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Abstract

A strategy for protein structure and function based annotation of genomes was developed, 
evaluated and applied to the proteins of several genomes including the human genome.

First the performance of the widely-used homology-based sequence comparison pro­
gram PSI-BLAST to detect distant homologous relationships (<20% sequence identity) 
was evaluated. The benchmark is based on two sets of sequences from the Structural 
Classification Of Proteins (SCOP) database for which the homologous relationships are 
known. About 40% of the test proteome can be annotated via remote homologies. Com­
mon sources of errors are identified. PSI-BLAST is applied to assign homologues of known 
structure and function to proteins of M. genitalium and M. tuberculosis. Prom the bench­
mark, the number of missed assignments and the potential extent of new structural and 
functional families was estimated.

An automated proteome annotation system was developed to perform large scale an­
notations based on analyses such as PSI-BLAST. Computationally intensive analyses can 
be distributed across several computers. The system is based on a relational database 
serving as a back-end and a software interface as a front-end. Relational storage of results 
from different analyses permits straightforward evaluation of results and the comparison 
of annotations across genomes.

The above annotation system was applied to fourteen proteomes including the human 
proteome. The extent and reliability of structural and functional annotation in these 
proteomes was evaluated and compared. About 40% of the human proteome can be 
assigned to protein folds. For 77% of the proteome there is some functional information, 
but only 26% of the proteome can be assigned to the standard sequence motifs that 
characterise function. There are substantial differences in the composition of membrane 
proteins between the proteomes in terms of their globular domains. Commonly occurring 
structural superfamilies are identified and compared across the proteomes. The frequencies 
of these superfamilies leads to the estimate that 98% of the human proteome evolved by 
domain duplication, with four of the ten most duplicated superfamilies potentially specific 
for multi-cellular organisms. Occurrence of domains in repeats is more common in metazoa 
than in single-cellular organisms. Superfamily pairs co-occurring in the same protein 
sequence were analysed and compared across the proteomes. Structural superfamilies 
over- and under-represented in human disease genes were identified.



C O N TEN TS

Contents

1 Introduction 10
1.1 Genome sequencing p ro je c ts ....................................................................... 11
1.2 Introduction into genome a n n o ta t io n ....................................................... 13

1.2.1 Finding genes in genomes ..............................................................  13
1.2.2 Functional classification of genes and p ro te in s ...........................  15
1.2.3 Major resources used in protein anno tation .................................  16
1.2.4 Gene Ontology (GO), a controlled vocabulary for genome an­

notation ................................................................................................. 22
1.2.5 Putting everything together to find pathways ............................... 22

1.3 Homology based sequence comparison m ethods...........................................23
1.3.1 Dynamic program m ing......................................................................... 24
1.3.2 Substitution m atrices ........................................................................  27
1.3.3 The basics: BLAST and FastA .........................................................29
1.3.4 Basic statistics and probabilities for local a lig n m e n ts .................. 32
1.3.5 Sequence specific profiles and P S I-B L A S T ......................................34
1.3.6 Using sequence profiles with IMPALA ............................................ 40
1.3.7 Hidden Markov M odels.........................................................................40

1.4 Protein structure and genome an n o ta tio n .................................................... 44
1.4.1 Functional and evolutionary insights from protein structure . . 44
1.4.2 Examples for protein structure/function re la tionsh ips.................. 47
1.4.3 Structural genomics p ro jec ts ............................................................... 52
1.4.4 Structure based classification of p ro te in s .........................................54
1.4.5 Methods for assigning a 3D-structure to protein sequence . . .  56

1.5 Scope and outline of this t h e s i s .....................................................................58

2 Benchm arking PSI-BLA ST in genom e annotation 60
2.1 S u m m a ry ........................................................................................................... 60



C O N TEN TS

2.2 In troduction ........................................................................................................61
2.3 Development of the SCOP genome benchm ark .......................................... 63

2.3.1 SCOP1625 - representative target domain l i b r a r y .......................64
2.3.2 SCOP genome p r o b e .......................................................................... 64
2.3.3 Assignment of structural regions to the SCOP genome . . . .  65
2.3.4 Accuracy m e a su re s ..............................................................................66
2.3.5 Parameter selection ..............................................................................66

2.4 Results of the SCOP genome b en ch m ark ....................................................67
2.4.1 Assignment co v e rag e .......................................................................... 67
2.4.2 Length of region ass ig n m en t............................................................. 70
2.4.3 Analysis of e r r o r s ............................................................................. 70

2.5 Application to bacterial genomes .................................................................73
2.5.1 Structural annotation using SCOP1625 ......................................  73
2.5.2 How much of the genome can be c la ss ified ....................................75

2.6 Discussion and Conclusions ...........................................................................77
2.7 Materials and M eth o d s .................................................................................... 80

2.7.1 Sequence database for PSI-BLAST profiles....................................80
2.7.2 PS I-B L A S T ...........................................................................................80
2.7.3 Identification of regions and domains in the query sequence . . 81
2.7.4 Benchmark of remote hom ologues....................................................82
2.7.5 Genome d a t a ....................................................................................... 84

2.8 Remarks about recent PSI-BLAST enhancem en ts ....................................84

3D-GENOM ICS: A proteom e annotation pipeline 86
3.1 S u m m a ry ...........................................................................................................86
3.2 In troduction ........................................................................................................86
3.3 R eso u rc e s ...........................................................................................................88
3.4 Architecture of the 3D-GEN0MICS system ............................................. 88

3.4.1 The core scheme of the relational d a ta b a se ................................... 88
3.4.2 Inheritance is a major aspect of the database architecture . . .  94

3.5 Post-processing and summary of primary re s u lts .......................................95
3.6 Principles of the 3D-GEN0MICS API ..................................................... 103
3.7 Principles of the analysis pipeline: a parallel distributed system . . . 108
3.8 D iscussion.........................................................................................................110

3.8.1 Restrictions of the current im plem entation ..................................I l l
3.8.2 Suggestions for future developm ents.............................................. 112



C O N TEN TS

3.8.3 Other automated annotation sy s te m s ............................................114

4 Structural Characterisation of the H um an Proteom e 118
4.1 S u m m a ry ......................................................................................................... 118
4.2 In troduction ...................................................................................................... 119
4.3 Strategy for structural and functional an n o ta tio n s.................................. 121
4.4 R esu lts ................................................................................................................121

4.4.1 Status of structural and functional annotations .........................121
4.4.2 Reliability of a n n o ta t io n .................................................................. 124
4.4.3 SCOP superfamilies............................................................................126
4.4.4 SCOP superfamilies specific for phylogenetic branches...............132
4.4.5 Gene d u p lic a tio n ............................................................................... 135
4.4.6 SCOP superfamiles in disease g e n es ...............................................145
4.4.7 Transmembrane p ro te in s .................................................................. 150

4.5 Concluding rem arks.........................................................................................158
4.6 M eth o d s ............................................................................................................ 159

4.6.1 Protein sequences from complete g e n o m e s ..................................159
4.6.2 Sequence an a ly sis ............................................................................... 159
4.6.3 Availability of annotation ...............................................................165

5 Summary, Conclusions and O utlook 166
5.1 Summary and co n clu sio n s............................................................................166

5.1.1 Benchmarking PSI-BLAST in genome a n n o ta t io n ..................... 166
5.1.2 3D-GEN0MICS: A proteome annotation p ip e lin e .....................168
5.1.3 Structural Characterisation of the Human Proteom e..................169

5.2 O u tlo o k ............................................................................................................ 171

Acknowledgem ents 174

A Supplement£u-y m aterial for 3D-G EN O M IC S 175
A.l Database ta b le s ............................................................................................... 175
A.2 Classes and modules of the A P I .................................................................. 181

B Internet resources 189

C A bbreviations 191
C .l Amino a c id s ......................................................................................................191
C.2 Proteins, domains and other biomolecules..................................................192



C O N TEN TS___________________________________________________________ 6

C.3 Other abbreviations including tools, databases and p rog ram s.............. 193

References 196



LIST OF TABLES

List o f Tables

1.1 Finished genome p ro jec ts............................................................................. 13
1.2 PAM70 amino acid substitution m a tr ix ....................................................... 29

2.1 Two points of view about annotation benchm arks....................................63
2.2 Accuracy of genome assignment via h o m o lo g y ..........................................68
2.3 Popular superfamilies in M. genitalium and M. tuberculosis....................75

3.1 External programs for 3D -G E N 0M IC S.......................................................89
3.2 External databases for 3D -G EN 0M ICS.......................................................90

4.1 Commonly occurring superfamilies in the proteom es...............................128
4.2 Organism specific su p erfam ilies ..................................................................133
4.3 Over- and under-represented superfamilies in disease g e n e s ..................149
4.4 Human superfamilies in transmembrane p ro te in s.....................................155
4.5 Bacterial superfamilies in transmembrane p ro te in s..................................156

A .l Tables of the 3D-GEN0MICS d a tab ase ..................................................... 180
A.2 Tables of the SCOP d a ta b a s e ..................................................................... 180
A.3 Modules and classes of the 3D-GEN0MICS A P I .....................................188

B .l Internet resources............................................................................................190

C .l Amino acid abbreviations ............................................................................191
C.2 Abbreviations of protein names and dom ains........................................... 193
C.3 Other abbreviations........................................................................................ 195



LIST OF FIG URES 8

List o f Figures

1.1 Metabolic pathways in the V. cholerae c e l l .................................................. 24
1.2 Distribution of random alignment s c o r e s ..................................................... 33
1.3 The PSI-BLAST procedure ............................................................................36
1.4 A two state hidden Markov m o d e l..................................................................42
1.5 An HMM for multiple sequence alignm ents..................................................43
1.6 Relationship between sequence identity and structural similarity . . .  45
1.7 Multi-functionality of homologous do m ain s ..................................................46
1.8 GSK3/? protein surface and active site ........................................................ 48
1.9 Superposition of ribonuclease H and in te g ra s e ........................................... 50
1.10 Superposition of lysozyme and a-lactalbum in...............................................52
1.11 The SCOP c lassification .................................................................................. 55

2.1 Coverage of homology based assignments at different theoretical error
r a t e s .....................................................................................................................67

2.2 Coverage of homology based assignments at different observed error
r a t e s .....................................................................................................................69

2.3 Relationship between assignment accuracy and superfamily size . . .  71
2.4 Accuracy of domain boundary id en tifica tio n ...............................................72
2.5 Identified and estimated missed h o m ologues...............................................78
2.6 The SCOP domain assignment procedure.....................................................82
2.7 Identification of homologues by P S I-B L A S T .............................................. 85

3.1 Entity relationship diagram for the 3D-CEN0MICS database . . . .  93
3.2 Inheritance in the 3D-CEN0MICS d a ta b a s e .............................................. 95
3.3 Summary of data and intermediate r e s u l t s ..................................................98
3.4 Entity relationship diagram of supplementary ta b le s ................................101
3.5 Code example for the 3D-CEN0MICS API ( I ) ......................................... 103
3.6 Screen-shot of a 3D-CEN0MICS w eb-page................................................104
3.7 Code example for the 3D-CEN0MICS API ( I I ) ...................................... 105



LIST OF FIG URES

3.8 Code examples for object creation and database connectiv ity..............108
3.9 The 3D-GEN0MICS annotation p ip e lin e ................................................. 110

4.1 Annotation status of p ro te o m e s ................................................................. 122
4.2 Full-length structural and functional annotations ................................. 123
4.3 Reliability of structure assignm ents...........................................................125
4.4 Reliability of function assignments.............................................................. 127
4.5 Extent of domain duplication in different pro teom es.............................. 137
4.6 Superfamily expansion in proteomes relative to the human proteome . 139
4.7 Relative expansion of abundant human su p erfam ilie s ...........................140
4.8 Average repetitiveness of abundant human su p erfam ilies .................... 142
4.9 SCOP superfamilies co-occurring in the same p r o te in ...........................144
4.10 Residues in globular and non-globular parts of membrane proteins . . 152
4.11 Globular and membrane integral regions in different types of mem­

brane p ro te in s ...................................................................................................153
4.12 Expansion of superfamilies in membrane p r o te in s .................................157
4.13 Domain coverage by PSI-BLAST alignm en ts ...........................................164



Introduction 10

Chapter 1

Introduction

The available sequence data from the finished genome projects provides biological 
science with a huge and valuable source of data. The genetic information together 
with its derived data such as protein sequences and structures, expression levels 
and sub-cellular location has to be managed, understood and exploited for human 
benefit. It is a long and challenging way from the raw sequence data (the genome) 
to only a basic understanding of how an organism developed in evolution and how it 
functions. It is not just the sum of the parts that makes life but a complex regulatory 
network of interactions involving many components. The sequence data is further 
analysed in large scale experiments such as expression profiles and protein interac­
tion networks which in turn increases the amount data to be analysed dramatically. 
Bioinformatics organises and integrates all parts of the experimentally generated 
data as well as connecting them to gain understanding of biological systems.

Bioinformatics is a relatively young discipline as a science with components from 
software engineering. Bioinformatics aims to analyse and understand biological data, 
but a hypothesis is not necessarily required when it comes to the description, man­
agement and interpretation of the experimentally generated data. Currently, the 
development of new algorithms, recycling of algorithms from other areas such as 
natural language processing, data management, the interpretation of data and their 
relationships as well as supporting biologists working in a specific system is included 
in bioinformatics.

This work contains a software engineering component, the development of an 
automated annotation system that integrates existing data and methods to perform
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a scientific analysis of the integrated data. The results are of interest from the sci­
entific point of view (bringing insight into commonalities and differences between 
genomes) and from the software engineering point of view (the annotation system 
may be used to support biologists and could be a platform for further developments).

1.1 Genome sequencing projects

As of November 2001 there were 67 completely sequenced bacterial and archaea bac­
terial genomes and eleven eukaryotic genomes (for which at least one chromosome 
has been sequenced) available. The draft human genome sequence with >3,000 
mega bases was published in February 2001. Table 1.1 gives an overview of the 
finished sequencing projects. In addition there are roughly 300 ongoing prokary­
otic and about 80 eukaryotic public and commercial sequencing projects (data from 
Integrated Genomics Inc., http://wit.integratedgenomics.com/GOLD, Bernal et al. 
(2001)). Many of the sequenced genomes are from pathogenic organisms such as 
the recently published Yersinia pestis genome that causes plague (Heidelberg et al.,
2000) or the two Salmonella strains (Parkhill et al., 2001a; McGlelland et a l, 2001). 
The genome sequence reveals many secrets about the organism that may help to 
identify potential drug targets. The ideal target might be a key protein in an essen­
tial pathway specific to the pathogenic organism.

species (+strain) size genes

Archaea
Methanococcus jannaschii DSM 2661 (Bult et al., 1996) 
Methanobacterium thermoautotrophicum delta H (Smith et al., 1997) 
Archaeoglobus fulgidus DSM4304 (Klenk et al., 1997)
Pyrococcus horikoshii (shinkaj) OT3 (Kawarabayasi et al., 1998) 
Aeropyrum pernix K1 (Kawarabayasi et al., 1999)
Pyrococcus abyssi GE5 (no reference)
Halobacterium sp. NRC-1 (Ng et al., 2000)
Thermoplasma acidophilum (Ruepp et a i ,  2000)
Thermoplasma volcanium GSSl (Kawashima et a i ,  2000)
Sulfolobus solfataricus P2 (She et al., 2001)
Sulfolobus tokodaii 7 (Kawarabayasi et a i ,  2001)

1664 Kb 
1751 Kb 
2178 Kb 
1738 Kb 
1669 Kb 
1765 Kb 
2014 Kb 
1564 Kb 
1584 Kb 
2992 Kb 
2694 Kb

1750
1918
2493
1979
2620
1765
2058
1478
1524
2977
2826

Bacteria
Haemophilus influenzae KW20 (Fleischmann et a l ,  1995) 
Mycoplasma genitalium G-37 (Fraser et al., 1995) 
Synechocystis sp. PCC6803 (Kaneko et al., 1996) 
Mycoplasma pneumoniae M129 (Himmelreich et a i ,  1996) 
Escherichia coli K12- MG1655 (Blattner et al., 1997)

1830 Kb 1850
580 Kb 468

3573 Kb 3168
816 Kb 677

4639 Kb 4289
continued on next page

http://wit.integratedgenomics.com/GOLD
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continued from previous page
species (+strain) genes

Helicobacter pylori 26695 (Tomb et al., 1997)
Bacillus subtilis 168 (Kunst et al., 1997)
Borrelia burgdorferi B31 (Fraser et al., 1997)
Aquifex aeolicus VF5 (Deckert et al., 1998)
Mycobacterium tuberculosis H37Rv (lab strain) (Cole et al., 1998)
Treponema pallidum subsp. pallidum Nichols (Fraser et a i ,  1998)
Chlamydia trachomatis serovar D (Stephens et a i ,  1998)
Rickettsia prowazekii Madrid E (Andersson et a i ,  1998)
Helicobacter pylori J99 (Aim et al., 1999)
Chlamydia pneumoniae CWL029 (Kalman et al., 1999)
Thermotoga maritima MSB8 (Nelson et al., 1999)
Deinococcus radiodurans R1 (White et al., 1999)
Ureaplasma urealyticum serovar 3 (Glass et al., 2000)
Campylobacter jejuni NCTC 11168 (Parkhill et al., 2000b)
Chlamydia pneumoniae AR39 (Read et al., 2000)
Chlamydia trachomatis MoPn Nigg (Read et al., 2000)
Neisseria meningitidis MC58 (serogroup B) (Tettehn et al., 2000)
Neisseria meningitidis Z2491 (serogroup A) (Parkhill et a i ,  2000a)
Bacillus halodurans C-125 (Takami &: Horikoshi, 2000)
Chlamydia pneumoniae J138 (Shirai et al., 2000)
Xylella fastidiosa CVC 8.1.b clone 9.a.5.c (Simpson et a i ,  2000)
Vibrio cholerae serotype O l, Biotype El Tor, strain N16961 (Heidelberg et al., 2000) 
Pseudomonas aeruginosa PAOl (Stover et al., 2000)
Buchnera sp. APS (Shigenobu et al., 2000)
Mesorhizobium loti MAFF303099 (Kaneko et al., 2000)
Escherichia coli 0157;H7 EDL933 (Perna et al., 2001)
Mycobacterium leprae TN (Cole et al., 2001)
Escherichia coli 0157:H7. Sakai (Hayashi et al., 2001)
Pasteurella multocida Pm70 (May et a i ,  2001)
Caulobacter crescentus (Nierman et a i ,  2001)
Streptococcus pyogenes SF370 (M l) (Ferretti et a i ,  2001)
Lactococcus lactis IL1403 (Bolotin et a l ,  2001)
Staphylococcus aureus N315 (Kuroda et al., 2001)
Staphylococcus aureus Mu50 (Kuroda et a i ,  2001)
Mycobacterium tuberculosis CDC 1551 (no reference)
Mycoplasma pulmonis (Chambaud et al., 2001)
Streptococcus pneumoniae TIGR4 (Tettelin et al., 2001)
Clostridium acetobutylicum ATCC 824D (Nolling et a l ,  2001)
Sinorhizobium meliloti 1021 (Galibert et a i ,  2001)
Streptococcus pneumoniae R6 (Hoskins et a l ,  2001)
Agrobacterium tumefaciens C58 (Wood et a l ,  2001)
Rickettsia conorii Malish 7 (Ogata et a l ,  2001)
Yersinia pestis CO-92 Biovar Orientalis (Parkhill et a l ,  2001b)
Salmonella typhi CT18 (Kuroda et a l ,  2001)
Salmonella typhimurium,LT2 SGSC1412 (McClelland et a l ,  2001)
Listeria innocua C lipll262, rhamnose-negative (Glaser et a l ,  2001)
Listeria monocytogenes EGD-e (Glaser et a l ,  2001)

1667 Kb 1590
4214 Kb 4099
1230 Kb 1256
1551 Kb 1544
4411 Kb 4402
1138 Kb 1041
1042 Kb 896
n il Kb 834
1643 Kb 1495
1230 Kb 1052
1860 Kb 1877
3284 Kb 3187

751 Kb 650
1641 Kb 1654
1229 Kb 1052
1069 Kb 924
2272 Kb 2158
2184 Kb 2121
4202 Kb 4066
1228 Kb 1070
2679 Kb 2904
4000 Kb 3885
6264 Kb 5570

640 Kb 564
7596 Kb 6752
4100 Kb 5283
3268 Kb 1604
5594 Kb 5448
2250 Kb 2014
4016 Kb 3737
1852 Kb 1696
2365 Kb 2266
2813 Kb 2594
2878 Kb 2697
4403 Kb 4187

963 Kb 782
2160 Kb 2094
4100 Kb 4927
6690 Kb 6205
2038 Kb 2043
4915 Kb 4554
1268 Kb 1374
4653 Kb 4012
4809 Kb 4600
4857 Kb 4597
3011 Kb 2981
2944 Kb 2855

Eukaryota
Saccharomyces cerevisiae S288C (No authors listed, 1997) 
Caenorhabditis elegans (The C. elegans Sequencing Consortium, 1998) 
Drosophila melanogaster (Adams et a l ,  2000)
Arabidopsis thaliana (The Arabidopsis Genome Initiative, 2000)

12069 Kb 
97000 Kb 

137000 Kb 
115428 Kb

6294
19099
14100
25498

continued on next page
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continued from previous page
species (+strain) size genes

Guillardia theta (Douglas et a i ,  2001)
Leishmania major Priedlin Chromosome 1 (Myler et al., 1999) 
Plasmodium falciparum 3D7 Chromosome 2 (Gardner et a i ,  1998) 
Plasmodium falciparum 3D7 Chromosome 3 (Bowman et a i ,  1999) 
Homo sapiens (Lander et al. (2001) and Venter et al. (2001))

551 Kb 
257 Kb 
947 Kb 

1060 Kb 
>3000 Mb

464
79

205
220

35000
Table 1.1: Finished genome projects (status in November 2001). The size of the genome is given 
in thousand base pairs (Kb) or million base pairs (Mb), genes is the number of identified genes. The 
data of this table is taken from the GOLD database at http://wit.integratedgenomics.com/GOLD  
(Bernal et at, 2001).

