule induced circularly 

polarised luminescence is presented. The polarisation characteristics of 

luminescence are altered by the presence of a chiral species. This is 

interpreted in terras of the interaction between achiral and chiral 

molecules. The differential emission rate is evaluated using the 

Schrodinger and Heisenberg uictures.

25



CHAPTER 2

ELECTROMAGNETIC FIELDS IN THE NEIGHBOURHOOD OF A MOLECULE
2.1 INTRODUCTION

As in quantum mechanics [18], QED may be formulated in, and 

calculations carried out in, either the Schrodinger or Heisenberg points 

of view. The time development in the former is governed by Schrodinger’s 

wave equation and its solutions are time-dependent wavefunctions. In the 

Heisenberg picture the states correspond to fixed vectors and the 

dynamical variables to moving linear operators. The variation with time 

of any dynamical variable is governed by the Heisenberg equation of 

motion for the operator. The two representations are related by a 

time-dependent unitary transformation and identical results are obtained 

with the use of each formalism.

In Chapter 1 the quantum mechanical minimal-coupling Hamiltonian 

was obtained from its classical origins through the use of the 

Lagrangian function and the principle of minimal-electromagnetic 

interaction, and its relationship to the multipolar Hamiltonian was 

discussed. The minimal-coupling form of the theory was converted to its 

multipolar counterpart by the addition of a total time derivative to the 

Lagrangian, or by the application of a quantum canonical transformation 

to the Hamiltonian. Similarities and differences between the two 

approaches were examined by treating the charges within the framework of 

first quantisation.

QED with non-relativistic sources in Heisenberg form with both 

radiation and matter placed on an equal footing was elucidated in a 

series of papers by Power and Thirunamachandran [30-34] with both the 

electron field and the radiation field being second quantised. A

26



consequence of second quantisation was the resulting change in the 

equations of motion for the total system. The electron wave-field now 

had Schrodinger’s equations in the presence of the electromagnetic 

field. This was in direct contrast to the conventional particle 

description of matter, where the equation of motion for the charges was 

given by the Lorentz force law. The electromagnetic fields themselves 

obeyed Maxwell’s equations in both cases. The multipolar form of the 

theory, advantageous for situations involving bound systems as sources 

of the electromagnetic field, was then shown to follow from the 

underlying quantum electrodynamical theory based on the principle of 

minimal-electromagnetic coupling.

In the Heisenberg approach L„,„_ was obtained from L, by a changeMULi M IN

in the generalised coordinate of the electron field, amounting to the 

application of a point transformation. however, was converted

directly into through the application of a quantum canonical

transformation. After extension of the theory to include molecular 

assemblies, it was found that the elimination of the intermolecular 

electrostatic terms in the multipolar Hamiltonian in favour of couplings 

via the exchange of transverse photons was again possible, a 

characteristic feature of the multipolar formalism as noted previously. 

Maxwell fields in the vicinity of the sources were then derived within 

the electric dipole approximation. Applications using the Heisenberg 

picture included the study of intermolecular interactions and energy 

transport phenomena.

In this Chapter, the electromagnetic fields in the proximity of a 

molecule are obtained using both the minimal-coupling and multipolar 

formalisms in the Heisenberg framework. In QED the use of the Heisenberg 

formalism provides additional insight into processes conventionally 

described by the more familiar Schrodinger picture.
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2.2 MAXWELL FIELDS FROM MULTIPOLAR HAMILTONIAN

The electromagnetic field in the proximity of a molecule is first 

determined using the multipolar formalism of non-relativistic QED in 

Heisenberg form. The multipolar Hamiltonian describing the 

radiation-molecule and molecule-molecule interactions is written in 

second quantised form. The theory is extended by including the 

interaction term electric dipole, magnetic dipole, electric quadrupole 

and diamagnetic couplings. The Maxwell fields of atoms and molecules are 

found in the Heisenberg picture, in which the operators contain all the 

time dependence. The electric displacement and magnetic field operators 

are conveniently expanded in power series involving the transition 

moments. A complete derivation of the Maxwell fields to second order in 

the sources correct to diamagnetic coupling and including all terms of 

comparable order, is presented. This provides an extension of the theory 

by going beyond the electric dipole approximation in the evaluation of 

the quadratic fields [31] and the earlier work by Thirunamachandran [35] 

where the higher order multipole moments were used to obtain the first 

order fields only. The importance of the inclusion of higher multipole 

moments is seen when applications involving chiral molecular species are 

examined.

The Heisenberg field operators are found to be complicated 

functions of the creation and annihilation operators for both electrons 

and photons. Consequently the Maxwell field operators can either act 

solely in the fermion space, or solely in the boson space or in unison 

in the composite photon-electron space. The fields derived exhibit the 

expected causal behaviour for distances r > ct, r being the distance 

from the source of the field point.

The natural starting point for the evaluation of the Maxwell fields 

in the vicinity of a molecule is the multipolar Hamiltonian [31,35]
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MULT *lq)|- + V(qj|*(qld^q + |o2 J C i i ! . cV,;, d^? +

f<f»(q) r ' ) - e ^ Q - r ' ) - m , b (  r') + |-(qxb(r'))“ #(q)d^qJ 0 O ^ 2 Olu
{2 .2 ,1 )

correct up to the first diamagnetic coupling term, with self energies 

being ignored, and with the point molecular multipoles located at 

position r' . In the second quantised form the electron wavefield is 

expressed as

= y0(q,t) = )b (t)0 (q) (2.2.2 )

where #^(q) is the orthonormal electron field mode and b^(t) is the 

time-dependent fermion annihilation operator for the state ] n>, of 

energy Ê . The time-dependent mode expansions of the electromagnetic 

fields are

d^(r.t) = 1
k,X

b(r,t) .V r hk 1
- 1/, l2E,cvJ1
k,X

(2.2.3)

(2.2.4)

where a/^^(k,t) and a ‘^^^(k,t) are now time-dependent annihilation and 

creation operators for a photon of mode (k,X) with e^^^(k) and t/^^(k) 

as defined previously. The boson operators obey the standard equal-time 

quantum mechanical commutation relation
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’(?',t) (2.2.5)

while the fermion operators satisfy the anticommutation relation

(2.2.6)

With the aid of the expansions (2.2.2)-(2.2.4) the second quantised 

multipolar Hamiltonian becomes

MULT y b+b E + y a+abw L n n n L
 ̂ k,x

.V V fhck

■‘li
m,n

-‘IIk,X
m,n

bk 1
2c_cV

1/2

-I I P " ’
k,x
m,n
2

1/2

,t -»mn ik.r r ^ -ik.r b b m .(bae - ba e m n

b^b ( ( ik)eae^^* ̂  - (-ik)ea^em n

(^Eqcvj \2CoCV'k;,x'
k,X
m,n

•'v 4. •'r •'r> 4. -Ÿ'
(b.aeik-r - b̂ -a )(b^a'e^*^ - b^a'^'^*' ) (2.2.7)

where the time dependence of the electron and photon operators is 

implicit as is the k,X-dependence of the electric and magnetic 

polarisation vectors and the radiation field operators. The primed 

superscript on these vectors and operators signifies the photon mode 

(k',X'). In (2.2.7) the transition dipole moment matrix element is given 

by
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c (2.2.8)

with similar definitions for the matrix elements for the magnetic dipole 

and electric quadrupole transition moments.

The time development of the operators a and are found from the 

Heisenberg equations of motion

ihâ = (2.2.9)

and

ihb» = . (2.2.10)

Using the Hamiltonian (2.2.7), the relations (2.2.5) and (2.2.6) and 

introducing the operators «(t) and 0^(t) in the interaction 

representation through the substitutions a(t) = a(t)e and b^(t) = 

0^(t)e ^^n^, and after performing the time integral, it follows that

0 ' m,n

p+,t')# (t') m n

-  1 1 1  A'."" +w)t' mn
k' ,X 
m,n

,p^,t')(bf«'(t')eik'• " ' -r'+i"'t',

(2 .2 .1 1 )

and
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p It) = p (0) - n n

k,X " 0

- +-nî "*b •+(-ik«)0^?e •)« ( t')e

5',X'
k,X,m

(b.a(t- b/(t' ,x

tb^a'(t' leik'-r'-i'"mn+"'**'- b^a' + ( t ' ) e ' ^ ^ ' ’̂ ' ).

(2.2.12)

For the present the diamagnetic contribution is ignored but will be 

considered separately later. The calculation of the electric 

displacement field is given first with the derivation of the magnetic 

field following.

The transverse electric displacement vector d^ at time t in the 

Heisenberg picture is

[^°]
k,X

which is evaluated as a power series in the transition moments as

d^(r,t) = d|^^(r,t) + dj^^(r,t) + dj^^(r,t) + ... (2.2.14)

by expanding the operators «(t) and 0^(t). The first terra arises when 

o((t) and 0^(t) take on their initial values at t = 0, so that
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■ V I y ^
k,X

(2.2.15)

This is the free field operator independent of the source. It can create 

or destroy a single photon, operating entirely in the boson space. The 

term linear in the transition moments is

&2V
1/2

(2.2.16)

a^^^(t) is found by integrating (2.2.11) with respect to t' subject to

0^\t') = 0^\o) and 0 (t') = 0 (0), giving ra m n n

«(l)(t) hck 1/2
( ̂ ^^e.+-m^"byt(-iko )o'Jlee ■ )e  ̂

/ i(w +u)t 1
V u-̂ Tu) . ̂ ran

(2.2.17)

This is inserted into (2.2.16) to obtain

(r-?' )

k,X 
ni.n
' i(J t -iut e mn —e
i (u +w) ran

(2.2.18)

Two necessary and key steps repeatedly used in the evaluation of 

the Maxwell fields and subsequently in applications throughout the rest 

of this thesis are the polarisation and wavevector summations and the 

evaluation of angular integrals. For the former, by exploiting the 

transverse nature of electromagnetic radiation with the use of complex
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polarisation vectors and the definition (1.2.37), it can be shown that 

the following polarisation sums hold [6]

’(S) = y b f  (i^)bf’(S) = 6 -k k (2.2.19)
L ^  ̂ L  ̂ i
X X

and

yej^'(k)bj^'(k) = E^.^k^ . (2.2.20)
X

In the continuum approximation, the number of allowed values of k 

Î5 dense enough for the mode sum to be replaced by the integral

Ay ---- » f ^ (2.2.21)
f v-w (2it) k

with d k = k dkdO in spherical polar coordinates with dO an element of 

solid angle. The angular integrals which are given below and are used in 

the rest of this work are derived by noting that

1_
47T.Fe-ik'TdO = (2.2.22)kr

and by using the relation

^vJe"^^‘^dQ = ±ijk^e"^^*^d0. (2.2.23)

Thus

l;;f(5. .-kjk,)e*^‘̂'''dQ = Ar[F, dkr)-F-.(kr) I (2.2.24)471J -Lÿ 'L ^ Zl
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= il[G^/kr)+G..<kr)] (2.2.25)

= ï|[H..^(kr)-H..^(kr)J (2.2.26)

1 r +ik r i (2.2.27)

The Cartesian tensors used above are defined by

ikr
F; .(kr) = 4-(-Vg. .+9 ? = f..(kr)e^'"" (2.2.28)t 2 r

Gi^(kr) = = Si/kr)e'kr (2.2.29)

ikr
"t̂ )g'kr) = jV^^(kr) = )V^2 = h^^^(kr)e""‘ (2.2.30)

■̂ iÿX'kr) = g % / k r )  = - = ji^g'kr)e'kr. (2.2.31)

The geometric tensors defined above are also repeatedly used in 

subsequent applications and their explicit forms are given in an 

Appendix at the end of this Chapter.

Returning to (2.2.18) and performing the appropriate polarisation 

sum and angular integral using the relations given above,

fX> f 3
d“ ’ ( P , t )  = ^  y  p ^ o e  ( o f d J l ^ p ^ l F .  . ( k p ) - F . j ( k p ) ] -  

m, n 0

|j^m™[G^^(kp)+G^^(kp)l-  ^ J 2 [ % i ' k P ' - % i ' k p ) | j  ^  L

+ H.C. (2.2.32)
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where p = r—r' . Since the replacement of k by -k in the

Hermitian-conjugate term gives essentially the same contribution as the 

first term but with the limits (-‘̂’,0), the limits of the integral can be 

changed from (0,'̂ ’) to Illustrating explicitly for the

p—dependent part of (2.3.32)

<x<

T  1 T #87t“i  ̂ “ 1 k-km,n nm
(kPle-ikPe-iknmCt + ^ ,^p,^-ik(P+ct)

= '2.2.33,4-4
m,n

the contribution obtained being independent of the way the pole is 

displaced. The other source-dependent terms are similarly evaluated with 

the result that the first order electric displacement field, linear in 

the transition moments is

m, n
t > P/C

= 0 , t < p/c, (2.2.34)

and is strictly causal. Retardation is a natural occurrence of the 

formalism with signals propagating at the speed of light. It is seen 

that the first order field is the analogue of the classical field [15]. 

It operates entirely in the electron Fock space, changing only the 

molecular state.

In the procedure outlined above, the operator equation of motion is
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first integrated with respect to t' as in (2.2.17), substituted into the 

field mode expansion (2.2.16), followed by the conversion of the mode 

sum to an integral over dk, which finally results in (2.2.34). It should 

be noted however, that it is possible to evaluate d"*‘(r,t) by changing 

the order of integration. The first order field (2.2.34) can be obtained 

by inserting (2.2.11) directly into the mode expansion (2.2.16), 

carrying out the sum over modes and then finally performing the time 

integral. This also leads to the introduction of causality without the 

need for any further assumption [36].

The transverse displacement vector d"̂ (r,t) has higher order 

contributions and the second order term that depends quadratically on 

the transition moments is now evaluated. This takes the form

k,x

1/2

(2.2.35)

( 2 )To determine « (t) it is necessary to use the solution (2.2.12) in

addition to (2.2.11). Thus

hck

m,n

1/2 .mn— . 1 mnr-( /J"" ê.+ -m'""b.+ (-ik, )OT%e. ) e
• y • tmn— , -ik.r

(2.2.36)

n - - Ï ) ) hck' 1/2

k ,A
y o )

a'(0)
-i(w +w')t 1 e pn -1
—i ( (i) +(i)' )pn

(2.2.37)
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and taking the Hermitian conjugate of {2.2,37)

r  ,y
D

i((j +0)' ) pn

(2,2.38)

The last two expressions are substituted into (2,2,36) and after
{2 )integrating with respect to t', cx (t) is found to be

k '  , X '

^ 1P J ̂

f +(0)j3 (0) m p

/ i (o +ü>-o')t 1 i (u +u)t _ 'xe mp_________21 e mn_____-1
I (w + u')(w + w-w' ) (w + w')(w +{J) ̂ pn mp pn mn ^

a (0)x

i(u +u)t 

pn

' . +(0)x

i (  G ) + O J + G }  )  t  ^ i (  G ) + G ) ) t  ^e mp   e mn_____-1
(  G ) —  G ) )  (  G ) + G ) + G >  ) (  G ) —  G ) )  (  G ) + G )  )  ] ̂ pn rap pn mn Ĵ J

r ,pm%,

i  (  G ) + G ) + G 3  ) t

i k ' , r ' _ , t

/ 1 I TUe pn
[̂ —  (  G ) +  G ) )  (

ei'"mn+"'t -1 ]
)  (  G )  + G ) + G )  )  — ( G )  +  G ) ) (  G )  + G )  )  J-1

pm pn pm

- [/jÇ™e«+-mÇ'”bD+( ik' )0§”e^Je^^ ' ̂  «'(0)%

mn

i ( G )  + G J - G ) '  )  te on -1 i  (  G ) + G )  )  t  ^ -X - Ie ran -1
I — ( C J  — G ) )  (  G ) + G ) — G ) )  — ( G )  —  G ) ) (  G ) + G )  ) I ̂ pm pn pm mn •̂■‘1

(2,2,39)
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with o£ (t) given by the Hermitian conjugate of (2.2.39). Substituting
19 )for « (t) into (2.2.35)

= - - 1 ^ fhck Thck'!
U^nVj

1/2
«'(0) X

J Le.e;/J™̂ +-e;b-m Ĵ̂ -ie-e-koO^Î] e'p-i--mï^hp+ { ik ' )Op̂ ej> (0 )̂ (0 )

/ i(w +w—w )t ,e mp _______-1 _ ____ ___
1(0) + W ' ) ( W  + 0)-0)' ) (0) + u ' ) ( w  +0)) ̂ pn mp pn ran

_1 'I i i ' . P  iic .p -ie t

( P ?"e^+ 4f “b^+ ( i )q| ” 1 [ ie^e^k^o”;;̂  i Pp ( 0 ) ( 0 ) :

/ i ( 0) +0)—0)' ) t , e pn -1 i (0) +0)) tmn -1
(0) - w')(w + (0-0)' ) (0) - 0)' ) (0) +(0)pm pn pm mn ^

ik'.r' ik.p-iwt'

/  — i  (  ( J  + ( o + ( o  )  t
m p -1

— ( (0 — (0 ) ( (0 +(0+0) j — ( (0 — (0 ) ( (0 +0) ) pn mp pn mn
e —l] ik'.r' -ik.p+io)te e

n m , 1 —  , n m . . — nm , r mp , ̂ 1 mp, ,

/  -  i  (  (0 + ( o + ( o  ) t  ,
e  p n  - 1

I — ((0 + (0
- i ( (0 +(0 ) t 1e mn — 1

pm ) ( (0 +0)+(0 ) — ( (0 + (0 ) ( (0 +(0 ) pn pm mn
ik'.r\-lk.g+iwth +

(2.2.40)

Carrying out the polarisation sum an(i angular average on (2.2.40) using 

the relations given earlier and by extending the limits of integration 

as before, since replacing k by -k in the final two terms above gives 

essentially the same contribution as the first two, and also similarly 

for the Hermitian conjugate term, only the first two terms of (2.2.40) 

need be retained. Thus
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k' ,>/ 
m,n,p

1/2 .T»/ •,,4- r +
J dke-1  ̂V ( 0)Pp(0 )v.

k"[F.^.(kp)-F. .(kp) ip”" -^  [G^.(kp)+G. .(kp) lm”"-k^H.^.jg(kp|-H^.^(kp)lQ™

{ i ( w +w—(i) ) t e mp

Pp( 0 )P̂ ( 0 ) ( ik;^)Q^e^]x

-1
( W  + (t) ) ( (i) + GJ—Cl) ) ({jJ + (i) ) ( C l) +(i) ) ̂ pn mp pn ran ^

k" [ F I k p l - F . .(kp) ] p ™ - |  IG. . (kp, +G.^( kp) 1 m”"-k^ [H. .^(kp)-H kp) ]q“ j

f i (w +(0—w' )t 1 e pn -1
( G )  —  Cl) ) ( C l)  +  Cl) ~ C l)  )  { ( i )  —  ( i )  )  (  W  + C J  ) ̂ pra pn pm ran ^

+ H.C. (2.2.41)

The molecular state labels are now changed so that 0 (0)0 (0) is common.m p
From (2.2.41) are extracted the F;-(kp) dependent terras as follows

87i“hc Ÿ> 'K ) ̂  
m, n, p

dkk f  • -(kp)
i(k -k')ct ikp ik(p-ct) e 22 e -e

(k +k')(k -k'+k) pn mp
I' i(k -k')ct -ikp -ik(p+cth\ 

-f,,(kp)|^— ^   ̂ ’I

-  f ; ; (k p )
I' ik ct ikp ik(p-ct) e mn e —e

(k +k')(k +k)pn mn
+ f. .(kp)

(k +k')(k -k'+k) pn mp
z' ik ct -ikp -ik(p+ct) e mn e —e

f .  ,(kp)
.

(k +k')(k +k)pn mn
r i(k -k')ct ikp ik(p-ct) e mp e -e

-  f ; ; (k p )

(k -k')(k -k'+k)mn mp
r i(k -k')ct -ikp -ik(p+ct)^ e mp e -e

f. .(kp)
/ ik ct ikp ik(p-ct)^ e np e -e

(k -k')(k +k)mn np
+ f-.(kp)

(k -k')(k -k'+k)mn mp
I' ik ct -ikp -ik(p+ct)yi e np e -e ‘

(k -k')(k +k) JJmn np
+ H.C. (2.2.42)
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Integrating the above with respect to k for p < ct and with m = p gives

i é  12'oVJ
k,X

k^'f..(kpteik'P-ct) ĵ3 ptei^nrn'P
nm nm

k -k nm k -k nm

k^f.-lkple^klP ctl 1̂3 f (_k p)e ik^m'P-ctl
mn nm

k +k k +knm nm JJ\ + H.C. (2.2.43)

Returning to (2.2.41) and picking up the terms, changing the

molecular labels and performing the k-integral subject to the usual 

conditions results in

__i_ Y Y4Tfhc L L f hk 1 1/2

2 ,n 
k,X

k - k  k -knm nm

,mn , nm

k'g^jlkpleik'P-ctl^ k^^g..(-k^_^p)e~ ‘̂̂ nm'P~’̂*̂ ’
k +k nm k +k nm

1 + H.C. (2.2.44)

and repeating for the H^^^ terms,
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i V V fhck ' 

k,x

1/2

k*h;;g(kp)e^^^^ h;;4(k p)e^^nm^^
k -k nm k —k nm

k<h;.,(kpleik'P-ct) k< h ,k p,e-iknm'P-ct) ̂ mn mnîiü.
k +k nm k +k nm

+ H.C. (2.2.45)

The total electric displacement field to this order is obtained by 

adding the last three expressions. For the applications considered later 

on it is useful to write the second order field as quadratic in the 

transition moments. Extracting the individual terms for a source located 

at the origin so that r' = 0  and p = r,

nV nm nm 1
ct )

mn nm
ik (r-ct) T ,3

n nm n nm
+ H.C.

i}
(2.2.46)

(2 )

,,.mn nm p ■ mo
Ï-  ̂ ^  ̂ ik f̂. :(kr)e4 2|E -hw ■*■ E +hu( -c/'-n V nm nm 1

ik(r-ct)

mn nm mn nm
_X J J i .  k"_f;Xk ^ ! L _ 4  k" f. .(k.-2 E -hw nm nm n nm L E +ho) ran 4.4 mn n nm
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nm
mn.nm

nm

.ran nm
ik (r-ct). V ”1̂  , . 3  _  ,, _i.ik_(r-ct)

+ 2 C T W

+ H.C.
n nm }

(2.2.47)

r t>k 1
2 ĉV-,

1/2 r -.tb»a(0 )P (0)P (0)x « m m

, ran nm ran nm. m . m^ rao ra: 'k"g,,(kr)e'k'r-ct)
Z( 1E ~ b(i) E + hw ("nv nm nm V

mn nm mn nm

n nm n nm
+ H.C. (2.2.48)

L Z { ? 1  ̂n̂ V lira nm ;
ik(r-ct)

^ , 3
- ) E— -f^ n nm

^ u rik (r-ct)_y_*i^j^3 f (k r)e‘~™nik (r-ct)
Z, E +hw ran ran n nm i}

- I
4n

tick
2£„V

1/2
e.a(0 )p^(0)p (0 )x  ̂ m m

k^X

^ ^ ^ C t ^ i U . . . ( k r ) e - - - c t )
/|E -tiw E +ti(J( M  n̂ V nm nm /

^mn nm 

n nm

^ran̂ nm
- 1 Ë^“TÊ5 '̂ m„‘'iJê̂ <'‘_.-r)e‘“mn 

n nm
ik (r-ct)

mn

+ H.C. (2.2.49)
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mn.nm .mn̂ niiL m ; Qûp QgfM- I
V  °

ik(r-ct)le
Lnv nm nm ;

mn̂ niu a*ui

n nm n nm
L_ ^ f^ck '
4Ttc J  12£^VJ

i/2r +
b.a(0)j3 (0)P (0)xi m m

,̂ mn nm mn.nm.
ik(r-ct)

-n V nm nm
,mn nm mn.nm

n nm n nm
+ H.C. (2.2.50)

I t Æ  •Lnl nm nm J

k(r-ct )

.mn.nm .mn.nm .

n nm n nm J
+ H.C. (2.2.51)

This completes the evaluation of the second order electric displacement 

field in the neighbourhood of a molecule which is quadratic in the 

transition moments. This operator, in contrast to d^^^ and d^^^, 

operates in the composite photon and electron field spaces. It changes 

the photon number by one, and in general changes the electron state. The 

procedure outlined in the derivation above may of course be extended in 

a similar manner to include higher powers of the multipole moments for
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the evaluation of higher order terms in the expansion of d(r,t).

The magnetic field bu(r,t) for a source of charges and currents can 

also be found in the Heisenberg picture. The mode expansion for the 

magnetic field is

= i I (2.2.52)

and like the electric displacement field, may also be expanded as a 

series in powers of the transition moments

bu(r,t) = b|^^(r,t) + bj^^(r,t) + b|^^fr,t) + ... (2.2.53)

The first term b|^^(r,t) is obtained from (2.2.52) by making the 

substitution «(t) = «(0), and is the free field operator. The first and 

second order magnetic field terms are determined in a manner identical 

to that used to obtain the displacement fields with a^^^(t) and oĉ ^̂ (t) 

derived earlier and respectively given by the expressions (2.2.17) and

(2.2.39) being re-employed. The results are now given with only the most 

important steps highlighted.

For the term linear in the moments, the first order magnetic field 

is obtained by inserting (2.2.17) into (2.2.52)

k,x
m,n

iw t -iut.
i "  L )  + H-C-l- '2.2.54)

mn
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After performing polarisation sums and angular integrals and integrating 

with respect to k

, t > P/c

= 0 , t < p/c. (2.2.55)

It is seen that the first order magnetic field (2.2.55) is the quantum 

analogue of the familiar classical field. Further, comparing (2.2.55) 

with the first order displacement field (2.2.34), the associated 

symmetry between the two becomes apparent: the electric field of a

magnetic dipole is the negative of the magnetic field of an electric 

dipole and the electric field of an electric dipole is the same as the 

magnetic field of a magnetic dipole, with replaced by m""̂  in both

cases.

