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Abstract

Abstract

Tumour necrosis factor-a (TNF-a) is known to induce changes in endothelial cell
morphology and paracellular permeability, but the mechanisms have not been extensively
characterised. The purpose of this study was to establish the effects of TNF-a on human
umbilical vein endothelial cell (HUVECS) paracellular permeability and tight junctions

and relate these responses to changes in the actin cytoskeleton.

TNF-a caused progressive changes to HUVECs over 24 h. TNF-a induced RhoA
activation, myosin light chain phosphorylation, cortical F-actin thickening and the
formation of tiny inter-cellular gaps within 10 min. A small increase in permeability
accompanied these changes. By 24 h, TNF-a caused stress fibre formation, cell
elongation and extensive gap formation. Occludin and JAM-A were lost from the tight
junctions, ZO-1 was partially redistributed and permeability was increased. RhoA and
ROCK inhibition prevented TNF-a-induced changes in F-actin and cell morphology, but
ROCK inhibition did not re-establish the junctional localisation of ZO-1, nor did it
prevent increased permeability. Myosin light chain kinase inhibition had no impact on
TNF-a- induced stress fibres, cell elongation or permeability at 24 h. These results
indicate that the TNF-a-induced morphological and cytoskeletal changes are not solely
responsible for increased permeability and that signalling to the tight junction proteins

may be more important for TNF-a regulation of barrier function.

To identify potential interacting partners of occludin, a yeast two-hybrid experiment was
performed using the C-terminus of occludin. The transcriptional co-activator protein,
Ski-interacting protein (SKIP) and the Ser/Thr protein kinases, casein kinase Ie (CKlg)
and UNC-51 like kinase-1 (ULK-1) were identified in this screen. These novel

interactions may be important for occludin regulation and function.

During the course of these studies, adenoviruses were used to introduce genes into
HUVECs. An inhibitory effect of control adenoviruses on TNF-a-induced cytoskeletal
changes and permeability was observed, suggesting that adenovirus binding and/or entry

could modulate endothelial cell behaviour and responses.
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Chapter 1 Introduction

1 Introduction

1.1 Endothelial cell function

Endothelial cells (ECs) line blood vessels and form a physical barrier that separates the
vascular lumen from the vessel wall. ECs maintain blood circulation and fluidity, and
regulate vascular tone and coagulation (Cines et al., 1998). Furthermore, ECs control
tissue homeostasis by regulating the exchange of solutes, macromolecules and cells

between the blood and the surrounding tissues.

Transport across the endothelium is achieved through either paracellular or transcellular
routes. Transcellular routes are formed by cell surface plasmalemmal vesicles,
particularly caveolae, which can shuttle across the endothelium and/or fuse to form
channels for the delivery of plasma proteins to subajacent cells and tissues (transcytosis)
(Simionescu et al., 2002). Caveolae comprise 95% of endothelial cell-surface vesicles
and are defined as cholesterol- and glycosphingolipid-rich membrane microdomains
(Predescu et al., 1993; Minshall et al., 2003). Caveolin is a major protein constituent of
caveolae, that coats the cytoplasmic surface of the microdomain, binds to cholesterol, and
associates with a number of signalling molecules, including G-proteins and kinases

- (Kurzchalia et al., 1992; Rothberg et al., 1992; Minshall et al., 2003). Caveolae are
therefore platforms for signalling, trafficking and protein organisation. Albumin, low-
density lipoproteins (LDL), metalloproteases, transferrin and insulin are transported by
transcytosis (Simionescu et al., 2002). Most transcytosis occurs nonselectively in the
fluid phase or by adsorption to the vesicle membrane (Tuma and Hubbard, 2003).
However, there are some reports of receptor-mediated transcytosis. For instance,
albumin, which binds to important hydrophobic and sparingly soluble molecules such as
free fatty acids, thyroid, steroid hormones, bile acids and drugs, engages a protein
expressed on the luminal endothlial cell surface called gp60. Gp60 also binds to
caveolin-1. Albumin binding to gp60 results in tyrosine phosphorylation of gp60 and
caveolin-1 and albumin transcytosis (Tiruppathi et al., 1996; Tuma and Hubbard, 2003).