1.2 Introduction into genom e annotation

A standard component of any genome project is an overall annotation. Having the 
genome sequence alone does not substantially help to understand the biology of the 
organism. In the following sections the major steps in genome annotation are rep­
resented. Protein sequences are the starting point for any annotation in this work, 
and therefore the following sections focus on protein sequences.

1.2.1 Finding genes in genom es

The first important step in annotating the genome is to identify the genes within 
the genomic sequence. It is worth mentioning the basic methods used in identifying 
genes as well as associated problems and errors, because these can have an effect of 
‘downstream’ analyses (e.g. analyses based on genes and proteins). An introduction 
into gene finding is given in a review by Stein (2001).

Inlbacteria^genes may be identified by just looking for the longest open reading 
frame (ORF) defined by a start and a stop codon. The Shine-Dalgarno sequence, 
which is a polypurine (adenine and guanine) sequence shorter then ten nucleotides 
at the 3’ end of the gene (about 7 nucleotides 5’ of the start codon), helps to 
identify the location of a gene within the genome. In addition to start and stop 
codon location, codon usage can be used in gene finding. Similar sequences with a 
common evolutionary origin (homologues) from already annotated genomes are con­
sidered to confirm the location of genes in a newly sequenced genome. The genomic 
DNA sequence is translated in all three reading frames on both nucleotide strands

http://wit.integratedgenomics.com/GOLD
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(in direction of translation, from 3’ to 5’) to produce long theoretical peptide se­
quences which are compared to known proteins from other organisms. Nevertheless, 
Skovgaard et al. (2001) showed that the number of genes in bacteria is generally 
overpredicted (in A. pemix they estimated 100% gene overprediction which is by far 
the most extreme in their analysis).

Gene identification in eukaryotic genomes is far more problematic than in prokary­
otic genomes. This is due to the exon-intron structure of genes and the lack of 
obvious sequence features such as a Shine-Dalgarno sequence to distinguish between 
coding and non-coding regions . Despite the start codon there is no clear landmark 
where a gene starts on a eukaryotic chromosome. Rule based ab initio gene iden­
tification methods such as GeneScan (Burge & Karlin, 1997) or Grail (Uberbacher 
& Mural, 1991; Roberts, 1991; Xu et a/., 1994) that employ statistical methods (for 
example hidden Markov models, see section 1.3.7), have been shown to identify only 
40% of the existing genes with their exon-intron structure. About 70% of these 
predictions are to some extent wrong, i.e. do not corresponds to the correct gene 
structure (Reese et a l, 2000). On the other hand 90% of the predictions include at 
least a fraction of the real gene. The use of experimental data as described above 
for bacterial gene identification improves eukaryotic gene finding. For example, the 
human genome sequence as defined by the ENSEMBL project version 1.2 (Hubbard 
et al. (2002), http://www.ensembl.org), contains more than 150,000 predicted genes, 
but only about 25,000 genes are either confirmed by expressed sequenced tags (ESTs 
derived from mRNA of expressed genes) or homologues in a different organism. Be­
cause of the extensive exon-intron structure and the small fraction of actual coding 
sequences in the human genome (estimated at about 1.5% of the genome. Lander 
et al (2001)), two predicted genes may in fact be one larger gene, or a larger gene 
may be in fact several genes. A positive view on the human genome shows that
25.000 of at least 30,000 genes have been identified with the help of experimental 
data (ESTs and homologues), which corresponds to nearly 85% of the estimated 
number of genes in the genome.

The expected number of genes in the human genome is between 30,000 and
40.000 (Lander et al, 2001), thus there are theoretically still 5,000 to 15,000 genes 
missing. The genome sequences of other higher eukaryotes, in particular those of 
mouse (M. musculus), rat (R. norvegicus) and the puffer fish {Fugu ruhripes) will 
help to identify genes within these genomes and that of human, because of the higher

http://www.ensembl.org


Introduction 15

sequence conservation within exons compared to non coding regions. The mouse and 
rat genome projects were established mainly because these organisms are used as 
models in biology. The genome sequence (with the confirmed set of genes) will 
accelerate the progress with which molecular biologists clone and analyse specific 
parts of the genome. The puffer fish project was deliberately established to enhance 
gene finding and interpretation of the human genome sequence. A draft sequence 
of the puffer fish project has been available since October 2001. The extent of the 
coding sequences is estimated to be similar to tha t of human, but the overall size of 
the genome (350 to 400 mega bases) is just about one eighth of the human genome 
(>3,000 mega bases). The sequence conservation between the dense coding regions 
of the puffer fish and the corresponding regions in the human genome is expected 
to reveal currently unidentified genes.

In interpreting results from the analysis of the identified peptide sequence reper­
toire of a genome one has to keep in mind that the absence of a particular protein 
does not necessarily mean that the genome contains no coding sequence for this 
peptide, it may just have been missed in the interpretation of the genome.

1.2.2 Functional classification o f genes and proteins

Once the genes are identified within a genome, they have to be functionally charac­
terised. Usually the genes are compared to a set of already functionally characterised 
genes. Since a protein sequence is more conserved in its amino acid sequence than 
the corresponding nucleotide sequence of the gene (because of the redundant genetic 
code), sequence comparisons for functional annotation are performed at the peptide 
level.

Function, at the level of a functional classification of proteins, is the description 
of the biochemical function or a combination of several biochemical functions. A 
functional annotation is generally derived from one or more homologous sequences 
for which a functional description has been generated previously. However, only for 
a fraction of annotated proteins has the biochemical activity been proven experi­
mentally (Ursing et al, 2002). Section 1.4.1 discusses the quality and the limitations 
of functional transfer between homologues.
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The majority of proteins in a genome consist of more than one protein domain. 
A domain can be considered as the smallest functional and evolutionary unit of pro­
teins and is generally found in different proteins in combination with other domains 
of the same (repeats) or of different type (Apic et ai, 2001; Qian et a i, 2001a). The 
potential multi-domain character of proteins may need a list of biochemical func­
tions, which depends on the level detail of the annotation. For example a protein 
with a NAD(P) binding domain and a dehydrogenase domain may just be described 
as a dehydrogenase or in more detail as a protein that binds NAD(P) and has a 
dehydrogenase activity (the NAD(P) binding domain may be a ‘helper’ domain to 
fulfil the proteins biochemical function). In most cases the functional annotation 
does not include the biological function, e.g. a human protease may be found in 
a different biological context such as digestion, during development or in wound 
healing. The main concepts in functional protein annotation are:

• Finding a homologous sequence that has been functionally characterised pre­
viously, the main databases containing such protein sequences are SwissProt 
and PIR.

• Identifying domains within a protein sequence via homology. The main do­
main databases with functional descriptions are PFAM, SMART, ProDom and 
InterPro. (Structural domain databases are discussed later.)

• Finding conserved patterns or motifs (these motifs are generally shorter than a 
domain and may not include an independent folding unit). The main databases 
maintaining collections of patterns or motifs associated with a function are 
Prosite, Prints and Blocks.

1.2.3 M ajor resources used in protein  annotation

The following sections give a more detailed view of the contents of some of the 
available databases, including an overview of how these databases are constructed. 
The first issue each year of the journal Nucleic Acids Research (in particular those 
from 1999 on) contains articles about biological databases. The first 2002 issue 
describes 112 different specialised biological databases.

The m ain source database GenBank and EM BL

All the specialised databases described below are based on the basic sequence databa­
ses. The major nucleotide sequence databases are GenBank (Benson et al, 2002) and



Introduction 17

EMBL (Stoesser et ai, 2002). Usually nucleotide sequences (or a nucleotide sequence 
together with its peptide sequence) are submitted to either of these databases. Also, 
GenBank and EMBL update each other, so that both databases, with some de­
lay, contain the same sequences. If possible the submitted nucleotide sequences are 
translated into a theoretical peptide sequence. These peptide sequences generate the 
TrEMBL database (translated EMBL) and the GenPept database (translations from 
GenBank). In addition, all publicly available genome sequences are submitted to 
one of these databases. GenBank and EMBL entries contain information associated 
with the sequence; literature references, authors, gene or protein names, taxonomic 
information of the source organism and a feature table that lists all known features 
(e.g. a ribosomal binding site for a bacterial ORF or an exon for a eukaryotic se­
quence) with their location in the sequence. GenPept and TrEMBL contain more 
than 800,000 non-redundant peptide sequences (status 11/2001). EMBL/TrEMBL 
is available from the EBI (http://www.ebi.ac.uk) and GenBank/GenPept is avail­
able from the NGBI (http://www.ncbi.nlm.nih.gov).

The Sw issProt protein database

The SwissProt database (Bairoch & Apweiler, 2000) historically collected sequences 
from protein sequencing experiments, i.e. the sequence information was directly 
taken from the peptide sequence and not by translating a coding region of a gene. 
SwissProt (version 40.11) contains 105,322 protein sequences. TrEMBL sequences 
are transfered to SwissProt if there is sufficient evidence for the existence of the 
gene product. The procedure for integrating new entries into SwissProt includes re­
viewing by human experts (database curators) and external consultants with expert 
knowledge about a particular protein family. A SwissProt entry contains, in addi­
tion to the peptide sequence and literature references, comments about the functions 
associated with the protein (edited by the human experts), keywords that describe 
the function and a structured feature table that describes regions or positions in the 
sequence such as post-translational modifications, domains and sites (e.g. an ATP 
binding site).

The P IR  protein database

The Protein Information Resource (PIR, Barker et al. (2000)), contains about
200,000 protein sequences (status in 2001). Like SwissProt, the database aims to

http://www.ebi.ac.uk
http://www.ncbi.nlm.nih.gov
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provide high quality annotation. Automatically generated annotations are reviewed 
and edited by PIR staff, and consultant scientists who review specific parts of the 
database. Sequence entries are classified according to their status to which there is 
evidence of their existence, e.g. for entries that are classified as experimental there is 
some experimental evidence, and predicted proteins from theoretical coding regions 
are classified as predicted. Also the annotation is classified into validated or similarity 
according to the available evidence. PIR further clusters sequences in families and 
superfamilies based on sequence similarity. Because PIR and SwissProt both get 
their sequences from translated coding regions of the major nucleotide databases, 
there is redundancy between the two databases.

The PFAM , SM ART and ProD dom  dom ain and fam ily databases

The domain and protein family databases described here are generated by splitting 
protein sequences into domains and then clustering similar domains into a family. 
Annotating proteins according to their domain composition generally leads to more 
detail than annotating the protein as a single unit.

PFAM is a database of protein domain families (Bateman et al, 2002), based on 
protein sequences from SwissProt and TrEMBL. It contains a set of curated mul­
tiple sequence alignments, each representing a protein family. From these multiple 
alignments hidden Markov models (see section 1.3.7) are built, which are in turn 
used to search the protein sequence databases to find new members and to expand a 
family. The final database PFAM-A provides a high quality description of the fam­
ilies which can help in annotating newly sequenced genomes. Most of the PFAM-A 
families also contain a functional text description, cellular location of the members 
of the family, relevant literature references and links to taxonomic groups in which 
a family is found. PFAM-A is manually curated. Another part of PFAM (PFAM- 
B) contains potential domain families for which there is not enough evidence to be 
placed into PFAM-A. PFAM-B entries are mainly taken from families of the large 
ProDom database (see below). PFAM-B contains more members and families than 
PFAM-A but is of lower quality. PFAM-B and ProDom are used to update and 
curate PFAM-A. PFAM-A version 6.6 (August 2001) contains 3071 families. PFAM 
is available at The Sanger Centre (http://www.sanger.ac.uk/Software/Pfam).

SMART (a Simple Modular Architecture Research Tool, Letunic et al. (2002)),

http://www.sanger.ac.uk/Software/Pfam
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like PFAM, is a domain database but originally focused on domains in eukaryotic 
signal transduction. Recent SMART versions (November 2001) also include a wide 
range of other domain types (more than 600 domain families). Domain families are 
constructed in a similar way to PFAM, but the initial step to create a seed multiple 
sequence alignment involve manual editing and, if available, consideration of pro­
tein structure, or homologues of proteins of known structure. Hidden Markov models 
are constructed from these alignments that are used to search the protein sequence 
database to collect new family members. The hidden Markov models are then re­
built, and the search starts again until no more members are found. In addition each 
member of a family is compared to the sequence database using the homology search 
method PSI-BLAST (see section 1.3.5) to collect new family members. Alignments 
are updated, e.g. when the three dimensional structure of a member is published, 
to re-assess domain boundaries of the family. SMART is based on sequences from 
SwisProt and TrEMBL. The database is available at the EMBL (http://sm art.em bl- 
-heidelberg.de). The web-interface also allows the user to search for proteins of a 
given domain architecture (domain combinations).

ProDom (Corpet et aL, 2000) is a domain database with a larger sequence cover­
age than PFAM or SMART. Over 75% of the proteins from SwissProt and TrEMBL 
can be assigned to ProDom families (status 2001). There are about 44,000 ProDom 
domain families with more than one member. From version 35 onwards, the ProDom 
database includes manual inspection of protein families by scientific consultants. 
PFAM-A (see above) is used to increase the quality of ProDom. Domain families 
are generated via PSI-BLAST homology searches (Sonnhammer & Kahn, 1994). 
Two proteins may share only one homologous region in their sequence, which can 
be a single domain or several domains. These regions are then used as queries in 
subsequent PSI-BLAST searches to find additional significant alignments. This pro­
cedure is repeated until the regions cannot be split or truncated anymore because 
no further homologous regions are found. The identified regions are then consid­
ered to be domains, and all homologous regions belong to one family. As a quality 
control, recent versions of ProDom assign consistency indicators to each family (for 
example sequence variation within a family). ProDom-GC is a ProDom version that 
clusters protein sequences from complete genomes into families. Both databases are 
available at http://prodes.toulouse.inra.fr/prodom/doc/prodom.html.

http://smart.embl-
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html
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M otif databases: PRO SITE, PR IN T S and BLOCKS

The PROSITE database (Falquet et al, 2002) is a collection of pattern descriptions 
that usually are associated with a biochemical function. These signatures are gen­
erated from curated multiple sequence alignments and generally describe conserved 
positions within a domain family. Signatures are represented as regular expression 
patterns. Since patterns are not flexible (i.e. a pattern matches a sequence region 
or it does not), the extent to which patterns identify a particular motif is limited. 
To overcome this limitation, signature profiles have been developed which assign a 
score to each of the 20 amino acids at each position of the signature according to 
the frequency of which each amino acid is found at a particular position. Further, 
alternative protein structure-based profiles and methods involving hidden Markov 
models have been employed. A PROSITE entry can be associated with a functional 
description and reasons that lead the construction of a pattern or profile. PROSITE 
version 16.50 (November 2001) contains 1103 documents describing 1493 patterns 
and profiles, and is available at http://www.expasy.org/prosite.html, it is updated 
in parallel with SwissProt.

PRINTS (Attwood et ai, 2002) and PRINTS-S (a recent development of the 
original PRINTS) is a collection of protein fingerprints. The concept behind finger­
prints is that a protein can be represented by several conserved motifs. A fingerprint 
is an ordered list of these motifs that describes a protein family. PRINTS-S is a 
database for protein sequences rather than domains, although its components (the 
single motifs) may be characteristic for a particular type of domain. The procedure 
to build the fingerprints starts with manual curated multiple sequence alignments, 
and then a series of conserved regions are extracted to construct motifs. This pro­
cedure includes manual intervention. The sequence database is searched iteratively 
with these motifs to expand and gain confidence of the motifs. PRINTS-S contains 
its own search software FingerPRINScan. The database is built from SwissProt 
and TrEMBL. Each entry is associated with bibliographic information, functional 
descriptions, lists of matching sequences and comments. The database (PRINTS- 
S version 10, based on PRINTS version 32, November 2001) contains about 9,800 
individual motifs and about 1,600 fingerprints. It is available at http :/ / www.bioinf.- 
man.ac.uk/dbbrowser /PR IN TS.

The BLOCKS database (Henikoff et al, 1999, 2000) is similar to PRINTS. It

http://www.expasy.org/prosite.html
http://www.bioinf.-
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contains a list of motifs that are representative for a family. Motifs in the BLOCKS 
database are called blocks. To generate these blocks, protein family databases such 
as PFAM-A, PRINTS, ProDom and Domo (Gracy & Argos, 1998) are used. Se­
quences for each family of these databases are re-aligned via a non-gapped multiple 
local alignment procedure and converted into non-overlapping blocks. Thus, the 
BLOCKS database identifies local motifs within given protein families but does not 
find new protein families (because it uses domain families of the existing domains 
databases as input). The BLOCKS database can be searched with sequences via the 
BLIMPS (Henikoff et al, 1995) program that identifies individual blocks and then 
combines hits belonging to the same family. Sequences can also be searched against 
the database via the IMPALA program (see section 1.3.6). BLOCKS (June 1999) 
contains about 9,500 individual blocks and more than 2,000 families. It is available 
at http://www.blocks.fhcrc.org.

InterPro: A com bination of databases

InterPro (Apweiler et al, 2001), a recent database development from the EBI 
(http://www.ebi.ac.uk/interpro), integrates most of the above databases. InterPro 
itself does not contribute any new information, and its power comes from having 
all the above databases in one place providing a range of evidence for a protein to 
belong to a certain InterPro entry. InterPro is divided into families (3,532 entries), 
domains (1,068 entries), repeats (74 entries) and post-translational modifications 
(15 entries). A short description and an abstract about the biochemical function, 
the biological role and matches against the SwissProt and TrEMBL databases are 
included for each entry. InterPro also contains, like recent PFAM versions, families 
for which the function is unknown, but where there is evidence for the conservation 
of this family, domain or motif.

A family can be described by a set of characteristics from the above databases, 
e.g. the thiolase family (InterPro entry IPR002155) is described by two PFAM en­
tries and three Prosite patterns. Sequences can be searched against InterPro via the 
InterProScan software package (Zdobnov & Apweiler, 2001).

InterPro is a ‘modern’ database. It is distributed in XML format and is, together 
with the integrated search engine InterProScan, a step towards solving common 
bioinformatics problems such as standardisation, automatisation and distribution.

http://www.blocks.fhcrc.org
http://www.ebi.ac.uk/interpro
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A list of InterPro families is now commonly reported as an initial analysis of a newly 
sequenced genome (e.g. Lander et al. (2001); Rubin et al. (2000) and http://www.- 
ebi.ac.uk /  proteome).