For the second order magnetic field, after substituting (2.2.39) 

into (2.2.53) and performing the usual polarisation sums and angular 

averages, the analogue of (2.2.41) is

 ̂ 0^k',X' -<T. ^
m,n,p

3

[ G . . ( kp ) +G. . ( kp ) ] [ F. . ( kp ) -F. . ( kp ) 1 m”"

/ i (w +(i)-<o')t , i (w +w)t ,e mp_____________ e mn —1
( U  + ( J ' ) ( { J  +  W - W '  )  (C O  + U ' ) ( W  +  CO) ̂ pn mp pn mn

+
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0 )P^(o )

[k̂ [G. (kp)+G. .(kp) |p^"+- [F. (kp)-F. (kpllm™! A A AC* A.A A.A ''.

i ( (J +(i)—(i) ) t -,e pn -1 i ( G) +Ü) ) t -, ^e mn -1
( G )  — w '  )  ( W  +  G ) - G ) '  )  ( G )  - G ) '  )  ( u  +  G ) ) ̂ pm pn pm mn

+ H.C. (2.2.56)

By changing the molecular state labels as before to ensure that 
+

is common and performing the k-integral subject to the usual

requirements, the following g - - , f-- and .i

obtained

dependent terms are

y y
1/2

k, X

k3g,.(kp,eik'P-ct'
k - k  k - knm nm

nm

k"g..,lkpleik'P-ctl k" g,,(-k p)e-iknm'P-ct)
lii
k +k nm

mn nm
knm+k

> + H.C. (2.2.57)

.2 z Z 12e cV\47ie he ^,n 
k,X

1/2

k^f..(kP)e'k(P-ctl ĵ3 p)e‘*‘nm*^
nm nm

k - k  k - knm nm

ran , nm̂
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ik(p-ct) ^3 r p,e-ik„„(P-ct) ,

* ' " ' i ' , r  ]nm nm
(2.2.58)

4JI£f  u  (■-.
k.X

k —k nm k -k nm

k +k nm k +k nm JJ\ + H.C. (2.2.59)

The total magnetic field to this order is obtained by adding 

(2.2.57)-(2.2.59). As for the displacement operator, the individual 

source fields quadratic in the moments are extracted for a source 

situated at the origin, and are

(2),TtT>bt <PP;r,t) = ^

mn.nm . .mn..nm

r hk 1

k.xm

1/2
e,a(0)P (0)P (0)*4 m m

-nv nm nm /

- I

mn nm^  k" g. Xk r,eiknm'r-ctl_ E -hw nm'i.̂  nm n nm

mn nm

_ E +hu ran ran n nm
+ H.C. (2.2.60)
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4Tt£oC a(0)p (0)p (0 )x m m

, mn nm mn, nnL
+ M . k % X k r ) e : k ( r - c t )

Z> 1E —fit») E + h(i) I -L4‘-nv nm nm V
mn nm

n nm n nm

mn, nm
. 3

, mn,,nm ,,mn nm.

• K̂'«....'-nv nm nm J

- I

• (kr)e

_____  (r-c ____
E -hu n̂râ -î '“'nm̂  L E +hw m̂n̂ -i-̂ '̂ mn

mn,.nm 
"j ^4

mn nm
f; ;(k T k^ f..;(k

n nm n nm
+ H.C.

IJJj 
(2.2.61)

, mn nm mn nm. m ; mo mo m ; 5
LzÆ  ^
^nV nm nm v

mn nm m : m;
- 2 (k,̂ ,,,r)e-nm

n nm

mn nm 

n nm
+ H.C. (2.2.62)

b‘2>(^;?,t) = ^  J  [2̂ ]  |e^k^«(0 )P^0)p^(0 )x
k.xm

 ̂« ! g > n-\J_iL|E -hw E +hw| -4,4 L nl nm nm )
k^g.-Xkrleiklr-ctl

j,mngnm
+ I kLsi^<knm'‘’'̂ '‘'"'"‘''*''̂ ’+ \ k̂ ,̂ g-̂ (k,̂ ,̂ r)e"k„,„(r-ct)
n nm n nm

k*k
.mn. nm ..mn̂ n̂m

•-n V nm nm ;
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V 4 . ,
- Z e T Ï 3n nm

.mn^nm

n nm
+ H. C •

j}
(2.2.63)

b f ’(3;?,t) = ^5̂  J  [2^ )
k.X

, mn^nm _mn nnt
(kr)eik'r-ctlZlE -t>u E +hw|K U /  nv nm nm J

mn.nm _mn nm

n nm n nm

,̂ mn nm mn„nnL

[ZlE -ho  ̂E +hol ‘-nv nm nm J
^mn nm Qjfmu mn.nm m a Q ;

n nm n nm
+ H. C.

ik (r-ct) mn

(2.2.64)

b‘2>(ô3;r,t) V̂  I h k
2£.c V e»k a(0 )P (0 )p (0 )x 'C m  m m

k.Xm
.mn^nm .mn^n

Lnl nm nm J

-1
.mn^nm

, 4 . ik (r-ct) T , 4—“----  k Jjjolk r)e nm - ' -^E -hu n̂m'̂ t̂ '̂  nm n nm ) E +hw
ik (r-ct)

n nm
I

+ H. C. (2.2.65)

Returning now to the diamagnetic coupling terras and examining the 

electromagnetic fields arising from this interaction, it is found from 

(2.2.11), that for a source located at the origin.
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= «(0)

P V Y f hk W  I'/z mn +
4hm Mfi Z Z IZE^cvj Ue^cvJ p^(0)p^(0)b̂

k',x'
/ i ( (i) +(i)—(i) ) t

b^«'(0) e mn -  1
i ( (i) +(i)-(i3 )mn ^

- bp«'’̂(0)
/ i {ti) +W+W ) t 1 e mn - 1

i(Cl) +(i)+(i)' ) ̂ mn
(2.2.66)

It should be noted that in the diamagnetic contribution there is no terra 

linear in the molecular variables, the leading molecular dependent part 

being quadratic in the electric charge. Substituting (2.2.66) into the 

mode expansion for d^(r,t), the diamagnetic coupling contribution to the 

electric displacement vector is

ra, n 

k,X

r hk' 1/2 ü ik.f. mn

ft (0)P (0)a'(0)b'm  n  '771
f' i ( w —w ) t - i(i)t e mn —e

i ( (i) +(i)—(i) )mn
+ H.C. (2.2.67)

After performing the usual sum over polarisations and angular average

167Ï me
T T  r±k'

2 L L t2c_cVhk'

dkk [G^^(kr)+G^^(kr)j

.m,n  ̂ 0 ^
k' ,X'

( i{k -k')ct -ikct e mn —e

mn(qyqf) P_(0 )P_(0)a'(0)blxm n

(k +k-k') mn
-| + H.C.

m

(2.2.68)

Integrating subject to the usual restrictions results in

8%mc ‘tm./p, ^ J (^EgCVj m m
k|x

a(0)b^k^g^^(kr)e^^^^ + H.C. (2.2.69)
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Similarly, for the diamagnetic contribution to the magnetic field, after 

substituting (2.2.66) into the mode expansion for b(r,t) and following 

the usual procedure,

“ k,x

+ H.C. (2.2.70)

This completes the formal derivation of the time-dependent electric 

displacement and magnetic field operators correct to second order in the 

transition moments and including all interaction terms of a comparable 

order, in the Heisenberg picture of multipolar OED. The Maxwell fields 

were expanded as power series in the molecular multipole moments and

found to be complicated functions of the boson and fermion operators. 

The source-independent field acts solely in the photon space, simply

creating or destroying a single quantum of light. In contrast, the first 

order electromagnetic fields, linear in the transition moments, operates 

exclusively in the space of the fermion field, leading to changes of 

molecular state. The first order field was shown to be the quantum

electrodynamical analogue of the classical multipole radiation field 

emitted by an excited source. The second order Maxwell fields, quadratic 

in the sources, however, operate in both the photon and electron Fock 

spaces, changing both the photon number by unity and the state of

electronic excitation. As expected all the fields exhibit causal 

behaviour, vanishing for t < r/c. The extension to even higher terms of 

the multipolar series and powers of the radiation fields is 

straightforward, but leads to progressively more complicated 

expressions.
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2.3 MAXWELL FIELDS FROM MINIMAL-COUPLING HAMILTONIAN

In this Section, the minimal-coupling version of the quantum 

electrodynamical radiation-molecule Hamiltonian is used as the starting 

point in the derivation of the Maxwell fields in the neighbourhood of a 

molecule. As mentioned previously, in minimal-coupling the momentum 

conjugate to the vector potential is proportional to the transverse 

component of the electric field. This is in contrast to the multipolar 

case where the conjugate momentum is proportional to the transverse 

component of the displacement vector field [30]. Therefore, instead of 

evaluating the displacement field in the vicinity of a molecule as in 

the multipolar case, in the minimal-coupling approach the transverse 

electric field operator is determined. Further, for a neutral system the 

total electric field is equal to the transverse displacement field 

outside the source since the longitudinal component of the displacement 

field is zero. Also, since the transverse electric polarisation field is 

non-local, 3^(r) ^ ê e'*’(r) outside the sources. From (1.2.34) it is seen
-̂ TOT ^TOT ^ ^TOTthat d (r) = £^e (r) + p (r). This has the important consequence

that e'*'(r) is unretarded, in contrast to e^°^(r) which is fully retarded 

[31]. The "static" contributions manifest themselves as poles at k = 0 

in the evaluation of the k-integral. These additional poles are absent 

in the multipolar treatment. A retarded result for e^°^(r) is finally 

obtained after cancellation of the static contributions arising from 

p'*’(r) with those from e'*’(r). Although the equations of motion for the 

magnetic field remain unaltered in both frameworks, the magnetic fields 

derived in the previous Section using the multipolar approach do not 

remain valid in the minimal-coupling case as the operator equations of 

motion are different. Hence b(r,t) is also determined in 

minimal-coupling.
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This treatment extends previous work in which the total electric 

field was obtained to first order within the electric dipole 

approximation [31], by including magnetic dipole and electric quadrupole 

couplings, and by the evaluation of the magnetic field. The derivation 

given takes into account the leading correction terms arising from the 

inclusion of the first derivative of the vector potential. The 

evaluation of the field operators is similar to that of the preceding 

Section, but with several important and subtle differences which will be 

indicated where they occur.

The starting point in the derivation of the Maxwell fields is the 

minimal-coupling Hamiltonian in second quantised form

“min = I +
k,X

- yffl
k,X
m,n

2£^ckVj
1/2

i m

k",X",n

.2£„ck"V 0

1/2

e^e"a'a" (l+ik^q^"-ik^q^") + e^e^a' a"fl-ik^q^"+ik^q^") +inn, • 1 If inn ̂
i i

e^eVa'^a"*^( l-ik^q^^-ik^q^^)]

(2.3.1)

where use has been made of the mode expansion of the vector potential

(2.3.2)
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The time dependence of the boson and fermion operators in (2.3.1) is 

implicit as is the mode dependence of the photon creation and 

annihilation operators and electric polarisation vectors. It should be 

noted that in the Hamiltonian (2.3.1), the spatial variations of the 

vector potential to first order have been partially accounted for by 

including the first derivative of a(q). This is essential for the 

inclusion of magnetic dipole and electric quadrupole moments in the 

evaluation of the electromagnetic radiation fields. In previous studies 

[31] within the electric dipole approximation, where the radiation 

wavelength is large compared with molecular dimensions, the variation of 

the vector potential over the extent of the molecules is ignored. Thus 

a(q) is replaced by a(&), 3 being the molecular centre, usually taken to 

be the origin, so that the electric dipole is the only resulting 

molecular multipole interaction term. By taking the first derivative, 

the field derived will include electric quadrupole and magnetic dipole 

couplings as well as the contribution from the electric dipole 

interaction term.

The Heisenberg equations of motion for the electron and photon 

field operators are evaluated using the analogues of (2.2.9) and

(2.2.10) along with the relations (2.2.5) and (2.2.6). Thus

,2e^ckV
X 1/2 r h 1

IzEoCk'vJ
1/2 ^ _

b b e • Xm n 2

[e^a'(l+ik^q^^-ik^q^") + e^a'^(l-ik^q2"-ik^q^^)] (2.3.3)
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and

k,X
ZEoCkVj bmiCja[Pj^+ik6(iyq4)"^]+e^a^[p^"-ik nm

(2.3.4)

In (2.3.4) the term of order e“ has been ignored since this will not be 

required in the derivation of the fields for terms up to m, and 5. By 

employing the interaction representation and integrating the last two 

expressions with respect to time, it is found that

«(t) = a(0) + ^  j J i r S k v )
m, n ̂ 0

ihm I (zEgCkv]
1/2

k ,X ,m,n
l2E^ck'Vj

1/2

r i(Ci) +(J-(i) )t ,
[e:a'(0)(l+ikgq%"-ikgq%") ® )--- +

. + i ( w +(i)+(i) ) t
e\«' (0,(l_lkaq2"-lk*q%", "

mn
(2.3.5)

and

ihm̂ Z, [2 c ckV 
l A

-1

+ e (2.3.6)

It is now shown how the various multipole moments to this order of
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approximation may be extracted from the spatial variation of the vector 

potential [37]. For the mnth matrix element,

+ C(p^q^)"" - (qiP^)“"]| • (2.3.7)

Using the fundamental commutator relationship between position and 

momentum,

(2.3.8)

results in

mn im„ mn (2.3.9)

so that the first term within curly brackets of (2.3.7) becomes

2[pi,“P qf + q f p f  I - P - ^  * - P] ' 2 M
(2.3.10)

ran

The second term of (2.3.7) can be written as

mn
(2.3.11)

Adding the last two expressions results in (2.3.7) becoming

(2.3.12)

The above together with (2.3.9) can be converted to an identity

57



explicitly involving multipole moments advantageous for future use 

=2e^[p^Tik.(p^q^)]‘"" = (2.3.13)

where p, m and Q have the usual definitions of the electric dipole,

magnetic dipole and electric quadrupole moments, and the orthogonality

of e, b and k- has been used.

Before going on to derive the magnetic field, the total electric 

field in the neighbourhood of a molecule is obtained. Its transverse

component is proportional to the canonical field momentum in the

minimal-coupling approach, and is given by the mode expansion

^(?,t) = (2.3.14)
k,X

To evaluate the transverse electric field in series of powers of the 

transition moments up to and including the electric quadrupole moment, 

the operator equations (2.3.5) and (2.3.6) together with the relation

(2.3.13) are used. The first order field, linear in the transition 

moments, is obtained after substituting the first order term of the 

operator equation a^^^(t). This is given by the first term of (2.3.5), 

that part linear in the electric charge. Inserting (2.3.13) into the 

first part of (2.3.5),

1/2

 ̂ ' '^.3.15)

Substituting the above into (2.3.14), the first order transverse
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electric field is

h i
i(i) t -iwt\e mn —e
W +Ü)mn

+ H.C.j.

(2.3.16)

After performing the polarisation sura and angular integration, the 

electric dipole dependent contribution is found to be

m,n 0
1 r# _ -ik ct_ -ikct

^ J d k k  [F^.(kr)-F. (kr)]^---------  + H.C. (2.3.17)
o ”"*

It is convenient when working in the minimal-coupling formalism to use 

the definitions of the tensor fields F--(kr), G--(kr) etc., since the 

occurrence of additional poles are then easily visible. Evaluating the 

k-integral for r < ct gives

(eikr_e-ikr,(e-iknmCt_e-ikct)

k(k-knm)

iith (2.3.18)

The longitudinal electric field correct up to the electric 

quadrupole moment is given by
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Coe%(r't) = -PÏ(r,t) = p^(?,t) = ^ .
ra,n

(2.3.19)

Noting that for r ^ 0,

5^,(r) = — ^  (5 j-3r r.) (2.3.20)
47(r ^  ^

it follows from (2.3.19) that the first order electric dipole dependent 

contribution is

ÏS I (2.3.21)

By adding (2.3.21) to the transverse electric field (2.3.18), the total 

electric field to this order of approximation is found to be [31]

which is fully retarded. Returning to (2.3.16) and evaluating the 

magnetic dipole contribution to the first order transverse electric 

field, after performing the sum over polarisations and angular averages.

 ̂ . . . .  _
0 ra,n

/_ikr _-ikr^^^-ik_ ct _-ikct 
k-k

-cc

4 TTC _ _0 m,n
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<Olm*"k- ï^.(k rte'^nrn'^-ctl = ej'’''^’(m)= p47TE c L m n  ̂ nm  ̂ c ^0 m,n 0
(2.3.23)

which is entirely retarded. Physically a magnetic dipole has no static 

electric field and hence é” = 0. Algebraically this is due to the 

absence of the pole occurring at k = 0 in the integrand above.

The electric quadrupole dependent part is evaluated in a manner 

similar to that used for the electric dipole dependent term, and its 

contribution is found to be

(eikr_e-ikr,,^-ik^^ct_^-ikct,
Jdk k(k-k ) nm

4 ^  +Q m, n

4 i r  i. ,2.3.24)

From (2.3.19), the first order longitudinal electric field component due 

to a quadrupole source is

4 ^  7  <2-3-25,

so that the total quadrupole dependent first order electric field is
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This completes the derivation of the first order total electric field in 

the proximity of a molecule in terms of the source moments p, m and Q in 

the minimal-coupling formalism. The transverse component of e(r) was 

obtained directly from the mode expansion for the canonical momentum 

while the longitudinal part was found from the electric polarisation 

field. The addition of these two contributions, giving the retarded 

total electric field, is found to be equal to the transverse 

displacement field operator of the multipolar formalism. The first order 

contribution to the electric field was derived using the first term of 

(2.3.5), that part linear in the electric charge.

To determine the second order electric field, quadratic in the 

multipole moments, both the terms linear and quadratic in the electric 

charge are needed. From (2.3.5)

^  I [2^  
m , p ^  0

1 / 2 rap-

J d p in u

+ -ihm 2e^ckV
1/2

2e^ck'V
0

1 / 2

yO)Pp(0)e. X

i(w )t-1
+G>—(1)mp

i ( Ü) +W+W ) t- , . 1  mp_.,, mp\e^'~mp'~'~ '̂ —1 . (2.3.27)

After substituting (2.3.6) and its Hermitian-conjugate into the first

term of (2.3.27), that part linear in e, which comes from the "p.a" term
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of the interaction Hamiltonian, (2.3.27) becomes after carrying out the 

t-integrai,

ihm J  ;  Ik ,m,n,p
ZEgCkV

^1/2 r h 1
J IZE^ck'vJ

1/2

r r -1 1_ f e ____________
[ [ ( O )  + ( t ) - ( i ) '  )  { ( i )  - w ' ) J  [ ( w  + w )  ( w  - w '  ) J

V “ '* -1 '
mp ' mn '  ̂ np mn

[p”"p7-ik^(p.q^)“ pf+ik^p™(p^q^)"P] X

[(
i  ( g )  + w — w '  )  t  ^ ^ e jng -1

( ( i )  + ( i > - ( i ) '  )  ( G )  + G ) '  )  ( G )  + G ) ) ( G )  + G )mp pn

f i  (  G )  + G )  )  tmn
pn N ]

i ( G )  + G ) + G ) '  )  te mp
(  W  + G ) + G )  )  (  W  + G )  )J 1 ( G )  + G ) )  ( G )  + G )  ) ̂ mp mn '  ̂’ np mn '-*

[p™pf-ik^(p.q^)”“p f - i k > “ (p^q^)"P]
'  i  ( G )  + G ) + G )  )  t  .  Ae mp -1

(  G)  + G ) + G )  )  ( G )  — G)  )  J
-1

r i  ( G )  + G > - G ) '  ) t  -
ftm5 Je^«'(0)(l-ik^q;gP+lkj^q|P)^ °P +

t mp
a .  i ( G )  + G ) + G )  ) t  ^ 1  - I

ei“' (0)(l-ik^q|P-ik^q|P)^- )---1]
mp / -*

( G )  + G ) )  ( G )  - G ) '  )  J ̂ ran pn

(2.3.28)

(2 ) +with a (t) given by the Hermitian-conjugate term of (2.3.28). To 

evaluate the second order transverse electric field, (2.3.28) is 

inserted into the mode expansion (2.3.14). The leading contribution, the 

quadratic electric dipole dependent transverse electric field is 

obtained by retaining the (p.q;)”^ and constant terras of the molecular 

part of (2.3.28), and with the aid of (2.3.9). There are a whole host of 

identities and associated sum rules which enable minimal-coupling matrix 

elements to be written explicitly in terms of molecular multipole 

moments [38]. One such identity is
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5  .n =m (2.3.29)

Others will be used when needed. Thus

mn,,np̂
 ̂ mn np

■ 1(G) —G) )t —lG)t 1g) t —iG)te mp —e_______ e np — e
( g )  + g ) - g j ' ) ( g )  - G ) '  )  ( G )  + G ) ) ( G )  - g ) ' ) ̂ mp mn np mn ^

f 1 ( G 3  — G )  )  t  -  i G ) te mp -e 1G3 t —ÎG)t e mn — e
( G )  + G > - G ) ' ) ( G )  + G ) '  )  ( G )  + G ) ) ( G )  + G ) M ̂ mp pn ' mn pn ^

r  1 ( g )  — g )  )  t  — i G ) t " \  i l l  e 22 -e '
( G )  + G ) - G ) '  )mp

+ H.C. (2.3.30)

After carrying out the polarisation sum and angular average, the above 

becomes

4 i h J  n  [ z r z T v ]  (0) "
Ic jDî n̂ p

r'̂ dk. ikrJ -ikr ■ i(k -k')ct -ikct ik ct -ikct e -e e np -e

( i(k -k')ct -ikct ik ct -ikct e mp —e e mn —e 4)
mn np

which when integrated gives, for r < ct.

/ i(k -k')ct -ikct^ e mp -e
(k +k-k') mp

(2.3.31)

k,^,m,n,p
— i(k —k)(r-ct) i(k -k)ct -ik (r-ct) ik ctmp

(k.n-k)(k-k,p)
le mp e np. -e np

kppC'mn-k) -1
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r -i(k -k)(r-ct) i(k ~k)ct -ik (r-ct) ik ct -imp_________-e mp
(k +k)(k-k )pn mp

e mn  —e mn
k (k +k) mn on

— i(k -k)(r-ct) i(k -k)c e mp —e mp
np ( k-k ) mp

-j| + H.C. (2.3.32)

The diagonal term from (2.3.32), needed for later applications, can be 

written as

T f hck 1/2

m,n

e««(0)i3*^(0)^ (0)(-^"5..+V.V )i X ^ m m i V

V nm nm J nm
-ikct ik et. -ik (r-ct) —e mn +e mn

E +nw mn nm
+ H.C. (2.3.33)

i k ( 1̂“* c t )It may be noted that the term with the factor e has the same

form as that of ^ N r ,t) (2.2.46), calculated using the multipolar

formalism. To obtain the second order electric dipole dependent total 

electric field, the electric dipole dependent polarisation field to 

second order must be added to the above. The latter is extracted from 

the second order term of (2.3.19), which is

= y  ̂’ ( t ip‘° ’ ( t )+p‘° ’ ( t ’ ( t ) J" L i ^ m p m pm, p

ihm n  y f
h

ISCqCkVj
1/2

5%(r)^"^(0))9 (0) Xm p

i ( (J +<i) ) t —i(i) t
V  lOLpr-ik^lp^q^)"!^ ' ^ .......+

mn
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i ( w —(ü) t —iw tnp.

e^a+(0) [p^P-ik^(p^q^)"P]= ”'i(m

pn
i({i) +G))t -iw t—e nm

pn-w) }1
(2.3.34)

on using (2.3.6). Making use of the relation (2.3.13) and putting ra = p, 

(2.3.34) becomes

- Û  1 1
he 1

.ran. nm
k,A,m,n

.ran̂ nm.

1/2

(e

,e-ikct_̂ ik_̂ n'=t)-
(E +h(i)) ran

+ H.C. (2.3.35)

from which the electric dipole contribution is found to be

P^'">(SÎ;?,t) 2 I ( ^ ) ’''[e^a(0)p;(0)P^(0)(-7^5.,.7.V.)ix

.ran..nra ran.nm

V nra nm
-ikct -ik ct, —e ran J|j + H.C.

(2.3.36)

so that the second order electric dipole total electric field is

o g -  -k, A.,m,n

0

,^t, , i£î
IE -ho) E +hwr E -V nm nra 1 nra

ran, nm 
i ^4

p”V “

(k__/k)ei‘'nm<''-<=̂ > 

ik (r-ct)

—hu ran

+ + H.C. (2.3.37)
nra

66



which is fully retarded and is applicable for r < ct. It is useful to
-̂ TOT ( 2 )demonstrate that e‘“ (r,t) vanishes for r > ct, thus showing the
-4TQX ( 2 ) ( 2 )causal nature of e*'" (r,t). Recalling that e (r,t) has static

contributions, by returning to (2.3.31) and evaluating the integral 

subject to r > ct, these are found to be

f r . i(k -k)ct . ik ct ik I  SE_ _ _ _ _  + 1-g np__
I '"•É j mn no [ ( k -k ) ( k-k 1 k ( k -k ) J\ ■ *- mn mp np mn

1 i(k -k)ct T ik ct T 1—e mn . 1-e mn
(k +k)(k-k )  ̂k (k +k)pn mp mn pn

i(k -k)ct
J

r -, i I K — K ; C L  -I j
+ I !"P----- ]> + H.C. (2.3.38)

which after simolifvine', becomes

i s f h j  2 lëT^kv)''
k, X, m, n

mn,,nm ,.mn,,nm ^
k (e-ikct_^lk^^ct,  ̂ k fe'kmn''t_e-ikct,l ^

k -k mn k +k mn\ mn mn J

(2.3.39)

Adding (2.3.39) to the electric dipole dependent transverse polarisation 

field (2.3.36) results in

1/2

ej-'̂ '(2i):r.t) + e;'‘pt'^’(«M;r,t) = ^’(S3;r,t) = 0 , (2.3.40)

SO that the total electric field obtained is strictly causal, vanishing 

for t < r/c.