14



Chapter 1 Introduction

Paracellular permeability is regulated by endothelial tight junctions (discussed below)
and is utilised by ions, water and small molecules, as well as immune cells such as

leukocytes (Van Buul, 2004).

Endothelial dysfunction contributes to pathological conditions such as chronic
inflammation and atherosclerosis (Gonzalez and Selwyn, 2003). In a normal
inflammatory response, pathogenic invasion stimulates the release of cytokines, such as
tumour necrosis factor (TNF-a) and interleukin-1 (IL-1) from activated macrophages and
other immune cells, which activate the endothelium to express cell adhesion molecules
such as intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion
molecule-1 (VCAM-1) and E-selectin. Blood leukocytes adhere to cell adhesion
molecules expressed on the surface of the endothelium, which facilitates their
transmigration through the endothelium to infected tissues (Liu et al., 2004). Such
inflammatory responses are required for an effective defence against infection, however,
persistant or chronic inflammation is central to diseases such as rheumatoid arthritis,
inflammatory bowel disease and atherosclerosis (Gonzalez and Selwyn, 2003; Ulbrich et
al., 2003; Glass and Witztum, 2001).

Atherosclerosis arises from an accumulation of fatty streaks that underlie the endothelium
of large arteries. Fatty streaks form when macrophages take up oxidised low density
lipoprotein (LDL)-cholesterol, progressively accumulate in the subendothelial space and
develop into foam cells, which contain massive amounts of cholesterol ester. Smooth
muscle cells also migrate to this region and synthesize extracellular matrix proteins,
forming a fibrous cap. Localized chronic inflammation ensues, including the production
of TNF-q, interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1), and
apoptosis and necrosis of macrophages and smooth muscle cells leads to the formation of
a necrotic core. Neovascularisation further destabilises the plaque and eventual
thrombosis and plaque rupture can cause myocardial infarcation and stroke (Glass and
Witztum, 2001).

It is therefore of clinical importance to understand the regulation of endothelial function

and inflammatory responses.
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Chapter 1 Introduction

1.2 Intercellular Junctions

Figure 1A shows the space between two neighbouring epithelial cells. This space
contains a number of intercellular junctions including the adherens junctions, tight
junctions, desmosomes and gap junctions. Many of these junctional components are also

present in endothelial cells (Fig. 1B).

The primary role of the adherens junctions is cell-cell adhesion, which is mediated by
classic cadherins and their association with actin via members of the catenin family.
Vascular endothelial cadherin (VE-cadherin) is a cell adhesion molecule that is
specifically expressed in endothelial cells. Electron micrographs show that although the
adherens junctions bring the two neighbouring membranes into close apposition, there is

still a gap of about 20 nm between the two cells.

The tight junctions are the most apical of the intercellular junctions and they seal the
paracellular space completely. This reflects one of the main roles of the tight junctions:
to act as a permeability barrier, restricting the flow of fluid from the vascular lumen
through the intercellular space (Gonzalez-Mariscal, 2003). The second role for tight
junctions is that of a membrane diffusion barrier, restricting the mixing of apical and
basolateral plasma membrane components (fence function) (Dragston et al 1981; van
Meer et al., 1986; Anderson, 1995; Balda et al., 1996). Tight junctions are composed of
integral membrane proteins from the occludin, claudin and JAM families, which form
homotypic interactions with the same proteins on neighbouring cells (Fig. 1.1B).
Membrane associated proteins, such as ZO-1, also reside at the tight junctions, and serve
to bridge the transmembrane proteins to the actin cytoskeleton, whilst others have
signalling and scaffolding roles. Tight junctions of endothelial cells lack some of the
proteins present in epithelial tight junctions, such as 7H6 and symplekin (Wachtel et al.,
1999). Tight junctions have been described as membrane microdomains which are rich
in cholesterol and caveolin-1 and are therefore, DIG-like in structure (detergent-insoluble
glycolipid rafts). Indeed, occludin not only resides in the same fraction as detergent-

insoluble lipid rafts in sucrose gradients, but it also colocalizes and coimmunoprecipitates
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Chapter 1 Introduction