1.2.4 G ene O ntology (G O ), a controlled vocabulary for ge­
nom e annotation

A recent commentary published in the journal Nature (Pearson, 2001) summarises 
problems and inconsistencies in gene (and protein) nomenclature and stresses the 
importance of an ontology for gene names and functions to overcome problems in 
annotation. In GO, descriptive terms and phrases are used to annotate a gene rather 
than using gene and protein names such PM S i or TFIIA. These terms are organised 
in a hierarchy (a tree of terms and phrases) with the more general terms such as 
transcription or fatty acid metabolism as the root for more detailed terms or phrases 
such as RNA polymerase II  transcription factor or fatty acid hydrolase. The set 
of terms and phrases is stored in a central GO database maintained at Stanford 
University. However, different GOs may be constructed for special purposes. New 
terms can be inserted into the GO-tree. GO is also able to cope with synonyms 
and can describe biological function. Using a system with a controlled vocabulary 
organised in a tree as in GO allows automatic comparison of annotations between 
genomes at different levels of the tree (i.e. at different level of detail, for example 
to test for the existence of enzymatic pathways between genomes). The central GO 
resource is located at http://www.geneontology.org, see also Lewis et al. (2000); 
Ashburner et al. (2000); The Gene Ontology Gonsortium (2001).

1.2.5 P u ttin g  everything together to  find pathways

At a higher level, genome annotation aims to identify complete biological subsys­
tems such as metabolic pathways or signalling pathways. The usual approach is 
to compare all members of a pathway (e.g. for glycolysis) in a model organism to 
the proteins of a newly sequenced genome. The comparison is carried out via the 
standard homology search methods (see section 1.3 below). This approach gener­
ally identifies the fundamental pathways such as glycolysis in a newly sequenced 
genome. If members of a pathway cannot be identified, this does not necessarily 
mean the pathway is incomplete. The homology based comparison may just have 
missed some members of tha t pathway because of insufficient similarity (although

http://www.-
http://www.geneontology.org
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the homologues are present), or there may be alternative routes bypassing the known 
proteins of that pathway. There are three major database systems available that 
implement the above approach for metabolic pathways: The partly freely available 
W IT system from Integrated Genomics (this system is now known as ERGO  and is 
no longer freely available for academic use, http://www.integratedgenomics.com/), 
the KEGG (Kanehisa et a l, 2002) database (Kyoto Encyclopedia of Genes and 
Genomes) freely available for academic use and EcoCyc (Karp et ai, 2002), a sys­
tem that describes metabolic pathways in E. coli (this database recently has been 
made freely available for academic users).

The publication of the genome sequence of the cholera bacterium V. cholerae 
(Heidelberg et al, 2000) contains an overview of some of the identified pathways in 
this bacterium and can serve as an example of how to represent complex pathways 
information in a comprehensive way (see figure 1.1).

1.3 Hom ology based sequence comparison m eth­
ods

If two genes or proteins have diverged from a common ancestor they are by definition 
homologues. Further, homologues within the same species are paralogues, and often 
have different functions due to specialisation. The closest homologues with generally 
the same biochemical function in two species are orthologues (Tatusov et al, 1997,
2001). Whether two sequences are homologues can be measured by their sequence 
similarity for which there are different definitions and methods.

As mentioned in the introductory sections above, identifying homologous se­
quences is often the first step in annotating a newly sequenced gene. The homo­
logue may already have some functional annotation that may then be transfered to 
the newly sequenced gene (or protein). Section 1.4.1 explains the conditions under 
which this transfer is considered to be reliable. The sections below explain the most 
common sequence search methods and their definition of similarity.

http://www.integratedgenomics.com/
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Figure 1.1: Schematic representation of the V. cholerae cell with a selection of metabolic pathways 
and transporters identified in the genome. This figure is an example how the huge amount of 
information from genome annotation can be represented in a comprehensive and user friendly way. 
The figure is from Heidelberg et al. (2000).

1.3.1 Dynamic programming

The oldest sequence comparison method that is still part of recent methods was 
developed by Needlenian & Wunsch (1970). Their method is based on the general 
dynamic programming algorithm which was introduced in the 1950s by Bellman 
(1957), and allows the optimal alignment of two sequences. Two sequences with 
length n and m  form an n x m matrix. For each position in the matrix {n[i],m[j]) 
a numeric value scores how favourable a replacement of the residue/nucleotide n[i] 
with 7n[i] or alternatively a deletion or insertion is. See section 1.3.2 below for 
a discussion of substitution scores. Generally these are negative for unfavourable 
substitutions (e.g. aligning tryptophan with a lysine), and positive for conservative 
substitutions such as lysine to arginine.
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Global sequence comparison via dynamic programming aligns two sequences from 
the first to the last position in both sequences, and produces a global alignment. 
Even if only a region in the middle of one sequence shares similarity with a region 
of the other sequences, the algorithm will try to align the sequences over their full 
lengths. This may result in a drop of the overall score of the alignment, because 
the ends of the alignment may contribute negative scores, and the sum of the scores 
may therefore then not be significant.

The local alignment is a development based on the method from Needelman and 
Wunsch and was introduced by Smith & Waterman (1981). It solves the problem of 
forcing an alignment over the entire sequence. This method is fundamental to many 
other methods applied in this work, and is therefore explained in more detail below.

The formal rule to fill each cell of the n x m  matrix is given in equation 1.1. j
describes a position in n and i describes a position in m, d is a fixed negative score
for a gap (the gap penalty) and score is a judgement of the biological significance 
for aligning residue n[j] with m[i].

F{i  — 1, j )  — d deletion at position j (cell above)

F{i  — 1, J — 1) +  5core(a, h) substitution i, j (diagonal cell)

F{i^j  — 1) — d insertion at position j (cell to the left)

0 stop for local alignment
(1.1)

In equation 1.1 scores for a deletion or insertion are fixed. Generally the costs of 
introducing a gap is set higher than for extending an existing gap. The substitution 
score is taken from a lookup matrix described in more detail below. If deletion, 
insertion or substitution gives a negative score, the stop condition holds, and the 
local alignment is terminated. The matrix can be filled row by row or column by 
column.

As an example the two sequences ‘ HEAGAWGHED ’ and ‘ PAWHEAE ’ are aligned us­
ing the method from Smith and Waterman. The matrix below shows the calculated 
scores from which the optimal path can be traced back. This is the optimal local 
alignment. Note that each cell of the matrix contains the sum of its own score and

F(z,d) : max <
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the last highest scoring cell as determined by equation 1.1. Matrix cells of the op­
timal path are shown in red.

(j) H E A G A W G H E D

(2) 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 5 0 5 0 0 0 0 0

W 0 0 0 0 2 0 20 12 4 0 0

H 0 10 2 0 0 0 12 18 22 14 6

E 0 2 16 8 0 0 4 10 18 28 20

A 0 0 8 21 13 5 0 4 10 20 26

E 0 0 6 13 18 12 4 0 4 16 22

The resulting alignment is shown below;

O ')  A W G H E

(? ) A W -  H E

Often there can be more than one optimal path through the matrix. If the
local alignment metliod is applied to align two three-domain proteins where the N-
terminal and the C-terrninal domains of the two proteins are homologous but the 
central domain is not homologous, there will be two paths with high score sums 
through the matrix. Distinguishing alignments based on homology from those pro­
duced by chance similarity is critical for sequence comparison methods, i.e. it is 
critical to find paths through the matrix that rely on evolutionary relationships. 
The basis of local alignment statistics and probabilities are discussed below in sec­
tion 1.3.4.

Sequence search and alignment methods based on dynamic programming are de­
pendant on the length of both sequences to be compared. Every cell in the matrix 
has to be filled to find high scoring paths. The runtime of the algorithm is propor­
tional to the product of the length of both sequences to be aligned. Comparing a 
single sequence with sequences from a protein database with generally several hun­
dreds of thousands of sequences is time consuming, and the algorithm is therefore 
not applicable for large scale sequences searches.
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1.3.2 Substitu tion  m atrices

An ideal substitution matrix scores a biologically meaningful alignment with pos­
itive scores and all chance alignments with negative scores. A scoring matrix is a 
20 X 20 matrix, with each row/column representing a score for a particular amino 
acid substitution. Each cell contains a score that is based on the probability for 
exchanging amino acid i with amino acid j .  The general formula for all substitution 
matrices with negative expected score is:

log-^
=  (T2)

where Qij is the target substitution frequency (the observed frequency with which 
amino acid i is replaced by amino acid j )  usually calculated from homologous pro­
teins. All target frequencies for a given amino acid are ^  0 and sum to one; pi 
and Pj are background frequencies (the overall frequencies with which i and j  are 
observed). The product of the background frequencies can be thought of as the 
probability of exchanging i and j  by chance. Furthermore, the normalisation by the 
background frequencies implies that conservative exchanges for rare amino acids are 
weighted stronger. Sij is multiplied by a factor (10 for the original PAM matrices) 
and then rounded to the nearest integer. These are the scores that are stored in 
the substitution matrix as shown in table 1.2 and are usually referred to as ’log- 
odds’ (the log-odds for BLOSUM matrices are based on log^ whereas the original 
PAM matrix was based on logio). The logarithm is used for computational reasons 
to avoid multiplications of the substitution scores of the cells of the optimal path 
through the dynamic programming matrix. The log-odds are divided by a scaling 
factor A that is specific for the scoring system.

A substitution matrix is uniquely determined by its target frequency (the back­
ground frequencies are the same for different matrices). The assumption for most 
scoring matrices is that the expected score Sij for a chance amino acid substitution 
in a comparison of two random sequences is negative. Otherwise chance alignments 
gave positive cumulative scores by just extending over a sufficient length.

The most common matrices are PAM and BLOSUM. Generally the choice of the 
substitution matrix is crucial for the performance of sequence database searches, 
although no single scoring system is the best for all purposes. The best way to
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distinguish between real and chance alignments of a given class is to choose a matrix 
for which the target frequencies specifically characterise this class (e.g. a protein 
family). This aspect is treated in more detail in a later section.

T he PAM  m atrices

The Point Accepted Mutation (PAM) matrix models the evolutionary distance be­
tween sequences of closely related proteins (Dayhoff et al, 1978). A matrix cell gives 
the probability of amino acid i to be replaced with amino acid j  after a given evo­
lutionary interval which is given in PAM. One PAM is the probability of a residue 
to be mutated during an evolutionary distance in which one point mutation was 
accepted in 100 residues (i.e. 1% mutations). 100 PAMs do not necessarily mean 
that all residues are mutated, some residues may have been mutated several times, 
including mutations that restore the original amino acid, and some residues may not 
have changed at all. The mutation data to calculate the PAM matrix were collected 
from closely related proteins.

PAM matrices for longer evolutionary distances can be obtained by multiplying 
each target exchange frequency of the PAMl matrix n times with itself to generate 
a PAMn matrix.

Sequence comparisons using a PAM matrix generally do not perform well in de­
tecting more distantly related sequences. In particular the theoretical extrapolation 
from the experimentally derived PAMl matrix to higher order PAM matrices to 
model a longer evolutionary distance does not take into account the conservation of 
functionally important sequence regions and may therefore overestimate mutability.

T he BLO SUM  m atrices

The BLOSUM matrices (Henikoff & Henikoff, 1992) were derived from the BLOCKS 
database (see page 20). The frequencies of amino acids from conserved sequence 
blocks were tabulated, and the probabilities for target and background frequencies 
were calculated. To reduce multiple contributions of several closely related proteins, 
the sequences were clustered within blocks. Each cluster was treated as a single se­
quence. Clusters for different identity levels were built to produce different matrices 
allowing sequences ^  n% identity to be included in a cluster. The most commonly 
used matrices are BLOSUM50, BLOSUM62 and BLOSUM80, where the number
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A R N D C q E G H I L K M F R S T W Y V
A 5 -4 -2 -1 -4 -2 -1 0 -4 -2 -4 -4 -3 -6 0 1 1 -9 -5 -1
R -4 8 -3 -6 -5 0 -5 -6 0 -3 -6 2 -2 -7 -2 -4 0 -7 -5
N -2 -3 6 3 -7 -1 0 -1 1 -3 -5 0 -5 -6 -3 1 0 -6 -3 -5
D -1 -6 3 6 -9 0 3 -1 -1 -5 -8 -2 -7 -10 -4 -2 -10 -7 -5
C -4 -5 -7 -9 9 -9 -9 -6 -5 -4 -10 -9 -9 -8 -5 -5 -11 -2 -4
q -2 0 -1 0 -9 7 2 -4 2 -5 -3 -1 -2 -9 -1 -3 -3 -8 -8 -4
E -1 -5 0 3 -9 2 6 -2 -2 -4 -6 -2 -4 -9 -3 -2 -3 -11 -6 -4
G 0 -6 -1 -1 -6 -4 -2 6 -6 -6 -7 -5 -6 -7 -3 0 -3 -10 -9 -3
H -4 0 1 -1 -5 2 -2 -6 8 -6 -4 -3 -6 -4 -2 -3 -4 -5 -1 -4
I -2 -3 -3 -5 -4 -5 -4 -6 -6 7 1 -4 1 0 -5 -4 -1 -9 -4 3
L -4 -6 -5 -8 -10 -3 -6 -7 -4 1 6 -5 2 -1 -5 -6 -4 -4 -4 0
K -4 2 0 -2 -9 -1 -2 -5 -3 -4 -5 6 0 -9 -4 -2 -1 -7 -7 -6
M -3 -2 -5 -7 -9 -2 -4 -6 -6 1 2 0 10 -2 -5 -3 -2 -8 -7 0
F -6 -7 -6 -10 -8 -9 -9 -7 -4 0 -1 -9 -2 8 -7 -4 -6 -2 4 -5
R 0 -2 -3 -4 -5 -1 -3 -3 -2 -5 -5 -4 -5 -7 7 0 -2 -9 -9 -3
S 1 -1 1 -1 -1 -3 -2 0 -3 -4 -6 -2 -3 -4 0 5 2 -3 -5 -3
T 1 -4 0 -2 -5 -3 -3 -3 -4 -1 -4 -1 -2 -6 -2 2 6 -8 -4 -1
W -9 0 -6 -10 -11 -8 -11 -10 -5 -9 -4 -7 -8 -2 -9 -3 -8 13 -3 -10
Y -5 -7 -3 -7 -2 -8 -6 -9 -1 -4 -4 -7 -7 4 -9 -5 -4 -3 9 -5
V -1 -5 -5 -5 -4 -4 -4 -3 -4 3 0 -6 0 -5 -3 -3 -1 -10 -5 6

Table 1.2: PAM70 amino acid substitution matrix. Cells contain the log odds of a particular 
amino acid substitution probability after 70 PAMs. Note that the matrix is symmetric.

indicates the n% cut-off.

The BLOSUM matrices perform better in sequence alignments and homology 
searches than the PAM matrices, especially in detecting more distant homologies 
(e.g. Henikoff & Henikoff (1993); Russell et al (1998a)). The matrices are con­
structed from sequences of any evolutionary distance without any theoretical ex­
trapolation. There are substantial differences in the amino acid mutability when 
comparing BLOSUM and PAM (Henikoff & Henikoff, 1992).

1.3.3 The basics: BL A ST and Fast A

Several heuristics to speed up sequence searches have been developed. Here the 
BLAST (Altschul et a l, 1990) method is discussed in more detail, because BLAST 
and its derivatives have been applied extensively in this work. Significant sequence 
similarity may be found by a simple comparison of short regions of a few amino acids 
length without performing dynamic programming. If the initial step was successful, 
more sensitive but time consuming refinement steps are applied (including dynamic 
programming). Methods based on such simple comparisons are heuristics and do 
not guarantee an optimal alignment between two sequences. Nevertheless, when
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comparing a query sequence to a sequence database, generally most of the sequences 
do not share any homology with the query, and may be skipped by the fast heuristic 
step, reducing the search space to which the more detailed comparisons are applied.

The FastA heuristic

Wilbur & Lipman (1983) introduced the first heuristic method to search a query 
sequence against a database of sequences. This method has been subsequently im­
proved in the Fast? and later in the FastA methods (Pearson & Lipman, 1988; Pear­
son, 1990). The FastA method can be applied to nucleotide or peptide sequences. 
There are five major steps in the algorithm:

1. Identify matching ‘words’ between two sequences (the query and a database 
sequence) that share identical pairs of amino acids [ktup =  2, a word of two 
residues).

2. Find regions of high density of identities. This is done by finding the words 
that are on the same diagonal of a plot between the two sequences. These 
words are extended to merge with other existing words to form a region if the 
distance of the previous word or region in residues is smaller than the score of 
the current region or word match.

3. Re-score the ten highest scoring regions using a PAM250 matrix, and trim  or 
extend the ends of these to optimise their score. This is a partial alignment 
without gaps.

4. If there are several regions above a given score cut-off, these regions are joined 
via dynamic programming, producing a gapped alignment if their score can 
be improved (the overall score is the sum of the scores of the regions minus a 
penalty score for gaps). This score is called initn, and is used as a rank of the 
database sequence.

5. For the top ranking sequences, a local alignment is constructed with the query 
sequence using a centred 32 residue window on top of the best initn region. 
The resulting score is the optimised score that is reported.

The initial search step may not reduce the number of sequences substantially, but 
it reduces the subsequent more detailed and time consuming searches to only a few 
regions of the sequence that have to be compared in more detail. The calculation
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of the initn value reduces the number of regions and sequences for which Smith- 
Waterman local gapped alignments have to be produced. In summary, the FastA 
method speeds up sequence database searches by reducing the time consuming dy­
namic programming to a set of matrices per sequence which are in total smaller 
than the complete n x m  matrix.

T he BLAST heuristic

The original BLAST method (Basic Local Alignment Search Tool, Altschul et al.
(1990)) uses heuristics similar to FastA to find candidate sequences, but BLAST 
is even faster then FastA. The original BLAST method produced un-gapped align­
ments and was refined (Altschul & Koonin, 1998; Schaffer et a l, 2001) to gain more 
sensitivity (including gapped alignments) and speed. The steps of the method im­
plemented in BLAST series 2.0 (Altschul & Koonin, 1998) for amino acid sequences 
are described below (the steps for nucleotide sequences are similar).

1. Find word pairs of a given length (usually 3 residues for proteins) for which 
the cumulative score is at least T. A word satisfying this condition is called a 
hit. Scores are taken from a standard matrix such as BLOSUM or PAM.

2. If the two sequences contain at least two non-overlapping hits within a distance 
A  on the same diagonal then the extension of these matches is triggered. If 
two hits overlap, the most recent one is ignored. This two-hit method reduces 
the number of triggered extensions, which is the most time consuming step in 
BLAST.

3. If the previous conditions are satisfied, the un-gapped bidirectional extension 
of the second hit is triggered using the same substitution matrix as in the first 
step. The extension terminates if its cumulative score cannot be improved 
anymore, and the score is ^  S'. A step in the heuristics to speed up the 
extension procedure is to terminate an extension if it reaches another hit with 
a score that falls a certain distance below the previous shorter extension. The 
extended hit may include other hits. An extended hit is called an HSP (High 
scoring Segment Pair).

4. The highest scoring HSP with a score ^  Sg is further extended in both di­
rections via a gapped alignment. Only the highest scoring HSP is extended 
because most of the HSPs will be included in this gapped extension.
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5. The final alignment for hits for which a gapped extension produced a high 
score are re-aligned with relaxed alignment parameters. This increases the 

I  extent of the alignment.

BLAST performs far fewer local alignments compared to FastA and is therefore 
much faster. Like FastA, gapped extensions are only performed on a relatively small 
region within a sequence.

1.3.4 Basic sta tistics and probabilities for local alignm ents

The scoring system is crucial in distinguishing between real and chance alignments, 
and equation 1.2 gives most of the basic statistics of a scoring system. Sequence 
search methods employ a scoring system to judge whether similarity could have 
arisen by chance, and for heuristics such as BLAST whether a more time consuming 
comparison has to be performed.