For the higher multipole contributions to the transverse electric 

field, the remaining terms of (2.3.28) are substituted into the mode
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expansion for e^(r,t) (2.3.14) after the conversion of the molecular

part to transition moments, making use of the relations (2.3.12) and

(2.3.13) and the identity [38]

Thus the complete transverse electric field bilinear in the moments is

k ,̂  ,m,n,p
2

E M;np
> f • ^  1

+  i
A

' i (w — ) t —iwt iw t — iwte mp —e  _ e np — e 4]
mn, np,

( W +(i)—(Ü ) ( (J —W ) ( (J +(i) ) (Ct) —(i) ] ̂ mp mn np ran
z'. 21

^ . , 5  E p“" 2m pn mn  ̂,

f h e ’ -

2
1 kb ] x

' i(w —(i)' )t -iwt e m2_ -e iw t — iwt e mn — e
(W +W-Ù)' ) (w +w' ) (w +w)(w +w') ̂ mp pn mn pn ' ̂

mn„np , _mn,,np. r /,,mn np mn,,np, f i(w —w ) t -iwt"\n e mp -e

+ H.C. (2.3.42)

—  rCollecting together terras of the type e-e-e * and performing the
i

polarisation sum, angular average and the k-integral subject to r < ct 

with the imposition of the diagonal condition m = p, (2.3.42) gives
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inc
i _  Y  ^ fJî£ 
^hc Z Z IZCg”1) X

k,X,m,n
nm nm 

, 2
nm nm

9k “(k +k) k‘ nm

/ ik(r-ct) -ikct. ‘(e —e )

.mn^nm mn. nm
knm“k L k J

e nm ] +-

kmn nm nm

k +k nm
mn

nm [e-ik„„(r-ot)_^ik^^ctj

il- ri..mn nmf “nm 1]. mn.nm
H  U (k „ „ -k )  -  k j" "«  lk(kn„+k)  ̂ kJJ

mn nm mn nm
- ̂ ^[e^k„Jr-ct)_^-ik_^^ctj _ !|_^[^-ik^^(r-ct)_^ik^^ct  ̂^  ^

nm nm -• J
(2.3.43)

—  ' tThe terms with the factor e^b^e^  ̂ in (2.3.42) after the polarisation

sum and k-integration, give

4 Ê T  j  2
k,X,m,n

mn nm mn, nm. ran nmML'.:./".■V nm nm 1 nm
ik (r-ct) nra

mn. nm

nm
+ H.C. (2.3.44)

— ik rwhile the contribution from those containing e-e-ke * is found to be

4 ^ 1  2
r « ’« " l , i k , r - c t )  -ikct, «  

nm nm J

1 X

E —h(i) nm nm
^mn nra

-Ë%(k.»/k)(e''mn(-k)_^ik,^^ct,]
nra

+ H.C. (2.3.45)
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The total electric field in the proximity of a molecule correct to 

second order in the sources is obtained by adding the last three 

expressions to the polarisation field quadratic in the moments (2.3.35), 

resulting in the individual quadratic fields

,,,mn nra ran, nnr ; mg rag f!. 1 .
mn nra

n I ik(r-ct) ik (r-ct)
n m  nm J\ nra nm E -hw" nm

mn nra
 ̂̂  ik (r-ct)

E +hw^ nra

T F T  j  2 1 ^ )  ' V < 0 > ^ I ' 0 > V O ) ( i k e , ^ A _ b
k, X, m, n

,,,mn nra ran,,nra. ,,mn nra ,
ik (r-ct) nm

nra
m T ^ T / k
E +ht) nm

mnI ik (r-ct) e mn + H.C. (2.3.46)

t o t ( 2 )  - 1  r  r  f  h r k l  ^ +  ?  ie, ' ’(f̂ Ô;r,t) = 5 ^  J  2 r a  e^k,«,0)«10)#^,0)(-V-6.^+V.V^|lx
k, X, m, n

rpr®«" ik(r-ct) ^p«('*'nin'| ik (r-ct)H r -hu + - r Ze I— je nm
mn^nm

l|E -hu E +hwI nm nra ' nm

E +h(j nm
m̂nl i
i r k

ik (r-ct)ran

k, X, m, n

 ̂ ( i
ME -h(j E +hur ‘-'v nra nra J

ik(r-ct)
En„-h«c k }

0 % T r k

(nral ik I -j— |e nra(r-ct)

f rani ik (r-ct) 
E +hw[ k mn nm  ̂ '

+ H.C. (2.3.47)

with the quadratic electric dipole contribution given earlier in
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(2.3.37). As for the electric dipole case, the instantaneous 

contributions occurring in e"*", arising when the integral is evaluated 

for r > ct, when added to the transverse polarisation field, results in 

the total electric field in the neighbourhood of the source vanishing, 

as demanded by causality.

Finally the magnetic field is determined in the minimal-coupling 

formalism. The free field operator independent of the sources is the 

same in both frameworks, obtained by inserting ot(t) = «(0) into the mode 

expansion for b(r,t) (2.2.52). The higher order contributions are 

obtained using the minimal-coupling equations of motion derived earlier 

in this Section when used in the evaluation of the transverse electric 

field.

Substituting the equation of motion for «(t) to first order 

(2.3.15) into the mode expansion for b(r,t), the minimal-coupling 

magnetic field linear in the sources is

[
k,X,ra,n

® ® + H.C.j .(u +Ü)) mn
(2.3.48)

Evaluating in the usual manner results in

= 0 , r > ct. (2.3.49)

As expected, the magnetic field is causal, confirmed by the absence of
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the pole at k = 0. On comparing the above with the analogous result 

obtained within the multipolar framework (2.2.55), the two first order 

magnetic fields are seen to be identical. This is despite the fact that 

the equations of motion (2.2.17) and (2.3.15) are different in both 

approaches.
( 2 )For the second order contribution to the magnetic field, o( ^(t) 

given by (2.3.28) is substituted into the mode expansion for b(r,t), 

with the molecular part converted to multipole moments using the 

identities given earlier in this Section. Thus

-f’<?■« ■ ti j  n  (id)
ik.b.

k,k,m,n,p
2e„ck'V0

1/2
e^oc'{0)p (0)P (0) X

npE /J • 2m -fee mn np  ̂^ + i
21

A

np 

mn npkb-E lij m  ̂ran -t
i((j —u' )t -iwt iw t -iwt e rag —e_______e np — e

21

(W +(i)—(i) ) (w —W ) (W +W) ((i) —(i) ) ̂ mp mn np mn ■'

+ iA
/ • ̂.mn np. . i

 ̂ifw —w ) t - iwte mg_ —e iw t -iwt > e ran — e
(w +w-<d' )(u +w') (u +w)(w +w' ) ̂ mp pn ran pn ^
h-

mn np\ - /..ran np ran np, • i(w —w )t —iwt̂  e mg —e
(w +(i>-w' ) mp

+ H.C. (2.3.50)

_ •

The contribution arising from terms with the factor b e e^ ' ̂  after
^ ?

performing the polarisation sum and angular integral, is given by
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Anew I H:. ,7 'k ,A. ,m,n,p

1/2
e^a'(0)P>)Pp(0)(ic^/^i) X

-00

/ i(k -k')ct -ikct ik ct -ikct^ e mp -e________e np —e

Li%'"'=mnknp-'ki

r i f k -k')ct -ikct ik ct -ikct e mp —e e mn —e

mp ■ i(k -k')ct -ikct e mn -e
(k +k-k') mp

+ H.C. 

(2.3.51)

After evaluating the k-integral subject to r < ct and with m = p, the 

quadratic electric dipole contribution is found to be

47re^hc J  1 (zE^ckV.
1/2

e^«(0)(iE^V^i)P+{0)P^(0
k J ̂  J in J n

2
mn

r ik(r-ct) ik (r-ct) ik(r-ct)-| e e mn e
k -k ran k -k mn mn

f  pr(-)k m̂n
r ik(r-ct) ik (r-ct) ik(r-ct)-ie nm

k +k mn k +k ran mn Jj1 + H.C. (2.3.52)

ik(r-ct)The molecular terms with the exponential factor e has the same

form as the corresponding term evaluated in the multipolar framework 

(2.2.60). This results in the electric dipole dependent magnetic field 

in the minimal-coupling framework
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T T r hk I*'"’

ik(r-ct) r^mn] " ik (r-ct)llO= W *  - C r ^ m  ' "■
"^mnl~ ik (r-ct)

nm 
mn. nm

E +h(i) nm
e mn ] + H.C. (2.3.53)

Returning to (2.3.51) and evaluating the remaining terms results in the 

magnetic dipole and electric quadrupole dependent contributions

° k,x,m,n ° 
mn nm mn, nm. ,,mn nm ,

rj'”  ̂ I I, iki r-ct I  ̂ r nml ik (r-ct)
I l Ë ^ E  + F ~ r f c r  - ë^ : e |— h‘-i nm nm J nm

mn.nm

hk 1/2 1,

E - h o [  k J

m^ I-' : rk
L +h(j[ k Jnm ^

ik (r-ct) e mn + H.C. (2.3.54)

k, X, m, n 
OgpxTl 1./ g p /kM   ̂  ̂ { ik(r-ct) mnl “ ik (r-ct)

+ ï-rfck  - “nm nm J nm ^

ik (r-ct)—  y—  ' A» mnE +hot k nm ^
e mn + H.C. (2.3.55)

— i k. rReturning to (2.3.50) and collecting terms of the type b^b^e , and 

evaluating in the familiar wav results in the remaining în contributions

b|^'(S:r.t) = ^

r I'llmn nm mn. nm.

IE -hw E +ho| nm nm J

2c^cV,

. mn nm
-a “i
E —hwnm
mn, nm

E +h(jnm

e^(x(0)A'^(0)^ (0)(-V“6. +V.V.)i V ^ m ra  ̂r

!]e^Snmi i\„(r-ct)j „ (2.3.56)
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—  p
Returning to (2.3.50) and extracting terms of the type b-e-koe * and 

evaluating in the familiar way results in the remaining dependent 

field being

k,X,m,n
.mn^nm _mn..nnL ,,mn«nm

'eiknm(r-ct)fP-e I ik(r-ct) _
M E —hu E +h(i> I E ~h(i) I knm nm J nm  ̂ '

^mn nm ,
- eikmn(r-ct)] + H.C. (2.3.57)

nm

This completes the formal derivation in this Chapter of the quantum 

electrodynamical Maxwell fields in the proximity of a molecule using the 

multipolar and minimal-coupling Hamiltonians in the Heisenberg picture. 

Specifically, the time dependent electric displacement and magnetic 

field operators correct up to second order in the electric quadrupole 

moment, including all interaction terms of a comparable order, have been 

derived using the multipolar version of the theory. The causal 

electromagnetic source fields are functions of the photon and electron 

creation and annihilation operators. Since the equations of motion 

describing the dynamical system in minimal-coupling are different to 

those occurring in the multipolar framework, in the former approach the 

transverse electric field operator, which is the canonical field 

momentum in minimal-coupling, was determined as opposed to the 

displacement vector field operator. The transverse electric field in 

both first and second order was found to contain non-retarded 

contributions, arising from the occurrence of additional poles at k = 0. 

However, the total electric field, after adding the longitudinal part of 

the electric field, which was evaluated from the electric polarisation 

field, to the transverse component was shown to be fully retarded. The
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magnetic field operator to second order was also evaluated and compared 

in both frameworks.

The zeroth order fields in both formalisms act in the photon space 

only, simply being the free field operator independent of the source. 

The first order transverse electric displacement and total electric 

field operators were shown to be identical as were the minimal- and 

multipolar-coupling magnetic fields. These operators act solely in the 

electron space, leading to changes of molecular state, and correspond to 

the classical radiation field emitted by an excited multipole source 

undergoing real transitions. Unlike the first order minimal-coupling 

Maxwell fields, the second order operators, when compared to their 

multipolar counterparts, are seen not to be identically equivalent on 

inspection, although similarities do exist. Despite differences between 

the second order multipolar- and minimal-coupling radiation field 

operators, when the latter are applied to the calculation of a physical 

process or quantity for which energy is conserved, the resulting matrix 

element is identical to that obtained using the multipolar formalism. In 

both frameworks, the second order Maxwell fields operate in the totality 

of electron and photon field spaces, changing the state of the electron, 

and the photon number by unity.

These Maxwell fields are now employed in the following Chapter to 

evaluate the energy density in a radiation field and the rate of flow of 

electromagnetic energy from a molecule in an excited electronic state. 

The equivalence of the matrix element obtained for these processes using 

the electric dipole approximated multipolar- and minimal-coupling 

radiation fields is demonstrated. The multipolar Maxwell fields are then 

used in the fourth Chapter to calculate the energy of interaction 

between two polarisable bodies in both the ground and electronically 

excited states using a generalisation of molecular response theory.
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APPENDIX

As mentioned in the text, the geometric tensors defined by 

(2.2.28)-{2.2.31) are continually used in all the applications 

considered in the rest of this work and their complete, explicit forms 

are now given. From (2.2.28)

F; ;(kr) =
ikr

a . .
- + |3..

kr 2 2 k r 3 3k r
ikr f • (kr)e ikr (2.A.1)

On inserting k = iu,

F;;(iur) = —%(— .+V.V )e = f .(iur)e (2.A.2)

The following useful relations are easily deduced

f- (kr) = -f-.(-kr) (2.A.3)

f (-kr) = -f - (kr) 4'̂ 4,̂ (2.A.4)

and

f.:(-iur) = -f-(-iur) = f-(iur) = -f-(iur) 4-̂ 4-̂ 4,̂ (2.A.5)

f-(iur) = -f-(iur) = f- (-iur) 4-̂ 4-2 (2.A.6)

From (2.2.29)
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Gi/krl = ' gi/kDe**'*' ( 2.A . 7)

1 "ur '' r 1 1
G; .(iur) - + * T ^
' lu ' ^ur u r ■

e = g-(iur)e (2.A.8)

and

g;;(kr) -g;̂ -(-kr)“tf (2.A.9)

g {-kr) -g;̂ .(kr) (2.A.10)

S'••(iur) = -g--(iur) = g ••(-iur) = -s--(-iur). (2.A.11)

From (2.2.30)

ikr
4  -i- a 4r

kr  ̂ k“r“ ^

-1
,33 ,44k r k r

ikr 'Vd&'krleikr

(2.A.12)

4 &r
-ur

h;^&(iur)e-ur

with

(2.A.13)

h;;rt(kr) = h;;o(-kr) ; )i .u(kr) = h-.^F-kr)
OX""' ■ "4'« (2.A.14)

(2.A.15)
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From (2.2.31)

= èVpG,. ;(kr) =
ikr

■k’r^
ikr ikre = j^^-^(kr)e (2.A.16)

-ur
(2.A.17)

with

~ ’ j;;f(kr) = -j;;/(-kr) (2.A.18)

j^^.^(iur) = -j.^-^(-iur) = Jijfl-iurl = -j^^-^(iur). (2.A.19)

In addition one further tensor is defined as

ikr

«.. r.r, 15, ^ lOir^r^.r^r^ _
.2 2 .2 2 . 2  2 . 3  3k r  k r  k r  k rkr

,22 ,33k r k r k^r^

-31  ̂ 3
,44 ,55k r k r

+ r-r-rgr f - 45 _ 105i ̂ 105 1
,3 3 ,4 4 ,5 5k r k r k r

15i 15
k^r^

ikr

(2.A.20)
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1 , -ur

' - ^liU' 1"'' - - U j U
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with

= -l^^^^fkr) (2.A.22)

l:jjĵ (iur) = -l;.oo(-iur) = l--£o(iur) = -1 •  ̂(-iur ). (2. A. 23)



CHAPTER 3

ENERGY DENSITIES AND POYNTING VECTOR
3.1 INTRODUCTION

In classical electromagnetic theory, oscillating charge and current 

sources give rise to radiation fields which obey Maxwell's equations. A 

multipolar expansion of the charge distribution produces electric and 

magnetic fields propagating from the source multipole moments 

corresponding to dipole, quadrupole and higher multipole electromagnetic 

radiation.

It has long been known that excited atoms and molecules emit 

wavefields as in the electromagnetic theory, emitted by charges 

vibrating with wavelengths subject to the Bohr frequency condition. In 

Chapter 2 the quantum electrodynamical analogue of the classical Maxwell 

field of an oscillating multipole moment was obtained by considering 

atoms and molecules to be composed of constituent charges and currents 

which are taken to be the sources of electromagnetic radiation. The 

Maxwell fields in the proximity of a molecule were derived in both the 

multipolar and minimal-coupling frameworks in the Heisenberg picture.

In this Chapter, the microscopic Maxwell fields are employed in the 

evaluation of the expectation values of quadratic operators of the 

electromagnetic field such as the Thompson energy density and the 

Poynting vector for specified states. The electric and magnetic energy 

densities are obtained to second order in the transition moments for a 

molecule in both the ground and excited state using the field operators 

of Chapter 2 in the multipolar formalism, extending work which was 

limited to the electric dipole approximation [33]. This is followed by 

the demonstration of the equivalence of the electric dipole dependent
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energy density using the total electric and magnetic Maxwell fields in 

minimal-coupling. This is despite the minimal- and multipolar-coupling 

Hamiltonians being different in both cases, leading to different 

operator equations of motion. The importance of the electromagnetic 

energy density calculation lies in its relation to the intermolecular 

pair potential for a polarisable test body placed in the radiation field 

of the source molecule. For two molecules in their ground states this 

approach leads to the dispersion force [33]. When the source molecule is 

in an excited state the intermolecular energy shift has an additional 

unmodulated term including a part that has an inverse square dependence

on distance corresponding to real photon emission.

The rate of flow of electromagnetic energy, or Poynting's vector, 

is also determined in this Chapter. Poynting’s vector is a direct 

consequence of the more important Poynting*s theorem of classical 

electromagnetic theory, which states that the divergence of the flux of 

energy (electromagnetic energy), plus the rate at which the energy 

density increases with time, equals the rate at which energy is produced 

[39]. This has the form of an equation of continuity. The vector
—̂ 1 <2 "4̂ -Arepresenting the flux of energy, Poynting s vector S = * u), is

interpreted as the amount of energy crossing unit area perpendicular to 

the vector, per unit time. This energy flow is calculated for sources 

correct up to and including the electric quadrupole moment using the 

multipolar framework Maxwell fields of the previous Chapter, while the 

equivalence of the matrix element for the electric dipole case is 

demonstrated using the minimal-coupling radiation fields. The relation 

between the quantum mechanical rate of spontaneous emission by an

excited system and the classical rate of energy loss by radiation from 

an oscillating multipole is also investigated. The importance of the 

calculation of the Poynting vector appears in the study of
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intermolecular energy transfer processes [40J. The simplest such

interaction being the much examined resonance coupling between two 

molecules, one of which is in an excited state. The field picture 

enables the transfer of excitation between the two molecules, explored 

over all separation distances beyond electron overlap, to be viewed as 

spontaneous emission by the excited molecule followed by absorption by 

the other.

Before going on to calculate the energy density and the Poynting 

vector associated with the quantum electrodynamical Maxwell field, the 

electric displacement and magnetic fields obtained in Chapter 2 are

written in a form which facilitates their application to the 

calculations to be performed in this Chapter, and in the evaluation of 

the interaction energy between two neutral polarisable molecules in 

Chapter 4. As matrix elements involving quadratic operators of the 

radiation field are being determined, it is necessary to include the 

second order source fields which are quadratic in the transition 

moments. Contributions arise from the product of the first order fields, 

and from the interference of the vacuum field with the second order 

field. In the latter contribution, only that part of the quadratic field 

that is diagonal in the electron space is required since d^^^ operates

entirely in the photon space and cannot change the state of the

molecule. By taking the diagonal matrix element for a state jp> of the 

molecule, the second order Maxwell fields then operate solely in the 

photon space. This is done for the individual second order electric 

displacement and magnetic source fields derived in Chapter 2, and are 

now given below along with the definitions of the appropriate tensor 

fields. The benefit of writing the fields in the following fashion will 

become apparent when calculations are carried out.
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k . X

<p|d*^’(ÎJm)|p> = ^  y [ic?^] La(0)e
k,).

(3.1.2)

I ,(2),-^,i ~i f f>k <p|d^ (mm)|p> = ) ^t:ü7-
1/2

tba«(O)e-i"t0ai-ba«*(O,ei"t3j.|
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(3.1.3)

1 / 2

<p|df’(ïîi)|p> = % )
k,X

*i" I ——- a  (O)e^ '^(e^k^8^^^+ie.?.^)J (3.1.4)

(2).^,I . 1 V f hck -iwt
<p|d- <i"0>lp> = 2 [ " W j

k,X

<p|d|^ ̂ (ÔÔ)Ip>
1/21 V (hck 1

k,X
(3.1.6)

<p|bj^^(m A)|p > 47ie _̂ L l2VcE 
k,X

1/2

(3.1.7)

<p|bj2)(^m)|p> = l ^
' T x ' "

«*̂ ( 0 ) e ̂^^ ( b^3C^+ ) J (3.1.8)
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4KEo="k.X °
(3.1.9)

:p|b|2)(^4)|p> = ^  J  [gjr] ï“(0)e''"^(e^k^Jir^+e^9>^)
k,X

iWt,— , Tr

(3.1.10)

<p|bj2'(m3)|p> = 2 (iJr] [«(0 )e'"̂ *"1 )
° Î,X °

- «"(0)ei“t(i^k^3^+b^S^JJ (3.1.11)

<p|b‘2 ’(ÔÔ)|p> = ^  J  [2^ ]  l%k^“'Ole''“^-^^.^-ê^k^«''(0)e'“’' ÿ ^
k, X

(3.1.12)

In the above the (k.X) dependence of the photon variables ha3 been 

omitted with the tensor fields defined as

ki - 1 ̂  k'F./kr) - 2  %  k^ F (k rlei< ■
n np n np

,.pn,,np mP^u^P
1 k^.(kr) - y kjLflj'k ^rle-i'kpn-klct
n np n np

(3.1.13)

,pn np pn np

n np n np
pn np pn,,np

2 - 1 ̂  '3.1.14,
n np n np
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„,pn np pn np
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n np n np
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n np n np
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I S f c  . X , " "  - 1 S t  '’■■■“ ’n np n np

pn, np ,̂ pn np

n np n np
(3.1.24)

pn np _pn np

y S f c  k-'.."." - 2 S f c  k;.,.,,.,.„.-'"kp.-k'« I3...ZM
n np n np

% . = -I ?i -n np n np

2 Æ   ̂I A In np n np
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•.Pn.,nP nPn,,"P
= I ^  (kr) - I %  +
n np n np

2 k \ , / k r )  - I k;^J^, ( k D e - i ' V ^ ’̂ ' (3.1.27)
n np n np

pn.np pn.np
= "2 N n  k'F;/kr) + ; "

n np n np '
,-jPn np „pn np

2 k'F (kr) + 2 C ^ ; / k  /)e-'kpn-k)=t ,3.1.28,
n np n np '

..pn np ^pn np
= 2 / 5 s  k'j,,.(kr) - 2 k^^J^ (k r ) e i ' +
n np n np

pn^np pn„np
2 ^  k'j^^.(kr) - 2 A ë  '3-1-29'
i i n - n  n  ? m  ^ w i

n np n np

2 (kr) - y k;^J^,.(k r ) e - l ' (3.1.30)
n np n np

3.2 ENERGY DENSITY USING MULTIPOLAR MAXWELL FIELDS

3.2.1 Electric Energy Density

The energy density associated with the electric displacement vector 

field is

1 [a^(r,t)J“ 3 ?^[d'9'(r,tl+d'l'(r,t,+a'2'(r,t) + ...|2^0 2r,_,

1 (d<0y.0',dy>d<''>.d'0>d'l>.d'l>d'l'.d‘0'dj2>.d'2>d'0> + .../ L i, 4. 't 't 'L 't "t 't ‘t 4. 't0
(3.2.1)
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using the expansion of the field in successive powers of the transition 

moments correct up to second order in the sources. The important 

contributions to the energy density arise from the last three terms of

(3.2.1). It is clear that the first terra of (3.2.1) cannot contribute as 

the free field is independent of all sources. The second and third terms 

do not contribute to the expectation value for a state since they lead 

to a change in the photon number. The first contribution to be retained 

and used in calculations is the fourth term of (3.2.1), the product of 

the first order fields. The last two terms correspond to the 

interference of the vacuum field and second order field. The expectation 

value of the electric energy density for the molecular state jp> and the 

radiation field in the vacuum state, is

^<0;p| |p;0>. (3.2.2)

3.2.1(a) Electric Dipole Contribution

The leading source-dependent term of the electric energy density is that 

arising from the electric dipole dependent displacement field. This 

particular example has been dealt with by Power and Thirunamachandran 

[33 j and is given in complete detail here as a preliminary to the 

calculation of higher order terms. The contribution from the product of 

the first order field is now evaluated using (2.2.34). Recalling that 

the field linear in the sources operates entirely in the electron Fock 

space, the contribution from the electric dipole dependent displacement 

field to the electric energy density is

^  y <p|d[l'(2l|n><n|d[l'l2)|p> = — 4 —  2
O n  o 2 7 T £ ^ n

(3.2.3)
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For the contribution from the zeroth and second order fields, use is now 

made of the diagonal matrix elements of the quadratic fields given in 

Section 3.1. Using (3.1.1), the last two terms of (3.2.2) are

^  y [<0;p|d|^^ |p;k,Xxk,X;p|dj^^ |p;0> + 
° kTx

<0;p|dj^^|p;k,X><k,X;p|d^^'|p;0>J(0 )

1 T rhckl
Q n e  L 9.v\

ik. -x

k,x

•Ÿ— -ik.r (3.2.4)

The first term of (3.2.4), after the polarisation sum and angular 

average using (2.2.19) and (2.2.24), is

he 1
32n^c 27ti dkk LF^̂ ( kr )-F̂ (̂ kr ) (3.2.5)

Using the definition (3.1.13) for the tensor field and collecting

terms with the same denominator, (3.2.5) can be written

327T“e^ n
dkk ^

('LF-^(kr)-F-ü(kr) J [k^F- (kr)-k^ F (k r)e J______np np_______________U'
( k -k ) np

3— 3 — 1 f t —k ) p"}"lF^^(kr)-F^^(kr)|[k F^^(kr)-k^^F.^(k^^r)e pn J|

'V*'’ i
U'

-1 ^ ,,Pn np
32%Zc S  ̂^  2wi J

A k k ^
k—knp

-k^ f;g(kr)f. (k r)eik(r ^(r-ct)np t-R np

+k' j.^(kr,iF, ,(k__r,e-ik' r+ct),ikp„(r-ct)
np
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I t  2  J32%-E. n ' - “••* ; k-k^n I-0 0

-k" f,.(kr)f,,(k rteik'r-ctt^-ik ^(r-ct) 
pn pn

+k" f,.(kr)f,j(k r,e-ik'r+ctle-ik n'r-cti
pn -t.* pn

(3.2.6)

where use has been made of the ^-index symmetry to eliminate the term

without an exponential dependence. Expression (3.2.6) contains both

time-independent and time-dependent terms. The abbreviation PV denotes

the Cauchy principal value, which is taken since exact resonances are

excluded in the k-integral when making the continuum approximation to

the mode sum. The evaluation of the integral depends on the sign of k^^

and is carried out by transforming the integral from one along the real

axis to one along the imaginary axis in the complex plane. For a state

for which E > E , after making the substitution k = —iu. the p n
time-independent part of (3.2.6) is

A  ̂ A pn pn pn

0 0 pn

The time-dependent part is given by

■ pn

’ V t H ----pn
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^ ' '^pn''’®' ‘' "P' ‘ ) *  U -  i kpn

■ir m  u - ikpn 
(3.2.8)

The time-dependent terms tend to zero for t » r/c as the integrals have

exponentially decreasing values for large t. In addition, the average of

(3.2.8) over a finite time interval tends to zero because of the
i i k c tmodulation factors e pn . These oscillatory terms are ignored

henceforth. Returning to (3.2.6) and evaluating the integral for the

case k >0, the pole contribution is np

-1 . (3.2.9)
647t“e  ̂n

The u-integral part is identical to that obtained in the second terra of

(3.2.7). Use has been made of the relations (2.A.3)-(2.A.6) given in the

Appendix to Chapter 2 regarding the geometrical tensors.