Figure 1.1

Ultrathin section of a tight junction (A). Ruthenium red has been added to the apical
surface of epithelial monolayers and it is unable to penetrate past the tight junctions
(arrow). Scale bar, 10 nm. Taken from Gonzalez-Mariscal et al, 2003. Schematic
diagram showing the intercellular junctions between two neighbouring endothelial cells
(B). Tight junctions, adherens junctions, gap junctions and some other proteins reside in

this region.
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with caveolin-1 in the epithelial cell line, T84. These raft-like domains may play a
central role in the spatial organisation of tight junctions, as well as enrichment of signal

transduction proteins to this structure (Nusrat et al., 2000).

Platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) is a member of the
Immunoglobulin (Ig) superfamily, containing six extracellular Ig domains, and is
expressed in endothelial cells as well as platelets, monocytes, neutrophils and some T-
cells. PECAM-1 is assembled at the cell-cell borders and forms homotypic interactions
in confluent monolayers, but it is not restricted to any particular cell junction. PECAM-1
has been shown to co-precipitate with 3-catenin (Matsumura et al., 1997; Ilan and Madri,
2003). Antibodies to either leukocyte, or endothelial PECAM-1 Ig domains have been
shown to block neutrophil and monocyte transmigration, indicating an important role for

PECAM-1 in this process (Muller et al., 1993).

Gap junctions allow the exchange of ions and small molecules between neighbouring
cells and are formed by a channel made from six transmembrane connexin protein
monomers. There is some evidence that tight junctions are in relatively tight proximity to
the gap junctions. This has been observed in fibroblasts transfected with occludin
(Furuse et al., 1998) and in sertoli cells (McGinley et al., 1977). The coiled-coiled region
of occludin associates with connexin-26 (Nusrat et al., 2000) and others have shown
coprecipitaion of connexin-32 and occludin (Kojima et al., 1999). Indeed, connexins
may have a role in tight junction assembly and actin organisation (Kojima et al., 2002).
Furthermore, in MDCK cells, connexin-45 co-localises and co-precipitates with ZO-1
(Kausalya et al., 2001), and in cardiac myocytes, connexin-43 has been shown to
associate with a-spectrin via ZO-1 (Toyofuku et al., 1998). Endothelial cells express
connexins -37, -40 and -43 (Vestweber, 2000).

Epithelial cells also contain desmosomes. These junctions stabilise adhesion through
their association with keratin filaments. Integral membrane desmosomal cadherins -
desmoglein and desmocollin — bind to cytoplasmic proteins desmoplakins I and II and the

armadillo-related plakoglobin and plakophilin family proteins, which in turn bind to
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intermediate filaments (Vestweber et al., 2000). However, endothelial cells do not
contain classic desmosomes, but do express desmoplakin in a region termed the

‘complexus adhaerentes’ (Schmelz et al., 1993). Endothelial cells also lack keratins.