The basic statistics for the score distributions from local ungapped alignments 
has been described by Karlin and Altshul (Karlin & Altschul, 1990, 1993; Altschul & 
Gish, 1996). The distribution of scores for hits between a real sequence and a set of 
randomly generated sequences can be approximated with an extreme value distribu­
tion. Scores as given in equation i  are summed over the region participating in 
a hit. Figure 1.2 shows scores that are approximated with an extreme value distri­
bution. Since this score distribution is the result of chance alignments, biologically 
meaningful scores should be distributed at the long tail end of the distribution, and 
the location of this score on the distribution can be treated as a confidence level for 
this score (Karlin & Altschul, 1990). The formal description of this confidence is 
given in equation 1.3 which is the probability to find at least one random alignment 
with a score S  x. This probability is also known as a P-value. K  is another 
constant that depends on the scoring system, and m n  is the product of the lengths 
of the sequences that are compared. For database searches m n  is the product of the 
length of the query sequence and the search space of the database.

P { S ^ x )  = l -  (1.3)

The score S  depends on the scoring system via K, A and special scores for the 
introduction of gaps and gap extensions (A is the same as in equation| 1.2 ). It is 
useful to convert this score into a score S' that is independent of the scoring system
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F igure 1.2: Random alignment scores can be approximated by an extreme value distribution. 
The figure is taken from Altschul & Koonin (1998) (figure 6). A position specific scoring matrix 
generated by PSI-BLAST (see section 1.3.5) was compared to 10,000 randomly generated protein 
sequences.

to compare results obtained from searches that use different substitution matrices. 
A normalised score S' is expressed in bits which can be obtained from the scaling 
constants of the scoring system and the score distribution. Equation 1.4 gives the 
formal description of this normalisation.

S' =
XS — InK  

ln2
(1.4)

The reliability of an alignment in BLAST and other programs is given as an 
e-value, described in equation 1.5.

e(S') =  mn2~^' (1.5)

e(S') =iATmn exp (—AS*) (directly calculated from the raw score) (1-6)

The e-value is the number of expected chance hits with a score ^  S'. Doubling 
the length of the query sequence or database doubles the number of expected chance 
hits, and the number of expected chance hits decreases exponentially with increasing 
score. Note that e{S') is found in the exponent of equation 1.3.

Another confidence measure that requires a substantial sample of the score dis­
tribution is the z-score. It is defined as the distance of an the alignment score S  from 
the mean fj, of the distribution of all scores of the analysis divided by the standard
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deviation a of the score distribution {score — {S — n)/a ). The normalisation by 
the standard deviation of the distribution ensures that even high scores with a short 
distance to the mean get relative low z-scores if the score distribution is flat, e.g. 
if there are many chance hits. A z-score is as defined above is only informative for 
normally distributed scores. However, it is possible to calculate P-values for z-scores 
that are derived from an extreme value distribution of scores (personal communica­
tion with William Pearson). Therefore z-scores may be used as confldence measures 
for local alignments such as in the FastA (Pearson, 1990).

All equations in this section and equation 1.2 have only been proven to hold for 
ungapped local alignments, but computational analysis and some analytical work 
suggest the same applies to gapped local alignments (Karlin & Altschul, 1990, 1993; 
Altschul & Gish, 1996; Altschul et al, 2001). Extreme value distributions fit scores 
from gapped local alignments of randomly generated sequences well using standard 
background frequencies (Robinson & Robinson, 1991) and a standard substitution 
matrix such as BLOSUM62 with standard gap opening and extension scores (Wa­
terman & Vingron, 1994; Altschul Sz Koonin, 1998; Altschul & Gish, 1996), from 
which the scale parameters A and K  are derived. These parameters cannot be deter­
mined analytically for gapped local alignments. However, Mott (2000) derived an 
empirical formula from a large number of simulation with different scoring systems 
to calculate A. For ungapped local alignments these parameters are analytically 
derived from the scoring system (Karlin & Altschul, 1990). The FastA method 
generates enough optimal gapped local alignments between unrelated sequences for 
each run to have a basis from which to A and K  can be estimated. The BLAST pro­
gram generates gapped alignments only for potentially related sequences and cannot 
estimate the parameters from these scores. Therefore BLAST uses pre-estimated 
parameters from simulations for different standard matrices and gap opening and 
extension costs (Altschul et al, 1997).

1.3.5 Sequence specific profiles and PSI-B L A ST

As mentioned at the beginning of section 1.3.2, none of the standard substitution ma­
trices optimally describes the target frequencies of a particular class of sequences. A 
position specific scoring matrix (PSSM) or sequence profile is specifically constructed 
for a particular class of proteins. A PSSM has the dimensions n x 20, where n is
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the length of the sequence. At each position of the matrix, a substitution score 
for each of the 20 amino acids is given. The main difference to the standard substi­
tution matrices is that the score for the same amino acid type can differ depending 
on the position within the sequence. Usually a PSSM is constructed from a multi­
ple sequence alignment, for example from a set of already identified homologues and 
may be subsequently refined by pulling in more distant homologues when a database 
is searched with the PSSM. Earlier profile methods (e.g. Patthy (1987); Gribskov 
et al. (1987); Taylor (1986); Yi & Lander (1994); Tatusov et al. (1994)) used rather 
complex procedures involving several programs with substantial user intervention.

The PSI-BLAST method (Altschul et al, 1997; Schaffer et al, 2001) combines all 
the required steps, automatically constructs a PSSM and uses this profile to search 
a sequence database. A comparison of several sequence database search methods 
showed that PSI-BLAST is about three times more sensitive than BLAST or FastA 
in detecting remote homologues (Park et a l, 1998).

Figure 1.3 shows the basic steps of the PSI-BLAST procedure. First, a standard 
BLAST, as described in section 1.3.3, is performed using a standard substitution 
matrix (e.g. BLOSUM62) and a sequence database. From this run those sequences 
satisfying a given e-value cut-off are stored, and a multiple sequence alignment is 
constructed from these sequences. This multiple alignment is converted into a PSSM 
which is then used in the second search round instead of the query sequence and 
the standard substitution matrix to search the sequence database via the BLAST 
algorithm. The difference between this step and the original BLAST is just tha t the 
PSSM itself contains the information about the query sequence and the substitution 
matrix. The procedure of searching the database and re-constructing a new PSSM 
after every round is repeated until no more sequences with sufficient e-value can be 
added to the list of sequences of the previous round or a given maximum number 
of rounds has been reached. The result is a list of sequence alignments of the last 
round that are of sufficient e-value.

C onstruction of a Position  Specific Scoring M atrix

A multiple alignment is constructed by stacking all sequences found in a search 
round with an e-value < the cut-off. Sequences identical to the query are skipped.
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Figure 1.3: Overview of the PSI-BLAST procedure. The procedure starts by running BLAST 
for a query sequence against the sequence database using a standard matrix (here BLOSUM62). 
In the next round the PSSM, instead of the query sequence and the BLOSUM62 matrix, is used 
for the database search. A new PSSM is constructed in every round until no new sequences can 
be found. A search cycle is called iteration. See text for more details.

and for sequences with very high sequence identity (> 97% in PSI-BLAST version
2.0 and > 93% in version 2.1) only one representative sequences is kept. The final 
multiple sequence alignment M  has residues or gap characters in every column and 
row. For the calculation of the sequence weight for a column in the PSSM only 
those rows (sequences) are considered that contribute a residue or gap to tha t row.

Sequences contributing to a column of the multiple alignment are weighted in a 
similar way as for the construction of the BLOSUM matrices described in (Henikoff 
& Henikofl’, 1992). Closely related sequences can bias the PSSM. This bias can be 
avoided by weighting each sequence according to its individual information content. 
Gaps are treated as the 2U^ distinct character of the amino acid alphabet, and any
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column consisting of identical characters are ignored for calculating the individual 
weight factor for a sequence. This weight scales the raw observed residue frequency 
for a given column i of the PSSM, giving the weighted residue frequency fi. Fur­
ther the relative number of independent residue observations N c  is calculated as 
the mean of the number of different amino acid types observed at a position. The 
maximum of N c  is 21, but for most columns in the multiple alignment N q is much 
smaller. N c  is a per column scaling factor reflecting alignment variability.

A general frequency probability Qi/Pi with Q being the target frequency and P  
being the standard background frequency on which equation 1.2 is based on is not 
appropriate for the probability estimation for the PSSM, because of the weighting 
issues discussed above. A small sample size (some alignments may just have a few 
sequences at some columns) and the necessity for the prior knowledge of the relation­
ships among the residues requires a different probability scheme. The calculation of 
Qi for a position in the PSSM includes the target frequency qij that was used for the 
initial substitution matrix (see equation 1.2 ) to make use of the prior knowledge
of the residue relationships. Equation 1.7 calculates a pseudocount (Tatusov et al.,
1994) for a given column in the PSSM where qij is the target frequency for the 
standard substitution matrix from equation 1.3.2.

20 r  

9i  —  2̂ ~

3 = 1 3

Q i -  ( 1 - 8 )

The target frequency Qi for a position in the PSSM is then given via equation 
1.8 which combines the scaled observed frequency with the pseudocount. Therefore 
a PSI-BLAST PSSM is a position specific scaled version of the initial substitution 
matrix that was used. The factor a  is defined as N c  — 1 to account for the alignment 
variability mentioned above. The two equations above imply that for positions in 
the query for which the multiple alignment does not have any sequences the initial 
substitution score is used. The (3 factor can be used to increase or decrease the 
weight of the initial substitution matrix. Gaps do not have any position specific 
scores, constant gap opening and gap extension scores are applied as for the standard 
substitution matrices. The actual substitution score is calculated from Qi using 
equation! 1.2.
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A pplying BLAST to a position  specific search

The BLAST method is applied in the same way to the PSSM as for a query se­
quence and a standard substitution matrix, assuming the same statistics holds for a 
position specific search. The calculation of the normalised score S' for hits includes 
the scaling parameters A and K  for which Altschul et al. use the same values as for 
the initial substitution matrix tha t was used in the first round (e.g. BLOSUM62). 
They showed that the employed scoring system fits well the observed score distribu­
tion. The score distribution from comparisons of random sequences with a PSSM 
derived from a real sequence can be fitted by an extreme value distribution (figure 
1.2) with the calculated parameters A and K  close to those for gapped simulations 
for a BLOSUM62 matrix.

By employing the pseudocount PSI-BLAST makes use of the statistics from 
BLAST and the underlying substitution matrix which assumes a standard amino 
acid composition of the query sequence and the database. Although the initial anal­
ysis of PSI-BLAST has shown that its statistics fits the observed score distribution, 
and the calculation of the e-value approximates the observed error rate within a 
range of 20%, there have been problems with the PSI-BLAST statistics for a range 
of query sequence the more the sequence differs from the assumed standard amino 
acid composition. A BLAST comparison between a query and a database sequence 
of similar biased composition may produce a hit with significantly high score be­
cause the standard BLAST statistics does not apply for this sequence pair. Recent 
changes in the BLAST and PSI-BLAST algorithms (Schaffer et a i, 2001) imple­
mented in the 2.1 series of the program consider biased amino acid compositions. 
Especially for PSI-BLAST, biased sequences have a strong impact because in every 
iteration the PSSM itself will be biased towards the amino acid composition of the 
query, producing even more unreliable results in the next search round (Schaffer 
et al, 2001; Altschul & Koonin, 1998).

The most important change to cope with different amino acid compositions is a 
PSSM specific A. For composition biased sequence pairs the standard A (e.g. tha t 
for the BLOSUM62 scoring system) is generally too big and results in a lower e- 
value (lower e-values give more confidence) than justified (Schaffer et a l, 2001). A 
composition dependant A' is therefore generally smaller than the standard A. It is 
computationally too intensive to estimate A' by fitting the score distribution for each
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query or PSSM and database sequence pair. Since Xu can be determined analyti­
cally (Karlin & Altschul, 1990) for ungapped alignments (it is the unique solution 
to sum the scores for a matrix colum given in equation | 1.2 to one), a composition 
specific Ay for scores from ungapped alignments is calculated using the amino acid 
frequencies of the database sequence and the query. The composition rescaled score 
for a matrix cell in the PSSM is then given by ^ S i j ,  where Sij is the non-scaled 
score of the PSSM.

As mentioned in section 1.3.4 the statistics for ungapped alignments has been 
shown to approximate score distributions for gapped alignments, too. Matrix rescal­
ing is time consuming because it has to be performed for every query database se­
quence pair. Rescaling is only triggered if an alignment produces a significantly high 
score using the non-scaled scoring system. The alignment for the sequence pair (or 
a PSSM and the sequence) is then recalculated, e-Values as the common confidence 
measure for BLAST and PSI-BLAST alignments are more conservative with the 
rescaled scoring system and have been shown to be more realistic than the original 
e-values (Schaffer et al, 2001).

To avoid the application of the BLAST algorithm to highly biased sequences 
with a low amino acid entropy, for which re-scaling may not be sufficient to stop 
a corrupted search, a low complexity filter can be applied to remove regions from 
the database or query sequence tha t differ markedly from the standard amino acid 
composition. Positions in these low complexity regions are replaced by the ‘X ’ char­
acter and are ignored by the BLAST search procedure. Such a filter is implemented 
in the BLAST 2.0 and 2.1 series (Wootton, 1994).

Finally, it is worth mentioning that the sensitivity of PSI-BLAST, the ability 
to detect even distantly related homologues, depends on the diversity and size of 
the sequence database that is used for the search. Generally in every iteration 
more distantly related sequences are identified and added to the PSSM. After every 
round the PSSM explores evolution a step backward. PSI-BLAST would not be 
able to detect the relationship between a query sequence A  and a distantly related 
sequence B  in the database if there were no evolutionary intermediates present in 
the database, see e.g. Aravind & Koonin (1999).
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1.3.6 U sing sequence profiles w ith  IM PALA

The IMPALA method (Schaffer et a/., 1999) compares a query sequence against a 
library of PSSM produced by PSI-BLAST. This is particularly useful if one wants 
to find the protein or domain family to which a given query belongs. Each family 
is represented as one PSSM in the library. Such a library may be constructed by 
searching a large sequence database with a member of a characterised protein family 
using PSI-BLAST. The final PSSM produced by PSI-BLAST may then be used as 
a representation of the protein family.

The comparison of the query sequence with each PSSM is performed via the 
Smith-Waterman procedure (see equation 1.1 and text in that section), so that 
optimal local alignments are guaranteed. The time consuming Smith-Waterman 
procedure is acceptable because a profile library generally contains only a few hun­
dred members representing families or domains rather than hundreds of thousands 
of single protein sequences from a database that is used within e.g BLAST and 
PSI-BLAST searches. IMPALA faces the same statistical problems calculating sig­
nificance for scores between the query and a PSSM as PSI-BLAST. In fact the 
re-scaling procedure to scale a PSSM by (mentioned in the previous section) was 
initially developed for IMPALA and later adapted by PSI-BLAST version 2.1. IM­
PALA performs similarly to PSI-BLAST version 2.0 and 2.1 in terms of sensitivity 
and error rate. Since IMPALA and PSI-BLAST version 2.1 use the same re-scaled 
scoring system, e-values are very similar, whereas e-values generally differ from those 
calculated by the older PSI-BLAST version 2.0.

A recent development is the RPS-BLAST program (Reversed Position Specific, 
Marchler-Bauer et al. (2002)) that is a derivative of IMPALA. The query is compared 
to the query PSSM via the BLAST heuristics instead of using a Smith-Waterman 
dynamic programming as in IMPALA (the program is part of the NCBI BLAST 
package).

1.3.7 H idden M arkov M odels

Hidden Markov models are a commonly used technique in genome annotation, for 
example to identify known protein families (Krogh et a i, 1994). An overview of this 
technique and its application in sequence comparison is given in a review by Eddy 
(1998). A hidden Markov model (HMM) associates different states and the transi-
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tion between these states with probabilities. Protein sequences generated randomly 
by an HMM for a particular family should then contain members of this family, or 
from a different point of view, sequences with a high probability to be derived from 
this model should belong to the family the model describes. HMM based methods 
have been used in this work.

Sequences can be represented by first order Markov chains. A letter in a se­
quence is not independent, it depends on the previous letter, but does not depend 
on the full list of previous letters in the sequence. An HMM contains different states 
which are for example biological meaningful descriptions, such as hydrophobic H  
and polar P , to describe different regions within a protein. Between these states 
there are transitions, each associated with a probability t to go from one state to 
another. All transition probabilities from one to another state must sum to one. 
Each state contains emissions which are the 20 amino acids for a protein sequence. 
The probabilities of the emissions per state must sum to one. Only the emission 
symbols (the amino acid letters) of the model are directly observed, but the states 
and the transitions between them are hidden, therefore such a Markov chain is called 
a hidden Markov chain. Having introduced the terms transition and emission, the 
dependency of a letter in a sequence on the letter of the previous position is in 
fact the transition state between two emissions. Inferring a hidden state sequence 
(such as the above hydrophobic and polar states) from a protein sequence labels the 
protein sequences with biological information of higher order than just the residue 
letters in the protein sequence.

Figure 1.4 represents the two state HMM for hydrophobic and polar with the 
transitions between these states. The probability that a sequence FYK is modelled 
via H  H  P  is then given by equation 1.9, the first probability in each term is 
t, the second is e.

P (H H P )  =  (1 * 0.25) * (0.9 * 0.1) * (0.1 * 0.5) (1.9)

The sum of the probabilities to find the sequence in any of the states is the prob­
ability with which the sequence can me modelled by this HMM. Usually dynamic 
programming is used to find the optimal path for a given input sequence through the 
HMM, where the rows and the columns of the matrix contain the sequence letters 
and the states.
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=  0 . 0 5

t  = 0 . 1

= 1 0 . 9 5

F  = 0 . 2 5  
Y  =  0 . 1 0  
K  = 0 . 0 1

F  =  0 . 0 1  
Y  =  0 . 0 5  
K  =  0 . 5 0

F igure 1.4: Schematic representation of a two state hidden Markov model, to assign a residue in 
a protein sequence to either the hydrophobic H  or the polar P  state, t is the transition probability, 
e gives the probability for emitting a particular amino acid type from this state.

HMMs are used in a wide range of bioinformatics applications, such as (i) gene 
prediction where a gene is modelled with different states such as exon-intron struc­
ture (see section 1.2.1), (ii) transmembrane helix prediction of protein sequences 
(e.g. Sonnhammer et al. (1998); Krogh et al. (2001); Tusnady & Simon (2001)) 
where a helix may get states for the helix caps and states for the hydrophobic core 
and (iii) the identification of homologous sequence families (Bateman et a i, 1999). 
Homology based sequence searches using carefully constructed HMMs for protein 
families perform better than PSI-BLAST (Park et ai, 1998) in detecting distantly 
related proteins, but the construction of high quality HMMs on which the perfor­
mance relies is difficult and usually requires several steps and manual inspection 
(Bateman et ai, 1999, 2002; Letunic et uL, 2002; Gough & Chothia, 2002). The key 
aspect for the performance of any HMM based application is the design of the HMM 
which includes a definition of the states and the associated probabilities e and t.

Profile HMMs that describe a protein or domain family such as in PFAM and 
SMART (see section 1.2.3) usually derive the probabilities for e and t from multi­
ple sequence alignments. An initial HMM is constructed that may just contain a 
limited number of rather closely related members of the family. This HMM is then 
iteratively refined in a similar way PSI-BLAST refines its PSSMs (Bateman et al, 
1999). A HMM in database search round n will detect more divergent members of 
the family than in round n — 1, and the new HMM that is constructed after round
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n is used to search the sequence database in round n +  1. The most commonly 
used profile HMM packages are HMMer (Eddy, 1998) and SAMT99 (Karplus et ai, 
1998). These methods contain programs to construct, refine and manage HMMs 
and to search libraries of HMMs with a query sequence.

The states for a sequence profile HMM are (a) the residue positions of the protein 
family (from one to the sequence length of members of the family), referred to as 
match states, (b) a deletion state between each match state that allows bypassing 
a match, and (c) an insertion state between each match state to allow residues to 
be inserted between two matches. Figure 1.5 represents a model for a three residue 
sequence motif (Eddy, 1998). The two major differences between sequence profiles 
such PSI-BLAST PSSMs and HMMs is that a PSSM does not score gaps in a posi­
tion specific way whereas a HMM contains the deletion (gaps) state. Further, in a 
HMM a state is dependant on the previous state, whereas a position in a PSSM is 
mathematically independent.