It is important to note that the first term of (3.2.7) has the same

sign as the corresponding term arising from the first order fields

(3.2.3). However, for those states n with E > E , the Dole contributionn p
has opposite sign as indicated by (3.2.9), and cancels with the

corresponding term of (3.2.3). The reinforcing and cancelling of pole

contributions from the zeroth and second order fields with terms from

the product of the first order fields is a striking characteristic 

throughout the calculations carried out in this Chapter. This is a 

direct consequence of the inclusion of the second order fields; its 

importance was first shown by Power and Thirunamachandran [31,33] 

concerning the relation between the spontaneous emission rate and
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Poynting vector energy flow. These authors showed that the Poynting 

energy flow from the quantum first order fields was equal to one half of 

the spontaneous power. Inclusion of the second order fields doubled the 

flow, demonstrating that the spontaneous rate and the Poynting vector 

flow are equal when quantum fields to second order are used.

The second term of (3.2.4) is simply the complex conjugate of the 

first so that the total contribution to the electric energy density due 

to an electric dipole source is

J -  116rt-£ g 4 6 pn It pn pn
° E >E P n

I  J w 6 -2ur
— —  2k f. .(iur)f .^(iur). (3.2.10)pn •i'fe

n

This general expression is applicable to transitions from the initial 

state ip> with summation carried out over a complete set of intermediate 

states |n>. The two terms given in (3.2.10), whose properties are 

markedly different, are now examined in detail.

When the initial state is the ground state, only the second term of

(3.2.10) remains, which is

32n\ J0 0 u r  u r  u r  u r  u r

(3.2.11)

with

. .liu) = > ... . (3.2.12)
 ̂ n tic(k“ +u“)no
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the ground state dynamic polarisability expressed in terms of imaginary 

frequencies, with the dyadics defined as

(3.2.13)

The expression (3.2.11) applies for fixed molecular orientation. To deal 

with species in a fluid phase a rotational average is required. By 

following the standard procedure [411, (3.2.11) becomes

he ‘ 5 -2ur ,. .duu e «(lu) 2 2 "-U r 3 3 4 4u r u r 5 5 6 6u r u r
(3.2.14)

It is instructive to examine the asymptotic behaviour of (3.2.14) in the 

limits of large and small distances r. In the far-zone limit r is much 

larger than the wavelength of the molecular transition. After performing 

the u-integral [42J, the far-zone asymptote is found to be

23hca(0)
3 76471 e^r

(3.2.15)

where «(0) is the static polarisability of the source. In the near-zone 

r is much smaller than characteristic transition wavelengths, resulting 

in kr « 1. Retaining the leading terra after setting the exponential 

factor to unity, the near-zone lirait is found to be

1

16% E r n
y (3.2.16)

which is in fact the electric energy density of a static electric dipole

source.
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Returning now to the general result (3.2.10), the first terra is the 

additional contribution arising from real photon emission by a molecule 

in an excited state. After expanding the geometrical tensors and 

rotational averaging, this terra is found to be

1671 n
“ E >E p n

1

24n"e. n pn

on on
+Ï

pn pn

E >E D n

L, 2 2 1 4 4 , 6 6‘-k r k r k r pn pn pn
(3.2.17)

This terra falls of as r for large r, being associated with real photon 

emission. The energy in a large snherical shell of unit thickness is

6 7 Ï Ek  I (3.2.18)
0  n
E >E 

D  n

and is independent of the radius of the shell. The r “ terra of (3.2.17) 

obviously dominates the far-zone density since the second terra of
— 7(3.2.10) was shown to produce an r dependence. Both terras of (3.2.10)

—  6however, exhibit an r dependence for small r, with the contribution 

from the first terra of (3.2.10), found from (3.2.17), given bv

87r“e_r‘
(3.2.19)

E >E 
D  n

while the contribution from the second terra of (3.2.10) is

p n p n

(3.2.20)
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A direct manifestation of the electromagnetic energy density determined 

above is the intermolecular interaction energy of a test polarisable 

body placed in the radiation fields of the source. The response of a 

polarisable test molecule in the ground state, with static electric 

dipole polarisability to the far-zone limit of the electric

energy density (3.2.15) is

— 1 I ? —
(0)d “ = -------- %____(0)«(0) , (3.2.21)

which is the familiar Casimir dispersion energy at large separation 

distances 1,43]. The far-zone response of a polarisable test body to the 

energy density of an excited source using (3.2.18) is found to be

; 2 , (3.2.22)24%"c"r" R TEST pn
° E >E p n

while the near-zone shift from (3.2.19) and (3.2.20) is

 A t I ; |2P'’!\,,^(0) (3.2.23)
16n-r;r n

.ALL E

and is recognisable as a London type dispersion potential, also 

obtainable using electrostatic coupling. This particular aspect of the 

calculation of intermolecular potentials is examined in greater detail 

in the following Chapter where a generalised version of response theory 

is used to obtain the energy of interaction between molecules in both 

ground and electronically excited states directly.
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This completes the evaluation of the electric energy density due to 

an electric dipole source, correct to second order in the transition 

moments. The next contribution to the energy density to be considered is 

that arising from a mixed electric dipole-magnetic dipole source. The 

electric and magnetic energy densities from this source, along with 

molecules with mixed electric dipole-quadrupole and mixed magnetic 

dipole-electric quadrupole moments are found to vanish on orientational 

averaging and are not considered any further. The next non-zero 

contribution to the electric energy density arises from a pure magnetic 

dipole source, whose method of calculation, along with the pure electric 

quadrupole source and the remaining magnetic energy densities, follows 

that outlined above for the electric dipole case.

3.2.1(b) Magnetic Dipole Contribution

The electric energy density due to a magnetic dipole source is the 

expectation value of

0 o
(3.2.24)

The contribution from the product of the first order magnetic dipole 

dependent electric displacement field is found using (2.2.34) to be

^  I <p|d” ’(m)|n><n|dP’(3l|p> = J  J  '"4'’>^pn8i/‘‘pn‘'’§a(kpn'''

(3.2.25)

while the contribution from the product of the zeroth and second order 

fields using (3.1.3) is
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^  2 l<0;p|d^ |p;k,X><k,X;p|d^ 1p ;0> +

<0;p|dj^^ |p;k,Xxk A;p|dj^ ̂ |p;0> j

iSh 5
° k.X

(3.2.26)

Evaluating the terms above using the polarisation sum (2.2.19), the

angular integration (2.2.25) and making use of the definition of the

tensor field 2)̂  ̂given by (3.1.16), and noting the respective adding and

cancelling of the pole terms when k > 0  and k < 0  with (3.2.25), thepn pn
total electric energy density due to a magnetic dipole source is

° E >E P n

+ „„ 3^ 2 1 "’̂ "'«'’1  ̂ 2' 2knpS«‘ i»*- >«a' ' (3.2.27)
32it e^c n

ALL En

which is the oriented result. For a randomly oriented molecule the first 

term of (3.2.27), the contribution from real photon emission due to the 

source being in an excited state, is

1

1 6 7 t “ e  c“ n
‘ E <E n p

V pn np, 6
2 ;  "'é LI 2 2 ,4 4,'-k r k r pn pn

2471 e c" n
E >E P n

pn LI 2 2 , 4 4k̂ r k rpn pn
(3.2.28)

The far-zone limit of the energy density in a large spherical shell is
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4  2 (3.2.29)
6Jie„c“ n

E >E P n

and is independent of the radius of the shell, while the near-zone 

behaviour shows an r dependence on distance. Examining the second term 

of (3.2.27), the u-integral is

6 -2ur

£„c n ' „ u + k0 np0
-h

2 2 3 3 4 4“-u r u r u r

+ + " T lu r u r u r -
(3.2.30)

where

X(iu) = 2 y
pni 2

n hc(k^ +u“) np
(3.2.31)

is the isotropic magnetic susceptibility of the molecule in excited 

state |p>. The far-zone limit of (3.2.30) after evaluating the 

u-integral is

-7h%(0)
3 764?t e^cr

(3.2.32)

where %(0) is the u = 0 limit of (3.2.31), corresponding to the static 

excited susceptibility. When the initial state is the ground state only 

upward transitions are possible and the first term of (3.2.27) does not 

contribute. The u-integral terra is seen to give (3.2.32) but %(0) now 

being the ground state static magnetic susceptibility. The response of a 

polarisable test body to the far-zone limit (3.2.32) then gives the 

dispersion interaction between an electric dipole polarisable molecule
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and a magnetic dipole source as

 ̂«____(0)d^^ = ---A - — r a „„.(0)X(0) (3.2.33)- 2 TEST 3 2 7 TEST2Eq 6471 EgCr

which is repulsive, while for an excited source the interaction varies
-  2as r as in

- i m  2 ’ '3.2.34)
2471 E C r n

E >E p n

on making use of (3.2.28).

3.2.1(c) Electric Quadrupole Contribution

The final contribution to the electric energy density to be 

considered is that arising from an electric quadrupole source. This is 

evaluated from

^l3-"(r,t;®)j" “ ^ ( 3 ' l ’(3).3'l’(3)+d‘2>(ë).d"” +d“” .d'2’(^)J.
0 0

(3.2.35)

Using the electric quadrupole dependent part of the displacement field 

linear in the sources (2.2.34), the contribution from the product of the 

first order fields is

A -  y<p|d“ ’'®>|nXn|dU’(3)lp> = — r - T
o n r̂%

(3.2.36)

The contribution to the energy density from the interference of the
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vacuum and second order fields is determined using (3.1,6),

2^  ) l<0;p|d^ |p;k,Xxk,X;p|d^ |p;0> +

(0)i f 1,(2)
° k,X

<0;p|d^ |p;k,X><k,X;p|d^ |p;0>J

) fïïvl •-  ̂  ̂* (3.2.37)87T£ /
“ k,X

Evaluating the two terms above after the polarisation sum, using the 

angular integral (2.2.26) and the tensor field definition (3.1.21), the 

total electric energy density due to an oriented electric quadrupole 

source is

15n-£ K P n U i  p n
° E >E P n

, 8 -2ur
+ y ''I ' ,2 2k,ph,^.(iur)h,^(lur). (3.2.38)

For a molecule in the ground state only the second term of (3.2.38) 

survives, which after multiplying the geometrical tensors, whose 

explicit form are given in an Appendix at the end of this Chapter, can 

be written as

he , 8 -2ura r . ,
2 2  3 3  4 4  5 5  6 6  7 7  8 8u r  u r  u r  u r  u r  u r  u r

(3.2.39)

where ^^.j^^Au) is the quadrupole polarisability expressed in terms of 

imaginary frequencies. To obtain the isotropic energy density a 

rotational average is taken. Utilising the fact that the quadrupole
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moment tensor is traceless, the average entails the product of

with each of A . ^  to (3.2.39) then

becomes

960Tt Ê. AI  y ofngiio - duu-e

0 + K o

6 I 36 I 162, 5041 972,1080,540
2 2  3 3  4 4  5 5  6 6  7 7  8 8‘-ur u r  u r  u r  u r  u r  u r

(3.2.40)

The far-zone result is obtained by retaining all such terms and taking
2 2 2uT+k^_ = k'"„ while the near-zone limit requires the retention of only no no

the part. After the usual approximations the u-integrals can be

evaluated to give the asymptotic values

1593hc 0 ,0) (3.2.41)
1280n^c^r"

for the far-zone and

167r“e^r^ n

for the near-zone. For an excited state jp> both terms in (3.2.38) 

contribute to the energy density. Taking into account that the 

quadrupole polarisability for an excited state includes both positive 

and negative contributions, the structure of the second term is 

unaltered. After expanding the tensors which are given in the Appendix 

under (3.A.2), the first term of (3.2.38) after orientational averaging 

becomes
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SOn^E ÎÎ
18 90 1

l 2 2 * 4 4  ̂ 6 6 * 8 sj (3.2.43)‘- k r  k r  k r  k ro E )g pn pn pn pn
p n

so that the near- and far-zone asymptotic behaviour are respectively 

given by

K A I ’ ' 3 - 2 - 4 4 '8tc e r n
E >E p n

^  I w ; . '
° E >E p n

The far-zone quadrupole dependent electric energy density (3.2.41) leads 

directly to the intermolecular energy of interaction in the presence of 

a test electric dipole polarisable molecule

1593hc a (o,e (0, . (3.2.46)

With the source in an excited state, the near- and far-zone energy 

shifts using (3.2.43) are respectively found to be

I « t e s t ' O ' Q W  ’ '3-2-471Sn e r n
E >E P n

° E >E 
D  n

This completes the evaluation of the electric energy density for
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electric dipole, magnetic dipole and electric quadrupole sources.

3.2.2 Magnetic Energy Density

The magnetic energy density associated with these sources is now 

calculated.

3.2.2(a) Electric Dipole Contribution

The magnetic energy density correct to second order in the electric 

dipole moments is computed from

(3.2.49)

Using the magnetic field linear in the electric dipole moment (2.2.55), 

the first term of (3.2.49) is

<p!b'^’(f5l|nXn|b‘^’(i5)|p> = — T " !
n 3 2 ̂  ̂n

(3.2.50)

Using the diagonal matrix element for the second order magnetic field of 

an electric dipole source (3.1.7), the contribution from the zeroth 

order and quadratic fields is

y [<0;p|bj®^ |p;k,Xxk,X;p|bj“  ̂|p;0> +
k7>-

<0;p]b|^^ |p;k,Xxk,X;p|b|^^ |p;0> J

 ̂' (3.2.D1)87T£ l2Vj 
k,X

Evaluating the above in the usual way, making use of (3.1.22), the total
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contribution to the magnetic energy density from an electric dipole

source is

—  2167t“£ n
E <E n p

32n E n
ALL E

, 6 -2ur
" 7 -  2kp,g^/iur)g,^(iur) (3.2.52)

u +kpn
n

which as expected, is similar to the result obtained for the electric 

energy density of a magnetic dipole source (3.2.27) since the magnetic 

field of an electric dipole is the negative of the electric field of a 

magnetic dipole with m replaced by Thus the magnetic energy density 

for the ground state is

he
327T̂ e

6 -2urduu e oĉ (̂ iu)g^ (̂ iur )ĝ (̂ iur ),
0 0

(3.2.53)

which for an isotropic molecule reduces to [33J

—he
167î e

\ 6 -2ur^,. ,duu e « (1u )
0 0

2 2 3 3 4 4u r u r u r -*
(3.2.54)

and which in the far-zone gives the asymptotic value

-7hc«(0)
3 ?6471 E^r

(3.2.55)

After expanding the tensors in the first part of (3.2.52) and 

rotationally averaging, the additional contribution to the energy 

density due to downward transitions is
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1 1 (3.2.56)
0 g pn pn

P n

" 2 " 4 ■exhibiting r and r far- and near-zone behaviour respectively. 

Analogous to the calculation in (3.2.33) of the asymptotic 

intermolecular energy between an electric dipole polarisable molecule 

and a magnetic dipole polarisable molecule, the interchange of source 

and test bodies leads to the intermolecular energy of repulsion

2EgC 647T E^cr

in agreement with (3.2.33). For a source in an electronic excited state, 

the near- and far-zone interaction energies are found using (3.2.56) to 

be

2 4 1 î '’"l%EST(0"<pn - (3-2-58)487T E C r n ^
E >E p n

2471 E C r n
E >E P n

3.2.2(b) Magnetic Dipole Contribution

Since the magnetic field of a magnetic dipole has the same 

functional form as the displacement field of an electric dipole, the 

expressions for the magnetic energy density from a magnetic dipole 

source are similar to those of the electric energy density from an 

electric dipole source found earlier. To second order in the moments,
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(3.2.60)

Evaluating the first term using the m-dependent part of b^^^(r,t) given

by (2.2.55),

|-£qC“J<p |  ̂(m) I nXnIb|^ ̂ ( m) I p> =  m^“më^k“..f ,• .(k__r )fe(k.__r )
32tc“g^c n

pn np, 6 -

(3.2.61)

while the contribution from the product of the free field and the 

quadratic field (3.1.9) is

|e^c^ J [<0;p|b|^^ |p;k,Xxk,X;p|b|®^ |p;0> + 
k,X

<0;p|bj^^ |p;k,Xxk,X;p|bP^ |p;0> J

= 8SF7 \ <3-2-621
° ic,x

Adding the contribution from (3.2.61) to (3.2.62), the total magnetic 

energy density from an oriented magnetic dipole source is given by the 

expression

h~^ 1167t E C n
E >E D n

327t̂ £ c“ n ^

, 5 -2ur

° ALL E ° P"n

The u-integral term, applicable to both upward and downward transitions, 

becomes after averaging
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16H E^c 0
duu^e *̂*̂ X(iu) 1 3

2 2  3 3  4 4  5 5  6 6‘-ur u r  u r  u r  u r
(3.2.64)

giving the asymptotic limits

23hx(0)
3 764ît EgCr

(3.2.65)

for the far-zone, and

(3.2.66)
16Jï“E^c“r n

for the near-zone. The additional contribution from downward 

transitions, the first term of (3.2.63), after orientational averaging, 

is found to be

247r“e c“ n
E >E P n

6
pn ,,2 2 , 4 4  , 6 6'-k r k r k r •pn pn pn

(3.2.67)

with the overall far-zone density dominated by

E >E P n

(3.2.68)

while the near-zone behaviour, like that from the u-integral term, has
—  6an r deoendence.
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3.2.2(c) Electric Quadrupole Contribution

The final contribution to the magnetic energy density to be 

determined is that arising from the electric quadrupole source. This is 

evaluated from

(3.2.69)

Using the quadrupole-dependent part of the magnetic field linear in the 

sources (2.2.55), the first term of (3.2.69) is

2"o'=l<P|b‘̂ ’(3)|nXnib‘̂ ’(3)|p> = - V " I  V ' *
32JT £^n

(3.2.70)

while the contribution from the interference of the source independent 

field with the quadratic field (3.1.12) is obtained from

2 [<0;p|bj^^|p;k,X><k,X;p|b^O^|p;0> + 
kTx

<0;p|b|^^ |p;k,Xxk,X;p|b|^^ |p;0> J 

I ,3.2.71,Srre I2V
k.X

Evaluating the above in the usual manner, making use of (3.1.30), the 

total magnetic energy density from an electric quadrupole source is

16Tt C n
E <E n p
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^  I « P C  iur. .
° A L L E  °n

(3.2.72)

After multiplying the geometric tensors in the first term above, which 

is given by (3.A.6) in the Appendix, the pole contribution on rotational 

averaging is

r i ;  A » »
E >E 

D  n

L, 2 2 ,4 4 ,5 6r k r k ron on pn
(3.2.73)

with the near-zone limit

8 0 7 1  E  r “  n
E >E 

D  n

and the far-zone asvmotote

(3.2.74)

1 ^ qP V ‘Pi-̂
80%-E r’ n

(3.2.75)

w i t h  t h e  e n e r g v  d e n s i t y  i n  a  s n h e r i c a l  s h e l l  a t  l a r g e  r  b e i n g

1 ^ oPno"Pk-20nE^ Z ®Xp%^pn " (3.2.76)

E >E p n

The u-integral part of (3.2.72), after expanding the geometric tensors, 

which is given by (3.A.8) in the Appendix, and orientational averaging, 

becomes
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^  ̂  » .
0 0 np

2 2  3 3  4 4  5 5  6 6“-u r u r u r u r u r -'

(3.2.77)

After the usual approximations, the far-zone limit is

297hc 0 ( 0 ) .  (3.2.78)
12807i^e^r“

This completes the evaluation of the electric and magnetic Thompson

energy densities correct to second order in the electric dipole,

magnetic dipole and electric quadrupole transition moments in the

neighbourhood of a molecule using the multipolar Hamiltonian. Each

resulting expression for the energy density is composed of two terms; a

u-integral term and one applicable only to downward transitions from the

initial state. For a molecule in an excited state, the overall far-zone
—  2behaviour is dominated by this latter contribution, exhibiting an r 

distance dependence in all cases, corresponding to real photon emission. 

For a molecule in its ground state, the u-integral term is the sole 

contribution to the energy density. The energy density is directly 

observable as an intermolecular energy shift when a test polarisable 

body is placed in the fields of the source.

In the following Section, the electric and magnetic energy 

densities due to an electric dipole source are evaluated in the 

minimal-coupling formalism in the Heisenberg picture. The densities 

calculated using the total electric field and the magnetic field are 

shown to be equivalent to those obtained using the multipolar framework.
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3.3 ENERGY DENSITY USING MINIMAL-COUPLING MAXWELL FIELDS

In this Section the total electric field and the magnetic field in 

the p r o x i m i t y  of a molecule obtained in the last Chapter in the 

minimal-coupling approach are used to calculate the energy densities due 

to an electric dipole source. They are shown to be identical to those 

derived within the multipolar framework.

Considering terms second order in the sources, the expectation 

value of the electric energy density for the electromagnetic field in 

the state where no photons are present, with the molecule in a state 

|p>, is

(3.3.1)

The first terra of (3.3.1), the contribution from the product of the 

first order total electric field of an electric dipole source is exactly 

the same as the corresponding term in the multipolar calculation

(3.2.3), namely

, (3.3.2)

since the first order transverse displacement field was shown in the 

second Chapter (see (2.3.22)) to be times the total electric field. 

It was also pointed out then, that the second order minimal-coupling

Maxwell field operators were not equivalent to their multipolar 

counterparts. That the minimal-coupling fields quadratic in the sources 

result in identical expectation values will now be demonstrated

explicitly. By taking the diagonal matrix element for the electron state

of the second order total electric field due to an electric dinole
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source (2.3.37) in complete analogy with that carried out in Section 3.1 

for the multipolar fields, results in an operator acting solely in the 

photon space

with

° k.x'
(3.3.3)

n no
-  Y ^

'it - / E -hw- np

+ ;L E +hwn np

k F. .(kr)

k F (kr)

^  F,/k rlei'kon+k)ct 
k 4̂  np

^  F./k r)e-i'kpn-klctk pn (3.3.4)

in contrast to (3.1.13) in the multipolar case. Using the mode

expansion for the zeroth order electric field and (3.3.3), the last two 

terms of (3.3.1) are

|'=oJ KO;p|e
k,x

TOT(2) |p;k,Xxk,X;p|ej^^ |p;0> +

<0;p|ejO^ !p;k,Xxk,X;p|eJ^^^^^ |p:0> J 

1 T fhckl , - -ik.r ik.r - - ,
) \.9M I +C;e8ne 1̂2V J 4 41

‘ k.X
(3.3.5)

After performing the polarisation sum and angular integral, the first 

term of (3.3.5), using (3.3.4) becomes

32%^E
jL  he

2Jri dkk (F4^(kr)-F4^(kr)lA^4
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-(k^ /k)f..(kr)f..(k r)eik(r+ct)gik^ (r ct) 
np y  np

+ (k* /k)f .(kr)f. .(k rle'^^'r-ctlgik^ (r-ctll
np np J

1 T ,,pn np _PV r dkk3 2 * 2 ;  k ^  J k - k ^ „
0 0

3 r

-(k" /k)f;.(kr)f^(k rle^^'r+ctl^ik ^(r-ct) pn >L̂ pn

+(k^ /k)f;^(kr)f..(k rie-ikfr-cti^ik ^(r-ct) 
pn pn

(3.3.6)

Evaluating the integral for downward transitions from p, with k^^ > 0,

6471 n

64%"E ÎÏ  ̂ ;; u“ + k“0 0 on

For kp̂  ̂ < 0, the u-integral term remains unchanged while the pole 

contribution changes sign,

The second term of (3.3.5) is simply the complex conjugate of the first 

so that the total electric energy density in electric dipole 

approximation in the minimal-coupling approach, after adding the 

contribution from the product of the first order fields (3.3.2) is

^  2 +
° E >E P n

^  I '^.3.9)
° ALL E ° P"n
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in agreement with expression (3.2.10) obtained using the electric 

displacement field of the multipolar framework.

The magnetic energy density in minimal-coupling is determined from

(3.3.10)

The contribution from the product of the first order electric dipole 

dependent magnetic field is easily seen to be

32%"Eg n
(3.3.11)

as the minimal-coupling magnetic field linear in the sources (2.3.49) 

was shown to be identically equal to its multipolar analogue (2.2.55). 

For the evaluation of the remaining two terms of (3.3.10), the diagonal 

matrix element over the molecular space is required for the magnetic 

field quadratic in the electric dipole moments. From (2.3.53),

<p|bj^ N r, t;ii/j) |p>

where

r hk 1/2

(3.3.12)

E -hw n np

E +ho) n np

k V , ( k r )  -  - P c . X k  r ) e i ' k p n + k l c t  k  np

k V . ( k r )  - -pG,j(k D e  ^‘*'pnk pn (3.3.13)

in contrast to of (3.1.22). Using the mode expansion for the free 

field and (3.3.12), the contribution to the magnetic energy density 

arising from the interference of the vacuum and quadratic fields is
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y [<0;p|bj^)|p;k,X><k,X;p|b^^)|p;0> + 
k A

<0;p|b^^^ |p;k,Xxk,X;p|b|^^ |p;0> j

"bk" r -ik.r., ik.
Sne ^2 (3.3.14)

° k,X

Performing the polarisation sum and angular average and using (3.3.13), 

the first term of (3.3.14) is

—hei“  ^  I dkk^[G^^lkr)+G^^(kr)jB^
i -  2 2I1 J k ^  [k^g^i<kr)g.ykr)e

327r“e^ n  ̂  ̂ np
2ikr

(C^k)g,^(kr)g,.(k^pr)e^^(:'+':t)^ik^p(r-ct) 

(<p^k)i.^(kr)g..(k^^r)e-'k(r-ct)^ik^p(r-ct)

 ̂ 2ikr
32% ^pn

-<C/k)g^^(kr)g,.(kpn "-Lt pn
-(k;/^^^^4(kr)g,/k^,r)e-'k(r-ct)^ik^^(r-ct)

(3.3.15)

Evaluating the integral subject to k^^ < 0, corresponding to upward

transitions from |p>,

he-—  jduu e Qt̂-̂( iu)g^^( iur )ĝ (̂ iur ) (3.3.16)

is obtained, while for k >0, the Dole term c h a nge s sign,on
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i  Y .,pn..np, 6 -
6471 n7  I

r) (3.3.17)

with the u-integral remaining unaltered. Evaluating the second term of 

(3.3.14), which is the complex conjugate of the first and adding the 

part from the fields linear in the sources, the total magnetic energy 

density is

16%-E n ' - Pn-4, pn pn
° E >E p n

1 j [ r  2k,pg,/i»r)g,^(iurl . (3.3.18)

% L L E  ° "Pn

in agreement with the multipolar result (3.2.52).

Despite the separation of the minimal- and raultipolar-coupling 

Hamiltonians being different in both cases as shown in Chapter 1, 

leading to different Heisenberg equations of motion for the operators, 

although the first order fields were seen to be identical in both 

formalisms, identical matrix elements are obtained for the 

electromagnetic energy density. This is a direct consequence of the two 

forms of Hamiltonian being equivalent, thus giving equal matrix elements 

"on the energy shell".