1.2.1 Adherens junction and tight junction cross-talk

Polarized epithelial cells and endothelial cells that exhibit high electrical resistance, such
as those from the blood-brain barrier, form distinct tight and adherens junctions (Riiffer et
al., 2004). However in microvascular endothelial cells that are the sites for leukocyte
transmigration and are thought to be more ‘leaky’and in other non-epithelial cells, the
intercellular junctions are not discrete, but are intermingled (Vestweber, 2000; Anderson,
1995). For example, the tight junction protein ZO-1 colocalises and co-
immunoprecipitates with the adherens junction protein a-catenin when overexpressed in
fibroblasts (Itoh et al., 1997). Co-localisation has been observed between occludin, ZO-
1, the catenins and VE-cadherin in pulmonary arterial ECs (Drenckhahn and Ness, 1997).
Moreover, a recent study has shown that in human microvascular endothelial cells
(HMEC), ZO-1 and B-catenin have overlapping localisations in confocal x-z scans,
whereas these are clearly separable in MDCK cells (Riiffer et al., 2004). This study also
demonstrated coprecipitaion of ZO-1 and ZO-2 with VE-cadherin in HMEC-1 cells.
Tight junction assembly depends upon adherens junction assembly (Balda et al., 1993).
Exogenous occludin localises correctly in occludin-null fibroblasts, which contain ZO-1
and adheren-like junctions. However, neither occludin nor ZO-1 localize correctly to
cell-cell contact regions in L-cells lacking cadherin-adhesion junctions (Van Itallie,
1997). It is possible that the adherens junctions signal for the formation of tight
junctions. In support of this, activation of protein kinase C (PKC) can induce tight
junction formation in the absence of cadherin-based cell-cell adhesion (Balda et al.,
1993). Alternatively, the adherens junctions might form a scaffold onto which tight
junctions can form: ZO-1 transiently binds to B-catenin in the early stages of tight
junction formation in MDCK cells and in L-cell fibroblasts which lack cadherin-based
adherens junctions, neither ZO-1 nor occludin localises to sites of cell contact (Mitic and
Anderson, 1998). Other signals are also transmitted between tight and adherens

junctions. A synthetic peptide homologous to the second extracellular loop of occludin
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induces down regulation of occludin itself, upregulation of B-catenin and the transcription
of B-catenin/TCF/LEF target gene c-myc (Vietor et al., 2001). However, in Ras-
transformed MDCK cells, the recruitment of occludin to the areas of cell-cell contact
precedes the appearance of E-cadherin at cell-cell contacts (Chen et al., 2000). VE-
cadherin association with the adherens junction protein, p120, has recently been shown to

be important for barrier function (Iyer et al., 2003).

1.3 The structure of tight junctions

Endothelial tight junctions contain integral membrane proteins that directly or indirectly
associate with F-actin, essentially bridging F-actin fibres between neighbouring cells. A
host of soluble proteins form a ‘plaque’ at the tight junction, where they fulfill structural,
signalling and regulatory roles.

1.3.1 Occludin

The first membrane spanning protein found to localise at the tight junction was occludin
(Furuse et al., 1993). Occludin is a ~65 kDa phosphoprotein with a short intracellular N-
terminus, four membrane-spanning regions that link two extracellular loops, a short
intracellular turn and a long cytoplasmic C-terminus (Fig. 1.2A). Occludin molecules
polymerise to form structures called tight junction fibrils (Stachalin et al., 1973) and they
also form lateral, homotypic interactions with occludin molecules of opposing cell
membranes. The lateral association of opposing occludin proteins is thought to involve
the high tyrosine and glycine residue content within the first extracellular loop of
occludin (Ando-Akatsuka et al., 1996). The occludin C-terminus is predicted to adopt a
coiled-coil conformation from Leucine 440 to Glutamine 469 (Ando-Akatsuka et al.,
1996, 1997; Nusrat et al., 2000).

Occludin is expressed in essentially all epithelial and endothelial tissues, as well as
neurons, astrocytes and T-cells (Alexander et al., 1998; Bauer et al., 1999). The function
of occludin in cell types that do not form tight junctions has not been determined. There
are several splice variants of occludin (Fig.1.2B). Occludin 1B contains a 193-base pair

