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Abstract

A strategy for protein structure and function based annotation of genomes was developed,

evaluated and applied to the proteins of several genomes including the human genome.

First the performance of the widely-used homology-based sequence comparison pro-
gram PSI-BLAST to detect distant homologous relationships (<20% sequence identity)
was evaluated. The benchmark is based on two sets of sequences from the Structural
Classification Of Proteins (SCOP) database for which the homologous relationships are
known. About 40% of the test proteome can be annotated via remote homologies. Com-
mon sources of errors are identified. PSI-BLAST is applied to assign homologues of known
structure and function to proteins of M. genitalium and M. tuberculosis. From the bench-
mark, the number of missed assignments and the potential extent of new structural and

functional families was estimated.

An automated proteome annotation system was developed to perform large scale an-
notations based on analyses such as PSI-BLAST. Computationally intensive analyses can
be distributed across several computers. The system is based on a relational database
serving as a back-end and a software interface as a front-end. Relational storage of results
from different analyses permits straightforward evaluation of results and the comparison

of annotations across genomes.

The above annotation system was applied to fourteen proteomes including the human
proteome. The extent and reliability of structural and functional annotation in these
proteomes was evaluated and compared. About 40% of the human proteome can be
assigned to protein folds. For 77% of the proteome there is some functional information,
but only 26% of the proteome can be assigned to the standard sequence motifs that
characterise function. There are substantial differences in the composition of membrane
proteins between the proteomes in terms of their globular domains. Commonly occurring
structural superfamilies are identified and compared across the proteomes. The frequencies
of these superfamilies leads to the estimate that 98% of the human proteome evolved by
domain duplication, with four of the ten most duplicated superfamilies potentially specific
for multi-cellular organisms. Occurrence of domains in repeats is more common in metazoa
than in single-cellular organisms. Superfamily pairs co-occurring in the same protein
sequence were analysed and compared across the proteomes. Structural superfamilies

over- and under-represented in human disease genes were identified.
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Chapter 1
Introduction

The available sequence data from the finished genome projects provides biological
science with a huge and valuable source of data. The genetic information together
with its derived data such as protein sequences and structures, expression levels
and sub-cellular location has to be managed, understood and exploited for human
benefit. It is a long and challenging way from the raw sequence data (the genome)
to only a basic understanding of how an organism developed in evolution and how it
functions. It is not just the sum of the parts that makes life but a complex regulatory
network of interactions involving many components. The sequence data is further
analysed in large scale experiments such as expression profiles and protein interac-
tion networks which in turn increases the amount data to be analysed dramatically.
Bioinformatics organises and integrates all parts of the experimentally generated

data as well as connecting them to gain understanding of biological systems.

Bioinformatics is a relatively young discipline as a science with components from
software engineering. Bioinformatics aims to analyse and understand biological data,
but a hypothesis is not necessarily required when it comes to the description, man-
agement and interpretation of the experimentally generated data. Currently, the
development of new algorithms, recycling of algorithms from other areas such as
natural language processing, data management, the interpretation of data and their
relationships as well as supporting biologists working in a specific system is included

in bioinformatics.

This work contains a software engineering component, the development of an
automated annotation system that integrates existing data and methods to perform
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a scientific analysis of the integrated data. The results are of interest from the sci-
entific point of view (bringing insight into commonalities and differences between
genomes) and from the software engineering point of view (the annotation system

may be used to support biologists and could be a platform for further developments).

1.1 Genome sequencing projects

As of November 2001 there were 67 completely sequenced bacterial and archaea bac-
terial genomes and eleven eukaryotic genomes (for which at least one chromosome
has been sequenced) available. The draft human genome sequence with >3,000
mega bases was published in February 2001. Table 1.1 gives an overview of the
finished sequencing projects. In addition there are roughly 300 ongoing prokary-
otic and about 80 eukaryotic public and commercial sequencing projects (data from
Integrated Genomics Inc., http://wit.integratedgenomics.com/GOLD, Bernal et al.
(2001)). Many of the sequenced genomes are from pathogenic organisms such as
the recently published Yersinia pestis genome that causes plague (Heidelberg et al.,
2000) or the two Salmonella strains (Parkhill et al., 2001a; McClelland et al., 2001).
The genome sequence reveals many secrets about the organism that may help to
identify potential drug targets. The ideal target might be a key protein in an essen-

tial pathway specific to the pathogenic organism.

| species (+strain) size | genes |
Archaea
Methanococcus jannaschii DSM 2661 (Bult et al., 1996) 1664 Kb 1750
Methanobacterium thermoautotrophicum delta H (Smith et al., 1997) 1751 Kb 1918
Archaeoglobus fulgidus DSM4304 (Klenk et al., 1997) 2178 Kb 2493
Pyrococcus horikoshii (shinkaj) OT3 (Kawarabayasi et al., 1998) 1738 Kb 1979
Aeropyrum pernix K1 (Kawarabayasi et al., 1999) 1669 Kb 2620
Pyrococcus abyssi GE5 (no reference) 1765 Kb 1765
Halobacterium sp. NRC-1 (Ng et al., 2000) 2014 Kb 2058
Thermoplasma acidophilum (Ruepp et al., 2000) 1564 Kb 1478
Thermoplasma volcanium GSS1 (Kawashima et al., 2000) 1584 Kb 1524
Sulfolobus solfataricus P2 (She et al., 2001) 2992 Kb 2977
Sulfolobus tokodaii 7 (Kawarabayasi et al., 2001) 2694 Kb 2826
Bacteria
Haemophilus influenzae KW20 (Fleischmann et al., 1995) 1830 Kb 1850
Mycoplasma genitalium G-37 (Fraser et al., 1995) 580 Kb 468
Synechocystis sp. PCC6803 (Kaneko et al., 1996) 3573 Kb 3168
Mycoplasma pneumoniae M129 (Himmelreich et al., 1996) 816 Kb 677
Escherichia coli K12- MG1655 (Blattner et al., 1997) 4639 Kb 4289

continued on next page
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continued from previous page

| species (+strain) ] size I genes J
Helicobacter pylori 26695 (Tomb et al., 1997) 1667 Kb 1590
Bacillus subtilis 168 (Kunst et al., 1997) 4214 Kb 4099
Borrelia burgdorferi B31 (Fraser et al., 1997) 1230 Kb 1256
Aquifex aeolicus VF5 (Deckert et al., 1998) 1551 Kb 1544
Mycobacterium tuberculosis H37Rv (lab strain) (Cole et al., 1998) 4411 Kb 4402
Treponema pallidum subsp. pallidum Nichols (Fraser et al., 1998) 1138 Kb 1041
Chlamydia trachomatis serovar D (Stephens et al., 1998) 1042 Kb 896
Rickettsia prowazekii Madrid E (Andersson et al., 1998) 1111 Kb 834
Helicobacter pylori J99 (Alm et al., 1999) 1643 Kb 1495
Chlamydia pneumoniae CWL029 (Kalman et al., 1999) 1230 Kb 1052
Thermotoga maritima MSB8 (Nelson et al., 1999) 1860 Kb 1877
Deinococcus radiodurans R1 (White et al., 1999) 3284 Kb 3187
Ureaplasma urealyticum serovar 3 (Glass et al., 2000) 751 Kb 650
Campylobacter jejuni NCTC 11168 (Parkhill et al., 2000b) 1641 Kb | 1654
Chlamydia pneumoniae AR39 (Read et al., 2000) 1229 Kb 1052
Chlamydia trachomatis MoPn Nigg (Read et al., 2000) 1069 Kb 924
Neisseria meningitidis MC58 (serogroup B) (Tettelin et al., 2000) 2272 Kb 2158
Neisseria meningitidis 22491 (serogroup A) (Parkhill et al., 2000a) 2184 Kb 2121
Bacillus halodurans C-125 (Takami & Horikoshi, 2000) 4202 Kb 4066
Chlamydia pneumoniae J138 (Shirai et al., 2000) 1228 Kb 1070
Xylella fastidiosa CVC 8.1.b clone 9.a.5.c (Simpson et al., 2000) 2679 Kb 2904
Vibrio cholerae serotype O1, Biotype El Tor, strain N16961 (Heidelberg et al., 2000) 4000 Kb 3885
Pseudomonas aeruginosa PAO1 (Stover et al., 2000) 6264 Kb 5570
Buchnera sp. APS (Shigenobu et al., 2000) 640 Kb 564
Mesorhizobium loti MAFF303099 (Kaneko et al., 2000) 7596 Kb 6752
Escherichia coli 0157:H7 EDL933 (Perna et al., 2001) 4100 Kb 5283
Mycobacterium leprae TN (Cole et al., 2001) 3268 Kb 1604
Escherichia coli O157:H7. Sakai (Hayashi et al., 2001) 5594 Kb 5448
Pasteurella multocida Pm70 (May et al., 2001) 2250 Kb 2014
Caulobacter crescentus (Nierman et al., 2001) 4016 Kb 3737
Streptococcus pyogenes SF370 (M1) (Ferretti et al., 2001) 1852 Kb 1696
Lactococcus lactis IL1403 (Bolotin et al., 2001) 2365 Kb 2266
Staphylococcus aureus N315 (Kuroda et al., 2001) 2813 Kb 2594
Staphylococcus aureus Mu50 (Kuroda et al., 2001) 2878 Kb 2697
Mycobacterium tuberculosis CDC 1551 (no reference) 4403 Kb 4187
Mycoplasma pulmonis (Chambaud et al., 2001) 963 Kb 782
Streptococcus pneumoniae TIGR4 (Tettelin et al., 2001) 2160 Kb 2094
Clostridium acetobutylicum ATCC 824D (Nolling et al., 2001) 4100 Kb 4927
Sinorhizobium meliloti 1021 (Galibert et al., 2001) 6690 Kb 6205
Streptococcus pneumoniae R6 (Hoskins et al., 2001) 2038 Kb 2043
Agrobacterium tumefaciens C58 (Wood et al., 2001) 4915 Kb 4554
Rickettsia conorii Malish 7 (Ogata et al., 2001) 1268 Kb 1374
Yersinia pestis CO-92 Biovar Orientalis (Parkhill et al., 2001b) 4653 Kb 4012
Salmonella typhi CT'18 (Kuroda et al., 2001) 4809 Kb 4600
Salmonella typhimurium,LT2 SGSC1412 (McClelland et al., 2001) 4857 Kb 4597
Listeria innocua Clip11262, rhamnose-negative (Glaser et al., 2001) 3011 Kb 2981
Listeria monocytogenes EGD-e (Glaser et al., 2001) 2944 Kb 2855

Eukaryota
Saccharomyces cerevisiae $288C (No authors listed, 1997) 12069 Kb 6294
Caenorhabditis elegans (The C. elegans Sequencing Consortium, 1998) 97000 Kb | 19099
Drosophila melanogaster (Adams et al., 2000) 137000 Kb | 14100
Arabidopsis thaliana (The Arabidopsis Genome Initiative, 2000) 115428 Kb | 25498

continued on next page
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continued from previous page

| species (+strain) size I genes |
Guillardia theta (Douglas et al., 2001) 551 Kb 464
Leishmania major Friedlin Chromosome 1 (Myler et al., 1999) 257 Kb 79
Plasmodium falciparum 3D7 Chromosome 2 (Gardner et al., 1998) 947 Kb 205
Plasmodium falciparum 3D7 Chromosome 3 (Bowman et al., 1999) 1060 Kb 220
Homo sapiens (Lander et al. (2001) and Venter et al. (2001)) >3000 Mb | 35000

Table 1.1: Finished genome projects (status in November 2001). The size of the genome is given
in thousand base pairs (Kb) or million base pairs (Mb), genes is the number of identified genes. The
data of this table is taken from the GOLD database at http://wit.integratedgenomics.com/GOLD
(Bernal et al., 2001).

1.2 Introduction into genome annotation

A standard component of any genome project is an overall annotation. Having the
genome sequence alone does not substantially help to understand the biology of the
organism. In the following sections the major steps in genome annotation are rep-
resented. Protein sequences are the starting point for any annotation in this work,

and therefore the following sections focus on protein sequences.

1.2.1 Finding genes in genomes

The first important step in annotating the genome is to identify the genes within
the genomic sequence. It is worth mentioning the basic methods used in identifying
genes as well as associated problems and errors, because these can have an effect of
‘downstream’ analyses (e.g. analyses based on genes and proteins). An introduction

into gene finding is given in a review by Stein (2001).

In‘,.bacferiafgenes may be identified by just looking for the longest open reading
frame (ORF) defined by a start and a stop codon. The Shine-Dalgarno sequence,
which is a polypurine (adenine and guanine) sequence shorter then ten nucleotides
at the 3’ end of the gene (about 7 nucleotides 5’ of the start codon), helps to
identify the location of a gene within the genome. In addition to start and stop
codon location, codon usage can be used in gene finding. Similar sequences with a
common evolutionary origin (homologues) from already annotated genomes are con-
sidered to confirm the location of genes in a newly sequenced genome. The genomic

DNA sequence is translated in all three reading frames on both nucleotide strands
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(in direction of translation, from 3’ to 5’) to produce long theoretical peptide se-
quences which are compared to known proteins from other organisms. Nevertheless,
Skovgaard et al. (2001) showed that the number of genes in bacteria is generally
overpredicted (in A. perniz they estimated 100% gene overprediction which is by far

the most extreme in their analysis).

Gene identification in eukaryotic genomes is far more problematic than in prokary-
otic genomes. This is due to the exon-intron structure of genes and the lack of
obvious sequence features such as a Shine-Dalgarno sequence to distinguish between
coding and non-coding regions . Despite the start codon there is no clear landmark
where a gene starts on a eukaryotic chromosome. Rule based ab initio gene iden-
tification methods such as GeneScan (Burge & Karlin, 1997) or Grail (Uberbacher
& Mural, 1991; Roberts, 1991; Xu et al., 1994) that employ statistical methods (for
example hidden Markov models, see section 1.3.7), have been shown to identify only
40% of the existing genes with their exon-intron structure. About 70% of these
predictions are to some extent wrong, i.e. do not corresponds to the correct gene
structure (Reese et al., 2000). On the other hand 90% of the predictions include at
least a fraction of the real gene. The use of experimental data as described above
for bacterial gene identification improveseukaryotic gene finding. For example, the
human genome sequence as defined by the ENSEMBL project version 1.2 (Hubbard
et al. (2002), http://www.ensembl.org), contains more than 150,000 predicted genes,
but only about 25,000 genes are either confirmed by expressed sequenced tags (ESTs
derived from mRNA of expressed genes) or homologues in a different organism. Be-
cause of the extensive exon-intron structure and the small fraction of actual coding
sequences in the human genome (estimated at about 1.5% of the genome, Lander
et al. (2001)), two predicted genes may in fact be one larger gene, or a larger gene
may be in fact several genes. A positive view on the human genome shows that
25,000 of at least 30,000 genes have been identified with the help of experimental
data (ESTs and homologues), which corresponds to nearly 85% of the estimated

number of genes in the genome.

The expected number of genes in the human genome is between 30,000 and
40,000 (Lander et al., 2001), thus there are theoretically still 5,000 to 15,000 genes
missing. The genome sequences of other higher eukaryotes, in particular those of
mouse (M. musculus), rat (R. norvegicus) and the puffer fish (Fugu rubripes) will
help to identify genes within these genomes and that of human, because of the higher
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sequence conservation within exons compared to non coding regions. The mouse and
rat genome projects were established mainly because these organisms are used as
models in biology. The genome sequence (with the confirmed set of genes) will
accelerate the progress with which molecular biologists clone and analyse specific
parts of the genome. The puffer fish project was deliberately established to enhance
gene finding and interpretation of the human genome sequence. A draft sequence
of the puffer fish project has been available since October 2001. The extent of the
coding sequences is estimated to be similar to that of human, but the overall size of
the genome (350 to 400 mega bases) is just about one eighth of the human genome
(>3,000 mega bases). The sequence conservation between the dense coding regions
of the puffer fish and the corresponding regions in the human genome is expected

to reveal currently unidentified genes.

In interpreting results from the analysis of the identified peptide sequence reper-
toire of a genome one has to keep in mind that the absence of a particular protein
does not necessarily mean that the genome contains no coding sequence for this
peptide, it may just have been missed in the interpretation of the genome.

1.2.2 Functional classification of genes and proteins

Once the genes are identified within a genome, they have to be functionally charac-
terised. Usually the genes are compared to a set of already functionally characterised
genes. Since a protein sequence is more conserved in its amino acid sequence than
the corresponding nucleotide sequence of the gene (because of the redundant genetic
code), sequence comparisons for functional annotation are performed at the peptide

level.

Function, at the level of a functional classification of proteins, is the description
of the biochemical function or a combination of several biochemical functions. A
functional annotation is generally derived from one or more homologous sequences
for which a functional description has been generated previously. However, only for
a fraction of annotated proteins has the biochemical activity been proven experi-
mentally (Ursing et al., 2002). Section 1.4.1 discusses the quality and the limitations

of functional transfer between homologues.
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The majority of proteins in a genome consist of more than one protein domain.
A domain can be considered as the smallest functional and evolutionary unit of pro-
teins and is generally found in different proteins in combination with other domains
of the same (repeats) or of different type (Apic et al., 2001; Qian et al., 2001a). The
potential multi-domain character of proteins may need a list of biochemical func-
tions, which depends on the level detail of the annotation. For example a protein
with a NAD(P) binding domain and a dehydrogenase domain may just be described
as a dehydrogenase or in more detail as a protein that binds NAD(P) and has a
dehydrogenase activity (the NAD(P) binding domain may be a ‘helper’ domain to
fulfil the proteins biochemical function). In most cases the functional annotation
does not include the biological function, e.g. a human protease may be found in
a different biological context such as digestion, during development or in wound

healing. The main concepts in functional protein annotation are:

e Finding a homologous sequence that has been functionally characterised pre-
viously, the main databases containing such protein sequences are SwissProt
and PIR.

e Identifying domains within a protein sequence via homology. The main do-
main databases with functional descriptions are PFAM, SMART, ProDom and

InterPro. (Structural domain databases are discussed later.)

¢ Finding conserved patterns or motifs (these motifs are generally shorter than a
domain and may not include an independent folding unit). The main databases
maintaining collections of patterns or motifs associated with a function are
Prosite, Prints and Blocks.

1.2.3 Major resources used in protein annotation

The following sections give a more detailed view of the contents of some of the
available databases, including an overview of how these databases are constructed.
The first issue each year of the journal Nucleic Acids Research (in particular those
from 1999 on) contains articles about biological databases. The first 2002 issue
describes 112 different specialised biological databases.

The main source database GenBank and EMBL

All the specialised databases described below are based on the basic sequence databa-

ses. The major nucleotide sequence databases are GenBank (Benson et al., 2002) and



Introduction 17

EMBL (Stoesser et al., 2002). Usually nucleotide sequences (or a nucleotide sequence
together with its peptide sequence) are submitted to either of these databases. Also,
GenBank and EMBL update each other, so that both databases, with some de-
lay, contain the same sequences. If possible the submitted nucleotide sequences are
translated into a theoretical peptide sequence. These peptide sequences generate the
TrEMBL database (translated EMBL) and the GenPept database (translations from
GenBank). In addition, all publicly available genome sequences are submitted to
one of these databases. GenBank and EMBL entries contain information associated
with the sequence: literature references, authors, gene or protein names, taxonomic
information of the source organism and a feature table that lists all known features
(e.g. a ribosomal binding site for a bacterial ORF or an exon for a eukaryotic se-
quence) with their location in the sequence. GenPept and TrEMBL contain more
than 800,000 non-redundant peptide sequences (status 11/2001). EMBL/TrEMBL
is available from the EBI (http://www.ebi.ac.uk) and GenBank/GenPept is avail-
able from the NCBI (http://www.ncbi.nlm.nih.gov).

The SwissProt protein database

The SwissProt database (Bairoch & Apweiler, 2000) historically collected sequences
from protein sequencing experiments, i.e. the sequence information was directly
taken from the peptide sequence and not by translating a coding region of a gene.
SwissProt (version 40.11) contains 105,322 protein sequences. TrEMBL sequences
are transfered to SwissProt if there is sufficient evidence for the existence of the
gene product. The procedure for integrating new entries into SwissProt includes re-
viewing by human experts (database curators) and external consultants with expert
knowledge about a particular protein family. A SwissProt entry contains, in addi-
tion to the peptide sequence and literature references, comments about the functions
associated with the protein (edited by the human experts), keywords that describe
the function and a structured feature table that describes regions or positions in the
sequence such as post-translational modifications, domains and sites (e.g. an ATP
binding site).

The PIR protein database

The Protein Information Resource (PIR, Barker et al. (2000)), contains about
200,000 protein sequences (status in 2001). Like SwissProt, the database aims to
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provide high quality annotation. Automatically generated annotations are reviewed
and edited by PIR staff, and consultant scientists who review specific parts of the
database. Sequence entries are classified according to their status to which there is
evidence of their existence, e.g. for entries that are classified as ezperimental there is
some experimental evidence, and predicted proteins from theoretical coding regions
are classified as predicted. Also the annotation is classified into validated or similarity
according to the available evidence. PIR further clusters sequences in families and
superfamilies based on sequence similarity. Because PIR and SwissProt both get
their sequences from translated coding regions of the major nucleotide databases,

there is redundancy between the two databases.

The PFAM, SMART and ProDdom domain and family databases

The domain and protein family databases described here are generated by splitting
protein sequences into domains and then clustering similar domains into a family.
Annotating proteins according to their domain composition generally leads to more

detail than annotating the protein as a single unit.

PFAM is a database of protein domain families (Bateman et al., 2002), based on
protein sequences from SwissProt and TrEMBL. It contains a set of curated mul-
tiple sequence alignments, each representing a protein family. From these multiple
alignments hidden Markov models (see section 1.3.7) are built, which are in turn
used to search the protein sequence databases to find new members and to expand a
family. The final database PFAM-A provides a high quality description of the fam-
ilies which can help in annotating newly sequenced genomes. Most of the PFAM-A
families also contain a functional text description, cellular location of the members
of the family, relevant literature references and links to taxonomic groups in which
a family is found. PFAM-A is manually curated. Another part of PFAM (PFAM-
B) contains potential domain families for which there is not enough evidence to be
placed into PFAM-A. PFAM-B entries are mainly taken from families of the large
ProDom database (see below). PFAM-B contains more members and families than
PFAM-A but is of lower quality. PFAM-B and ProDom are used to update and
curate PFAM-A. PFAM-A version 6.6 (August 2001) contains 3071 families. PFAM
is available at The Sanger Centre (http://www.sanger.ac.uk/Software/Pfam).

SMART (a Simple Modular Architecture Research Tool, Letunic et al. (2002)),
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like PFAM, is a domain database but originally focused on domains in eukaryotic
signal transduction. Recent SMART versions (November 2001) also include a wide
range of other domain types (more than 600 domain families). Domain families are
constructed in a similar way to PFAM, but the initial step to create a seed multiple
sequence alignment involve manual editing and, if available, consideration of pro-
tein structure, or homologues of proteins of known structure. Hidden Markov models
are constructed from these alignments that are used to search the protein sequence
database to collect new family members. The hidden Markov models are then re-
built, and the search starts again until no more members are found. In addition each
member of a family is compared to the sequence database using the homology search
method PSI-BLAST (see section 1.3.5) to collect new family members. Alignments
are updated, e.g. when the three dimensional structure of a member is published,
to re-assess domain boundaries of the family. SMART is based on sequences from
SwisProt and TrEMBL. The database is available at the EMBL (http://smart.embl-
-heidelberg.de). The web-interface also allows the user to search for proteins of a

given domain architecture (domain combinations).

ProDom (Corpet et al., 2000) is a domain database with a larger sequence cover-
age than PFAM or SMART. Over 75% of the proteins from SwissProt and TrEMBL
can be assigned to ProDom families (status 2001). There are about 44,000 ProDom
domain families with more than one member. From version 35 onwards, the ProDom
database includes manual inspection of protein families by scientific consultants.
PFAM-A (see above) is used to increase the quality of ProDom. Domain families
are generated via PSI-BLAST homology searches (Sonnhammer & Kahn, 1994).
Two proteins may share only one homologous region in their sequence, which can
be a single domain or several domains. These regions are then used as queries in
subsequent PSI-BLAST searches to find additional significant alignments. This pro-
cedure is repeated until the regions cannot be split or truncated anymore because
no further homologous regions are found. The identified regions are then consid-
ered to be domains, and all homologous regions belong to one family. As a quality
control, recent versions of ProDom assign consistency indicators to each family (for
example sequence variation within a family). ProDom-GC is a ProDom version that
clusters protein sequences from complete genomes into families. Both databases are
available at http://prodes.toulouse.inra.fr/prodom/doc/prodom.html.
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Motif databases: PROSITE, PRINTS and BLOCKS

The PROSITE database (Falquet et al., 2002) is a collection of pattern descriptions
that usually are associated with a biochemical function. These signatures are gen-
erated from curated multiple sequence alignments and generally describe conserved
positions within a domain family. Signatures are represented as regular expression
patterns. Since patterns are not flexible (i.e. a pattern matches a sequence region
or it does not), the extent to which patterns identify a particular motif is limited.
To overcome this limitation, signature profiles have been developed which assign a
score to each of the 20 amino acids at each position of the signature according to
the frequency of which each amino acid is found at a particular position. Further,
alternative protein structure-based profiles and methods involving hidden Markov
models have been employed. A PROSITE entry can be associated with a functional
description and reasons that lead the construction of a pattern or profile. PROSITE
version 16.50 (November 2001) contains 1103 documents describing 1493 patterns
and profiles, and is available at http://www.expasy.org/prosite.html, it is updated
in parallel with SwissProt.

PRINTS (Attwood et al., 2002) and PRINTS-S (a recent development of the
original PRINTS) is a collection of protein fingerprints. The concept behind finger-
prints is that a protein can be represented by several conserved motifs. A fingerprint
is an ordered list of these motifs that describes a protein family. PRINTS-S is a
database for protein sequences rather than domains, although its components (the
single motifs) may be characteristic for a particular type of domain. The procedure
to build the fingerprints starts with manual curated multiple sequence alignments,
and then a series of conserved regions are extracted to construct motifs. This pro-
cedure includes manual intervention. The sequence database is searched iteratively
with these motifs to expand and gain confidence of the motifs. PRINTS-S contains
its own search software FingerPRINScan. The database is built from SwissProt
and TrEMBL. Each entry is associated with bibliographic information, functional
descriptions, lists of matching sequences and comments. The database (PRINTS-
S version 10, based on PRINTS version 32, November 2001) contains about 9,800
individual motifs and about 1,600 fingerprints. It is available at http://www.bioinf .-
man.ac.uk/dbbrowser/PRINTS.

The BLOCKS database (Henikoff et al., 1999, 2000) is similar to PRINTS. It
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contains a list of motifs that are representative for a family. Motifs in the BLOCKS
database are called blocks. To generate these blocks, protein family databases such
as PFAM-A,| PRINTS, ProDom and Domo (Gracy & Argos, 1998) are used. Se-
quences for each family of these databases are re-aligned via a non-gapped multiple
local alignment procedure and converted into non-overlapping blocks. Thus, the
BLOCKS database identifies local motifs within given protein families but does not
find new protein families (because it uses domain families of the existing domains
databases as input). The BLOCKS database can be searched with sequences via the
BLIMPS (Henikoff et al., 1995) program that identifies individual blocks and then
combines hits belonging to the same family. Sequences can also be searched against
the database via the IMPALA program (see section 1.3.6). BLOCKS (June 1999)
contains about 9,500 individual blocks and more than 2,000 families. It is available

at http://www.blocks.fhcre.org.

InterPro: A combination of databases

InterPro (Apweiler et al., 2001), a recent database development from the EBI
(http://www.ebi.ac.uk/interpro), integrates most of the above databases. InterPro
itself does not contribute any new information, and its power comes from having
all the above databases in one place providing a range of evidence for a protein to
belong to a certain InterPro entry. InterPro is divided into families (3,532 entries),
domains (1,068 entries), repeats (74 entries) and post-translational modifications
(15 entries). A short description and an abstract about the biochemical function,
the biological role and matches against the SwissProt and TrEMBL databases are
included for each entry. InterPro also contains, like recent PFAM versions, families
for which the function is unknown, but where there is evidence for the conservation

of this family, domain or motif.

A family can be described by a set of characteristics from the above databases,
e.g. the thiolase family (InterPro entry IPR002155) is described by two PFAM en-
tries and three Prosite patterns. Sequences can be searched against InterPro via the
InterProScan software package (Zdobnov & Apweiler, 2001).

InterPro is a ‘modern’ database. It is distributed in XML format and is, together
with the integrated search engine InterProScan, a step towards solving common
bioinformatics problems such as standardisation, automatisation and distribution.
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A list of InterPro families is now commonly reported as an initial analysis of a newly
sequenced genome (e.g. Lander et al. (2001); Rubin et al. (2000) and http://www.-

ebi.ac.uk/proteome).

1.2.4 Gene Ontology (GO), a controlled vocabulary for ge-

nome annotation

A recent commentary published in the journal Nature (Pearson, 2001) summarises
problems and inconsistencies in gene (and protein) nomenclature and stresses the
importance of an ontology for gene names and functions to overcome problems in
annotation. In GO, descriptive terms and phrases are used to annotate a gene rather
than using gene and protein names such PMS1 or TFIIA. These terms are organised
in a hierarchy (a tree of terms and phrases) with the more general terms such as
transcription or fatty acid metabolism as the root for more detailed terms or phrases
such as RNA polymerase II transcription factor or fatty acid hydrolase. The set
of terms and phrases is stored in a central GO database maintained at Stanford
University. However, different GOs may be constructed for special purposes. New
terms can be inserted into the GO-tree. GO is also able to cope with synonyms
and can describe biological function. Using a system with a controlled vocabulary
organised in a tree as in GO allows automatic comparison of annotations between
genomes at different levels of the tree (i.e. at different level of detail, for example
to test for the existence of enzymatic pathways between genomes). The central GO
resource is located at http://www.geneontology.org, see also Lewis et al. (2000);
Ashburner et al. (2000); The Gene Ontology Consortium (2001).

1.2.5 Putting everything together to find pathways

At a higher level, genome annotation aims to identify complete biological subsys-
tems such as metabolic pathways or signalling pathways. The usual approach is
to compare all members of a pathway (e.g. for glycolysis) in a model organism to
the proteins of a newly sequenced genome. The comparison is carried out via the
standard homology search methods (see section 1.3 below). This approach gener-
ally identifies the fundamental pathways such as glycolysis in a newly sequenced
genome. If members of a pathway cannot be identified, this does not necessarily
mean the pathway is incomplete. The homology based comparison may just have

missed some members of that pathway because of insufficient similarity (although


http://www.-
http://www.geneontology.org

Introduction 23

the homologues are present), or there may be alternative routes bypassing the known
proteins of that pathway. There are three major database systems available that
implement the above approach for metabolic pathways: The partly freely available
WIT system from Integrated Genomics (this system is now known as FRGO and is
no longer freely available for academic use, http://www.integratedgenomics.com/),
the KEGG (Kanehisa et al., 2002) database (Kyoto Encyclopedia of Genes and
Genomes) freely available for academic use and EcoCyc (Karp et al., 2002), a sys-
tem that describes metabolic pathways in E. coli (this database recently has been

made freely available for academic users).

The publication of the genome sequence of the cholera bacterium V. cholerae
(Heidelberg et al., 2000) contains an overview of some of the identified pathways in
this bacterium and can serve as an example of how to represent complex pathways

information in a comprehensive way (see figure 1.1).

1.3 Homology based sequence comparison meth-

ods

If two genes or proteins have diverged from a common ancestor they are by definition
homologues. Further, homologues within the same species are paralogues, and often
have different functions due to specialisation. The closest homologues with generally
the same biochemical function in two species are orthologues (Tatusov et al., 1997,
2001). Whether two sequences are homologues can be measured by their sequence

similarity for which there are different definitions and methods.

As mentioned in the introductory sections above, identifying homologous se-
quences is often the first step in annotating a newly sequenced gene. The homo-
logue may already have some functional annotation that may then be transfered to
the newly sequenced gene (or protein). Section 1.4.1 explains the conditions under
which this transfer is considered to be reliable. The sections below explain the most

common sequence search methods and their definition of similarity.
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Figure 1.1: Schematic representation of the V. cholerae cell with a selection of metabolic pathways
and transporters identified in the genome. This figure is an example how the huge amount of
information from genome annotation can be represented in a comprehensive and user friendly way.
The figure is from Heidelberg ef al. (2000).

1.3.1 Dynamic programming

The oldest sequence comparison method that is still part of recent methods was
developed by Needlenian & Wunsch (1970). Their method is based on the general
dynamic programming algorithm which was introduced in the 1950s by Bellman
(1957), and allows the optimal alignment of two sequences. Two sequences with
length n and m form an n x m matrix. For each position in the matrix {n/i/,m/j])
a numeric value scores how favourable a replacement of the residue/nucleotide nfi/
with 7nfi] or alternatively a deletion or insertion is. See section 1.3.2 below for
a discussion of substitution scores. Generally these are negative for unfavourable
substitutions (e.g. aligning tryptophan with a lysine), and positive for conservative

substitutions such as lysine to arginine.



Introduction 25

Global sequence comparison via dynamic programming aligns two sequences from
the first to the last position in both sequences, and produces a global alignment.
Even if only a region in the middle of one sequence shares similarity with a region
of the other sequences, the algorithm will try to align the sequences over their full
lengths. This may result in a drop of the overall score of the alignment, because
the ends of the alignment may contribute negative scores, and the sum of the scores

may therefore then not be significant.

The local alignment is a development based on the method from Needelman and
Wunsch and was introduced by Smith & Waterman (1981). It solves the problem of
forcing an alignment over the entire sequence. This method is fundamental to many
other methods applied in this work, and is therefore explained in more detail below.

The formal rule to fill each cell of the n x m matrix is given in equation 1.1. j
describes a position in n and ¢ describes a position in m, d is a fixed negative score
for a gap (the gap penalty) and score is a judgement of the biological significance

for aligning residue n[j] with m[i].

(

Fi-1,5)—d deletion at position j (cell above)
o F(i—1,j— 1)+ score(a,b) substitution i, j (diagonal cell)
F(i,7) = mazx |
F(@,7-1)—d insertion at position j (cell to the left)
\0 stop for local alignment
(1.1)

In equation 1.1 scores for a deletion or insertion are fixed. Generally the costs of
introducing a gap is set higher than for extending an existing gap. The substitution
score is taken from a lookup matrix described in more detail below. If deletion,
insertion or substitution gives a negative score, the stop condition holds, and the
local alignment is terminated. The matrix can be filled row by row or column by

column.

As an example the two sequences ‘HEAGAWGHED’ and ‘PAWHEAE’ are aligned us-
ing the method from Smith and Waterman. The matrix below shows the calculated
scores from which the optimal path can be traced back. This is the optimal local

alignment. Note that each cell of the matrix contains the sum of its own score and
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the last highest scoring cell as determined by equation 1.1. Matrix cells of the op-

timal path are shown in red.

G BH E A G A W G H E D
@ 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 5 0 5 0 0 0 0 0
W 0 0 0 0 2 o0 2 12 4 0 0
H 0 10 2 0 0 0 12 18 22 14 6
E 0 2 16 8 0 0 4 10 18 28 20
A 0 0 8 21 13 5 0 4 10 20 26
E 0 0 6 13 18 12 4 0 4 16 22

The resulting alignment is shown below;

0) A WG H E

(?) A W- H E

Often there canbe more than oneoptimal path through thematrix. If the
local alignment metliod is appliedto aligntwothree-domain proteinswheretheN-
terminal and the C-terrninal domains of the two proteins are homologous but the
central domain is not homologous, there will be two paths with high score sums
through the matrix. Distinguishing alignments based on homology from those pro-
duced by chance similarity is critical for sequence comparison methods, ie. it is
critical to find paths through the matrix that rely on evolutionary relationships.

The basis of local alignment statistics and probabilities are discussed below in sec-
tion 1.3.4.

Sequence search and alignment methods based on dynamic programming are de-
pendant on the length of both sequences to be compared. Every cell in the matrix
has to be filled to find high scoring paths. The runtime of the algorithm is propor-
tional to the product of the length of both sequences to be aligned. Comparing a
single sequence with sequences from a protein database with generally several hun-
dreds of thousands of sequences is time consuming, and the algorithm is therefore

not applicable for large scale sequences searches.
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1.3.2 Substitution matrices

An ideal substitution matrix scores a biologically meaningful alignment with pos-
itive scores and all chance alignments with negative scores. A scoring matrix is a
20 x 20 matrix, with each row/column representing a score for a particular amino
acid substitution. Each cell contains a score that is based on the probability for
exchanging amino acid ¢ with amino acid j. The general formula for all substitution
matrices with negative expected score is:

where g;; is the target substitution frequency (the observed frequency with which
amino acid i is replaced by amino acid j) usually calculated from homologous pro-
teins. All target frequencies for a given amino acid are > 0 and sum to one; p;
and p; are background frequencies (the overall frequencies with which 7 and j are
observed). The product of the background frequencies can be thought of as the
probability of exchanging 7 and j by chance. Furthermore, the normalisation by the
background frequencies implies that conservative exchanges for rare amino acids are
weighted stronger. S;; is multiplied by a factor (10 for the original PAM matrices)
and then rounded to the nearest integer. These are the scores that are stored in
the substitution matrix as shown in table 1.2 and are usually referred to as ’log-
odds’ (the log-odds for BLOSUM matrices are based on logs whereas the original
PAM matrix was based on logyp). The logarithm is used for computational reasons
to avoid multiplications of the substitution scores of the cells of the optimal path
through the dynamic programming matrix. The log-odds are divided by a scaling

factor A that is specific for the scoring system.

A substitution matrix is uniquely determined by its target frequency (the back-
ground frequencies are the same for different matrices). The assumption for most
scoring matrices is that the expected score S;; for a chance amino acid substitution
in a comparison of two random sequences is negative. Otherwise chance alignments

gave positive cumulative scores by just extending over a sufficient length.

The most common matrices are PAM and BLOSUM. Generally the choice of the
substitution matrix is crucial for the performance of sequence database searches,

although no single scoring system is the best for all purposes. The best way to
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distinguish between real and chance alignments of a given class is to choose a matrix
for which the target frequencies specifically characterise this class (e.g. a protein

family). This aspect is treated in more detail in a later section.

The PAM matrices

The Point Accepted Mutation (PAM) matrix models the evolutionary distance be-
tween sequences of closely related proteins (Dayhoff et al., 1978). A matrix cell gives
the probability of amino acid i to be replaced with amino acid j after a given evo-
lutionary interval which is given in PAM. One PAM is the probability of a residue
to be mutated during an evolutionary distance in which one point mutation was
accepted in 100 residues (i.e. 1% mutations). 100 PAMs do not necessarily mean
that all residues are mutated, some residues may have been mutated several times,
including mutations that restore the original amino acid, and some residues may not
have changed at all. The mutation data to calculate the PAM matrix were collected

from closely related proteins.

PAM matrices for longer evolutionary distances can be obtained by multiplying
each target exchange frequency of the PAM1 matrix n times with itself to generate
a PAMn matrix.

Sequence comparisons using a PAM matrix generally do not perform well in de-
tecting more distantly related sequences. In particular the theoretical extrapolation
from the experimentally derived PAM1 matrix to higher order PAM matrices to
model a longer evolutionary distance does not take into account the conservation of

functionally important sequence regions and may therefore overestimate mutability.

The BLOSUM matrices
The BLOSUM matrices (Henikoff & Henikoff, 1992) were derived from the BLOCKS

database (see page 20). The frequencies of amino acids from conserved sequence
blocks were tabulated, and the probabilities for target and background frequencies
were calculated. To reduce multiple contributions of several closely related proteins,
the sequences were clustered within blocks. Each cluster was treated as a single se-
quence. Clusters for different identity levels were built to produce different matrices

allowing sequences > n% identity to be included in a cluster. The most commonly
used matrices are BLOSUMS50, BLOSUM62 and BLOSUMS&0, where the number
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A R N D c Q E G H I L K M F S T W Y \
A 5 -4 -2 -1 -4 -2 -1 0-4-2 -4-4-3 -6 0 1 1 -9-5 -1
R-4 8-3 6 -6 0 -6 -6 0-3 -6 2 -2 -7 -2 -1 -4 0 -7 -5
N -2 -3 6 3 -7 -1 o -1 -3 -5 0-6 -6-3 1 0 -6 -3 -5
D -1 -6 3 6 -9 0 3 -1 -1-5 -8-2-7-10 -4 -1 -2 -10 -7 -5
cC -4 -5 -7 -9 9 -9 -9 -6 -5-4-10 -9 -9 -8 -5 -1 -5 -11 -2 -4
Q -2 0 -1 o -9 7 2 -4 2-5 -3-1-2 -9-1-3-3 -8-8 -4
E-1-5 0 3 -9 2 -2 -2 -4 -6 -2 -4 -9 -3-2-3-11 -6 -4
G 0 -6 -1 -1 -6 -4 -2 6 6 -6 -7 -5-6 -7-3 0-3-10-9 -3
H-4 01 -1 -5 2 -2 -6 8-6 -4-3 -6 -4-2-3-4 -b-1 -4
1-2-3-3 -5 4-5 -4 -6-6 7 1 -4 1 0 -5 -4 -1 -9 -4 3
L-4-6-5 -8-10-3 -6 -7 -4 1 6 -5 2 -1 -5 -6 -4 -4 -4 0
K-4 2 0 -2 -9-1 -2 -6-3-4 -5 6 0 -9-4-2-1 -7-7 -6
M-3-2-5 -7 -9-2 -4 -6 -6 1 2 010 -2 -5 -3 -2 -8 -7 0
F -6 -7 -6 -10 -8-9 -9 -7-4 0 -1 -9 -2 8 -7 -4 -6 -2 4 -5
R 0-2-3 4 -5-1 -3 -3-2-6 -6-4-5 -7 7 -2 -9 -9 -3
S 1 -1 -1 -1 -3 -2 0-3-4 -6-2-3 -4 0 5 2 -3-5 -3
T 1-4 0 -2 -5§-3 3 -3-4-1 -4-1-2 -6-2 2 6 -8-4 -1
w-9 0-6 -10 -11 -8 -11 -10 -5 -9 -4 -7 -8 -2 -9 -3 -8 13 -3 -10
Yy 6-7-83 -7 -2-8 -6 -9 -1-4 -4 -7 -7 4 -9 -5 -4 -3 9 -5
v-t1t-5-65 -5 -4-4 -4 -3 -4 3 o -6 0 -5-3 -3 -1 -10 -5 6

Table 1.2: PAM70 amino acid substitution matrix. Cells contain the log odds of a particular
amino acid substitution probability after 70 PAMs. Note that the matrix is symmetric.

indicates the n% cut-off.

