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ABSTRACT

The gene for autosomal dominant polycystic kidney disease (PKD1) is located on
chromosome 16p, between the flanking markers D16S84 (GGG1) and D16S125
(26.6PROX). This region is 750 kb long and has been cloned into cosmids and phages.
The region is thought to contain approximately 15 genes. Since no chromosomal
aberrations have been identified that are correlated with the presence of the disease
phenotype, all candidate genes are being extensively analysed by sequence analysis and
mutational analysis. This approach to identify the PKD1 gene involves much work and
therefore other complementary strategies have been employed to optimise efforts in
candidate gene analysis.

In this project, studies of recombinant families and linkage disequilibrium studies have
both been applied to the genetic analysis of the PKD1 region. To this end, ten new
polymorphic markers were identified, several of which were obtained through
collaborations with S. Reeders and P. Harris. Except where indicated, all characterisation
and typing of markers was carried out as part of this project. To further narrow down the
location of recombination events close to the gene, family linkage studies, using the
newly isolated markers, were carried out on seventeen PKDI1 families containing
recombinant individuals. Four of these families were previously published, and in
thirteen families there was ambiguity about recombination events. The new data suggests
that the PKD1 gene lies in a region of approximately 350 kb, flanked by KG8 on the
distal side, and W5.2 on the proximal side.

The association of the same ten polymorphic markers, with the disease and with each
other, has also been investigated. This was done in a set of 76 families from four
populations, including 33 Scottish families that had previously shown association with
D16S94 (VKS), a marker proximal to the PKD1 region. Significant association is
reported between two CA repeat markers and the disease in the Scottish population, but
no evidence for a single founder haplotype in these families has been found. This
indicates the presence of several mutations in the Scottish population.

The results presented in this thesis, from both the family linkage studies and the linkage
disequilibrium studies, are compatible and favour a location of the PKD1 gene in the
proximal part of the candidate region.
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1. CHAPTER 1: INTRODUCTION

PART 1: POLYCYSTIC KIDNEY DISEASE

1.1. Polycystic kidney disease

Polycystic kidney diseases, a group of disorders that encompass a wide range of diverse
symptoms, have one feature in common, the presence of fluid-filled epithelial cysts arising
from nephrons. The cysts may be solitary and relatively benign, or so numerous that they
compress and distort the normal parenchyma, thereby contributing to the development of
renal failure (Grantham ‘1990). The group includes two genetically distinct conditions
(Ramsay er al. 1988): autosomal dominant polycystic kidney disease (ADPKD), the
subject of this thesis; and autosomal recessive polycystic kidney disease (ARPKD). These
two disorders were initially designated adult polycystic kidney disease, due to the
typically late onset of the dominant form, and infantile polycystic kidney disease. Since
the adult disease may manifest in childhood (Gal er al. 1989, Fick er al. 1993, Zerres et
al. 1993, Fick et al. 1994a) and children with the infantile form of the disease may survive
into adulthood (Cole er al. 1987), these terms were changed to ADPKD and ARPKD

ARPKD is rare, occurring in 1:6,000 to 1:14,000 live births (Grantham 1990), but the
disease is more aggressive than ADPKD, since it is usually lethal to infants in their first
year (Wilson and Sherwood 1991). Children are born typically with massively enlarged,
malfunctioning, multicystic kidneys due to abnormal expansion and growth of collecting
ducts, and affected infants usually die from renal failure and pulmonary maldevelopment.

Acquired cystic kidney disease (ACKD) is a non-heritable form of polycystic kidney
disease. The disease is found in patients with long-standing progressive renal insufficiency
and is seen in over one half of patients who have received dialysis treatments for 3 years
or longer (Dunhill er al. 1977, Ishikawa er al. 1980). Hundreds of cysts develop, causing
both kidneys to enlarge to such an extent that it may not be possible to distinguish
between hereditary PKD and ACKD. ACKD is occasionally detected before dialysis is
begun, indicating that the cystic change reflects a pathological process implemented by
the loss of nephron function (Grantham 1990). In addition, renal cysts have been
described after long-term administration of lithium chloride (Hestbech er al. 1977) and
exposure to diphenylamine (Gardner e al. 1970). There are also other diseases in which
renal cysts are common, although less prevalent. These include Tuberous Sclerosis, von
Hippel-Lindau disease and Medullary cystic disease.
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1.2. Autosomal dominant polycystic kidney disease

ADPKD was first described by Dalgaard (1957), who published a study of 284 patients
with bilateral polycystic disease of the kidneys. Affected kidneys were defined by
Dalgaard as those in which the tissue was invaded by a large number of closely packed
cysts. This study classified ADPKD as a renal disease and clarified its autosomal
dominant pattern of inheritance. Almost complete penetrance was demonstrated, with a
frequency on autopsy of approximately 1 in 1000, making ADPKD one of the most
common inherited diseases of Man.