The remainder of this Chapter is devoted to the calculation of the 

Poynting vector in both formalisms and its relation to the transition 

rate for spontaneous emission.
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3.4 ENERGY FLUX USING MULTIPOLAR MAXWELL FIELDS

The quantum mechanical Hermitian operator for the Poynting vector 

S(r,t) is [31,331

-4 -4 1 ? f-^TOT -4 -?*TOT -4» 1Sfr.t) = c lé (r,t)  ̂b(r,t) - b(r,t)  ̂e (r,t)|. (3.4.1)
^ ° L J

As noted earlier, for a neutral molecule, times the total electric 

field is equal to the transverse displacement vector outside the source, 

so that in the multipolar formalism molecules couple to the displacement 

field and not to the electric field as in the minimal-coupling 

framework. Thus

= 1 d̂ -( r, t )b̂ ( r, t) + b̂ ( r, t )dj( r, t ) (3.4.2)

The multipolar electric displacement and magnetic fields in the 

Heisenberg picture obtained in Section 2,2 therefore provide a suitable 

basis for the calculation of the energy flux from a molecule in an 

excited state. The Poynting vector can, of course, still be evaluated in 

the minimal-coupling version of OED by utilising the total electric and 

magnetic fields in the neighbourhood of a molecule derived in Section 

2.3. This is carried out in the following Section where the equivalence 

of matrix elements for the process obtained from both methods is 

demonstrated for the electric dipole case.

The expectation value of the Poynting vector for the radiation 

field in the vacuum state with the molecule in an excited state |p>, 

after expansion of the field in successive powers of the multipole 

moments, is
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<0:p|S;(r,t)Ip;0>

2
= § £ o<0:Di (d^+cl^-^ ̂ + d ^  +. .. ) ( bi^  ̂+... ) I p;0> + c.c.

E;^^<0:p|d^.^^by \d[.^^b]^^\d^°^bj^^^|p;0> + c.c. (3.4.3)

concentrating only on terms second order in the transition moments. As 

for the calculation of the electromagnetic energy density, the 

individual contribution to the energy flow arising from the pure 

electric dipole dependent fields, the mixed electric-magnetic dipole 

dependent fields, pure magnetic dipole dependent fields etc., for all 

possible permuatations up to and including the electric quadrupole 

moment, are evaluated.

Beginning with the contribution to the Poynting vector from the 

electric dipole dependent terms of the electromagnetic field, the first 

term of (3,4.3) using (2.2.34) and (2.2.55), is

I £^^.^<0;p|d^^\g)by \ p ) + b y  (p)dy (p)|p;0>(1),^\ ,(1),T̂

<p|d^^^|n><n|b^^'|p> + <p|b^^'|n><n|d\^'|p>(1 (1 (1 )

327r“£ L <f

(3.4.4)

Using the definitions of the tensor fields f; 4 kr) and g;:(kr) as given 

by (2.A.1) and (2. A. 7) from the Appendix to Chapter 2, the terms of

(3.4.4) can be simplified to give

1 6 7 t “ e  r “  ' 2  ^ 4  ̂ p n ^ ’
(3.4.5)
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After orientational averaging and contracting the tensors, the 

contribution to S-(r,t) from the product of the first order fields is

The contribution to the rate of energy loss out of a sphere at any 

radius is

with the summation including both upward and downward transitions from
I _ 7jp>. The r " dependence on separation distance in (3.4.6) is consistent 

with the conservation of energy requirement that the energy flow through 

a spherical surface be independent of the radius, as seen in (3.4.7).

The contribution to the Poynting vector from the interference of 

the zeroth order field with the quadratic field, remembering that both 

these fields are linear in the photon creation and destruction 

operators, using (3.1.1) and (3.1.7), is

f ) I <0;p|d^-^^ |p;k,Xxk,X;p|b^^^ (pit) |p;0> +
O ' "

<0;p|d^^^(pp) Ip;k,Xxk,X;p 1 b^^^ !p;0> + c.c.

= 2 + c.c. (3.4.8)
k.X °

The first term of (3.4.8) and its complex conjugate, after performing 

the polarisation sum and angular average using (2.2.19) and (2.2.24) 

respectively, and the definition of the tensor field (3.1.22), is
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2 ^  Jdkk"tF^™(kr)-F.^_(kr))?^^ + c.c.
" 0̂ 0

■  ^  - ' "  I ' M '  a  ■0 0
ftF^.m' kr )-F^.^< kr ) I [k \ ^ (  kr)-k,^^G^_^' k„„r )e'^ '^p^+k >c t ,
I 'knp-kt
IF,m'krl-F^m'kr)l[k-G&(lkrt-k3^Gj^,k^^rle''kpn-klctj,

(k^p.k) J + c-c-

-C r 's nP^N"P_2ï r dkk
32h"c A ̂  Jk+k0 0

:X\
+ C r Y r dkk'

32n’e K ^  Jk-k^^
Q 0 *

+ C.C. (3.4.9)

where index manipulation has been used to eliminate the terms without an 

exponential dependence. The k-integration involved in the Poynting 

vector can be evaluated exactly for the time independent part by 

extending the integration limits to This results in the pole

contributions
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6471 ‘T %

(3.4.10)

64%-c^ ÎÏ

Such an extension of the limits however, is not possible in the 

determination of the energy densities occurring earlier. Therefore there 

are no terms involving a u-integral occurring in (3.4.10). Evaluating 

the remaining terms of (3.4.8) in a manner identical to that illustrated 

above, the contribution from the vacuum and second order fields is

3, , , ‘ S n * ««m “‘pn "««.P. ' ‘‘pn '■ > “‘pn'- '

(3.4.11)

The total contribution to the Poynting vector from the electric dipole 

dependent fields (.31,33) is given by the sum of (3.4.4) and (3.4.11),

f;p(k _r)gg_(k . ̂ r)+gg_(k__r)f .y (k r )
^  1-'“ L “ K"   K"   K" <r “ P71

’ Cp>En

3ET 2 ■ '3.4.12,0 n
E >E D n

It is seen that the contribution from upward transitions from jp> comes 

with opposite sign to the term from the product of the fields linear in 

the moments, resulting in complete cancellation; downward transition 

contributions however, are identical to (3.4.4) and consequently double 

in magnitude, as given by (3.4.12). The adding and cancelling of pole 

contributions from the interference of the second order field with the
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vacuum field, with terms arising from the product of the first order 

fields is, as in the energy density calculations carried out in the 

previous Sections, a characteristic feature in the calculation of the 

Poynting vector. The rate of flow of electromagnetic energy from a 

radiating electric dipole source (3.4.12) can also be calculated from 

the spontaneous decay rate of a molecule in an excited state. By 

determining the matrix element for the spontaneous emission of a photon 

from an excited molecule and using the Fermi golden rule, the transition 

rate can be used to determine the power loss through a spherical surface 

by spontaneous emission, leading directly to (3,4,12). The importance of 

the Inclusion of the quadratic field is evident since the Poynting 

energy flow from the first order fields gives only one half of the 

spontaneous power rate. Including the second order field doubles the 

flow, resulting in the equivalence of the spontaneous rate and the 

Poynting vector flow.

Having calculated the leading contribution to the energy flow, that 

arising from the electric dipole dependent fields above, the next 

contribution to be evaluated is from the mixed electric-magnetic dipole 

dependent radiation field. The method outlined in the first example is 

followed throughout the rest of this Section,

The contribution from the product of the first order fields to the 

Poynting vector energy flow from a chiral molecule is, using (2.2.34) 

and (2.2.55)

<p|dj^^(pU|n><n|b^^^(m)|p> + <p| b^^ ̂ (ra) | nXn|d^-^ ̂ (/I) | p> 

<p| d̂ -̂  ̂ ( m) I n X n |  b^^ ̂ (^) I p> + <p|b^^^(^)|n><n|d^^^(m)|p>]
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1

32n £

(-

V '  kpn^ 'H J  kpn" k p n ' ) k p n "  >J J

(3.4.13)

The above vanishes for an isotropic chiral source. The contribution from 

the free and second order fields, evaluated from

:p|d̂ -̂  ̂!p;k,Xxk,X;p|b^'^ ̂ (/Im) |p;0> +(2 )

k,X
<0;p|d^^^(^m) |p;k,>-><k,X;p|bl^' |p;0> ? + c.c.

_ L  c  ^  f h c k

■̂ n I  2V,k.X
ik.r,r

i 7  2 " f C k p „ [ l  VJkp„'-lfto'kp„"’”^«m'kpn"’fi^<kp„r)j

r -ik.r + c.c.

167I“£
E >E Ü n

(3.4.14)

also vanishes for an isotropic source.

The next contribution to the Poynting vector comes from the 

magnetic dipole dependent Maxwell fields. Using the fields linear in the 

sources (2.2.34) and (2.2.55), the contribution from the product of the 

first order fields, is

2
r
; <p| d^^ \ m) I nXn I bĵ  ̂̂ ( m ) |p> + <p| bĵ  ̂\ m ) | nXn | d^^ \ m ) | p>]

iy -  1 4 " % > p n h ^ ‘kp„r)f^^(kppr)+f^.^(kp^r)g.^(kppr)]
327r“e„c

(3.4.15)
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which becomes, after simplifying the geometric tensors, whose

definitions were given in the Appendix to Chapter 2,

-1 T pn no, 4
16%^E_cr' '4/m (3.4.16)

which after rotational averaging results in

24%^EgCr" n
(3.4.17)

The contribution from the zeroth and Quadratic fields is

<0;p|d^^^ ip;k,Xxk,X;p|b^^^ |p;0> +

<0;p|d^“  ̂!p;k,Xxk,X;p|b^^^ |p;0>J + c.c

1 _ T r w
9.m \Qne l2Vj

k,X
e ^bp^pe-bpSip ;bce + c.c. (3.4.18)

where use has been made of the free field (2.2.15), and (3.1.3) and 

(3.1.9). On evaluating the four terms above, it is found that (3.4.18) 

becomes

32%"EgC

(3.4.19)

Comparing (3.4.19) with the contribution from the product of the first

order fields (3.4.15), it is seen that when k <0, corresnonding topn -
upward transitions from jp>, the two terms come with opposite sign and

cancel on addition. Only downward transitions, for which k > 0,pn
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contribute to the Povnting energy flow, so that

\ - (3.4.20)
08" "-cr ■ ■ E 5eÜ n

from which the energy flow across a snherical surface is calculated as

which, as expected, is independent of the radius of the shell. The flux

(3.4.21) is exactly equal to the power loss from a molecule in an 

excited state undergoing spontaneous emission.

The rate of flow of electromagnetic energy from an electric 

dipole-quadrupole source is the next contribution to the Poynting vector 

to be examined. Using the electric dipole and quadrupole dependent terms 

of the radiation fields (2.2.34) and (2.2.55), the term from the product 

of the first order fields is

^ 2[<pId^-^ N p ) InXnI b^^ ̂ (Ô) I p> + <p|d^^^(Q)|n><n|b^^^(p)|p>| + c.c.

I " r O p n [ l ( W ' “

c

I'V-'n' kpn^ ' H é  kppf ' kpn^'j]
(3.4.22)

which after expanding the geometric tensors and averaging, gives zero. 

The contribution from the source independent field and the quadratic 

field, determined from
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r r
9 ) j^<0:p|d̂ ^̂  |p;kA><k,X;p|by ' |p;0> +

tr,\

<0;p I ^  Ip;k,Xxk,>-;p|^ Ip;0> I + c.c.

(2)

-1 C
8!tE

t.X
e ^ . e ’̂ 4®

+ C.C. (3.4.23)

similarly disappears, as expected for dipole-quadrupole coupling.

The next contribution to the Poynting vector, that arising from the 

magnetic dipole-electric quadrupole interaction term, also vanishes on 

averaging. The contribution from the product of the first order fields 

for an oriented source is given by

f   ̂ĵ <p|d̂  ̂̂ (m) |nXn|bj^^ ̂ (Ô) |p> + <p|d^^^(Q)|n><n|b^^^(m)|p>| + c.c.

/ ( V ' S n ‘ J W ' ><pn" ’̂ ^4mn'kpn^'S'-C' Sn'' ’) +

k p p F  '  ^ 4 4 '  k p p f  ) - ^ 4 4 <  k p n ^  ' * ' p n ' '  ’  J J  '

(3.4.24)

while the contribution from the interference of the vacuum and second 

order fields is found from

c\_ ?
2 '.^4 J

k.X
<0;p|d^^^ ! p;k,Xxk,X;p|b^^ ̂ |p;0> +

<0:p|dj-^^ ! p;k,Xxk,X;p|b^'^ ̂ |p;0>J + c.c(0 )

—  1C   ̂ T fhk' 
8%c J. 12V%

k.X
+ c.c. (3.4.25)

127



on using (3.1.5) and (3.1.11), and is simply twice (3.4.24) for downward 

transitions and zero for upward transitions from }p>.

The last non-zero contribution to be considered is that arising 

from the electric quadrupole coupling term, with the product of the 

first order fields giving

f ^4^4 2l<p|dj^^(0)|n><n|b^^^(Q)|p> + <p|b^^ ̂ (Q) |nXn|d^-^ ̂ (Ô) |p>

327r“£^ n

(3.4.26)

Evaluating the geometrical tensor product occurring in parenthesis above 

using (2.A.12) and (2.A.16) results in

y • <3-4.27)

Rotational averaging and contracting the tensors results in

r_. (3.4.28)
80it“£ r“ K

The contribution from the free field and the second order field is 

determined from.

<0;p|d^-^^ |p;k,Xxk,X;p|b^^^ |p;0> + c.c.

Site / |_2Vj ["f V l "  IwA
° k .X

y [|ïï] + c.c. (3.4.29)
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Evaluating the four terms above in the now familiar way, the Poynting 

vector from a quadrupole source is

S;(?,t) = S  y . I ) j . (k rI2 Z ■■e'n>"n,i*'Dnn-£m'‘"pn‘'■'«'n,!' on
E 9E

- 1

= I
 ̂ E >E P n

with only downward transitions contributing to the flow. The energy flux 

through a spherical surface is then

îô#r 2 ' '3.4.31)
p n

and is independent of the radius of the shell and is in agreement with 

the conventional calculation of the spontaneous power across a spherical 

surface using the Fermi rule transition rate for spontaneous emission.

The final contribution to the Poynting vector to be examined under 

the approximations considered is that arising from the diamagnetic 

coupling term. The electric displacement and magnetic fields due to the 

diamagnetic interaction were obtained at the end of Section 2.2. 

Recalling that both these fields are quadratic in the electric charge, 

there are no first order diamagnetic correction terms. Thus

k.X

<0;p|d^-^^ |p;k,Xxp;k,x|b^^‘̂!p;0> I + c.c.
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° k.Xp;n
2-e

16#E m ^ t ' m . ' i T L  (2Vj^
1 :^

; l W k : ^ q r q : % E  (kr,e-kr , ^.C.

(3.4.32)

using (2.2.69) and (2.2.70). Converting the four terms of (3.4.32) into 

k-integrais, after carrying out the polarisation sum and angular 

average, the four terms vanish on addition.

This completes the evaluation of the Poynting vector from a 

radiating multipole source correct up to terms quadratic in the electric 

quadrupole coupling term in the multipolar formalism of QED. It has been 

shown that the only non-zero contributions to the energy flow arise from 

sources possessing only electric dipole transition moments, or only 

magnetic dipole or only electric quadrupole transition moments, with 

contributions from isotropic mixed multipole moments, bilinear in the 

sources, vanishing.

In all cases the Poynting vector exhibits an inverse square

dependence on distance, as expected for an excited source undergoing
- 2real photon emission. The r " dependence is consistent with the local 

conservation of energy requirement that the energy flow across a 

spherical surface be independent of the radius. The quantum mechanical 

rate of spontaneous decay of an excited molecule from which the power 

loss through a spherical surface is determined, is in agreement with the 

rate of energy loss by radiation from an oscillating multipole source as 

calculated by the Poynting vector. It has been confirmed that only the 

spontaneous allowed transitions contribute to the total power. The 

importance of the inclusion of the electromagnetic radiation fields 

second order in the transition moments in the calculation of the

130



Poynting vector has also been demonstrated. Use of the first order 

fields alone gives only one-half of the spontaneous power. Adding the 

contribution from the quadratic fields doubled the flow, resulting in 

the equality of the spontaneous rate and Poynting energy flow to quantum 

fields of second order.

3.5 ENERGY FLUX USING MINIMAL-COUPLING MAXWELL FIELDS

In the previous Section the rate of flow of electromagnetic energy 

from a set of oscillating multipole moments was calculated in the 

multipolar framework using the electric displacement and magnetic fields 

of Section 2.2. In this Section the Maxwell field in the neighbourhood 

of a molecule obtained using the minimal-coupling approach, is used to 

demonstrate the equivalence of the expectation value for the Poynting 

vector with that obtained using the multipolar formalism in the electric 

dipole approximation.

In the minimal-coupling approach, the Poynting vector is given by

TOT TOT ->(r,t)b^(r,t) + b^(r,t)e^ (r,t)

he'O'bf ' (S3) + C.C.

(3.5.1)

concentrating only on terms second order in the electric dipole moments. 

The first term above, that arising from the product of the fields linear 

in the sources is given by (3.4.4) as the first order minimal-coupling 

Maxwell fields are equivalent to their multipolar counterparts. Using 

the mode expansions for the zeroth order fields, (3.3.3) and (3.3.12), 

the second and third terms above become
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|p;k,Xxk,X;p|b^^^^ |p;0> +
k,X

+ c.c.<0;p|e^ |p;k,Xxk,X;p|b^ (fifi)\p;0>

T  -iU ) f||l[e_A i »1 + c.c. (3.5.2)8itE -‘.ii L Uv’J ‘ ®  i ™
k.X

The first term after performing’ the sum over polarisation, angular 

average and using (3.3.4) is

2 H  pkk'[G^(krl+G^^(kr),A^^
32!T ^

^  I [k%m'kr)f,z'kr,e2ikr
32Tt-£̂  ' n " ;■ np

-(k< /k)2,^(krlf,/(k rleik'r+ctl^ik^ (r-cti 
np -«'m np

-< knp/k ' e' > ê '̂ np' >

-c
32%-Eq ' % "pn

"(kpn/k)K&m(kr)fjf^kp^r)eik(r+ct)eikpn(r ct)

S n ^ ^ ^ ^ ^ p n ^
(3.5.3)

Evaluating the time-independent part of the k-integral by extending the 

limits as before, results in the noie contributions

64it „

(3.5.4)
^ pn, np, 5 -

64%-Cg
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The second term of (3.5.2), making use of (3.3.13) is

Q Q

I -?>r s  f î ï F
oc-i n g np

knp/k ' 'ê  V

f^m(kr,;a^Xknpr,e-ik'r+ct'eikpn,r-ct,

 ̂ c _ V ..pn..np PV r dkk^ f , 3t ,, ,, , -2ikrI ^  I -k%.^(kr)i^^(kr)e
32n^Cq n  ̂ pn

"k;/k,i^,.r,E«,k,,r,.-'k""".-k,.l'-«l

(3.5.5)

giving the contributions

-c
64%-Cg %

(3.5.6)

Adding (3.5.4) and (3.5.6) and the complex conjugate terms to the 

contribution from the product of the first order fields, noting that 

only downward transitions contribute to the radiated energy, the 

Poynting vector due to an electric dipole source is
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^,,4 2 (3.5.7)

E >E 
D  n

which is seen to be identical to (3.4.12) obtained with the multipolar 

Hamiltonian. The above calculation provides a demonstration of the 

equivalence of the expectation value for the Poynting vector using the 

minimal-coupling and multipolar formalisms.
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APPENDIX

In this Appendix to Chapter 3, the explicit form of the product of 

the geometric tensors occurring in the expressions for the energy 

densities is presented. The tensors are required for the rotationally 

averaged near- and far-zone limits to be ascertained.

h.,.(iur)h. ,(iuri =■L'HlZ 2 2  3 3  4 4  5 5  6 6  7 7  8 8
*- 11 y» 11 y* 11 r* ii r* ii r» ii r* n r » -u r  u r  u r  u r  u r  u r  u r

(3.A.1)

with

/\ /\  ̂ /V/N /\ /S ys /V/N
1 + ̂ 86^^r^r^+66^^r^r^-l 85^^r^r^+

= 2 l«̂ r̂̂ r̂ +1 185̂ -̂ r̂ r̂ -455̂ r̂̂ r̂ +1 SŜ .̂ r̂ r̂ -l 56̂ r̂̂ r̂ +

\ \ /X xX /X /X /X xX xX
fjUm = 2 ( 9*te///+9f4^r^r™+96^.^_r^r^_-270^.^r^_r^+96^^_r^r^+35,_^r^r^+

(3.A.2)

K.,,kr)h. .(kr) =•6*̂  'tm-C ! 2 2 3 3 4 4  5 5  6 6  7 7  A A, , - - ,3 3 , 4  4 , 5  5 , 6  6 , 7  7 , 8  8,k r k r k r k r k r k r kr-*
(3.A.3)

with
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C :

e :JÂ'Cm. ■3-«m'-/r336^.^r^r^+36^^r^r^-95^^r^r^+36^.^6^^+27r^r^r^r^

-H'tm 9-im''/f+9ĝ _(r̂ .r̂ +95.̂ r̂ r̂ -276.̂ r̂ r̂ +95.̂ r̂ r̂ -276_(̂ r.r̂ +

^iUm. = 0 (3.A.4)

rh ;
, , 2 2   ̂k r k“r^ k V * k^r“

(3.A.5)

with

0

(3.A.6)

^^U'm
2 2 ^  3 3 ^  4 4  5 5  6 6'-ur u r  u r  u r  u r

(3.A.7)

with

4̂̂ 471

(3.A.8)

136



C H A P T E R  4

INTERACTION OF TWO POL\RIS.\BLE MOLECULES
4.1 INTRODUCTION

Intermolecular forces are responsible for almost all of the 

chemical and physical properties exhibited by matter. Consequently, 

their understanding through a combination of theoretical prediction and 

experimental verification is of the greatest importance. The common aim 

of such study is the evaluation of the interaction energy between atomic 

and molecular systems and of its inherent dependence upon R, the 

separation distance between conveniently chosen centres.

The initial quantum mechanical calculation of the interaction

between two neutral ground state molecules assumed the coupling between

them to be Coulombic in origin. Use of second order perturbation theory
- 6then resulted in the characteristic R dependence on separation 

distance of the interaction commonly known as the London-van der Waals 

dispersion energy [44-46j. The results obtained, however, applied only 

to intermolecular separations small compared with wavelengths of 

molecular electronic transitions. This is a direct consequence of the 

neglect of retardation effects, namely ignoring the fact that

electromagnetic phenomena propagate with the finite velocity of light. 

To deal adequately with intermolecular interactions at all distances 

outside the regions of overlap of electronic wavefunctions, the

inclusion of the radiation field in the total Hamiltonian is essential.

Not only is retardation then a natural occurrence, but intermolecular

interactions in regions where the separation is of the order of the 

transition wavelength, where the effects of retardation become 

imnortant, are also determined correctly.
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By fully incorporating the radiation field and retardation effects, 

Casimir and Polder [43], prompted by the experimental observations of 

Overbeek and Verwey 147 1, first showed that the retarded dispersion 

energy obeyed an R power law dependence at large intermolecular 

separations. The London result was found to be applicable only at short 

separation distances. The use of the Coulomb potential energy term alone 

is therefore not sufficient to describe the interaction in the radiation 

zone. That a weakening of the potential occurred at large separations 

and could be attributed to retardation effects has been firmly 

established theoretically [48-52J and also confirmed experimentally 

[53,54j.

By treating both radiation and matter on an equal footing, OED is 

ideally suited to the investigation of retarded dispersion forces and 

the interaction between molecules in electronically excited states. The 

commonly held picture is one where all intermolecular interactions are 

viewed as arising from radiation-molecule couplings. Intermolecular 

interaction is mediated by the radiation field through the exchange of 

transverse virtual photons. In this exchange, the absorption and 

emission processes violate the principle of energy conservation. This is 

rationalised by appeal to the tirae-energy Heisenberg uncertainty 

principle; for small intervals of time, energy maybe "borrowed" from the 

electromagnetic vacuum permitting the participation of virtual states. 

Dispersion interactions are seen as being caused by vacuum fluctuations, 

a direct manifestation of the ever present zero-point energy of the 

quantised electromagnetic field.

The dispersion interaction between neutral molecules has been 

investigated thoroughly in the Schrbdinger picture of OED, at first 

solely within the electric dipole approximation giving the 

Casimir-Polder result 15,6,551, and later bv including magnetic dinole
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and electric quadrupole couplings 1,381. Use of the multipolar form of 

the theory is advantageous as neutral molecules couple among themselves 

solely via the radiation field since all electrostatic, and therefore 

instantaneous interactions, have been eliminated from the multipolar 

Hamiltonian. The dispersion force was interpreted as arising from the 

exchange of two virtual photons, the energy shift calculation requiring 

the use of fourth order time-dependent perturbation theory. Results were 

expressed in terms of molecular polarisability tensors, and were valid 

for the entire range of separation outside electron overlap. The 

limiting values at long and short separation distances were also given.

In this Chapter, an alternative approach to the calculation of the 

energy shift between two neutral molecules is presented. This method 

relies on the use of the time dependent Maxwell fields evaluated in 

Chapter 2. The picture is one in which a molecule is thought of as a 

polarisable test body placed in the electromagnetic field produced by a 

second, source molecule. The response of the first to the Maxwell field 

of the second is then calculated directly using the quantum mechanical 

analogue of the expression for the classical interaction energy. The 

leading term, corresponding to the use of the electric dipole source 

fields, gives the historically important Casimir-Polder potential 

[32,34J. This response formalism is now extended, by presenting for the 

first time in the Heisenberg method, a comprehensive calculation of the 

energy of interaction between neutral molecules in the ground state and 

in electronically excited states for molecules possessing a variety of 

multipole polarisability characteristics up to and including the 

diamagnetic coupling term. These higher order interactions are important 

when considering molecules with a small electric dipole polarisability 

and for molecules whose optically allowed levels are accessible from the 

ground state by non-zero magnetic dipole and electric quadrupole matrix
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elements. The inclusion of multipole moments other than the electric 

dipole is also important when the interaction between chiral molecules 

is examined. In such optically active species, the dispersion force 

depends on the relative handedness of the pair, a phenomenon termed 

chiral discrimination [561. The derivation of the complete potential in 

the Heisenberg' representation is given for the first time. The 

equivalence of this result and of others obtained in this Chapter, 

including their asymptotic behaviour at the limits of large and small 

separation, is shown with previous work carried out in the Schrbdinger 

picture.

In order to express the energy of interaction between two molecules 

in terms of their molecular polarisabilities, it is necessary to include 

the second order source fields which are quadratic in the transition 

moments as in the determination of the energy density and the Poynting 

vector. In the calculation of interaction energies, contributions arise 

from the product of the first order fields, which are linear in the 

moments, and from the interference of the vacuum field with the second 

order field. To evaluate the latter contribution, use is made of the 

diagonal electron space matrix elements of the electromagnetic field 

operators given in Section 3.1.