The BLOSUM matrices perform better in sequence alignments and homology
searches than the PAM matrices, especially in detecting more distant homologies
(e.g. Henikoff & Henikoff (1993); Russell et al. (1998a)). The matrices are con-
structed from sequences of any evolutionary distance without any theoretical ex-
trapolation. There are substantial differences in the amino acid mutability when
comparing BLOSUM and PAM (Henikoff & Henikoff, 1992).

1.3.3 The basics: BLAST and FastA

Several heuristics to speed up sequence searches have been developed. Here the
BLAST (Altschul et al., 1990) method is discussed in more detail, because BLAST
and its derivatives have been applied extensively in this work. Significant sequence
similarity may be found by a simple comparison of short regions of a few amino acids
length without performing dynamic programming. If the initial step was successful,
more sensitive but time consuming refinement steps are applied (including dynamic
programming). Methods based on such simple comparisons are heuristics and do

not guarantee an optimal alignment between two sequences. Nevertheless, when
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comparing a query sequence to a sequence database, generally most of the sequences
do not share any homology with the query, and may be skipped by the fast heuristic
step, reducing the search space to which the more detailed comparisons are applied.

The FastA heuristic

Wilbur & Lipman (1983) introduced the first heuristic method to search a query
sequence against a database of sequences. This method has been subsequently im-
proved in the FastP and later in the FastA methods (Pearson & Lipman, 1988; Pear-
son, 1990). The FastA method can be applied to nucleotide or peptide sequences.

There are five major steps in the algorithm:

1. Identify matching ‘words’ between two sequences (the query and a database
sequence) that share identical pairs of amino acids (ktup = 2, a word of two

residues).

2. Find regions of high density of identities. This is done by finding the words
that are on the same diagonal of a plot between the two sequences. These
words are extended to merge with other existing words to form a region if the
distance of the previous word or region in residues is smaller than the score of

the current region or word match.

3. Re-score the ten highest scoring regions using a PAM250 matrix, and trim or
extend the ends of these to optimise their score. This is a partial alignment

without gaps.

4. If there are several regions above a given score cut-off, these regions are joined
via dynamic programming, producing a gapped alignment if their score can
be improved (the overall score is the sum of the scores of the regions minus a
penalty score for gaps). This score is called initn, and is used as a rank of the
database sequence.

5. For the top ranking sequences, a local alignment is constructed with the query
sequence using a centred 32 residue window on top of the best initn region.

The resulting score is the optimised score that is reported.

The initial search step may not reduce the number of sequences substantially, but
it reduces the subsequent more detailed and time consuming searches to only a few

regions of the sequence that have to be compared in more detail. The calculation
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of the initn value reduces the number of regions and sequences for which Smith-
Waterman local gapped alignments have to be produced. In summary, the FastA
method speeds up sequence database searches by reducing the time consuming dy-
namic programming to a set of matrices per sequence which are in total smaller

than the complete n x m matrix.

The BLAST heuristic

The original BLAST method (Basic Local Alignment Search Tool, Altschul et al.
(1990)) uses heuristics similar to FastA to find candidate sequences, but BLAST
is even faster then FastA. The original BLAST method produced un-gapped align-
ments and was refined (Altschul & Koonin, 1998; Schaffer et al., 2001) to gain more
sensitivity (including gapped alignments) and speed. The steps of the method im-
plemented in BLAST series 2.0 (Altschul & Koonin, 1998) for amino acid sequences
are described below (the steps for nucleotide sequences are similar).

1. Find word pairs of a given length (usually 3 residues for proteins) for which
the cumulative score is at least 7. A word satisfying this condition is called a
hit. Scores are taken from a standard matrix such as BLOSUM or PAM.

2. If the two sequences contain at least two non-overlapping hits within a distance
A on the same diagonal then the extension of these matches is triggered. If
two hits overlap, the most recent one is ignored. This two-hit method reduces
the number of triggered extensions, which is the most time consuming step in

BLAST.

3. If the previous conditions are satisfied, the un-gapped bidirectional extension
of the second hit is triggered using the same substitution matrix as in the first
step. The extension terminates if its cumulative score cannot be improved
anymore, and the score is > S. A step in the heuristics to speed up the
extension procedure is to terminate an extension if it reaches another hit with
a score that falls a certain distance below the previous shorter extension. The
extended hit may include other hits. An extended hit is called an HSP (High

scoring Segment Pair).

4. The highest scoring HSP with a score > S, is further extended in both di-
rections via a gapped alignment. Only the highest scoring HSP is extended
because most of the HSPs will be included in this gapped extension.
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5. The final alignment for hits for which a gapped extension produced a high
score are re-aligned with relaxed alignment parameters. This increases the

| extentof the alignment.

BLAST performs far fewer local alignments compared to FastA and is therefore
much faster. Like FastA, gapped extensions are only performed on a relatively small

region within a sequence.

1.3.4 Basic statistics and probabilities for local alignments

The scoring system is crucial in distinguishing between real and chance alignments,
and equation 1.2 gives most of the basic statistics of a scoring system. Sequence
search methods employ a scoring system to judge whether similarity could have
arisen by chance, and for heuristics such as BLAST whether a more time consuming

comparison has to be performed.

The basic statistics for the score distributions from local ungapped alignments
has been described by Karlin and Altshul (Karlin & Altschul, 1990, 1993; Altschul &
Gish, 1996). The distribution of scores for hits between a real sequence and a set of
randomly generated sequences can be approximated with an extreme value distribu-
tion. Scores as given in equation 1.2 are summed over the region participating in
a hit. Figure 1.2 shows scores that are approximated with an extreme value distri-
bution. Since this score distribution is the result of chance alignments, biologically
meaningful scores should be distributed at the long tail end of the distribution, and
the location of this score on the distribution can be treated as a confidence level for
this score (Karlin & Altschul, 1990). The formal description of this confidence is
given in equation 1.3 which is the probability to find at least one random alignment
with a score S > z. This probability is also known as a P-value. K is another
constant that depends on the scoring system, and mn is the product of the lengths
of the sequences that are compared. For database searches mn is the product of the
length of the query sequence and the search space of the database.

Az

P(S > z)=1— e Kmne” (1.3)

The score S depends on the scoring system via K, A and special scores for the
introduction of gaps and gap extensions (A is the same as in equation‘ 1.2). It is

useful to convert this score into a score S’ that is independent of the scoring system
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Figure 1.2: Random alignment scores can be approximated by an extreme value distribution.
The figure is taken from Altschul & Koonin (1998) (figure 6). A position specific scoring matrix
generated by PSI-BLAST (see section 1.3.5) was compared to 10,000 randomly generated protein

sequences.

to compare results obtained from searches that use different substitution matrices.
A normalised score S’ is expressed in bits which can be obtained from the scaling
constants of the scoring system and the score distribution. Equation 1.4 gives the

formal description of this normalisation.

_AS—InK
B In2
The reliability of an alignment in BLAST and other programs is given as an

S’ (1.4)

e-value, described in equation 1.5.

e(S) = mn2=5 (1.5)
e(S") =Kmn exp(—A\S)(directly calculated from the raw score) (1.6)

The e-value is the number of expected chance hits with a score > S’. Doubling
the length of the query sequence or database doubles the number of expected chance
hits, and the number of expected chance hits decreases exponentially with increasing

score. Note that e(S’) is found in the exponent of equation 1.3.

Another confidence measure that requires a substantial sample of the score dis-
tribution is the z-score. It is defined as the distance of an the alignment score S from

the mean p of the distribution of all scores of the analysis divided by the standard
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deviation o of the score distribution (score = (S — u)/o). The normalisation by
the standard deviation of the distribution ensures that even high scores with a short
distance to the mean get relative low z-scores if the score distribution is flat, e.g.
if there are many chance hits. A z-score is as defined above is only informative for
normally distributed scores. However, it is possible to calculate P-values for z-scores
that are derived from an extreme value distribution of scores (personal communica-
tion with William Pearson). Therefore z-scores may be used as confidence measures

for local alignments such as in the FastA (Pearson, 1990).

All equations in this section and equation 1.2 have only been proven to hold for
ungapped local alignments, but computational analysis and some analytical work
suggest the same applies to gapped local alignments (Karlin & Altschul, 1990, 1993;
Altschul & Gish, 1996; Altschul et al., 2001). Extreme value distributions fit scores
from gapped local alignments of randomly generated sequences well using standard
background frequencies (Robinson & Robinson, 1991) and a standard substitution
matrix such as BLOSUM62 with standard gap opening and extension scores (Wa-
terman & Vingron, 1994; Altschul & Koonin, 1998; Altschul & Gish, 1996), from
which the scale parameters A and K are derived. These parameters cannot be deter-
mined analytically for gapped local alignments. However, Mott (2000) derived an
empirical formula from a large number of simulation with different scoring systems
to calculate A. For ungapped local alignments these parameters are analytically
derived from the scoring system (Karlin & Altschul, 1990). The FastA method
generates enough optimal gapped local alignments between unrelated sequences for
each run to have a basis from which to A and K can be estimated. The BLAST pro-
gram generates gapped alignments only for potentially related sequences and cannot
estimate the parameters from these scores. Therefore BLAST uses pre-estimated
parameters from simulations for different standard matrices and gap opening and
extension costs (Altschul et al., 1997).

1.3.5 Sequence specific profiles and PSI-BLAST

As mentioned at the beginning of section 1.3.2, none of the standard substitution ma-
trices optimally describes the target frequencies of a particular class of sequences. A
position specific scoring matrix (PSSM) or sequence profile is specifically constructed
for a particular class of proteins. A PSSM has the dimensions n x 20, where n is
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the length of the sequence. At each position n; of the matrix, a substitution score
for each of the 20 amino acids is given. The main difference to the standard substi-
tution matrices is that the score for the same amino acid type can differ depending
on the position within the sequence. Usually a PSSM is constructed from a multi-
ple sequence alignment, for example from a set of already identified homologues and
may be subsequently refined by pulling in more distant homologues when a database
is searched with the PSSM. Earlier profile methods (e.g. Patthy (1987); Gribskov
et al. (1987); Taylor (1986); Yi & Lander (1994); Tatusov et al. (1994)) used rather
complex procedures involving several programs with substantial user intervention.

The PSI-BLAST method (Altschul et al., 1997; Schaffer et al., 2001) combines all
the required steps, automatically constructs a PSSM and uses this profile to search
a sequence database. A comparison of several sequence database search methods
showed that PSI-BLAST is about three times more sensitive than BLAST or FastA
in detecting remote homologues (Park et al., 1998).

Figure 1.3 shows the basic steps of the PSI-BLAST procedure. First, a standard
BLAST, as described in section 1.3.3, is performed using a standard substitution
matrix (e.g. BLOSUMS62) and a sequence database. From this run those sequences
satisfying a given e-value cut-off are stored, and a multiple sequence alignment is
constructed from these sequences. This multiple alignment is converted into a PSSM
which is then used in the second search round instead of the query sequence and
the standard substitution matrix to search the sequence database via the BLAST
algorithm. The difference between this step and the original BLAST is just that the
PSSM itself contains the information about the query sequence and the substitution
matrix. The procedure of searching the database and re-constructing a new PSSM
after every round is repeated until no more sequences with sufficient e-value can be
added to the list of sequences of the previous round or a given maximum number
of rounds has been reached. The result is a list of sequence alignments of the last

round that are of sufficient e-value.

Construction of a Position Specific Scoring Matrix

A multiple alignment is constructed by stacking all sequences found in a search

round with an e-value < the cut-off. Sequences identical to the query are skipped,
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Figure 1.3: Overview of the PSI-BLAST procedure. The procedure starts by running BLAST
for a query sequence against the sequence database using a standard matrix (here BLOSUMG62).
In the next round the PSSM, instead of the query sequence and the BLOSUMG62 matrix, is used
for the database search. A new PSSM is constructed in every round until no new sequences can

be found. A search cycle is called iteration. See text for more details.

and for sequences with very high sequence identity (> 97% in PSI-BLAST version
2.0 and > 93% in version 2.1) only one representative sequences is kept. The final
multiple sequence alignment M has residues or gap characters in every column and
row. For the calculation of the sequence weight for a column in the PSSM only

those rows (sequences) are considered that contribute a residue or gap to that row.

Sequences contributing to a column of the multiple alignment are weighted in a
similar way as for the construction of the BLOSUM matrices described in (Henikoff
& Henikofl’, 1992). Closely related sequences can bias the PSSM. This bias can be
avoided by weighting each sequence according to its individual information content.

Gaps are treated as the 2U” distinct character of the amino acid alphabet, and any
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column consisting of identical characters are ignored for calculating the individual
weight factor for a sequence. This weight scales the raw observed residue frequency
for a given column i of the PSSM, giving the weighted residue frequency f;. Fur-
ther the relative number of independent residue observations N¢ is calculated as
the mean of the number of different amino acid types observed at a position. The
maximum of N¢ is 21, but for most columns in the multiple alignment N¢ is much

smaller. N¢ is a per column scaling factor reflecting alignment variability.

A general frequency probability Q;/P; with @ being the target frequency and P
being the standard background frequency on which equation 1.2 is based on is not
appropriate for the probability estimation for the PSSM, because of the weighting
issues discussed above. A small sample size (some alignments may just have a few
sequences at some columns) and the necessity for the prior knowledge of the relation-
ships among the residues requires a different probability scheme. The calculation of
Qi for a position in the PSSM includes the target frequency g;; that was used for the
initial substitution matrix (see equation 1.2 ) to make use of the prior knowledge
of the residue relationships. Equation 1.7 calculates a pseudocount (Tatusov et al.,
1994) for a given column in the PSSM where g;; is the target frequency for the

standard substitution matrix from equation 1.3.2.

g.=§:=ﬁq.. (1.7)
) P, (¥ .
j=1 J
_afi+ By

The target frequency @); for a position in the PSSM is then given via equation
1.8 which combines the scaled observed frequency with the pseudocount. Therefore
a PSI-BLAST PSSM is a position specific scaled version of the initial substitution
matrix that was used. The factor « is defined as Ng—1 to account for the alignment
variability mentioned above. The two equations above imply that for positions in
the query for which the multiple alignment does not have any sequences the initial
substitution score is used. The ( factor can be used to increase or decrease the
weight of the initial substitution matrix. Gaps do not have any position specific
scores, constant gap opening and gap extension scores are applied as for the standard
substitution matrices. The actual substitution score is calculated from @Q); using

equa,tion‘ 1.2,
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Applying BLAST to a position specific search

The BLAST method is applied in the same way to the PSSM as for a query se-
quence and a standard substitution matrix, assuming the same statistics holds for a
position specific search. The calculation of the normalised score S’ for hits includes
the scaling parameters A and K for which Altschul et al. use the same values as for
the initial substitution matrix that was used in the first round (e.g. BLOSUM62).
They showed that the employed scoring system fits well the observed score distribu-
tion. The score distribution from comparisons of random sequences with a PSSM
derived from a real sequence can be fitted by an extreme value distribution (figure
1.2) with the calculated parameters A and K close to those for gapped simulations
for a BLOSUMG62 matrix.

By employing the pseudocount PSI-BLAST makes use of the statistics from
BLAST and the underlying substitution matrix which assumes a standard amino
acid composition of the query sequence and the database. Although the initial anal-
ysis of PSI-BLAST has shown that its statistics fits the observed score distribution,
and the calculation of the e-value approximates the observed error rate within a
range of 20%, there have been problems with the PSI-BLAST statistics for a range
of query sequence the more the sequence differs from the assumed standard amino
acid composition. A BLAST comparison between a query and a database sequence
of similar biased composition may produce a hit with significantly high score be-
cause the standard BLAST statistics does not apply for this sequence pair. Recent
changes in the BLAST and PSI-BLAST algorithms (Schaffer et al., 2001) imple-
mented in the 2.1 series of the program consider biased amino acid compositions.
Especially for PSI-BLAST, biased sequences have a strong impact because in every
iteration the PSSM itself will be biased towards the amino acid composition of the
query, producing even more unreliable results in the next search round (Schaffer
et al., 2001; Altschul & Koonin, 1998).

The most important change to cope with different amino acid compositions is a
PSSM specific A\. For composition biased sequence pairs the standard X (e.g. that
for the BLOSUMG62 scoring system) is generally too big and results in a lower e-
value (lower e-values give more confidence) than justified (Schaffer et al., 2001). A
composition dependant X' is therefore generally smaller than the standard A. It is
computationally too intensive to estimate A’ by fitting the score distribution for each
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query or PSSM and database sequence pair. Since A, can be determined analyti-
cally (Karlin & Altschul, 1990) for ungapped alignments (it is the unique solution
to sum the scores for a matrix colum given in equation’ 1.2 to one), a composition
specific A, for scores from ungapped alignments is calculated using the amino acid
frequencies of the database sequence and the query. The composition rescaled score
for a matrix cell in the PSSM is then given by ;%Sij , where S;; is the non-scaled
score of the PSSM.

As mentioned in section 1.3.4 the statistics for ungapped alignments has been
shown to approximate score distributions for gapped alignments, too. Matrix rescal-
ing is time consuming because it has to be performed for every query database se-
quence pair. Rescaling is only triggered if an alignment produces a significantly high
score using the non-scaled scoring system. The alignment for the sequence pair (or
a PSSM and the sequence) is then recalculated. e-Values as the common confidence
measure for BLAST and PSI-BLAST alignments are more conservative with the
rescaled scoring system and have been shown to be more realistic than the original
e-values (Schaffer et al., 2001).

To avoid the application of the BLAST algorithm to highly biased sequences
with a low amino acid entropy, for which re-scaling may not be sufficient to stop
a corrupted search, a low complexity filter can be applied to remove regions from
the database or query sequence that differ markedly from the standard amino acid
composition. Positions in these low complexity regions are replaced by the ‘X’ char-
acter and are ignored by the BLAST search procedure. Such a filter is implemented
in the BLAST 2.0 and 2.1 series (Wootton, 1994).

Finally, it is worth mentioning that the sensitivity of PSI-BLAST, the ability
to detect even distantly related homologues, depends on the diversity and size of
the sequence database that is used for the search. Generally in every iteration
more distantly related sequences are identified and added to the PSSM. After every
round the PSSM explores evolution a step backward. PSI-BLAST would not be
able to detect the relationship between a query sequence A and a distantly related
sequence B in the database if there were no evolutionary intermediates present in
the database, see e.g. Aravind & Koonin (1999).
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1.3.6 Using sequence profiles with IMPALA

The IMPALA method (Schaffer et al., 1999) compares a query sequence against a
library of PSSM produced by PSI-BLAST. This is particularly useful if one wants
to find the protein or domain family to which a given query belongs. Each family
is represented as one PSSM in the library. Such a library may be constructed by
searching a large sequence database with a member of a characterised protein family
using PSI-BLAST. The final PSSM produced by PSI-BLAST may then be used as

a representation of the protein family.

The comparison of the query sequence with each PSSM is performed via the
Smith-Waterman procedure (see equation 1.1 and text in that section), so that
optimal local alignments are guaranteed. The time consuming Smith-Waterman
procedure is acceptable because a profile library generally contains only a few hun-
dred members representing families or domains rather than hundreds of thousands
of single protein sequences from a database that is used within e.g BLAST and
PSI-BLAST searches. IMPALA faces the same statistical problems calculating sig-
nificance for scores between the query and a PSSM as PSI-BLAST. In fact the
re-scaling procedure to scale a PSSM by X/, (mentioned in the previous section) was
initially developed for IMPALA and later adapted by PSI-BLAST version 2.1. IM-
PALA performs similarly to PSI-BLAST version 2.0 and 2.1 in terms of sensitivity
and error rate. Since IMPALA and PSI-BLAST version 2.1 use the same re-scaled
scoring system, e-values are very similar, whereas e-values generally differ from those
calculated by the older PSI-BLAST version 2.0.

A recent development is the RPS-BLAST program (Reversed Position Specific,
Marchler-Bauer et al. (2002)) that is a derivative of IMPALA. The query is compared
to the query PSSM via the BLAST heuristics instead of using a Smith-Waterman
dynamic programming as in IMPALA (the program is part of the NCBI BLAST
package).

1.3.7 Hidden Markov Models

Hidden Markov models are a commonly used technique in genome annotation, for
example to identify known protein families (Krogh et al., 1994). An overview of this
technique and its application in sequence comparison is given in a review by Eddy
(1998). A hidden Markov model (HMM) associates different states and the transi-
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tion between these states with probabilities. Protein sequences generated randomly
by an HMM for a particular family should then contain members of this family, or
from a different point of view, sequences with a high probability to be derived from
this model should belong to the family the model describes. HMM based methods

have been used in this work.

Sequences can be represented by first order Markov chains. A letter in a se-
quence is not independent, it depends on the previous letter, but does not depend
on the full list of previous letters in the sequence. An HMM contains different states
which are for example biological meaningful descriptions, such as hydrophobic H
and polar P, to describe different regions within a protein. Between these states
there are transitions, each associated with a probability ¢ to go from one state to
another. All transition probabilities from one to another state must sum to one.
Each state contains emissions which are the 20 amino acids for a protein sequence.
The probabilities of the emissions per state must sum to one. Only the emission
symbols (the amino acid letters) of the model are directly observed, but the states
and the transitions between them are hidden, therefore such a Markov chain is called
a hidden Markov chain. Having introduced the terms transition and emission, the
dependency of a letter in a sequence on the letter of the previous position is in
fact the transition state between two emissions. Inferring a hidden state sequence
(such as the above hydrophobic and polar states) from a protein sequence labels the
protein sequences with biological information of higher order than just the residue

letters in the protein sequence.

Figure 1.4 represents the two state HMM for hydrophobic and polar with the
transitions between these states. The probability that a sequence FYK is modelled
via H — H — P is then given by equation 1.9, the first probability in each term is

t, the second is e.

P(HHP) = (1%0.25) % (0.9 % 0.1) x (0.1 % 0.5) (1.9)

The sum of the probabilities to find the sequence in any of the states is the prob-
ability with which the sequence can me modelled by this HMM. Usually dynamic
programming is used to find the optimal path for a given input sequence through the
HMM, where the rows and the columns of the matrix contain the sequence letters

and the states.
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Figure 1.4: Schematic representation of a two state hidden Markov model, to assign a residue in
a protein sequence to either the hydrophobic H or the polar P state. t is the transition probability,

e gives the probability for emitting a particular amino acid type from this state.

HMMs are used in a wide range of bioinformatics applications, such as (i) gene
prediction where a gene is modelled with different states such as exon-intron struc-
ture (see section 1.2.1), (ii) transmembrane helix prediction of protein sequences
(e.g. Sonnhammer et al. (1998); Krogh et al. (2001); Tusnady & Simon (2001))
where a helix may get states for the helix caps and states for the hydrophobic core
and (iii) the identification of homologous sequence families (Bateman et al., 1999).
Homology based sequence searches using carefully constructed HMMs for protein
families perform better than PSI-BLAST (Park et al., 1998) in detecting distantly
related proteins, but the construction of high quality HMMs on which the perfor-
mance relies is difficult and usually requires several steps and manual inspection
(Bateman et al., 1999, 2002; Letunic et al., 2002; Gough & Chothia, 2002). The key
aspect for the performance of any HMM based application is the design of the HMM
which includes a definition of the states and the associated probabilities e and t.

Profile HMMs that describe a protein or domain family such as in PFAM and
SMART (see section 1.2.3) usually derive the probabilities for e and ¢ from multi-
ple sequence alignments. An initial HMM is constructed that may just contain a
limited number of rather closely related members of the family. This HMM is then
iteratively refined in a similar way PSI-BLAST refines its PSSMs (Bateman et al.,
1999). A HMM in database search round n will detect more divergent members of

the family than in round n — 1, and the new HMM that is constructed after round
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n is used to search the sequence database in round n + 1. The most commonly
used profile HMM packages are HMMer (Eddy, 1998) and SAMT99 (Karplus et ai,
1998). These methods contain programs to construct, refine and manage HMMs

and to search libraries of HMMs with a query sequence.

The states for a sequence profile HMM are (a) the residue positions of the protein
family (from one to the sequence length of members of the family), referred to as
match states, (b) a deletion state between each match state that allows bypassing
a match, and (c) an insertion state between each match state to allow residues to
be inserted between two matches. Figure 1.5 represents a model for a three residue
sequence motif (Eddy, 1998). The two major differences between sequence profiles
such PSI-BLAST PSSMs and HMMs is that a PSSM does not score gaps in a posi-
tion specific way whereas a HMM contains the deletion (gaps) state. Further, in a
HMM a state is dependant on the previous state, whereas a position in a PSSM is

mathematically independent.

FY
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Figure 1.5: A small profile HMM (right) representing a short multiple alignment of five sequences
(left) with three consensus columns. The three columns are modelled by three match states (squares
labelled ml, m2 and m3), each of which has 20 residue emission probabilities, shown with black
bars. Insert states (diamonds labeled iO-iS) also have 20 emission probabilities each. Delete states
(circles labeled dl-d3) are ‘mute’ states that have no emission probabilities. A begin and end state
are included (b, e). State transition probabilities are show as arrows. The figure and the legend
are from Eddy (1998) (figure 2).
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1.4 Protein structure and genome annotation

This section explains why knowledge of the three dimensional structure of proteins
is important. There is a huge discrepancy between the availability of protein se-
quences and their 3D-structures. Currently there are more than 800,000 different
sequences in the public databases (12/2001, ftp://ftp.ncbi.nlm.nih.gov/blast/db/),
but there are less than 16,000 experimentally determined protein structures in the
Protein Data Bank (PDB, 12/2001, http://www.rcsb.org, Berman et al. (2000)),
and these contain redundancies such as structures with point a mutation. Despite
the difference in absolute numbers, the sequence and the structure databases both

grow exponentially.

1.4.1 Functional and evolutionary insights from protein struc-

ture

The 3D-structure of a protein determines its biochemical function. Homology based
sequence comparisons and motif searches to identify the function of a protein are
therefore simplifications because these searches only consider 1D-information. How-
ever, divergent sequences often share a similar 3D-structure that accepts to some
extent a range of amino acid substitutions. The 3D-structure is generally more
conserved than the 1D-structure (the sequence), see e.g. Chothia & Lesk (1986)
and Murzin et al. (1995). Figure 1.6 shows the dependency of the structural sim-
ilarity measured as the root mean square of C, distances of homologous protein
domains and the sequence identity between these domain pairs. At about 20-25%
sequence identity the 3D-similarity starts to decrease dramatically. Distantly re-
lated sequences with less than 20% sequence identity (the twilight zone) generally
only share a similar structural scaffold, a common fold, with differences in struc-
tural details which usually determine the biochemical function (Hegyi & Gerstein,
1999; Wilson et al., 2000). However, an analysis from Wood & Pearson (1999) using
z-scores for a sequence-structure comparison showed a linear relationship between
z-scores of the sequences members of a fold and the z-scores of their structural align-

ments.

Wilson et al. (2000) analysed the relationship between sequence identity and
~ function, and structural similarity and function. For enzyme domains with an RMSD
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% identity

Figure 1.6: Relationship between sequence identity and structural similarity. RMS deviation of
superimposed structural domains as a function of percentage identity. Scatter plot of homologous
superfamily domain pairs from the SCOP database (see section 1.4.4). The plot is similar to an
earlier presentation by Chothia & Lesk (1986) but considers 1,000 times more domain pairs (30,000
in total). TZ denotes the twilight zone of sequence similarity where inferring structural similarity
gets unreliable. Only the best 50% of superimposed Ca atoms per pair where included in the RMS
calculation (50% trim). Figure 2(a) from Wilson ez al (2000).

of 1A 90% of the domains pairs have the same broad function. This structural simi-
larity can be mapped to the start of the twilight zone sequence similarity (about 25%
sequence identity) in figure 1.6. For a 90% chance of a precise match of function of
two structures a similarity of about less than 0.6A RMSD is required corresponding
to 40% sequence identity. These thresholds of sequence identity are also supported
by other work (Devos & Valencia, 2000; Todd et ai, 2001). Hegyi & Gerstein (1999)
showed with their analysis, that the functional diversity of protein domains decreases
approximately as a function of the exponent of the e-value threshold of the align-
ment between a protein domain and its functionally annotated homologues in the
SwissProt database (see section 1.2.3 for a description of SwissProt). The plot of

this sequence/function relationship is shown in figure 1.7.

The analysis described above is based on single domains. For multi-domain pro-
teins function is less conserved between proteins than for single domain proteins,
and even proteins with the same domain combination may not have the same func-
tion (Hegyi & Gerstein, 2001). This renders functional flexibility of folds of domains

in a different context.

The relationship between structure and function raises the question whether
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Figure 1.7: Multi-functionality of protein domains versus e-value threshold. A domain has mul-
tiple functions if at least two homologues of different function from the SwissProt database can be
identified for this domain. The e-value of the alignment between homologous pairs is plotted as
the negative logarithm to the base of 10 against the fraction of domains with multiple functions
(i.e. increasing values on the z-axes indicates more confidence in the homologous relationship).
Starting from an e-value of 1075 (log;p — 5) multi-functionality decreases exponentially. Figure 7
from Hegyi & Gerstein (1999).

there is a relationship between a particular function and a fold. Studies from Mar-
tin et al. (1998) showed only little preference of a function to be associated with
a particular protein fold. However, other results (Hegyi & Gerstein, 1999; Wilson
et al., 2000) show a significant bias of certain folds with a particular group of func-
tions. E.g., mixed a/(-folds are often associated with enzymatic domains whereas
all-a domains are biased towards non-enzymatic function. On the other hand there
are a few folds such as the TIM (Triose-phosphate Isomerase) barrel that provides

a generic scaffold to fulfil a broad range of enzymatic functions.

Todd et al. (2001) showed that 25% of the homologous superfamilies of simi-
lar structure have different enzymatic function, highlighting the divergent evolution
within these superfamilies. Most functional changes within a related set of sequences

are due to a change in the substrate but maintain the same reaction mechanism
(Holm & Sander, 1997; Todd et al., 2001).

Due to the structural conservation of proteins the number of distinct 3D-archi-
tectures for globular proteins has been estimated to be limited between 1,000 and
7,000 (Brenner et al., 1997; Govindarajan et al., 1999; Zhang & DeLisi, 1998; Wolf
et al., 2000). This means that many proteins have the same or a very similar general
architecture of secondary structure elements (a-helices and B-sheets), although their

peptide sequences may not show obvious similarity. Considering this structural ‘lim-
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itation’, functional diversity has to be generated by adopting an existing structural
scaffold to a particular function. Functional changes within the same structural fold
is often related to critical local sequence changes Todd et al. (2001); Aloy et al.
(2001), and in difficult cases may be traced to differences of a few critical atoms.

An overview about the relationships between sequence, structure, function and
evolution is given by Orengo et al. (1999); Thornton et al. (1999, 2000). Generally

protein structure is more conserved than its function (and its sequence).

1.4.2 Examples for protein structure/function relationships
Glycogen synthase kinase 30

The recently published structure of the glycogen synthase kinase 348 (GSK3/4, Dajani
et al. (2001)) is represented as an example of how protein structure reveals insight
into biochemical function, supporting and guiding functional studies. The GSK3/
plays a regulatory role in two distinct signalling pathways, the insulin induced sig-
nalling pathway to regulate glycogen synthesis and the Wnt (Wintbeutel) signalling
pathway involved in cell proliferation and development. The default for GSK3g4 is
to phosphorylate and thereby inhibit its target proteins.

GSK-303 contains an N-terminal activation segment that is also found in other
kinases such as ERK2 MAP kinase (Zhang et al., 1995), forming a [ barrel structure
that opens a substrate specific binding cleft and positions the active site residues
for the phosphorylation reaction. This activation itself is enhanced by the phospho-
rylation of the activation segment (tyrosine 216 in GSK-33). A feature specific for
GSK3g4 is the P+4 phosphorylation pattern. The kinase efficiently phosphorylates
substrates at a position with a serine or threonine if the residue 4 positions towards
the C-terminus has already been phosphorylated (primed phosphorylation). Addi-
tional serine or threonine residues can be phosphorylate in +4 steps in a C-terminal

to N-terminal direction (hyper-phosphorylation, Fiol et al. (1994)).

The crystal structure was analysed to suggests a model by which the requirement
for primed phosphorylation and the substrate specificity is explained. The structure
of GSK34 shows the active from of the protein, with an open cleft between the
activation segment at the N-terminus and the C-terminal domain. Figure 1.8 (A)
shows the surface of GSK33 with the functionally key residues labelled. The cleft



Introduction 48

from the positively charged patch formed by R96, R80 and K205 to the left, passing
the active site residues R220 and D181, is the substrate binding site. The positively
charged patch is stabilised by either a phosphorylated tyrosine at position 216 form-
ing a hydrogen bonding network with the three positively charged residues or by a
free phosphate or sulphate from the surrounding buffer in vitro (as it is found in the
crystal structure) and the cytosol in vivo. The modelled protein substrate complex
in 1.8 (B) explains the requirement for P+4 primed substrates, and the specificity

for substrates containing a serine or threonine at ‘P(0)’ and ‘P(-h4)’.

R220
D181
y 216
R96
R180 I
K205
A B

Figure 1.8: GSK3/3 surface and active site. From Dajani ef al (2001), figures 3a and 4a.
(A) The solvent-accessible surface of GSK3/3 coloured according to electrostatic potential (red,
negative, blue; positive). The intensive positive patch generated by the basic side chains of Arg
96, Arg 180 and Lys 205 is indicated, as is the location of the catalytic Asp 181 and Arg 220 which
could interact with a phosphorylated Tyr 216. The N-terminal mainly neutral activation segment
is located towards the bottom of figure. (B) Phospho-Substrate bind model. Model of substrate
binding (peptide sequence PPSPSLS) to GSK3/?. Phosphorylation of a serine at P(0) by the active
site residues (red) depends on a ‘priming’ phospho-serine at P(+4) interacting with residues of
the positively charged patch (blue sidechains) shown in (A) fitting the substrate into the binding
pocket.

The authors further suggest an autoinhibition mechanism to interpret the inhibi-
tion of GSK3/i® when serine 9 is phosphorylated in the insulin pathway (Cross et ai,
1995). The 35 residue N-terminal peptide, which is distorted in the crystal structure
and therefore not visible, was modelled into the substrate binding site serving as a

pseudo primed substrate analogue with the phosphorylated serine 9 as T(-h4)’ and
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a proline 5 in ‘P(0)’ occupying the pocket at the catalytic residues. The authors
showed experimentally that inhibition depends on the sequence context of the serine

9, and is in fact specific to the sequence N-terminal fragment of GSK37 itself.

The structure of GSK34 from Dajani et al. (2001) does not reveal any insights
into how GSK3p acts differently in the two signalling pathways (insulin and Wnt).
However, recently a structure of a complex between GSK33 and a peptide from
an interacting regulatory protein required in the Wnt pathway was published (Bax
et al., 2001), showing that the interaction site is close to the substrate binding site
but without any overlap. This structural complex explains why GSK-33 can be
inhibited in the Wnt pathway while staying active in the insulin pathway.

Similar structure and function - different sequence

As figure 1.6 shows and is further discussed in section 1.4.3 below, similar sequences
generally have a similar 3D-structure which in turn determines the biochemical func-
tion of the protein, although, as explained in section 1.4.1, it is not straightforward
to identify these relationships. In this section two protein structures with such a

difficult relationship are discussed.

The structures of the core domain from different viral integrase proteins Dyda
et al. (1994) are similar to ribonuclease H (RNaseH, Katayanagi et al. (1990); Davies
et al. (1991)), but their sequences do not show significant similarity (Yang & Steitz,
1995; Dyda et al., 1994). The integrase inserts the viral DNA into the host DNA,
whereas RNaseH hydrolyses RNA strands of RNA-DNA hybrids. Despite the differ-
ence of their biological function, both enzymes perform a similar trans-esterifiaction
reaction that requires either Mg?t or Mn?* ions and three carboxylates. Overall
the reaction mechanism of both enzymes has been proposed to be similar Yang &
Steitz (1995).

The topology of the core folds for the integrase and the RNaseH are the same,
but the length and twist of the secondary structure elements are different, also both
folds contain additional secondary structure elements. Figure 1.9 shows a superpo-
sition of both structures. The three residues of the catalytic site that provide the
carboxylates for the chelated metal-ion are in similar relative positions (coloured in

magenta and green). In integrase glutamate 157 (magenta) does not interact di-
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rectly with the magnesiiim-ion, although mutagenesis has shown that this position
requires a glutamate (Kulkosky et ai, 1992). Further, glutamate 157 is in an oppo-
site position relative to glutamate 48 of the RNaseH. It has to be pointed out that
the fold of the Avian Sarcoma Virus (ASY) integrase shown in the figure is similar
to the HIV-1 integrase (Bujacz et a/., 1996) with a sequence identity of 24% but the

relative orientation of the three active site residues are different (Bujacz et ai, 1996).

A

Figure 1.9: Superposition of ribonuclease H from E. coli (PDB code IRDD, red structure,
Katayanagi ef al. (1993)) and integrase from Avian Sarcoma virus (PDB code IVSD, structure
shown in blue, Bujacz et al. (1996)). (A) The RMSD of the superposition is 3.9A. Most similarity
is found in the 5 stranded sheet, both structures contain additional secondary structure elements,
although their general topology is the same. (B) Mg+ binding site of both enzymes (integrase
in magenta, and RNaseH in green). The two aspartates occupy similar positions whereas the two

glutamates are on opposite sites of the metal ion.

The similarity between both protein domains and the proposal of a common
enzymatic mechanism was identified only because their 3D-structures are available,
pointing out the limitations of sequence based comparisons, and raising the question

of how many of these hidden relationships there are in the protein universe.
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Similar sequence and structure - different function

The sequence and structure of lysozyme and a-lactalbumin are very similar (36%
sequence identity and an RMSD of 1.3A between the structures, see figure 1.10), al-
though their biochemical functions are different. The first 3D-structure of lysozyme
was described by Blake et al. (1965), and was derived from Hen egg. Lysozyme is also
found in other birds, mammals and insects Jolles et al. (1984). It degrades bacte-
rial cell walls by cleaving the (3-1,4 glycosidic linkage between N-acetylmuramic acid
and N-acetylglucosamine of polysaccharides. a-lactalbumin is mainly found in mam-
mary glands and milk. The protein changes the substrate specificity of the enzyme
galactosyltransferase in the lactating mammary gland from N-acetylglucosamine to
glucose to produce lactose. The first a-lactalbumin structure was published by
Phillips and co-workers (Smith et al., 1987). A review about the discovery, analy-
sis and comparison of a-lactalbumin and lysozyme is given by McKenzie & White

(1991).

In addition to their sequence and structural similarity, both enzymes have a
similar exon-intron structure (McKenzie, 1996) suggesting a common ancestor. The
different biochemical functions, despite different substrates, are rendered by two
major features: (i) a-lactalbumin binds calcium, whereas only a few lysozymes have
been reported to bind calcium (e.g. Nitta et al. (1988); Nitta (2002)), and (ii) a-
lactalbumin interacts with galactosyltransferase, this interaction has not been found
for lysozymes. Figure 1.10 shows a structural superposition of both proteins, high-
lighting the calcium binding site of a-lactalbumin (red) and the catalytic residues

the lysozyme (blue).

Although a-lactalbumin and lysozyme have developed different functions, it is
commonly accepted that they are homologous. However, it is not clear when in
evolution the gene duplication event took place (lysozyme is believed to be the
ancestor of a-lactalbumin). Some authors suggest the event happened before the
divergence of birds and mammals (Prager & Wilson, 1988) while others suggest a
more recent event, after birds and mammals have diverged (Shewale et al., 1984).
The functional divergence of both proteins cannot be explained by structural data
alone, but needs careful sequence analysis and experimental work. Similar sequences
and structures do not necessarily imply similar function. This is an important aspect

in functional genome annotation which was discussed in section 1.4.1.
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Figure 1.10: Superposition of lysozyme (PDB code ILYZ, blue, Diamond (1974)) and q-
lactalbumin (PDB code IALC, red, Acharya et al. (1989)). The catalytic sidechains ASP52 and
GLU3S of lysozyme are shown. The calcium (red sphere) and the sidechains of the residues LYS79,
ASP82, ASP87 and ASP88 involved in calcium binding are shown: in red.

1.4.3 Structural genomics projects

Automated large scale structural genomics projects have been setup around the
world to determine large numbers of protein structures (Sanchez et ai, 2000). There
are at least fifteen such projects in North America, four in Europe using X-ray crys-
tallography and one in Japan that uses NMR technology. Generally the aim of
structural genomics projects is to solve protein structures without the focus on a
particular protein. Targets may be selected carefully including those of special inter-
est such as potential drug targets, protein families or a representative set of proteins
from a particular organism. An important aspect is to have a wide range of pos-
sible protein targets so that a protein that is difficult to express or to crystallise
may be skipped or suspended from the processing pipeline without having any im-
pact on the entire project. This philosophy which is often referred to as grabbing
for the low hanging fruit aims for the easy targets. However, the current lack of
protein structures supports this point of view, and advances in technology based
on the experience of ongoing projects may allow future exploration of targets that
cannot be handled at this time. Nevertheless, there are projects sucfi as the one at
the Midwest Center For Structural Genomics, that include dithcult targets such as

membrane proteins.

As mentioned at the beginning of section 1.4, there is a large discrepancy between
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the number of available sequences and structures. However, structural genomics
projects do not need to provide experimental structures for every single sequence,
because the number of distinct 3D-architectures for globular proteins is limited to
a relatively small number of folds, allowing the modelling of the structures of many
proteins from a limited number of homologues for which the structures were deter-

mined experimentally.