1 2 3

c A F
c G W
c D Y
c V F
c K Y

FY

m3

Figure 1.5: A small profile HMM (right) representing a short multiple alignment of five sequences 
(left) with three consensus columns. The three columns are modelled by three match states (squares 
labelled ml, m2 and m3), each of which has 20 residue emission probabilities, shown with black 
bars. Insert states (diamonds labeled iO-iS) also have 20 emission probabilities each. Delete states 
(circles labeled dl-d3) are ‘mute’ states that have no emission probabilities. A begin and end state 
are included (b, e). State transition probabilities are show as arrows. The figure and the legend 
are from Eddy (1998) (figure 2).
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1.4 Protein structure and genom e annotation

This section explains why knowledge of the three dimensional structure of proteins 
is important. There is a huge discrepancy between the availability of protein se­
quences and their 3D-structures. Currently there are more than 800,000 different 
sequences in the public databases (12/2001, ftp://ftp.ncbi.nlm .nih.gov/blast/db/), 
but there are less than 16,000 experimentally determined protein structures in the 
Protein Data Bank (PDB, 12/2001, http://www.rcsb.org, Berman et al. (2000)), 
and these contain redundancies such as structures with point a mutation. Despite 
the difference in absolute numbers, the sequence and the structure databases both 
grow exponentially.

1.4.1 Functional and evolutionary insights from protein  struc­
ture

The 3D-structure of a protein determines its biochemical function. Homology based 
sequence comparisons and motif searches to identify the function of a protein are 
therefore simplifications because these searches only consider ID-information. How­
ever, divergent sequences often share a similar 3D-structure that accepts to some 
extent a range of amino acid substitutions. The 3D-structure is generally more 
conserved than the ID-structure (the sequence), see e.g. Chothia & Lesk (1986) 
and Murzin et a l (1995). Figure 1.6 shows the dependency of the structural sim­
ilarity measured as the root mean square of Ca distances of homologous protein 
domains and the sequence identity between these domain pairs. At about 20-25% 
sequence identity the 3D-similarity starts to decrease dramatically. Distantly re­
lated sequences with less than 20% sequence identity (the twilight zone) generally 
only share a similar structural scaffold, a common fold, with differences in struc­
tural details which usually determine the biochemical function (Hegyi & Gerstein, 
1999; Wilson et al, 2000). However, an analysis from Wood & Pearson (1999) using 
z-scores for a sequence-structure comparison showed a linear relationship between 
z-scores of the sequences members of a fold and the z-scores of their structural align­
ments.

Wilson et al (2000) analysed the relationship between sequence identity and 
function, and structural similarity and function. For enzyme domains with an RMSD

ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://www.rcsb.org
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% identity

Figure 1.6: Relationship between sequence identity and structural similarity. RMS deviation of 
superimposed structural domains as a function of percentage identity. Scatter plot of homologous 
superfamily domain pairs from the SCOP database (see section 1.4.4). The plot is similar to an 
earlier presentation by Chothia & Lesk (1986) but considers 1,000 times more domain pairs (30,000 
in total). TZ denotes the twilight zone of sequence similarity where inferring structural similarity 
gets unreliable. Only the best 50% of superimposed Ca atoms per pair where included in the RMS 
calculation (50% trim). Figure 2(a) from Wilson et al. (2000).

of lA 90% of the domains pairs have the same broad function. This structural simi­
larity can be mapped to the start of the twilight zone sequence similarity (about 25% 
sequence identity) in figure 1.6. For a 90% chance of a precise match of function of 
two structures a similarity of about less than 0.6Â RMSD is required corresponding 
to 40% sequence identity. These thresholds of sequence identity are also supported 
by other work (Devos & Valencia, 2000; Todd et a i, 2001). Hegyi & Gerstein (1999) 
showed with their analysis, that the functional diversity of protein domains decreases 
approximately as a function of the exponent of the e-value threshold of the align­
ment between a protein domain and its functionally annotated homologues in the 
SwissProt database (see section 1.2.3 for a description of SwissProt). The plot of 
this sequence/function relationship is shown in figure 1.7.

The analysis described above is based on single domains. For multi-domain pro­
teins function is less conserved between proteins than for single domain proteins, 
and even proteins with the same domain combination may not have the same func­
tion (Hegyi & Gerstein, 2001). This renders functional flexibility of folds of domains 
in a different context.

The relationship between structure and function raises the question whether
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Figure 1.7: Multi-functionality of protein domains versus e-value threshold. A domain has mul­
tiple functions if at least two homologues of different function from the SwissProt database can be 
identified for this domain. The e-value of the alignment between homologous pairs is plotted as 
the negative logarithm to the base of 10 against the fraction of domains with multiple functions 
(i.e. increasing values on the x-axes indicates more confidence in the homologous relationship). 
Starting from an e-value of 10“  ̂ {logio ~  5) multi-functionality decreases exponentially. Figure 7 
from Hegyi & Gerstein (1999).

there is a relationship between a particular function and a fold. Studies from Mar­
tin et al. (1998) showed only little preference of a function to be associated with 
a particular protein fold. However, other results (Hegyi & Gerstein, 1999; Wilson 
et al., 2000) show a significant bias of certain folds with a particular group of func­
tions. E.g., mixed a/Z^-folds are often associated with enzymatic domains whereas 
all-o; domains are biased towards non-enzymatic function. On the other hand there 
are a few folds such as the TIM (Triose-phosphate Isomerase) barrel tha t provides 
a generic scaffold to fulfil a broad range of enzymatic functions.

Todd et al. (2001) showed that 25% of the homologous superfamilies of simi­
lar structure have different enzymatic function, highlighting the divergent evolution 
within these superfamilies. Most functional changes within a related set of sequences 
are due to a change in the substrate but maintain the same reaction mechanism 
(Holm & Sander, 1997; Todd et al., 2001).

Due to the structural conservation of proteins the number of distinct 3D-archi­
tectures for globular proteins has been estimated to be limited between 1,000 and
7,000 (Brenner et al, 1997; Govindarajan et al, 1999; Zhang & DeLisi, 1998; Wolf 
et al., 2000). This means that many proteins have the same or a very similar general 
architecture of secondary structure elements (a-helices and /^-sheets), although their 
peptide sequences may not show obvious similarity. Gonsidering this structural dim-
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itation’, functional diversity has to be generated by adopting an existing structural 
scaffold to a particular function. Functional changes within the same structural fold 
is often related to critical local sequence changes Todd et al. (2001); Aloy et al. 
(2001), and in difficult cases may be traced to differences of a few critical atoms.

An overview about the relationships between sequence, structure, function and 
evolution is given by Orengo et al. (1999); Thornton et al. (1999, 2000). Generally 
protein structure is more conserved than its function (and its sequence).

1.4.2 Exam ples for protein  stru ctu re/fu n ction  relationships

G lycogen synthase kinase 3/?

The recently published structure of the glycogen synthase kinase 3/5 (GSK3/5, Dajani 
et al. (2001)) is represented as an example of how protein structure reveals insight 
into biochemical function, supporting and guiding functional studies. The GSK3/5 
plays a regulatory role in two distinct signalling pathways, the insulin induced sig­
nalling pathway to regulate glycogen synthesis and the Wnt (Wintbeutel) signalling 
pathway involved in cell proliferation and development. The default for GSK3/5 is 
to phosphorylate and thereby inhibit its target proteins.

GSK-3/5 contains an N-terminal activation segment that is also found in other 
kinases such as ERK2 MAP kinase (Zhang et a/., 1995), forming a (3 barrel structure 
that opens a substrate specific binding cleft and positions the active site residues 
for the phosphorylation reaction. This activation itself is enhanced by the phospho­
rylation of the activation segment (tyrosine 216 in GSK-3/5). A feature specific for 
GSK3/5 is the P4-4 phosphorylation pattern. The kinase efficiently phosphorylates 
substrates at a position with a serine or threonine if the residue 4 positions towards 
the G-terminus has already been phosphorylated {primed phosphorylation). Addi­
tional serine or threonine residues can be phosphorylate in 4-4 steps in a G-terminal 
to N-terminal direction (hyper-phosphorylation, Fiol et al. (1994)).

The crystal structure was analysed to suggests a model by which the requirement 
for primed phosphorylation and the substrate specificity is explained. The structure 
of GSK3/5 shows the active from of the protein, with an open cleft between the 
activation segment at the N-terminus and the G-terminal domain. Figure 1.8 (A) 
shows the surface of GSK3/5 with the functionally key residues labelled. The cleft
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from the positively charged patch formed by R96, R80 and K205 to the left, passing 
the active site residues R220 and D181, is the substrate binding site. The positively 
charged patch is stabilised by either a phosphorylated tyrosine at position 216 form­
ing a hydrogen bonding network with the three positively charged residues or by a 
free phosphate or sulphate from the surrounding buffer in vitro (as it is found in the 
crystal structure) and the cytosol in vivo. The modelled protein substrate complex 
in 1.8 (B) explains the requirement for P+4 primed substrates, and the specificity 
for substrates containing a serine or threonine at ‘P(0)’ and ‘P(-h4)’.

R220

D181

y  216

R96
R180 I  
K205

A B

Figure 1.8: GSK3/3 surface and active site. From Dajani et al. (2001), figures 3a and 4a.
(A) The solvent-accessible surface of GSK3/3 coloured according to electrostatic potential (red, 
negative, blue; positive). The intensive positive patch generated by the basic side chains of Arg 
96, Arg 180 and Lys 205 is indicated, as is the location of the catalytic Asp 181 and Arg 220 which 
could interact with a phosphorylated Tyr 216. The N-terminal mainly neutral activation segment 
is located towards the bottom of figure. (B) Phospho-Substrate bind model. Model of substrate 
binding (peptide sequence PPSPSLS) to GSK3/?. Phosphorylation of a serine at P(0) by the active 
site residues (red) depends on a ‘priming’ phospho-serine at P(+4) interacting with residues of 
the positively charged patch (blue sidechains) shown in (A) fitting the substrate into the binding 
pocket.

The authors further suggest an autoinhibition mechanism to interpret the inhibi­
tion of GSK3/i^ when serine 9 is phosphorylated in the insulin pathway (Cross et ai,
1995). The 35 residue N-terminal peptide, which is distorted in the crystal structure 
and therefore not visible, was modelled into the substrate binding site serving as a 
pseudo primed substrate analogue with the phosphorylated serine 9 as T (-h4)’ and



Introduction 49

a proline 5 in T (0 )’ occupying the pocket at the catalytic residues. The authors 
showed experimentally that inhibition depends on the sequence context of the serine 
9, and is in fact specific to the sequence N-terminal fragment of GSKSP itself.

The structure of GSK3/3 from Dajani et al. (2001) does not reveal any insights 
into how GSK3/3 acts differently in the two signalling pathways (insulin and Wnt). 
However, recently a structure of a complex between GSK3/5 and a peptide from 
an interacting regulatory protein required in the Wnt pathway was published (Bax 
et ai, 2001), showing that the interaction site is close to the substrate binding site 
but without any overlap. This structural complex explains why GSK-3/? can be 
inhibited in the Wnt pathway while staying active in the insulin pathway.

Similar structure and function - different sequence

As figure 1.6 shows and is further discussed in section 1.4.3 below, similar sequences 
generally have a similar 3D-structure which in turn determines the biochemical func­
tion of the protein, although, as explained in section 1.4.1, it is not straightforward 
to identify these relationships. In this section two protein structures with such a 
difficult relationship are discussed.

The structures of the core domain from different viral integrase proteins Dyda 
et al. (1994) are similar to ribonuclease H (RNaseH, Katayanagi et al. (1990); Davies 
et al. (1991)), but their sequences do not show significant similarity (Yang & Steitz, 
1995; Dyda et al., 1994). The integrase inserts the viral DNA into the host DNA, 
whereas RNaseH hydrolyses RNA strands of RNA-DNA hybrids. Despite the differ­
ence of their biological function, both enzymes perform a similar trans-esterifiaction 
reaction that requires either or ions and three carboxylates. Overall
the reaction mechanism of both enzymes has been proposed to be similar Yang & 
Steitz (1995).

The topology of the core folds for the integrase and the RNaseH are the same, 
but the length and twist of the secondary structure elements are different, also both 
folds contain additional secondary structure elements. Figure 1.9 shows a superpo­
sition of both structures. The three residues of the catalytic site tha t provide the 
carboxylates for the chelated metal-ion are in similar relative positions (coloured in 
magenta and green). In integrase glutamate 157 (magenta) does not interact di­
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rectly with the magnesiiim-ion, although mutagenesis has shown that this position 
requires a glutamate (Kulkosky et ai, 1992). Further, glutamate 157 is in an oppo­
site position relative to glutamate 48 of the RNaseH. It has to be pointed out that 
the fold of the Avian Sarcoma Virus (ASY) integrase shown in the figure is similar 
to the HIV-1 integrase (Bujacz et a/., 1996) with a sequence identity of 24% but the 
relative orientation of the three active site residues are different (Bujacz et a i, 1996).

A

Figure 1.9: Superposition of ribonuclease H from E. coli (PDB code IRDD, red structure, 
Katayanagi et al. (1993)) and integrase from Avian Sarcoma virus (PDB code IVSD, structure 
shown in blue, Bujacz et al. (1996)). (A) The RMSD of the superposition is 3.9À. Most similarity 
is found in the 5 stranded sheet, both structures contain additional secondary structure elements, 
although their general topology is the same. (B) Mg^+ binding site of both enzymes (integrase 
in magenta, and RNaseH in green). The two aspartates occupy similar positions whereas the two 
glutamates are on opposite sites of the metal ion.

The similarity between both protein domains and the proposal of a common 
enzymatic mechanism was identified only because their 3D-structures are available, 
pointing out the limitations of sequence based comparisons, and raising the question 
of how many of these hidden relationships there are in the protein universe.
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Similar sequence and structure - different function

The sequence and structure of lysozyme and o-lactalbumin are very similar (36% 
sequence identity and an RMSD of 1.3Â between the structures, see figure 1.10), al­
though their biochemical functions are different. The first 3D-structure of lysozyme 
was described by Blake et a l (1965), and was derived from Hen egg. Lysozyme is also 
found in other birds, mammals and insects Jolies et al. (1984). It degrades bacte­
rial cell walls by cleaving the /3-l,4 glycosidic linkage between N-acetylmuramic acid 
and N-acetylglucosamine of polysaccharides, a-lactalbumin is mainly found in mam­
mary glands and milk. The protein changes the substrate specificity of the enzyme 
galactosyltransferase in the lactating mammary gland from N-acetylglucosamine to 
glucose to produce lactose. The first a-lactalbumin structure was published by 
Phillips and co-workers (Smith et a/., 1987). A review about the discovery, analy­
sis and comparison of a-lactalbumin and lysozyme is given by McKenzie & White
(1991).

In addition to their sequence and structural similarity, both enzymes have a 
similar exon-intron structure (McKenzie, 1996) suggesting a common ancestor. The 
different biochemical functions, despite different substrates, are rendered by two 
major features: (i) a-lactalbumin binds calcium, whereas only a few lysozymes have 
been reported to bind calcium (e.g. N itta et al. (1988); N itta (2002)), and (ii) a- 
lactalbumin interacts with galactosyltransferase, this interaction has not been found 
for lysozymes. Figure 1.10 shows a structural superposition of both proteins, high­
lighting the calcium binding site of a-lactalbumin (red) and the catalytic residues 
the lysozyme (blue).

Although a-lactalbumin and lysozyme have developed different functions, it is 
commonly accepted that they are homologous. However, it is not clear when in 
evolution the gene duplication event took place (lysozyme is believed to be the 
ancestor of a-lactalbumin). Some authors suggest the event happened before the 
divergence of birds and mammals (Prager & Wilson, 1988) while others suggest a 
more recent event, after birds and mammals have diverged (Shewale et a l, 1984). 
The functional divergence of both proteins cannot be explained by structural data 
alone, but needs careful sequence analysis and experimental work. Similar sequences 
and structures do not necessarily imply similar function. This is an important aspect 
in functional genome annotation which was discussed in section 1.4.1.
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Figure 1.10: Superposition of lysozyme (PDB code ILYZ, blue, Diamond (1974)) and q- 
lactalbumin (PDB code lALC, red, Acharya et al. (1989)). The catalytic sidechains ASP52 and 
GLU35 of lysozyme are shown. The calcium (red sphere) and the sidechains of the residues LYS79, 
ASP82, ASP87 and ASP88 involved in calcium binding are shown: in red.

1.4.3 Structural genomics projects

Automated large scale structural genomics projects have been setup around the 
world to determine large numbers of protein structures (Sanchez et a i, 2000). There 
are at least fifteen such projects in North America, four in Europe using X-ray crys­
tallography and one in Japan that uses NMR technology. Generally the aim of 
structural genomics projects is to solve protein structures without the focus on a 
particular protein. Targets may be selected carefully including those of special inter­
est such as potential drug targets, protein families or a representative set of proteins 
from a particular organism. An important aspect is to have a wide range of pos­
sible protein targets so that a protein that is difficult to express or to crystallise 
may be skipped or suspended from the processing pipeline without having any im­
pact on the entire project. This philosophy which is often referred to as grabbing 
for the low hanging fruit aims for the easy targets. However, the current lack of 
protein structures supports this point of view, and advances in technology based 
on the experience of ongoing projects may allow future exploration of targets that 
cannot be handled at this time. Nevertheless, there are projects sucfi as the one at 
the Midwest Center For Structural Genomics, that include difhcult targets such as 
membrane proteins.

As mentioned at the beginning of section 1.4, there is a large discrepancy between
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the number of available sequences and structures. However, structural genomics 
projects do not need to provide experimental structures for every single sequence, 
because the number of distinct 3D-architectures for globular proteins is limited to 
a relatively small number of folds, allowing the modelling of the structures of many 
proteins from a limited number of homologues for which the structures were deter­
mined experimentally.

Recent work by Vitkup et al. (2001) suggests tha t a number of 16,000 structures 
may be required to have representative structures for 90% of all proteins. To cover 
90% of all protein families in PFAM (version 4.4 with 2,000 families, see section 
1.2.3) about 4,000 structure determinations are required. More than one structure 
per family has to be solved if the sequence identity between members of a family 
is low (< 30%). Assuming that reliable homology based model building for protein 
structures requires at least 30% sequence identity between the target (the protein 
of unknown structure) and the template (the homologue of known structure), one 
could model all members of a protein family with a minimum number of template 
structures. This minimum number is determined so that all members of the family 
share at least 30% sequence identity to at least one template. On average a quarter 
of a genome is covered by PFAM (version 4.4), and so the extrapolated number of 
structure determinations rises to 16,000. This is the estimated number of protein 
structures to cover 90% of the sequence space. About 10% of these structures are 
already available. Targeting a 100% coverage of the protein sequence space requires 
four times more protein structures to be solved, and therefore a 90% coverage cut-off 
is a good ratio of completeness to costs. This theoretical estimate does not consider 
membrane proteins and technical difficulties with certain protein families, although 
difficulties with individual target proteins from families can be bypassed by choos­
ing an alternative candidate target protein of the same family (e.g. from a different 
organism).

Target selection is critical for the success of structural genomics and has to 
be coordinated to avoid redundant work. Lists of targets from various projects 
are maintained at http://presage.berkeley.edu/ (Brenner et a/., 1999) and h ttp ://-  
www.structuralgenomics.org.

The expected benefits from having a large set of available structures (includ­
ing those derived from homology modelling, see section 1.4.5) are combinations of

http://presage.berkeley.edu/
http://-
http://www.structuralgenomics.org
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‘new/old’ folds (3D-architectures) and ‘known/unknown’ functions (Burley, 2000). 
The examples in 1.4.2 already highlighted the benefits of knowing the structure of 
a protein. Structures will be used for guiding experimental work such as site di­
rected mutagenesis, protein-protein interaction studies and identification of possible 
ligands (e.g. inhibitors). Having a larger number of proteins with the same or a 
similar fold but different function sheds light into the evolutionary history of a fold. 
This allows the exploration of the differences between proteins that have diverged 
from a common ancestor, and how proteins with the same structural scaffold evolved 
new functions. As discussed in section 1.4.1, the structure/function relationship is 
complex, and there is still a lack of structural data to extract reliable rules for this 
relationship. New folds of proteins with known function will allow to elucidate the 
function of a fold, which in turn may allow to propose a function for all those mem­
bers (proteins) of this fold. For a known fold with an unknown function the structure 
may be used to propose a function, e.g. by screening this fold for 3D-sites extracted 
from existing structures (Wallace et al.  ̂ 1997; Russell, 1998; Jonassen et a l, 1999).