The energy shift between two neutral polarisable molecules is given 

bv the exnression

AE = - - Gb3 - -ixb“ - AdVd - tM  - &|9dl' + ... (4.1.1)

representing the interaction of a molecule possessing a specific 

polarisability characteristic with the radiation field of a second 

source molecule. The leading term, corresponding to electric dipole 

coupling has been treated by Power and Thirunamachandran [32,34] and is
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given here for the sake of completeness and as an introduction to the 

response formalism. The calculation of higher order terms follows.

4.2 THE INTERACTION BETWEEN TWO ELECTRIC DIPOLE POLARISABLE MOLECULES

The first interaction to be considered is that between two electric 

dipole polarisable molecules. Recalling that the electromagnetic fields 

in the vicinity of a molecule can be expressed as series in powers of 

the multipole moments, the interaction energy between two non-identical 

electric dipole polarisable molecules A and B in initial states |p> and 

! q> respectively, with A-B separation R = |R^—Rg|, correct to second 

order in the moments, is

Q

2£- S

'.2 e0 k,X

^'0 k“>-
(4.2.1)

The prime superscript in (4.2.1) implies that the virtual photon

(non-resonant) contributions are not double counted, and applies to all

interactions considered in this Chapter. The first term of (4.2.1)

represents the response of molecule A through its dynamic polarisability

(X. ;(w ), at frequency w for molecule A in state j p>, to theqm qm
first-order electromagnetic fields associated with the electric dipole 

transitions to the intermediate states |m> from the initial state |q> of
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molecule B. A similar interpretation applies to the remaining terms of

(4.2.1). The dynamic polarisability at frequency u is defined by

■ ; i î î  ■ ©  • s ■
np

The terms listed in (4.2.1) are the important contributions to the 

interaction energy as the first three terms arising from the expansion 

of the field in series of powers of the moments do not contribute. The 

product of the free field is independent of the source, simply being the 

zero-point energy contribution, while the term arising from the 

interference of the zeroth order field with the first order field does 

not contribute to the expectation value since the number of photons 

change. The first contribution to be retained and evaluated is that 

arising from the product of the field linear in the source. Using the 

electric dipole dependent part of the first order electric displacement 

field (2.2.34), the expectation value of the first two terms of (4.2.1) 

over the molecular state | q> and }p> respectively, with the radiation 

field in the vacuum state, is

To determine the contribution to the energy shift from the product of 

the vacuum field with the second order field, use is made of the 

diagonal matrix elements of the electromagnetic field operators 

quadratic in the moments given in Section 3.1. Using the definition of 

the free field (2.2.15) and (3.1.1), the contribution from the last two
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terms of (4.2.1) can be written as

8n£0 k.X

— ik.&- — ik.R

k.X
(4.2.4)

For the moment, concentrating on the very first term of (4.2.4), the 

polarisation sum (2.2.19) and angular average (2.2.24), give

-1_ ^ fhck' 
2  1 I  2 V J8nc0 k,X 
—he 1

327t-’c- 2"iJ0 Q
dkk"aV.(w)[F;^(kR)-F^^(kR) (4.2.5)

Using the definition (3.1.13) for (4.2.5) becomes

ï k  2  m  I d k k % ^ ( w )  X
327i“e“ %

([F-o( kR )-F̂ . .( kR ) I [k“F^„( kR )-k^ F .. ( k R )e‘ ̂ ̂ ̂  Q+k)ct
m g  m g __________________________

I

I ' kR )-F ( kR ) I [ k = F ( kR )e^ ‘' k m q + k '  J
2 W  iff r e f -

3 2 % - E -  m

(w)
mq

— — ? 1 kR-k“f^^(kR)f^^(kR)e

-k-̂  f . .( kR)f ..(k R)e^k(R-ct )̂ ik (R-ct ) 
m q  m q

+k^ f̂. «(kR)f^.(k Rie'ikfR+ctigik ^^R-ct)l 
m q  -L/C ^-R m q  J
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32% m k-kam
;(U) -k^f^^(kR)f^^(kR)e-2ikR

-k” f.«(kR)f .̂ {k B)eik(B-ct)^-ik ^(R-ct) 
qm 'Lt qm

+k^ îj.( kR ) f.o ( k R)e"ik(R+ct ) ̂- ik^^^fR-ct ) 
qm qm

(4.2.6)

where use has been made of the -̂ .-f-index symmetry to eliminate the term 

without an exponential dependence. For a state for which > E^, after 

making the substitution k = —iu, the time-independent part of (4.2.6) is

-1
64%-Eg % 4m

he
64%^ei J duu“e icu )o(̂ (̂ icu ) f̂ (̂ iuR ) f̂ (̂ iuR)

0 0
(4.2.7)

and the time-dependent part is given by

2  duu-c^^(icui*
64%-E; m

r_ ik (R-ct) 
mq 1" ^ir|f-«(k R)e"^am'" f .e (-iuR )■1_ -It. r

-uc(t-R/c)

- h t I kmqR ’qm

+ f;^(k R)e^^ma^^"^^^f ̂ (-iuR)-------rr--'•-t: qm * u - ikqm
-uc(t+R/c)i

-f o(k R)e^^raa^^ f̂ -o(-iuR)- rr-Lt: qm #  u - ikqm 
(4.2.8)

The time-dependent terms tend to zero for t » R/c as the integrals have 

exponentially decreasing values for large t. In addition, the average of 

(4.2.8) over a finite time interval tends to zero because of the
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—ik c tmodulation factors e qm . These oscillatory terms are ignored

henceforth. Returning to (4.2.6) and evaluating the integral for the

case k > 0. the pole contribution is found to be mq

64tt £“ In

The u-integral part is identical to that obtained in the second term of

(4.2.7). Use has been made of the relations (2,A.3) and (2.A.4) given in

the Appendix to Chapter 2 for the geometrical tensors.

It is important to note that the first term of (4.2.7) has the same

sign as the corresponding term arising from the first order fields

(4.2.3). However, for those states m with E > E , the Dole contributionm q
has opposite sign as indicated by (4.2.9), and cancels the corresponding 

term of (4.2.3). This addition and cancellation of pole contributions 

from the zeroth and second order fields with terms from the product of 

the first order fields is once again a common characteristic throughout 

the calculations carried out in this Chapter.

After evaluating all the remaining terras in (4.2.4), the energy of 

interaction between two excited electric dipole polarisable molecules is

° E >E q m
-1  V B

167t-£̂  S
" E >EP n

+ he duu“e icu)«^^( icu)f^^( iuR)f̂ -̂ ( iuR). (4.2.10)
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When both molecules are in the ground electronic state, the first 

two terms of (4.2.10) disappear since only upward transitions from the 

initial state are possible, leaving the u-integral as the sole 

contribution to the dispersion interaction. After multiplying the 

geometric tensors and averaging, this term can be expressed as

367T E:hc ; (kTn+u^)(k- +u“)0 m, n Q mo no

•-u“R“ u^R^ u^R^ u^R“ u~R^J
(4.2.11)

and is the familiar Casimir-Polder potential [43j. It is instructive to 

examine the asymptotic behaviour of (4.2.11) in the limits of large and 

small intermolecular separation. In the far-zone limit the molecules are

separated by a distance R much larger than the wavelengths of the
2molecular transitions. In the denominators of (4.2.11) u*” may be ignored

in relation to k „ and k . After nerforming the u-integral, themo no -
far-zone result is found to be

23hc«s,0,«\0, M . 2.12,
3 764% E-R"

where now the ground state static polarisabilities appear. In the 

near-zone the separation is much smaller than characteristic transition 

wavelengths, resulting in kR 1. Retaining the leading term of (4.2.11) 

after setting the exponential factor to unity gives the near-zone shift

24. 'Emo+Gno' '0 m,n
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more commonly known as the London dispersion energy. It is worth 

pointing out at this stage, that the near-zone result may be obtained 

from second order perturbation theory when the interaction is 

represented by an electric dipolar coupling term. This is examined in 

more detail in the final Section of this Chapter. The dispersion 

potential is identical to that obtained in previous studies using both 

methods 1.6,32], and is in agreement with the interaction energies 

obtained in Section 3.2 resulting from the response of a test molecule 

to the displacement field of the source.

If for example molecule A is taken to be in its ground state while 

B remains excited [57], only the first and third terms of (4.2.10) 

survive. Examining the first term of (4.2.10), after multiplying the 

tensors and rotational averaging, the additional contribution from 

downward transitions is found to be

24%' £ >£ qm qm qm
q m

It is important to note that for large R the leading term of (4.2.14) 
_ 2has an R deuendence corresuonding to real ohoton emission, given bv

E >E a m

This is the dominant contribution to the interaction energy at large
_ 7separations since the virtual photon terms exhibit the familiar R 

dependence in this limit. The virtual photon contribution is essentially 

the same as that of the uoward transitions given in (4.2.11)
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,T, cluu“p~“^^k k 
AE = _ l l   y |T;qm|Z|2n°|2| — -- ^

367r^e^hc “ : (k“ +ir)(k“ +uT)0 m, n 0 mq no

•-u“R“ ii“R“ u^R^ u^R" uTR^J
(4.2.16)

where the summation over m includes both upward and downward 

transitions. The asymptotic behaviour of (4.2.16) at large R is

■23hca^01«'(0) (4.2.17,3 ? 7647T £“R'

where now the static excited polarisability of B appears. For small R. 

the dominant term of (4.2.16) is

) sgn(E ) ----------- (4.2.18)? 7 fi / mq24% E:R mTn ^  (E + E ) 0 no ' ma'

while that from (4.2.14) is

t V t  y (4.2.19)
8%-E;R6 K 1”

" E >E a m

Adding the last two expressions results in the total small R limit

)   (4.2.20)
24%“g^R® m4n (E + E ) 0 no mq

in which both real- and virtual-photon terms contribute to the 

interaction energy. The limits (4.2.15) and (4.2.20) are in agreement 

with the energy shifts (3.2.22) and (3.2.23) respectively, obtained when
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a test polarisable body interacts with the electric energy density due 

to an electric dipole source.

If both molecules are in electronically excited states, all three 

terms occurring in (4.2.10) contribute to the energy shift. The first 

term is given by (4.2.14), the second term of (4.2.10) can similarly be 

written as

-1

E >E D n

1

■k“ R‘ pn R̂ -pn
(4.2.21)

while the third term of (4.2.10) can be expressed as

-he , 6 -2uR A,. , B,. r 1duu“e «■ (icu)a ( icu ) j +
Lu^R- u^R^ u*R^ u^R^ u^R^J

(4.2.22)

This interaction energy can be decomposed into three types of terms 

depending on whether the transitions m <—  q and n —̂  p are both upward, 

one upward and one downward, or both downward. The first two cases have 

already been examined, respectively giving the dispersion interaction 

and the energy shift between one ground and one excited state molecule. 

For the third type due to downward transitions, the near-zone limits of 

(4.2.14), (4.2.21) and (4.2.22) are respectively

-1
|;5pn|3|2qm|2

12%'E^hcR- S k" - k
° E >E "P 9"q m

1 r

12%-E:hcR^ n k“ - k’
E >E p n

1
247r^e^hcR^ “0 m, n

y I sgnk^g ) ( sgnk^p ) | | ’ | jjP" |

ma np
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I^qmj2,2np,2
_i r ir I I

 tV i  ;   ' (4.2.23)
24n^c;R mTn (E + E )

0 E >E "P 
q  m
E >E P n

For large R the dominant term is proportional to R and arises solely 

from the real-photon exchange terms of (4.2.14) and (4.2.21), giving

) ----------- E E (E“ +E E +E“ I. (4.2.24)/ nm  nn n m  n m  iin nn36H"e^hc)^R" m“n (E + E ) P"
E >E P" P-” q ra
E >E P n

The response method [34,57] described above has the additional 

advantage of being able to treat the interaction of electronically 

excited molecules in a single formulation from which the dispersion 

interaction is also easily obtainable. These potentials are not readily 

calculable by more conventional methods due to the presence of 

intermediate state resonances. In the response formalism these 

resonances are easily isolated and automatically accounted for since the 

source fields include contributions arising from real transitions. This 

completes the derivation of the energy shift between two electric dipole 

polarisable molecules in both ground and electronically excited states. 

The methods outlined form the basis of the rest of the calculations 

carried out in this Chapter.
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4.3 THE INTERACTION BETWEEN A CHIRAL MOLECULE AND AN ELECTRIC DIPOLE 
POLARISABLE MOLECULE

The dominant transitions occurring in most atoms and molecules that 

undergo optical processes are those due to electric dipole allowed 

transitions. However, the inclusion of the magnetic dipole coupling term 

is necessary for the satisfactory treatment of optically active 

molecules. The energy shift between an electric dipole polarisable 

molecule A and a molecule B with electric and magnetic dipole moments is 

given bv

)dĵ '(in;<o I + dj^*(m;(J )'L qm Z qm -4- qm  ̂ qm

0 n

^  J
k,>-

(0 ) (2d . d . (/im) + d- (Am)d-L  ̂ '4-
(0 )
 ̂ J

b<°>d‘2>,;5îî, + b'2>,S3)d<0'- df'bf (SÎ) - df >(S5)b̂°'
(4.3.1)

with mixed electric-magnetic dipole dynamic polarisability

am ma am..ma

ZlE -hw F -khwl ml ma mq+huj
^  2ho)jLi|‘"m”^

M E“ -(hu)“ mq
(4.3.2)

Using the fi- and ra-dependent parts of the first order displacement field 

(2,2.34) and the ^-dependent terra of the magnetic field linear in the 

sources (2.2.55), the contribution to the energy shift (4.3.1) from the 

first order fields is
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"E = — ^  2  V ’ ‘
o 6  ̂•'  ̂c m

" b -  ; 4 l  'kpn' •'̂ T’̂ % n ^ \ ' k p n «  > 'kp n ^ '  *Ui %  ' k p r ^ ' -32% c;c n

(4.3.3)

The remaining two terms of (4.3.1), the contribution from the zeroth and 

second order fields, making use of (3.1.1), (3.1.2) and (3.1.7), are

-ik.R

0 k.X

-1
8%c

- ik.R— - ik.&

0 k.X
-ik.k— â ^ -r ik.& (4.3.4)

On evaluating the terms of (4.3.4) in the familiar manner, noting that 

the last two terms in each expression are complex conjugates of the 

first two, and adding the contribution from the first order fields

(4.3.3), the energy of interaction between a chiral molecule and an 

electric dipole polarisable molecule is

1 kgmR'+W^c'kqmR > '16%^£^c m
E >E q m

16n"c:c n
E >E P n

Jduu^e icu)G^^( icu)f̂ -̂ ( iuR)ĝ -̂ ( iuR).
16% e

(4.3.5)
Q 0

When both molecules are in their ground states, only the u-integral terra 

of (4.3.5) survives, and is

152



167T
—h Z r, 6 -2uR A , .  .duu e icu )G^^( icu )3^2

r ^iÂ+  T— r- + — — - +
^u“R“ û R̂ -

(4.3.6)

with the dyadics «•• and ■ defined as

(4.3.7)

after multiplication of the geometric tensors, and is in agreement with 

the result obtained using diagrammatic techniques [38]. The dispersion 

potential (4.3.6) disappears on averaging, resulting in no 

discrimination in the fluid phase.

If molecule B is in an excited state while A remains in the ground 

state, only the first and third terms of (4.3.5) contribute. The energy 

shift for an oriented pair is then

AE = -1
8n\-cR- S “'I

° E >E q m

4%^Eqhc
D ^ ■■On..no..qm mq f duu^e ^

niTn ' (u“+k“ )(uT+k" )0 ora no
f c  ■ i . . u - r » r » r - a - T

r
I ? ?

A
+  — —  +  — — - +

u R 3^3 4^4 5^5u R u R u R
(4.3.8)

4 4
antisymmetric to index interchange in contrast to and which are 

symmetric. When both molecules are excited, all three terms of (4.3.5) 

contribute with the geometric part of the second term of (4.3.5) similar 

to that of the first terra of (4.3.8), while the u-integral term is 

identical to that occurring in (4.3,6), but with both molecules now
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excited. Once again the energy shift vanishes for isotropic source and 

test bodies.

4.4 THE INTERACTION BETWEEN AN ELECTRIC DIPOLE POLARISABLE MOLECULE 
AND AN ELECTRIC DIPOLE-QUADRUPOLE POLARISABLE MOLECULE

For a consistent treatment of intermolecular interaction energies 

between neutral molecules, the effects arising from the inclusion of the 

electric quadrupole coupling term is now investigated. The magnetic 

dipole and electric quadrupole are both of the same order, being a 

factor of the fine structure constant smaller than the electric dipole 

interaction.

By utilising the Maxwell fields which depend upon an electric 

quadrupole source, the number of interaction energy shifts to be 

determined between molecules with differing polarisability 

characteristics, now greatly increases. Bearing in mind that only terms 

of a comparable order are being studied, the number of electric dipole 

dependent interactions occurring between the two centres is restricted 

to a minimum of two. The energy shift is determined from

-1 r AAE = — - ) aV.(o) )
2,;i '< 1"

(1),^ 1) 1 ) (1)

2c0

0 k,x

(0 )„ ,(2 ) , .  ,(2 ) (0 )

(4.4.1)
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where is the mixed electric dipole-quadrupole tensor defined by

rq

Using the /i— and 0-dependent parts of the displacement field linear in 

the sources (2.2.34), the contribution from the product of the first 

order fields is found to be

1 T  A ,, ,..qm^ma,? Ft: ,t , t  ,, r,, ̂  r,,l
32Tt“£̂  m

32%_c_ % ^pn'^t " p n r ^ l ' % n " " W ^ ' V  'W^'"pn' pn

(4.4.3)

Employing (3.1.1) and (3.1.4), the contribution from the zeroth and 

second order fields is

^^^0 k,x

k.X
'4.4.41

Evaluating (4.4.4) in the usual manner and taking account of (4.4.3)
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16%-E^ m
“ E >E a m

+ —h  2 Rl - h ^ / k  R)f^,k R
16?i“£“ ÎÏ

E <E n p

ific B

i6"'co ;
duu’e'^“‘*ot*̂ ( icu)A^^^( iculf^gl iuR)ĥ .̂ _̂( iuR)

pn

(4.4.5)

Examining the u-integral term of (4.4.5), the sole contribution if both 

molecules are in the ground state, leads to the dispersion potential

-1 7 -2uR

4n Eghc mTn 0 mo no

2„2 '*’ o n  4 4 S A 6 6 7 7L u R u^R^ u^R^

no

E; ;

u^R^ u'R^
(4.4.6)

with the tensors to given in the Appendix to this Chapter.

Expression (4.4.6) vannishes on averaging. If B is in an excited state, 

the second term of (4.4.5) does not contribute. The first term of

(4.4.5) however, after multiplying the geometric tensors, can be written

1 T A ,, . qm^mq.?
2  2  /  W q m _ , 2  , 2  +  n  n  + 4  4  + 5  s  +  A  s  + 7  7  J16n^c: m

E >E a m
R“ k R k R k R k R k R qm qm qm qm qm qm

(4.4.7)

The near-zone result has an R dependence while the far-zone varies as 
_ 2R “, with (4.4.7) vanishing on averaging. The u-integral term from

(4.4.5) is analogous to (4.4.6) with B excited. When both molecules are 

excited, all three terms of (4.4.5) contribute for oriented A and B.
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4.5 THE INTERACTION BETWEEN TWO CHIRAL MOLECULES

The energy shift between two non-identical chiral molecules with 

each centre possessing an electric and a magnetic dipole moment, is 

given by

AE

Q n

Im —^ > G .(w )

Im —  ̂ ) Ggo(w) 
^“ 0

(4.5.1)

including all terms second order in the transition moments. The 

contribution to the interaction energy from the product of the first 

order fields is evaluated using the electric and magnetic dipole 

dependent terms of the Maxwell fields linear in the sources (2.2.34) and 

(2.2.55), and is

-

V j j

Im
L16K“E“c“n

K

\ (4.5.2)

For the contribution from the zeroth and second order fields, use is 

made of the free fields (2.2.15) and (2.2.52), and the diagonal matrix 

elements of the quadratic fields (3.1.2) and (3.1.8), giving
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—  T m  J L̂-k ik.R,r ê» . —

'k,>- " o'
r -4 -4

- Im-! Y _ i ^  G%flw)lb^e + (b^X-^+e^ie^^)e^e‘‘‘‘‘*j|./ ' , '̂et.'
8^.-cV -

(4.5.3)

Evaluating the terms of (4.5.3) using the appropriate polarisation sums, 

angular integrals and definitions of the tensor fields and adding the 

contribution from the first order fields (4.5.2), the interaction energy 

between two chiral molecules is

AE = -1

8n-€-c- S
° E >E 

q  m

•rdTmT^f-o(k R)f;p(k R) - 4 -t /LA qm qm

*(k R)g;p(k R )] +

s S v pn
E >E 

D  n

W  2 ^T™r- j2idSuX^Vt..(icu) .16n E^c' m 
" ALL E 0 u “ +  k '

III qm
r 1
I f̂ (̂ iuR ) f̂ y ( iuR) - ĝ -̂ ( iuR)ĝ -̂ ( iuR) I . (4.5.4)

When both molecules are in the ground state only the u-integral term of

(4.5.4) survives, which when written explicitly in terms of transition 

moments after multiplication of the geometric tensors, is
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duu e9 -2uR1 T ,On no om m o '

l u V  u ^ R ^  u ^ R ^  u ^ R ^  u ® R ®  J (4.5.5)

with

= " U ^ j C ^ U ^ r i æ ^ L

% u  =

The expression (4.5.5) applies when the orientations of molecules A and 

B are fixed relative to each other. It may also be written in terras of 

the molecular Dolarisability tensor G--(u).

 - 7- Iduu^e ( icu )G%( icu )̂
0 0

^ ^ f i i M l

I u“R“ u“R^ u^R^ u“R^ u“R^J
(4.5.7)

g Q Os gOor in terms of the rotatory strength R - : = Im/J- m j . To deal with ̂̂ “ ÿ
molecules in the fluid phase, a rotational average of (4.5.5) is needed.

By following the standard procedure [41J, the dispersion interaction for

two freely rotating chiral molecules valid for all separation distances 

beyond electron overlap, is

Ign^E^hc^R^ m^n "(uT+k; )(uT+k; )  ̂ u“R‘
0  0 Om On

(4.5.8)
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After the usual approximations, the far-zone limit is [48]

3 ^
A E „  = — ^  ;  — --------  (4.5.9)

- 3%-c;R- »rn

while the near-zone shift is [48,58]

AE z — =1—  yN7 ? 9 ? A /

l^Qm H»niG I iT̂ on -̂ noj/J .m I III .m

127t’e^c’R“ mTn m̂o'^^no
(4.5.10)

This completes the evaluation of the dispersion interaction between two

chiral molecules, originating from the third term of (4.5.4), The result

for all R is given by (4.5.8) while the results at large and small

intermolecular separations are respectively given by (4.5.9) and

(4.5.10). This interaction potential is discriminatory, dependent upon

the relative chirality of the molecules of the pair. The polarisability

tensor (w ) changes sign with enantiomer since a polar vector, is

antisymmetric to inversion, in contrast to m which is symmetric. For

molecules with absolute configurations R and S, the A(R)-B(R) and

A(R)-B(S) interactions differ in sign. Since the rotatory strength maybe

either greater or less than zero, it is not possible to determine the

absolute sign of the interaction when the molecules are chemically

distinct. For chemically identical molecules however, the energy shift

for opposite isomers is attractive while that for like isomers is

repulsive. The complete ground state interaction, along with the R 
- 6far-zone and R short range dependences agree with work carried out in

the Schrddinger picture [6,38,58] and the calculation performed by

Mavroyannis and Stephen [48] in the Lorentz gauge, in which only the 

limiting results were given. It is worth noting that the near-zone
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result may be obtained from second order perturbation theory when the 

interaction is represented by an electric and a magnetic dipolar 

coupling term and the mixed electric-magnetic cross term is extracted 

[58j. This is examined in more detail in the final Section to this 

Chapter.

Returning to the general result (4.5.4) and examining the case in 

which molecule B is in the ground state and A is excited, the additional 

contribution from downward transitions from jp> from the second term of

(4.5.4) is

i V i  ;n
E >E p n

k'’ r "* pn
(4.5.11)

which for an isotropic source and test becomes

12n"E-c- n
E >E p n

L k“ R“ k"* R̂* k^ R^ Jpn pn pn -*
(4.5.12)

The far-zone limit of (4.5.12) is

- y G'(k..)|2P".mnP|k:
Gn-E^c^R- n

E >E p n

pn on (4.5.13)

exhibiting an R dependence, being associated with real photon 

emission. This is also the dominant contribution as the asymptotic
_ 9behaviour of the u-intesral term shows an R deoendence as demonstrated
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earlier. For small R, the near-zone limit of (4.5.12) is

I ''"pn"'"--"!
° E >E D n

while that from the u-inte2ral is

 , , ,  ̂ > s«n(E„„)   (4.5.13)
12i t V c V  n,rn "P (E +!e |)0 mo ' np'

-  5both terms exhibiting R “ dependences. The sum of (4.5.14) and (4.5.15) 

gives the total small R limit

 T-T-TT ;   - (4.5.16)
12n^E%c-R- rarn (E „+ E )

° ALL E "Pn

which is composed of both real and virtual photon terms.