Recent work by Vitkup et al. (2001) suggests that a number of 16,000 structures
may be required to have representative structures for 90% of all proteins. To cover
90% of all protein families in PFAM (version 4.4 with 2,000 families, see section
1.2.3) about 4,000 structure determinations are required. More than one structure
per family has to be solved if the sequence identity between members of a family
is low (< 30%). Assuming that reliable homology based model building for protein
structures requires at least 30% sequence identity between the target (the protein
of unknown structure) and the template (the homologue of known structure), one
could model all members of a protein family with a minimum number of template
structures. This minimum number is determined so that all members of the family
share at least 30% sequence identity to at least one template. On average a quarter
of a genome is covered by PFAM (version 4.4), and so the extrapolated number of
structure determinations rises to 16,000. This is the estimated number of protein
structures to cover 90% of the sequence space. About 10% of these structures are
already available. Targeting a 100% coverage of the protein sequence space requires
four times more protein structures to be solved, and therefore a 90% coverage cut-off
is a good ratio of completeness to costs. This theoretical estimate does not consider
membrane proteins and technical difficulties with certain protein families, although
difficulties with individual target proteins from families can be bypassed by choos-
ing an alternative candidate target protein of the same family (e.g. from a different

organism).

Target selection is critical for the success of structural genomics and has to
be coordinated to avoid redundant work. Lists of targets from various projects
are maintained at http://presage.berkeley.edu/ (Brenner et al., 1999) and http://-

www.structuralgenomics.org.

The expected benefits from having a large set of available structures (includ-

ing those derived from homology modelling, see section 1.4.5) are combinations of
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‘new/old’ folds (3D-architectures) and ‘known/unknown’ functions (Burley, 2000).
The examples in 1.4.2 already highlighted the benefits of knowing the structure of
a protein. Structures will be used for guiding experimental work such as site di-
rected mutagenesis, protein-protein interaction studies and identification of possible
ligands (e.g. inhibitors). Having a larger number of proteins with the same or a
similar fold but different function sheds light into the evolutionary history of a fold.
This allows the exploration of the differences between proteins that have diverged
from a common ancestor, and how proteins with the same structural scaffold evolved
new functions. As discussed in section 1.4.1, the structure/function relationship is
complex, and there is still a lack of structural data to extract reliable rules for this
relationship. New folds of proteins with known function will allow to elucidate the
function of a fold, which in turn may allow to propose a function for all those mem-
bers (proteins) of this fold. For a known fold with an unknown function the structure
may be used to propose a function, e.g. by screening this fold for 3D-sites extracted
from existing structures (Wallace et al., 1997; Russell, 1998; Jonassen et al., 1999).

1.4.4 Structure based classification of proteins

The protein family and domain databases discussed in section 1.2.3 derive their rel-
evant information to cluster proteins mainly from sequence information. Another
type of domain database uses protein structure to identify and cluster similar do-
mains. Protein structure supports the identification of domain boundaries for a
sequence family. A comparison of protein structures also allows the identification
of structurally similar domains in the absence of obvious sequence similarity as the

structural similarity of the integrase and the ribonuclease in section 1.4.2 shows.

The most commonly used structural domain databases are SCOP (Murzin et al.
(1995); Conte et al. (2002), see also http://scop.mre-lmb.cam.ac.uk/scop/) and
CATH (Orengo et al. (1997); Pearl et al. (2001), see also http://www.biochem.-
ucl.ac.uk/bsm/cath/). Both databases are based on the PDB database which is
the central repository for protein structures. SCOP (Structural Classification Of
Proteins) has been employed extensively in this work, and therefore its architecture
is described in detail. Proteins are classified via a tree with six branch levels. The
top level is the class that summarises domains according to their secondary struc-
ture content. In SCOP version 1.53 there are five main classes, all-a, all-3, mixed

a/B and o + B (domains contain a separated o and § part) and small domains


http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.biochem.-

Introduction 55

(dominated by short domains that usually contain a complexed metal or disulphide
bridges). The next level is the fold, that groups domains for which the secondary
structure elements are arranged in a similar topology but without the need of se-
quence similarity. Each fold contains one or more superfamilies which aims to group
domains for which the evidence suggests there is be a common ancestor, therefore
members of the same superfamily are homologues. The evidence that two domains
belong to the same superfamily can be similarity in sequence, structure and function,
but may be a combination of similar structure and function without detectable se-
quence similarity (as for the integrase and ribonuclease H examples in section 1.4.2).
Domains in the same fold but from different superfamilies are considered to be ana-
logues, their similar structural framework is believed to have evolved independently.
Since the discrimination between analogy and homology is not straightforward, a
common evolutionary origin cannot be excluded for some domains within the same
fold but in different superfamilies. SCOP decides conservatively, and places domains
without clear evidence for common ancestry in different superfamilies. Each super-
family contains at least one family that groups closely related domains with at least
30% sequence identity or in some cases less identity but very similar structures and
function. A domain itself is the next level within a family, followed by the species,
i.e. the same domain may be present in different species. The SCOP database is con-

structed and maintained mainly manually, some steps of the analysis are automated.

Sfor\s
FOLD 657
/ SUPERFAMILY \971
/ FAMILY \472
/ PROTEIN DOMAIN ¥804

/ PROTEIN DOMAIN AND SPECIES 1512

Figure 1.11: The SCOP classification. The CLASS level at the top of the triangle is the most
general classification level. Several entries from a level can be summarised by the next higher level
(e.g. a FOLD contains one ore more SUPERFAMILIES). The lowest level is the PROTEIN DOMAIN IN A
SPECIES, i.e. the same domain may be found in different species. The numbers of distinct entries
at each level are given, in total there are 26,174 domains (including the same domain in different
species) in SCOP version 1.53 ‘

The CATH database is organised similarly to SCOP, it contains five levels: (i) the



Introduction 56

class, similar to SCOP, and contains the entities mainly-a, mainly-8 and o — beta,
(ii) the architecture level groups domains with similar arrangements of secondary
structure elements but ignoring their connectivity, (iii) the topology/fold family level
that considers secondary structure topology (grouping analogues), (iv) the homolo-
gous superfamily and (v) the sequence family levels for similar sequences. CATH is

constructed and maintained mainly automatically with some manual intervention.

1.4.5 Methods for assigning a 3D-structure to protein se-

quence

The previous sections have demonstrated the benefit of protein structure for the un-
derstanding of function and evolutionary relationships. Clear homologous relation-
ships between sequences can be identified straightforward via sequence comparison
e.g. using BLAST (see section 1.3.3). Thus way one can identify a close homologue
of known structure for a sequence of unknown structure. However, because the
structure is usually more conserved than the sequence, and similar structures of-
ten share a broad similar biochemical function (see section 1.4.1), different methods
have been developed to make use of the knowledge that is derived from structure,
such as physical interactions between residues distantly apart in the sequence. The
aim is not only to detect distant homologous relationships but also those for which
the structures share similar physical constraints which may have arisen by con-
vergent evolution. These methods are generally summarised as fold recognition or
threading!, and were reviewed by Jones (1997); Sippl (1999); Sternberg et al. (1999).

One of the earliest fold recognition methods compares a template sequence with
a library of profiles from proteins of known structure (Bowie et al., 1991). The pro-
files contain observed secondary structure states and solvent accessibility for each
residue position. A statistical analysis of all 20 amino acids with their states is
performed for all proteins of known structure, calculating a score for each amino
acid type in each state, which is used to score each residue of a target sequence in

the templates residues states.

One of the most successful methods developed was THREADER. (Jones et al.,

1992) which uses pair-potentials to evaluate an energy function for the target residues

! Threading in this context means to thread the residues of a sequence of unknown structure

onto the backbone conformation of a template structure
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in a template structure. Pair-potentials introduced by Sippl (1990); Hendlich et al.
(1990) are derived by analysing the surrounding residues in a given radius in space
for a given residue. This is a measure for the preferred amino acid environment for

a given residue.

Advances in secondary structure predictions based on multiple sequence align-
ments and neural networks (Rost & Sander, 1993b,a; Jones, 1999b) enhanced fold
recognition (similar 3D-structures have the a similar secondary structure content

and topologies) and were frequently incorporated into fold recognition methods.

In the 4* CASP competition (Critical Assessment of Structure Prediction) in
2000, a blind trial to predict the fold of structures that were held back temporar-
ily from publication for the purpose of CASP, the 3D-PSSM method performed
best under the fully automated methods (Kelley et al., 2000). Different methods
are combined to score the compatibility of a target sequence with each library se-
quence represented by a set of profiles that are derived from superimposed structures,

solvent-potentials, secondary structure prediction and sequence homology.

If more information than just the general fold is required and a homologue of
known structure is available, homology based modelling can be applied to build an
accurate structural model that includes sidechains. The assumption for homology
modelling is that the target sequence will have a similar fold, and therefore a similar
backbone conformation for the main secondary structure elements. The backbone
conformation of the homologue of known structure is used as a template onto which
the sidechains of the target are placed. The model may be refined using different
force fields (e.g. Sali & Blundell (1993); Sanchez & Sali (1997b)), see Sanchez &
Sali (1997a); Moult (1999) for a review on comparative modelling. Flexible loops
and gaps are difficult to model, and special methods have been developed to tackle
this problem (Bates et al., 1997). The quality of homology models strongly depends
on the accuracy of the alignment between the target and the template. Reasonable
models that include sidechains and flexible loops require at least 30% sequence
identity (Sanchez & Sali, 1998; Bates et al., 1997; Fischer et al., 1999). Structural
genomics projects benefit from the conservation of protein structure by building
reliable models for closely related sequences (see section 1.4.3 on page 53). The
growth of the sequence database and the expected growth of the protein structure
database will increase the number of relationships with >30% sequence identity,
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increasing template selection via straightforward sequence search methods such as
BLAST.

1.5 Scope and outline of this thesis

The methods used in genome annotation as described in the previous sections to-
gether with the vast amount of data that is already available requires a systematic
integration. To perform comparisons across genomes, a unified annotation protocol
has to be applied to all sequences of each genome. Such a cross-genome comparison
highlights the differences shaping the nature of a particular organism or a group of
organisms (e.g. metazoans). Commonalities between genomes reveal evolutionary
relationships as well as conserved functions. Several comparative genomics projects
with different aims have been developed by others which are discussed in the later
chapters and are compared to this work. Here, a comparative annotation system
and its application based on the protein repertoire of fully sequenced genomes is
described with a focus on domains of known structure. Below the main aspects of

this work are introduced.

e Chapter II describes the development of a benchmark for the protein sequence
database search program PSI-BLAST (see section 1.3.5) to evaluate its perfor-
mance in protein based genome annotation. For the benchmark an artificial
genome is constructed from domains of the SCOP database (for which the an-
notation is known, see section 1.4.4), so that the ideal structural and functional
annotation can be compared to PSI-BLAST results. The well characterised
genome of M. genitalium and the genome of M. tuberculosis (at that time just
published) are annotated via PSI-BLAST sequence comparisons. The extent
of new folds and proteins of potentially new function within these genomes is

estimated.

e Chapter III describes the development of a computer based annotation sys-
tem that is capable of performing an automated analysis of a vast amount of
protein sequences with structured storage and retrieval of the results. The
annotation system is based on a relational database and an object oriented
software interface to this database. Standard protein sequence based analysis
tools such as those described in the previous sections (e.g. PSI-BLAST) are

integrated as a part of the annotation pipeline.
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e Chapter IV ianalyses the proteins of 14 genomes from archae, bacteria and
eukaryota including proteins from the draft human genome. The extent of
structural and functional annotation within these genomes is analysed and
compared. The extent of domain duplications within SCOP superfamilies
in the processed proteomes is analysed, including a comparison of the most
abundant superfamilies, repetitiveness of domains and the co-occurrence of su-
perfamilies in the same sequence. Membrane proteins are analysed for globular
domains, and SCOP superfamilies found in membrane proteins are compared
across the proteomes. Further, SCOP superfamilies found in proteins from
human disease genes are compared to those found in non-disease genes. Re-
sults from other projects that analyse the fold distribution across different

proteomes are discussed.

e The thesis closes with a summary and discussion of the results and suggestions
for possible future developments, in particular possibilities for the annotation

and analysis system described in this work.
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Chapter 2

Benchmarking PSI-BLAST in

genome annotation

2.1 Summary

The recognition of remote protein homologies is a major aspect of the
structural and functional annotation of newly determined genomes. This
work presents a benchmark for the coverage and error rate of genome an-
notation using the widely-used homology-searching program PSI-BLAST
(position specific iterated basic alignment tool). The study evaluates the
one-to-many success rate for recognition, as often there are several homo-
logues in the database and only one needs to be identified for annotating
the sequence. In contrast, previous benchmarks considered one-to-one
recognition in which is was required that a single query should find a par-
ticular target. The benchmark constructs a model genome from the full
sequences of the structural classification of protein (SCOP) database and
searches against a target library of remote homologous domains (<20%
identity). The structural benchmark provides a reliable list of correct and
false homology assignments. PSI-BLAST successfully annotated 40% of
the domains in the model genome that had at least one remote homologue
in the target library. This coverage is more than three times that ob-
tained if one-to-one recognition is evaluated (11% coverage of domains).
Although a structural benchmark was used, the results equally apply to
just sequence homology searches. Accordingly, structural and sequence

assignments were made to the sequences of Mycoplasma genitalium and
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Mycobacterium tuberculosis (see http://www.bmm.icnet.uk/PsiBench).
The extent of missed assignments and of new superfamilies can be esti-
mated for these genomes for both structural and functional annotations.
The work described in this chapter has been published in Journal of
Molecular Biology (Muller et al., 1999).

2.2 Introduction

At the start of this work in 1998 it was clear that over the next few years a ma-
jor activity in molecular biology would be the assignment of protein structure and
function to ORF's in newly determined genomes (Bork et al., 1998; Bork & Koonin,
1998). A standard approach is to perform database searches to identify homologous
protein sequences which will have similar three-dimensional structures and often a
related function (Bork & Koonin, 1998; Chothia & Lesk, 1986; Hegyi & Gerstein,
1999; Karp, 1998; Martin et al., 1998). Indeed an initial report of a newly deter-
mined genome nearly always reports the results of homology searches. However,
despite the importance of the methodology, there has only been limited systematic
evaluation of the accuracy, both in terms of coverage and errors, of the procedure
(Brenner et al., 1998; Park et al., 1998). This work uses a structural benchmark
developed by Chothia and coworkers (Brenner et al., 1998; Park et al., 1998) from
the SCOP (Structural Classification of Proteins) database (Murzin et al., 1995) to
assess the accuracy of homology based annotation! of ORFs. The results of the
benchmarking will be used to interpret assignments of protein structures to ORFs
in two bacterial genomes. Although a structural benchmark is used, the conclusions
of the study relate to the accuracy of genome annotation by homology to other pro-

teins irrespective of whether these proteins have a determined structure.

The SCOP database employs sequence, structural and functional relationships
between protein domains of experimentally determined three dimensional confor-
mation (Murzin et al. (1995), see section 1.4.4 for details); In summary: protein
domains of similar three-dimensional structure are classified into the same super-
family if there is substantial evidence to propose that they are homologues (i.e. the
result of divergent evolution). A key feature is that without structural information,

'Here, annotation is defined as the assignment of a functionally or structurally characterised

homologue to an uncharacterised protein sequence
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many homologous relationships between proteins in the same superfamily could not
have been established. Domains that lack strong evidence for divergence but share
a common structure are assigned to the same fold family. In general, domains with
a common fold are presumed to be structural analogues (i.e. the result of conver-

gence) but a homologous relationship remains a possible explanation.

Chothia and coworkers established a structural benchmark for sequence ho-
mology search algorithms based on recognising superfamily relationships in SCOP
(Brenner et al., 1998; Park et al., 1998). A database of sequences with less than 40%
identity was derived from SCOP. An optimal homology algorithm should identify
all pairs of sequences for domains within the same superfamily (i.e. total coverage)
without detecting any erroneous relationships between different superfamilies (i.e.
zero errors per query). In practice, algorithms are not optimal and different methods
can be compared from their different coverage at a chosen observed error rate. Park
et al. (1998) showed that the iterative profile approach of PSI-BLAST (Altschul
et al., 1997) and the hidden Markov models implemented in SAMT98 (Karplus
et al., 1998) were found to identify three times as many remote homologues as the
sensitive pairwise algorithm FASTA (ktup=1) (Pearson & Lipman, 1988).

The evaluations of the accuracy of different homology search algorithms by
Chothia and coworkers (Brenner et al., 1998; Park et al., 1998) and the related
studies by Salamov et al. (1999), evaluate a one-to-one success rate in terms of
whether a single probe identifies a particular homologue in the library (see table
2.1). This measure, appropriate for comparison of the performances of different al-
gorithms, is not the most useful to benchmark actual genome assignment. A better
measure for genome annotation is the one-to-many success rate as there are several
potential homologues in a database and only one needs to be identified to propose
a common three-dimensional structure and probable related function. One would
expect that the presence of multiple homologues would increase the accuracy of ge-
nome assignment for populated homologous families. In addition, these previous
benchmarks considered recognition of protein domain probes and targets whilst of-
ten the actual genome will be a multi-domain protein. Not only could this lead
to additional problems in assignment, but it also raises the question of how well
domain boundaries can be identified.

It is important therefore that the benchmark for genome assignment represents
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Probe Targets Found< e- | one-to-one success one-to-many suc-
value cess
A B v 1 1
C Vv 1
D X 0
B A Vv 1 1
C X 0
D X 0
C A 4 1 1
B X 0
D X 0
D A X 0 0
B X 0
C X 0
| TOTAL SUCCESS RATE [ 4/12 | 3/4 |

Table 2.1: One-to-one and one-to-many assignment Sequences A, B, C and D are homologues
(i.e. the same SCOP superfamily). In a benchmark, each sequence would be taken as probes in
turn and their success at identifying the remaining target homologues determined (i.e. ‘Found <
e-value’). In a one-to-one benchmark the success of finding each pair is considered. In one-to-many
only one correct assignment is needed to classify the probe. This highlights the difference in the
two methods of assignment. In the approach of Brenner et al. (1998) and Park et al. (1998), the
observed error rate is evaluated and is the basis for comparison of algorithms (see text).

the actual situation. Accordingly, in this work a model genome (the SCOP genome)
is constructed from a selection of the entire protein sequences forming protein do-
mains in SCOP. The performance of PSI-BLAST for genome assignment will be
evaluated since this program is exceptionally widely-used and can be readily in-
stalled at any site (see e.g. Aravind & Koonin (1999); Koehl & Levitt (1999);
Sternberg et al. (1999)). Indeed, today, PSI-BLAST is the standard tool for an
initial, state-of-the-art analysis of newly determined genomes. The results of the
benchmark are then used to interpret the PSI-BLAST analysis of the fold composi-

tion in the Mycoplasma genitalium and Mycobacterium tuberculosis genomes.

2.3 Development of the SCOP genome benchmark

For details of the materials and methods, see section 2.7 on page 80.
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2.3.1 SCOP1625 - representative target domain library

Structural information was taken from SCOP release 1.37 (Murzin et al., 1995).
Each SCOP entry consists of a structural domain. These domains can be contin-
uous or discontinuous (i.e. in which the same structural domain is formed from
two or more discontinuous sequence segments) (Wetlaufer, 1973). The unit used
in this study is referred to as a ‘region’ which is defined as one domain or a seg-

ment of a discontinuous domain and represents one segment of the protein sequence.

To generate a representative library?, SCOP entries have been excluded if they
did not have coordinates in the protein data bank (Abola et al., 1997; Berman et al.,
2000), any errors in residue numbering, an X-ray resolution of >3.5A or undefined
residues, length <20 residues, C* trace only, more than 15 C*-C* separations of
>4.0A or more than five undefined residues. From 11,373 domains, a set of 1,560
domains was generated so no pair shared >40% identity. These domains contain
1,625 regions which is the SCOP1625 target library.

2.3.2 SCOP genome probe

The SCOP genome was constructed to have complete chain sequences. Any sequence
in SCOP1625 that was only part of a chain was replaced by the entire chain sequence.
This yielded 1,300 different sequences comprising 934 single domain chains and 366
multi domain chains. The sequences are from a range of different organisms. The
SCOP query genome contained 1,845 regions. In this genome there are 224 regions
that cannot be annotated (i.e. these are the only representatives for a SCOP super-
family), and this provides a model for the types of errors that can occur in actual
genome assignment when there are no homologues in the database. For example,
the identification of domain boundaries may be subject to more errors if there are no
homologues for parts of a protein. However the SCOP genome is limited as it only
includes a few transmembrane and coiled-coiled domains, and real genomes tend to

have a higher fraction of these types of structures.

2This library was created by R.M. MacCallum
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2.3.3 Assignment of structural regions to the SCOP genome

In outline (see section 2.7 for details), PSI-BLAST (Altschul et al., 1997) performs
iterative searches against a non redundant sequence database (NRPROT-SCOP)
that includes every non identical representative from the standard sequence databa-
ses together with the sequences of all the regions in SCOP1625. The benchmark is
to evaluate the accuracy and coverage of detecting remote homologues to the SCOP

genome.

In PSI-BLAST, the confidence in a particular sequence hit to the query is quan-
tified by an e-value that indicates the theoretically expected number of erroneous
matches per query (also see section 1.3.4). Up to 20 iterations of PSI-BLAST were
performed and all hits to SCOP1625 from any iterations are stored. For hits to the
same region within query, the one with the best (lowest) e-value is taken. Hits that
overlap within a similar region in the SCOP protein are clustered. Two parameters
determine which match is taken as the assignment. First the percentage of the tar-
get (i.e. known) SCOP region that is included in the PSI-BLAST match must be
greater than a cut-off value #. Thus one can exclude a match to a small fraction
of the target that may be erroneous. After this, the match with the best e-value is

taken.

For the benchmark only matches to remote homologues are considered. Here 20%
identity for long alignments (>350 residues) is used to distinguish between close and
remote homologues with a progressively higher identity required for shorter align-
ments based on the relationship derived by Rost (1999).

The proposed annotation generated using PSI-BLAST is then compared to the
real assignment of the query. This is performed by associating the mid point of each
proposed region with its nearest mid point of the real region of the query. If the
SCOP superfamily of the real and proposed region is the same, then this is a correct
assignment. If there are more proposed regions than real regions in the query, one

or more of the proposed regions are flagged as ‘over-assignments’ in the benchmark.
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2.3.4 Accuracy measures

The accuracy of genome assignment can be considered in terms of two measures:
coverage and the error rate. The coverage of true positives is the number of correctly
assigned regions divided by the number of regions in the SCOP genome that have a
homologue (1621). The assignment of a target to a region within the query that is
from a different superfamily than the target is defined as a false positive. The error
rate is the number of false positive assignments divided by the number of SCOP
query regions (1845).

A correct assignment is when a region in the SCOP genome is matched by PSI-
BLAST to a target region of the same SCOP superfamily. Sequence based profile
methods can detect analogous folds in addition to homologues (Fischer et al., 1999)
which would lead to erroneous functional assignments (although members of a di-
verse superfamily can have different function). Thus, in our study assignment to
the same SCOP fold but different superfamily is taken as an incorrect result. How-
ever, the SCOP classification of domains into the same superfamily is conservative.
In preliminary work, several errors occurred when there was an assignment to the
correct fold but the wrong superfamily for a 3/a TIM-barrel. This suggested that
the SCOP classification was too conservative for these superfamilies. Accordingly,
any correct assignment to the TIM-barrel fold irrespective of superfamily is taken
as correct. In addition, any assignment between a nucleotide-binding domain and a
FAD/NAD(P)-binding domain (two different SCOP folds) is not treated as an error.
In the benchmark, there were four such assignments to different superfamilies for
TIM barrels and four for nucleotide-/FAD/NAD(P)-binding domains.

2.3.5 Parameter selection

First suitable parameters for the percentage t of the target that needs to be iden-
tified by PSI-BLAST and the standard e-value cut-off were determined. Figure 2.1
plots the coverage and error rate against different t-values for three different e-value
cut-offs (5 x 107% , 5 x 107* and 5 x 1072). When the ¢ cut-off is above 50%, the
coverage begins to decrease markedly. In contrast, errors tend to accumulate when ¢
is less than 50%. Accordingly we chose a value of t of 50% as optimal. A commonly
used PSI-BLAST e-value of 5 x 107* (i.e. 0.05%) yields an observed error rate in our
final assignment of 0.9%. Note that the PSI-BLAST e-value relates to the estimated
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error rate from a single iteration. The observed error rate is the result of several
iterations and the subsequent structural assignment that includes a length require-
ment. The benchmark therefore provides an estimate of the relationship between a

PSI-BLAST e-value and the resultant error rate in genome annotation.
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Figure 2.1: Coverage and errors for genome assignment for different parameters. The graphs show
the percent coverage of true positive matches divided by the total number of possible assignments
(left ordinate and filled symbols) and the error rate per query region (right ordinate and open
symbols). These values are plotted for the different percentages of the target domain region
included in the alignment and at different e-values

2.4 Results of the SCOP genome benchmark

2.4.1 Assignment coverage

Table 2.2 presents the results of the evaluation of the accuracy of genome assignment
at the PSI-BLAST e-value of 5 x 107%. To recapture, the 1,300 sequences in the
SCOP genome contained 1,845 regions (domain segments, see section 2.3.2). There
were 1,254 sequences that had at least one potential remote homologue in the target
database. There were 1,621 query regions that could be assigned and PSI-BLAST
correctly identified 652 of these regions. Thus the percent coverage for assigning
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remote homologues (<20% identity) in the model genome is 40%. There were 16
false positive assignments and two over-assignment (see below). Table 2.2 also gives
the results of genome assignment in terms of sequences with at least one region
recognised, and with this measure the percent coverage remains at 40%. However,
on a per residue basis the percentage coverage falls to 32%. This lower coverage is
due to alignments not including the complete query sequence but still having the

correct assignment.

Sequences | Regions | Residues
No. in SCOP genome 1,300 1,845 1 299,910
No. with at least one region that 1,254 1,621 | 263,863
can be assigned
No. correctly assigned 503 652 84,827
Coverage of correct assignment 40% 40% 32%
No. of false positive assignments 13 16 1,985
No. of over assignments 2 2 163

Table 2.2: Accuracy of genome assignment. Sequences refer to each chain, i.e. model ORFs;
region refers to a domain segment. For sequences, correctly assigned means that at least one
region has been correctly assigned (i.e. there is some correct information about the sequznce)
irrespective of whether other regions are not assigned or have been erroneously characterised.
Similarly, errors for sequences are reported irrespective of whether another region in the sequence

has been correctly assigned.

An important aspect of genome assignment is that for many of the queries there
are several database homologues and only one needs to be identified to assign the
protein superfamily. The importance of this is demonstrated if the accuracy of one-
to-one assignment is evaluated. This corresponds to the benchmark used previously
(Brenner et al., 1998; Park et al., 1998; Salamov et al., 1999) when accuracy is
considered in terms of each query recognising a correct one-to-one relationship be-
tween database entry. In this study at the PSI-BLAST e-value of 5 x 107, there are
15,469 potential pairwise relationships between regions that could be identified (this
corresponds to the query-target space for a one-to-one evaluation) and only 1,671
(11%) were correctly assigned. Thus identification of remote homologues (<20%
identity) in structural genome analysis has 3.6 times more true positive coverage

than obtained in detecting pairwise relationships.
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Figure 2.2: Coverage plotted against observed error rates. The cumulative coverage and observed
error rate corresponding to different PSI-BLAST e-values are plotted for one-to-many and one-to-
one evaluations. The smallest e-value is 5 x 10760,

The above comparison of one-to-many and one-to-one coverage is made at a par-
ticular PSI-BLAST e-value. As demonstrated by Brenner et al. (1998) and Park
et al. (1998), comparisons of approaches should be performed by consideration of
plots of the coverage of true positives against the observed error rate. For each
approach, the cumulative coverage and observed error are plotted as the theoretical
error-rate from the approach increases. Figure 2.2 presents these plots for the one-
to-one and one-to-many assignments. At any observed error rate per query, there is
a several fold greater coverage in annotation via one-to-many compared to pairwise

recognition measured by one-to-one.

For each superfamily in the SCOP genome, the average percent coverage of su-
perfamily assignment from one-to-many recognition was calculated and then plotted
against the average number of cross-validated members in the superfamily (figure
2.3). One might expect that for one-to-many superfamily assignment (figure 2.3
(a)), there would be a tendency that the percent coverage would improve as the size
of the superfamily increases, but this is not observed. This is explained by figure 2.3
(b) which shows that the percent coverage for detecting remote one-to-one relation-

ships tends to decrease with increasing superfamily size. Some large superfamilies,
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such the immunoglobulins and the Rossmann fold, contain a diverse set of members
and even sensitive search methods such as PSI-BLAST have difficulty in detecting

many of the one-to-one relationships.

2.4.2 Length of region assignment

In the assignment of domain regions to multi-domain query sequences, there could be
substantial errors in delineating the domain boundaries. In this study for each region
in a multi-domain query the offset of the assigned location of the domain boundary
to that reported in SCOP has been evaluated. A perfect assignment would have
a zero offset. No offsets were calculated for the N- and the C-termini as these are
easier to determine. Figure 2.4 is a histogram of the frequency of each offset length.
65% of the domain boundaries are correctly determined to within 5 residues and
86% to within 20. This shows a high accuracy in automatically delineating domain

boundaries given that the query and the target are remote homologues.

Figure 2.4 is helpful in both theoretical and experimental studies to characterise
a sequence. For example, in structural studies in which the domain will be cloned
and expressed, it is helpful to know the likelihood of a domain boundary being cor-

rect.

2.4.3 Analysis of errors

There were 16 false positive classifications and two over-assignments where two re-
gions are assigned to a query protein that has only one continuous domain. It is

useful to examine these errors to identify commonly occurring problems.

Six classification errors are due to short cysteine rich regions, for example false
assignments between tumour necrosis factor receptor and EGF/Laminin superfami-
lies. The problem caused by cysteine rich regions has been noted previously (Huynen
et al., 1998; Park et al., 1998). Three of the errors are introduced by the algorithm
we used to identify the positions of regions in the query. For a query protein with a
discontinuous domain the target spans both of the two regions of the discontinuous
domain and the intervening one, consequently the target is erroneously assigned to

the intervening domain although the assignment to the flanking regions of the dis-
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Figure 2.3: Relationship between assignment accuracy and superfamily size. The percent cov-
erage of genome assignment (one-to-many) is plotted against the average number of members
in the cross-validated superfamily in the target library (a). Results for evaluation of one-to-one
assignment are shown in (b).

continuous domain was correct. PSI-BLAST did not produce two separate sequence
pairs but one long gapped one. If this gap is longer than 25 residues, a warning is
generated by the program developed for this analysis. This occurred 25 times, and



Benchmarking PSI-BLAST in genome annotation 72

(offset 56-230 = 3 %, not sfiown)
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Figure 2.4: Accuracy of domain identification. Histogram of the normalised frequency of the
offset error in domain identification. Offset is the number of residues error in the delineation of a
domain boundary. The N- and C- terminal boundaries of the full sequence are not included. The
diagram includes 97% of the observed offsets. The included scheme shows two possible errors when
assigning sequences to regions in a the query. Percentages below the arrows give the cumulative

frequency of offsets included.

three of these warnings correspond to these erroneous assignments. The presence of

long gaps provides a hag for possible errors.

The causes of the remaining errors are not obvious but several may be due to
the incorrect construction of the PSI-BLAST prohle. These errors can be identified,
and accordingly all PSI-BLAST annotations in which more than one superfamily
was assigned to the same query segment were considered as these are conhicting
assignments. There were three occurrences of this, two correspond to an actual er-
roneous assignment. These two erroneous assignments were in two queries from the
same superfamily. Thus in the benchmark, conhicting superfamily assignments can

be used to indicate a potential error.
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2.5 Application to bacterial genomes

Structural annotation based on the SCOP1625 library was performed on two bac-
terial genome sequences. Firstly, this serves to relate the results from the model
SCOP genome to real genomes and thereby evaluate the usefulness of the bench-
mark. Secondly, structural assignments provide valuable insights into the function

and evolution of the organism.

In this work the Mycoplasma genitalium (MG) and Mycobacterium tuberculosis
(TB) genomes are considered. MG is a relatively small genome with 479 ORFs
and has been widely studied for structural annotation by several groups (Fischer
& Eisenberg, 1997; Huynen et al., 1998; Rychlewski et al., 1998; Teichmann et al.,
1998, 1999). In contrast, TB is far larger (3,924 ORFs) and has not been exten-
sively studied in terms of structural annotation® (see Frishman et al. (2001), http://-
pedant.mips.biochem.mpg.de). Details of the assignments can be on our Web page,
see http://www.bmm.icnet.uk/PsiBench.

2.5.1 Structural annotation using SCOP1625

For the MG genome with 479 ORF's (174,566 residues) sequences of the SCOP1625
database are assigned to all or a part of 136 ORFs (28% of the ORFs). These 136
MG sequences represent 201 domains with 208 regions (21% of the residues). There
are 7 discontinuous domains with two regions each. Of the 208 regions, 88 (10% of
the residues) were assigned by close homologues (i.e. >20% identity based on the
Rost (1999) cut-off) whilst 120 regions (11%) are assigned via a remote homology.

The TB genome is 7.6 times larger than that of MG with 3,924 ORFs and
1,331,539 residues, and it is important to evaluate whether the structural assign-
ment is similar to that of MG. Of the 3,924 ORFs in TB, 1,079 could be assigned
completely or in part to a sequence in the SCOP1625 database (27% of the ORFs).
The assignments represent 1,566 domains with 1,639 regions (23% of the residues).
There are 73 discontinuous domains with 2 regions each. Of the 1,639 regions, 448
(7% of the residues) were assigned by close homologues and 1,191 regions (16% of the
residues) by remote homologues. Thus at the general level of structural assignment

3Between 1998 and 1999 when this study was carried out.
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MG and TB are similar although there is a smaller percentage of close homologues
in TB than in MG.

When, however, the most commonly occurring superfamilies are considered there
are major differences between the two genomes (table 2.3). The most common su-
perfamily in MG is the P-loop nucleotide triphosphate hydrolase yet this occurs at
rank 10 with 36 matches in TB. In contrast the most common superfamily in TB is
the NAD(P)-binding Rossmann domain with 123 matches compared to its rank 11
with 3 matches in MG. The general observation is that certain superfamilies tend to
occur roughly a fixed number of times in the bacterial genomes irrespective of the
genome size (e.g. the class I amino acid (aa) -tRNA synthetases catalytic domain).
In contrast, other superfamilies such as the Rossmann fold undergo duplication and
diversification of function in the larger TB genome. Certain superfamilies were not
observed in MG but are common in TB. In particular, the thiolase superfamily oc-
curs at rank 4 in TB, probably due to its important role in fatty acid metabolism
which may be linked to the complex cell envelope rich in lipids. The acetyl-CoA de-
hydrogenase and luciferase like domains may also be linked to fatty acid metabolism
in TB and were not found in MG. The general observations about the frequencies
of superfamilies in these two genomes are in agreement with the pedant database
(Frishman et al. (2001), http://pedant.mips.biochem.mpg.de) although there are
differences in the exact numbers due to differences in the methodologies of assign-

ment.

Several other groups have analysed superfamily populations (Gerstein, 1997,
1998b; Gerstein & Levitt, 1997; Wolf et al., 1999; Teichmann et al., 1998, 1999).
Work by Teichmann et al. (1998) using PSI-BLAST first with the MG sequence and
then with the known structures as the queries (i.e. two-way PSI-BLAST) identified
more occurrences of the superfamilies in MG than obtained in this work. However,
the two studies give the same results for rank one and for the top five ranking su-
perfamilies. Thus the observations in this work about the relative populations of
superfamilies between MG and TB are likely to remain after adding the additional
hits obtained from two-way PSI-BLAST.

Teichmann et al. (1998) describe how the rate of domain duplication can be cal-
culated from the number of homologous domains in a genome. The basic assumption

is that all domains within the same superfamily have arisen via duplication from
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. . MG TB
Superfamiliy description rank freq | rank freq
P-loop nucleotide triphosphate hydrolases 1 20 10 36
Class II aaRS and biotin synthetases 2 10 39 10
Nucleic acid-binding proteins 3 9 21 17
Class I aa-tRNA synthetases (RS), Catalytic domain 4 8 39 10
FAD/NAD(P)-binding domain 4 8 2 57
a/B-Hydrolases 6 4 3 53
Anticodon-binding domain of Class II aaRS 6 4 76 4
Thiamin-binding 6 4 13 26
Adenine nucleotide alpha hydrolases 6 4 65 5
Actin-like ATPase domain 6 4 31 12
NAD(P)-binding Rossmann domain 11 3 1 123
Thiolase - 4 48
S-adenosyl-L-methionine-dependent Methyltransferases 11 5 43
Luciferase - 5 43
TetR/NARL DNA-binding domain - - 7 42
Acyl-CoA dehydrogenase (flavoprotein), N-terminal and middle domains - - 8 39
Acyl-CoA dehydrogenase (flavoprotein), C-terminal domain - - 8 39

Table 2.3: Popular superfamilies in MG and TB. The table lists all SCOP superfamilies which
occur in the top 10 ranks in MG and/or TB.

a common ancestor. A superfamily with e.g. ten domain members in a genome
therefore was duplicated nine times. Results from this work give figures for the
percentage of protein domains that arose by duplication in MG and TB as 49% and
84%. Thus as suggested by others (Teichmann et al., 1999), the larger genome of
TB shows a far greater extent of domain duplication. Teichmann and coworkers
using two-way PSI-BLAST on calculated a domain duplication rate for MG of 58%.
Thus the precise figures for domain duplication obtained in this work will need to be
revised using two-way PSI-BLAST, but the general observation about the relative

rates of duplication should remain valid.

2.5.2 How much of the genome can be classified

A further consideration of this work is how much of the MG and TB genomes
have either structural or both sequence and structural homologues in the databases.
For structural assignment, the SCOP1625 data set was updated by including PSI-
BLAST matches to a sequence of the PDB (Abola et al., 1997; Berman et al., 2000).
This resulting structural database includes proteins with coordinates deposited after
SCOP was compiled, and accordingly a larger fraction of the genomes will be struc-
turally annotated than described in section 2.5.1 that used only SCOP1625 data.
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For sequence assignments one needs to include any match to any sequence that has
a useful annotation. To consider this, any match with the text description that
includes the words ‘probable’ or ‘hypothetical’ was excluded, although this is only
a first approximation to evaluate what corresponds to a functionally useful annota-
tion. In addition matches of species name (MG or TB) between query and database
were ignored as a useful annotation. Segments were identified as low complexity
regions if they were longer than 24 residues using the SEG program with default
parameters (Wootton & Federhen, 1996). Coiled-coil region were found using MUL-
TICOIL with defaults (Wolf et al., 1997). Transmembrane regions were identified
using the ‘certain’ assignment in TOPPRED (von Heijne, 1992).

Figure 2.5 presents pie-charts of the results in terms of residues and represents
the results in 1999. In the SCOP benchmark for remote homologues, 28% of the
SCOP genome was annotated and 59% was missed (undetected homologues) so there
are 2.1 times as many potential remote homologues in the database as detected by
PSI-BLAST (figure 2.5 (a)). To consider the potential for structural assignment in
genomes, first close and then remote homologues of known structure were identi-
fied. From the benchmark the scaling factor of 2.1 was taken and applied to the
fraction of remote structural matches. Thus there are 32% of missing structural
matches in MG and 36% in TB (figures 2.5 (b) and (c)). Enhanced methods such
as two-way PSI-BLAST, hidden Markov models and threading have a major role to
play in structural annotation of genomes (see Jones (1999a) for another approach to
estimate missing structural matches in genomes). As there are very few coiled-coils,
transmembrane and low complexity regions in SCOP and the PDB, these must be
added to the pie-chart for structural assignment in MG and TB (see figures 2.5 (b)
and (c)), there is <1% of coiled-coils in TB). Therefore, as an estimation, there
remains 31% of the residues in MG and 22% of TB that are in new superfamilies

from globular proteins.

To evaluate the potential for functional annotation, first matches to close ho-
mologues of either structure or just sequence were identified and then the remote
matches were considered. Many short low complexity regions, coiled-coils and trans-
membrane proteins will be matched by PSI-BLAST to homologues in the sequence
database. Therefore, unlike the pie-charts for structural assignment, we do not indi-
cate separately coiled-coils and transmembrane regions, (see legend to figure 2.5 for

more details). Assignments to low complexity regions longer than 24 residues will
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generally not be matched by PSI-BLAST and are indicated in the pie-charts, (1% in
the MG and 5% in the TB genome). The correction factor of 2.1 can then be applied
to the remote homologues to estimate the missed homologues in the databases (17%
for MG and 11% for TB).

Figure 2.5(d) shows that in MG if all the missed homologues were identified,
there is only a small fraction of the MG genome left to annotate. Although ho-
mologous proteins can have different functions, this remains a rare event for the
broad function (Hegyi & Gerstein, 1999; Russell et al., 1998b). Thus the pie-chart
suggests that nearly all the gene functions of MG are described in annotations of the
present sequence databases. Indeed it has been suggested that the MG genome is not

much larger than the minimal required for cellular life (Mushegian & Koonin, 1996).

For TB (figure 2.5(e)), after allowing for missed homologues, there remains
roughly 14% of the genome that is formed from genes that are not homologous
to annotated genes of known function. Thus there may well be several genes of

previously unrecognised function in TB.

The above calculations are based on the assumption that the ratio of detected
to undetected remote homologues found from the SCOP benchmark will apply to
the actual genomes. Although this ratio varies for the different superfamilies (see
figure 2.3(a)), the overall trend is that the ratio is not dependent on the size of the
superfamily, and for many genomes the value from the SCOP benchmark should pro-
vide a valid first approximation. Note that the pie-charts are based on fractions of
residues annotated and some other workers (Mushegian & Koonin, 1996; Teichmann
et al., 1998; Jones, 1999a) take a different approach and consider there is structural
/ functional annotation for an ORF if any part of that ORF is homologous to a

database protein of known structure / function.