1.4.4 Structure based classification of proteins

The protein family and domain databases discussed in section 1.2.3 derive their rel­
evant information to cluster proteins mainly from sequence information. Another 
type of domain database uses protein structure to identify and cluster similar do­
mains. Protein structure supports the identification of domain boundaries for a 
sequence family. A comparison of protein structures also allows the identification 
of structurally similar domains in the absence of obvious sequence similarity as the 
structural similarity of the integrase and the ribonuclease in section 1.4.2 shows.

The most commonly used structural domain databases are SCOP (Murzin et al. 
(1995); Conte et al (2002), see also http://scop.mrc-lmb.cam.ac.uk/scop/) and 
CATH (Orengo et al. (1997); Pearl et al (2001), see also http://www.biochem.- 
ucl.ac.uk/bsm /cath/). Both databases are based on the PDB database which is 
the central repository for protein structures. SCOP {Structural ClassiGcation Of 
Proteins) has been employed extensively in this work, and therefore its architecture 
is described in detail. Proteins are classified via a tree with six branch levels. The 
top level is the class that summarises domains according to their secondary struc­
ture content. In SCOP version 1.53 there are five main classes, all-a, all-/?, mixed 
a/f3 and a + j3 (domains contain a separated a  and /? part) and small domains

http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.biochem.-
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(dominated by short domains that usually contain a complexed metal or disulphide 
bridges). The next level is the fold, that groups domains for which the secondary 
structure elements are arranged in a similar topology but without the need of se­
quence similarity. Each fold contains one or more superfamilies which aims to group 
domains for which the evidence suggests there is be a common ancestor, therefore 
members of the same superfamily are homologues. The evidence that two domains 
belong to the same superfamily can be similarity in sequence, structure and function, 
but may be a combination of similar structure and function without detectable se­
quence similarity (as for the integrase and ribonuclease H examples in section 1.4.2). 
Domains in the same fold but from different superfamilies are considered to be ana­
logues, their similar structural framework is believed to have evolved independently. 
Since the discrimination between analogy and homology is not straightforward, a 
common evolutionary origin cannot be excluded for some domains within the same 
fold but in different superfamilies. SCOP decides conservatively, and places domains 
without clear evidence for common ancestry in different superfamilies. Each super­
family contains at least one family that groups closely related domains with at least 
30% sequence identity or in some cases less identity but very similar structures and 
function. A domain itself is the next level within a family, followed by the species, 
i.e. the same domain may be present in different species. The SCOP database is con­
structed and maintained mainly manually, some steps of the analysis are automated.

C L A S S \1 1

657FOLD

971SUPERFAMILY

,1472FAMILY

2804PROTEIN DOMAIN

1512PROTEIN DOMAIN AND SPEC IES

Figure 1.11: The SCOP classification. The CLASS level at the top of the triangle is the most 
general classification level. Several entries from a level can be summarised by the next higher level 
(e.g. a FOLD contains one ore more SUPERFAMILIES). The lowest level is the PROTEIN DOMAIN IN A 
SPECIES, i.e. the same domain may be found in different species. The numbers of distinct entries 
at each level are given, in total there are 26,174 domains (including the same domain in different 
species) in SCOP version 1.53

The CATH database is organised similarly to SCOP, it contains five levels: (i) the
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class, similar to SCOP, and contains the entities mainly-o, mainly-y5 and a — beta, 
(ii) the architecture level groups domains with similar arrangements of secondary 
structure elements but ignoring their connectivity, (iii) the topology/fold family level 
that considers secondary structure topology (grouping analogues), (iv) the homolo­
gous superfamily and (v) the sequence family levels for similar sequences. CATH is 
constructed and maintained mainly automatically with some manual intervention.

1.4.5 M ethods for assigning a 3D -structure to  protein  se­
quence

The previous sections have demonstrated the benefit of protein structure for the un­
derstanding of function and evolutionary relationships. Clear homologous relation­
ships between sequences can be identified straightforward via sequence comparison 
e.g. using BLAST (see section 1.3.3). Thus way one can identify a close homologue 
of known structure for a sequence of unknown structure. However, because the 
structure is usually more conserved than the sequence, and similar structures of­
ten share a broad similar biochemical function (see section 1.4.1), different methods 
have been developed to make use of the knowledge that is derived from structure, 
such as physical interactions between residues distantly apart in the sequence. The 
aim is not only to detect distant homologous relationships but also those for which 
the structures share similar physical constraints which may have arisen by con­
vergent evolution. These methods are generally summarised as fold recognition or 
threading^, and were reviewed by Jones (1997); Sippl (1999); Sternberg et al. (1999).

One of the earliest fold recognition methods compares a template sequence with 
a library of profiles from proteins of known structure (Bowie et al, 1991). The pro­
files contain observed secondary structure states and solvent accessibility for each 
residue position. A statistical analysis of all 20 amino acids with their states is 
performed for all proteins of known structure, calculating a score for each amino 
acid type in each state, which is used to score each residue of a target sequence in 
the templates residues states.

One of the most successful methods developed was THREADER (Jones et al, 
1992) which uses pair-potentials to evaluate an energy function for the target residues

^Threading in this context means to thread the residues of a sequence of unknown structure 
onto the backbone conformation of a template structure
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in a template structure. Pair-potentials introduced by Sippl (1990); Hendlich et al 
(1990) are derived by analysing the surrounding residues in a given radius in space 
for a given residue. This is a measure for the preferred amino acid environment for 
a given residue.

Advances in secondary structure predictions based on multiple sequence align­
ments and neural networks (Rost & Sander, 1993b,a; Jones, 1999b) enhanced fold 
recognition (similar 3D-structures have the a similar secondary structure content 
and topologies) and were frequently incorporated into fold recognition methods.

In the 4̂  ̂ CASP competition (Critical Assessment of Structure Prediction) in 
2000, a blind trial to predict the fold of structures that were held back temporar­
ily from publication for the purpose of CASP, the 3D-PSSM method performed 
best under the fully automated methods (Kelley et ai, 2000). Different methods 
are combined to score the compatibility of a target sequence with each library se­
quence represented by a set of profiles that are derived from superimposed structures, 
solvent-potentials, secondary structure prediction and sequence homology.

If more information than just the general fold is required and a homologue of 
known structure is available, homology based modelling can be applied to build an 
accurate structural model that includes sidechains. The assumption for homology 
modelling is that the target sequence will have a similar fold, and therefore a similar 
backbone conformation for the main secondary structure elements. The backbone 
conformation of the homologue of known structure is used as a template onto which 
the sidechains of the target are placed. The model may be refined using different 
force fields (e.g. Sali & Blundell (1993); Sanchez & Sali (1997b)), see Sanchez & 
Sali (1997a); Moult (1999) for a review on comparative modelling. Flexible loops 
and gaps are difficult to model, and special methods have been developed to tackle 
this problem (Bates et al, 1997). The quality of homology models strongly depends 
on the accuracy of the alignment between the target and the template. Reasonable 
models that include sidechains and flexible loops require at least 30% sequence 
identity (Sanchez & Sali, 1998; Bates et al, 1997; Fischer et al, 1999). Structural 
genomics projects benefit from the conservation of protein structure by building 
reliable models for closely related sequences (see section 1.4.3 on page 53). The 
growth of the sequence database and the expected growth of the protein structure 
database will increase the number of relationships with >30% sequence identity.
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increasing template selection via straightforward sequence search methods such as 
BLAST.

1.5 Scope and outline of this thesis

The methods used in genome annotation as described in the previous sections to­
gether with the vast amount of data that is already available requires a systematic 
integration. To perform comparisons across genomes, a unified annotation protocol 
has to be applied to all sequences of each genome. Such a cross-genome comparison 
highlights the differences shaping the nature of a particular organism or a group of 
organisms (e.g. metazoans). Commonalities between genomes reveal evolutionary 
relationships as well as conserved functions. Several comparative genomics projects 
with different aims have been developed by others which are discussed in the later 
chapters and are compared to this work. Here, a comparative annotation system 
and its application based on the protein repertoire of fully sequenced genomes is 
described with a focus on domains of known structure. Below the main aspects of 
this work are introduced.

• Chapter II describes the development of a benchmark for the protein sequence 
database search program PSI-BLAST (see section 1.3.5) to evaluate its perfor­
mance in protein based genome annotation. For the benchmark an artificial 
genome is constructed from domains of the SCOP database (for which the an­
notation is known, see section 1.4.4), so that the ideal structural and functional 
annotation can be compared to PSI-BLAST results. The well characterised 
genome of M. genitalium  and the genome of M. tuberculosis (at that time just 
published) are annotated via PSI-BLAST sequence comparisons. The extent 
of new folds and proteins of potentially new function within these genomes is 
estimated.

•  Chapter III describes the development of a computer based annotation sys­
tem that is capable of performing an automated analysis of a vast amount of 
protein sequences with structured storage and retrieval of the results. The 
annotation system is based on a relational database and an object oriented 
software interface to this database. Standard protein sequence based analysis 
tools such as those described in the previous sections (e.g. PSI-BLAST) are 
integrated as a part of the annotation pipeline.
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• Chapter IV | an alyses the proteins of 14 genomes from archae, bacteria and 
eukaryota including proteins from the draft human genome. The extent of 
structural and functional annotation within these genomes is analysed and 
compared. The extent of domain duplications within SCOP superfamilies 
in the processed proteomes is analysed, including a comparison of the most 
abundant superfamilies, repetitiveness of domains and the co-occurrence of su­
perfamilies in the same sequence. Membrane proteins are analysed for globular 
domains, and SCOP superfamilies found in membrane proteins are compared 
across the proteomes. Further, SCOP superfamilies found in proteins from 
human disease genes are compared to those found in non-disease genes. Re­
sults from other projects tha t analyse the fold distribution across different 
proteomes are discussed.

• The thesis closes with a summary and discussion of the results and suggestions 
for possible future developments, in particular possibilities for the annotation 
and analysis system described in this work.
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Chapter 2 

Benchmarking PSI-BLAST in 
genom e annotation

2.1 Summary

The recognition of rem ote protein hom ologies is a major aspect of the  
structural and functional annotation of new ly determ ined genom es. This 
work presents a benchm ark for the coverage and error rate o f genom e an­
notation using the w idely-used hom ology-searching program PSI-BL A ST  
(position specific iterated basic alignm ent too l). The study evaluates the  
one-to-m any success rate for recognition, as often there are several hom o­
logues in the database and only one needs to  be identified for annotating  
the sequence. In contrast, previous benchm arks considered one-to-one  
recognition in which is was required that a single query should find a par­
ticular target. The benchm ark constructs a m odel genom e from th e full 
sequences o f the structural classification o f protein (SCO P) database and 
searches against a target library of rem ote hom ologous dom ains (<20%  
id en tity ). The structural benchm ark provides a reliable list o f correct and 
false hom ology assignm ents. PSI-BLA ST successfully annotated 40% of 
the dom ains in the m odel genom e that had at least one rem ote hom ologue 
in the target library. This coverage is more than three tim es th at ob­
tained if one-to-one recognition is evaluated (11% coverage o f dom ains). 
A lthough a structural benchmEurk was used, the results equally apply to  
just sequence hom ology searches. Accordingly, structural and sequence  
assignm ents were m ade to  the sequences o f Mycoplasma genitalium  and
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Mycobacterium tuberculosis (see h ttp ://w w w .b m m .icn et.u k /P siB en ch ). 
The extent of m issed assignm ents and of new superfam ilies can be esti­
m ated for these genom es for both  structural and functional annotations. 
The work described in th is chapter has been published in Journal of 
Molecular Biology (M uller et al., 1999).

2.2 Introduction

At the start of this work in 1998 it was clear that over the next few years a ma­
jor activity in molecular biology would be the assignment of protein structure and 
function to ORFs in newly determined genomes (Bork et al, 1998; Bork & Koonin, 
1998). A standard approach is to perform database searches to identify homologous 
protein sequences which will have similar three-dimensional structures and often a 
related function (Bork Sz Koonin, 1998; Chothia & Lesk, 1986; Hegyi & Gerstein, 
1999; Karp, 1998; Martin et al, 1998). Indeed an initial report of a newly deter­
mined genome nearly always reports the results of homology searches. However, 
despite the importance of the methodology, there has only been limited systematic 
evaluation of the accuracy, both in terms of coverage and errors, of the procedure 
(Brenner et a l, 1998; Park et al, 1998). This work uses a structural benchmark 
developed by Chothia and coworkers (Brenner et a l, 1998; Park et a l, 1998) from 
the SCOP (Structural Classification of Proteins) database (Murzin et a l, 1995) to 
assess the accuracy of homology based annotation^ of ORFs. The results of the 
benchmarking will be used to interpret assignments of protein structures to ORFs 
in two bacterial genomes. Although a structural benchmark is used, the conclusions 
of the study relate to the accuracy of genome annotation by homology to other pro­
teins irrespective of whether these proteins have a determined structure.

The SCOP database employs sequence, structural and functional relationships 
between protein domains of experimentally determined three dimensional confor­
mation (Murzin et al (1995), see section 1.4.4 for details); In summary: protein 
domains of similar three-dimensional structure are classified into the same super­
family if there is substantial evidence to propose that they are homologues (i.e. the 
result of divergent evolution). A key feature is that without structural information.

^Here, annotation is defined as the assignment of a functionally or structurally characterised 
homologue to an uncharacterised protein sequence

http://www.bmm.icnet.uk/PsiBench
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many homologous relationships between proteins in the same superfamily could not 
have been established. Domains that lack strong evidence for divergence but share 
a common structure are assigned to the same fold family. In general, domains with 
a common fold are presumed to be structural analogues (i.e. the result of conver­
gence) but a homologous relationship remains a possible explanation.

Chothia and coworkers established a structural benchmark for sequence ho­
mology search algorithms based on recognising superfamily relationships in SCOP 
(Brenner et a/., 1998; Park et ai, 1998). A database of sequences with less than 40% 
identity was derived from SCOP. An optimal homology algorithm should identify 
all pairs of sequences for domains within the same superfamily (i.e. total coverage) 
without detecting any erroneous relationships between different superfamilies (i.e. 
zero errors per query). In practice, algorithms are not optimal and different methods 
can be compared from their different coverage at a chosen observed error rate. Park 
et al. (1998) showed that the iterative profile approach of PSI-BLAST (Altschul 
et ai, 1997) and the hidden Markov models implemented in SAMT98 (Karplus 
et ai, 1998) were found to identify three times as many remote homologues as the 
sensitive pairwise algorithm PASTA (ktup= l) (Pearson & Lipman, 1988).

The evaluations of the accuracy of different homology search algorithms by 
Chothia and coworkers (Brenner et aL, 1998; Park et a/., 1998) and the related 
studies by Salamov et al. (1999), evaluate a one-to-one success rate in terms of 
whether a single probe identifies a particular homologue in the library (see table 
2.1). This measure, appropriate for comparison of the performances of different al­
gorithms, is not the most useful to benchmark actual genome assignment. A better 
measure for genome annotation is the one-to-many success rate as there are several 
potential homologues in a database and only one needs to be identified to propose 
a common three-dimensional structure and probable related function. One would 
expect that the presence of multiple homologues would increase the accuracy of ge­
nome assignment for populated homologous families. In addition, these previous 
benchmarks considered recognition of protein domain probes and targets whilst of­
ten the actual genome will be a multi-domain protein. Not only could this lead 
to additional problems in assignment, but it also raises the question of how well 
domain boundaries can be identified.

It is important therefore that the benchmark for genome assignment represents
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Probe Targets Found < e- 
value

one-to-one success one-to-many suc­
cess

A B V 1 1
C V 1
D % 0

B A V 1 1
C X 0
D X 0

C A V 1 1
B X 0
D X 0

D A X 0 0
B X 0
C X 0

TOTAL SUCCESS RATE 4/12 3/4

Table 2.1: One-to-one and one-to-many assignment Sequences A, B, C and D are homologues 
(i.e. the same SCOP superfamily). In a benchmark, each sequence would be taken as probes in 
turn and their success at identifying the remaining target homologues determined (i.e. ‘Found <  
e-value’). In a one-to-one benchmark the success of finding each pair is considered. In one-to-many 
only one correct assignment is needed to classify the probe. This highlights the difference in the 
two methods of assignment. In the approach of Brenner et al. (1998) and Park et al. (1998), the 
observed error rate is evaluated and is the basis for comparison of algorithms (see text).

the actual situation. Accordingly, in this work a model genome (the SCOP genome) 
is constructed from a selection of the entire protein sequences forming protein do­
mains in SCOP. The performance of PSI-BLAST for genome assignment will be 
evaluated since this program is exceptionally widely-used and can be readily in­
stalled at any site (see e.g. Aravind & Koonin (1999); Koehl & Levitt (1999); 
Sternberg et al. (1999)). Indeed, today, PSI-BLAST is the standard tool for an 
initial, state-of-the-art analysis of newly determined genomes. The results of the 
benchmark are then used to interpret the PSI-BLAST analysis of the fold composi­
tion in the Mycoplasma genitalium and Mycobacterium tuberculosis genomes.

2.3 Developm ent of the SCOP genom e benchmark

For details of the materials and methods, see section 2.7 on page 80.
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2.3.1 SCO P1625 - representative target dom ain library

Structural information was taken from SCOP release 1.37 (Murzin et a/., 1995). 
Each SCOP entry consists of a structural domain. These domains can be contin­
uous or discontinuous (i.e. in which the same structural domain is formed from 
two or more discontinuous sequence segments) (Wetlaufer, 1973). The unit used 
in this study is referred to as a ‘region’ which is defined as one domain or a seg­
ment of a discontinuous domain and represents one segment of the protein sequence.

To generate a representative library^, SCOP entries have been excluded if they 
did not have coordinates in the protein data bank (Abola et ai, 1997; Berman et al, 
2000), any errors in residue numbering, an X-ray resolution of >3.5Â or undefined 
residues, length <20 residues, C°" trace only, more than 15 C“-C" separations of 
>4.0Â or more than five undefined residues. From 11,373 domains, a set of 1,560 
domains was generated so no pair shared >40% identity. These domains contain 
1,625 regions which is the SCOP 1625 target library.

2.3.2 SCO P genom e probe

The SCOP genome was constructed to have complete chain sequences. Any sequence 
in SCOP 1625 that was only part of a chain was replaced by the entire chain sequence. 
This yielded 1,300 different sequences comprising 934 single domain chains and 366 
multi domain chains. The sequences are from a range of different organisms. The 
SCOP query genome contained 1,845 regions. In this genome there are 224 regions 
that cannot be annotated (i.e. these are the only representatives for a SCOP super­
family), and this provides a model for the types of errors that can occur in actual 
genome assignment when there are no homologues in the database. For example, 
the identification of domain boundaries may be subject to more errors if there are no 
homologues for parts of a protein. However the SCOP genome is limited as it only 
includes a few transmembrane and coiled-coiled domains, and real genomes tend to 
have a higher fraction of these types of structures.

^This library was created by R.M. MacCallum
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2.3.3 A ssignm ent o f structural regions to  the SCO P genom e

In outline (see section 2.7 for details), PSI-BLAST (Altschul et ai, 1997) performs 
iterative searches against a non redundant sequence database (NRPROT-SCOP) 
that includes every non identical representative from the standard sequence databa­
ses together with the sequences of all the regions in SCOP1625. The benchmark is 
to evaluate the accuracy and coverage of detecting remote homologues to the SCOP 
genome.

In PSI-BLAST, the confidence in a particular sequence hit to the query is quan­
tified by an e-value that indicates the theoretically expected number of erroneous 
matches per query (also see section 1.3.4). Up to 20 iterations of PSI-BLAST were 
performed and all hits to SCOP 1625 from any iterations are stored. For hits to the 
same region within query, the one with the best (lowest) e-value is taken. Hits that 
overlap within a similar region in the SCOP protein are clustered. Two parameters 
determine which match is taken as the assignment. First the percentage of the tar­
get (i.e. known) SCOP region that is included in the PSI-BLAST match must be 
greater than a cut-off value t. Thus one can exclude a match to a small fraction 
of the target that may be erroneous. After this, the match with the best e-value is 
taken.

For the benchmark only matches to remote homologues are considered. Here 20% 
identity for long alignments (>350 residues) is used to distinguish between close and 
remote homologues with a progressively higher identity required for shorter align­
ments based on the relationship derived by Rost (1999).