ADPKD is currently responsible for 6%-9% of all cases of end-stage renal disease in
North America and Europe (Parfrey et al. 1990, Gabow 1993). The disease typically
shows a slow progression in which renal cysts, which may arise at any point along the
course of the nephron, gradually replace normal renal tubule mass. This leads to bilateral
renal enlargement and, in a large but undetermined number of cases, renal insufficiency
around the fourth decade of life (Wilson and Sherwood 1991). Symptoms of reduced
ability to concentrate the urine and hypertension often precede loss of renal function
(Martinez-Maldonado er al. 1972, Gabow et al. 1984). Intracranial aneurysms occur in an
appreciable percentage of patients and lead to fatality due to subarachnoid haemorrhage
(Chapman et al. 1992). In addition, the disease is characterised by gastrointestinal and
musculoskeletal abnormalities, and by cyst formation in the liver, pancreas, and spleen
(Milutinovic et al. 1980, Gabow 1990, Gabow 1993). Fortunately, extrarenal cysts are
rarely symptomatic (Reeders ez al. 1989).

Diagnosis of ADPKD requires either bilateral cysts or multiple unilateral renal cysts (Bear
et al. 1984, Ravine et al. 1994). However, symptoms due to ADPKD vary widely not
only among, but within families (Milutinovic et al. 1992, Ryynanen et al. 1987). The age
at onset of renal failure due to the disease is also variable, and a significant proportion of
patients remain symptomless throughout life (Hatfield and Pfister 1972). Early detection
of ADPKD carriers can be made before clinical symptoms develop by ultrasonographic
imaging of the kidneys (Dalgaard and Ngrby 1989), a harmless, non-invasive, and fast
procedure. Original estimates by Bear et al. (1984) indicate that approximately 85% of
carriers can be detected by the age of 25, 10-15 years before the onset of clinical
symptoms. According to more recent studies (Zerres 1992, Bear et al. 1992, Dobin et al.
1993), the risk for first-degree relatives with a normal ultrasound scan is, on average, less
than 10% at the age of 20, and much less than 5% at the age of 30 years.

Extensive analyses using both biochemical and physiological approaches have failed to
identify the biochemical basis underlying the pathogenesis of ADPKD (see Part V of
introduction). Studies of rodent polycystic kidney disease and drug-induced polycystic
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disease have also failed to elucidate the basic mechanism of cyst formation. Therefore a
positional cloning approach has been taken to localise the gene(s) responsible for
ADPKD.

PART II: GENETICS OF ADPKD

1.3. Positional cloning

Positional cloning is the isolation of a disease gene starting from the knowledge of its
genetic or physical location in the genome and usually very little information regarding
the biochemical or molecular defect underlying the disease. Since the cloning of the genes
for Duchenne muscular dystrophy (Monaco et al. 1986) and chronic granulomatous
disease (Royer-Pokora 1986), over 20 genes have been identified using positional cloning
techniques. This is also the approach that is being employed to find one gene responsible
for ADPKD, the PKDI1 gene.

The strategies employed in the cloning of genes by a positional cloning approach,
although varied, are all centred around three basic principles. The initial step often
involves the exhaustive search for markers of known chromosomal location that are
closely linked to the disease phenotype. Once genetic linkage studies have established
linkage of a disease gene to a subregion of a particular chromosome, further markers
closely linked to the gene are isolated to establish a map with genetic limits for the
physical position of the gene. The second step involves correlation of the genetic map
with a corresponding physical map. The genetic markers are used as start-points for
movement towards the gene using long range cloning techniques, such as cosmid and
phage walking, chromosome jumping, and the cloning of DNA into yeast artificial
chromosomes (YACs) (Burke er al. 1987) and Pl-derived bacteriophage vectors
(Sternberg 1990). The final stage in positional cloning involves searching the cloned DNA
for transcribed sequences in the region of the gene. Promising candidates are then
selected for further analysis.

1.4. Establishing a genetic map

1.4.1. Establishing a genetic map: Chromosomal aberration

The availability of any gross chromosomal rearrangement in or around the gene of

interest often facilitates the process of gene identification. It is assumed that a
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chromosomal aberration associated with a disease phenotype is associated with the gene
directly involved in producing that disease. For example, the majority of genes isolated by
positional cloning methods are X-linked. This is due in part to the haploid status of this
chromosome in males, but also to the wide availability of patients with chromosomal
aberrations involving the X chromosome. Localisation of the gene for Duchenne
Muscular Dystrophy (Monaco et al. 1986) was aided by the presence of various X-
autosome translocations, and patients with various deletions of the DXS164 locus. The
gene for Fragile X syndrome (FMR-1) was localised to Xq27.3 by the presence of a
fragile site on the X chromosome (Krawczun et al. 1985, Sutherland et al. 1985). This
site was visible as an isochromatid gap in the metaphase chromosome under cell culture
conditions that affect deoxynucleotide synthesis. Genetic linkage studies and in situ
hybridisation experiments confirmed that the mutation was located at, or very near to, the

fragile site.