If both molecules are in electronically excited states, all three 

terms of (4.5.4) contribute. The first term of (4.5.4), the additional 

contribution due to excited molecule B is

° g qm qm qm
a m

with the second term of (4.5.4) given by (4.5.12), remembering that B is 

now excited, while the u-integral term can be written analogous to

(4.5.8) as
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18n"E:hc^R^ ^ (k“ +u“)(k“ +u“) uTRT -I0 m, n 0 qm pn
(4.5.18)

For large R the interaction energy has an inverse square dependence on

separation, arising from the addition of the real photon exchange terms

(4.5.12) and (4.5.17). In the near-zone, the downward transition

contributions to the interaction energy shift are

E >E ° E >Eq m p n

) sgn(E )sgn(E ) ------------------  (4.5.19)
12%^E:c^R" raTn ’ (|E |+|E |)o ' mq' ' np'

which simplifies to

 , , , 6 ;   • (4.5.20)
127r“£“c“R mTn ( E + E )0 E )E mq np

P n
E >E q m

4.6 THE INTERACTION BETWEEN AN ELECTRIC DIPOLE POLARISABLE MOLECULE 
AND A MAGNETIC DIPOLE POLARISABLE MOLECULE

For molecules with small electric dipole polarisability and large 

magnetic susceptibility, the most important interaction is that between 

an electric dipole polarisable molecule and a magnetic dipole 

polarisable molecule, which is now examined. The energy of interaction 

is given bv
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— 1 V A ( 1 1 - ^  M  )AE = ^  > «y.(w )d;- '{m;u )d'. Wia;03 )0^2 L qm 't qm  ̂ qm

2E
d‘° ’d'2>(S) + d'2'(S)d'°>
- i ' ?i” ’ ]

Q k,X

kTx
(4.6.1)

where the magnetic susceptibility tensor X;;('-̂ ) is defined as“Î

ZlE -hu E +h(i)l rt rq rq J
y 5 ^ L
r E“ -(hw)- rq

(4.6.2)

Using (2.2.34) for the electric displacement field of a magnetic dipole 

and (2.2.55) for the magnetic field of an electric dipole source, the 

contribution to the energy shift from the product of the first order 

fields is

— 1 V A qm mq, 5 -
r r ^  2  V ’ S - e ' V

R)
327i“e“c“ m

(4.6.3)

Employing (3.1.4) and (3.1.7), the contribution from the free and second 

order fields is

i_ y fîüs? / 9V

-1 V to'

t x

%  ( « ) [ e^e 1

[b^e ^ 1 k'Ü ], (4.6.4)
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Evaluating the terms of (4.6.4), noting that upward and downward 

transitions from both | q> and | p> respectively cancel and reinforce with 

the corresponding terms from (4.6.3), the energy shift is

167i“£;c“ m
“ E >E a m

1 6 7 r “ e ^ c  n
“ E >E 

D  n

Jduu^e icu)X^^( icu)g^^(iuR)g^^( iuR). (4.6.5)
32%-c;c 0

When both molecules are excited, all three terms of (4.6.5) contribute, 

which after expanding the geometrical tensors, becomes

167r“e“c“ m
E >E q m

-1 V B

R“ k"* r "*-* qm qm

:  :  r  1  1
167r“e“c“ n

E >E P n
k^ R^ k^ r "‘-‘ pn pn

Qn £“hcp hr̂  ̂ mTn

f  duu'e-2"R _ T, U [ 1 , 2 , 1 1
„(u'+k" l(u'+k“

ic ic j mq np -u“R^ u^R^ u^R^-0 qm pn
(4.6.6)

which after rotational averaging becomes for isotropic source and test 

bodies

E >E q m

9 ? 4 4k̂“ R“ k R  ̂qm qm
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-1
2 4 7 i “ e “ c “  n

E >E 
D  n

4c“ R“ k"* r "*-* pn pn

f'

36%^Eghc m,n
duuGe-2"K

(u“+k“ )(u“+k’ ) qm np
k k mq np (4.6.7)

- ? - 4The first two terms of (4.6.7) exhibit R “ far-zone and R near-zone 

dependences, in agreement (3.2.58) and (3.2.59), the energy shifts 

resulting from a test magnetic dipole polarisable molecule to the 

magnetic energy density of an electric dipole source field. The 

asymptotic behaviour of the u-integral term of (4.6.7) is readily found 

to be

AE N Z i X T v T  ^ <sgnE„p)(sgnE^^)!E„J|E^J
72n^Egh"c R mTn

l^pn,2|^qm|2

' iGnp! + i % l '

(4.6.8)

AEF7 Q6471 E^cR
(4.6.9)

where o:(0) and %(0) represent isotropic static susceptibility tensors

for the excited molecules. The far-zone limit of the intermolecular

interaction energy (4.6.9) is identical to (3.2.33), the latter having

been derived from the energy density. The R  ̂ near-zone dependence is a

direct consequence of the absence of static coupling between an electric
-6and a magnetic dipole, in contrast to the R small limit found in 

Section 4.2 when dealing with two electric dipole polarisable molecules.

The overall far-zone behaviour is dominated by the additional 

contributions from downward transitions, exhibiting R “ distance
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dependence due to real photon emission, since the u-integral term was 

shown to produce an R dependence as seen in (4.6.9). From the first 

two terms of (4.6.7), the far-zone limit is

y e "* E + E^ E qm np np mq (4.6.10)
36%-E^c^R-(hc)' mTn E“ - E"

E >E Q'"P n
E >E q m

The overall near-zone behaviour for two excited molecules arises from 

contributions from all three terms of (4.6.7).

If, for instance molecule B is in the ground state while A remains 

excited, the second and third terms of (4.6.7) contribute to the energy 

shift with |q> = 0, the behaviour of the two terras having already been 

discussed. When both molecules are in the ground state, the u-integral 

term of (4.6.7) survives to give the dispersion potential

H . ' « =  I
, 2^2 3_3 4^4.'-u R u R u R

(4.6.11)

giving the limiting results

AE__ = ---‘J',  ̂«^(0)X°(0) (4.6.13)
64it E“cR

where the susceptibility tensors now signify molecules in the ground 

state. These asvmntotic values could of course have been obtained
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directly from (4.6.8) and (4.6.9) on inserting | p> = | q> = |0>. The 

calculation of the dispersion energy between an electric dipole 

polarisable molecule and a magnetic dipole polarisable molecule when 

both molecules are in their ground electronic states, is in agreement 

with previous studies [35,38,48]. It should be noted that this 

intermolecular interaction energy is repulsive. Further, the above 

result is incomplete since no account has been taken of the diamagnetic 

coupling term, which is one of the same order. This interaction term 

will be considered in a later Section.

4.7 THE INTERACTION BETWEEN AN ELECTRIC DIPOLE POLARISABLE MOLECULE 
AND AN ELECTRIC QUADRUPOLE POLARISABLE MOLECULE

The next interaction to be discussed is that between an electric 

dipole polarisable molecule and an electric quadrupole polarisable 

species. The energy of interaction between the two is given by

AE = — ; ) %;.(u )d|l)(Q:u )d;l^(Q;w )r,̂ 2 / qm  ̂ qm  ̂ qm
n

- 0 "

y / A . A \ A. A ^
^^0 k,x

k.X
(4.7.1)

where the definition of the quadrupole polarisability tensor is given by
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r a

The contribution arising from the product of the first order fields is 

obtained from the /i- and 0-dependent parts of (2.2.34), and is

1  V ’ W ' V ’ôJ*- t.̂ rn
-1 V> ) ( J ? V V _ h , £ ; ( k  R)h„„,(k R) . (4.7.3)32^2^2 I pn"<&c' pii pn'

The contribution to the energy shift from the zeroth and second order 

fields using (3.1.1) and (3.1.6) is

i T [hck 
I 2VJ

k.X

kTx'
(4.7.4)

Evaluating the terms of (4.7.4) using the tensor field definitions

(3.1.13) and (3.1.21) and adding to the contribution from the first 

order fields (4.7.3), results in the energy shift

° E >E q ra

1 6 7 i “ e :  n

E >E P n

”5 7  > hté > V ™ '  ’ '4.7.51
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when both molecules are in the ground state, only the final term of

(4.7.5) remains, which when expressed in terms of transition moments is

^  i.. .. .. .
rA; ;

(u’+k“„)(u“+k^„)

î̂ âZ'nin

u“R “ u“R^ u^R^ u“R “ u^R“ u^R^ u^R® ■
(4.7.6)

after multiplication of the geometric tensors, whose explicit form in 

terms of etc. , are given in the Appendix at the end of this

Chapter. Expression (4.7.6) is applicable at all separation distances 

outside electron overlap for an oriented molecular pair. To obtain the 

interaction in the fluid phase, a rotational average is taken. The 

average entails the product of with each

of to . After the usual approximations, the u-integrals

can be evaluated to give the asymptotic values

where the ground state static polarisabilities appear in (4.7.7). These 

results are in agreement with previous studies [35,38], and with that 

obtained from the response of an electric dipole polarisable test body 

to the electric energy density due to a quadrupole source (3.2.46).

If molecule A is in the ground state, the second term of

(4.7.5)does not contribute. The first term of (4.7.5) is
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 ̂E >E q m

 ̂ î̂ â'ùm.n  ̂  ̂^i^âZnnm.  ̂ ^

‘- k’ R “ k^ R “ k^ R̂ ' k^ R^ k“ R^ k' R^ k® R® ■ qm qm qm qm qm qm qm

(4.7.9)

with tensors to given in the Appendix. After rotational

averaging, (4.7.9) becomes

gOn^E: %
 ̂> q m

1 3 18 90 1
 ̂ _ k̂̂  R" k R k R k R0 g >g qm qm qm qm

-  8exhibiting R near-zone behaviour,

_ 2in agreement with (3.2.47), and R “ far-zone behaviour

° E >E q m

in agreement with (3.2.48). The terra (4.7.12) is the dominant

contribution to the interaction energy at large separations since the

virtual photon contribution from the u-integral produces an R ^

dependence as seen in (4.7.7). The small R limit obtained from the

analogue of the u-integral (4.7.6) when B is excited is
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-3
„  2  2 „ B  ^871 £^R m,n

2 san(Emq
'Gno+lEmJ '

(4.7.13)

Adding (4.7.11) and (4.7.13) results in the total small R limit

-3
8ji“£^R® mrn (E „+ E I 0 no mq

(4.7.14)

When both molecules are excited, all three terms occurring in

(4.7.5) contribute to the energy shift. The first term is given by

(4.7.10), with the second term of (4.7.5) similarly expressed as

1 18 90
Lk“ R“ R^ k^ R“ k® R®pn pn pn pn

(4.7.15)

while the u-integral part is given by

-1
—  J

720Ji"£“hc mTn X/i X^ J
J 8 —2uR k kduu e________ np mq

_6_  ̂ 36  ̂ 162  ̂ 504  ̂ 972  ̂ 1080  ̂ 540
uTR- u^R^ u®R®-^"R^ u^R^ u^R^ u^R^

(4.7.16)

The total near-zone limit is obtained from the addition of the leading 

small R terms from the last two expressions to the limit (4.7.11), 

resulting in

-3 ^mo

q m
C - ^ n p

p n
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-3 r ,
(lE^gl + lE^pl,

y  1 ^ " ' %  .
8it“£^R® inTn ( E + E )0 g ,g mq np

q  m
E >E 

D  n

_ 2For large R the dominant term is proportional to R , obtained from the 

addition of (4.7.12) to the large R limit of (4.7.15).

4.8 THE INTERACTION BETWEEN TWO ELECTRIC DIPOLE-ELECTRIC QUADRUPOLE 
POLARISABLE MOLECULES

In the last interaction to be considered, that between a dipole 

polarisable molecule and a quadrupole polarisable body, each centre 

consisted of pure multipole moments. In this Section, the possibility of 

splitting up that particular configuration is examined with each centre 

now possessing both an electric dipole moment and an electric quadrupole 

moment. The energy shift is

2 4,^ ' ' W  ' ' ' ̂  ; % m  ' v r  ' ^ ; % m  ' ̂ ; "qm ' ^ : "qm ' +Z-n

2£- S

JZI
^^0 k,x
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(2ô)+V^d‘̂  ’ (fi3)ci{° ’

— 1 ^  B

( 4 . 8 . 1 )

Using the /I- and 0-dependent parts of (2.2.34), the contribution to the 

energy shift from the product of the field linear in the moments is

1 T .A
32% E- m

'  k g m "  '  '  ^ g m "  ’  '  “ q m "  ’  ‘  “ q m "  ’  ^ +

b  2 C ^ . ' “pn  ̂W  “pn">% ' “pn" '32% £“ S

■"“ « i ‘ “ p n " ’  W ( k p n R ’ + “ m i n < ^ n " ’ ' “ p n " ’  '  '

(4.8.2)

Using (3.1.4), the contribution from the free and quadratic fields is

0 k,x

' +e .k^e"“- "( e ^ k ^ S ^ +  ie^?^ )

-1 T fhck .B

8-; k'.X

)k^e^e'"“'" +e^k^e""'“( )

- i ' k . <
- -ik.fi ( 4 . 8 . 3 )
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Evaluating the terms of (4.8.3) using the tensor fields (3.1.17) and 

(3.1.18) and the additional angular integral

Û  l ' = 2l[k^«f'kr,-L..^(krl| (4.8.4)

with L̂ -̂ ^̂ (kr) defined at the end of the Appendix to Chapter 2, the 

interaction energy is

AE =

° E >Eq mq 111
'kqmRI % (kq̂ RI (k̂ R̂I +h^■ ̂ ( k̂ _̂ R) (k̂ R̂) ] +

H  I 4m-.<k_on'^r«;ik®„[f^,(kp^R)l^^.„(kp^R)4
0̂16h

E >E

<k p „ R I (k^^R) + ( k ^ ^ R I (k^^RIJ

^  J duu®e'2'''^A^^( icu)A^^(icu) -

[ f/4' iuR)+h^4/ iuR Ih ^ (  iuR ) 1, (4.8.5)

and applies when both molecules are excited. If for example A is in the 

ground state, the second term of (4.8.5) vanishes, with the additional 

contribution from downward transitions from B being

T T  y ) ) ^ r C k =

° E >E q m

*- k’ R “ k“ k'* r "* k^ R^ k^ R^ k^ R^ k^ R® ■qm qm qm qm qra qm qm
(4.8.6)

175



molecules, this result, like that when both molecules are excited, 

vanishes after averaging. Examining the third term of (4.8.5), which is 

the sole contribution when considering the interaction between molecules 

in the ground state,

2 J duu®e x
8n-E;hc mtn ^  ̂ ; ( u ^ k ’„ ) ( u ^ k ’J0 0 mo no

u“R “ u“R^ û R^' u^R“ u^R^ u^R^ u^R® •
(4.8.7)

is obtained. This is the general result for oriented molecules which 

also vanishes on averaging, as expected for a dipole-quadrupole coupling 

at each centre.

4.9 THE INTERACTION BETWEEN AN ELECTRIC DIPOLE POLARISABLE MOLECULE 
AND A MAGNETIC DIPOLE-ELECTRIC OUADRUPOLE POLARISABLE MOLECULE

In Section 4.7 the interaction between an electric dipole 

polarisable molecule and an electric quadrupole polarisable molecule was 

discussed. An interaction of a similar order to that is obtained if one 

of the electric quadrupoles is replaced by a magnetic dipole moment, 

resulting in the interaction between an electric dipole polarisable body 

with a mixed magnetic dipole-electric quadrupole molecule, which is now 

calculated. The energy shift is

IT >  ’  ' ï ^  = “ p n >
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#  j^■q k.x

jr }
° Î.X

(4.9.1)

where the mixed magnetic dipole-electric quadrupole tensor is

defined as

qr.rq ^qr rq

Er.-hu+Erg+hu| = 2  g2 ■ (4.9.2)
r'v rq rq

Employing the displacement field (2.2.34) and the ^-dependent part of 

the magnetic field (2.2.55), the contribution from the product of the 

first order fields is

o iiTl g c m

I W  ‘̂pn'* ' ' ’

(4.9.3)

The contribution to the energy shift from the interference of the zeroth 

and second order fields is obtained using (3.1.1), (3.1.5) and (3.1.7),

-1 V fbck

SKCpC kTx^
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-1
; y fi
U

(4.9.4)

Evaluating the terms of (4.9.4) using the tensor field definitions

(3.1.13), (3.1.19), (3.1.20) and (3.1.22), and adding the contribution 

from (4.9.3), the energy shift is

AE =

— i V  I V ’" W ‘V ’«44< V ’'1 o' C ID
E >E q m

— i V  I k p n k p n R ' h f f m . ' k p n ^ >“ '«i4<>^p„R'fc- C II
E >E P n

1 , 7 -2uR ,

47T £ he ratn  ̂ „ (u +k )(u +k )0 0 qm pn
(4.9.5)

If molecule A is in the ground state, the second term of (4.9.5) 

disappears. The first term, the additional contribution from downward 

transitions from B, can be written as

-1 ?  A am.mq,?

° E >E q m

k R qm k R qm k R am k R qm k R qm
(4.9.6)

*̂2  ̂& exhibiting R  ̂ far-zone and R near-zone behaviour. This result

vanishes on orientational averaging, as does the u-integral term. When
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both molecules are in the ground state, the u-integral is the only 

contribution, the potential for oriented molecules being

-hh r, 7 -2uR A , . ._B , . .—  Jduu e a.^licu)T^^(icu)
0 0

^

 ̂u’r“ u^R“ u^R^ u^R“ u^R^ ■
(4.9.7)

and which also vanishes on averaging.

4.10 THE INTERACTION BETWEEN A CHIRAL MOLECULE AND AN ELECTRIC 
DIPOLE-QUADRUPOLE POLARISABLE MOLECULE

The final interaction to be considered is that between an electric 

dipole-magnetic dipole polarisable molecule and an electric 

dipole-quadrupole polarisable molecule, the last possible case where at 

least two electric dipole moments are present, either entirely at one 

centre, or as in this example, split between the two. The interaction 

energv is calculated from

AE =
%

pn ^  ' pn

2g
-1 V A

0 k.x

“ k,x

+ d|2>(jS)v^d'°’+

(4.10.1)
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The contribution to the energy shift from the first order displacement 

field (2.2.34) and the jn- and 0-dependent part of the first order 

magnetic field (2.2.55) is

7 ^  I  4 m < > 4 " 4 I ‘' pn ' V 4 . ,^ <  kpn* > + 4 ^ kpn^> ' 'XO-*** n

(4.10.2)

Using (3.1.2), (3.1.4) and (3.1.10), the contribution to the interaction 

energy from the zeroth and second order fields is determined from

24jie  ̂ '0 k.x

(4.10-3)

Evaluating the terms of (4.10.3) in the usual manner, the energy shift 

is found to be

° E >E q m
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^  I V ' - W ' V ' g e . ' k ^ ^ ^

Gp>En
7 “2uR

87T e^hc“m,ni b  I  " M M V  J , .  r , • ,  b î "  ■

[ ifu( i“® ’+STOi* 1"%* (4.10.4)

The first term of (4.10.4) can be expressed as

rq

L k“ R “ k^ R^ k"* r '* k^ R^ k^ R̂ -* qm qra qra qra qra
(4.10.5)

the explicit form of given in the Appendix, which is the

additional contribution from excited B, with a similar terra occurring 

frora the second terra of (4.10.4) when A is excited. The result (4.10.5) 

disappears after orientational averaging. When both molecules are in the 

ground state, only the u-integral of (4.10.5) survives, which is

— ih
3271y -  J 0 0

,  7  — 2 u R . a  bduu e A^^^( icu )G^^( icu )
u V  uTR^ u^R^ u^R^ u^R^ ■

(4.10.6)

with etc., given in full in the Appendix. This also vanishes

after rotational averaging.
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4.11 CONTRIBUTION FROM THE DIAMAGNETIC COUPLING TERM

The discussion outlined so far in this Chapter is still incomplete 

in the sense that no account has yet been taken of the diamagnetic 

coupling term which is one of a similar order as the electric quadrupole 

and magnetic dipole interaction terms. For a comprehensive treatment of 

intermolecular interactions to this order of approximation, the effects 

arising from the inclusion of the diamagnetic coupling terra in the 

interaction Hamiltonian must therefore be investigated.

For a freely rotating source, the diamagnetic coupling term is

 ̂ a“b“(r) (4.11.1)12m *

with the resulting interaction energy arising from (4.11.1) for a 

molecule in the ground state given by

2 b,t»(0) t(2) .ti2) f(0)
12m

(4.11.2) is seen to be similar to the last term of (4.6.1) from the 

interaction between an electric dipole polarisable molecule and a 

magnetic dipole polarisable molecule. The field dependent part above is 

identical to that occurring in Section 4.6, resulting in

6 -2ur

144% £„c ran „ ( u + k „ )  ‘-ur u r  ur-*Q Q no

In the far-zone, (4.11.3) reduces to 1.35]

AEp? = ------  7 «"(OXqS® (4.11.4)
128% E:mcR'
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illustrating that at large intermolecular separations, the diamagnetic
_ 7contribution to the dispersion interaction varies as R . This result 

may be combined with that obtained in Section 4.6 where the far-zone 

limit was also expressed in terms of the static polarisability of 

molecule A. From (4.6.13) and (4.11.4),

Ae3°’̂ = --------7 oc*(0)x'®(0) (4.11.5)
647! e “c R'

where the new, modified magnetic susceptibility tensor takes the 

definition

X'^(O) = x®(0) - ^  <q“>®. (4.11.6)

Although both %(0) and %(0) are positive for molecules in the ground 

state, X (0) maybe either positive or negative depending on the relative 

sizes of the two terms in (4.11.6). A molecule is termed diamagnetic if 

X'(0) < 0. Returning to (4.11.3) and examining the near-zone behaviour, 

after the usual approximations, the leading term is found to be

Comparing (4.11.7) with the corresponding limit (4.6.12) obtained 

between electric dipole and magnetic dipole polarisable molecules, the 

ratio of the two is given bv

AE^^(DIA) ~ * (4.11.8)
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In the near-zone, where kR 1, the contribution from the diamagnetic 

couoling term dominates the interaction.

4.12 NEAR-ZONE LIMIT TO THE DISPERSION INTERACTION

So far throughout this Chapter, the dispersion interaction and the 

interaction between two molecules in electronically excited levels has 

been investigated using the multipolar formalism of OED in the 

Heisenberg picture. Results for oriented and completely rotationally 

averaged molecules, valid for the entire range of separation distance 

beyond electron overlap have been obtained for molecules possessing a 

variety of multipole polarisability characteristics up to and including 

the magnetic dipole and electric quadrupole moments with complete 

account being taken of all retardation effects. The asymptotic behaviour 

of the energy shift between two neutral molecules in the limits of large 

and small intermolecular separation has also been studied.

It was mentioned in Section 4.2 that the near-zone results may be 

obtained from second order perturbation theory when the interaction term 

is represented by a Coulomb’s law type coupling 159j. In this Section, 

second order perturbation theory with an electrostatic multipolar 

interaction term is used to obtain the near-zone limits to the energy 

shifts calculated in Sections 4.2, 4.4 - 4.5 and 4.7 - 4.8.

The attraction between two neutral molecules in ground electronic 

states was first discussed by London in terms of virtual molecular 

transitions. For intermolecular separations small compared with 

characteristic wavelengths of molecular electronic transitions, use of

second order perturbation theory with electrostatic dipolar coupling
-  6resulted in the R " deoendence on distance of the dispersion energy.
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This interaction was interpreted as arising’ from the induction of a 

dipole in one molecule by a dipolar fluctuation of electric charge in 

the other molecule. In the present treatment the static electric dipole 

coupling approximation is relaxed with the effects of static magnetic 

dipole-magnetic dipole, electric dipole-electric quadrupole and electric 

quadrupole-electric quadrupole couplings fully incorporated.

Molecules A and B are again taken to be non-identical many-level 

systems separated by a distance B, with intermediate states n and m 

respectively. The dispersion energy is easily calculated using second 

order perturbation theory,

. .  -y
mVn mo no

with the interaction Hamiltonian representing the static multipolar 

coupling given by

where

A B

A Bm̂  m •
, (4.12.4)

■o'

(4.12.5)
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where

(4.12.7)

and

15 ( I] . (4.12.8)

The leading contribution to the dispersion interaction for small 

separation distances corresponds to the use of the first term of

(4.12.2) in (4.12.1). giving

which after rotational averaging results in

) E +E  (4.12.10)
24h “e:r “ mtn mo ''no0

which is the familiar London dispersion energy [44], identical to the 

near-zone result (4.2.13) obtained from the full quantum

electrodynamical expression.
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The next short range interaction to be evaluated corresponds to the 

near-zone limit of the chiral discrimination dispersion potential 

determined in Section 4.5. This is obtained by extracting the cross term 

after including the first two contributions to the interaction 

Hamiltonian (4.12.2). The leading term has already been derived above, 

being the pure electric dipole case, while the pure magnetic analogue is 

ignored to this order of approximation. The electric-magnetic cross term 

is given bv

AE = -1 r<E
E +E rao no

E _+E  ̂mo no
,On no Ora rao

-1 o .  p .  Y
87f“£^c“R® ^^mVn r̂ao'̂ n̂o

(4.12.11)

which after averaging becomes [58]

=  -  y -IZnTf'c-R- mTn

H|On ->no I |H|Ora -̂ mo /J .m I |ü .m
E~7+¥~mo no

(4.12.12)

in agreement with (4.5.10).

If the first and third terms of the interaction (4.12.2) are 

retained, and the cross term extracted again, the resulting interaction 

corresponds to the near-zone limit obtained in Section 4.4 between an 

electric dipole polarisable body and a mixed electric dipole-quadrupole 

polarisable molecule. The energy shift is given by

B _A, A_B .A „B
AE = -1 y E +E mo no
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0

On using the definition of ^ frora (4.12.7) and comparing (4.12.13) 

with the terra of (4.4.6), after performing the u-integral, with

=^ven in the Appendix under (4.A.5), the two results are seen to 

be identical. (4.12.13) like its counterpart from Section 4.4, vanishes 

on averaging.

If only the third terra of (4.12.2) is retained and used in the 

second order perturbation theory expression, the resulting energy shift 

corresponds to the near-zone result of the interaction energy between an 

electric dipole polarisable molecule and an electric quadrupole 

polarisable molecule investigated in Section 4.7. Using (4.12.5) in

(4.12.1), the energy shift is

0

Using the definition (4.12.7), the above is seen to be identical to the 

Psrt of (4.7.6), after performing the u-integral, with 

given in full in the Appendix under (4.A.6). Rotationally averaging 

(4.12.14), and contracting the geometrical tensors results in

8n £ R ra,n raO no0
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which is equivalent to the near-zone shift (4,7.8).

When the second terra of (4.12.2) is excluded and the electric 

dipole-dipole electric quadrupole-quadrupole cross term extracted along 

with the mixed electric dipole-quadrupole contribution, the resulting 

interaction corresponds to the near-zone result obtained in Section 4.8 

between two electric dipole-electric quadrupole polarisable molecules. 

The total energy shift from the two contributions is given bv

 ̂ _A| A B|„A „B. ,„B _A,_A _ B ,_A _B

= — i V -e y  -j167r“e“R mTnl 0 „A. A _ B 1 A „B. ,„B „A i A B i A _B
E „ + E „ mo no

E „+E „ rao no
r<E^EÎiMÎoLiE;;,ES<E“,E;;io>?iE:,E^ ^

E +E mo no
<e^ e:|q> ° | e-.eS < e °,e;|m-q:„| e;,e^>1 ^

E „+E  ̂mo no
on^no. om^m o

y (4.12.16)

which corresponds to the ■ :op^ term of (4.8.7) and which similarlv-L̂ <̂ÆL'TL

vanishes after orientational averaging.