The proposed annotation generated using PSI-BLAST is then compared to the 
real assignment of the query. This is performed by associating the mid point of each 
proposed region with its nearest mid point of the real region of the query. If the 
SCOP superfamily of the real and proposed region is the same, then this is a correct 
assignment. If there are more proposed regions than real regions in the query, one 
or more of the proposed regions are flagged as ‘over-assignments’ in the benchmark.
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2.3.4 A ccuracy m easures

The accuracy of genome assignment can be considered in terms of two measures: 
coverage and the error rate. The coverage of true positives is the number of correctly 
assigned regions divided by the number of regions in the SCOP genome that have a 
homologue (1621). The assignment of a target to a region within the query that is 
from a different superfamily than the target is defined as a false positive. The error 
rate is the number of false positive assignments divided by the number of SCOP 
query regions (1845).

A correct assignment is when a region in the SCOP genome is matched by PSI- 
BLAST to a target region of the same SCOP super family. Sequence based profile 
methods can detect analogous folds in addition to homologues (Fischer et a i, 1999) 
which would lead to erroneous functional assignments (although members of a di­
verse superfamily can have different function). Thus, in our study assignment to 
the same SCOP fold but different superfamily is taken as an incorrect result. How­
ever, the SCOP classification of domains into the same superfamily is conservative. 
In preliminary work, several errors occurred when there was an assignment to the 
correct fold but the wrong superfamily for a P /a  TIM-barrel. This suggested that 
the SCOP classification was too conservative for these superfamilies. Accordingly, 
any correct assignment to the TIM-barrel fold irrespective of superfamily is taken 
as correct. In addition, any assignment between a nucleotide-binding domain and a 
FAD/NAD(P)-binding domain (two different SCOP folds) is not treated as an error. 
In the benchmark, there were four such assignments to different superfamilies for 
TIM barrels and four for nucleotide-/FAD/NAD(P)-binding domains.

2.3.5 Param eter selection

First suitable parameters for the percentage t of the target that needs to be iden­
tified by PSI-BLAST and the standard e-value cut-off were determined. Figure 2.1 
plots the coverage and error rate against different t-values for three different e-value 
cut-offs (5 X 10“® , 5 X 10“'̂  and 5 x  10“^). When the t cut-off is above 50%, the 
coverage begins to decrease markedly. In contrast, errors tend to accumulate when t 
is less than 50%. Accordingly we chose a value of t of 50% as optimal. A commonly 
used PSI-BLAST e-value of 5 x  10“'̂  (i.e. 0.05%) yields an observed error rate in our 
final assignment of 0.9%. Note that the PSI-BLAST e-value relates to the estimated
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error rate from a single iteration. The observed error rate is the result of several 
iterations and the subsequent structural assignment that includes a length require­
ment. The benchmark therefore provides an estimate of the relationship between a 
PSI-BLAST e-value and the resultant error rate in genome annotation.
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Figure 2.1: Coverage and errors for genome assignment for different parameters. The graphs show 
the percent coverage of true positive matches divided by the total number of possible assignments 
(left ordinate and filled symbols) and the error rate per query region (right ordinate and open 
symbols). These values are plotted for the different percentages of the target domain region 
included in the alignment and at different e-values

2.4 R esults of the SCOP genom e benchmark

2.4.1 A ssignm ent coverage

Table 2.2 presents the results of the evaluation of the accuracy of genome assignment 
at the PSI-BLAST e-value of 5 x 10“ .̂ To recapture, the 1,300 sequences in the 
SCOP genome contained 1,845 regions (domain segments, see section 2.3.2). There 
were 1,254 sequences that had at least one potential remote homologue in the target 
database. There were 1,621 query regions that could be assigned and PSI-BLAST 
correctly identified 652 of these regions. Thus the percent coverage for assigning
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remote homologues (<20% identity) in the model genome is 40%. There were 16 
false positive assignments and two over-assignment (see below). Table 2.2 also gives 
the results of genome assignment in terms of sequences with at least one region 
recognised, and with this measure the percent coverage remains at 40%. However, 
on a per residue basis the percentage coverage falls to 32%. This lower coverage is 
due to alignments not including the complete query sequence but still having the 
correct assignment.

Sequences Regions Residues
No. in SCOP genome 1,300 1,845 299,910
No. with at least one region that 1,254 1,621 263,863
can be assigned
No. correctly assigned 503 652 84,827
Coverage of correct assignment 40% 40% 32%
No. of false positive assignments 13 16 1,985
No. of over assignments 2 2 163

Table 2.2: Accuracy of genome assignment. Sequences refer to each chain, i.e. model ORFs; 
region refers to a domain segment. For sequences, correctly assigned means that at least one 
region has been correctly assigned (i.e. there is some correct information about the sequence) 
irrespective of whether other regions are not assigned or have been erroneously characterised. 
Similarly, errors for sequences are reported irrespective of whether another region in the sequence 
has been correctly assigned.

An important aspect of genome assignment is that for many of the queries there 
are several database homologues and only one needs to be identified to assign the 
protein super family. The importance of this is demonstrated if the accuracy of one- 
to-one assignment is evaluated. This corresponds to the benchmark used previously 
(Brenner et al, 1998; Park et al., 1998; Salamov et al., 1999) when accuracy is 
considered in terms of each query recognising a correct one-to-one relationship be­
tween database entry. In this study at the PSI-BLAST e-value of 5 x 10“ ,̂ there are 
15,469 potential pairwise relationships between regions that could be identified (this 
corresponds to the query-tar get space for a one-to-one evaluation) and only 1,671 
(11%) were correctly assigned. Thus identification of remote homologues (<20% 
identity) in structural genome analysis has 3.6 times more true positive coverage 
than obtained in detecting pairwise relationships.
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Figure 2.2: Coverage plotted against observed error rates. The cumulative coverage and observed 
error rate corresponding to different PSI-BLAST e-values are plotted for one-to-many and one-to- 
one evaluations. The smallest e-value is 5 x 10“®°.

The above comparison of one-to-many and one-to-one coverage is made at a par­
ticular PSI-BLAST e-value. As demonstrated by Brenner et al. (1998) and Park 
et al. (1998), comparisons of approaches should be performed by consideration of 
plots of the coverage of true positives against the observed error rate. For each 
approach, the cumulative coverage and observed error are plotted as the theoretical 
error-rate from the approach increases. Figure 2.2 presents these plots for the one- 
to-one and one-to-many assignments. At any observed error rate per query, there is 
a several fold greater coverage in annotation via one-to-many compared to pairwise 
recognition measured by one-to-one.

For each superfamily in the SCOP genome, the average percent coverage of su­
perfamily assignment from one-to-many recognition was calculated and then plotted 
against the average number of cross-validated members in the super family (figure 
2.3). One might expect that for one-to-many superfamily assignment (figure 2.3
(a)), there would be a tendency that the percent coverage would improve as the size 
of the superfamily increases, but this is not observed. This is explained by figure 2.3
(b) which shows that the percent coverage for detecting remote one-to-one relation­
ships tends to decrease with increasing superfamily size. Some large superfamilies.
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such the immunoglobulins and the Rossmann fold, contain a diverse set of members 
and even sensitive search methods such as PSI-BLAST have difficulty in detecting 
many of the one-to-one relationships.

2.4.2 Length of region assignm ent

In the assignment of domain regions to multi-domain query sequences, there could be 
substantial errors in delineating the domain boundaries. In this study for each region 
in a multi-domain query the offset of the assigned location of the domain boundary 
to that reported in SCOP has been evaluated. A perfect assignment would have 
a zero offset. No offsets were calculated for the N- and the C-termini as these are 
easier to determine. Figure 2.4 is a histogram of the frequency of each offset length. 
65% of the domain boundaries are correctly determined to within 5 residues and 
86% to within 20. This shows a high accuracy in automatically delineating domain 
boundaries given that the query and the target are remote homologues.

Figure 2.4 is helpful in both theoretical and experimental studies to characterise 
a sequence. For example, in structural studies in which the domain will be cloned 
and expressed, it is helpful to know the likelihood of a domain boundary being cor­
rect.

2.4.3 A nalysis o f errors

There were 16 false positive classifications and two over-assignments where two re­
gions are assigned to a query protein that has only one continuous domain. It is 
useful to examine these errors to identify commonly occurring problems.

Six classification errors are due to short cysteine rich regions, for example false 
assignments between tumour necrosis factor receptor and EGF/Laminin superfami­
lies. The problem caused by cysteine rich regions has been noted previously (Huynen 
et al, 1998; Park et al, 1998). Three of the errors are introduced by the algorithm 
we used to identify the positions of regions in the query. For a query protein with a 
discontinuous domain the target spans both of the two regions of the discontinuous 
domain and the intervening one, consequently the target is erroneously assigned to 
the intervening domain although the assignment to the flanking regions of the dis-
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F igure 2.3: Relationship between assignment accuracy and superfamily size. The percent cov­
erage of genome assignment (one-to-many) is plotted against the average number of members 
in the cross-validated superfamily in the target library (a). Results for evaluation of one-to-one 
assignment are shown in (b).

continuous domain was correct. PSI-BLAST did not produce two separate sequence 
pairs but one long gapped one. If this gap is longer than 25 residues, a warning is 
generated by the program developed for this analysis. This occurred 25 times, and
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Figure 2.4: Accuracy of domain identification. Histogram of the normalised frequency of the 
offset error in domain identification. Offset is the number of residues error in the delineation of a 
domain boundary. The N- and C- terminal boundaries of the full sequence are not included. The 
diagram includes 97% of the observed offsets. The included scheme shows two possible errors when 
assigning sequences to regions in a the query. Percentages below the arrows give the cumulative 
frequency of offsets included.

three of these warnings correspond to these erroneous assignments. The presence of 
long gaps provides a hag for possible errors.

The causes of the remaining errors are not obvious but several may be due to 
the incorrect construction of the PSI-BLAST prohle. These errors can be identified, 
and accordingly all PSI-BLAST annotations in which more than one superfamily 
was assigned to the same query segment were considered as these are conhicting 
assignments. There were three occurrences of this, two correspond to an actual er­
roneous assignment. These two erroneous assignments were in two queries from the 
same superfamily. Thus in the benchmark, conhicting superfamily assignments can 
be used to indicate a potential error.
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2.5 Application to bacterial genom es

Structural annotation based on the SCOP 1625 library was performed on two bac­
terial genome sequences. Firstly, this serves to relate the results from the model 
SCOP genome to real genomes and thereby evaluate the usefulness of the bench­
mark. Secondly, structural assignments provide valuable insights into the function 
and evolution of the organism.

In this work the Mycoplasma genitalium (MG) and Mycobacterium tuberculosis 
(TB) genomes are considered. MG is a relatively small genome with 479 ORFs 
and has been widely studied for structural annotation by several groups (Fischer 
& Eisenberg, 1997; Huynen et al., 1998; Rychlewski et al., 1998; Teichmann et al., 
1998, 1999). In contrast, TB is far larger (3,924 ORFs) and has not been exten­
sively studied in terms of structural annotation^ (see Frishman et al. (2001), h ttp ://-  
pedant.mips.biochem.mpg.de). Details of the assignments can be on our Web page, 
see http://www.bmm.icnet.uk/PsiBench.

2.5.1 Structural annotation  using SCO P1625

For the MG genome with 479 ORFs (174,566 residues) sequences of the SCOP1625 
database are assigned to all or a part of 136 ORFs (28% of the ORFs). These 136 
MG sequences represent 201 domains with 208 regions (21% of the residues). There 
are 7 discontinuous domains with two regions each. Of the 208 regions, 88 (10% of 
the residues) were assigned by close homologues (i.e. >20% identity based on the 
Rost (1999) cut-off) whilst 120 regions (11%) are assigned via a remote homology.

The TB genome is 7.6 times larger than that of MG with 3,924 ORFs and 
1,331,539 residues, and it is important to evaluate whether the structural assign­
ment is similar to that of MG. Of the 3,924 ORFs in TB, 1,079 could be assigned 
completely or in part to a sequence in the SCOP1625 database (27% of the ORFs). 
The assignments represent 1,566 domains with 1,639 regions (23% of the residues). 
There are 73 discontinuous domains with 2 regions each. Of the 1,639 regions, 448 
(7% of the residues) were assigned by close homologues and 1,191 regions (16% of the 
residues) by remote homologues. Thus at the general level of structural assignment

^Between 1998 and 1999 when this study was carried out.

http://-
http://www.bmm.icnet.uk/PsiBench


Benchm arking PSI-BLA ST in genom e annotation 74

MG and TB are similar although there is a smaller percentage of close homologues 
in TB than in MG.

When, however, the most commonly occurring superfamilies are considered there 
are major differences between the two genomes (table 2.3). The most common su­
perfamily in MG is the P-loop nucleotide triphosphate hydrolase yet this occurs at 
rank 10 with 36 matches in TB. In contrast the most common superfamily in TB is 
the NAD(P)-binding Rossmann domain with 123 matches compared to its rank 11 
with 3 matches in MG. The general observation is that certain superfamilies tend to 
occur roughly a fixed number of times in the bacterial genomes irrespective of the 
genome size (e.g. the class I amino acid (aa) -tRNA synthetases catalytic domain). 
In contrast, other superfamilies such as the Rossmann fold undergo duplication and 
diversification of function in the larger TB genome. Gertain superfamilies were not 
observed in MG but are common in TB. In particular, the thiolase superfamily oc­
curs at rank 4 in TB, probably due to its important role in fatty acid metabolism 
which may be linked to the complex cell envelope rich in lipids. The acetyl-Co A de­
hydrogenase and luciferase like domains may also be linked to fatty acid metabolism 
in TB and were not found in MG. The general observations about the frequencies 
of superfamilies in these two genomes are in agreement with the pedant database 
(Frishman et al (2001), http://pedant.mips.biochem.mpg.de) although there are 
differences in the exact numbers due to differences in the methodologies of assign­
ment.

Several other groups have analysed superfamily populations (Gerstein, 1997, 
1998b; Gerstein & Levitt, 1997; Wolf et al, 1999; Teichmann et a l, 1998, 1999). 
Work by Teichmann et al (1998) using PSI-BLAST first with the MG sequence and 
then with the known structures as the queries (i.e. two-way PSI-BLAST) identified 
more occurrences of the superfamilies in MG than obtained in this work. However, 
the two studies give the same results for rank one and for the top five ranking su­
perfamilies. Thus the observations in this work about the relative populations of 
superfamilies between MG and TB are likely to remain after adding the additional 
hits obtained from two-way PSI-BLAST.

Teichmann et al (1998) describe how the rate of domain duplication can be cal­
culated from the number of homologous domains in a genome. The basic assumption 
is that all domains within the same superfamily have arisen via duplication from

http://pedant.mips.biochem.mpg.de
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Superfamiliy description
MG

rank freq
TB

rank freq

P-loop nucleotide triphosphate hydrolases 1 20 10 36
Class II aaRS and biotin synthetases 2 10 39 10
Nucleic acid-binding proteins 3 9 21 17
Class I aa-tRNA synthetases (RS), Catalytic domain 4 8 39 10
FAD/NAD(P)-binding domain 4 8 2 57
a / /3-Hydrolases 6 4 3 53
Anticodon-binding domain of Class II aaRS 6 4 76 4
Thiamin-binding 6 4 13 26
Adenine nucleotide alpha hydrolases 6 4 65 5
Actin-like ATPase domain 6 4 31 12
NAD(P)-binding Rossmann domain 11 3 1 123
Thiolase - - 4 48
S-adenosyl-L-methionine-dependent Methyltransferases 11 3 5 43
Luciferase - - 5 43
TetR/NARL DNA-binding domain - - 7 42
Acyl-Co A dehydrogenase (flavoprotein), N-terminal and middle domains - - 8 39
Acyl-CoA dehydrogenase (flavoprotein), C-terminal domain - - 8 39

Table 2.3: Popular superfamilies in MG and TB. The table lists all SCOP superfamilies which 
occur in the top 10 ranks in MG and/or TB.

a common ancestor. A superfamily with e.g. ten domain members in a genome 
therefore was duplicated nine times. Results from this work give figures for the 
percentage of protein domains that arose by duplication in MG and TB as 49% and 
84%. Thus as suggested by others (Teichmann et al., 1999), the larger genome of 
TB shows a far greater extent of domain duplication. Teichmann and coworkers 
using two-way PSI-BLAST on calculated a domain duplication rate for MG of 58%. 
Thus the precise figures for domain duplication obtained in this work will need to be 
revised using two-way PSI-BLAST, but the general observation about the relative 
rates of duplication should remain valid.

2.5.2 How much o f the genom e can be classified

A further consideration of this work is how much of the MG and TB genomes 
have either structural or both sequence and structural homologues in the databases. 
For structural assignment, the SCOP 1625 data set was updated by including PSI- 
BLAST matches to a sequence of the PDB (Abola et al, 1997; Berman et a l, 2000). 
This resulting structural database includes proteins with coordinates deposited after 
SCOP was compiled, and accordingly a larger fraction of the genomes will be struc­
turally annotated than described in section 2.5.1 that used only SGOP1625 data.
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For sequence assignments one needs to include any match to any sequence that has 
a useful annotation. To consider this, any match with the text description that 
includes the words ‘probable’ or ‘hypothetical’ was excluded, although this is only 
a first approximation to evaluate what corresponds to a functionally useful annota­
tion. In addition matches of species name (MG or TB) between query and database 
were ignored as a useful annotation. Segments were identified as low complexity 
regions if they were longer than 24 residues using the SEC program with default 
parameters (Wootton & Federhen, 1996). Coiled-coil region were found using MUL­
TICOIL with defaults (Wolf et a i, 1997). Transmembrane regions were identified 
using the ‘certain’ assignment in TOPPRED (von Heijne, 1992).

Figure 2.5 presents pie-charts of the results in terms of residues and represents 
the results in 1999. In the SCOP benchmark for remote homologues, 28% of the 
SCOP genome was annotated and 59% was missed (undetected homologues) so there 
are 2.1 times as many potential remote homologues in the database as detected by 
PSI-BLAST (figure 2.5 (a)). To consider the potential for structural assignment in 
genomes, first close and then remote homologues of known structure were identi­
fied. From the benchmark the scaling factor of 2.1 was taken and applied to the 
fraction of remote structural matches. Thus there are 32% of missing structural 
matches in MC and 36% in TB (figures 2.5 (b) and (c)). Enhanced methods such 
as two-way PSI-BLAST, hidden Markov models and threading have a major role to 
play in structural annotation of genomes (see Jones (1999a) for another approach to 
estimate missing structural matches in genomes). As there are very few coiled-coils, 
transmembrane and low complexity regions in SCOP and the PDB, these must be 
added to the pie-chart for structural assignment in MC and TB (see figures 2.5 (b) 
and (c)), there is <1% of coiled-coils in TB). Therefore, as an estimation, there 
remains 31% of the residues in MC and 22% of TB that are in new superfamilies 
from globular proteins.

To evaluate the potential for functional annotation, first matches to close ho­
mologues of either structure or just sequence were identified and then the remote 
matches were considered. Many short low complexity regions, coiled-coils and trans­
membrane proteins will be matched by PSI-BLAST to homologues in the sequence 
database. Therefore, unlike the pie-charts for structural assignment, we do not indi­
cate separately coiled-coils and transmembrane regions, (see legend to figure 2.5 for 
more details). Assignments to low complexity regions longer than 24 residues will
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generally not be matched by PSI-BLAST and are indicated in the pie-charts, (1% in 
the MG and 5% in the TB genome). The correction factor of 2.1 can then be applied 
to the remote homologues to estimate the missed homologues in the databases (17% 
for MG and 11% for TB).

Figure 2.5(d) shows that in MG if all the missed homologues were identified, 
there is only a small fraction of the MG genome left to annotate. Although ho­
mologous proteins can have different functions, this remains a rare event for the 
broad function (Hegyi & Gerstein, 1999; Russell et ai, 1998b). Thus the pie-chart 
suggests that nearly all the gene functions of MG are described in annotations of the 
present sequence databases. Indeed it has been suggested that the MG genome is not 
much larger than the minimal required for cellular life (Mushegian & Koonin, 1996).