insertion, encoding a longer form of occludin with a unique N-terminal sequence of 56
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amino acids (Muresan et al., 2000). Occludin 1B has identical localisation to occludin in
MDCK cells. There has been no report so far of the expression of occludin 1B in human
umbilical vein endothelial cells (HUVECs). Occludin II (occludin TM-4) is a further
alternative splice variant of occludin containing a 162-base pair deletion (Ghassemifar et
al., 2002, Mankertz et al., 2002). This represents a deletion of exon 4, resulting in a
protein of ~58 kDa that lacks the fourth transmembrane (TM) domain and immediate C-
terminal flanking region. In contrast to occludin and occludin 1B, occludin II is therefore
predicted to have an extracellular localisation of its C-terminus. This has been shown in
an HT-29/B6 intestinal cell line (Mankertz et al., 2002). Occludin II does not localise to
the tight junctions of HT-29/B6 cells and is instead diffuse across these cells (Mankertz et
al., 2002). Occludin II is also absent from the tight junctions of confluent Caco-2 cells,
but is present at the periphery of islands of confluent cells and cells bordering a wounded
edge (Ghassemifar et al., 2002). Occludin II mRNA has been detected in HUVECs
(Ghassemifar et al., 2002). Occludin III is a further occludin splice variant that lacks its
fourth transmembrane domain, and also has an extracellular C-terminus (Mankertz et al.,
2002). Occludin III does not localise to the tight junctions in HT-29/B6 cells but instead
exhibits diffuse staining similarly to occludin II (Mankertz et al., 2002). Occludin IV
contains a small deletion (19 amino acids) within its C-terminus and localises to the tight
junction in HT-29/B6 cells. How these splicing events are regulated has not yet been

determined.
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Chapter 1 Introduction

Figure 1.2

Schematic diagram of occludin (A). Occludin contains an intracellular N-terminus,
followed by two large extracellular loops that are connected by a short intracellular
region, and a long intracellular C-terminal region. Acidic (solid circle), basic (cross-
hatch) and uncharged (open circle) residues at neutral pH are indicated. Glycines are
represented as (triangle) and tyrosines as (inverted triangle). Taken from Mitic and
Anderson, 1998. The splice variants of occludin (B). The solid boxes are the
transmembrane (TM) regions of occludin. Arrows indicate regions of occludin I that are
lacking in each of the splice variants; lines indicate where these sites lie in the variants.

The size of each protein is indicated where known.
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1.3.1.1 Occludin binding partners

Occludin has been shown to bind to several tight junction proteins and signalling
molecules (Fig. 1.3). Occludin directly associates with cingulin (Cordenonsi et al.,
1999), and the membrane associated guanylate kinase homologues (MAGUK) proteins
Z0-1 (Furuse et al., 1994), -2 and -3 and also to F-actin through the occludin C-terminus
(Nusrat et al 2000; Wittchen et al., 1999). Occludin also binds to the ubiquitin protein
ligase, Itch, via the occludin N-terminus (Traweger et al., 2002). A novel bait peptide
method revealed an association between the coiled-coiled domain of occludin and ZO-1,
PKC-¢{, c-Yes, p8S regulatory subunit of phosphatidylinositol (PI) 3-kinase (PI 3-kinase),

connexin-26 and other occludin molecules (Nusrat et al., 2000).

1.3.1.2 Occludin function

Occludin has roles in maintaining tight junction barrier and fence function. There are
several lines of evidence for this. Brain endothelial cells, which have much higher
expression of occludin than non-neuronal tissue, also have much lower permeability
(Hirase et al., 1997). Occludin protein and mRNA is down regulated in some
inflammatory bowel diseases, which correlates with enhanced paracellular permeability
(Kucharzik et al., 2001). Measurement of electrical resistance across cultured
monolayers is used extensively for determining barrier function, and is particularly useful
for epithelial cells as these exhibit high transepithelial resistance (TER) values of up to
several thousand Qcm? (Wong et al., 1997). However, cultured endothelial cells such as
HUVEC:s or even brain microvessel endothelial cells lose their high electrical resistance
in culture, which makes it difficult to use this as a measure of permeability (Wachtel et
al., 1999). Expression of full length occludin in MDCK cells enhances TER and
increases the number and width of tight junction strands (McCarthy et al., 1996) and a
synthetic peptide corresponding to either the first or second extracellular loop of occludin
decreases TER (Wong et al., 1997; Lacaz-Vieira et a., 1999). The second extracellular
loop may also be required for stable assembly of occludin at the tight
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