2.6 Discussion and Conclusions

This study benchmarked the coverage and error rate of PSI-BLAST when applied
to the recognition of remote homologies in the annotation of a genome. The evalua-
tion was based on recognising remote homologies (<20% identity) between protein

domains of known structure. The critical aspect of the evaluation is that it included
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b) MG structure assignment d) MG function assignment

low complexity (1%) close (14%)
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new superfamilies

a) SCOP genome structure assignment
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Figure 2.5: Identified and missed homologues. Results are on a per residue basis, (a) The results
of the SCOP benchmark. For remote homologues (<20% identity), the data in table 2.2 is plotted
as a pie-chart. The figure shows the percentage of the SCOP genome that (i) was correctly assigned,
(ii) incorrectly missed, (hi) erroneously assigned and (iv) that were in a unique superfamily with
no target, assignment possible. The ratio of (ii) / (i) provides the correction factor used in the
other charts to estimate the missed remote homologues, (b) The results of structural assignment
for MG. The chart shows the percentage of the genome that has a close structural homologue,
a remote structural homologue and the estimation of the missed structural remote homologues,
(c) As (b) but for TB, coiled-coils are < 1% (d) The results of functional assignment for MG.
Matches are to sequences with functional annotation. Missing are undetected homologues. New
are ORFs with no previously known homologous, (e¢) As (d) but for TB. Transmembrane regions
are 6% of the residues in MG and 8% in TB, 1% of the residues are in coiled-coil regions in MG
and < 1% in TB. As figures (b) and (c) show these regions are not matched by any sequence of
known structure (in fact there are a few matches but without impact on the percentage figures).
In figures (d)-(e) transmembrane helixes and coiled-coils are not shown in separate fractions in
the pie-charts because about 2/3rd of the transmembrane regions and nearly all of the coiled-coils
are matched by sequence hits of known function (data not shown). That means the remaining
1/3rd (2% of the residues for MG and 3% for TB) of the transmembrane regions are distributed in
the fractions for missing and new functions. Low complexity regions longer than 24 residues are

indicated in (b)-(e) because these regions cannot matched by any sequence.

the requirement that only one out of several possible homologies needs to be identi-
fied to assign the query to a homologous superfamily. In addition, the multi-domain
structure of queries is included in the evaluation. Thus the model used is close to

the actual aspects of genome annotation.

Although a structural benchmark is used, the results are particularly relevant to
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evaluate the accuracy of assigning proteins to any homologous sequences (including
those of unknown structure), which is the standard first step in the interpretation
of a genome. In particular, methods such as two-way PSI-BLAST become compu-
tationally prohibitive if a representative sequence (rather than structural) database
becomes the probes. Profile methods such as IMPALA (Schaffer et al., 1999) pro-
vide an alternative to the two-way PSI-BLAST approach. A query sequence is
compared to a library of profiles each representing a protein family (e.g. a SCOP
superfamily). Clearly fold recognition methods cannot be applied when there are no
structural homologues. In one respect, the benchmark does not carry over to just
sequence annotation as we used the structure based domain information that is not
available for all sequences without coordinates. However, domain assignment can
still be obtained from databases such as PRODOM (Corpet et al., 2000), SMART
(Letunic et al., 2002) and PFAM (Bateman et al., 2002) for many sequences without
known structure (see section 1.2.3 for an introduction into domain databases).

The key results of the study are:

e Genome assignment is based on one-to-many identification and successfully
recognises around 40% of the remote homologies (<20% identity) between
protein domain regions. This corresponds to recognition of 32% on a per

residue basis.

e Previous benchmarks evaluating one-to-one rather than one-to-many identifi-

cation would suggest a three-fold lower success rate.

In general, the more populated superfamilies do not have improved success
rates for genome identification.

e Domain boundaries determined from the alignment of the query to the target

are well characterised, 65% are correctly found to within 5 residues.

e There are major differences between the most common superfamilies in the

minimal bacterial genome of MG compared to that in TB.

e Based on the success rate for detecting remote homologies, about 30-40% of
the residues in the analysed bacterial genomes do not correspond to a protein

of known structure.
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e There are very few proteins in MG that do not have a homologue of annotated
function in the databases but there probably are far more ORF's in TB with

novel function.

2.7 Materials and Methods

2.7.1 Sequence database for PSI-BLAST profiles

A non-redundant protein sequence database (NRPROT) containing 302891 entries
was generated by progressively taking sequences from the Protein Data Bank (Abola
et al., 1997; Berman et al., 2000), TTEMBL-NEW, TrEMBL, SWISSPROT-NEW,
SWISSPROT (Bairoch & Apweiler, 2000) and PIR (Barker et al., 2000) but exclud-
ing any sequences that are 100% identical*. Next, the SCOP1625 target library was
added to NRPROT so that hits to known structures can readily be identified. To
ensure the optimal generation of sequence profiles (but not for structural matches),
to the above sequence library the concatenated regions of discontinuous domains
and the entire chains from multi domain proteins were added. This database is
called NRPROT-SCOP.

2.7.2 PSI-BLAST

The sequence similarity search algorithm PSI-BLAST was benchmarked (Altschul
et al., 1997). An important parameter in the procedure is the e-value, which is
the theoretically calculated number of errors per query, for details see section 1.3.4,
in summary: PSI-BLAST first searches the sequence database using the gapped
BLAST algorithm to collect obvious homologues defined as sequences with an e-
value < a chosen cut-off (h) and here h = 0.0005. These sequences are collected
and aligned to generate a profile that is converted to a position specific scoring
matrix (a PSSM). The PSSM is used in subsequent iterations to identify more re-
mote sequences that are added to the PSSM if their e-value is below the cut-off A.
PSI-BLAST is run for 20 iterations. Sequence hits are scored by their e-value. Low
complexity regions that can introduce erroneous matches were removed from the
query and NRPROT-SCOP database using SEG with default parameters (Wootton

4This database was provided by A. Stewart from the Computational Genome Analysis Labora-
tory from Cancer Research UK
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& Federhen, 1996).

As noted by others (e.g. Park et al. (1998)), sometimes sequences can be erro-
neously added to the PSSM causing PSI-BLAST to drift from the original set of
homologues. To check for this, the sequences included in the PSSM for an iteration
were checked to ensure that they always included all the sequences found in the
first search with gapped-BLAST. If the PSSM drifted away from including all the
original set of sequences, then the PSI-BLAST run was restarted with an h values
of 0.1 the previous value. This is repeated until the h value is 5 x 107! or no drift
is detected.

Sequence hits from iterations other than the first could still drift out of the final
profile and not be identified as homologues. Thus each iteration of the PSI-BLAST
output was parsed. A sequence listed in an iteration was collected if it was not al-
ready found in a previous iteration or if the e-value of that hit was below the e-value
of the previous collected one (in this case the new alignment replaced the old one).
All hits with their individual position of the alignment, percent sequence identity,
e-value, first and last residue of the alignment together with the full length query
were stored in a file as a stacked multiple sequence alignment sorted from lowest

(best) to highest e-value.

2.7.3 Identification of regions and domains in the query se-

quence

The percent overlap between two hits in the stacked multiple sequence alignment
is defined as the length of the overlap in residues as a percentage of the shorter
sequence. Two homologous sequences are defined as overlapping if their percent

overlap is at least 50%.

The first step in the identification procedure is a clustering of sequence hits (fig-
ure 2.6). The hit of lowest (i.e. best) e-value is progressively compared to hits of
higher e-values and the two hits are clustered if they overlap. A hit can only join an
existing cluster if it overlaps with every member of the existing cluster. This is then
repeated for the hit of the second lowest e-value against all the remaining hits and

subsequently for the remaining hits of lower e-value. Next, all hits that cannot be
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clustered are considered as a cluster with one member. Finally regions are assigned
to the query sequence using only the member of lowest e-value of each cluster. The

structural classihcation of this hit is assigned to the appropriate region in the query.

Query a)
initial clustering of sequences A to G
Query |
final region assignment
Query r:i___ C)
Di
B

Figure 2.6: Annotating the SCOP genome on the domain level. The how chart shows the methods
to identify domains in a query sequence, (a) Sequences are schematically represented as bars.
Homologues of the query sequence found by PSI-BLAST (A to G) are represented as a stacked
multiple sequence alignment sorted by increasing e-value, (b) The target sequences are clustered
(see text). Sequences of the same cluster are indicated by a common pattern. Three clusters (CI
to C3) have been generated, (c) Finally the target of lowest (best) e-value of each cluster is taken
for the domain assignment (annotation) of the query. These best targets are truncated at the N-

and C-terminus so that domain boundaries do not overlap.

2.7.4 Benchmark of remote homologues

The aim is to consider each sequence in the SCOP genome in turn and to evaluate
the success of finding a remote homologue of known structure using PSI-BLAST.
Therefore it is necessary to define when remote homology begins in terms of diffi-

culty in being recognised by PSI-BLAST.
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Rost (1999), extending previous work by Sander & Schneider (1991), derived
an equation relating both sequence identity and alignment length to distinguish
between true homologues and false positives for low levels of sequence identity (see
figure 2.7). Very short alignments require a much higher percentage identity to be
confident that they truly represent homologous relationships. The identity falls off
exponentially and for alignment lengths of more than 350 residues, there is roughly
a fixed identity cut-off. The actual equation is taken from the Web site http://-
www.embl-heidelberg.de/ rost/ and is:

Deut = 510 % L(—0.32*(1.0+exp(—L/1000))) (21)

where pe,; is the required percent identity for an alignment and L is the length
of the alignment. This corresponds to defining alignments of over 350 residues as
remote homologues if they have less than 20% identity and for simplicity we refer
to this as the 20% identity cut-off.

The validity of using this cut-off is shown in figure 2.7. From an independent
study the following data has been derived®: First, each single domain protein in
SCOP1625, all homologous pairs (i.e. the same superfamily) of less than 40% iden-
tity, were structurally superimposed using the method of Orengo et al. (1992). From
these structural superposition, the number of residues equivalenced and the percent
identity were taken. The capacity for PSI-BLAST to recognise each pair was evalu-
ated using an acceptance e-value of 0.0001 and up to 20 iteration but without saving

intermediate matches that drift out of the profile.

Figure 2.7(b) shows that above 20% identity given by the cut-off from equation
2.1 there are only 11 homologous pairs that could not be identified by PSI-BLAST
in a one-to-one evaluation. These 11 pairs correspond to 4% of all the possible pairs
above the 20% sequence identity. The one-to-many success rate for PSI-BLAST
above this cut-off can only be better than this level of success.

In the evaluation of the assignment accuracy for a particular SCOP sequence,
that sequence was searched against all the SCOP entries in NRPROT-SCOP using
gapped BLAST (Altschul et al., 1997) (not PSI-BLAST). Matches with a percent
identity (> pe.: were excluded as they are close homologues of the SCOP protein.

5This data was provided by R.M. MacCallum
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2.7.5 Genome data

The genome of Mycoplasma genitalium (isolate G37) has 479 ORFs (Fraser et al.,
1995) and was downloaded from The Institute For Genome Research (TIGR, http://-
www.tigr.org/). The list of translated ORFs of the Mycobacterium tuberculosis
genome (strain H37Rv) was down loaded from The Sanger Centre (http://www.-
sanger.ac.uk/Projects/M_tuberculosis). The genome contains 3924 ORFs (Cole
et al., 1998).

2.8 Remarks about recent PSI-BLAST enhance-

ments

The benchmark described in this chapter was carried out in 1998/99, and since then
the PSI-BLAST method has been enhanced (Schaffer et al., 2001) based on evalua-

tions from different research groups including the benchmark described in this work.

The PSI-BLAST version used in this work belongs to the 2.0 series that uses a
pre-calculated A for the initial substitution matrix (here BLOSUM62 was used) and
for the position specific search (see sections 1.3.4 and 1.3.5 for details). The bit score
and the therefore the e-value is dependent on the scoring system (and in particular
A) that is used. The PSI-BLAST 2.1 series (Schaffer et al., 2001) contains several
enhancements such as a position specific scoring system that generally produces
higher e-values, representing a better estimation of the real (observed) error rate
(also see section 1.3.5). In addition the new scoring scheme reduces the ‘drift’ effect
that may be induced by corruption of the PSSM as described in section 2.7.2.
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Figure 2.7: Identification of homologues by PSI-BLAST. Equation 2.1 is plotted as a function
of structural equivalenced residues. All pairs of the same superfamily of the SCOP 1625 database
were structurally superimposed (see text) to identify structurally equivalenced regions (this is used
as the sequence alignment length) and the percent sequence identity for each pair. Homologous
pairs that can also be identified with PSI-BLAST are plotted as points in (a), pairs that cannot
be identified in (b). Pairs on and above the curve are defined as close homologues and those below
as remote homologues. There are only very few close homologues which cannot be identified by
PSI-BLAST. The SCOP1625 database includes only pairs of proteins of <40% identity calculated

by sequence (not structural) alignment.
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Chapter 3

3D-GENOMICS: A proteome

annotation pipeline

3.1 Summary

An automated proteome annotation system has been developed. The
back-end is a relational database for data storage such as protein se-
quences and results from different protein based analyses. The database
is interfaced by an object-oriented software API (Application Program-
ming Interface) that allows for easy access for the analysis of the stored
data. The API is used to run different analyses such as PSI-BLAST
based sequence comparisons and to store the results as objects within
the database. Several versions of an analysis can be managed. The anal-
ysis of a set of sequences can be automatically distributed over several
computers. Several levels of inheritance within the database scheme and
the API allow for straightforward integration of new analysis tools. This
chapter explains the principles on which the database and the API are
based.

3.2 Introduction

This chapter describes the database and software system that has been developed
to perform the analysis described in chapter 4 and has also been used for other

projects within the Biomolecular Modelling Laboratory at Cancer Research UK and
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the Structural Bioinformatics Group at Imperial College. The system is referred to
as 3D-GENOMICS.

The objectives of the 3D-GENOMICS project are:

e To provide an abstract back-end research platform that can be employed in
different projects related to the comparative analysis of genomes. On top of

this platform software can be developed to perform specific tasks.

e To develop the software that is necessary for the comparative analysis of pro-

tein sequences described in chapter 4.

e To provide a back-end for a web based proteome annotation and information

system that can be updated on a regular basis.

The last point of the objectives is not fully implemented for reasons discussed
at the end of this chapter. However, there is a web-interface to 3D-GENOMICS
accessible at http://www.sbg.bio.ac.ic.uk.

The initial objective was to develop a platform for large scale, mainly structure
based bioinformatics projects including large scale homology modelling, which is the
main justification for the name 3D-GENOMICS.

Following the analysis of PSI-BLAST in genome annotation and the applica-
tion to the genomes of M. genitalium and M. tuberculosis described in chapter 2,
3D-GENOMICS has been developed as a re-usable and automated system for com-
parative analysis of genomes (the proteins of fully sequenced genomes in particular).
This chapter therefore describes the general architecture of 3D-GENOMICS. Chap-
ter 4 is an application of this system, and contains its own methods section describing

parameters and other specificities of the analysis.

3D-GENOMICS contains pre-calculated results from different analyses, such as
sequence comparisons, for a range of proteomes. The overall architecture of 3D-
GENOMICS is a relational database, to store data such as protein sequences, do-
mains and alignments. An object-oriented application programming interface (API)
written in object-oriented Perl encapsulates this database layer. Once the analysis
pipeline has been completed, access to the pool of data can be performed on demand

via the API without having to perform any of the often time-consuming analysis,
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and with a minimum of code development. Several versions of the same type of
analysis (e.g. using different parameters) can be stored. Changes to the database
scheme are encapsulated by the API, so that front-end scripts do not have to be
modified every time the database scheme is changed. On top of the API, scripts for
automated data analysis and visualisation of results have been developed, including

web based applications.

This chapter does not include a complete description of the database scheme, nor
does it provide a manual or a tutorial for the API and the applications developed
during this work. This chapter gives an overview of the principles that have been

used to handle the objectives described above.

3.3 Resources

As pointed out above, results are pre-calculated. A set of standard sequence analysis
software packages is run for a set of protein sequences. The software that is cur-
rently integrated in 3D-GENOMICS, and therefore part of the sequence processing
pipeline, is listed in table 3.1. The integrated source databases are listed in table 3.2.

3.4 Architecture of the 3D-GENOMICS system

This section describes the architecture of the relational database and briefly de-
scribes the front-end API that was developed to process and retrieve data from the
3D-GENOMICS system!. Although the API is meant to be a stable interface to the
database, independent of changes to the database scheme, in the current version of
3D-GENOMICS there is a close link between the database and the API.

3.4.1 The core scheme of the relational database

Figure 3.1 shows an entity relationship diagram (Chen, 1976; Connolly et al., 1998)
of the 3D-GENOMICS relational database. An entity is physically implemented as

IR.M. MacCallum contributed to the development of the core database scheme and the core
API



Program VN Description Reference URL
BLAST 2.0.14 | protein sequence homology search Altschul et al. (1997) http://www.ncbi.nlm.nih.gov/-
BLAST/

PSI-BLAST | 2.0.14 | homology search for remote homologues via pro- | Altschul et al. (1997) same as for BLAST
files

IMPALA 2.0.14 | homology search for remote homologues using | Schaffer et al. (1999) ftp://ftp.ncbi.nih.gov/blast
PSI-BLAST profiles

3D-PSSM - Search for remote homologues of known struc- | Kelley et al. (2000) http://www.sbg.bio.ic.ac.uk/-
ture 3dpssm/

HMMer 2.1.1 | HMM based homology search (hmmpfam) Eddy (1998) http://hmmer.wustl.edu/

Coils 2.2 prediction of coiled-coils in protein sequences Lupas et al. (1991) ftp://ftp.ebi.ac.uk/-

pub/software/unix/coils-2.2/

TMHMM 2.0 HMM based prediction of transmembrane he- | Sonnhammer et al. (1998) http://www.cbs.dtu. dk/-
lices services/TMHMM/

HMMTOP | 1.0 HMM- and neural network based prediction of | Tusnady & Simon (2001) http://www.enzin.hu/hmmtop/
transmembrane helices

SignalP 1.2 neural network based prediction of signal pep- | Nielsen et al. (1997) http://wuw.cbs.dtu.dk/-
tides services/SignalP-2.0/

SEG - detection of regions of biased amino acid com- | Wootton & Federhen (1996) | ftp://ftp.ncbi.nih.gov/pub/seg/
position (low complexity)

PSI-Pred 1.01 secondary structure prediction using neural net- | McGuffin et al. (2000) http://bioinf.cs.ucl.ac.uk/-
works and profiles psipred/

Prospero 1.3 finding repeats in protein sequences Mott (2000) http://www.well.ox.ac.uk/-

rmott/ARIADNE/

Table 3.1: External programs integrated in the 3D-Genomics processing pipeline. VN denotes the version number if available.
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Database VN Description Reference URL
NRROT 20/01/01 | non-redundant protein sequence database | Benson et al. (2002) ftp://ftp.ncbi.nih.gov/-
from the NCBI (translated GenBank, blast/db/nr.Z
PDB, PIR, SwissProt)
genomes 20/01/01 | protein sequences from completed genome | Benson et al. (2002) £tp://ftp.ncbi.nih.gov/genomes/
projects (from NCBI GenBank)
ENSEMBL | 0.8.0 protein sequences and other data from the | Hubbard et al. (2002) http://www.ensembl.oxrg
human genome
SCOP 1.53 Structural Classification of Proteins | Conte et al. (2002) http://scop.urc-1lmb.cam. ac.uk/-
(structural protein domains) scop/ &
http://astral.stanford.edu/
ASTRAL 1.53 supplement to SCOP (such as sequences) | Chandonia et al. (2002)) http://astral.stanford.edu/
PFAM 6.2 HMMs and annotation for protein domain | Bateman et al. (2002) http://www.sanger.ac.uk/-
families Software/Pfam/
Prosite 16 patterns and annotation for protein se- | Falquet et al. (2002) http://www.expasy.org/prosite
quence motifs
taxonomy | 15/01/02 | taxonomic database (taxonomic trees) | - ftp://ftp.ncbi.nih.gov/-
from the NCBI pub/taxonomy/
OMIM 15/01/02 | hereditary human disease genes (from the | Antonarakis & McKusick (2000) | http://www.ncbi.nlm.nih.gov/omin/

NCBI)

Table 3.2: External databases integrated in 3D-GENOMICS. If no version number ( VN) is available the date of the integration into 3D-GENOMICS

(day/month/year) is given.
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a database table, and usually has a primary key that is unique for the entity, i.e. it
identifies a particular entity. A weak entity depends on another (strong) entity, and
usually does not have its own primary key, but uses the primary key of the strong
entity it depends on (the weak key within the weak entity). The diagram is sim-
plified, showing only the most important tables, attributes and keys of the entities,
and most of the entity inheritance (superclass-subclass relations) is not shown. The
diagram only demonstrates the principles on which the 3D-GENOMICS database
scheme is built. The paragraphs below describe each of the entities and their rela-

tions.

The green part of the diagram represents part of the database scheme related
to protein sequences. A Pseq entity represents a protein sequence that has the Seq
attribute, which is the amino acid sequence string and the primary key Pseqld. One
protein sequence can have several descriptions, so that the same sequence may be
present in several sequence databases (having different accession numbers). A se-
quence may have slightly different descriptions in different source databases such as
‘protein kinase (type A)’ and ‘protein kinase A’. Furthermore, the description has
a relation to the taxonomy database provided by the NCBI via the Tazld. If a pro-
tein sequence has several descriptions, these may be from different organisms (i.e.
different organisms with exactly the same sequence). A protein description cannot
exist without a protein sequence, and therefore the Pdesc entity is weak, although
for technical reasons it has its own primary key (Pdescld). Each protein description
may have a list of associated keywords ( Tag entities). Several descriptions may share
a set of keywords. This relation is implemented via the helper table PdescTag. A
Tag has a Name (the keyword), and a Type which is either user (the tag has been
inserted manually to label a protein description or a set of descriptions), static (usu-
ally tags automatically set by scripts that insert sequences into the 3D-GENOMICS
database) or db (an abbreviated name of a source database). A description entity
may have Tags of the same name but different type. Associating descriptions with
Tags allows the selection of a sets of sequences with a common label. All sequences
from the ensembl version 0.8.0 dataset of human proteins may have the tags human
(type user), ensembl (type db) and v0.8.0 (type user). Pseq and Pdesc entities also
contain attributes keeping track of the date of data integration and modification.

The blue part of the diagram shows entities that store information about the in-
tegrated analysis programs that have been run. The central entity is the Run, which
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keeps basic information about an analysis. This includes an error string returned
by the analysis software. The Run entity is abstract, i.e. it is a superclass from
which other entities such as BlastRun (not shown in figure 3.1) inherit. Therefore
the name of the subclass to which this run belongs (BlastRun) has to be stored, so
that an instance of the correct entity (or object on the API level) can be recreated
from the stored data. The Params entity stores an optional set of parameters that
was used to run the analysis (e.g. an e-value cut-off and the name of the sequence
database for a BlastRun object). A run can have several parameters, and the same
set of parameters can be used by different runs. Params entities with the same

Paramsld define a set of parameters that belong together.

A Run is the superclass (the same as a baseclass) of specialised run entities such
as a GenomeRun shown in figure 3.4 that treats a genome or proteome as a whole
or a PseqRun that represents an analysis that was performed on a protein sequence
or a protein sequence fragment (given by the start and stop attributes). A sequence
may be subject to many PseqRuns. The PseqRun entity itself is the superclass of
more specialised sequence based analyses such as BlastRun.

The red part of the diagram shows the results of PseqRuns. These are Features,
that describe a region of the protein sequence (given by the Start/Stop attributes)
of the corresponding run (referenced by the Runld). A Feature is a weak entity,
because it cannot exist without a Run, although this entity has its own primary key
for technical reasons. A Feature may also be produced by other instances inheriting
from Run which are not PseqRuns, e.g. a gene feature representing the location of
a gene on a chromosome. However, in the current version of 3D-GENOMICS only
PseqRun based features are implemented. Specialised entities such as an Alignment
inherit from Feature to extend its list of attributes (and methods on the API level).
Like the Run entity, the Feature entity is abstract, and the class/entity name of the
feature has to be stored in the database to reconstruct an API-object of the correct

class.
The special PerlObject entity is explained later together with figure 3.9.
The complete 3D-GENOMICS database currently contains 65 tables of which 42

tables are of relevance to this work. Of these tables 18 may be counted as core tables,
21 as subclasses that totally participate in a superclass, and 3 tables for the OMIM
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Figure 3.1: Simplified entity relationship diagram of the 3D-GENOMICS database. Protein
sequence related entities are coloured in green, Run related entities (representing entities coupled
with analyses software) are coloured in blue and Features (results from an analysis) are coloured
in red. ‘Helper’ entities and relations are shown in white. The legend inside the figure explains

the meaning of the symbols, see text for details.

disease database (part of the 3D-GENOMICS database). In addition the taxonomy
database is implemented in its own database which can be obtained from the NCBI
(see table 3.2) and imported into a relational database system. The SCOP database
is provided in fiat files via the URL given in table 3.2 and is converted into a simple
relational database that is linked to 3D-CENOMICS via accession numbers (in the
Pdesc table) and tags (see table A.2 in the appendix for the table definitions that
have been chosen to represent SCOP). In addition a scratch database is required to
write temporary tables for the web-service and for some analysis scripts. Table A.l

in the appendix explains the important tables and their attributes.
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3.4.2 Inheritance is a major aspect of the database archi-

tecture

As mentioned above and indicated in figure 3.1, the Run and the Feature entities
are superclasses for several specialised entities (subclasses). Figure 3.2 schematically
shows the inheritance as a flow-chart. In the current version of 3D-GENOMICS,
all Feature ‘producing’ objects (indicated by lines without arrow head) are PseqRun
objects.

The PsiBlastRun and PsiBlastHit subclasses have the deepest inheritance in the
3D-GENOMICS system. A PsiBlastHit is a BlastHit and adds the iteration attribute
(in which this hit was found) to the BlastHit. The PSSM of the last iteration is an
attribute specific to a PsiBlastRun, but it is a BlastRun. A BlastHit is a special type
of Alignment, it has a score and an e-value. The Alignment stores information that
is required to reconstruct the complete sequence alignment. It contains a reference
to the subject sequence of the alignment, the start and stop of the alignment within
the subject, the percent sequence identity and insertions and deletions within the
query and the subject sequences. The last level of inheritance is the Feature (the
superclass on the database level), that has a start and a stop attribute that is used
to describe the location of the feature within the sequence that was subject to the
analysis. The Feature references a PseqRun entity, from which the protein sequence

for which the analysis was run can be obtained.

The PSSM3dHit indicates that there are Feature types that do not have a spe-
cialised entity that inherits from PseqRun (there is a direct connection between
PSSM3dHit and PseqRun in figure 3.2). However, on the 3D-GENOMICS API level
there is always a corresponding specialised Run class (for example the PSSM3dRun
class) that at least provides a method to perform the analysis. On the database
level there is only a specialised entity if information has to be made persistent, for
example a PsiBlastRun has its own entity because the last PSSM of the PSI-BLAST

run has to be stored.

The CoilRun/Coil entities are given as examples of other Features that are not
Alignments. In the current version of 3D-GENOMICS there are eight such entities
(and classes on the API level, see tables A.1 and A.3 of the appendix).
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Inheritance is implemented by referencing the different tables that represent the
different levels of specialisation by the same primary key, which is the Featureld for
Features and the Runld for Runs. There is total participation between the PseqRun
entity and the Feature entity, i.e. all Features have a PseqRun they come from. The
Run entity is also a superclass of other specialised entities that are not PseqRuns.
The GenomeRun is a superclass for analysis that treat a proteome as a whole, i.e.

that do not consider individual protein sequences.

PsiBlastRun PsiBlastHit
BlastRun BlastHit
Run PseqRun Alignment Feature
GenomeRun PSSMSDHit
DomainStat CoilRun Coil

Figure 3.2: Flow-chart of inheritance in the 3D-GENOMICS database. Entities inheriting from
the Run superclass are shown with blue background, and those entities inheriting from the Feature
superclass are with red background. The basic superclasses have blue and red outlined boxes.
Inheritance is shown as arrows, where the arrowhead points to the entity the other entity inherits
from (subclass  superclass), lines without arrowheads indicate that the run produces a particular
kind of Feature. The same level of indentation of entities of the same colour (red and blue) shows
the same level within the inheritance tree, e.g. Alignment and Coil directly inherit from Feature.
The GenomeRun subclass is a special Run class that does not produce Feature objects (it manages
analyses that treat a proteome as whole), DomainStat is a specialisation of GenomeRun that is

specifically designed for web purposes.

3.5 Post-processing and summary of primary re-

sults

For fast data retrieval from the database the results from the different types of anal-

ysis are summarised by reducing the complexity of the database queries and the
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amount of data that has to be retrieved. The three steps of data summary imple-
mented in the current version of 3D-GENOMICS are:

1. Clustering aligned regions from BLAST, PSI-BLAST or IMPALA runs within
a query sequence, so that a protein sequence can be described with a small
set of regions rather than a huge number of alignments which often do not

contribute much additional information.

2. Summarising region clusters and other features such as transmembrane do-

mains to produce a genome wide annotation overview.

3. The above steps are used to generate specialised data warehouses for fast and

simple data access required for e.g. web based applications.

The sections below describe the summary steps as a processing pipeline. The un-
derlying database scheme that implements the data summary is explained together

with examples.

Different levels of analysis reduce the complexity of data

Figure 3.3 shows the flow of data and results within the 3D-GENOMICS processing
pipeline starting after the basic analysis has been run. The results of these anal-
yses are symbolised inside the triangle as ‘Atomic Features’ (in red). These basic
analyses include BLAST and PSI-BLAST runs, assignments to PFAM, prediction
of transmembrane helices, signal peptides etc ... (see table 3.1 and 3.2 for a list of
integrated resources). The amount of stored basic (atomic) data is huge, e.g. for
the human protein dataset (29,000 protein sequences) more than 17,000,000 PSI-
BLAST alignment objects are stored.

The red rectangles of the left part of the figure show the atomic features. These
are stored per analysis and per sequence. There are several homologues sequences
per query, symbolised by the thin coloured lines. These homologues can be clustered
according to their position within the query sequence (thick black line) and their
sequence type, symbolised by a common colour of the thin lines (e.g. sequences of
known structure, homologues from the SwissProt database, etc ...). This produces

different region types per sequence. The clustering is explained in section 3.5. This
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step reduces the number of alignments to less than 87,000 overlapping regions for

the human proteome without reducing the annotation quality markedly.

The region information together with some of the basic non-alignment features,
such as transmembrane helices, are then summarised as genome-wide statistics de-
scribing the extent of the different types of annotation (blue part of the triangle
and blue boxes to the left). It contains the annotation extent as the number of
sequences with a particular type of annotation (e.g. the number of sequences with
at least one homologue of known structure, or the number of membrane proteins),
the number and types of annotated regions within a proteome (e.g. the number
of SCOP domains or regions with functional annotation, the number of transmem-
brane domains, etc ...) and the number of amino acid residues that are covered by
an annotation type. These annotation categories can be easily accessed, and indi-
vidual sequences or regions for a category can be retrieved. There are 4,200 of these

annotation summaries for the proteome wide summary for human.

For comparative analysis one can compare genome summaries between differ-
ent genomes. Usually this is straightforward and fast using the 3D-GENOMICS
API. However, for more specific comparative analyses such as the different frequen-
cies of SCOP superfamilies in globular parts of transmembrane proteins in different
proteomes (as discussed in section 4.4.7), an additional summary step that uses in-
formation from all three of the above analysis levels is generated. This last summary
step was developed in a relatively short period after most of the 3D-GENOMICS
system was already in use for ongoing research. The interest in a particular re-
search project, the comparison of SCOP domains in different contexts, required this
additional step to make some of the 3D-GENOMICS data even more easily acces-
sible. This shows that the 3D-GENOMICS system is rather abstract and may not
always allow direct solutions, but also demonstrates that on top of this general and
abstract core, specialised objects and applications can be developed with relatively
little effort. This specialised data summary further reduces the amount of data from
the genome wide summary described above (4,200 annotation descriptions) to 546

SCOP domain descriptions for the human proteome.
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Figure 3.3: Steps to summarise data and intermediate results. Steps in a particular colour in
the triangle represent the summary steps and are detailed in the left part of the figure with steps

framed in the same colour as in the triangle. See text for details.

Supplementary entities and relations for the data summary

The summary of alignments into clusters that describe the same region within a
query sequence that was introduced above, is performed in a similar way as the
clustering of SCOP domains described in the methods section of chapter 2. There
are currently four alignment based region types that are relevant to this work (these
are used in chapter 4). Regions of the same type do not overlap, and ends are
adjusted in the same way as described in section 2.7.3. Different region types may
overlap, and an alignment may participate in different region types. The four region

types are explained below.

1. SCOP regions. Clusters of alignments with sequence subjects corresponding
to SCOP domains.

2. PDB regions. Clusters of alignments with sequences subjects of known struc-

tures (PDB chains). These chains may contain more than one domain.
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3. Annotated regions. Alignments with sequence subjects from any of the
source databases SCOP, PDB, PIR or SwissProt, and with a textual descrip-
tion of the biochemical or biological function. Entries with descriptions con-
taining the substrings ‘hypothetical’, ‘probable’, ‘putative’ or ‘predicted’ are

excluded.

4. Homology regions. These regions contain any homologous sequences includ-
ing conserved hypothetical sequences without any useful functional descrip-
tion. This implies that every member of an annotated region is automatically

a member of a homology region.

In general the biological information content of these regions decreases starting
with SCOP domains providing most information with structural and often func-
tional information available on the domain level, followed by PDB regions with
similar biologically useful information but without distinguishing between domains,
and, with least information, the homology region that, in the absence of an an-
notated sequence, just highlights the conservation of this region without providing

direct insight into any biochemical function.

Non-domain regions (all but the SCOP regions), are generated using a greedy
version of the clustering described in the methods of chapter 2. A new member can
join an existing cluster if it overlaps with at least one member of that cluster by at
least one residue. This produces single linkage clusters. If alignment A overlaps with
alignment B, and A does not overlap with C'but B overlaps with C, then A, Band C
are put into the same region. Before clustering, alignments are sorted decreasingly
by start position within the query to speed up the clustering. Once a cluster is
complete, its members are sorted by increasing e-value with the alignment of best e-
value taken as the representative for this region. In many cases the longest sequence
of a non-domain cluster defines the expansion of the region over the query sequence,
and also may often be the closest homologue of the query sequence. The methods

section of chapter 4 describes the actual constraints that were used to define regions.

For SCOP domains the clustered alignments roughly correspond to domains (ex-
cept for discontinuous domains, i.e. in which a structural domain is formed from
two or more discontinuous sequence segments). The other region types must not be
thought of as domains, but instead as summaries of alignments that may be used as

a general description of the query protein or a part of the query protein. The bene-
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fit is to speed up the analysis and comparisons of complete proteomes as discussed

above in section 3.5.

Figure 3.4 shows how regions are stored in the database, and how regions and
other features are used to generate a genome wide summary. For comparative anal-
ysis of genomes a possible starting point may be to compare the frequency and the
fraction of sequences or residues within the proteome that can be assigned to a par-
ticular feature. The GenomeRun entity with its related entities provides the storage
for this kind of analysis. Data retrieval is fast and straightforward (in terms of the
code that has to be written for an application that uses the 3D-GENOMICS API).

The upper part of figure 3.4 shows that a Region inherits from a Feature, because
a Region has a location within a sequence. A Region has a list of members (Region-
Features), and because all Regions are currently built by clustering alignments, this
list is in fact a list of Alignments (not shown in figure 3.4), which are in turn Fea-
tures. Regions for a protein sequence are generated by a SummaryRegionRun object
of the 3D-GENOMICS API, for which there is no corresponding entity in the data-
base. The different Region types have specialised classes in the API (ScopRegion,
PdbRegion, ...) which inherit from the Region baseclass. Currently no Region type
specific information has to be stored that cannot be retrieved easily via the core

scheme, so there are no corresponding entities in the database.

The lower part of figure 3.4 shows how the Region information is summarised
via a GenomeRun, which inherits from Run and performs a genome wide analysis to
summarise the available information (see also section 3.5). The genome or the list of
genomes for which this summary is created is stored within the Tags attribute of the
GenomeRun entity, which can be multi-valued (e.g. it is possible to store a genome
summary for a set of genomes such as E. coli and B. subtilis). Global annotation
counts or numbers for a GenomeRun are stored as GSCounts (‘Genome Summary
Counts’), with the frequency given by the Number attribute. The Type of the num-
ber describes whether the number refers to a protein sequence, a region or amino
acid residues. The Name is a description of the number, e.g. ‘total’, ‘Non-globular’
or ‘003.003.001’ for a SCOP superfamily accession number. For technical reasons
a special primary key GSCountld has been put into the GSCount entity. For most
region or sequence based GSCount entries the list of members can be accessed via

the Memberld which is either a Featureld if the member is a Region or a Pseqld if it
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is a protein sequence. There is a many-to-one relationship between GSMember and
Region or Pseq because different versions of a GenomeRun entity may reference the
same Region or sequence. In addition, if the Memberld is a Pseqld one sequence can
be part of several GSMember types. For example a sequence can have structural

annotation as well as functional annotation.
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GenomeRun
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Figure 3.4: Entity relationship diagram of the data and result summary part of the 3D-
GENOMICS scheme. This part of the scheme does not belong to the core scheme. The Memberld
attribute above the GSMember that connects the relations from GSMember to Region and Pseq

Run

indicates that the Memberld can be a Featureld or a Pseqld. See figure 3.1 for an explanation of
the symbols (the Tags attribute of the GenomeRun entity can store a list of values)

Usage and examples of the data summaries in 3D-GENOMICS

To demonstrate how to use the summary information represented in figure 3.4 a
simple code example is given in figure 3.5. The GenomeSummary object gs (which
inherits from GenomeRun) automatically connects to the database server when the
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readCount method is called. Once an object is connected to the database, this
connection will be re-used for all subsequent database requests by this object. The
parameter ‘latest’ for the construction of the GenomeSummary object automati-
cally generates the latest version of the analysis, alternatively a Params object can
be provided to specify a particular version. As mentioned in the introduction and
explained in section 3.6 on page 105, several versions of an analysis can be stored
and retrieved. gs->readCount(€003.032.001°, ‘Regions’) returns the number
of SCOP domains with the superfamily accession code ‘003.032.001’ (P-loop), a
gs->readCount (€003.032.001’, ‘Residues’) call would retrieve the number of

residues that are in P-loop domains.

In the loop to calculate the average P-loop length, a ScopRegion object is gener-
ated using the Memberld from the array that was returned from the gs->getMemberIds
call. The optional Parent attribute for the construction of the object will be used
to borrow the database connection from the gs object, so that only one database

connection is established for the whole script.

Figure 3.6 shows a screen-shot of the summary for the human proteome from the
3D-GENOMICS web-page (http://www.sbg.bio.ic.ac.uk/). The page is generated
dynamically on request, so that the summary pages do not have to be updated man-
ually after database updates (i.e. if a new GenomeSummary has been produced).
All information is requested from the 3D-GENOMICS system in a similar way as
shown in figure 3.5 using the API which accesses the underlying tables shown in
figure 3.4. The links within the page (blue text) are generated via the GSMember
entity and allow immediate access to the regions and sequences corresponding to the
different annotation categories. From these lists individual sequences and sequence

alignments can be accessed.

The different categories (rows) in the table in figure 3.6 correspond to different
Names in the GSCount entity shown in figure 3.4, and the columns (‘Sequences’,
‘Residues’ and ‘Regions’) correspond to the Type attribute in GSCount. SMART
domains have not been included in this analysis, and repeats have been excluded
from the cumulative analysis. See the legend to figure 3.6 for an explanation of

‘non-cumulative’ and ‘cumulative’.


http://www.sbg.bio.ic.ac.uk/
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#!/usr/bin/perl -w

use GenomeSummary; # the GenomeSummary class

use ScopRegion; # The ScopRegion class

### get the most recent GenomeSummary object ($gs) that
### corresponds to the ’Ecoli’ sequence set
ny $gs = new GenomeSummary(Tags => [’Ecoli’], Params => ’latest’);
printf "%d SCOP domains found in E. coli\n",
$gs—>readCount (’ScopRegion’, ’Regions’);

### get the IDs for all SCOP regions with superfamily accession
### 003.032.001 (P-loop)
my @memberids = $gs->getMemberIds(’003.032.001’, ’Regions’);
### calculate the average E. coli P-loop domain length
my $len = O;
my $n = 0;
foreach my $id ( Omemberids ) {
my $region = new ScopRegion(Featureld => $id, Parent => $gs);
$len += $region->len();
$n++;
}
$len /= $n;
print "average length of E. coli P-loop domains is $len ($n domains)\n";

Figure 3.5: Code example demonstrating the use of the 3D-GENOMICS summary information
via the object-oriented Perl API.

3.6 Principles of the 3D-GENOMICS API

3D-GENOMICS stores data from the included source databases and the results from
the different analyses as objects in a relational database by mapping the objects onto
the relational scheme. This mapping includes the decomposition of each object into
its attributes and relations that may be stored across different tables. An alignment
for example contains a subject sequence (a homologue of the query) which is stored

as a reference to an entry in the Pseq table. The database is at least in the 1st nor-
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Figure 3.6: Screen-shot from the 3D-GENOMICS web-page showing a part of the analysis sum-
mary for the human proteome. The pie-chart shows the extent of assignments in different annota-
tion categories. The pie-chart is residue based, i.e. the fraction of the proteome in residues was cal-
culated. The table below the pie-chart gives details of the generated annotation, ‘non-cumulative’
means that the actual number of sequence, region or residue assignments are calculated by allow-
ing every sequence, region or residue to be counted more than once across the different categories

(e.g. a residue of a protein sequence may be part of a SCOP and a PFAM domain), ‘cumulative’

means that sequences, regions or residues are counted only once across annotation categories with
‘SCOP’ having priority followed by ‘PDB’ etc. to avoid exceeding 100% (e.g. sequences assigned
to a SCOP domain and a PDB chain are only counted for SCOP and not for PDB).

mal form, so that there is no obvious redundancy, and most relations of the database
core are also in the 2nd and 3rd normal form (Connolly et ai, 1998). Although the
API should be the interface to the database, for fast access it is possible to bypass
the API and to access the contents (the stored objects with their relationships) di-
rectly via SQL.