The observation of cytogenetically visible deletions in patients with familial adenomatous
polyposis coli (Herrera et al. 1986, Hockey et al. 1989, Rivera et al. 1990) led to the
localisation of the APC gene to the chromosomal region 521 using linkage studies and in
situ hybridisation studies (Bodmer et al. 1987, Leppert et al. 1990). Pulsed field gel
analysis of the APC region from 40 patients revealed small (100-260 kb) nested deletions
in two patients (Joslyn et al. 1991, Groden et al. 1991, Kinzler et al. 1991). Three
candidate genes that mapped to the smaller deletion were identified. The intron-exon
boundary sequences were defined for each of these genes, and single-strand
conformational polymorphism (SSCP) analysis, and RNAase protection analysis, of exons
from one of these clones identified four mutations specific to APC patients, thus
confirming the position of the gene. Similarly, duplications can help in the initial
localisation of a disease gene. The locus responsible for Charcot-Marie-Tooth disease
type I (CMT1A) was first localised to chromosome 17p by the observation of a large
DNA duplication of more than 1 Mb (Hoogendijk 1991, HMSN Collaborative Research
Group 1991, Lupski et al. 1991).

The genes for cystic fibrosis (Kerem et al. 1989, Rommens ez al. 1989, Riordan et al.
1989), myotonic dystrophy (Aslanidis et al. 1992) and Huntington's disease (Huntington
Disease Collaborative Research Group 1993) have all been cloned without the availability
of any type of chromosomal aberration. In these cases it was necessary to rely on genetic
data for the most likely position of the gene. In PKD1, Southern blot panels of DNA from
affected individuals have been screened extensively with clones from the region. No
differences specific to individuals with PKD1 have been detected (Somlo er al. 1992a).
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1.4.2. Establishing a genetic map: Isolation of polymorphic markers

Restriction fragment length polymorphisms

The natural variation that exists at the DNA sequence level in complex genomes led to
the identification of both DNA and protein polymorphisms. This variation between
individuals can be exploited and used as a powerful tool in genetic linkage studies
(Solomon and Bodmer 1979, Botstein er al. 1980). The first human sequence variants
uncovered at the DNA level were observed through the use of DNA restriction enzymes.
These recognise specific sequences in DNA and catalyse the cleavage of the DNA,
yielding fragments of defined lengths. The fragments can be run on agarose gels by
electrophoresis, where any length differences between fragments are visualised - as
differences in mobility. Restriction fragment length polymorphisms (RFLPs), as they are
known, were first used as a tool in genetic analysis by Grodzicker (1974) who
demonstrated linkage of temperature-sensitive mutations of adenovirus to specific
restriction fragment length differences. He was thus able to localise the mutations on a
physical map of the restriction fragments. The first human system shown to exhibit
RFLPs was in the 3-globin genes. For example, heterozygosities were found for a Ps:l
restriction site, within the intervening sequence of the y-globin gene among recombinant
DNA clones (Maniatis 1978), and for a Hpal restriction site associated with sickle-cell
trait (Kan and Dozy 1978a, 1978b).

The variations seen in RFLPs are due to many kinds of genotypic differences. For
example, a point mutation can result in loss or creation of a cleavage site. Alternatively,
insertion or deletion of blocks of DNA within a fragment will alter its size. RFLPs due to
single-base pair changes, deletions, insertions, and other local rearrangements are
expected to be inherited as Mendelian codominant alleles. RFLPs within distant
translocations may not be inherited in a simple fashion, since the probe may be detecting
sequences that, although homologous, are genetically unlinked (Botstein er al. 1980).

RFLPs are of enormous value in family linkage studies and in the construction of a
genetic map of the human genome (Solomon and Bodmer 1979, Botstein 1980). There
are, however, limitations in their use. As the mean heterozygosity of DNA is low
(approximately 0.001 per base pair) (Jeffreys 1979, Cooper et al. 1984, Ewens et al.
1981), few restriction enzymes will detect an RFLP at a given locus, although enzymes
that cleave at mutable CpG islands will have a higher probability of detecting a
polymorphism. In addition, most RFLPs are dimorphic, due to the presence or absence of
a restriction endonuclease site, and therefore have maximum heterozygosities of 50%
(Jeffreys et al. 1985). Of the thousands of human RFLP markers isolated, about 90%
have heterozygosities of less than 50%. RFLPs are also unevenly spaced throughout the
genome (Weissenbach et al. 1992).
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