In this Chapter, the energy of interaction between two neutral 

polarisable molecules has been calculated using molecular response

theory. The response of a test body through its dynamic polarisability 

to the Maxwell field of a second source molecule is determined for 

ground state and electronically excited molecules. In all the examples 

considered, the energy shift for two excited molecules consists of three 

terms: a u-integral term applicable for both upward and downward

transitions from the initial state, corresponding to virtual and real

photon transitions, and two additional unmodulated terms applicable only
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to downward transitions from the initial state, corresponding to real 

photon emission. For two molecules in the ground state, the u-integral 

term is the sole contribution to the dispersion energy, intermolecular 

interaction mediated by the electromagnetic field through virtual 

transitions. The energy shifts are expressed in terms of generalised 

molecular polarisabilities and are valid for the entire range of 

separation distance beyond regions of overlap of molecular electronic 

wavefunctions for both oriented and completely rotationally averaged 

source and test bodies. The asymptotic behaviour in the limits of large 

and small intermolecular separation, where the effects of retardation 

are most clearly distinguished, is also investigated. This is evident in 

the dispersion interaction between two electric dipole polarisable 

molecules and two chiral molecules, amongst others, where the far-zone 

dependences are respectively R and R , in direct contrast to the R  ̂

power law predicted for both cases by a London type calculation using 

static intermolecular coupling, which applies only to small separation 

distances, and which is the near-zone limit to the fully retarded 

interaction.

When both molecules are excited, the additional contributions to 

the energy shift arising from downward transitions dominate, and can 

result in a repulsive force. In the far-zone an inverse square distance 

dependence is found in all the cases examined, corresponding to real 

photon emission from a molecule in an excited state. If only one of the 

pair is excited, the sign of the potential depends on the relative 

magnitudes of the relevant transition energies of the two molecules.

The use of time dependent Maxwell fields in the vicinity of a 

source and molecular response theory leads directly to the 

intermolecular energy shift for a pair of molecules, and has obvious 

physical appeal.
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APPENDIX

Throughout this Chapter, the energy of interaction between two 

polarisable molecules has been expressed in terms of molecular 

susceptibility tensors, whose definitions were given in the text, and in 

terms of products of various geometric tensors. The definitions of each 

of the tensors used here were given in the Appendix to Chapter 2. In 

this Appendix to Chapter 4, the explicit form of the product of the 

geometric tensors is given; the definitions of the various tensors 

denoted by Â — etc. , in the text, are stated here in complete form. 

These are required in order to determine the dependence of the 

interaction energy on separation distance in the near- and far-zones. 

The number of indices associated with each tensor is sufficient to 

remove any ambiguity regarding the use of any particular tensor in any 

specific calculation.

In Section 4.2 the products f^^(kR)f^^(kR) and f̂ (̂ iuR)f^^{ iuR) are 

required. From their definition (2.A.1),

f^^(kR)f^^(kR)
'k R' k R kR

k“R“ k^R“ k*R^ k“R“ k̂ R̂ -"
(4.A.1)

where

(4.A.2)
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L u R u R  u R  u R  uR-'

where

(4.A.3)

In Section 4.4, the following products are required

 ̂k R k R  k R  k R  k R  k Rk^R

where

-i»Jj . L ( )-6R^R^R^_ 1

d: ;

= 0

(4.A.4)

and

f;^.(iuR)h^^^_(iuR)
L u“R“ u^R“ u^R^ u^R^ uTR^ utR^ •
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-( 15a.^.+6«^^.)R^R^R^

" ^U^'HL  ̂ ^^  ̂ )-( 1 o«̂ .̂+21/3̂.̂. )R^R^R^

î̂ llmi  ̂ ^ A ^ / m .  ' (4.A.5)

In Section 4.7, the following products are required

h^^.^(iuR)lv^^{iuR) =

î̂ ^̂ ùm.'ri ^i^Â'tmn l̂̂ Â'tm'n ^i^^tnnn

u“R “ u^R“ u^R^ u^R“ u^R^ u^R^ u®R® ■

where

% U m . n  = %'*4t3(5^^R^_+5^^R^+5^^R^)-15R^R^R„l +

'-'lA. [ ̂ ’ "1 ® i +

( 2S^^R^+5^^R^+S^4R-6B^E^R^ ) ( 25^^R„+«^„R^+5^^R^-6R^R^R^ ) 

%ii<wn. = %®«(3('5^R„+5^^R^_+5^^R^)-15E^R^R^J +

2 '-ISR^R^R^l +

(25.̂ .R̂ +5^̂ R̂ +5^^R.-6R^R̂ .Rjj)[3(5^̂ R̂ +5^_^R^+6 R̂ ,̂)-15R R̂ R̂ Ĵ + 

( 3 ( )-15R^R^R^J ( 2«^^_R„+«^„R^+5^,p_R^-6R^R^R„.)
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[3(5..R^+5.^R.+6.^R.)-15R.Y^

+ [ 3 { ^ “15R̂ R̂ .R̂  j ( 25/^R^+5^^_R^+5^^^R^-6R^R^R^,)

% . & W R  = ^ ^ 5%^V/n.^
(4.A.6)

and

h.^^(kR)h^^(kR) =

<- k“R “ k“R “ k*R^ k^R- k^R^ k^R^ k®R® •

where

'^i.iUmm. = i°‘iA'26^^R^+5^R^.+6^^R^-6R^R^R^) -

^  A  ’ " 1  S R ^ R ^ R ^  1 +

< 25; + 5 ^ ^ R ^ + 6 ^ .  ̂ R ^ - 6 R ^ .  R ^ R ^  ) ( '

= “i®‘iAl2(S^^R^+5^^R^+5^.^R^_)-15R^R^R^_] + 

i ( 25^^R^+5;^R^+5^^R;-6R^R^R^ ) [3 ( 5^^R^+&^R^+5^^R^|-1 SR^R^R^]- 

i13(&^R/+5^^R^+6^^R^g)-15R;R^R^] (25^^R^+5^R^+5^„R^-6R^R^R^) +

 ̂ A + ^ ^ A ' ^ ^ i A '"^5® A ® ^ *

^ii$Xmm. =  “ ' 2 f ^ ^ R ^ + 5 ^ R ^ + 5 ^ . ^ R ^ - 6 R ^ R ^ R ^ )  [ 3 ( 6 ^ ^ R ^ + 5 ^ ^ R ^ + 6 ^ . ^ R ^ ) - 1 5 R ^ R ^ R ^ ]  +
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[ 3 ( 6 . ^ R ^ + 6 ^ R . + 5 . ^ R ^ ) _ 1 5 R . R ^ R ^ ] [ 3 ( 5 . ^ R ^ + 6 ^ R . + 5 . ^ R ^

- [ 3 ( )-l5R̂ .R̂ R̂  J ( 25^-^R^+5^^R^+5^^R^-6R^R^R^)

(4.A.7)

In Section 4.8, one of the products required is

k^E“ k^E^ k^E* k^E® k®E^ k^E^ k®E®

where

~-mnVl'^

hiUmin = Si^R^E^+5^^E^E^_+5^EjjE^_+6^^RjgE^+6^^E^E^ > + V n "

-Z-t^'W.n^^Zm^tn'^^Zm-Iln’ + ̂OSEj^E^E^E^t 15(S^E^E^+S^^R^E^

) J + [ 6 ( ^4mK^E^+6^^E^E^+

45R^E^E^E^1
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^̂ât̂'üi'nT̂Âm.̂Zn ̂-ùnîân
^ U m n  "= °

Since

and

h.^^(kR)h^^(kR)+h^^^(kR)h^^^(kB) = 21 ' '

the tensors written in (4.8.6) are defined as

î̂ â'tm'TL ~ " î̂ â'tm.'Ti ijÂZ'nm 

^i^ÂZm'TL ~

% Â l m n  = l̂̂ U'm.'n = \^Um.n ~ (4.A.9)

Also required in Section 4.8 is
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u "r ’ u^R^ u^R^ u“R “ u^R" u^R^ u^R® ^

where

~ "î ^̂ i't̂ 'UL'n

h n h % r ^ < m n h h  ̂ ~ h f u ^ A .

l + 105R^R^E^R^]+g^^[-6 ( S^,m'^^R^+5^^R^R^+

'[3( hl^'mn'^hm-ln'^h'm.hn’ + 105R^R^R^R^-15 ('5^^R^R^+

' - //fi'̂jS'̂m ’ “® "4̂ ^ht-m.n*hm.hn*hnh'ni^ '• A'^m’̂-n, ' 

\ i U m n  = 213̂  ̂[ 3 ( ’ + 105R^R^R^R^-15 ( 5^^E^R„+

^ijU'mn = î.i 12 (  ̂  ̂' ® 4 A

’ ' ’ ( 4. A. 10 )

The tensors used in (4.8.7) take on the definitions
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+

+

+

+

+

î̂ '̂ùm.'n +

l̂̂ ÂZ'm.n + (4.A.11)

In Section 4.9, the required products are

kR kR I kR I =

D ? ̂k“R‘' k^R^ k^R^ k^R*

where

= 0

1 ; 2 i A t  2 I'lSR^R^R^

hM'ui

= 0

(4.A.12)

and

g.y iuR)hjg^^(iuR)
rG; ti: :^p_  I ;  4 P -  J -  M m i ]

u"r " -iu“R“ u^R“ u^R^ u^R“

where
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h M m

i '“S'*

'■ < ’“®® ) '

® >"1® V

® ‘ '"1 A " - ®  ' ' (4.A.13)

In Section 4.10, one of the terms needed is

kR )+.î -̂4 (kR)f^( kR ) =

l̂̂ Ât'm.

k V  k^R^ k*R^ k“R^ k^R^ •

where

: 0

= 0

(4.A.14)

so that the geometrical part of (4.10.4), as written in (4.10.5), can be 

expressed as

':«<m'kR)gt/'''̂ '''̂ i/kR)ĥ (̂kR)-i[f̂ (̂kR)ĵ .̂̂ (kR)+ĵ .̂̂ (kRlf̂ (kR)]
t; ; U . ;

k“R‘ k^R^ k^R^ k^R^ k^R^

where
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Kjllmi ^

= 0

= 0

(4.A.15)

Also required in Section 4.10 is the product

-L; ; 

u“R' u R u^R^ u^R^ u^R^

where

IjAtrni (4.A.16)

so that the geometrical part of (4.10.6) is given by

ij,-^.^(iuR)f^^(iuR)+g.^.(iuR)h^^^(iuR) =

" “ '*’ 3_3 4„4 5„5 ''’ 6„6u R u R u R u R u R

+

\âlm. +

% U m .  = + h^ÂZm

+

+ (4.A.17)
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CHAPTER 5

MOLECULE INDUCED CIRCUL^LY POLARISED LUMINESCENCE
5.1 INTRODUCTION

Circularly polarised luminescence [60J is defined as the difference

in rates of spontaneous emission of left- and right-handed circularly

polarised light from a chiral molecular species in an isotropic medium. 

A closely related phenomenon is molecule induced circularly polarised 

luminescence which is the differential circular emission rate arising 

from chirality induced in an achiral molecule through intermolecular 

interaction with a chiral molecule.

Circularly polarised emission spectroscopy is increasingly used in 

the determination of molecular stereochemistry and electronic structure 

with circularly polarised luminescence observables reflecting the 

chirality of molecular emitting states and providing configurational and 

conformational structure information. This complements techniques used 

to probe naturally optically active systems in the ground state such as 

optical rotation, optical rotatory dispersion, circular dichroism and 

circular intensity differential scattering, each of which also has a 

firm basis in theory, ranging from early serai-classical treatments given 

by Rosenfeld [61] and Condon [62], to fully quantum field descriptions 

by Barron and Buckingham [63], by Power and Thirunamachandran [64] and

by Atkins and Barron [65]. Riehl and Richardson [66] have given the

general quantum electrodynamical theory of circularly polarised emission 

and magnetic circularly polarised emission, the latter being the 

emission analogue of magnetic circular dichroism [67].

In addition to natural optical activity, there is a related class 

of phenomena in which an achiral molecule acquires optical activity
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through interaction with a chiral molecule. A well known example is 

molecule induced circular dichroism [68], whose theoretical derivation 

was given by Craig et al [69] . This theory was presented using QED in 

the Schrbdinger picture where the time dependence is contained entirely 

within the state function for the radiation-matter system. 

Intermolecular interaction involved the exchange of a virtual photon, 

expressed in terms of retarded potentials. An equivalent formulation 

based on the Heisenberg picture, where the time dependence is contained 

entirely within the operators, was later presented by Power and 

Thirunamachandran [70]. In this viewpoint, the coupling of the 

transition moment of the achiral species to the electromagnetic fields 

produced by the chiral molecule was examined.

In this Chapter, the theory of molecule induced circularly 

polarised luminescence is developed using both the Schrbdinger and 

Heisenberg pictures of OED. Chirality in the achiral molecule A is 

induced dynamically by the coupling of virtual transitions in the chiral 

molecule C to those of molecule A, with the result that a real photon of 

circular polarisation is emitted spontaneously. The essential feature 

which enables the phenomenon to be observed is that luminescence occurs 

at a frequency characteristic of a transition in the achiral molecule, 

the chiral species being transparent at that frequency. OED provides a 

suitable framework for the study of emission phenomena; the radiation 

field is quantised and forms part of the dynamical system, in contrast 

to semi-classical theory, which fails to correctly account for 

spontaneous emission. In both the Schrbdinger and Heisenberg pictures, 

the multipolar form of QED is best suited for the study of molecule 

induced circularly polarised luminescence. Molecules couple with the 

electromagnetic field solely through electric and magnetic multipole 

moments mediated by the exchange of photons.
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The theory is first outlined within the Schrddinger picture and 

used to determine the matrix element for molecule induced circularly 

polarised emission. The theory is then presented using the Heisenberg 

formalism and the matrix element calculated is shown to be identical to 

that obtained using the Schrbdinger approach. Either of the two matrix 

elements can then be used to determine the differential emission rate. 

The results are applicable whether A and C are held fixed with TÇSpect to 

the intermolecular join corresponding to the fully locked in case, or 

are allowed to rotate as a single entity relative to the wavevector of 

the emergent ray, or are permitted to be completely randomly oriented. 

The dependence of the rate expression on intermolecular separation is 

examined after each stage of averaging. The two methods are compared and 

contrasted to gain insight into the nature of radiation-molecule 

interactions in OED.

5.2 EVALUATION OF MATRIX ELEMENT IN THE SCHRODINGER PICTURE

The total Hamiltonian for the system of molecules interacting with 

the electromagnetic field in multipolar framework is given by (1.2.30). 

Since molecule induced circularly polarised emission is a one photon 

process, only the terms linear in the electromagnetic field appearing in 

the interaction Hamiltonian (1.2.33) can contribute. The last term of 

(1.2.33), being quadratic in b(r) is ignored to this order of 

approximation. The interaction Hamiltonian to dipole approximation may 

then be written as

^ -e"’2(A).d'^(R )-e:'2(C).d"(S )-m(C).b(R^). (5.2.1)INI U A U L L
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strictly the electric quadrupole interaction term, being of the same 

order as -m.b, must also be included in (5.2.1). However, the 

contribution from this term to the differential rate is zero for 

randomly oriented molecules, and is thus omitted.

The transitions in C are both electric and magnetic dipole allowed

whereas that in A is only electric dipole allowed. Let the emitted

photon of left- or right-circular polarisation be of mode (k,L/R)

corresponding to an electric dipole allowed transition of the achiral

molecule A. The energy levels are assumed to be non-degenerate and their

wavefunctions are chosen to be real. The extension to the degenerate

case is straightforward. Let the energy levels of the chiral molecule be

|e ). The transition rate corresponding to the transition I —  ' n '0 0'
|E“,Ep in the achiral molecule, with no overall change in the state of 

the chiral molecule, is given by the Fermi golden rule (1.2.57). The 

initial and final states for the process are specified as

i> = |E\E^;0(k,L/R)) (5.2.2)

f> = |E^,E^;l(k,L/R)) (5.2.3)

corresponding to A in the mth excited state initially, in the ground

state with one circularly polarised photon finally, and with C remaining 

unchanged in the ground state overall.

The calculation of the probability amplitude in the Schrbdinger 

picture is facilitated by the use of time-ordered graphs. The leading

contribution to for the transition [final) <—  {initial) is of first

order corresponding to the graph in Fig.5.1., which shows spontaneous

emission bv A, from which
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j^(l)(L/R) . r̂̂ SjL.'j (5.2.4)
fi - -4

choosing A to be situated at the origin of the molecular coordinate 

frame. To first order there is no effect arising from the chiral nature 

of C, the transition rate based on (5.2.4) being identical for photons 

of a definite helicity. Higher order contributions include the 

interaction between A and C via the exchange of virtual photons. The 

leading contribution taking account of such interaction is of third 

order corresponding to one-photon exchange. This is described completely 

by six graphs, one of which is shown in Fig.5.2.

The third order process involves virtual excitation to the states

|E ) of the chiral molecule and the exchange of a virtual ohoton betweenI n*̂ -
C and A. The total contribution to the third order matrix element is 

obtained by considering all possible time-ordered sequences and is 

calculated using conventional time-dependent perturbation theory. 

Diagrams in which the virtual photon propagates from A to C contribute

(5.2.5)

i(p-k).R
)®(hcD-hck)^  ' u -

nt no no J

nt no no J
On no On no

nt no no J
(5.2.5)

to the matrix element in which the photon of wavevector k is circularly 

polarised and is associated with the real photon emission. The virtual 

photon wavevector p and polarisation index X are both summed, along with
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Fia. 2. Typical third order graph for luminescence,
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all the allowed virtual states. Use has also been made of the fact that 

for real wavefunctions, and m^° = -m“̂ . The polarisation sums

in expression (5.2.5) may be performed with the aid of (2.2.19) and 

(2.2.20), and by use of the identity [6]

g(L/R)^j)  ̂ (5.2.6)

The molecular terms within the square brackets of (5.2.5) correspond to 

the electric dipole polarisability (w ) and the mixed electric 

dipole-magnetic dipole analogue G; -(u), whose definitions were given bv

(4.2.2) and (4.3.2). ex. .(w) is the same for a chiral molecule and its 

enantiomer. G - -(w) is of opposite sign for a chiral molecule and its 

enantiomer since the magnetic dipole matrix element does not change sign 

under inversion, in contrast to the electric dipole matrix element. 

Expression (5.2.5) may now be rewritten as

U “qVJ (hcp-hck)

|_̂  ̂̂  ̂  ̂  ̂  ̂ (0.2.7)

where the upper and lower signs refer to L and R respectively. The 

contribution from the other three time-ordered graphs where the virtual 

photon travels from C to A is

r ^ 1
I ( -J4~PjP£ ) • ^ ^ ^ (5.2.8)

Adding expressions (5.2.7) and (5.2.8) and converting the p-sum to an
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integral using (2.2.21) results in the following for the total third 

order matrix element

II C

3->
X  I - V V (  )  I  e  i  p  • * ^ + 6 -  i  p  •

" ( k " - p ‘ ) ^ ' - I2n)~

The integrals appearing in (5.2.9) occur in the study of

intermolecular interactions L6J. The relevant integrals are

£.
(2jt)̂

i^.,(l-ikR)^.,k“R“Je^^^ = V-.(k,R) (5.2.10)
47iê R̂

and

ik _ ^ I 1 ^
2e^c P I p-k p+k J , » .3( 271

 ̂J ckR^ . I jj
 ; ll-ikRIe = U.^(k.R) (5.2.11)

litê cR"

with the dvadics «. . and • defined by (4.3.7). V - .(k.R) arises from 

the matrix element representing the resonance coupling between two 

systems, one in the ground state and the other in excited state and is 

known as the retarded electric dipole-electric dipole interaction 

tensor; U--(k,R) is the electric dioole-magnetic dipole analogue for 

chiral systems in which both electric and magnetic interaction terms 

contributing to intermolecular coupling are included. This enables
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(5.2.9) to be written as

3)(L/R) .fbckl ■ “- ( L / R ) o m  -ik.R  ̂
i = ^

[(a. .((J)TiG..('J) )(V..)-iG; :(u)U,»J. (5.2.12)

Before proceeding to calculate the difference in emission rates it is 

shown how the matrix element above may be evaluated in the Heisenberg 

picture. This provides additional insight into chiral-achiral 

interactions.

5.3 EVALUATION OF MATRIX ELEMENT IN THE HEISENBERG PICTURE

In this Section the matrix element for molecule induced circularly 

polarised luminescence is obtained using the Heisenberg picture and the 

result is shown to be identical to that obtained with the Schrbdinger 

method in the previous Section.

As has been shown thus far in this thesis, intermolecular 

interactions in the Heisenberg framework are calculated directly from 

the Maxwell fields derived in Chapter 2. In the present problem, the 

emission rates are determined from the coupling of the electric dipole 

moment of the achiral molecule to the source fields of the chiral 

molecule.

The total Hamiltonian is now given by (2.2.7) leading to the 

derivation of the fields as described in the second Chapter. Only the 

electric displacement vector field in the vicinity of the chiral 

molecule as given by (2.2.47) is needed in this calculation since the 

electric dipole of A can only couple to the electric displacement
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radiation field of the chiral molecule. For the application to molecule 

induced emission in which the chiral molecule remains in its ground 

electronic state overall, it is necessary for the ferraion operators of 

the quadratic field, representing the electronic state of the chiral 

molecule, to be set to the lowest level Ê . Further, those terras in 

(2.2.47) exhibiting a sinusoidal tirae-variation when at near resonance, 

where they are almost stationary, may be ignored. This enables the 

second order displacement field to be written in terms of molecular 

polarisabilities as in expression (5.3.1)

Î , X  °

1 ik((r-R)-ct)
+ c + H.c.j .

(5,3.1)

If it is assumed that the transition 0 —  m of A is electric dipole 

allowed, the leading contribution to the counting is

'̂ INT = (5.3.2)

The matrix element is then given bv

m (L/R)  ̂ <i(k,L/R);E^,E*|-£‘'2(A).3'^(S^,t)|E*,Eg;0(k,L/R)> (5.3.3)

where use is made of the power series expansion of the field of molecule 

A. As d^^^ and depend linearly on the photon creation and

annihilation operators, both contribute to the matrix element, 

however, does not change the photon number and so does not contribute to

(5.3.3). Using the expression for the free field (2.2.15) and (5.3.1),
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j^(l)(L/R)  ̂ (5.3.4)

and

„(3)(L/R)

(5.3.5)

which on addition gives for the total matrix element

(L/R)  ̂ om,^,^^y'%ik.Rj-,L/R),g,^^-ik.R
tl "L V 1 ^

(5.3.6)

correct up to third order in the transition moments, with R = R^-R^. By 

noting that the geometrical tensors V:-(k,R) and U-(k,R) given earlier 

in the expressions (5.2.10) and (5.2.11), can also be obtained from the 

relations

i ’ gikR
V. . (k,R)  = ( 5 . 3 . 7 )

<■ i \.R
0

and

%'k,R) = - I , (5.3.8)
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and with use of the relation (5.2.6), it is seen that the matrix element

(5.3.6) is now identical to that obtained by the addition of (5.2.4) and 

(5.2.12) in the Schrbdinger picture.

5.4 EVALUATION OF DIFFERENTIAL EMISSION RATE

Either of the matrix elements calculated in the previous two 

Sections can now be used to calculate the differential emission rate for 

molecule induced circularly polarised luminescence. The difference in 

emission rate between left- and right-circularly polarised light is 

found using the Fermi rule

r(L/R) ^|n|,,(l)(L/R) , „(3)(L/R)|2p

Taken by itself the third order term, like the first order terra on its 

own, does not give rise to a difference in the rates of luminescence. 

The first order amplitude when combined with the third order 

contribution however, results in an interference term which depends on 

the handedness of C and leads to different emission rates for left- and 

right-circularly polarised radiation. The leading contribution comes 

from the first order-third order cross term

pL pR_ 27rp
‘  ̂ " h

M(lHLV3)(L)^^(l)(LU3)(L)_„U)(RM3)(R)_j;i(l)(R 
f 1 f 1 f 1 f 1 f 1 fl f 1 f 1

(5.4.2)

where the overbar indicates the conjugate complex quantity. With the aid 

of the first and third order matrix elements (5.2.4) and (5.2.12) the 

difference in emission rate occurring within an element of solid angle
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dû around the direction of nroDaaation of the emergent ray is

dr’--dr" =
n

+cE.,_k_L(x,_((j)(ReV_^)-iG;_(w)(ReU_;!) J - e (5.4.3)

where Re denotes the real part and where use has been made of the 

identity

(5.4.4)

The differential rate (5.4.3) applies when the orientations of A and C 

are held fixed relatiye to R with R itself fixed relatiye to the 

direction of propagation k̂ -. On substituting (5.4.5) for the density of 

states

P = (5.4.5)
i2n) he

and performing a tumbling ayerage, that is, ayeraging under the 

assumption that all directions of R are equally probable, the molecule 

induced differential snontaneous emiss. ion rate is

<r^-<r'*> = (=i^-- + ft. .(sogkR _ sinkR]
'yrÊ hc"' * " U  kR k'R' k"R" )

'5.4.6)

The rate is a modulation of a power law by sinusoidal terms depending on 
-  1the wayelength k and products of various molecular structure factors 

exoressed as transition dinole moments. When kR is small, the limiting

213



behaviour of the rate is found to be

_  4,3 + ice (5.4.7)
127T E^hc R

whose leading terra has an R  ̂ dependence on interraolecular separation. 

The result is not independent of k as is usually the case in the near 

zone limit kR 1. If experiments are carried out in the fluid phase a 

further average of (5.4,6) is needed. This involves performing a 

rotational average over relative orientations k-C in a given pair. 

Further, for a system in thermal equilibrium the average should be 

weighted by a Boltzmann factor as in

<<r̂ >-<r̂ >> = JJ<r^>-<r^>exp(-V^ç,(R,0,0')/kT)dOdO' (5.4.8)

exp(-V^c^^’̂ ’̂ ')/kT)dOdO'

where V^^(R,0,Q') is the intermolecular potential, a function of the 

separation R and of sets of Eulerian angles for the two molecules.

The random unweighted average is computed, corresponding to the 

leading term in the expansion of (5.4.8) being independent of in the 

limit kT » . Using the standard method 141] results in

? 7̂  4 336JT“£“hc R k̂R k R  ̂ k R

(5.4.9)

The asymptotic behaviour of (5.4.9) for small kR gives

 4 ^ --- (5.4.10)
1357r“E“hcR
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_ 1as the leading contribution, exhibiting R * separation dependence.

The differential emission rate for molecule induced circularly 

polarised luminescence for a chiral-achiral pair has been derived using 

the Schrbdinger and Heisenberg pictures within the framework of OED. 

Discriminatory effects occur since chirality is induced in the achiral 

molecule via intermolecular coupling with the chiral molecule. Despite 

differences in the calculational procedure, the results obtained from 

the two methods have been shown to be identical. The Schrbdinger

treatment employs perturbation theory in the calculation of the matrix 

element, interpreted in terms of the interference of transition 

amplitudes. The picture is one where intermolecular coupling is viewed 

as the exchange of a virtual photon, expressed in terms of the retarded 

potentials. In the Heisenberg representation, the calculation is more 

direct; the matrix element representing the coupling of the dipole 

moment of the achiral molecule to the causal source fields of the chiral 

species is determined.

The differential transition rate in the region where the

intermolecular separation is much smaller than the reduced wavelength of 

the radiation depends on the inverse separation due to the inclusion of

the magnetic dipole coupling term in addition to the electric dipole

interaction.
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