The most central class of the 3D-GENOMICS API is the Run class with all its
specialised subclasses. A run object can be executed locally or submitted to a com-
puter farm as shown in hgure 3.9 of section 3.7. It also contains a Params object

which gives details about the parameters that are specific for the analysis. From



3D-GENOMICS: A proteome annotation pipeline 105

a PseqRun object the list of features that are specific for this run and a particular
protein sequence object can be retrieved. The usual way of getting sequence features
is to get the available PseqRun objects from a protein sequence object, and then to

request the list of features from each of these PseqRun objects.

The Params object for a Run object allows several different versions of a partic-
ular run to be created, e.g. one can have several PsiBlastRun objects for the same
sequence that are distinguished by their Params object (these may for example de-
fine different e-values). Figure 3.7 shows a simple example of how to get the objects

for a particular type of analysis, and from these objects the Feature objects.

ny $pseq = new Pseq(Pseqld => 123);
my $p = new Params(%BlastRun::default_params, blast_e => 0.1);
my Oruns = $pseq->getRuns(’BlastRun’, $p);
foreach my $run ( Qruns ) {
my @Ghits = $run->getFeatures();
# do something with the hit objects ...
}

Figure 3.7: A simple example to demonstrate how to access sequence features. The protein
sequence object with the ID 123 is retrieved from the database. A parameter object ($p) is
generated that contains the default attributes for a BlastRun (this is a class attribute), but overrides
the blast_e attribute (the e-value cut-off). All BlastRun objects for this sequence that were run
with the requested parameter object are retrieved, and for each of these objects the feature objects
(type BlastHit) are retrieved. Note that several BlastRun objects may be available because several
fractions of the sequence may have been subject to the BLAST analysis.

The integration of new analysis software is straightforward, mainly due to the
different levels of inheritance. The hmmpfam program of the HMMer software pack-
age (see table 3.1) to identify PFAM domains in protein sequence via hidden Markov
models was integrated on demand after most of the API was already developed. The
HMMRun class inherits from PsegRun. The output consists of Features of the spe-
cial type HMMHit. The integration of hmmpfam was straightforward. Usually most
development has to be spent on the run routine that performs the actual analysis,
including the parsing of the program output. For the HMMRun the parser of the
BioPer] project (http://www.bioperl.org) is used.
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The APl is implemented in the Perl language. Perl may not be the ideal language
for bigger object-oriented software projects, it has for example no strict data typing,
and many developers complain about unreadability of the code. However, Perl is a
popular programming language within the biology and bioinformatics community,
and is the consensus language of those people who showed interest in the project.
An initial objective of the API was to provide some basic compatibility with the
BioPerl project. 3D-GENOMICS uses some BioPerl modules, and can also convert
a 3D-GENOMICS sequence object into a BioPerl equivalent, but at this time there
is no extended and consistent compatibility between the two systems. However, it

is possible to implement appropriate export routines on demand.

The 3D-GENOMICS API contains nearly 80 Per]l modules with more than 17,000
lines of code defining classes and non-object-oriented code. In addition there are
about 40 scripts for database maintenance and evaluation, containing more than
3,000 lines of Perl code. There are 40 CGI scripts for web based applications with
more than 6,500 lines of code. In addition there are more than 1,500 lines of Python
code included to manage and parse BLAST and PSI-BLAST runs. Table A.3 ex-
plains the different modules and classes with their methods and functions that are

currently implemented in the API.

The base class from which most objects are built, is DbConnection. Objects that
are generated via the annotation pipeline (Run or Feature objects) or objects from a
source database (e.g. protein sequences) have to be stored persistently in the data-
base for later retrieval and analysis. Therefore such an object is a DbConnection
object, that is able to insert itself at the correct place within the database, update

its attributes, retrieve its data and delete itself from the database.

To construct an object from the database the identifier is needed (see line 1
in figure 3.8 for an example). The constructed TMH object (transmembrane helix
object) is empty, and can be filled with its attributes by either calling the sync
routine (line 4) or by just calling the get routine (see lines 5, 6 and 17), that in-
ternally performs the complete read synchronisation with the database and returns
the requested attributes, which stay within the object, so that subsequent get calls
do not need to query the database. A new object can be generated by providing
all required attributes but no unique identifier as shown in line 8. The new object
writes itself to the database with the next sync call (line 9). The set method (line
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11) sets attributes which must not already exist in the object (an empty object was
constructed in line 10), the next sync call writes the filled object to the database
(lines 12). Note, that an object usually has a defined set of attributes that have
to be set. An existing attribute can be modified via a modify call, shown in lines
13 to 14 (only a few classes allow attribute modification). If the sync method is
not called before the object is destroyed, all changes, including a complete newly
created object will be lost.

Lines 2 and 3 shows the usage of the clone method. If the Featureld is known but
the special class of the feature is unknown, clone will produce a read-synchronised

copy of the object of the correct type.

Lines 15 to 18 show how an object (line 18) can be constructed that uses another
object as a Parent. The Parent provides the database connection, so that two ob-
jects can share the same connection. This avoids overhead of frequent connect and
disconnect requests to and from the database server. This technique is also used in

the example in figure 3.5.
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[ 1] $f = new TMH(FeaturelId => 1001)
[ 2] $f = new Feature(FeaturelId => 1002)
[ 3] $f = $f->clone()

[ 4] $£->sync()

[ 5] ($begin, $end) = $f->get(’Start’, ’Stop’)

[ 6] $tmrun = $f->get(’Run’)

[ 7] $params = $tmrun->get(’Params’)

[ 8] $f = new TMH(Start => 5, Stop => 24, Ori => ’out’, Run => $run)
[ 91 $£->sync()

[10] $f = new TMH()

[11] $f->set(Start => 5, Stop => 24, Ori => ’out’, Run => $run);
[12] $£f->sync()

[13] $f->modify(Start => 8)

[14] $£->sync()

[15] $f = new TMH(Featureld => 1003)

[16] $f->dbConnect();

[17] print $f->get(’0ri’)

[18] $f2 = new TMH(Featureld => 2, Parent => $f)

Figure 3.8: Code examples to demonstrate the connectivity with the database. Note, this is
not a program, but just a collection of examples to show how objects can be generated from the
database, filled with data, be modified and how newly generated objects can be written into the

database. See text for explanations.

3.7 Principles of the analysis pipeline: a parallel

distributed system

The PerlObject entity shown in figure 3.1 plays a central role for the data produc-
tion process of the analysis pipeline that is schematically represented in figure 3.9.
The main annotation script (upper left box) contains code to generate different
kinds of Run objects, e.g. BlastRun objects. The information to generate these
objects is retrieved via an SQL interface from the 3D-GENOMICS database, that
uses MySQL as the database management system (http://www.mysql.com). For
a BlastRun object, this contains the protein sequence (the Pseq Object) and the
processing parameters (a Params object). The 3D-GENOMICS database server can

be hosted on a remote machine, and the annotation script runs on a queue-server
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that manages a computer farm via the OpenPBS load sharing and queueing system
(http://www.openpbs.org).

The generated Run objects are submitted to the queueing system via a special
software module of the 3D-GENOMICS API (the Workstations module), that calls
the queue method of each of the objects to be queued. The method creates a seri-
alised version of the object which is inserted as text into the PerlObject table of the
3D-GENOMICS database, and in return gets a unique ID (identifier) for this ob-
ject. The queue method creates an appropriate command for the queueing system.
This command contains the name of an executable program (runobject.pl) and the
ID of the persistent object as an argument. The object may also request special
resources from the queueing system such as a minimum amount of memory (the

resource management is implemented in OpenPBS).

The queue-server submits the command to one of the free computers that runs a
queue client (a PBS-daemon). The runobject.pl script retrieves the persistent object
via the unique ID from the PerlObject table of the database and recreates the object.
The script then executes the run method of the recreated Run object, which first
inserts some meta information about this run into the database, and then performs
the particular type of analysis (for example the BLAST program is executed on
the local machine). From the result (e.g. the BLAST program output) the special
type of result objects are generated (e.g. BlastHit objects). These objects are then
inserted into the database by calling their sync routine (object synchronisation with
the database). Finally the Run object cleans up resources such as temporary files,
updates the object status attribute with the final status and inserts the runtime of
the analysis. The runobject.pl script removes the run object from the PerlObject

table of the database (this is no longer required).

The growth of the data that has to be processed, and in particular the increasing
number of completed genomes, challenge the development of distributed processing
systems. It is sensible to re-run previous analyses on a regular basis, because new
data may change existing annotations. The 3D-GENOMICS system is a prototype
that is currently used in-house only, and substantial development and testing has
to be done to distribute this system to other institutions. However, the system is
suitable for the distribution of the run objects that perform the analyses over a large

computer grid allowing for frequent annotation updates.
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Queue-Server/Farm-Master query Database Server

insert Object 3D-GENOMICS

Annotation Script
SQL-Database

Create requested Run Objects get Object ID
Objl, Qb]2 ObjN
Module: Worstations(0bj1, Qb|2, ObjN)
Queue Objects
Objl.queueO, Obj2.queue(), ObjN.queue()-

Queue command "runobject.pl ID"
queue to a free computer (client)

Processing Node, Queue-Client

execute queue command "runobject.pl ID"
W script runobject.pl
re-create Object

Object.run()

performe analysis
(e.g. run BLAST)
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Obj1.sync(), Obj2.sync() ObjN.sync()
Finish Run

cleanup object

Figure 3.9: Flow of the 3D-GENOMICS annotation pipeline. The three frames symbolise the
main processing spaces, i.e. the physical location of computers and the execution space of programs
and objects. Database requests (queries, updates and inserts) are symbolised with red arrows. The
submission to a computer that executes the analysis is indicated by the green arrow. Arrows with
a 90 degree angle indicate subsequent actions or a result of the previous step. Inner rectangles

show the private execution spaces of scripts and objects. See text for details.

3.8 Discussion

The strength of the 3D-GENOMICS system has been discussed in the above sec-
tions. In particular the distribution of the Run objects for parallel processing is
an important aspect. The straightforward implementation of new tools is certainly
another strength. However, there are restrictions and problems with the current

implementation, the more important of which are discussed below.
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3.8.1 Restrictions of the current implementation

Although it is relatively simple to add new sequences to the 3D-GENOMICS data-
base and to run these through the processing pipeline, regular updates are not yet
supported. The main reason is that a single new protein sequence may change PSI-
BLAST existing results for old query sequences (PSI-BLAST is a major component
of the analysis pipeline), because it may provide intermediate sequence hits that
are needed to detect for example a distant homology to a previously undetected
family of proteins. Therefore on every database update one would have to re-run
PSI-BLAST for all previously analysed proteins. This approach is time consuming
and impractical, and in fact results may change for only a few proteins.

The effect of new sequences on PSI-BLAST PSSMs has to be studied to develop
heuristics that will estimate the change of the path through evolution. Another
probably simpler approach may be to compare the PSSM of an already processed

sequence with new protein sequences. This is a relatively fast method that can be
implemented via IMPALA or RPS-BLAST (part of the NCBI BLAST software).

The summary steps in the 3D-GENOMICS pipeline discussed in section 3.5 have
to be re-run whenever the underlying ‘atomic’ data such as alignments changes. The
genome wide summary does have a rather long runtime (several hours for the human
proteome), and is mainly restricted by disk I/O of the database server, so that these
runs cannot be distributed over a large number of clients to perform these runs in
parallel. For the sake of speed, some parts of the database may have to be mirrored
on different database servers, and the new concepts for fast GenomeSummary up-
dates should be developed.

A version of the 3D-GENOMICS database that can be updated frequently may
also need a history to keep track of changes. The definition of the gene of a pro-
cessed sequence may change, and the old version of the gene should be marked as

‘old’, but should still be available to track changes.

There is a conceptual error in the 3D-GENOMICS database that can cause prob-
lems when a new sequence enters the database that is 100% identical to an existing
sequence that has already been processed. The tag list of the protein description (see
3.1) is then updated by e.g. ‘mouse’ and may finally contain the keywords ‘human’
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and ‘mouse’ (i.e. human and mouse have an identical sequence). Because of the
relations between Pseq, Pdesc and Tag there is only one set of results from an anal-
ysis for this sequence (a protein sequence is stored only once, and several PseqRuns
can refer to the same sequence). If one wants to delete all results for human, then
the result for this sequence also get deleted for mouse. This systematic error has
not yet affected the 3D-GENOMICS system because there are only very few 100%
identical sequences between the processed genomes. Also, for the analysis described
in chapter 4 all genomes have been processed with the same parameters and no data
has been deleted. The problem also implies that only the non-redundant protein
sequence set is stored, so that a few 100% protein duplications within a genome are
ignored. This affects the analysis in chapter 4 because sequence features such as

SCOP domains are only counted for each distinct protein sequence.

It is sensible to process identical protein sequences only once, even if these corre-
spond to different genes. However, identical protein sequences from different genes
have different accession numbers in the public databases, and the 3D-GENOMICS
API should be modified so that the protein based analyses ( PsegRuns) refer to an
accession number rather than a distinct sequence. The API may handle cases for
identical sequences, so that a requested analysis will not be run if it was already
run with the same analysis parameters for another accession number referencing the
same sequence. These ‘virtual’ sequence runs may be managed by reference coun-
ters, the results of an analysis only get physically deleted if the reference counter

for the accession numbers to this run is zero.

3.8.2 Suggestions for future developments

Some technical and rather general enhancements should be considered for the future:

e Integration of InterPro (see 1.2.3). The collection of features that can be re-
trieved from 3D-GENOMICS via a run object for a protein sequence are very
similar to the different descriptors for an InterPro entry. The InterPro Scan
software is distributed from the EBI and contains all required programs and
source databases. The baseline annotation can then be performed via InterPro,
and 3D-GENOMICS can be focused on more specific tasks such as detection
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of remote homologues, structural characterised domains and proteome com-

parison.

e Export of all 3D-GENOMICS objects in XML format to provide the full reper-
toire of data in an state of the art format that can be distributed. The BLAST
software from the NCBI can write its output in XML format. General han-
dling of XML as an output format from the analysis programs and as a data
source for sequence and annotation databases (InterPro and possibly GenBank

in future) will ease the integration of other resources and data exchange.

e Management of free text information to enhance annotation. This can be ini-
tially approached by extracting text from different categories of the available
source databases, and in particular the comment blocks of SwissProt entries
which usually give manually curated detail about the biochemical and biolog-
ical function of a protein. Abstracts from the scientific literature as well as a

gene ontology may also be integrated to support annotation.

e Although the summary steps described in section 3.5 provide fast ‘top-down’
access (from an overview of the annotation down to more detail) to the results,
it is useful to implement a non-normalised version of the database that can
be generated from the normalised main database (the production database).
Such a data warehouse may allow even faster access for research purposes and

may be distributed to other bioinformatics sites.

e As mentioned in section 3.6, the data of an object is decomposed and stored
in several tables of the database. On every level of inheritance for which data
is stored in the database (e.g. for a BlastHit object the levels are Feature and
Alignment) the data that belongs to a particular inheritance level is also ex-
clusively managed on this level (generally by the particular class or baseclass).
E.g. retrieval of a BlastHit requires three database requests: one to retrieve
the feature data, one to retrieve the alignment data and one to retrieve the
blast hit specific data. All three levels are logically linked by a common Fea-
tureld. It may be much faster to create an object by using a single database
request via a single join of the required tables. Each (base) class would have
to contribute statements to the construction of an appropriate SQL statement
that will join the required tables and to select the table attributes.
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3.8.3 Other automated annotation systems

Automated annotation systems have been developed previously by others. In general
these systems provide web based access and do not provide an external API that can
be used for the development of specific research tools. However, these systems may
be installed locally under special license agreements with the authors. The major
goal of most public annotation systems is to support genome sequencing projects,
and to provide up-to-date annotations, whereas the 3D-GENOMICS architecture is
designed to provide consistent, but often not up-to-date, annotations that are easily
accessible for large scale comparisons. In addition it should be pointed out that
3D-GENOMICS in its current version is maintained and developed by basically a
single person mainly for the research described in this thesis, and the annotation
systems described below are maintained by a team of authors often dedicated to
maintenance and development of the system. Below a selection of popular annota-

tion systems are introduced.

The ENSEMBL system (http://www.ensembl.org, Hubbard et al. (2002)) from
which the protein data of the human genome is used within this work, provides an
annotation system based on a MySQL database back-end with an object-oriented
software interface written in Perl and C. ENSEMBL has been developed for the
annotation of the human genome. Special versions for other ongoing metazoan
genomes are also available. The ENSEMBL architecture is fully open and provides
all data and software including a stable API. ENSEMBL is developed by a broad

bioinformatics and biology community.

Despite the general management and dissemination of the human genome data,
a special focus is the reliable identification of genes. On top of gene predictions
with several levels of evidence, a baseline protein sequence annotation is performed.
This includes the assignment of InterPro families and domains to human proteins.
Some structure based analysis of human proteins (Gough & Chothia, 2002) is linked
via DAS (Distributed Annotation System, Dowell et al. (2001)). Unlike the 3D-
GENOMICS API that encapsulates the data processing within the biological objects
(the Run objects), the data processing (for example BLAST sequence comparisons)
in ENSEMBL is performed by mainly stand alone scripts that are separate from the

biological objects (personal communication with Ewan Birney).
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GeneQuiz (http://jura.ebi.ac.uk:8765/ext-genequiz/, Scharf et al. (1994); An-
drade et al. (1999)) is one of the first published large scale annotation systems,
that can be run remotely via the web. The input for GeneQuiz is a protein se-
quence or set of protein sequences for which the system runs several sequence anal-
ysis tools, including homology searches. A notable feature is the reasoning engine
within GeneQuiz to accept or reject results contributing to an annotation. Different
analysis tools and integrated source databases have different trust levels. Functional
information from text descriptions is extracted for homologous sequences from the
different source databases at different confidence levels, and together this informa-
tion is used to place a protein into a functional category. GeneQuiz also provides

structural models for proteins with homologues of known structure.

Magpie (Multipurpose Automated Genome Project Investigation Environment,
http://genomes.rockefeller.edu/magpie/, Gaasterland & Sensen (1996)) is designed
for (mainly prokaryotic) genome sequencing projects. The system takes DNA se-
quences such as DNA contigs (unassembled genomic DNA from cloning vectors) as
input. Magpie guides the genome project from its beginning on, by performing gene
predictions, detection of DNA frame shifts, homology searches on the protein and
DNA level and suggests which pathways may exist in the genome. New tools can
be integrated. The system is installed locally, and the analysis tools may be either
installed locally or remote, in which case most data exchange is via an automated
e-mail service. The Magpie system is configured and customised via a set of config-

uration files, so that no code editing is necessary.

Magpie stores the results of any analysis in flat files. Most of the infrastructure
for data management is implemented in Perl. The results are then converted into
Prolog facts that are digested and converted into ‘deduced facts’ from which HTML
formated reports are generated. The Prolog rules for example to determine a coding
region may be customised. Magpie also allows privileged users to manually edit and

override automatically generated results

PEDANT (Protein Extraction, Description and ANalysis Tool, http://pedant.-
mips.biochem.mpg.de, (Frishman et al., 2001)) initially focused on protein based
annotation. However, in version 2, many DNA based analysis tools such as those
for gene prediction by homology to EST sequences or ab initio gene prediction have
been integrated. PEDANT consists of three main parts: (i) the processing unit
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to access external databases and tools such as BLAST, (ii) the relational database
(MySQL) for data storage and (iii) the user interface for user queries and data vi-
sualisation. The code for data management and processing is written in Perl and a
part of the user interface is implemented in C++. All external databases such as
the protein sequence databases and all tools are installed locally. Data processing

may be performed in parallel by distributing tasks over a computer farm.

The database scheme of PEDANT is relatively simple, results are stored on two
levels: the raw analysis output is kept as it is (e.g. the output from a BLAST run),
and the parsed and disassembled output is stored, too (storing the e-value, the se-
quence identity etc. in different fields of a table). The results of an analysis are not
mapped across several tables as in the 3D-GENOMICS database.

Since PEDANT is used for genome sequencing projects it implements a system
to manage different versions of annotations and sequence data. The principle for
genome annotation is to perform an automated analysis with relatively loose con-
straints to guarantee a great annotation extent over the whole genome, and then to
allow manual correction of these annotations by accepting or rejecting annotations.

PEDANT provides special user interfaces for manual data checking and correction.

PEDANT was used for SCOP superfamily assignments to more than 300,000

protein sequences.

A popular web based protein sequence annotation system is PredictProtein (http://-
www.embl-heidelberg.de/predictprotein/predictprotein.html, Rost (1996)). The user
can submit a protein sequence or a list of sequences to the server which runs a range
of analysis and prediction software such as transmembrane predictions, homology
and motif searches. Many tools have been integrated in the PredictProtein system.
The meta server facility in PredictProtein allows to submit a sequence automatically
to several other servers that perform a specific analysis such as HMM based sequence
comparisons. Results are formated as plain text or as HTML. PredictProtein is a
service to provide biologists with as much information about a protein as possible,

it is not intended for large scale comparative proteome projects.

Assignments of domains of known structure to proteins of fully sequenced genomes
are provided by the Gene8D system (http://www.biochem.ucl.ac.uk/bsm/cath new/-
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Gene3D/, Buchan et al. (2002)), that is based on the CATH classification of protein
structures introduced in section 1.4.4. Assignments are based on IMPALA (see sec-
tion 1.3.6) and a set of specialised software to perform the actual delineation of
domain boundaries within multi-domain proteins. Assignments can be browsed and

downloaded over the web.
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Chapter 4

Structural Characterisation of the

Human Proteome

4.1 Summary

This chapter describes an analysis of the encoded proteins (the proteome)
of the genomes of human, fly, worm, yeast and representatives of bacteria
and archaea in terms of the three-dimensional structures of their glob-
ular domains together with a general sequence based study. This work
shows that 39% of the human proteome can be assigned to homologues
of known structure. The estimated extent of functional annotation for
the human proteome is 77%, but only 26% of the proteome can be as-
signed to standard sequence motifs that characterise function. Of the
human protein sequences, 13% are transmembrane proteins, but only
3% of the residues in the proteome form membrane-spanning regions.
There are substantial differences in the superfamily composition of glob-
ular domains of transmembrane proteins between the proteomes that
have been analysed. Commonly occurring structural superfamilies are
identified within the proteome. The frequencies of these superfamilies
enables one to estimate that 98% of the human proteome evolved by
domain duplication, with four of the ten most duplicated superfamilies
specific to multi-cellular organisms. The zinc-finger superfamily is mas-
sively duplicated in human compared to fly and worm, and occurrence of
domains in repeats is more common in metazoa than in single-celled or-
ganisms. Structural superfamilies over- and under-represented in human



Structural Characterisation of the Human Proteome 119

disease genes have been identified. Data and results can be downloaded
and analysed via web based applications at http://www.sbg.bio.ic.ac.uk.

This work has been accepted for publication by Genome Research.

4.2 Introduction

The interpretation and exploitation of the wealth of biological knowledge that can
be derived from the human genome (Lander et al., 2001; Venter et al., 2001) requires
an analysis of the three-dimensional structures and the functions of the encoded pro-
teins (the proteome). Comparison of this analysis with those of other eukaryotic and
prokaryotic proteomes will identify which structural and functional features are com-
mon and which confer species specificity. This work presents an integrated analysis
of the proteomes of human and thirteen other species considering the folds of glob-
ular domains, the presence of transmembrane proteins, and the extent to which the
proteomes can be functionally annotated. This integrated approach enables one to
consider the relationship between these different aspects of annotation and thereby
enhance previous analyses of the human and other proteomes (e.g. Frishman et al.
(2001); Iliopoulos et al. (2001); Koonin et al. (2000), including the seminal papers
reporting the human genome sequence from Lander et al. (2001) and Venter et al.
(2001)).

A widely used first step in a bioinformatics based functional annotation is to
identify known sequence motifs and domains from manually curated databases such
as PFAM/InterPro (Bateman et al., 2002; Apweiler et al., 2001) and PANTHER
(Venter et al., 2001) . This strategy was used in the original analyses of the human
proteome (Lander et al., 2001; Venter et al., 2001). These annotations tend to be
reliable as these libraries have been carefully constructed to avoid false positives
whilst maintaining a high coverage. In the absence of a match to these charac-
terised motifs/domains, functional annotation is derived by homology to previously
functionally annotated sequences. However, transfer of function'’ by homology is
problematic and the extent of the difficulty has been recently qﬁantiﬁed (e.g. Devos
& Valencia (2000); Todd et al. (2001); Wilson et al. (2000)). Below 30% pairwise
sequence identity, two proteins often may have quite different functions even if their
structures are similar. Because of this problem, global bioinformatics analyses of
genomes generally do not use functional transfer from distant homologies for anno-

tation. However, specific analyses by human experts still extensively employ this
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strategy, particularly as any suggestion of function can be refined from additional

information or from further experiments.

A powerful source of additional information is available when the three-dimen-
sional coordinates of the protein are known. The structure often provides informa-
tion about the residues forming ligand-binding regions that can assist in evaluating
the function and specificity of a protein. For example, recently it has been shown
that spatial clustering of invariant residues can assist in assessing the validity of
function transfer in this homology twilight zone (Aloy et al., 2001). At higher lev-
els of identity, knowledge of structure can assist in analysing ligand specificity and
the effect of point mutations. Valuable tools in exploiting three-dimensional in-
formation are the databases of protein structure, in which domains with similar
three-dimensional architecture are grouped together. Here the structural classifica-
tion of proteins (SCOP) (Conte et al., 2002) is used. SCOP is described in detail in
section 1.4.4. In summary: in SCOP, protein domains of known structure that are
likely to be homologous are grouped by an expert into a common superfamily based
on their structural similarity together with functional and evolutionary considera-
tions. SCOP is widely regarded as an accurate assessment of which domains are
homologues. However, SCOP remains partially subjective and one cannot exclude
the possibility that two domains placed within the same superfamily only share a
common fold due to convergent evolution and therefore are not homologous.

The above considerations have led to focusing the analysis on the following three
objectives:

e To estimate the extent to which the known proteomes can be annotated in
terms of structure and function and how reliable these annotations are con-
sidered to be.

e To place the occurrence of particular SCOP structural superfamilies in terms

of their biological and species-specific contexts.

e To derive evolutionary insights from frequency based analyses of homologous

SCOP domains in terms of expansion in different species.
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4.3 Strategy for structural and functional anno-

tations

For details of materials and methods see section 4.6 on page 159.

Protein sequences from the human genome and from thirteen other species were
analysed. The main strategy was to use the sensitive protein sequence similarity
search program PSI-BLAST (Altschul et al., 1997) to scan each protein sequence
against a database composed of a non-redundant set of sequences, including se-
quences of SCOP domains and, to ensure up-to-date coverage, each protein entry of
the PDB (Berman et al., 2000).

A sequence match to an entry of the PFAM domain library Bateman et al. (2002)
was considered as a functional annotation (excluding families of unknown function).
In the absence of a match to these characterised motifs/domains, one needs to eval-
uate functional annotation via transfer from homology. To represent this approach
computationally, functional annotation is simply considered if a homologue contains
some textual description of function (see legend to figure 4.1, and section 3.5). Thus
the total of the proteome that can be functionally annotated is the sections that are
assigned to a PFAM domain or, if no assignment to PFAM, that are homologous to

a protein with a text functional description.

4.4 Results

4.4.1 Status of structural and functional annotations

Figure 4.1 shows the annotation status of the proteomes expressed as the fraction of
the total residues in each proteome. The residue fraction is used in order to include
situations when only part of a protein sequence is annotated, since one cannot quan-
tify this as a fraction of domains because one does not know the number of domains
in un-annotated regions. 39% of the human proteome can be structurally annotated
from either having a known protein structure or via a PSI-BLAST detectable ho-
mology to a known structure. This percentage is higher than that for yeast, fly and
worm and is comparable to the coverage of many bacteria and archaea. A further
38% of the human proteome falls into the category of functional annotation without
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known structure. Since nearly every protein structure has some functional annota-
tion, the total functional annotation of the human proteome is 77%. The remainder
are (i) either homologous to another protein of unknown function or (ii) potentially
globular orphan regions without any detectable homology or (hi) an un-annotated
non-globular region (a region of low amino acid residue complexity, coiled-coil or a

transmembrane segment).
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M, jannasohli
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V. cholerae

B. subtilis
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Figure 4.1: Annotation status of the proteomes. Coverage for each species is reported as the
fraction of the residues in the proteome that are annotated. This allows for partial coverage of
any sequence. Structural annotation is a homology to a sequence or domain of known structure.
Functional annotation is when there is no structural annotation but there is an homology to
an entry from SwissProt or FIR that has a description other than those that contain any of
the following words: ‘hypothetical’, ‘probable’, ‘putative’, ‘predicted’. Any homology denotes a
sequence similarity to a structurally or functionally un-annotated protein, such as one described
as hypothetical. See section 3.5 for a more detailed description of the classification of homologues.
Non-globular denotes remaining sequence regions that were predicted as transmembrane, signal
peptide, coiled-coils or low-coniplexity. Remaining residues are classified as orphans, i.e. un-

conserved potentially globular regions.
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This work also considers how many protein sequences can be fully annotated. To
allow for gaps >95% of a particular sequence are required to be covered without gaps
of more than 30 residues (figure 4.2). The fraction of the human protein sequences
that are fully annotated in terms of structure is only 15%. A further 14% of the
human protein sequences are fully annotated in terms of function but not structure.
The fraction of fully covered annotated sequences for human is much higher than
for worm, fiy and yeast. Another 8% of the human sequences are fully covered by

hypothetical sequences or sequences of unknown function.

Trrvvrvrvrvrrrrroorbovorrrrrrrr ket sttt rrbrrorrrorron I
M. genitalium
H. pylori
A. aeolicus
M. jannaschii
P. honkoshli
A. pernix
V. cholerae
B. subtilis
M. tuberculosis
E. coli

S. cerevisiae
D, melanogaster structure

function

C. elegans
any homology

H, sapiens
11 L O O T T T O U O O O O T O O O T T T T TV O (N [ SO B B B

0 10 20 30 40 50 60

fraction of proteome [% of protein sequences]

Figure 4.2: Structural and functional annotations that cover the entire protein sequence. For
structural annotation >95% of the sequence is required to be structurally annotated, and there
was no un-annotated segment of >30 residues. Functional annotation is evaluated after assigning
structures and requires the same length constraints. Finally, any homologue (including those of
unknown function) is assigned to the remainder (with the same sequence length constraints, also

see figure 4.1 for a definition of any homology).

The accuracy of the above analysis is dependent on the quality of the gene pre-
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diction. For the eukaryotic genomes analysed, particularly for the human genome,
this is problematic, and it is anticipated that new genes will be identified and some
present assignments modified. The human proteome that is subject to the analysis
described here is based on gene predictions that are confirmed by matches to ESTs
or homologues in other species (see http://www.ensembl.org and Hubbard et al.
(2002)). This use of homology would contribute to the high level of structural and
functional annotation, and if additional genes were identified the values for coverage
probably would be somewhat lower. An upper estimate of the magnitude of this
problem can be obtained by noting that the human genome has 6% by residue of
orphans. In worm this figure is 17%, and it is considered that most genes have
been identified in this genome (Reboul et al., 2001). Similar figures for orphans are
found in yeast and fly. If one assumes that the true figure for orphan proteins in
the human genome is 17%, then any other section of the annotation as shown in the
bar-charts (e.g. of structural coverage) should be reduced to 83/94 (i.e. 0.88). Thus
the structural coverage is reduced from 39% to 34%. In practise the true value is

expected to lie between these two extremes.

However even for prokaryotes, errors in gene prediction can affect the survey
that is described here. For example, the proteome of the archaea Aeropyrum pernix
contains the largest fraction of orphan regions. This result may be biased because
the gene prediction in Aeropyrum perniz produced many very short questionable
ORFs (Skovgaard et al., 2001).

4.4.2 Reliability of annotation

The reliability of homology model-building depends on the level of sequence identity
between the protein of known structure with that of the sequence for which one wants
to build a model (Bates & Sternberg, 1999; Sanchez & Sali, 1998). Figure 4.3 shows
the different level of reliability for structural modelling. Only 2% of the residues in
the human proteome are from domains for which there is an actual crystal structure
or which share >97% sequence identity with an experimental structure. However,
11% are within the identity range 97% to 40%, and homology models are likely to
be of sufficient accuracy to place residues reasonably accurately. Between 40% and
30% sequence identity, modelling becomes error prone, but advances in modelling
techniques may allow the inclusion of this homology band for reliable modelling in
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the future. Below 30%, modelling is likely to reveal only general features of the fold.
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Figure 4.3: Reliability of structure assignments. Homologies are dissected into sequence similarity
bands. The >97% identity effectively reports a match to an experimentally determined structure
or to one that differs in only a few residues. Structures based on these annotations are accurate.
The next band down to 40% sequence identity denotes annotations for which models can be
constructed that are expected to be reasonably accurate (Bates & Sternberg, 1999; Sanchez &
Sali, 1998). Between 40% and 30% sequence identity automated modelling is difficult. Below 30%
identity, the sequence alignment suggested by the annotation is expected to have many errors and

the structural annotation primarily provides an indication of the 3D fold.

Figure 4.4 provides an assessment of the reliability of functional annotation. A
match to a PFAM domain (excluding domains of unknown function) is considered
to constitute a reliable functional annotation. For the human proteome 26% of the
residues can be assigned to PFAM domains (dark and light red bars in figure 4.4),
this includes 19% for which a structural assignment can be made, which often will
assist in functional annotation (dark red bars). Next, those proteins were identified

for which the closest homologue that has a text functional description (see legend to
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figure 4.1) shares at least 30% sequence identity. This cut-off was chosen since stud-
ies have shown that below this value homologues often have diverged to radically
different functions (Devos & Valencia, 2000; Todd et al., 2001; Wilson et al., 2000).
A total of 41% of the proteome could potentially be functionally annotated based on
a homology to a protein with at least 30% sequence identity (dark and light green
bars). This 41% contains 15% without any match to PFAM but with an assigned
structure (dark green bars) that could help to refine the proposed annotation. A
further 8% of the proteome is below the 30% identity cut-off for functional annota-
tion (blue bars). Of this fraction, 50% (4% of the total proteome, dark blue bars)
has a structural homologue that may assist in assessing the validity of functional
transfer. However the remaining 4% of the proteome with functional assignment
below the 30% cut-off is without any structural information (light blue bars), and

annotations for these sequence regions must be considered highly tentative.

4.4.3 SCOP superfamilies

Table 4.1 reports the commonly occurring SCOP superfamilies in human, fly, worm,
yeast and average values for archaea and bacteria. Complete tables can be accessed

from the following web-site: http://www.sbg.bio.ic.ac.uk.

First the commonly occurring superfamilies in the human proteome are consid-
ered. The most common domain in human is the C2H2 classic zinc finger, which
occurs four times more often than the next most common domain, the immunoglob-
ulin. The P-loop SCOP superfamily involved in nucleotide triphosphate hydrolysis
is the fourth most common in human and second in fly, but the most common in the
other analysed proteomes. In general, the commonly occurring superfamilies in the
human proteome reflect the eukaryotic and multi-cellular organisation. Commonly
observed superfamilies involved in or part of cell-surface receptors, protein-protein
or cell-cell interaction, signalling or cytoskeleton structure are represented by su-
perfamilies such as: immunoglobulin, EGF/laminin, fibronectin, cadherin, protein
kinase, homeo-domain, tetratricopeptide repeat, spectrin repeat, PH-domain and
SH3-domain.

In general, the fly and worm have similar rankings of the common superfamilies

to those in human, reflecting the multi-cellular organisation. There are, however,
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Figure 4.4: Reliability of functional annotation. Functional annotation is distinguished between
reliable (30% sequence identity) and ‘fuzzy’ (< 30% sequence identity). The fractions are cumu-
lative, i.e. regions that are assigned to a PFAM domain and a structure are counted first, then
regions for which a PFAM domain could be assigned but no structural assignment can be obtained

are counted. See text for details.

some differences. The c-type lectins are at rank 26 with 149 domains in human
but at rank 5 with 310 domains in worm. C-type lectins have a wide spectrum
of functions associated with carbohydrate binding and occur membrane bound and
soluble. The high occurrence of c-type lectins has previously been noted by Koonin
and co-workers (Koonin et ai, 2000). However, there has been no explanation for
the abundance of this superfamily in worm. Similarly, the most common DNA bind-
ing domain in worm is the glucocorticoid receptor which is at rank 6 in worm (281
domains) but only at rank 27 (143 domains) in human and at rank 31 in the fly
(69 domains). In contrast to the rank order, the domain frequencies of the top su-

perfamilies in human are generally much higher than the corresponding frequencies
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Human Fly Worm Yeast Archaea Bacteria
SCOP superfamily N R N R N R N R N R N R
Classic zinc finger, C2H2 5092 1 | 1096 1] 190 | 10 74 9 - | 269 - -
Immunoglobulin* 1214 2 483 3 | 457 2 8 91 1] 135 4 94
EGF/Laminin 1192 3 320 4 | 413 4 - - - - - -
P-loop containing nucleotide 847 4 575 2 | 516 1 | 408 1] 126 1| 168 1
triphosphate hydrolases*
Fibronectin type IIT* 842 5 247 7| 222 8 1| 301 - 1} 237
Cadherin 608 6 222 [ 10 | 135 | 21 - - 3 72 - -
RNA-binding domain 587 7 282 5| 199 9 | 128 3 - - - | 420
Protein kinase-like (PK-like)* 557 8 271 6 | 434 3| 142 2 3 72 5 82
Homeodomain-like 334 9 144 | 18 | 145 | 17 32 20 1] 221 17 16
Spectrin repeat 327 | 10 227 91150 | 13 - - - - - -
PH domain-like* 327 { 10 140 | 19 | 100 | 31 23 29 - - - -
SH3-domain 304 | 12 105 | 23 70 | 37 29 23 - - - | 454
EF-hand* 284 | 13 163 | 14 | 120 | 26 23 29 - - - | 420
Ankyrin repeat 278 | 14 120 | 21 | 128 | 24 31 22 - - 1| 342
Complement control mod- 277 | 15 57 | 38 52 | 43 - - - - - -
ule/SCR domain
PDZ domain-like 265 | 16 103 | 24 89 | 32 6 [ 120 1] 169 6 64
Ligand-binding domain of low- 247 | 17 196 | 12 | 143 | 18 3| 194 - - - -
density lipoprotein receptor
Tetratricopeptide repeat 215 | 18 171 | 13 | 115 | 27 98 5 4 48 16 19
(TPR)*
RING finger domain, C3HC4 207 | 19 108 | 22 | 122 | 25 33 19 - - - -
Trp-Asp repeat (WD-repeat) 193 | 20 198 | 11 | 142 | 19 | 114 4 2 | 121 3| 157
C2 domain (Calcium/lipid- 186 | 21 68 | 32 89 | 32 32 20 - - - -
binding* domain, CaLB)
NAD(P)-binding Rossmann- 177 | 22 150 | 16 | 130 | 23 88 7 27 3 72 2
fold domains*
ARM repeat* 177 | 22 137 | 20 [ 105 | 28 80 8 1] 221 - -
SH2 domain* 161 | 24 59 | 37 72 | 35 8 91 - - - -
Thioredoxin-like* 152 | 25 148 | 17 | 148 | 14 50 12 8 21 18 13
C-type lectin-like* 149 | 26 40 | 53 | 310 5 - - - - - | 454
Glucocorticoid  receptor-like 143 | 27 69 | 31 | 281 6 14 59 - - - -
(DNA-binding domain)*
ConA-like lectins/glucanases* 136 | 28 66 | 34 | 105 | 28 8 91 1| 169 3 | 157
Actin-like ATPase domain* 135 | 29 65 | 35 38 | 56 58 10 2 97 12 26
Numer of distinct proteins in 28,913 13,022 16,323 6,237 2,176 2,789
proteome
Numer of distinct superfami- 546 518 482 434 328 499
lies in proteome

Table 4.1: Commonly occurring SCOP superfamilies in the proteomes. R is the rank of a super-

family within a proteome and N is the frequency of domains within this superfamily. * Denotes

that several PFAM families (and hence several InterPro families) are included within the single

SCOP superfamily (this association was evaluated by searching each SCOP superfamily against
PFAM using the HMMer program, see ‘Methods’ section for details). The number of distinct

proteins and the number of domains per superfamily (N) for archaea and bacteria are averages

whereas the number of distinct superfamilies are totals over the species (including seven bacterial

species and three for species from archea).
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in fly and worm, whereas the frequencies in fly and worm are often similar. The
human proteome is roughly double the size of that of fly or worm, but for several of
the most common superfamilies in human (in particular within the first six ranks,
except for the P-loop) a scaling factor of more than two is observed. At lower ranks
the ratio is generally around two. The first superfamily that occurs with roughly
the same frequency in human, fly and worm is the thioredoxin-like domain (152,
148, 148 domains respectively). Proceeding down the rank order of occurrence in
human, the first superfamily with a lower frequency of domains in human than in

another multi-cellular eukaryote is the c-type lectin (see above).

There are, however, major differences in rank order for the single-celled organ-
isms. Several of the superfamilies in table 4.1 have similar ranks in human, fly and
worm, whereas the rank in yeast often differs markedly (e.g. the immunoglobulin).
Domains of superfamilies found in cell-cell interaction proteins and cell surface pro-
teins such as the fibronectin and cadherin are not found or only occur infrequently
in the proteomes of the single-cellular organisms. In bacteria, and especially in
archaea, the top ranks are mainly occupied with superfamilies associated with en-
zymes. The most common DNA binding domain in bacteria and archaea is the

winged helix-turn-helix motif (not included in table 4.1).

The abundance of several superfamilies in metazoans that are absent or have
relatively low domain frequencies in yeast leads to conclusions different to those re-
cently published for the S. pombe genome (Wood et al., 2002). The work by Wood
et al. (2002) shows that there are many new protein sequences in yeast (S. pombe
and S. cerevisieae) compared to prokaryotes, but only a few new sequence families
in metazoans compared to yeast (i.e. those proteins found in metazoans only). In
this work 84 SCOP superfamilies present in metazoa and yeast that are not found
in any of the processed prokaryota, and 113 new superfamilies in metazoa that are
not found in yeast (data not shown) were identified. The analysis described in this
work is based on the identification of structural domains rather than closely re-
lated full-length sequences which allows members of even diverse superfamilies to
be found. These results suggest that in invention and expansion on the level of
structural domains there may well be a bigger step from single-cellular eukaryotes

to multi-cellular organisms than implied by Wood et al. (2002).

Domains forming a particular SCOP superfamily are identified on the basis of
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both their similar structure and function. In contrast PFAM, InterPro and PAN-
THER are primarily sequence and function based families. Because homologies can
be recognised from structural conservation that are undetectable by sequence based
methods, one SCOP superfamily can include several PFAM, InterPro or PANTHER
families (also see the legend for table 4.1). In addition, SCOP is a structural domain
database whereas PFAM identifies a single sequence motif that can be repeated to
form a structural domain. For example, PFAM describes each of the 3-sheet mo-
tifs of a WD-repeat by itself whereas SCOP considers the entire barrel of seven of
these motifs as a domain. Thus there are several differences between the ranks of
commonly occurring SCOP domains compared to the results from sequence based
analyses (Lander et al., 2001; Venter et al., 2001).

The results of this work are in broad agreement with similar analyses by others
(Frishman et al., 2001; Iliopoulos et al., 2001; Koonin et al., 2000; Gough & Chothia,
2002; Lander et al., 2001; Venter et al., 2001), in particular with results from those
describing the distribution of SCOP folds and superfamilies in different genomes.
Differences in methodology, different confidence cut-offs and different sequence data-
bases used for the analysis do not allow a direct comparison of domain frequencies
and annotation coverage in proteomes. However, the relative rank order for folds
and superfamilies within a proteome are suitable for a comparison between different
work. Recent work from Gough & Chothia (2002) using hidden Markov models
for SCOP superfamilies shows similar ranks for the top ten superfamilies in the
processed genomes. The zinc-finger is the most abundant superfamily in human fol-
lowed by the immunoglobulin. Although results from the HMM superfamily analysis
by Gough & Chothia (2002) on a more recent version of the human genome (based
on ENSEMBL-4.28.1, see http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/) give
different total numbers compared to this work, the general trend (i.e. ranks of su-
perfamilies) is stable even for the different interpretations of the human genome. It
should be noted that the analysis described here has a focus on the globular parts of
the proteomes, and no PSI-BLAST homology assignments for the membrane all-a
SCOP superfamily were obtained. However, BLAST assignments for close homo-
logues of this superfamily are included in the analysis of this work (see section 4.6,
Methods, for details). Therefore this superfamily is found far further down the list
lower in the results described here compared to Gough & Chothia (2002), who con-
structed special HMMs for this superfamily.
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Some of the top superfamily-rankings from this work are different to those in
PartsList (Qian et al., 2001b), which reports the EGF/laminin superfamily at rank
one for C. elegans (rank four in this analysis) and the P-loop at rank eight, com-
pared to rank one in the results of this work. The HMM superfamily analysis of the
worm from Gough & Chothia (2002) ranks the P-loop at position two, following the

membrane all-a superfamily.

Wolf et al. (1999) assigned SCOP-1.35 folds to several prokaryotes, yeast and C.
elegans using an automated processing pipeline similar to the system used here (see
section 3). Folds of coiled-coiled domains and immunoglobulins and those domains
mainly found in viruses were omitted from their analysis. The top ranking SCOP
folds for archaea are similar to the ranks from this analysis, but there is more varia-
tion in ranks for bacteria, possibly due to differences in the set of bacterial genomes
that was chosen for this work. As shown by Wolf et al. (1999), the analysis de-
scribed in this work also finds more agreement between archaea and bacterial folds
compared to eukaryotic folds. The fold analysis by Wolf et al. (1999) was refined
(Koonin et al., 2000) by including the IMPALA program (Schaffer et al., 1999) into

the processing pipeline. '

The results for M. genitalium (MG) and M. tuberculosis (IB) reported in chap-
ter 2 differ from the results described in this chapter. Here, 46% and 43% of all
residues in MG and TB respectively can be assigned to homologues of known struc-
ture compared to only 29% in both proteomes from the analysis reported in chapter
2. However, the analysis described here was carried out in 2001, and the analysis
from chapter 2 was from 1998 and 1999. The main reason for the much higher cover-
age is the growth of the protein structure and sequence databases during this period.
In 1999, there were 11,364 structures in the PDB (in less than 600 SCOP super-
families) compared to 16,973 structures (in more than 1,000 SCOP superfamilies)
in 2001 (see the database statistics at http://www.rcsb.org). The non-redundant
protein sequence database grew from about 300,000 proteins to more than 600,000
proteins between the year 1999 and 2001. New protein folds have entered the data-

base, and to some extent existing classifications have been revised.

The rank order of SCOP superfamilies based on SCOP version 1.37 from the
analysis in chapter 2 are similar to those from the analysis based on SCOP 1.53 (the
analysis described in this chapter), but the domain frequencies increased. Especially


http://www.rcsb.org

Structural Characterisation of the Human Proteome 132

the number of identified P-loops increased from 20 to 69. Many new members of
the P-loop containing nucleotide triphosphate hydrolases superfamily increased the
coverage of this superfamily in the proteomes of MG and TB. In SCOP version 1.37
there were only five families within the P-loop superfamily. In SCOP version 1.53
there are fourteen P-loop families. The rank order in the TB proteome shows greater
differences in superfamily rank orders. For example the P-loop changed rank from
10 (36 domain) to 1 (176 domains) when comparing the old with the new analysis.
The NAD(P)-binding Rossmann-fold formerly the most popular superfamily in TB
with 123 domains slipped to rank 2, but still with an increase in absolute frequency
to 142 domains. Nevertheless, as mentioned above (page 130), the rank order of

superfamilies in different versions of the human proteome has not changed markedly.

This brief comparison between versions of a similar analysis highlights the impact
of data growth and the importance of the continuous increase in the experimentally
determined repertoire of protein structures, including a refinement and diversifica-
tion of already known folds with new family members. It is important to monitor
and benchmark the changes of structural and functional coverage in genomes to
refine existing results. The 3D-GENOMICS system described in chapter 3 is a step

toward this goal.

4.4.4 SCOP superfamilies specific for phylogenetic branches

Table 4.2 presents SCOP superfamilies that occur within just one species or set of re-
lated species but not in any of the other organisms analysed. To identify species not
included in the fourteen genomes that were analysed in this work, each member of a
superfamily that is potentially unique to one of the analysed genomes was compared
to the non-redundant sequence database using PSI-BLAST (with the parameters de-
scribed in the method). This database contains more than 30,000 species. In table
4.2 any superfamily that occurs less than four times in a particular branch (human,
fly, worm, yeast, bacteria, archaea) is excluded to prevent erroneous inferences due
to the inherent difficulties of automated annotation. This information identifies bi-

ological functions potentially specific for one branch of life.
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I SCOP Superfamily 1 N [ R T Functional description
Human
MHC antigen-recognition domain 57 62 | Immune system
Interleukin 8-like chemokines 48 71 | Immune system, growth factors
4-helical cytokines 47 75 | Immune system, diverse range of interferons and inter-
leukins
! /6 / ¥ Crystallins/protein S/yeast killer toxin 20 | 144 | Eye lens component
Serum albumin 19 | 150 | Major blood plasma component
Colipase-like 11 | 202 | Enzyme regulation for pancreatic lipases, development
RNase A-like 8 | 237 | Different ribonucleases found in pancreas, eosinophil gran-
ules and involved in angeogenesis
PKD domain 7 | 260 | Possibly involved in extra-celluar protein-protein interac-
tion
Defensin-like 7 | 260 | Small anti bacterial, fungal and viral proteins
Uteroglobin-like 5 | 294 | Binding of phospholipids, progesterone, inihibits phospho-
lipase A2 (involved in metabolism of biomembranes)
Midkine 4 | 328 | Growth factors
Fly
Insect pheromon/odorant-binding proteins 26 81 | Hormone related, sex recognition
Scorpion toxin-like 6 | 220 | Drosomycin and defensin, antibiotic, fungicide
‘Worm
Plant lectins/antimicrobial peptides 4 | 234 | Anti microbial peptides, pathogen response, fungicides.
Homologous to plant proteins.
Osmotin, thaumatin-like protein 4 | 234 | Same description as for lectins above.
Yeast
Zn2/Cys6 DNA-binding domain 53 11 | Transcription factors

DNA-binding domain of Mlul-box binding 4 | 155 | Transcription factors
protein MBP1

Bacteria
TetR/NARL DNA-binding domain 112 19 | Transcription factors
ITA domain of mannitol-specific and ntr 28 99 | Carbohydrate transport system: part of
phosphotransherase EII phosphoenolpyruvate-dependent sugar phosphotrans-
ferase system (PTS)
Prokaryotic DNA-bending protein 18 | 157 | Bacterial histone like proteins
Zn2+ DD-carboxypeptidase, N-terminal 17 | 165 | Found in enzymes involved in bacterial cell-wall degrada-
domain tion, possibly peptidoglucan binding domain
Glucose permease domain IIB 17 | 165 | Part of PTS
Regulatory protein AraC 14 | 182 | Part of the transcription regulation of the arabinose
operon
LexA /Signal peptidase 11 | 211 | 1. Transcriptional regulation of SOS repair genes, protease

domain of the LexA protein 2. Cleaves the N-terminal
signal peptides of secreted or periplasmic proteins.

Histidine-containing phosphocarrier pro- 11 | 211 | Part of PTS
teins (HPr)

Periplasmic chaperone C-domain 11 | 211 | Assembly of extra-cellular and periplasmic macromolecu-
lar structures

Duplicated hybrid motif 10 | 224 | Part of PTS

Aspartate receptor, ligand-binding domain 10 | 224 | Found in different membrane integral sensor and chemo-

taxis proteins, often associated with kinase domains.

Table 4.2: Superfamilies unique for one of the processed proteomes or group of proteomes. The
functional description is taken from PFAM/InterPro and SwissProt homologues. N and R are the
same as in table 4.1. For Human, fly, worm and yeast the superfamilies with N > 3 and for bacteria
N > 9 are listed.
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Human branch.The three most frequent domains are implicated with immu-
nity, in particular the MHC antigen-recognition domain, interleukin 8-like chemokines
and the 4-helical cytokines. Analysis of results that include the complete sequence
database showed that in addition to mammals the interleukin 8-like superfamily
is also found in sequences from birds and fish, and the MHC antigen-recognition
domain is also found in amphibia. Several of the other domains specific to the
mammalian branch are also involved in immunity - MHC class II-associated invari-
ant chain ectoplasmic trimerization domain and p8-MTCP1 (mature T-cell prolif-
eration). The mammalian defensin is involved in defense against a wide range of
micro organisms, whereas the defensin-like superfamily is also found as neurotoxin
in some cnidaria such as anemonae. At fifth in frequency in the human branch is
serum albumin (19 domains in 19 sequences) that is a major protein component of
blood.

Many of the superfamilies that appear potentially specific for human or other
mammals (i.e. superfamilies that are not found in any of the other 13 processed
genomes) are in fact also found in some viruses, amphibia, reptiles, fish and birds
when considering sequences and species of the complete sequence database (>600,000
sequences and >30,000 species). These include the following frequently occurring
superfamilies: colipase-like for enzyme regulation (particularly required by pancre-
atic lipases) and involved in development; RNaseA-like (also found in Aspergillus)
with different ribonucleases involved in endonuclease function in pancreas, blood
(eosinophil granules) and in angiogenesis; the PKD domain which is possibly in-

volved in extra-cellular protein-protein interaction.

Fly. Insect pheromone/odorant-binding proteins are the most common SCOP
superfamily (which occurs 26 times). The next most common are the scorpion toxin-
like domains which occur as parts of the fungicide drosomycin, and the anti-bacterial
defensin. Thus the insect form of immunity/defense leads to a commonly occurring
branch-specific SCOP superfamily. However, in addition to arthropods, the scorpion

like-toxin and the anti-bacterial defensin are also found in plants.

Worm. Two superfamilies occur with a frequency four (the osmotin, thaumatin-
like proteins and the plant lectins/antimicrobial peptides). These superfamilies are
not found in any of the other 13 proteomes. Both superfamilies are involved in

pathogen response. However, further comparison of these superfamilies with the



Structural Characterisation of the Human Proteome 135

complete sequence database identified close homologues in plants.

Yeast (S. cerevisiae). This is dominated by the Zn-Cys DNA-binding domain
of transcription factors. This family is also found in the recently sequenced genome
of the yeast S. pombe (Wood et al., 2002).

Bacteria. Given the smaller size of bacterial genomes, the superfamilies and
their frequencies from the seven organisms that were annotated in this work were
pooled (i.e. the reported frequencies are the sums of domains in superfamilies from
all seven bacterial proteomes, and not averages). Here, the higher ranking super-
families are discussed. The most frequent domain is a transcription factor - the
tetR/NARL DNA-binding domain (also found in some archaea and algae when
considering the complete sequence database). This is followed by the dimerisation
domain of the AraC protein that is involved in the transcription regulation of that
operon. Third is the superfamily of the DNA-bending protein. Other potentially
specific superfamilies are involved in transport (especially the phosphate transferase
system, possibly also present in fungi). There is one superfamily involved in the
phosphate transferase system, the duplicated hybrid motif, that is also found in
mouse (but not human) as previously noted (Nakamura et al., 1994). In addition
there are superfamilies specific for the cell wall synthesis, with one superfamily, the
Zn2+ DD-carboxypeptidase, that is also found in plants.

Archaea. There are only three species of archaea in the set of organisms that
are included in the analysis described here, and no frequently occurring archaea

specific SCOP superfamilies could be identified.

The general conclusion from this analysis is that three general classes of biological
activity lead to commonly occurring branch-specific superfamilies. These functions
are defense (e.g. immunity), transcriptional regulation and hormone-related sig-

nalling.

4.4.5 Gene duplication

The presence of multiple copies of any particular SCOP domains within the pro-

teome is the result of domain duplication and divergence during evolution, both
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within and between proteins. The extent of this duplication can be quantified:

> (Vi — 1)
= (4.1)
Zi(N i)
where N; is the number of occurrence of domains in SCOP superfamily type i
(Teichmann et al., 1998). This can be estimated from the frequencies of the SCOP

superfamilies in a proteome, using these domains as a sample of the entire proteome.

duplication =

Note that the value is for domain duplication and is not necessarily a value for the
fraction of the proteome residues that arose from duplication. Figure 4.5 shows that
98% of the human proteome is estimated to arose via duplication. There are 28,913
different peptide sequences in the data set of human proteome, and 23,573 SCOP
domains were identified within these sequences, which belong to only 546 different
SCOP superfamilies with 23,027 duplication events. The figure shows that as the
number of proteins in the genome increases, there is an increase in the extent of
domain duplication from the 55% observed in the smallest proteome (M. genital-
ium) to 98% in the biggest proteome (human). There is a very rapid increase in
the extent of domain duplication in the bacteria and archaea until the smallest eu-
karyote included in this analysis (yeast) is reached. However, one does not observe
a marked difference in the extent of duplication between the largest prokaryote (E.
coli, 4257 peptide sequences) and the smallest eukaryote (yeast, 6237 peptide se-
quences) despite the major differences in the organisation of their genes (in terms
of the presence of introns/exons and of chromosomes). Importantly, since several
different PFAM families are homologues that belong to the same SCOP superfamily,
when the same estimate is made using PFAM one obtains a lower estimate of the

extent of domain duplication in each species.

This estimate of domain duplication relies on two assumptions. First is that
the duplication frequency of structurally characterised domains (i.e. SCOP) is a
representative sample of all proteins in the genomes. This has been analysed for
proteins in the M. genetalium genome by Teichmann et al. (1998) who concluded
that the SCOP superfamilies are representative for the proteins in the genome. How-
ever, a study by Gerstein (1998a) on eight microbial genomes suggested that there
are several differences between the proteins in the PDB and those in the genomes,
including differences in the lengths of the sequences. Nevertheless, the trend of in-
creasing domain duplication with the size of the proteome is the same for the SCOP
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Figure 4.5: Extent of domain duplication in different proteomes. The extent of duplication is
estimated from the frequencies of observing domains in the different SCOP superfamilies is shown
as the fraction of total assigned domains for each proteome. The size of the human proteome is
estimated at the number of protein sequences in the ENSEMBL dataset (29,000). Comparable

results from frequencies of PFAM families are reported

and PFAM based analysis, suggesting that any bias from using SCOP alone is not
marked. The second assumption is that all the proteins have been identified in the
genome, and one has to estimate the effect of uncharacterised proteins. However,
the worm, where gene prediction is more accurate than in human, and therefore
even rare and orphan protein families are more likely to be identified (Reboul er oA,
2001), yields a value for domain duplication of 95% which is probably a lower esti-

mate of the extent in human.

The values for domain duplication are without a time scale and substantial fur-
ther work is required to estimate the extent of duplications since divergence of the

different phylogenetic branches. Recently Qian ef ol (2001a) have developed an
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evolutionary model and estimated the extent of fold acquisition within a species.
Here the extent of duplication in the different species of the ten most frequently
occurring SCOP superfamilies found in the human proteome is considered (figures
4.6 to 4.8). Taking the frequency in humans as 100%, figure 4.6 shows that all of
these ten SCOP superfamilies have been expanded in human compared to all other
species. The greatest expansion from worm and fly to human is for the classic zinc
finger. This suggests the major increase in importance of transcriptional regulation
in humans via zinc-fingers compared to fly and worm. In contrast, the smallest
extent of expansion from prokaryotes to human is for the P-loop that has a central
role in housekeeping metabolism. This smaller rate of expansion is also observed
for another housekeeping superfamily, the RNA-binding domain found at rank three
in yeast. The protein kinase-like superfamily has a markedly bigger expansion in
worm than in fly, and corresponds to 80% of the expansion in human. This may
account for the expansion of certain types of signalling in worm. Note that three
of the superfamilies shown are not found in yeast (EGF /laminin, cadherin and the

spectrin repeat), and one, the fibronectin, is only found once.

These results can be contrasted with an analysis of the top superfamilies in bacte-
ria. Of the top ten, seven are expanded in bacteria between 150% and 350% relative
to human (data not shown). The two superfamilies that are reduced in bacteria
compared to human are the periplasmic binding protein-like II (extra-cellular recep-
tor domains in human and mainly extra-cellular solute binding domains in bacteria)
with 70% and the thiolase-like domain (84%). In human Chey-like transcription

factors could not be found at all.

Figure 4.7 shows the relative domain frequencies (number of observed domains
in a superfamily normalised by the total number of domains in all superfamilies
in the proteome) of the top ten human superfamilies for the processed proteomes.
The 5092 zinc-finger domains that were identified for human comprise more than
20% of the identified domains. Zinc-finger domains have an average length of just
27 residues, and together this corresponds to only 1.5% of the residues in the hu-
man proteome. Compared to the majority of the top ten human superfamilies, the
P-loop decreases its relative abundance from prokaryotes to human. Although the
domain fraction comprised by P-loops is much lower than for the zinc-finger, because
of its average length of 217 residues in human, the P-loop accounts for 2% of all

residues. In yeast and worm the protein kinase-like superfamily seems to have more
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Figure 4.6: Superfamily expansion relative to the human proteome. For the ten most abundant
human superfamilies the superfamily expansion within the other proteomes relative to the human
proteome is plotted as the number of domains in superfamily X in proteome Y divided by the

number of domains in superfamily X in human (times 100). All superfamilies are 100% in human.

importance than in fly and human. In addition the RNA-binding domain, involved
in a range of functions, is more abundant in yeast than in the metazoan proteomes
where this superfamily accounts for roughly the same fraction of domains. The worm
proteome contains relatively more EGF/laminins compared to fly. In general the
relative abundance of the top ten superfamilies in human, except for the zinc-finger,
is similar between the metazoan proteomes. Plotting the top ten superfamilies for
yeast shows a similar trend (data not shown); there are only slight changes in the rel-
ative domain abundance for most superfamilies between the eukaryotic proteomes.
These results imply that in general the most popular superfamilies in a particular
proteome do not comprise a substantially different fraction of the domain repertoire

in other proteomes. Given an increasing number of domains for larger proteomes.
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it may not be a change in relative domain abundance of a set of superfamilies that

leads to specialisation.
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Figure 4.7: Relative expansion of the ten most abundant human superfamilies. For all proteomes
the number of domains in a superfamily is normalised by the number of domains in all superfamilies

for a proteome (multiplied by 100).

In general, domains of superfamilies found at a high rank are often found in re-
peats. Here a repeat is defined as at least two domains of the same superfamily that
are found within the same peptide sequence irrespective of the sequence distance be-
tween these domains. Indeed, the zinc finger is the most repeated domain in human.
The average numbers of repeats for the zinc-finger are 7 (max. 36), 4 (max. 17), 2
(max. 5) and 2 (max. 5) per zinc finger containing sequence for human, fly, worm
and yeast respectively. In fly and worm the most repeated domain is the cadherin
with on average twelve repeats in fly and eight in worm. The most repeated su-

perfamily in yeast is the KH-domain (probably involved in RNA-binding) with four
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repeats on average, and in prokaryotes this is the thiolase-like superfamily (found in
proteins of degradative pathways such as fatty acid (-oxidation) with two repeats

on average.

Considering only the existence (and not the frequency) of a superfamily in a
sequence to exclude the effect of repeats overall just slightly changes the order of
the top ranks of superfamilies. The domain based top ten ranks in human are still
present in the top 22 list that excludes repeats (except for the spectrin repeat at
rank 43). The immunoglobulin, the EGF /laminin and the fibronectin are still within
the top ten (data not shown). Figure 4.8 plots the average number of repeats within
a protein for each of these ten SCOP superfamilies in human. The most notable
feature is that the fly has far more duplicated copies per protein for cadherins (cell
surface) and spectrin repeats (e.g. associated with the cytoskeleton) compared to
human. Both, worm and fly have more repeated copies per protein of fibronectin
and immunoglobulin than human. Overall five of the ten superfamilies are repeated
on average at least twice per sequence in human. The most abundant superfamilies
in yeast and especially in bacteria are not as frequently found in repeats as the most

popular superfamilies in metazoa (data not shown).

In general this implies that repetitiveness on the domain level may play an im-
portant role in the divergence of the metazoan branch from single-cell eukaryotes.
As mentioned above, several of the popular superfamilies in human are associated
with cell-surface functions such as cell adhesion, for which long proteins with regular

structure may be required.

Another analysis of this work considers the number of different domain-domain
associations for the commonly occurring SCOP superfamilies. An association is
taken when two different SCOP superfamilies occur within the same sequence (in-
cluding self association) irrespective of the sequence separation betwwen these do-
mains. For a detailed analysis of pairs of adjacent domains and their phylogenetic
distributions see Apic et al. (2001). Figure 4.9a plots the number of partners for
the ten most common superfamilies in human, figure 4.9b for those in yeast and
figure 4.9¢ for bacteria (note, that for better scaling of the plots, in 4.9b and 4.9¢c
only superfamilies are shown that are not already plotted in 4.9a). The general
trend is that the numbers of different associations is roughly similar for the three

multi-cellular eukaryotes.
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Figure 4.8: Average repetitiveness of the ten most abundant human SCOP superfamilies. For
each superfamily the number of domains divided by the number of sequences this superfamily was

found in is plotted for each of the each proteome.

An interesting feature is that there tends to be somewhat more domain pair-
ings in fly compared to worm. Although the protein kinase-like superfamily is more
popular in worm than in fly, and also more than in human when normalised by the
number of domains in the proteome as in figure 4.7, the worm has fewer partners for
this superfamily. In addition the most popular partner for the protein kinase-like
superfamily in human and fly is the SH3 domain with 43 occurrences in human and
14 in fly (partner data not shown); in worm there are only seven such co-occurrences.
The most popular protein kinase-like partner in worm is the adenylyl and guany-
lyl cyclase catalytic domain with a frequency of 24, and 5 in human. In all three
metazoan proteomes the SH2 domain is a frequent partner for the protein-kinase

like superfamily.
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The number of partners for EGF/laminin domains decreases from worm to fly,
but in human there are more partners for this superfamily than in worm. A frequent
domain partner for EGF/laminin domains in worm is the c-type lectin (found 22
times) that has been mentioned above (see section ‘SCOP superfamilies’), which is
not a partner for EGF/laminin domains in the fly but is found as an EGF/laminin

partner 25 times in human.

The immunoglobulin superfamily has more co-occurrences in fly than in worm
and human. In fly this superfamily combines for example with di-copper-centre-
containing domains that are also found in human (but not as a partner of im-
munoglobulins). Also the hemocyanin N-terminal domain, absent in human and
worm, is found in combination with immunoglobulins. In fly the hemocyanin N-
terminal domain, the di-copper centre-containing domain and the immunoglobu-
lin are in fact found together in sequences that belong to the invertebrate copper
containing oxygen transport proteins and larval storage proteins (InterPro family
IPR000896). In human a popular partner for immunoglobulins is the MHC antigen-
recognition domain which is not found at all in fly and worm. However, in human, fly
and worm the fibronectin type III is the most common partner for the immunoglob-
ulin (and vice versa) which may be the reason why these two superfamilies follow a
similar trend in figures 4.6 to 4.8 (relative domain abundance and repetitiveness).

Figure 4.9b shows the top ten superfamilies in yeast. Only the tetratricoidpeptide
repeat, a domain probably involved in a wide range of protein-protein interactions,
expands its domain partner repertoire in a step from yeast and worm to fly and to

human. The other superfamilies have similar frequencies in the three metazoans.

Figure 4.9c shows that all the popular superfamilies in bacteria have markedly
fewer co-occurrence partners in archaea, although seven of these superfamilies are
also found in the top ten superfamilies in archaea (data not shown). With 27 part-
ners the Rossmann-fold, involved in a range of enzyme activities, has more partners
in bacteria than in any of the other processed proteomes. However, the most fre-
quent superfamily partners for the Rossmann-fold are similar between bacteria and
metazoans (data not shown). In worm five of the popular bacterial superfamilies
have an increased number of partners compared to yeast, fly and human, possibly
reflecting a closer phylogenetic relationship between worm and bacteria.
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Figure 4.9: SCOP superfamily partners. The plots show the number of different SCOP super-

families that are found together in the same sequence with a given superfamily, including the

superfamily itself and irrespective of the order or the sequence space between domains. This im-

plies that at least two domains have to be identified in a sequence. Superfamily partners for the

ten most abundant superfamilies in human (a), in yeast (b) and bacteria (¢) are plotted. Only

those superfamilies not found within the first ten ranks in human are shown in b (P-loop, protein

kinase-like, tetratricopeptide repeat and the classic zinc finger), and only those are shown in c that

are not shown in a or b (P-loop and NAD(P) binding Rossmann-fold).

The plots in figure 4.9 only show the number of different superfamily partners.

However even if the number of partners is similar, the actual frequencies and com-
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position of these partnerships often shows great variation. Hegyi & Gerstein (2001)
demonstrated that there is less functional conservation in multi-domain than in
single-domain proteins except if they have exactly the same domain combination,
so that a superfamily can have different functional contexts. This observation from
Hegyi and Gerstein suggests a higher degree of functional variation than expected
for a superfamily in different proteomes even if the number of domain partners is
similar. For example, fifteen partners for the c-type lectin are found in human and
worm, but some of the frequently found partners are different. In worm, many sper-
madhesin and integrin A domains are found together with c-type lectins, whereas the
integrin A is not found at all as a partner for c-type lectins in human, although the
overall integrin domain frequency in human is more than twice as high than in worm.
In human more complement control modules (SRC domain) and immunoglobulins
are found in combination with c-type lectins (the immunoglobulin is not found at
all in the list of lectin partners in worm). In addition, it has been shown that in
many cases of adjacent domains the domain order is an important functional aspect
(Apic et al., 2001; Bashton & Chothia, 2002).

In summary, the analysis described here suggests that for most superfamilies,
as the organism increases in complexity, specialisation and diversity does not arise
from an increasing number of domain combinations, but rather from refinement and
diversification of the superfamily repertoire itself (for example, the immunoglobulins
belong to a diverse superfamily with many members and possibly different functions
in different proteomes) and probably by changing the repertoire of domain partners.

The web-site mentioned in the methods section provides a link to an application
that allows generic ranking of selected proteomes according to selected properties
such as domain frequencies, superfamily partners or domain repetitiveness of super-
families. The results can be displayed as a table and as a plot similar to those shown

in this work.

4.4.6 SCOP superfamiles in disease genes

The OMIM database (Antonarakis & McKusick, 2000) (Online Mendelian Inheri-
tance in Man) identifies genes that have been associated with human disease. Hu-

man proteins were associated with OMIM identifiers via the genelink table from
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ENSEMBL. 6656 different OMIM entries are linked to 5856 human proteins, indi-
cating that a human protein can be associated with several OMIM entries. The
frequency of each SCOP superfamily in the proteome assigned to disease genes ver-
sus the non-disease genes is then evaluated. 7,621 SCOP domains in 481 different

superfamilies could be assigned to disease genes.

This analysis directly associates SCOP superfamilies with disease and non-disease
genes. However, the cause of the disease state could be the result of one (or a
combination) of effects not directly involving the protein, for example alteration of
regulation or deletion of the entire gene. In addition, any point mutation or deletion
within a protein may not be within a particular SCOP domain. However, for many
genes in OMIM the location of the alteration (e.g. point mutation) is not known.
Thus to analyse the entire OMIM database one can only gain an overview of the
distribution of SCOP superfamilies between disease and non-disease genes. A more
focused analysis would consider only those genes where the location of the alter-
ation has been identified (see Sreekumar et al. (2001) for a review of computational

analysis of disease genes).

The analysis of the superfamilies in disease genes was performed on the pro-
tein sequence level rather than on the domain level, so that only one domain per
superfamily per protein sequence was counted. The aim of the analysis is to de-
scribe general trends for superfamilies and their biological function in association
with disease, and therefore superfamilies with low sequence frequencies but signifi-
cantly high domain frequency due to repeats, which confuse a trend analysis, were
excluded. For example the extra-cellular domain of the cation-dependant mannose
6-phosphate receptor has fifteen domains in only two proteins that are associated
with a disease (one domain in the small mannose 6-phosphate receptor and fourteen
repeated domains in the big receptor) and only two domains in non-disease proteins.
This receptor plays an important role in targeting lysosomal enzymes to the lyso-
some. This superfamily is strongly over-represented in the domain based analysis

but not in the sequence based analysis.

The overall frequencies of SCOP superfamilies in the two sets of genes are sig-
nificantly different at >99.9% confidence. Table 4.3 reports the SCOP superfamilies
that are significantly over- and under-represented in the disease genes at >95% con-

fidence as confirmed by a x? test.
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SCOP superfamily | R f ND | NnD | f | Description

Interleukin 8-like [ 62 | 36 12 3 | Mainly small inducible cytokines (single do-

Chemokines (V) main proteins), immuno-regulatory and in-
flammatory processes, homoeostasis, develop-
ment. Secreted proteins, activity via GPCRs.

Nuclear receptor | 56 | 40 15 | 2.67 | Growth factor inducible intra-cellular

ligand-binding  do- steroid/thyroid receptors coupled with

main (M) a DNA binding domain (glucocortocoid-
receptor like) such as estrogen receptor
(breast cancer associated).  Transcription
factors and enhancers.

Cystine-knot cy- | 49 | 42 17 | 2.47 | Growth factors belonging to TGF-b, cell de-

tokines (E) termination, differentiation and growth. Neu-
rotrophins, differentiation and function of
neurons.

Periplasmic binding | 96 | 21 9 | 2.33 | Glutamate receptors, ionotropic (ion chan-

& protein-like 1 nels) and metabotropic (GPCRs with activity
via a second messenger), also found in recep-
tors involved in regulation of blood pressure.

Serpins (M) 76 | 26 12 | 2.17 | Serine protease inhibitors of the blood clotting
cascade.

4-helical cytokines | 66 | 32 15 | 2.13 | Different interferons and interleukins (extra-

(V) cellular single domain proteins), regulatory in
differentiation and proliferation, antiviral, im-
mune and inflammatory response.

Winged helix DNA- | 21 70 57 | 1.23 | Associated with at least 25 disease entries.

binding domain Transcription factors (activation and repres-
sion). Dominated by forkhead family mem-
bers, important in embryogenesis of the ner-
vous system in mammals, associated with dif-
ferent leukemia; ETS family of oncogene prod-
ucts; histones (chromatin remodelling) and
others.

Helix-loop-helix 28 | 54 45 1.2 | Transcriptional control for cell type deter-

DNA-binding  do- mination during development, also transcrip-

main (E) tional control of histone acetyltransferases
(preparation of chromatin for transcription).

continued on next page
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continued from previous page

SCOP superfamily | R l ND | NnD I f | Description

Glucocorticoid 25 | 62 52 | 1.19 | Together with nuclear receptor ligand-binding

receptor-like (DNA- domains (see above). Frequently found in pro-

binding domain) teins of developmental genes. LIM domain

(E) proteins de-regulated in cancer cell-lines.

Homeodomain-like 8 | 131 | 142 | 0.92 | Different homoebox proteins (transcription
factors), particularly important in early em-
bryogenesis. Some homeobox genes are onco-
genes.

Protein  kinase-like | 4 | 246 291 | 0.85 | About 100 different associated disease entries

(PK-like) (e.g. different cancers). Range of kinases such
as MAP or PKC (signal transduction).

RNA-binding do- | 6| 76| 255| 0.3 | RNA splice factors (alternative splicing),

main rapid degradation of mRNAs in particular
from cytokines and proto-oncogenes. Involved
in e.g. spermatogenesis related to male infer-
tility.

RING finger domain, | 13 | 43 163 | 0.26 | Zinc-finger like domain associated with

C3HC4 (E) protein-protein interaction, often found in
transcription regulatory proteins. Linked to
e.g. apoptosis inhibitors, breast cancer gene
BRACAL1, acute leukemia.

Classic zinc finger, 2| 135 549 | 0.25 | Nucleic acid binding, range of transcription

C2H2 factors, cell proliferation and differentiation,
early development, some are proto-oncogenes.

Tetratricopeptide re- | 19 25 121 | 0.21 | Interaction partner of regulatory proteins,

peat (TPR) subunit of G-proteins. Involved in a range of
biological functions such as cell-cycle, activa-
tion of apoptosis, chromatin assembly, actin
binding, cancer.

Ankyrin repeat 12 | 33 187 | 0.18 | Protein-protein interaction domain. Found at
least 17 different OMIM entries describing e.g.
inhibitor of NFkB and cyclin-dep. kinase in-
hibitors, interaction with p53 in apoptosis.
Co-occurrence with other interaction and reg-
ulatory domains such as DEATH and SH3.

continued on next page
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continued from previous page

SCOP superfamily | R | ND | NnD I f | Description

eL30-like 58 5 45 | 0.11 | Ribosomal protein L30, translation termina-
tion.

Pyk2-associated pro- | 91 1 31 | 0.03 | RIP protein that assists HIV in replication

tein § ARF-GAP do- by facilitating the nuclear export of mRNA.

main (E) Corresponds to the putative GTP-ase activat-

ing protein for Arfin PFAM. Non-disease pro-
teins are often associated with PH-domains or
ankyrin repeats and may have a range of bio-

logical functions.

Table 4.3: Over- and under-represented SCOP superfamilies in OMIM disease genes. For each
SCOP superfamily, the rank order R of superfamily occurrences in sequences of the human pro-
teome is given (see text for details), followed by the sequence frequency in disease genes (ND)
and the frequency in non-disease genes (NnD) . The ratio (f) of these occurrences is then given
as ND/NnD, the double horizontal line separates over-represented from under-represented super-
families. Taking all SCOP domains together, the two populations (disease and non-disease) are
significantly different (>99.9% confidence) as calculated by a x2 test. For each SCOP superfamily,
the frequency ratio compared to the others was significant at > 95% confidence, after allowing for
the number of SCOP domains tested (testing domains of each superfamily against all remaining
domains). Bold letters in braces in the superfamily field indicate that this superfamily is specific
for eukaryotes (E), metazoans (M) or vertebrates (V). The Description field gives an overview
over the broad biological functions associated with the disease genes.

Superfamilies over-represented in proteins of disease genes are mainly associ-
ated with regulation, having biological functions in development, differentiation
and proliferation, and not being directly involved in metabolism. Overall the over-
represented superfamilies can be put into the following categories, immune-response,
immune-regulation, growth factors and transcription factors (helix-loop-helix do-
mains, winged helix domains, DNA-binding domain of the glucocorticoid receptors).
The main biological relevance of the under-represented superfamilies may be sum-
marised as transcription factors (homeodomain and classic zing fingers), protein-
protein interaction domains involved in signalling and transcription (other than
transcription factors) and translation. However, many of the superfamilies are in-
volved in a wide range of biological functions and may be placed in more than one
category, e.g. the interleukin 8-like chemokines are not only involved in immune-

response but also play a regulatory role during development.

The most over-represented superfamilies (with a ratio >2) are biased towards
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small mainly extra-cellular single or two domain messenger proteins (interleukin,
cyctine-knot cytokines and 4-helical cytokines), whereas three of the seven strongly
under-represented superfamilies (with a ratio <0.3) are involved in regulation via
protein-protein interaction, and another three superfamilies in are involved in tran-
scription and translation. Further, the five most over-represented superfamilies are
specific for human, metazoa or at least eukaryota, whereas in the set of under-
represented superfamilies only two eukaryotic specific superfamilies are found. On
the other hand, eight of the nine under-represented superfamilies are in the list of
the top twenty superfamilies in human sequences, four within the top ten. None
of the over-represented superfamilies is found within the top twenty ranks. The
over-represented superfamily with lowest rank (highest frequency) in human is the
‘winged helix’ DNA-binding domain (rank 21)!.

Taking the above observations together, the most over-represented superfamilies
in disease genes are those likely to have evolved within the metazoan branch of evo-
lution and that are moderately expanded in human (the average sequence rank is
65 of 463 ranks in total). The homeodomain-like and protein kinase-like superfam-
ilies are just slightly but significantly under-represented, and are found with high
overall frequencies in both categories. These two superfamilies are associated with
biological key functions in many regulatory pathways (see table 4.3 for details). The
results of the analysis of the association of SCOP superfamilies with disease genes
suggest that it is in general unlikely to find abundant superfamilies with a mas-
sive bias towards disease associated proteins, possibly because the disruption of key
functions may often be lethal. However, despite this general suggestion, the analysis
described here does not have any explanation why certain superfamilies are over-
or under-represented in disease genes. These observations may encourage future
work to formulate hypotheses that may lead to deeper insight into the relationship

between disease and protein folds.

4.4.7 Transmembrane proteins

Transmembrane regions in the proteomes were identified using the hidden Markov
approach implemented in TMHMM-2 (Sonnhammer et al., 1998). Figure 4.10 shows

!Note that the ranks and frequencies are based sequence frequencies rather than domain fre-
quencies as in table 4.1
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the fraction of the proteomes that were predicted to occur as membrane spanning
regions. Within this work at least 13% of the human protein sequences are predicted
to be membrane proteins (data not shown). However, for the human proteome only
3% of residues are predicted to be in transmembrane regions (the membrane span-
ning parts of the protein) which is a similar percentage as for yeast and fly but less
than in worm and the average values for bacteria and archaea. The Figure also shows
that 13% of the proteome consists of globular regions (regions excluding coiled-coils,
low complexity regions or signal peptides) that are part of a protein chain that spans
a membrane (yellow bars, ‘TM /globular’). In human, only about 1% of the residues
either form short loops (<30 continuous residues) linking two membrane spanning
regions or appear at a chain terminus of a membrane protein. The ratio between
the globular part of transmembrane proteins and the membrane spanning part is
smaller in bacteria and archaea than in the four eukaryotes. This may be due to
a larger fraction of proteins in bacteria and archaea that are completely membrane
integral (i.e. proteins mainly built by membrane helices and connecting loops such
as bacteriorhodopsin and probably those of membrane integral redox-cascades). The
proteome of C. elegans contains both the largest fraction and the largest absolute
number of transmembrane proteins (4559 membrane proteins, 28% of the proteome).
The high number of transmembrane proteins is mainly due to an expansion of the
family of seven helix transmembrane G-protein coupled receptors (Bargmann, 1998).

Figure 4.11 shows the ratio of residues in globular domains to residues in trans-
membrane regions for different membrane proteins as determined by the number of
predicted membrane spanning helices. The ratios are substantially different between
species for proteins with one to three transmembrane regions and become more sim-
ilar as the number of transmembrane regions increases. This shows that the full
sequence of transmembrane proteins with only one to three membrane-spanning re-
gions differ in length between the proteomes of the analysed organisms reflecting
a higher number of potential globular domains, with the fly having longer protein
sequences for transmembrane proteins than the other organisms. In bacteria and
archaea the ratio drops below one (e.g. the majority of the protein is membrane
integral) at about six to seven membrane segments. In contrast eukaryotes have the
majority of the residues of their proteins in potential globular domains, suggesting
additional functionality such as protein-protein interaction or receptor capabilities

of these membrane proteins.



Structural Characterisation of the Human Proteome 152

Archaea

Bacteria

Yeast

e

Worm

Human

1 ' 1 ' I ! 1 ' 1 ' I ' I ! I ! 1 ' 1 ! I
0 10 20 30 40 50 60 70 80 90 100
fraction of proteome [% of residues]

m  globular o TM/globular m TM/loop s T™

Figure 4.10: Fractions in residues of globular and non-globular parts in membrane proteins.
Globular denotes globular domains in non-transmembrane proteins, TM/Globular are globular
regions within membrane spanning proteins (those protein with at least one transmembrane helix
domain), TM/Loop are short loops in transmembrane proteins and TM are the residues in actual

membrane integral helices. See text for details.

Table 4.4 reports the frequencies of SCOP superfamilies that occur in protein
chains that span the membrane. This analysis has a focus on the globular domains
associated with transmembrane proteins and accordingly excludes completely mem-
brane integral proteins of the analysed proteomes and does not consider the SCOP
class of membrane proteins. The four superfamilies of highest rank are domains that
can be found in cell surface proteins involved in cell-cell interaction and receptor
molecules. In human, the most common SCOP domain associated with membrane-
spanning chains is the immunoglobulin superfamily, whereas in fly and worm this
superfamily is at rank four and hve, respectively. The cadherin is the most common
SCOP superfamily in fly, and in worm the EGF/laminin is the most popular mem-

brane associated superfamily. The relative importance of superfamilies involved in
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Figure 4.11: Ratio of globular regions to transmembrane regions in membrane sequences classified

according to the number of transmembrane regions. The diagram only shows ratios for which at

least nine transmembrane proteins were found. See text for details.

cell-cell interaction and cell surface proteins is also pointed out by the absence of

these superfamilies in yeast (also see table 4.1). All eight immunoglobulin domains

found in yeast are located in soluble, probably intra-cellular, proteins (no signal

peptides could be found via prediction).

In conclusion, the results of the transmembrane analysis reflects the multi-cellular

environment of human, fly and worm, where specialised systems for cell-cell com-

munication and recognition are required in, for example, tissue formation.

SCOP superfamiliy

Immunoglobulin

Cadherin

Fibronectin type III
EGF/Laminin
Ligand-binding domain of
low-density lipoprotein re-

ceptor

Human
N %
463 38
440 72
359 43
216 18
126 51

R
1
2
3
4
5

N

126
206
134
139
106

Fly

%
26
93
54
43
54

(7 SR RN,

Worm Yeast
N % R N % R
74 16 5 - - -
114 84 2 - - -
66 30 7 - - -
163 39 1 - - -
79 55 4

continued on next page
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continued from previous page
Human Fly Worm Yeast

SCOP superfamiliy N[%]R] N[ %[ R[] N] | R[N] %| R
P-loop containing nu- | 8 | 10| 6| 8 | 15| 6| 91| 18| 3 |41| 10} 1
cleotide triphosphate
hydrolases
Protein kinase-like (PK-| 65 12| 7| 271 10|12| 72| 17| 6 - - -
like)
Complement control mod- 56 120 8| 25 44 | 13 3 6 | 65 - - -
ule/SCR domain
C-type lectin-like 53136 | 9 3 8[54 34| 11 8 - - -
MHC antigen-recognition | 47 [ 82 | 10 - - - - - - - - -
domain
TNF receptor-like 38|73 11 2 | 100 | 67 - - - - - -
RNI-like 34 |35 12 31 35 8 14 38 | 23 - - -
Serine proterase inhibitors | 32 | 25 | 13 171 41| 19 18| 21|19 - - -
Periplasmic binding | 28 (93| 14| 16| 73|22| 30| 8|11 - - -
protein-like I
ConA-like 27120 | 15| 28| 42 (10| 27| 26| 12| 5| 63|10
lectins/glucanases
RING finger domain, | 25 |12( 16| 17| 16 19| 20| 16 | 18| 5 15 | 10
C3HC4
L domain-like 2512116 25 26 | 13 23 16 | 15 1 8| 38
Spermadhesin, CUB do- | 24 | 19 | 18 | 42| 50| 7 23| 13| 15 - - -
main
(Phosphotyrosine protein) | 23 | 21 | 19 71 17|30 14| 14|23 - - -
phosphatases I1
EF-hand 23 8119 15 9]124| 10 829 - - -
Metalloproteases 2213321 4 15 | 43 8 16 | 37 - - -
(‘zincins’), catalytic
domain
POZ domain 22 18] 21 5 5137 22| 15|17 | - - -
C2 domain | 21 |11 (23| 17| 25|19 | 32| 36 (10| 16| 50| 2
(Calcium/lipid-binding
domain, CaLB)
Ankyrin repeat 21 8123 18| 15|18 | 34| 27| 8| 5| 16|10
Extracytoplasmic domain | 15 [ 88 | 32 - - - - - - 1| 100 | 38
of cation-dependent man-
nose 6-phosphate receptor
Spollaa 518363 4 | 100 | 43 510053 2100 25
Adenylyl and guanylylcy- | 16 | 67 29| 28| 76 | 10| 26 | 70| 13 - - -
clase catalytic domain

continued on next page
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continued from previous page

Human Fly Worm Yeast
SCOP superfamiliy N|%|R|] N| %|R| N]| | R|N|] %] R
Blood coagulation in- | 18 | 67 | 26 31| 43| 54 4| 67|58 - - -
hibitor (disintegrin)
Periplasmic binding | 16 |62 |29 | 30| 77| 9| 12| 92|25 | - - -
protein-like IT
Syntaxin 1A N-terminal 8 | 62 | 47 5 56 | 37 8| 62|37 7| 8| 5
domain
L-2-Haloacid  dehaloge- | 11 | 61 | 34 2 10 | 67 5 28 (53| 2 13 | 25

nase

Snake toxin-like 5|56 | 63 2 {100 | 67 1] 50|98 - - -
Metal-binding domain 6| 55 | 58 4| 80| 43 4| 8 | 58| 5| 71110
Transferrin receptor 7154 |53 - - - 2 80|71 3 75 | 20

ectodomain, apical do-

main

Table 4.4: SCOP superfamilies associated with transmembrane proteins. The table gives the
number (N) of domains in each superfamily that are found in sequences that have a transmem-
brane section. The list of superfamilies is ordered by the most abundant superfamilies in human
membrane sequences. The ‘%’ is percentage of the total occurrence of each superfamily in the pro-
teome (the total is the sum of domains in a superfamily in transmembrane and non-transmembrane
chains, this is the same as in table 4.1). R denotes the rank of N. The lower part of the table
(separated by a double horizontal line) details superfamilies with highest percentages in membrane
proteins and with a frequency of at least five domains in human that are not reported in the upper
part.

Table 4.4 also presents the fraction of the total domain frequency for each super-
family that is associated with membrane spanning chains. Of the superfamilies with
at least five domains in transmembrane proteins, only the MHC antigen-recognition
domain and the periplasmic binding protein-like I have more than 80% of their
representative domains in transmembrane proteins. Further down the list (bottom
part of table 4.4), several other superfamilies are found with more than 50% of their
domains in transmembrane proteins. However, in worm all six scavenger receptor
cystein-rich domains (not shown in table 4.4) are found in membrane glycoproteins,
and all five spolla domains (involved in sulphate transports) are found in membrane

proteins.

SCOP superfamilies that are frequently associated with transmembrane regions

are also common in chains that do not span the membrane. This supports the view
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that domains are mobile elements that are not restricted to co-evolve either always
in association with a transmembrane section or always in a chain that does not span

the membrane.

The top ranking superfamilies in bacteria are different from those found in eu-
karyotes (table 4.5). These superfamilies are mainly associated with bacterial sig-
nalling (ATPase domain and homodimeric domain of signal transduction histidine
kinase, PYP-like sensor domain, CBS-domain) or with small molecule binding prob-
ably as membrane bound receptors or enzymes (P-loop containing nucelotide hy-
drolases, nucleotide-diphospho-sugar transferases of glycosyltransferases, NAD(P)-
binding Rossmann-fold, L-2-Haloacid dehalogenase of heavy metal transporters).
In bacteria no globular superfamily with more than two representatives (an average
over the seven processed bacterial proteomes) could be identified that is exclusively
found in membrane proteins. The list of the most popular superfamilies found in
transmembrane proteins for archaea is similar to those for bacteria (data not shown),
but the frequencies of which domains are found are much lower, e.g. the top ranking
superfamily is the P-loop with only eight domains in the three archaea proteomes.
In addition, domains that may belong to the immunoglobulin (three domains in P.
horikoschii) and the cadherin (three domains in M. jannaschii) superfamilies were

found in two archaea sequences.

Metazoa Yeast Bacteria Archaea
SCOP superfamiliy N|%|R[N|[B|R|[N[%|R|[N|%]|R
ATPase domain of HSP90 chaperone/DNA - - - - - -1 13159 | 1 - - -

topoisomerase II/histidine kinase
P-loop containing nucleotide triphosphate hy- | 89 | 14 6 | 41 | 10 1|11 7 2 3 2 1
drolases

Homodimeric domain of signal transducing - - - 2| 67|25 9|64 | 3 - -
histidine kinase

PYP-like sensor domain 2 8 | 88 - - - 7|41 4 - - -
CBS-domain 8 (44 | 38 2|2 |25 5142 5[ 1 4 4
Nucleotide-diphospho-sugar transferases 6129 | 48 4|8 | 16 3| 43 6 2 40 2
NAD(P)-binding Rossmann-fold domains 13 9129 2 2125 3 41 8] 1 4 4
L-2-Haloacid dehalogenase 6 | 32 | 47 2113125 3133 7 - -1 15

Table 4.5: SCOP superfamilies associated with transmembrane proteins in bacteria. The table is
ordered by the most abundant superfamilies in bacterial membrane proteins (with at least three
domains associated with membrane proteins). Averages are given for Metazoa (human, fly and

worm), the processed bacterial and archaea proteomes. Otherwise the legend for table 4.4 applies.

Figure 4.12 shows the frequencies of the overall top ten human superfamilies (the
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same superfamilies as in figure 4.6) with the number of domains in membrane pro-
teins compared to the other processed proteomes (4.12a) and the same for the top
ranking bacterial superfaniihes (4.12b, the P-loop is not shown as it is already shown
in 4.12a). As expected, the immunoglobulin, cadherin, fibronectin and EGF/laminin
are most expanded in human compared to fly and worm. Interestingly the P-loop
is found with very similar absolute numbers in membrane proteins in all metazoan
proteomes, compared to the overall expansion shown in figures 4.6. This suggests
that, although there are more P-loops in human than in fly and worm, the additional

duplications are associated with soluble proteins only.

@ (b

Classic zinc finger. C2H2 NAD(P)-bindihg Rossmann-fold
Immunoglobulin S-adenosyl-L-methionihe-dep. meth.transf.
EGF/Laminin Periplasmic binding protein-like I
P-loop NTP hydrolases "Winged helix" DNA-binding domain
Fibronectin type Il FAD/NAD(P)-binding domain
Cadherin CheY-like
RNA-binding domain PLP-dependent transferases
Prolein kinase-like (PK-like) Thiolase-like

Nucleic acid-binding proteins

Spectan repeal

Bactena Archaca Yeasl Fly Fly

Figure 4.12: Expansion of SCOP superfamilies in membrane proteins. The number of domains
in a superfamily that are found in proteins that have at least one transmembrane helix is shown
for the different proteomes. The ten overall most abundant superfamilies in human (a), as in figure
4.6, and bacteria (b) are plotted. For better scaling the P-loop is excluded from b as it is already

shown in a.

The top ranking superfamilies in bacteria (figure 4.12b) are rarely associated with
membrane proteins in prokaryotes and yeast, and this trend also remains across the
metazoans for six of the ten superfamilies (no Chey-like domains could be identified
in human). Note that the total numbers in 4.12b are much lower than in figure
4.12a. Only one periplasmic binding protein-like II domain is found on average in
membrane proteins in bacteria, and although the total number of domains in this

superfamily is higher than for the other proteomes (data not shown), membrane
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association has only been expanded in metazoa. However, the periplasmic binding
protein-like II is a diverse superfamily that contains at least ten different PFAM
families, and in bacteria there seem to be many soluble extra-cellular members of
this superfamily (suggested by signal peptide prediction). Most of the metazoan do-
mains of this superfamily are associated with ligand-gated ion channel proteins and
receptor family ligand binding proteins, and both of these families are membrane
proteins. In yeast four of the five domains of this superfamily are part of presumably
intra-cellular soluble proteins involved in pyrimidine biosynthesis. The divergence
of the periplasmic binding protein-like IT superfamily to produce different functional
families in bacteria and metazoa seems to be coupled to some extent with different

sub-cellular locations (soluble and membrane bound).

4.5 Concluding remarks

This work describes an integrated analysis of the human proteome and compared
the results to those of other proteomes. The key aspect of this study is the inte-
gration in the context of the different species of the following features: the extent
and reliability of structural and functional annotations of the proteomes; the extent
of domain duplication; change and expansion of the structural superfamily reper-
toire between different proteomes; the relationship between human disease genes and
structural superfamilies; and the relationship between transmembrane proteins and
their globular regions. The study included a structure based analysis from which it
was possible to make evolutionary insights that could not be obtained from sequence

based methods alone.

These general bioinformatics analyses require simplifications and are also subject
to errors in the predictive methods. In particular, a simplified strategy to estimate
the extent to which there is some functional information derivable by homology had
to be employed. However, this reflects the standard practice in obtaining an initial
suggestion of protein function in the absence of characterised motifs as found in
PFAM. Automated proteome annotation, particularly in eukaryotes, is complex and
the exact numbers reported here will need to be refined as the bioinformatics tools

improve and more experimental data becomes available.

This study and related work by others (e.g. Frishman et al. (2001); Iliopoulos
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et al. (2001); Koonin et al. (2000)) have highlighted the extent to which we still
need structural information as a step towards understanding the function and evo-
lution of the human and other proteomes. The experimental determination of the
protein structures of these proteomes is the goal of structural genomics initiatives.
Sander and coworkers have suggested that within 10 years we can have representa-
tives of most protein families (Vitkup et al., 2001). However, today some structural
information for about 40% of the human proteome is available that can be used to

provide functional insights.

4.6 Methods

The analysis described in this chapter is based on the 3D-GENOMICS system that
was developed during this work (see chapter 3). This section describes the programs,
parameters and special rules used for the processing.

4.6.1 Protein sequences from complete genomes

Eukaryota: Saccharomyces cerevisiae (No authors listed, 1997), Caenorhabditis
elegans (The C. elegans Sequencing Consortium, 1998), Drosophila melanogaster
(Adams et al., 2000), Homo sapiens (Lander et al., 2001). Bacteria: Mycobacterium
tuberculosis (Cole et al., 1998), Escherichia coli (Blattner et al., 1997), Bacillus subt-
ilis (Kunst et al., 1997) , Mycoplasma genitalium (Fraser et al., 1995), Helicobacter
pylori (Tomb et al., 1997), Aquifer aeolicus (Deckert et al., 1998), Vibrio cholerae
(Heidelberg et al., 2000). Archaea: Aeropyrum perniz (Kawarabayasi et al., 1999),
Pyrococcus horikoshii citep (Kawarabayasi et al., 1998), Methanococcus jannaschii
(Bult et al.,, 1996). See table 1.1 for the size of each of the genomes. The H.
sapiens proteome is the ENSEMBL-0.8.0 confirmed peptide data set (http://www.-
ensembl.org). Other sequences were taken from the NCBI (ftp://ftp.ncbi.nlm.nih.-
gov/genomes/). See also table 3.2.

4.6.2 Sequence analysis

Sequences, annotations and results are stored in a relational database (MySQL,

http://www.mysql.com), which serves as the back-end for an automated processing
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pipeline running on a Linux computer farm. The software and database system
developed within this work allows for updates of the data and results as well as

comparisons across proteomes. See section 3 for details.

The sequences were first scanned for: signal peptides (SignalP-1); transmem-
brane helices (THMM-2); coiled-coils (Coils2); low complexity regions (SEG); and
repeats (Prospero V1.3). See table 3.1 for web resources (URLs) and references.

The default parameters were used.

Protein sequence database searches were performed using PSI-BLAST version
2.0.14 (Altschul et al., 1997), based on the experience from the work described in
chapter 2. Sequences were masked for low complexity regions, transmembrane re-
gions, coiled-coils and repeats. The h-value and e-value cut-offs both were 5 x 1074
(the h-value is the e-value cut-off for sequences to be included in the next PSSM), and
the maximum number of iterations was 20. The sequence database used contained
634,179 different protein sequences from the NCBI NRPROT (all non-redundant
GenBank CDS translations, PDB, SwissProt and PIR, the protein sequences of the
genomes processed in this work and the sequences from the SCOP-1.53 database).
SCOP sequences were taken from the ASTRAL database, a supplement for SCOP,
Chandonia et al. (2002), see section 1.2.3 for a description of these databases. Low
complexity regions of sequences from this database were masked by ‘X’ (the ‘X’

character is ignore by the sequence comparison programs).

It has been shown (Park et al., 1998) that PSI-BLAST detects relationships that
are not symmetric, i.e. a query with sequence A might not have a significant match
to B whilst searching with B could have a significant match to A. To address this
problem, each SCOP sequence was run against the protein sequence database via
PSI-BLAST to construct a position specific scoring matrix (PSSM) that was used
with the IMPALA program (Schaffer et al., 1999) to assign SCOP domains to each
of the genome sequences. This procedure increases the sensitivity without introduc-
ing many new false positives (this was confirmed by manual investigation of SCOP
domain assignments). The e-value cut-off for IMPALA was 5 x 1072 (this cut-off is
higher than for PSI-BLAST because of a different scoring scheme, see sections 1.3.5
and 1.3.6 for details).

In addition, for all sequences BLAST was run against a sequence database that
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contains only the SCOP sequences to ensure that close homologues not identified by
PSI-BLAST because of the masking described above are found by BLAST. Query

sequences were not masked (not even for low complexity regions).

BLAST (Altschul et al., 1997) was run for those sequences that contain a trans-
membrane region, coiled-coil region or a repeat but without removing (masking)
these regions. Only low complexity regions were masked. This ensures that at
least close homologues of membrane integral proteins, coiled-coils and proteins that
mainly consist of repeats, are identified. These close homologues may not be de-
tected by PSI-BLAST because there may not be enough valid residue signal left
after the masking. The masking, as described above, is necessary for PSI-BLAST to
avoid the corruption of the PSI-BLAST PSSM and the aggregation of false positive
alignments. Repeats were masked for PSI-BLAST runs because these tend to in-
crease the number of significant HSPs (alignments) dramatically without providing
much additional information (a protein A with three domains of the same family
could in theory produce 32 alignments with another protein B that contains three
homologous domains of the same family). For PSI-BLAST and BLAST the same
database was used. The e-value cut-off was 5 x 107

Examination of initial results from this work showed that there was a problem
in PSI-BLAST detecting very short SCOP domains (less than 50 residues) because
BLAST/PSI-BLAST e-values may not be significant for short alignments, yet man-
ual investigation of the region strongly suggested that it should be assigned to a
particular SCOP domain (for example by a PROSITE pattern). Within this work a
heuristic method was developed to address this problem: An assignment to a SCOP
domain was accepted if the e-value is <10 for an IMPALA or BLAST hit and <1.0
for a PSI-BLAST hit and if the domain is shorter than 50 residues and the sequence
identity of the alignment satisfies the identity cut-off described by Rost (1999). This
identity cut-off requires a much higher sequence identity for shorter than for longer
alignments (see also equation 2.1 in chapter 2). Overall, this procedure weights
sequence identity more than e-values for alignments between short domains. If the
identity condition was not satisfied, a SCOP domain was still accepted if the align-
ment shares a common PROSITE pattern (Falquet et al., 2002) between query and
subject.

All accepted SCOP domains must be present with at least 65% of their domain



Structural Characterisation of the Human Proteome 162

in the alignment, to avoid partial domain assignments that are in many cases false
positives. The analysis described in chapter 2 showed that a 50% coverage of SCOP
domains is a sensible choice to avoid false positive alignments while maintaining a
relatively high coverage of true positives. However, manual investigation of a subset
of alignments between protein sequences from the analysed proteomes and SCOP
domains showed that many of these alignments that represent just a fraction of the
actual domain are likely to be false positives. To find a sensible cut-off for the frac-
tion of a SCOP domain that has to be present in the alignment, the highest scoring
alignments (those with the lowest e-value) were taken from each query region of the
proteomes (see below for a definition of the term region) to analyse the distribution

of the fractions represented by the alignments.

Figure 4.13a shows that most of the alignments between protein sequences from
the proteomes and SCOP domains represent between 90% and 105% of the SCOP
domains (insertions may contribute to a coverage > 100%). The dataset shown in
blue in figure 4.13 shows the distribution of alignments between SCOP domains as
queries and as subjects, and is shown to validate the analysis of alignment frac-
tions. The number of alignments start to increase at about 65% (the domain length
fraction present in the alignment) in both distributions. However, the proteome
dataset shows a smoother increase in the number of alignments between 10% and
80% domain length fraction (i.e. there are more of these alignments than in the
SCOP/SCOP). This may be because the SCOP single domain sequences are not
good approximation of the real situation for protein sequences from the proteomes
which are often multi-domain proteins. An alternative explanation is that some do-
mains may be more flexible in length with only a conserved core that comprises on
average 65% of the existing SCOP domains. Also, some of the domain definitions
in SCOP may be wrong, when considering a huge and diverse protein dataset as in
this analysis. In addition, wrong gene predictions may account for truncated domain

alignments.

However, the assumption is that the distributions of alignment fractions are com-
parable, and the SCOP single domain dataset is to some extent representative for
the protein sequences from the genomes. Figure 4.13b analyses the distribution of
the domain fractions of false positive alignments between SCOP domains as the
ratio between false positive and true positive domain alignments. This is basically a

simplified version of the benchmark described in chapter 2. True positive alignments
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are alignments between domains of the same superfamily. Between 60% and 70%
domain fraction the number of false positive alignments decreases. The assumption
is that the SCOP domain assignments in the proteomes have a similar distribution
of false positives to the SCOP/SCOP benchmark in figure 4.13b. Alignments that
represent less than 20% or more than 105% of their domain are most likely to be
false positives (the smallest fraction is 6% and the biggest fraction is 173%, only the

fractions between 10% and 110% are shown).

The above analysis leads to the choice of a 65% cut-off for the domain fraction
to accept assignments to SCOP domains. On average this reduces the total num-
ber of SCOP regions assigned to the proteomes by about 10%. However, many of
these alignments can be considered tentative, and are often without any supporting
evidence by PFAM domains and/or PROSITE patterns. In this study it is critical
to avoid false positive domain assignments. The SCOP domain partner analysis
described in section 4.4.5 (figure 4.9) is especially prone to errors, because a domain
partnership requires only one observation per superfamily, so that a single false do-

main assignment would bias the analysis of domain co-occurrence.

The analysis of domain fractions does not distinguish between superfamilies.
Further detailed analysis considering specific superfamily cut-offs and domain length
variability within a superfamily may lead to a better discrimination between true
and false positive alignments and a good description of the domain core. However,
in this study only the very simple approach of treating all domains and superfamilies
as a whole was considered, for the purpose of choosing a fraction cut-off that lies
outside the main population of domain fraction. Nevertheless, some true positive

alignments may be missed due to the 65% cut-off.

It should be noted that residue based calculations rely on the accuracy of the se-
quence comparison heuristics that were employed. For the BLAST (and derivatives)
based assignments this means that ends of domains may not be correctly identified
during the extension step of the algorithm. Also potential inter-domain regions were
not considered, so that even in theory 100% residue based assignment may not be
reached. This affects the results represented in the bar-plots shown this chapter.
However, this is a systematic error on the algorithm level of the employed methods,
and one has to assume that this affects the results of all the processed sequences

equally, so that as a first approximation a comparison of residue based fractions is
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Figure 4.13: Fractions of SCOP domains present in alignments generated by PSI-BLAST. (a)
Shows the distribution of the fractions of SCOP domains in alignments between proteins from
the processed genomes (the queries) and SCOP domains (the subject); and SCOP domains as
queries and SCOP domains as subjects (blue dataset), (b) Shows the distribution of the different
domain fractions of false positive SCOP/SCOP domain alignments as the ratio of false positive
alignments to true positive alignments. Alignments between domains of different superfamilies are
considered to be false positives. Alignments between identical sequences are ignored. Insertions in

the alignment are counted and may give fractions bigger than 100%. See text for details.

still valid.

As described in section 3.5 the 3D-GENOMICS system (chapter 3) clusters align-
ments within the same region of a query sequence. These clusters are referred to as
regions. For reasons of data retrieval performance, alignments produced by BLAST,
PSI-BLAST and IMPALA are clustered as described in section 3.5, and only the
representative sequence for a region (the one with the lowest e-value) is taken for the
annotation described in this chapter. For SCOP domains the criteria to be allowed
to enter the region clustering is described above. All SCOP domains of the same
cluster overlap by at least 50% (with respect to the shorter domain). All other se-
quence types described in section 3.5 on page 98 have to be at least 50 residues long
or must represent 50% of their sequence to be accepted for the clustering. These
regions are single linkage clusters, and sequences only have to overlap by one residue

(the main purpose of these regions is to reduce the amount of data).
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PFAM domains were assigned via HMMer (Eddy, 1998) and the PFAM hidden
Markov model library version 6.2. The e-value cut-off to accept a hit was 0.1 and a
domain had to be present in the reported alignment with at least 75% of its entire

length.

For the analysis of transmembrane proteins, sequences were truncated if the Sig-
nalP program (Nielsen et al., 1997) could identify a potential signal peptide. This
avoids false positive predictions of transmembrane regions at the N-terminus of a

sequence.

4.6.3 Availability of annotation

The results of the analysis are available as 3D-GENOMICS via the web at http://-
www.sbg.bio.ic.ac.uk. This includes query forms for database searches and the dis-
play of tables and alignments. The web-site provides a special section with results
from comparative analyses, including an application to list different domain prop-
erties such as repetitiveness, association with transmembrane proteins or domain

partners ranked by frequency in a selected ‘master’ proteome.
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Chapter 5

Summary, Conclusions and
Outlook

This chapter summarises the work described in the previous chapters. Problems,

limitations and possible future developments are discussed.

5.1 Summary and conclusions

This thesis described the development of an automated system for the structural
and functional annotation of proteomes and its application to fourteen proteomes
including the proteins from the human genome. The main parts of this work are

summarised and briefly discussed below.

5.1.1 Benchmarking PSI-BLAST in genome annotation

An important step in structural and functional annotation of proteins is the iden-
tification of homologous proteins of already known structure and/or function. In
chapter 2 the performance of the commonly used sequence comparison method PSI-
BLAST (Altschul et al., 1997) for the structural and functional annotation of pro-

teins of completely sequenced genomes was evaluated.

In previous work by others (e.g. Park et al. (1998)) the performance of sequence
comparison methods was evaluated based on the assumption that a perfect compar-
ison method is able to identify all homologues of a query protein (in a one-to-one
relationship, i.e. all pairwise relationships should be identified). This one-to-one pro-
cedure describes the overall performance of a method and may be used to compare
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different methods. However, for the functional and structural annotation of genomes
only one homologue has to be identified to transfer the information from the homo-
logue to the un-annotated query sequence (this is a one-to-many relationship, i.e.
many homologues provide the same information that is used to annotate a query
sequence). If several homologues can be identified these can be used as supporting
evidence for the annotation. This means that previous benchmarks underestimated

the performance of sequence comparison methods in genome annotation.

In this work the success rate based one the one-to-many relationship was eval-
uated for the PSI-BLAST method. An artificial query proteome assembled from
SCOP domains (Murzin et al., 1995) and a database of remotely related SCOP do-
mains serving as targets were constructed. The homologous relationships between
SCOP domains based are known. For the benchmark the superfamily level was
considered. The benchmark also takes into account the multi-domain character of

proteins, and the performance is evaluated on the domain level.

With the assumption that close homologues relationships can easily be identified,
the benchmark concentrates on the identification of a remote homologues only. For
about 40% of the domains of the SCOP test proteome the correct superfamily can be
assigned via a remote homologue of the test SCOP database. This coverage is about
three times as much as for a one-to-one based approach. Only 1% of the assignments
are wrong (where the superfamily of the query is different from the superfamily of
the alignment subject). The sources of common errors were identified. A set of
sensible parameters for PSI-BLAST was extracted to minimise the number of false

assignments (error rate) and to maximise the number of true assignments (coverage).

The proteins from two completely sequenced genomes (M. genitalium and M. tu-
berculosis) were analysed in terms of their homology to SCOP domains and proteins
of known function using PSI-BLAST with the evaluated set of parameters. From
the success rate of the benchmark the expected fraction of the proteomes with new

folds and function was calculated.

The work carried out in chapter 2 demonstrated the importance of systematic
evaluation of the performance of the sequence comparison methods to highlight
limitations and to estimate the extent of what is still unknown. The evaluation

described in this work is different from the classical approach (one-to-one versus
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one-to-many relationship) and shows markable differences in the results. This work
also highlights the importance of structural information via structural classification
of proteins, that is necessary to identify homologous relationships in the absence of

detectable sequence homology.

5.1.2 3D-GENOMICS: A proteome annotation pipeline

Based on the experience of the benchmark described in chapter2, a system for auto-
mated large scale structural and functional annotation of proteins from completely
sequenced genomes was developed to provide a research platform for comparative
proteome analysis. The analysis of the two genomes described in chapter 2 demon-
strated the requirements for an automated analysis pipeline that is able to processes
large amounts of sequence data, to store the results and to allow for further analysis

of these results such as cross comparisons between genomes.

Chapter 3 describes a software and database system to analyse protein sequence
data and to manage the result from different analyses. The developed system is
able to manage different versions of data and can be, to some extent, updated. An
important feature of the 3D-GENOMICS system is the decomposition of the output
from an analysis software into several descriptive fields. For example PSI-BLAST
output is not stored as a single raw text field, instead the informative parts of the
output such as hits (homologues sequences), e-values, scores, sequence identities
and alignments are extracted and stored as indexed fields in the 3D-GENOMICS
database. Relational queries can then be performed on these data-fields, allowing

to link and relate results from different analyses.

The database is encapsulated by an object oriented software interface that man-
ages the data stored in the database as well as performing sequence and proteome
based analysis (for example running PSI-BLAST for a sequence). Analysis objects
have special properties that allow the distribution of these objects over a computer
farm for parallel processing. The software interface also allows transparent access
to the database without requiring the user to know the structure of the underlying

database.

The developed system is generic and allows to integrate new analysis methods

and source data. The system has been used for different projects carried out by
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other members of the group. These projects include an analysis of enzymatic path-
ways, analysis of protein-protein interaction and an analysis of protein function via
automated processing of the scientific literature. Several web based applications
allow users to query the database, to export data and to perform analyses such as

comparing distributions of SCOP domains between proteomes.

Existing annotation systems developed by others may serve a similar purpose.
However, research such as the large scale comparative analyses of proteomes as de-
scribed in this thesis require an open and expandable architecture to allow for easy
integration of new methods and data as well as for the distribution of the analyses
for parallel processing. The integration of a processing pipeline capable for large
scale processing as an open architecture together with the decomposition of the re-
sults for storage and relational retrieval was not provided by the existing systems
at the time this project was started (1999).

The 3D-GENOMICS system was applied for a comparative analysis of proteomes

described in chapter 4 and is summarised below.

5.1.3 Structural Characterisation of the Human Proteome

Chapter 4 described the extent of structural and functional annotation of fourteen
proteomes including the human proteome. In particular the distribution of SCOP
superfamilies (Murzin et al., 1995) across proteomes was analysed.

For about 40% of the human proteome homologues of known structure could be
identified, this is comparable with the structural annotation for most prokaryotes
but is more than for the other eukaryotes that were analysed in this work. For about
13% of the human proteome a homologue of known structure was identified where
the sequence alignments provide sufficient sequence identify for reliable homology
modelling. For about 40% of the human proteome reliable functional annotation
can be obtained via homology to an already annotated proteins.

From the analysis of domains in SCOP superfamilies within the processed pro-
teomes the extent of domain duplication was calculated (all domains within the
same superfamily are assumed to be homologues and are therefore the result of du-

plication events of a common ancestor). About 98% of the domains in the human
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proteome is estimated to have arisen via domain duplication, compared to only 55%
of the smallest organism that was analysed (M. genitalium).

The extent of domain duplication was further analysed. Superfamilies expanded
in the human and other proteomes were identified and compared. Several super-
families were found that are abundant in metazoans only, these are dominated by
cell-surface proteins. The results suggest that more superfamilies were invented dur-

ing evolution between yeast and metazoans than between prokaryotes and yeast.

Combinations of co-occurring SCOP superfamilies within the same protein se-
quence were analysed and compared between proteomes showing that the number of
superfamily partners generally remains stable between proteomes. Nevertheless, the
composition of the set of partners for a given superfamily differs between proteomes.
In addition the organisation of domains in repeats may play an important role in

the development from single- to multi-cellular life.

The distribution of SCOP superfamilies associated with inherited disease in hu-
man was analysed. Superfamilies significantly over-represented and under-represented
in proteins of disease genes were identified. Those superfamilies that are over-
represented in disease genes are dominated by rare eukaryotic, metazoan or even
vertebrate specific superfamilies compared to more abundant superfamilies that are

generally under-represented in disease genes.

In some proteomes nearly 30% of the proteins are predicted to be membrane
proteins. However, only a small fraction of membrane proteins are completely mem-
brane integral (i.e. with no globular domains inside or outside the cell), and most
of the residues in membrane proteins are in fact found in globular domains. The
distribution of SCOP superfamilies in membrane proteins was analysed, showing
that most SCOP domains are mobile elements that are associated with both types
of sub-cellular location: soluble and membrane standing. Metazoan proteomes show
greater expansion of their abundant superfamilies in membrane proteins compared
to the abundant superfamilies in prokaryotes for which membrane association is

rather rare.
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5.2 Outlook

The scientific and technical work carried out in this work may be subject to more
detailed and specific future analyses. Bioinformatics research is mainly driven by
the available data such as protein sequences, structures or expression data. New
technologies provide new data sources and usually trigger the development of new
methods to analyse these new data types. An important aspect in bioinformatics
will therefore be the integration of these data types and associated methods to dis-
cover parameters and rules that ideally lead to the successful simulation of complex
biological processes. On a small scale this work gathers the basic requirements to
understand complex biological processes. However, the work described here is lim-

ited by concentrating on protein sequences and structures.

Between 1998 and 1999 when the number of fully sequenced genomes started to
increased due to the establishment of automated large scale sequencing technolo-
gies, genome annotation became an important aspect. The rigorous evaluation of
automated annotation such as described in chapter 2 was a requirement to show

limits and expectations as well as leading to enhancements of methodologies.

The processing of eukaryotic proteomes using PSI-BLAST described in chapter
4 highlighted additional problems such as the existence of repeats which often lead
to an explosion of the resulting data (the number of significant alignments reported
by PSI-BLAST). Short domains often remain undetected because alignments do
not produce significant scores due to insufficient length. These short domains, also
often found in repeats, are frequently found in eukaryotic proteomes. These addi-
tional problems were undetected by the benchmark described in chapter 2, and only
the extensive processing of the eukaryotic proteomes highlighted these problems.
Therefore some parameters for the protein processing described in chapter 4 were

re-evaluated and adjusted, and new rules were added.

The additional experience for large scale protein annotation gathered during the
analysis of the eukaryotic proteomes showed that additional benchmarking of pro-
teome annotation is required taking into accounts the enormous problems within
eukaryotic genomes (some of the origins of problems are associated directly with the
genome such as gene prediction). The 3D-GENOMICS architecture can be used for

a continuous benchmark, because different versions of an analysis can be managed
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and compared.

Different processing pipelines and information retrieval systems such as 3D-
GENOMICS to perform a fully automated annotation of sequences were developed
(see section 3.8.3). It is now important to extend these systems to integrate different
sources of information such as expression profiles, protein-protein interaction net-
works, pathways and protein structures to discover complex relationships between
these biological entities. An important step to integrate several heterogenous protein
sequence-, domain- and motif databases was the development of InterPro (Apweiler
et al., 2001).

The 3D-GENOMICS system will have to be adjusted to cope with extensive
data integration. However, it will be generally difficult to gather the required ex-
pert knowledge and resources for extensive data integration. Therefore it may be
more feasible to connect different domains of expertise (i.g. specialised databases
and analysis software) via specialised and distributed warehouses, each maintained
by a specialised research group. To guarantee transparent queries to relate biologi-
cal entities located in different warehouses hosted at different sites, communication
standards and protocols have to be developed. The DAS project (Dowell et al.,
2001) and XML in general are promising steps towards distributed data manage-
ment. Nevertheless, biological data integration goes beyond linking annotations
from different sources in the users web-browser (see Stein (2002) for a recent com-
mentary on web based bioinformatics resources). Such a system has to be fully open
(i.e. the source code must be available) as well as allowing for large scale queries.
There will be many technical challenges such as version management (e.g. manag-
ing different revised versions of a genome taking into account dependencies of the

downstream analyses).

The analysis described in chapter 4 is a top-down approach to classify and com-
pare proteomes. Based on SCOP superfamilies the comparison of the protein domain
repertoire of different proteomes includes very distant relationships and provides a
rather general view. On the superfamily level it is difficult to perform functional
comparisons. It is now important to choose a finer granularity for the analysis of
protein function by identifying families and sub-families within a superfamily. Func-
tional specificities may be encoded by just a few different residues between highly

related sequence families. For example, this work showed that there are more nu-
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clear receptor-binding domains in C. elegans than in human. However, different
functional families have been expanded in worm compared to human (these data
were not shown or discussed in chapter 4 because they are beyond the scope of this

work).

The functional context of these families and sub-families (for example the path-
ways these proteins and domains are found in) will show the extent of functional
flexibility of a superfamily and will provide evolutionary insights into the structure-

function relationship.

In the past the collection of experimental data was often the bottleneck in bio-
logical research. With the rapid development of high throughput technologies, the
computational data analysis becomes more a bottleneck. It will be interesting to
observe how bioinformatics will keep up with these challenges, but it will even more

exciting to participate.
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Appendix A

Supplementary material for
3D-GENOMICS

A.1 Database tables

| Attribute | Type J Description
Alignment (Alignment): Stores information common to all kinds of alignments
Featureld int ref. to a Feature
Sbj int ref. to a Pseq (subject of alignment)
SbjStart smallint start of alignment in subjects
SbjStop smallint stop of alignment in subject
Identity tinyint percent sequence identity

AutoAnnot (-): Dump of text information from other tables, generated by a script for fast annotation
search via the web

Tags varchar space separated list of genome names

Pseqld int ref. to a Pseq of the genomes described by Tags
Descrip text a text description

Type varchar type of annotation (e.g. scop or pfam)
BlastHit (BlastHit): BLAST specific hit information

Featureld int ref. to an Alignment

Evalue double e-value of bit score

Score float bit score

BlastRun (BlastRun): BLAST run information

Runld int ref. to a PseqRun

DbSize int size of sequence database in sequences

Status enum( ‘crash’, | final status of BLAST analysis (or run inheriting from a BlastRun),

‘void’, ‘empty’, | ‘drifted’ existing confident hits got lost due to possibly corrupted
‘drifted’,  ‘lim- | PSSM (PSI-BLAST), ‘collecting’ not converged (PSI-BLAST only)

ited’, ‘blast’, | and ‘converged’ (PSI-BLAST only), ‘blast’ means the hit was pro-
‘collecting’, duced by BLAST (otherwise PSI-BLAST), ’rps’ means produced by
‘converged’, ‘RPS-BLAST’ and ‘impala’ produced by IMPALA

‘impala’, ‘rps’ )

ClassName (Feature, Run): Class names to reconstruct API objects
ClassNameld I tinyint l identifier

continued on next page
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continued from previous page

Attribute

I Type

| Description

Name

| varchar

l class name

Coil (Coil): Coiled-coil description

Featureld int ref. to a Feature
Score float confidence score of this coil
CoilRun (CoilRun): Description of a Coils2 analysis
Runld int ref. to a PseqRun
NumHits int number of identified coiled-coils
DomainPartner (ScopStatRun): Domain partners (combinations) for SCOP domains
Runld int ref. to a DomainStat
AC varchar SCOP code for superfamily in DomainStat
AC2 varchar code/accession for other domain
Name varchar Name of other domain
Type enum( ‘scop’, | type of other domain

‘pfam’ )
Freq smallint total frequency of co-occurrence
DomainStat (ScopStatRun): Genome specific SCOP superfamily information
Runld int ref. to a GenomeRun
AC varchar family /superfamily code
Name varchar family /superfamily name
Type enum( ‘scop’, { type of domain

‘pfam’ )
FreqDom smallint number of domains in family /superfamily
RankDom smallint rank of FreqDom
FracDom float FreqDom normalised by number of all domains
FreqSeq smallint number of sequences with domain type AC
RankSeq smallint rank of FreqSeq
FracSeq float FreqSeq normalised by number of sequences with domains
FreqTM smallint number of domains in transmembrane proteins
RankTM smallint rank of FreqTM
AvgSeqld tinyint average sequence identity of domain type
StdevSeqld tinyint standard deviation of AvgSeqld
ScopPartners smallint number of co-occurring SCOP superfamilies
PfamPartners smallint number of co-occurring PFAM entries

Feature (Feature):

Describes any

kind of sequence feature with its location in the sequence

Featureld
ClassNameld
Start

Stop

Runld

int
tinyint
smallint
smallint

int

identifier

ref. to ClassName of feature object
start (within sequence)

stop (within sequence)

ref. to Run that produced this feature

GSCount (GenomeSummary):

Genome wide frequencies of different annotation features

GSCountld
Runld
Name
Number
Type

int

int
varchar
int
enum( ‘Se-
quences’,
‘Regions’,
‘Residues’ )

identifier

ref. to a GenomeRun

name of annotation feature

number of observations for this annotation
‘Number’ refers to sequences, regions or residues

GSMember (GenomeSummary):

Members of a GSCount entry

GSCountld
Memberld

int

int

ref. to a GSCount
ref. to a Pseqld or Featureld (depends on the ‘Type’ of the GSCount)

continued on next page
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continued from previous page

Description

for Alignment

Attribute I Type

Gaps (Alignment): Helper table
Featureld int

QryGaps blob

SbjGaps blob

ref. to an Alignment
compressed list of gap positions and extent in query
compressed list of gap positions and extent in subject

GenomeRun (GenomeRun): Genome wide analysis or data summary

Runld int ref. to a Run
Tags varchar space separated list of genome names/tags

HMM (HMM): HMM associated i
of PFAM HMMs.

nformation (currently not the HMM itself!). Stores annotation

identifier

short name
annotation
length of HMM

ref. to a Feature

e-value of bit score

bit score

start of hit within HMM
stop of hit within HMM

Acc varchar
Name varchar
Description varchar
Leng int
HMMHit (HMMHit): Match to an HMM (from PFAM)
Featureld int
Evalue double
Score float
HMMStart smallint
HMMStop smallint
Acc char

ref. to HMM

Host (Run): Client that executed a run

Hostld smallint

Name varchar

identifier
name of host (or IP-address)

LCR (LCR): Low complexity region

Featureld int
Score float

ref. to a Feature
confidence score of assignment

LCRun (LCRun): Run information of SEG (detection of low complexity regions

Runld int ref. to a PseqRun

NumHits int number of LCR features produced
MakeMat (PsiBlastRun): Binary checkpoint file of last PSI-BLAST iteration
Runld int ref. to a PsiblastRun

Checkpoint mediumblob checkpoint data (platform dependant!)

OMIMgenmap (OMIM): cytogenetic locations and other information for OMIM entries, see

http://www.ncbi.nlm.nih.gov/omim/

for details

numbering system

OMIM entry date
cytogenetic location (locus)
gene symbols (short names)
certainty of locus assignment

title of disease or gene

MIM number (should be unique)
method for genetic mapping

list of comments

list of disorders

mouse correlate

list of literature references

identifies the set of parameters that belong together
name of parameter (key)

ChrMap varchar

EntryDate date

Loc varchar

Symbols varchar

Status enum( ‘C’, ‘P,
‘T, T, L)

Title text

MIM int

Method varchar

Comments text

Disorders varchar

Mouse varchar

Ref varchar

Params (Params): Analysis/Run specific parameters

Paramsld smallint

Pkey varchar

Pvalue varchar

value of parameter (may be NULL)

continued on next page
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continued from previous page

[ Attribute I Type Description
Pdesc (Pdesc): Protein description
Pdescld int identifier
Acc varchar accession number of source database (usually a GI-number)
Name varchar list of all known names and identifiers, NCBI-style
Description text description line
Pseqld int ref. to a Pseq
Date timestamp entry of modification date
TaxId int ref. to a node in taxon database
PdescTag (Pdesc): Linker for Pdesc Tag relationship
Tagld int ref. to a Tag
Pdescld int ref. to a Pdesc

PerlObject (PerlObject): Storage for a persistent perl object (serialised objects)

PerlObjectld
Class

Perl

int
varchar
mediumblob

identifier
class name of object
compressed object

PrositeMatch (PrositeMatch): A match of a PROSITE pattern

Featureld
AC

int
char

ref. to a Feature
accession code of pattern

PrositeRun (P

rositeRun): PROS

ITE pattern database scan

Runld
NumHits

int
int

ref. to a PseqRun
number of matches produced by this run

ProsperoHit (ProsperoHit): Hit

from the prospero program (self alignment to find repeats)

Featureld
Evalue
Score

int
double
int

ref. to an Alignment
e-value of bit score
bit score

ProsperoRun (ProsperoRun): Repeat analysis with prospero

Runld int ref. to a PseqRun
k float calculated k of scoring scheme
lambda float calculated lambda of scoring system
Pseq (Pseq): Protein sequence
Pseqld int identifier
Seq text amino acid sequence as a string
md5 varchar hexadecimal 16 byte MD5 checksum of Seq
Date timestamp entry date
QuickBits int unsigned annotation bitmask, precompiled from Pdesc list
Len smallint un- | length of Seq
signed
PseqMask (GenomeSummary): Bitmask for generated annotation for each sequence residue po-
sition
Runld int ref. to a GenomeRun
Pseqld int ref. to a Pseq
Mask blob compressed list of integers for sequence, each position is a bitmask for

a residue

PseqOMIM (Pseq, OMIM): Relationship between Pseq and OMIM

Pseqld
MIM

int
int

ref. to a Pseq
OMIM identifier, ref. to OMIMgenmap

PseqRun (PseqRun): Protein sequence based analysis

Runld

Pseqld
Start

int
int

smallint un-

signed

ref. to a Run
ref. to a Pseq
start of analysed region

continued on next page
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continued from previous page

Attribute | Type l Description
Stop smallint un- | stop of analysed region
signed

PsiBlastHit (PsiBlastHit): A PSI-BLAST hit

Featureld
Iteration
Flag

int

tinyint

set( “firstPS’,
‘last’, ‘lastSeen’,
‘best’ )

ref. to a BlastHit

iteration of this hit

description of iteration, ‘firstPS’ is the 1st position specific iteration
this hit was found in (at least iter. 2), ‘last’ iteration, ‘best’ iter. is
where the hit has the best e-value, ‘lastSeen’ is the iter. after which
this hit disappeared)

PsiBlastRun (PsiBlastRun): PSI-BLAST analysis

Runld int ref. to a BlastRun
ItersRequest tinyint maximum number of requested iterations
ItersDone tinyint number of performed iterations
PSSM blob compressed text PSSM of last iteration
Region (Region): Cluster of alignments within a region produced by a SummaryRegionRun of the
API
Featureld int ref. to a Feature
RepFeatureld int ref. to a Feature/Alignment
RegionFeature (Region): Member of a region
Regionld int ref. to a Region
Featureld int member (ref. to a Feature/Alignment)
Run (Run): Superclass for any kind of analysis
Runld int identifier
ClassNameld tinyint ref. to a ClassName
Date datetime date when analysis was carried out
RunTime mediumint runtime of analysis
Hostld smallint ref. to Host
Paramsld smallint ref. to Params
Error varchar optional error or status string
SecStr (SecStr): A secondary structure element
Featureld int ref. to a Feature
State enum( ‘C’, ‘T’, | Coil, Turn, Helix, Strand
‘H’, ‘E’)
Score blob compressed list of scores at each position from Feature.Start to Fea-

ture.Stop

SigPep (SigPep): Signal peptide

Featureld int ref. to a Feature
Model enum( ‘gram+’, | best model (gram positive or negative or eukaryotic)
‘gram-’, ‘euk’ )
Score float confidence score of prediction
TMH (TMH): Transmembrane helix
Featureld int ref. to a Feature
Ori enum( ‘in’, ‘out’ | topology, N-terminus of first helix is inside or outside the cell

)

TMRun (TMRun): Transmembrane analysis

Runld
Score
NumHits

int
float
int

ref. to a PseqRun
overall confidence of prediction
number of predicted membrane helices

continued on next page
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I Attribute I Type Description
Tag (Pdesc): A descriptive keyword or label for sequences, e.g. ‘Ecoli’ to label all sequences of the
genome.
Tagld int identifier
Name varchar keyword
Type enum( ‘user’, | keyword was set by a user, automatically or is a database name
‘static’, ‘db’ )
Table A.1: Tables of the 3D-GENOMICS database. For a detailed description of the data-types

see the MySQL manual (http://www.mysql.com). For many data-types MySQL allows a size
definition in digits or characters (for char, varchar, text and blob), these are not shown in the
Type column. The table name is given in bold font with the managing class of the API in braces.

Primary key, non-unique keys and unique keys are shown. ‘ref.’ is ‘reference’, ‘iter.’ is ‘iteration’.

[ Attribute J Type J Description
Classif: The SCOP classification
DomainCode varchar | e.g. d3sdha_
Release smallint | e.g. 1.53
FullCode varchar | numerical code, e.g. 1.001.001.001.001.001
ClassDescRef int ref. to Descrip (class name)
FoldDescRef int ref. to a Descrip (fold name)
SfamDescRef int ref. to a Descrip (superfamily name)
FamilyDescRef | int ref. to a Descrip (family name)
ProteinDescRef | int ref. to Descrip (protein name)
SpeciesDescRef | int ref. to a Descrip (species name)
PDBCode varchar | the PDB code, e.g. 3sdh
Region varchar | the domain definition within the PDB entry, e.g. ‘a:’ or ‘a:143-

283’

Descrip: Names
Id int identity
Txt varchar text description, e.g. protein name

Table A.2: Tables of the SCOP database. The table name is given in bold font. Primary
keys and non-unique keys. ‘ref’ is ‘reference’. The FullCode defines the root (1), class,
fold, superfamily, family and protein+species accession number separated by a ‘.’ (e.g.
‘1.002.012.033.004.008”). The classification is taken from ASTRAL flat files (Chandonia et al
(2002), http://astral.stanford.edu/). Sequences and structures are not stored in the tables, but in
flat files. The identifier system has changed starting with release 1.55, and is not compatible with
the Classif table, which stores SCOP releases 1.48, 1.50 and 1.53.


http://www.mysql.com
http://astral.stanford.edu/
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A.2 Classes and modules of the API

Method/Function |

Description I

Alignment (Feature): Baseclass for alignment based classes such as BlastHit.

get
getPairwise
sprintPairwise
fullSbj
calcldentity
hssp
swapQrySbj

coverage

redef. of baseclass method

returns a pairwise alignment as an array

returns a pairwise alignment as a string

alignment with terminal gaps and gaps removed from the query.
recalculates sequence identity in percent

scores an alignment by length and percent identity (Rost, 1999)
swaps query and subject of an alighment

returns alignment coverage in query and subject sequence

AnnotRegion (HomolRegion): A functionally annotated sequence region.

isAnnot

] true for this type of region

BlastHit (Alignment):

A BLAST HSP (hit). No special methods.

BlastRun (PseqRun): A complete BLAST run.

makeRuns

queueResourceOpt
queueCommand
getQryMaskedFeatures
getQrySeqString

run

getHits

getSummary

seaview

clustalx

non oop funtion to generate a list of BlastRun objects for a sequence (extension of
baseclass function)

required computing resources

redef. of baseclass method

get feature objects that were used to mask query

get query string as it was passed to BLAST

redef. of baseclass method

return list of BlastHits (or other hit types for classes inheriting from BlastHit)
extension of baseclass method

display a list of hits as a multiple alignment using the ‘seaview’ program
display a list of hits as a multiple alignment using ‘clustalx’

Coil (Feature): A coiled-coil sequence region. No special methods.

CoilRun (PseqRun): A coiled-coil analysis of a sequence.

run

L redef. of baseclass method

DbConnection (-): A database connection object. Provides methods to retrieve data from and to insert
data into the database. It is the baseclass for most of the other classes, because most objects are stored in
the database. Database connections are managed via the Perl DataBase Interface (DBI).

new
sync

get

modify

set

readOnly
dbConnect
isConnected
refresh
RaiseError
dbLogging
dbDisconnect
prepareForDump
reconnect
dbHandle
dbSource
dbName

dbHost

dbUser
dbPasswd

object constructor

synchronises the object with the database (reads from or writes to database)
takes a list of object attribute names and returns their values

modifies an object (call sync afterwards!)

sets value for an attribute (call sync afterwards!)

makes the object read only (changes do not get written to the database)
connects to database

true if object is connected to database

refreshes a database connection (if it was lost)

makes connections verbose on errors (called by dbConnect)

makes data modifying actions logged by the sql-server(called by dbConnect)
disconnects from database

prepares object for PerlObject table (disconnects form database)

opposite to prepareForDump (reconnects persistent object to database)
returns a Perl DBI database handle

returns a Perl DBI database source string

returns the name of the database

returns the database host

returns the database user name

returns the database password for the user

continued on next page
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page

| Method/Function Description
lastInsertld returns the last insert ID from AUTOINCREMENT tables.
selectRow executes an SQL SELECT statement and returns one row
doSQL executes any SQL statement, does not return a value
dbQuote quotes a string to be SQL compatible
now current date and time in a format readable by the SQL-server

DomDbRegion (Region): A Region that is a domain.

isDomain
maxStoredFeatures

true for this type of domain
returns the maximum number of stored members for this region

DomainStat (DbConnection): Objects of this class store high level information about a domain type
such as a particular SCOP superfamily. This class was mainly developed for web-purposes.

normalise

getPartners
getLink

normalises data by the number of genomes that were used for the analysis (the number
of Tags from the GenomeRun object)

gets a list of domain partners for a domain type

gets the URL for an attribute to link to a script that gives more information

Feature (DbConnecti

(currently only Pseq objects).

on): The baseclass for all feature types that describe a location within an object

remove
overlaps

within

len

getStringRep
getStringRepChar
getSummary

clone

cloneCopy
insertWebFeature
webFeature
webLinkText
webLinkUrl
webLeftEndChar
webRightEndChar
webPadChar
webColour
webLinkMouseOver-
Text

name

removes feature object

returns the overlap (in residues) between two features

returns true if the other feature is contained within the feature

returns the length of the feature

string representation of the feature (extended by subclasses)

a single character representation (extended by subclasses)

summary information about a feature (implemented by inheriting classes)
returns a copy of the database synchronised object blessed to its correct class
returns a copy of the current object as it is (including modifications)
inserts the web-representation of the feature into a string

the actual web-feature (extended by subclasses)

the text of the URL (extended by subclasses)

the URL itself {extended by subclasses)

left terminal character of the web-presentation (extended by subclasses)
right terminal character of the web-representation (extended by subclasses)
characters outside this feature (extended by subclasses)

colour of the feature (extended by subclasses)

text to appear in browser on mouse-over (extended by subclasses)

the name of the feature (class name, can be overwritten by other classes)

GapCoder (-): Not a class, helper module to manage gaps of alignments.

encode
decode

encodes an alignment or a list of gaps into a compact form
decodes an encoded alignment into a list of gap positions and gap-extensions

Genome (DbConnect

ion): Simple representation of a genome.

getPseqs
makePseqRuns
writeTable
writeFeatureTable

linkByBlast

returns all Pseq object for this genome

generates a particular run type for the genome

writes an SQL table with every Pseqld of the genome, and returns the table name
writes an SQL-table that contains all requested features for all Pseq objects of the
genome, returns the table name

returns an SQL-table name with all homologues between the genome and a given
other genome.

GenomeRun (Run): Baseclass for all analysis that treat a genome or proteome as a whole.

alreadyRun

queueStderrld

implementation of baseclass object, returns true if the object is was already processed
before with the same parameters
where the stderr of the analysis is copied to
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Method/Function

[ Description

queueStdoutld

] where stdout of the analysis is copied to

GenomeSummary (GenomeRun): Genome wide annotation summary and statistics.

getBitTemplates

getNextFreeBit

returns a hash with annotation types as keys and their corresponding bits in the
residue wise description of a sequence

returns the next bit to be used for a new annotation type

redef. of baseclass method

run
writeCount writes a generated counts to the database

readCount reads the count for a particular annotation type from the database
getGSCountld returns a GSCountId for the requested ‘Name’/‘Type’ pair of annotation
getMemberlds returns a list of IDs that are members of this annotation type
getPfamRegion- returns a hash of PFAM entries found for within this genome

Members

getScopRegion- returns a hash of SCOP domains found in this genome

Members

getBitMask returns the residue wise bit mask of a Pseq object that is part of the genome
queueResourceOpt redef. of baseclass method

HMM (DbConnection): Simple representation of a hidden Markov model, currently contains PFAM

annotation information only.

noopGetDesciption

I fast non oop funtion, returns the HMMs description (annotation)

HMMHit (Feature): A high scoring match of a protein sequence to an HMM.

isAnnot

coverage

true if the HMMHit is to a functional annotated HMM (should be moved to the
HMM class)

returns length coverage of the query by the HMM and the HMM length coverage by
the query as two real numbers

HMMRun (PseqRun):

Run class for ‘hmmpfam’ of the HMMer package.

run
queueCommand
getDomains

implementation of baseclass method
redef. of baseclass method
returns HMMHit objects, temporarily modified to be non-overlapping

HomolRegion (Region): A sequence region with homologous sequences.

getRepPdesc

J returns the Pdesc object of the subject sequence the representative alignment

tative for the PSSM).

IMPALAHIt (BlastHit): A Hit and HSP produced by IMPALA (subject is a sequence that is represen-

getPsiBlastRun

returns the PsiBlastRun object that produced the checkpoint file used to generate
the IMPALA matrix

IMPALARun (BlastRun): Run class for IMPALA program.

run
queueResourceOpt
queueCommand

redef. of baseclass method
redef. of baseclass method
redef. of baseclass method

LCR (Feature): A Low Complexity Region produced by an LCRun. No special methods.

LCRun (PseqRun): Run class for the SEG program.

run

| implementation of baseclass method

MultiRun (Run): Objects of this class contain several other Run objects that will all be executed on the
same client computer. This avoids overloading the queueing system if the runtime time for the actual Run
object that performs an analysis is short.

getRuns

run

alreadyRun
queueResourceOpt
queueStderrld

queueStdoutld

returns the Run objects to be executed

redef. of baseclass method

returns the object if it was already run before
redef. of baseclass method

where stderr is copied to

where stdout is copied to
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Method/Function [ Description

Names (-): Not a class. Contains hashes and arrays of organism names and tags (abbreviations) to group
genomes. Does not provide any functions.

Nobody (-): This package overwrites some routines of the DbConnection package (but it does not inherit
from DbConnection), and may be used for anonymous read only database access.

dbPasswd redef. of baseclass method (no password)

dbUser redef. of baseclass method (‘nobody’)

dbName redef. of baseclass method

OMIM (DbConnection): Representation of an OMIM entry.

remove raises and error (object cannot be removed)
getPseqs get Pseq objects linked to this OMIM object
setPseq link a Pseq object to this OMIM object
removePseq remove link between Pseq object and OMIM object
getByPseq non oop funtion to search a OMIM objects by Pseqld
getByTextField non ocp function to search OMIM objects by text
webLinkText same as Feature.webLinkText

webLinkUrl same as Feature.webLinkUrl

webLink same as Feature.webLink

PSSM3dHit (Alignment): A hit produced by a PSSM3dRun, a (usually remote) homologue of known

structure.

confidence J returns a confidence measure in percent

PSSM3dRun (PseqRun): Run class to perform the 3D-PSSM analysis.

makeRuns non oop function to generate a list of PSSM3dRun objects for a sequence
queueResourceOpt redef. of baseclass method

queueCommand redef. of baseclass method

run implementation of baseclass method

Params (DbConnection): Parameter sets used by an analysis (Run object).

remove remove this object from the database

getAll get all parameter key/value pairs

hasKey true if the parameter key exists

get redef. of the baseclass method that does not raise an error if called with a non existing

attribute (makes ‘hasKey’ obsolete)

PdbRegion (Region): A Region defined by homology to sequences of known structure (PDB chains).

isStructure true for this kind of region

maxStoredFeatures redef. of baseclass method

myTag ‘pdb’

Pdesc (DbConnection): A description of a protein sequence, contains free text and different tags (key-
words).

remove removes the object from the database

getDb returns the tag of the source database this object come from
getTaxon returns the corresponding Taxon object if it exists
webLinkText same as Feature.webLinkText

webLinkUrl same as Feature.webLinkUrl

webLink same as Feature.webLink

webLinkMouseOver- same as Feature.webLinkMouseOverText

Text

PerlObject (DbConnection): Helper class to distribute Run objects over a computer farm, stores un-
composed PerlObjects as Perl code.

remove I removed the object from the database

PrositeMatch (Feature): A match to a PROSITE pattern. No special methods.

PrositeRun (PseqRun): Finding PROSITE patterns within a query sequence.

run | implementation of baseclass method
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Method/Function

I

Description

getPrositePatterns

]

non oop function to retrieve the patterns from a flat file

ProsperoHit (Alignment): Alignment produced by the ‘prospero’ program. No special methods.

ProsperoRun (PseqRun): Runs the prospero program for a protein sequence.

run

implementation of baseclass method

Pseq (DbConnection):

A protein sequence.

remove

getBioSeq

fseq

getFeatures
getPsiBlastHits
getBlastHits
getHits
getXBlastHits
getSegsHittingMe

getHitsToMe
getSummaryRegions
xmapFeatures

getRuns

getDbs
getPdesc
getPdescs
getTaxIds
makePseqRuns
getPSSMs
getPSSM
getPSSMerror
getOMIM
seaview

clustalx
makeSCOPdom
makeSCOPdoms

getBits

SQLsetBits

removes object from the database (including all objects depending on this object)
generate a BioPerl object from this object

write object in fasta format

returns the list of features for this sequences (from all run objects)

returns PsiBlastHit objects

returns BlastHit objects

wrapper for the two methods above

returns both, PsiBlast and Blast hit objects

returns Pseq objects for which a PsiBlastHit object has this Pseq object as subject
of the alignment

similar to the above method, but it returns PsiBlastHit objects

returns the list of Region objects for this sequence

uses a list of features and replaces the corresponding sequence positions with the ‘X’
character (sequence masking)

returns a list of Run objects

returns a hash of source database tags for this sequence

returns a requested Pdesc object

returns all Pdesc objects for this object

returns a hash of corresponding TaxIds (for Taxon objects)

non oop function to generate a list of Run objects

returns a list of PSI-BLAST PSSMs for all sequence fragments of this sequence
returns one PSI-BLAST PSSM that covers the whole sequence

returns an error message if there was any while calling one of the two above methods
returns OMIM objects linked to this object

launched the ‘seaview’ multiple sequence alignment viewer and displays homologues
same as ‘seaview’, but using the ‘clustalx’ program

generates a SCOPdom object if this object corresponds to a SCOP domain

if the object corresponds to a PDB chain, a list of corresponding SCOPdom objects
is generated

returns a hash with source database tags and some other tags and corresponding bits
(shortcut to get the annotation status and the source databases for the object, this
bypasses the slow request of Pdesc objects)

non oop function to set the bits described above for the object (should be run by the
administrator on Pseq or Pdesc table updates)

PseqFrag (Pseq): A region within a protein sequence.

set

remove

modify

getFull
getBioSeq
getOverlapping-
Features
getWithinFeatures
getFeatures
getBlastHits
getPsiBlastHits

redef. of baseclass method, raises and error

redef. of baseclass method, raises and error

redef. of baseclass method, raises and error

returns the full-length Pseq object

same as for a Pseq, but on a fragment

returns feature objects that overlap with this sequence region

feature objects that are contained within this region
same as getOverlappingFeatures
same as baseclass method, but filters to non-overlapping hits

same as method above, but for PsiBlastHits
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Method/Function Description I
getHits same as baseclass method, but filters non-overlapping hits

getSummaryRegions same as baseclass method, but filters non-overlapping regions

getHitsToMe same as baseclass method, but filters non-overlapping hits

getRuns same as getOverlappingRuns

getExactOrFullRuns gets all runs that are exactly mapped to this fragment or the whole Pseq object
getWithinRuns run objects contained within this region

getOverlappingRuns run objects overlapping with this region

getPSSM extends baseclass method, sub-matrix of the full length PSI-BLAST PSSM
xmapFeatures extends baseclass method

overlaps same as Feature.overlaps but for a Pseq fragment

within same as Feature.within but for a Pseq fragment

PseqRun (Run): A Run that is performed on a protein sequence, baseclass for many other Run objects.

alreadyRun

queueStderrid
queueStdoutld
makeRuns
overlaps
within
getPseqld

implementation of baseclass method, returns object if it was already run with the
same Params object and Start/Stop definitions

redef. baseclass method

redef. of baseclass method

non object oriented function, implementation of baseclass function

similar to PseqFrag method

similar to PseqFrag method

fast method to retrieve the Pseqld of the object

PsiBlastHit (BlastHit): A hit produced by the PSI-BLAST program. No special methods.

PsiBlastRun (BlastRun): Runs the PSI-BLAST program.

writeCheckpointFile retrieves a checkpoint and writes it to a file.

getCheckpoint retrieves a checkpoint

drifted tries to determine if the run drifted (use with caution!)

PsiPredRun (PseqRun): Runs the PSI-Pred secondary structure prediction program (requires a PsiBlas-
tRun).

run l implementation of baseclass method

Region (Feature): A cluster of Features (currently alignments only), that define a region within a sequence,
base class for many specialised region types.

getFeatures
countsAs

isDomain
isStructure
isAnnot
maxStoredFeatures
myTag
getRepPdesc

list of features that are a member of this region

this region is only a fraction of a domain (e.g. a region from a discontinuous domain)
true if the region is a domain

true if region has known 3D-structure

true if region is annotated

default of maximum number of members to store

a tag/keyword for this region (to be implemented by other classes)

Pdesc object of the subject of the representative alignment

for all other runs.

Run (DbConnection):

The basic analysis object, to manage execution of the actual analysis. Baseclass

makeRuns
remove
getFeatures
getSummary
run

queue
queueCommand
queueName
queueStdoutDir
queueStderrDir
queueStderr

generate one or more run objects (to be implemented by other run classes)
remove this object from the database

list of Feature object from this Run object

descriptive information about the object (to be implemented by other run classes)
execute the analysis (to be implemented by other Run classes)

submit object to the queueing system

the command submitted to the queueing system

the name of the queue

directory to which stdout gets copied to

directory to which stderr gets copied to

filename of stderr

continued on next page
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queueStdout filename of stdout
queueStderrld unique name for object stderr
queueStdoutld unique name for object stdout
queueSleep pause between subsequent submissions to the queue
queuedMax maximum number of objects in the execution queue
queueResourceOpt required computing resources to execute the analysis
alreadyRun true if the analysis was already run before, e.g. if the object already exists in the
database (to be implemented by specialised classes)
clone copies and returns the database synchronised object blessed with the correct class
(similar to Feature.clone)
countFeatures number of Feature objects from this run
makeNonOverlapping- returns a list of read only non overlapping Feature objects (temporarily modifies the
Features Features Start/Stop)
getRunldsByParams non oop function that returns a list of cloned Run objects that satisfy given parameter
key/value pairs of Params objects.

SCOPdom (Pseq): A sequence that is a SCOP domain. Links the 3D-GENOMICS main database to the
scop helper database. Currently provides attributes only (also see A.2)

ScopRegion (DomDbRegion): A sequence region defined by SCOP homologues.

isStructure true for this region type

getRepScopDom returns a representative SCOPdom object
getSuperfamilies the superfamily of the region

myTag ‘scop’

countsAs 1, or the fraction of a discontinuous SCOP domain

ScopStatRun (GenomeRun): High level analysis of SCOP superfamilies, requires many other analysis
to be done before (e.g. GenomeSummary).

run implementation of baseclass method

getHash a hash of DomainStat objects

getGS get corresponding GenomeSummary object
getDomainPairs gets all domain pairs for this run with one request

ScratchDb (DbConnection): Database connection to a user writable database (even ‘nobody’ is allowed
to write to the scratch database). Stores temporary user specific objects.

dbName redef. of baseclass method (‘scratch’)
dbUser redef. of baseclass method
dbPasswd redef. of baseclass method

SecStr (Feature): A Secondary structure element (produced by a PsiPredRun).

getResidueScore I score for the secondary structure state at a residue position

SigPep (Feature): An N-terminal signal peptide. No special methods.

SigPepRun (PseqRun): Searches for signal peptides.

queueResourceOpt redef. of baseclass method

run implementation of baseclass method

SummaryRegionRun (PseqRun): Clusters alignments into different types of regions (specialised Region
objects).

run J implementation of baseclass method

TMH (Feature): A transmembrane helix. No special methods.

TMRun (PseqRun): A transmembrane helix prediction for a sequence.

makeRuns redef. of baseclass method
run implementation of baseclass method

Taxon (DbConnection): Taxonomy object, interface to the taxon helper database.

remove redef. of baseclass method, raises and error
getParent get the Taxon object of parent node of the taxonomic tree
getChildren get all Taxon objects that have this Taxon as parent

continued on next page
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Method/Function Description I
getRank the name of the rank of the object (e.g., ‘kingdom’, ‘genus’)

inSubTree true if the object is in a tree rooted by a given other node

isRoot reverse of ‘inSubTree’, true if object is root of a given other node

webLinkText same as Feature.webLinkText

webLinkUrl same as Feature.webLinkUrl

webLink same as Feature.webLink

Workstations (-): Not a class. Helper module to submit Run objects to a computer farm.

run l submit several Run objects to the queueing system

fastaDB (-): Not a class. Inserts sequences and sequence descriptions together with specific user informa-
tion as objects into the database. Used for large scale database insertions and updates.

insertEntries insert a Pseq and with several Pdesc entries into the database

insert insert all entries of an annotated (description line) fasta formated sequence file into
the database

nextSeq returns the next fasta entry of the sequence file

pbPSSM (Feature): A PSSM generated by PSI-BLAST.

remove redef. of baseclass, raises and error

getResidue the amino acid at a given position

getScore the score for a given amino acid type at a given position

getScores all amino acid scores for a given position

getSubMatrix a sub-matrix that describes a given region of the sequence

Table A.3: Overview over modules and classes of the 3D-GENOMICS API. The class or module
name is given in bold font above each subtable, and the base class is given in braces. Only
methods and functions are described. Class attributes are usually the same as the attributes
of the corresponding SQL table (see A.1). Some specialised modules, classes or methods of the
API are not shown. For simplification the returned data types and the list of possible arguments
for methods are not explicitely shown. ‘redef’. means redefinition, ‘def.’ means definition. If a
class does not provide any special methods it may still redefine or extend baseclass methods. For
example most classes that inherit from Feature redefine some of the web* and getString* methods
as well as the getSummary method. Classes inheriting from Run redefine the getSummary method.
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Internet resources

[ URL

Description

ftp://ftp.ebi.ac.uk/pub/software/unix/coils-2.2/
ftp://ftp.ncbi.nih.gov/blast
ftp://ftp.ncbi.nih.gov/blast/db/nr.2
ftp://ftp.ncbi.nih.gov/genomes/

ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/
ftp://ftp.ncbi.nih.gov/pub/seg/
ftp://ftp.ncbi.nih.gov/pub/taxonomy/
ftp://ftp.ncbi.nlm.nih.gov /blast/db/

http://astral.stanford.edu/
http://bioinf.cs.ucl.ac.uk/psipred/
http://genomes.rockefeller.edu/magpie/
http://hmmer.wustl.edu/
http://jura.ebi.ac.uk:8765/ext-genequiz/
http://pedant.mips.biochem.mpg.de
http://presage.berkeley.edu/
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html
http://scop.mrc-lmb.cam.ac.uk/scop/
http://smart.embl-heidelberg.de
http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY /
http://wit.integratedgenomics.com /GOLD

http://www.biochem.ucl.ac.uk/bsm/cath/
http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS
http://www.bioperl.org

http://www.blocks.fhcrc.org

http://www.bmm.icnet.uk
http://www.cbs.dtu.dk/services/SignalP-2.0/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.ebi.ac.uk

http://www.ebi.ac.uk/interpro
http://www.ebi.ac.uk/proteome
http://www.embl-heidelberg.de/ rost/

http://www.embl-heidelberg.de/predictprotein/predictprotein.html)

http://www.ensembl.org
http://www.enzim.hu/hmmtop/
http://www.expasy.ch/swissmod /SM_3DCrunch.html
http://www.expasy.org/prosite
http://www.geneontology.org
http://www.integratedgenomics.com/
http://www.mysql.com

http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov/BLAST/

software to predict coiled-coils in protein sequences

BLAST, PSI-BLAST and IMPALA executable programs
non-redundant protein sequence database

Nucleic acid and protein sequences from completely sequenced
genomes (or nearly finished genome projects)

the old site for genome sequences

software to detect low complexity regions in protein sequences
tables of the NCBI taxonomy database

sequence databases for BLAST and PSI-BLAST (nucleotide
and protein)

protein sequences for SCOP domains

secondary structure prediction of protein sequences

Magpie, genome annotation software package

HMMer software package for hidden Markov models
GeneQuiz software for web based for protein annotation
genome and proteome annotation database

database for structural genomics projects

ProDom, protein domain database

Structural Classification Of Proteins

domain database

HMMs for SCOP and proteome assignments of SCOP domains
list and status of completed and ongoing genome sequencing
projects

another structural classification of proteins

CATH domain assignments to genomes

database of protein domains and motifs

BioPerl software project

BLOCKS domain and motif database

Biomolecular Modelling site at Cancer Research UK

signal peptide prediction of protein sequences
transmembrane helix prediction of protein sequences
European Bioinformatics Institute, general biocinformatics re-
source

combined database of domains, motifs and protein sequences
proteome annotation site

B. Rost homepage with supplementary material for alignment
accuracy

Predict Protein, protein sequence annotation and structure
prediction

human genome annotation

transmembrane helix prediction in protein sequences

results from large homology modelling of protein sequences
PROSITE patterns for functional motifs

Gene Ontology project

bioinformatics company

relational database system

general bioinformatics resource, National Center for Biotech-
nology Information

interactive BLAST and PSI-BLAST

continued on next page



ftp://ftp.ebi.ac.uk/pub/software/unix/coils-2.2/
ftp://ftp.ncbi.nih.gov/blast
ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.ncbi.nIm.nih.gov/genbank/genomes/
ftp://ftp.ncbi.nih.gov/pub/seg/
ftp://ftp.ncbi.nih.gov/pub/taxonomy/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://astral.stanford.edu/
http://genomes.rockefeller.edu/magpie/
http://hmmer
http://jura
http://pedant.mips.biochem.mpg.de
http://presage.berkeley.edu/
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html
http://scop.mrc-lmb.cam.ac.uk/scop/
http://sraart.embl-heidelberg.de
http://steish.mrc-lmb.cam.ac.uk/SUPERFAMILY/
http://wit.integratedgenomics.com/GOLD
http://www
http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/
http://www.bioperl.org
http://www.blocks.fhcrc.org
http://www.bmm.icnet.uk
http://www.cbs.dtu.dk/services/SignalP-2.0/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.ebi.ac.uk
http://www.ebi.ac.uk/interpro
http://www.ebi.ac.uk/proteome
http://www.embl-heidelberg.de/
http://www.embl-heidelberg.de/predictprotein/predictprotein.html
http://www.ensembl
http://www.enzim.hu/hmmtop/
http://www.expasy.ch/swissmod/SM_3DCrunch.html
http://www.expasy.org/prosite
http://www.geneontology.org
http://www.integratedgenomics.com/
http://www.mysql.com
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/BLAST/
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continued from previous page

I URL r Description
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=0OMIM resource for inherited human disease (OMIM)
http://www.ncbi.nlm.nih.gov/omim/ the old OMIM page (different interface)
http://www.openpbs.org load sharing system for distributed processing
http://www.rcsb.org/ database of protein structures
http://www.sanger.ac.uk/Projects/M_tuberculosis M. tuberculosis sequence and annotation resource
http://www.sanger.ac.uk/Software/Pfam PFAM, protein family and domain database
http://www.sbg.bio.ic.ac.uk Structural Bioinformatics Group at Imperial College
http://www.sbg.bio.ic.ac.uk/3dpssm/ remote homology detection of protein of known structure
http://www.structuralgenomics.org/ resource for structural genomics
http://www.tigr.org/ TIGR genome sequencing centre
http://www.well.ox.ac.uk/rmott/ARIADNE/ protein sequence comparison software including repeat detec-

tion in proteins

Table B.1: URLs for Internet resources mentioned or used within this work.


http://www.ncbi.nlm
http://www.ncbi.nlm.nih.gov/omim/
http://www.sanger.ac.uk/Software/Pfam
http://www.sbg.bio.ic.ac.uk
http://www.sbg.bio.ic.ac.uk/3dpssm/
http://www.structuralgenomics.org/
http://www.tigr.org/
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Appendix C

Abbreviations

C.1 Amino acids

ALA
CYS
ASP
GLU
PHE
GLY
HIS
ILE
LYS
LEU
MET
ASN
PRO
GLN
ARG
SER
THR
VAL
TRP
TYR

RS <HRTOUTZZIOR"IZIQHTIEUOQ»

Alanine
Cysteine
Aspartate
Glutamate
Phenylalanine
Glycine
Histidine
Isoleucine
Lysine
Leucine
Methionine
Asparagine
Proline
Glutamine
Arginine
Serine
Threonine
Valine
Tryptophane
Tyrosine

‘ignored’ residue position

Table C.1: One letter and three letter codes for amino acids.
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C.2 Proteins, domains and other biomolecules

ARF-GAP
ARM repeat
ATP
BRACA1
CBS domain

CUB

CalLB
DD-carboxypeptidase
DEATH domain
EF-hand

EGF

ERK2

EST

ETS domain
GPCR

GSK-34

GTP

HPr

HSP90

KH domain
LIM domain

MAP

MBP1

MHC
NAD(P)
NFkB

PDZ domain

PH domain
PK-like
PKC

PKD domain
PMS1

POZ domain
Pyk2

Adenyl-Ribosylation-Factor, GTPase Activated Protein

Armadillo Repeat

Adenosin Tri-Phosphate

Breast Carcinoma 1 gene product

named after a protein (Cystathionine-3-Synthase) that contains this
domain

probably named after the first proteins this domain was found in
(human complement components Clir and C2r, sea urchin uEGF and
human bone morphogenic protein)

Calcium/lipid-binding domain, CaLB)

D-alanyl-D-alanine-cleaving carboxypeptidase

first described in TNF-mediated cell death signalling

Protein domain named after two important helices £ and F
Epidermal Growth Factor

Extracellular Signal-Regulated Kinase 2

Expressed Sequence Tag

Erythroblast Transformation Specific

G-Protein Coupled Receptor

Glycogen Synthase Kinase 3-8

Guanosin Tri-Phosphate

Histidine-containing phosphocarrier proteins

Heat-Shock Protein 90

K (ribonucleo protein) homology domain

zinc finger domain named after the proteins containing this domain
(Lin-11 from C. elegans vertebrate Isl-1 and Mec-3 C. elegans)
Mitogen-Activated Protein kinase

Mlul-box binding protein

Major Histo-Compatibility Complex

Nicotinamide Adenine Dinucleotide (Phosphate)

Nuclear Factor x-B

signalling domain also known as DHR or GLGF (named after ZO-1
a zonula occludent protein)

Pleckstrin homology domain

protein kinase-like

Protein Kinase C

first identified in the PKD1 protein (Polycystic Kidney Disease)
Post Meiotic Segregation Protein 1

Pox virus and Zinc finger

Protein Tyrosine kinase

continued on next page
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continued from previous page

PYP domain
RING domain
RIP

RMS
RNI-like domain
RNaseA
RNaseH

SH2

SH3

Spollaa
SRCR

TFIIA
TGF-b

TIM

TNF
TetR/NARL

TPR
WD repeat

aa-tRNA
aaRS
mRNA
p8-MTCP1

domain found in Photoactive Yellow Protein
‘Really Interesting’ (zinc finger) domain

REV protein (RNA binding protein) Interacting Protein
Root Mean Square

Ribonuclease Inhibitor

Ribonuclease A

Ribonuclease H

SRC (Scavenger Receptor) homology-2 domain
SRC (Scavenger Receptor) homology-3 domain
stage II Sporulation Protein AA

Scavenger Receptor, Cysteine-Rich
Transcription Factor IIA

Transforming Growth Factor
Triose-phosphate Isomerase

Tumour Necrosis Factor

regulatory protein
Tetratricopeptide repeat

tryptophan and aspartate

Amino-Acyl transfer RNA (Ribonucleic Acid)
Amino-acyl-tRNA Synthetase

messenger RNA (Ribonucleic Acid)

Mature T-Cell Proliferation-1 protein

Tetracycline Resistance regulator and Nitrate/Nitrite metabolism

the motif of the repeat is defined by the C-terminal amino acids

Table C.2: Abbreviations of proteins, protein domains and other biomolecules. Capitalisation of

the explanations may give a hint how the abbreviation was derived. Some capitalised names are

nouns rather than abbreviations, and explanations are given where the origin of the name is not

clear.

C.3 Other abbreviations including tools, databa-

ses and programs

1D

3D
3D-PSSM
API
ASTRAL
ASV

one dimensional

three dimensional

three dimensional PSSM (Position Specific Scoring Matrix)

Application Program Interface
Sequence and structure database, supplement to SCOP
avian sarcoma virus

continued on next page
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continued from previous page

BLAST
BLIMPS
BLOCKS
BLOSUM
CASP
CATH

CDS

CGI

DAS

DBI

EBI

EMBL
ENSEMBL
ERGO

ETS domain
FASTA
GO

HIV

HMM
HMMer
HSP
HTML

ID
IMPALA
IP-address
Kb

KEGG
Mb

MD5

MG
MULTICOIL
MySQL
NCBI
NMR
NRPROT
OMIM
ORF
OpenPBS
PAM

Basic Local Alignment Search Tool

BLocks IMProved Searcher

‘alignment Blocks’ (no abbreviation)

Blocks Substitution Matrix

Critical Assessment of Structure Prediction
Class(C), Architecture(A), Topology(T) and Homologous superfamily
(H) (a structural classification of proteins)

Coding Sequence

Common Gateway Interface

Distributed Annotation System

Database Interface

European Bioinformatics Institute

European Molecular Biology Laboratory

Human genome resource (not an abbreviation)
Genome annotation system from Integrated Genomics, Inc. (not an
abbreviation)

Erythroblast Transformation Specific

Fast Alignment Search Tool

Gene Ontology

Human Immune-deficiency Virus

Hidden Markov Model

Hidden Markov Model software package
High-scoring Segment Pair

Hypertext Markup Language

Identifier

Integrating Matrix Profiles And Local Alignments
Internet Protocol (-address)

Kilo bases (1000 bases)

Kyoto Encyclopedia of Genes and Genomes (enzyme pathway database)
Mega bases (million bases)

Message-Digest Algorithm

Mycoplasma genitalium

Multiple Coiled-Coil (prediction)

Product name for a relational database management system
Natioanl Center for Biotechnology Information
Nuclear Magnetic Resonance

Non-Redundant Protein Database

Online Mendelian Inheritance in Man

Open Reading Frame

Open Portable Batch System

Point Accepted Mutation

continued on next page
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continued from previous page

PANTHER A protein classification database

PDB Protein Databank

PEDANT Protein Extraction, Description and ANalysis Tool

PFAM Protein Family database of alignments and HMMs

PIR Protein Information Resource

PRINTS, PRINTS-S | finger Prints

PRODOM, ProDom | Protein Domain (database)

PROSITE not an abbreviation (protein sequence pattern database)

PSI-BLAST Position Specific Iterated BLAST

PSI-Pred Position Specific Iterated Prediction

PSSM Position Specific Scoring Matrix

ProDom-GC ProDom for genome wide domain assignments

RMS Root Mean Square

RMSD Root Mean Square Deviation

RPS-BLAST Reversed Position Specific Blast

SAMT98 Sequence Alignment and Modelling software (using HMMs)

SAMT99 Sequence Alignment and Modelling software (using HMMs)

SCOP Structural Classification Of Proteins

SEG not an abbreviation, detection of composition biased segments in protein
sequences

SMART Simple Modular Architecture Research Tool

SQL Structured Query Language

TB Mycobacterium tuberculosis

TIGR The Institute of Genome Research

TIGRFAM TIGR Family (protein family database)

™ Transmembrane

TMHMM Transmembrane Hidden Markov Model

TOPPRED Topology Prediction (of transmembrane proteins)

TrEMBL Translated EMBL (protein database)

TrEMBL-NEW, new entries in Translated EMBL

URL Unified Resource Locator

WIT Genome annotation database from Integrated Genomics, Inc.

XML eXtended Markup Language

def. defined

iter. iteration

max. Maximum

redef. redefined

Table C.3: Abbreviations of programs, databases, non standard abbreviated organism names
and commonly used abbreviations. Capitalisation of the explanations may give a hint how the
abbreviation was derived. Some capitalised names are nouns rather than not be abbreviations,
and explanations are given where the origin of the name is not clear.
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