For TB (figure 2.5(e)), after allowing for missed homologues, there remains 
roughly 14% of the genome that is formed from genes that are not homologous 
to annotated genes of known function. Thus there may well be several genes of 
previously unrecognised function in TB.

The above calculations are based on the assumption that the ratio of detected 
to undetected remote homologues found from the SCOP benchmark will apply to 
the actual genomes. Although this ratio varies for the different superfamilies (see 
figure 2.3(a)), the overall trend is that the ratio is not dependent on the size of the 
superfamily, and for many genomes the value from the SCOP benchmark should pro­
vide a valid first approximation. Note that the pie-charts are based on fractions of 
residues annotated and some other workers (Mushegian & Koonin, 1996; Teichmann 
et a l, 1998; Jones, 1999a) take a different approach and consider there is structural 
/  functional annotation for an ORF if any part of that ORF is homologous to a 
database protein of known structure /  function.

2.6 Discussion and Conclusions

This study benchmarked the coverage and error rate of PSI-BLAST when applied 
to the recognition of remote homologies in the annotation of a genome. The evalua­
tion was based on recognising remote homologies (<20% identity) between protein 
domains of known structure. The critical aspect of the evaluation is that it included
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Figure 2.5: Identified and missed homologues. Results are on a per residue basis, (a) The results 
of the SCOP benchmark. For remote homologues (<20% identity), the data in table 2.2 is plotted 
as a pie-chart. The figure shows the percentage of the SCOP genome that (i) was correctly assigned, 
(ii) incorrectly missed, (hi) erroneously assigned and (iv) that were in a unique superfamily with 
no target, assignment possible. The ratio of (ii) /  (i) provides the correction factor used in the 
other charts to estimate the missed remote homologues, (b) The results of structural assignment 
for MG. The chart shows the percentage of the genome that has a close structural homologue, 
a remote structural homologue and the estimation of the missed structural remote homologues, 
(c) As (b) but for TB, coiled-coils are < 1%. (d) The results of functional assignment for MG. 
Matches are to sequences with functional annotation. Missing are undetected homologues. New 
are ORFs with no previously known homologous, (e) As (d) but for TB. Transmembrane regions 
are 6% of the residues in MG and 8% in TB, 1% of the residues are in coiled-coil regions in MG 
and < 1% in TB. As figures (b) and (c) show these regions are not matched by any sequence of 
known structure (in fact there are a few matches but without impact on the percentage figures). 
In figures (d)-(e) transmembrane helixes and coiled-coils are not shown in separate fractions in 
the pie-charts because about 2/3rd of the transmembrane regions and nearly all of the coiled-coils 
are matched by sequence hits of known function (data not shown). That means the remaining 
1 /3rd (2% of the residues for MG and 3% for TB) of the transmembrane regions are distributed in 
the fractions for missing and new functions. Low complexity regions longer than 24 residues are 
indicated in (b)-(e) because these regions cannot matched by any sequence.

the requirement that only one out of several possible homologies needs to be identi­
fied to assign the query to a homologous superfamily. In addition, the multi-domain 
structure of queries is included in the evaluation. Thus the model used is close to 
the actual aspects of genome annotation.

Although a structural benchmark is used, the results are particularly relevant to
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evaluate the accuracy of assigning proteins to any homologous sequences (including 
those of unknown structure), which is the standard first step in the interpretation 
of a genome. In particular, methods such as two-way PSI-BLAST become compu­
tationally prohibitive if a representative sequence (rather than structural) database 
becomes the probes. Profile methods such as IMPALA (Schaffer et al, 1999) pro­
vide an alternative to the two-way PSI-BLAST approach. A query sequence is 
compared to a library of profiles each representing a protein family (e.g. a SCOP 
superfamily). Clearly fold recognition methods cannot be applied when there are no 
structural homologues. In one respect, the benchmark does not carry over to just 
sequence annotation as we used the structure based domain information that is not 
available for all sequences without coordinates. However, domain assignment can 
still be obtained from databases such as PRODOM (Corpet et al, 2000), SMART 
(Letunic et al, 2002) and PFAM (Bateman et al, 2002) for many sequences without 
known structure (see section 1.2.3 for an introduction into domain databases).

The key results of the study are:

• Genome assignment is based on one-to-many identification and successfully 
recognises around 40% of the remote homologies (<20% identity) between 
protein domain regions. This corresponds to recognition of 32% on a per 
residue basis.

•  Previous benchmarks evaluating one-to-one rather than one-to-many identifi­
cation would suggest a three-fold lower success rate.

• In general, the more populated superfamilies do not have improved success 
rates for genome identification.

• Domain boundaries determined from the alignment of the query to the target 
are well characterised, 65% are correctly found to within 5 residues.

• There are major differences between the most common superfamilies in the 
minimal bacterial genome of MG compared to that in TB.

Based on the success rate for detecting remote homologies, about 30-40% of 
the residues in the analysed bacterial genomes do not correspond to a protein 
of known structure.
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•  There are very few proteins in MG that do not have a homologue of annotated 
function in the databases but there probably are far more ORFs in TB with 
novel function.

2.7 M aterials and M ethods

2.7.1 Sequence database for P SI-B L A ST  profiles

A non-redundant protein sequence database (NRPROT) containing 302891 entries 
was generated by progressively taking sequences from the Protein Data Bank (Abola 
et al, 1997; Berman et al, 2000), TrEMBL-NEW, TrEMBL, SWISSPROT-NEW, 
SWISSPROT (Bairoch & Apweiler, 2000) and PIR (Barker et a l, 2000) but exclud­
ing any sequences that are 100% identical. Next, the SCOP1625 target library was 
added to NRPROT so that hits to known structures can readily be identified. To 
ensure the optimal generation of sequence profiles (but not for structural matches), 
to the above sequence library the concatenated regions of discontinuous domains 
and the entire chains from multi domain proteins were added. This database is 
called NRPROT-SCOP.

2.7.2 PSI-B LA ST

The sequence similarity search algorithm PSI-BLAST was benchmarked (Altschul 
et al, 1997). An important parameter in the procedure is the e-value, which is 
the theoretically calculated number of errors per query, for details see section 1.3.4, 
in summary: PSI-BLAST first searches the sequence database using the gapped 
BLAST algorithm to collect obvious homologues defined as sequences with an e- 
value < a chosen cut-off (h) and here h = 0.0005. These sequences are collected 
and aligned to generate a profile that is converted to a position specific scoring 
matrix (a PSSM). The PSSM is used in subsequent iterations to identify more re­
mote sequences that are added to the PSSM if their e-value is below the cut-off h. 
PSI-BLAST is run for 20 iterations. Sequence hits are scored by their e-value. Low 
complexity regions that can introduce erroneous matches were removed from the 
query and NRPROT-SCOP database using SEC with default parameters (Wootton

'^This database was provided by A. Stewart from the Computational Genome Analysis Labora­
tory from Cancer Research UK



Benchm arking PSI-BLA ST in genom e annotation 81

& Federhen, 1996).

As noted by others (e.g. Park et al. (1998)), sometimes sequences can be erro­
neously added to the PSSM causing PSI-BLAST to drift from the original set of 
homologues. To check for this, the sequences included in the PSSM for an iteration 
were checked to ensure that they always included all the sequences found in the 
first search with gapped-BLAST. If the PSSM drifted away from including all the 
original set of sequences, then the PSI-BLAST run was restarted with an h values 
of 0.1 the previous value. This is repeated until the h value is 5 x 10“ ®̂ or no drift 
is detected.

Sequence hits from iterations other than the first could still drift out of the final 
profile and not be identified as homologues. Thus each iteration of the PSI-BLAST 
output was parsed. A sequence listed in an iteration was collected if it was not al­
ready found in a previous iteration or if the e-value of that hit was below the e-value 
of the previous collected one (in this case the new alignment replaced the old one). 
All hits with their individual position of the alignment, percent sequence identity, 
e-value, first and last residue of the alignment together with the full length query 
were stored in a file as a stacked multiple sequence alignment sorted from lowest 
(best) to highest e-value.

2.7.3 Identification o f regions and dom ains in the query se­
quence

The percent overlap between two hits in the stacked multiple sequence alignment 
is defined as the length of the overlap in residues as a percentage of the shorter 
sequence. Two homologous sequences are defined as overlapping if their percent 
overlap is at least 50%.

The first step in the identification procedure is a clustering of sequence hits (fig­
ure 2.6). The hit of lowest (i.e. best) e-value is progressively compared to hits of 
higher e-values and the two hits are clustered if they overlap. A hit can only join an 
existing cluster if it overlaps with every member of the existing cluster. This is then 
repeated for the hit of the second lowest e-value against all the remaining hits and 
subsequently for the remaining hits of lower e-value. Next, all hits that cannot be
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clustered are considered as a cluster with one member. Finally regions are assigned 
to the query sequence using only the member of lowest e-value of each cluster. The 
structural classihcation of this hit is assigned to the appropriate region in the query.

Q uery a)

initial clustering of sequences  A to G

Q uery I

final region assignm ent

Q uery r :___

D i
c)

B

Figure 2.6: Annotating the SCOP genome on the domain level. The how chart shows the methods 
to identify domains in a query sequence, (a) Sequences are schematically represented as bars. 
Homologues of the query sequence found by PSI-BLAST (A to G) are represented as a stacked 
multiple sequence alignment sorted by increasing e-value, (b) The target sequences are clustered 
(see text). Sequences of the same cluster are indicated by a common pattern. Three clusters (Cl 
to C3) have been generated, (c) Finally the target of lowest (best) e-value of each cluster is taken 
for the domain assignment (annotation) of the query. These best targets are truncated at the N- 
and C-terminus so that domain boundaries do not overlap.

2.7.4 Benchmark of remote homologues

The aim is to consider each sequence in the SCOP genome in turn and to evaluate 
the success of finding a remote homologue of known structure using PSI-BLAST. 
Therefore it is necessary to define when remote homology begins in terms of diffi­
culty in being recognised by PSI-BLAST.



Benchm arking PSI-BLA ST in genom e annotation 83

Rost (1999), extending previous work by Sander & Schneider (1991), derived 
an equation relating both sequence identity and alignment length to distinguish 
between true homologues and false positives for low levels of sequence identity (see 
figure 2.7). Very short alignments require a much higher percentage identity to be 
confident that they truly represent homologous relationships. The identity falls off 
exponentially and for alignment lengths of more than 350 residues, there is roughly 
a fixed identity cut-off. The actual equation is taken from the Web site h ttp ://-  
www.embl-heidelberg.de/~rost/ and is:

= 510 * i,(-0 .3 2 * (1 .0 + ex p (-L /1 0 0 0 )))  (2.1)

where Pcut is the required percent identity for an alignment and L is the length 
of the alignment. This corresponds to defining alignments of over 350 residues as 
remote homologues if they have less than 20% identity and for simplicity we refer 
to this as the 20% identity cut-off.

The validity of using this cut-off is shown in figure 2.7. From an independent 
study the following data has been derived^: First, each single domain protein in 
SCOP1625, all homologous pairs (i.e. the same superfamily) of less than 40% iden­
tity, were structurally superimposed using the method of Orengo et al. (1992). From 
these structural superposition, the number of residues equivalenced and the percent 
identity were taken. The capacity for PSI-BLAST to recognise each pair was evalu­
ated using an acceptance e-value of 0.0001 and up to 20 iteration but without saving 
intermediate matches that drift out of the profile.

Figure 2.7(b) shows that above 20% identity given by the cut-off from equation 
2.1 there are only 11 homologous pairs that could not be identified by PSI-BLAST 
in a one-to-one evaluation. These 11 pairs correspond to 4% of all the possible pairs 
above the 20% sequence identity. The one-to-many success rate for PSI-BLAST 
above this cut-off can only be better than this level of success.

In the evaluation of the assignment accuracy for a particular SCOP sequence, 
that sequence was searched against all the SCOP entries in NRPROT-SCOP using 
gapped BLAST (Altschul et al, 1997) (not PSI-BLAST). Matches with a percent 
identity (> Pcut were excluded as they are close homologues of the SCOP protein.

’This data was provided by R.M. MacCallum

http://-
http://www.embl-heidelberg.de/~rost/


Benchm arking PSI-BLA ST in genom e annotation 84

2.7.5 G enom e data

The genome of Mycoplasma genitalium (isolate G37) has 479 ORFs (Fraser et al, 
1995) and was downloaded from The Institute For Genome Research (TIGR, h ttp ://-  
www.tigr.org/). The list of translated ORFs of the Mycobacterium tuberculosis 
genome (strain H37Rv) was down loaded from The Sanger Centre (http://www.- 
sanger.ac.uk/Projects/M_tuberculosis). The genome contains 3924 ORFs (Cole 
et a/., 1998).

2.8 Remarks about recent PSI-BLAST enhance­
m ents

The benchmark described in this chapter was carried out in 1998/99, and since then 
the PSI-BLAST method has been enhanced (Schaffer et 2001) based on evalua­
tions from different research groups including the benchmark described in this work.

The PSI-BLAST version used in this work belongs to the 2.0 series that uses a 
pre-calculated A for the initial substitution matrix (here BLOSUM62 was used) and 
for the position specific search (see sections 1.3.4 and 1.3.5 for details). The bit score 
and the therefore the e-value is dependent on the scoring system (and in particular 
A) that is used. The PSI-BLAST 2.1 series (Schaffer et al, 2001) contains several 
enhancements such as a position specific scoring system that generally produces 
higher e-values, representing a better estimation of the real (observed) error rate 
(also see section 1.3.5). In addition the new scoring scheme reduces the ‘drift’ effect 
that may be induced by corruption of the PSSM as described in section 2.7.2.

http://-
http://www.tigr.org/
http://www.-
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Figure 2.7: Identification of homologues by PSI-BLAST. Equation 2.1 is plotted as a function 
of structural equivalenced residues. All pairs of the same superfamily of the SCOP 1625 database 
were structurally superimposed (see text) to identify structurally equivalenced regions (this is used 
as the sequence alignment length) and the percent sequence identity for each pair. Homologous 
pairs that can also be identified with PSI-BLAST are plotted as points in (a), pairs that cannot 
be identified in (b). Pairs on and above the curve are defined as close homologues and those below 
as remote homologues. There are only very few close homologues which cannot be identified by 
PSI-BLAST. The SCOP1625 database includes only pairs of proteins of <40% identity calculated 
by sequence (not structural) alignment.
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Chapter 3 

3D-GENOM ICS: A proteom e 
annotation pipeline

3.1 Summary

A n autom ated proteom e annotation system  has been developed. The 
back-end is a relational database for data storage such as protein se­
quences and results from different protein based analyses. The database  
is interfaced by an object-oriented software A PI (A pplication Program ­
m ing Interface) that allows for easy access for the analysis o f th e stored  
data. The A PI is used to run different analyses such as PSI-BLA ST  
based sequence com parisons and to store the results as objects w ithin  
the database. Several versions o f an analysis can be m anaged. T he anal­
ysis o f a set of sequences can be autom atically distributed over several 
com puters. Several levels of inheritance w ithin the database schem e and  
the A PI allow for straightforward integration of new analysis tools. This 
chapter explains the principles on which the database and the A P I are 
based.

3.2 Introduction

This chapter describes the database and software system that has been developed 
to perform the analysis described in chapter 4 and has also been used for other 
projects within the Biomolecular Modelling Laboratory at Cancer Research UK and
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the Structural Bioinformatics Group at Imperial College. The system is referred to 
as 3D-GEN0MICS.

The objectives of the 3D-GEN0MICS project are:

To provide an abstract back-end research platform that can be employed in 
different projects related to the comparative analysis of genomes. On top of 
this platform software can be developed to perform specific tasks.

To develop the software that is necessary for the comparative analysis of pro­
tein sequences described in chapter 4.

To provide a back-end for a web based proteome annotation and information 
system that can be updated on a regular basis.

The last point of the objectives is not fully implemented for reasons discussed 
at the end of this chapter. However, there is a web-interface to 3D-GEN0MICS 
accessible at http://www.sbg.bio.ac.ic.uk.

The initial objective was to develop a platform for large scale, mainly structure 
based bioinformatics projects including large scale homology modelling, which is the 
main justification for the name 3D-GEN0MICS.

Following the analysis of PSI-BLAST in genome annotation and the applica­
tion to the genomes of M. genitalium and M. tuberculosis described in chapter 2, 
3D-GEN0MICS has been developed as a re-usable and automated system for com­
parative analysis of genomes (the proteins of fully sequenced genomes in particular). 
This chapter therefore describes the general architecture of 3D-GEN0MICS. Chap­
ter 4 is an application of this system, and contains its own methods section describing 
parameters and other specificities of the analysis.

3D-GEN0MICS contains pre-calculated results from different analyses, such as 
sequence comparisons, for a range of proteomes. The overall architecture of 3D- 
GENOMICS is a relational database, to store data such as protein sequences, do­
mains and alignments. An object-oriented application programming interface (API) 
written in object-oriented Perl encapsulates this database layer. Once the analysis 
pipeline has been completed, access to the pool of data can be performed on demand 
via the API without having to perform any of the often time-consuming analysis.

http://www.sbg.bio.ac.ic.uk
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and with a minimum of code development. Several versions of the same type of 
analysis (e.g. using different parameters) can be stored. Changes to the database 
scheme are encapsulated by the API, so that front-end scripts do not have to be 
modified every time the database scheme is changed. On top of the API, scripts for 
automated data analysis and visualisation of results have been developed, including 
web based applications.

This chapter does not include a complete description of the database scheme, nor 
does it provide a manual or a tutorial for the API and the applications developed 
during this work. This chapter gives an overview of the principles that have been 
used to handle the objectives described above.

3.3 Resources

As pointed out above, results are pre-calculated. A set of standard sequence analysis 
software packages is run for a set of protein sequences. The software that is cur­
rently integrated in 3D-GEN0MICS, and therefore part of the sequence processing 
pipeline, is listed in table 3.1. The integrated source databases are listed in table 3.2.

3.4 Architecture of the 3D-GENOM ICS system

This section describes the architecture of the relational database and briefly de­
scribes the front-end API that was developed to process and retrieve data from the 
3D-GEN0MICS system^. Although the API is meant to be a stable interface to the 
database, independent of changes to the database scheme, in the current version of 
3D-GEN0MICS there is a close link between the database and the API.

3.4.1 The core schem e o f the relational database

Figure 3.1 shows an entity relationship diagram (Chen, 1976; Connolly et a t, 1998) 
of the 3D-GEN0MICS relational database. An entity is physically implemented as

^R.M. MacCallum contributed to the development of the core database scheme and the core 
API



Program V N Description Reference URL
BLAST 2.0.14 protein sequence homology search Altschul et al. (1997) http://www.ncbi.nlm.nih.gov/- 

BLAST/
PSI-BLAST 2.0.14 homology search for remote homologues via pro­

files
Altschul et al. (1997) same as for BLAST

IMPALA 2.0.14 homology search for remote homologues using 
PSI-BLAST profiles

Schaffer et al. (1999) ftp ://ftp.ncbi.nih.gov/blast

3D-PSSM Search for remote homologues of known struc­
ture

Kelley et al. (2000) http://www.sbg.bio.ic.ac.uk/- 

Sdpssm/
HMMer 2.1.1 HMM based homology search (hmmpfam) Eddy (1998) http://hmmer.wustl.edu/
Coils 2.2 prediction of coiled-coils in protein sequences Lupas et al. (1991) ftp ://ftp.ebi.ac.uk/- 

pub/software/unix/coils-2.2/
TMHMM 2.0 HMM based prediction of transmembrane he­

lices
Sonnhammer et al. (1998) http://www.cbs.dtu.dk/- 

services/TMHMM/

HMMTOP 1.0 HMM- and neural network based prediction of 
transmembrane helices

Tusnady & Simon (2001) http://www.enzim.hu/hmmtop/

SignalP 1.2 neural network based prediction of signal pep­
tides

Nielsen et al. (1997) http://www.cbs.dtu.dk/- 

services/SignalP-2.0/
SEG detection of regions of biased amino acid com­

position (low complexity)
Wootton &: Federhen (1996) ftp://ftp.ncbi.nih.gov/pub/seg/

PSI-Pred 1.01 secondary structure prediction using neural net­
works and profiles

McGuffin et al. (2000) http://bioinf.cs.ucl.ac.uk/- 

psipred/
Prospero 1.3 finding repeats in protein sequences Mott (2000) http://www.well.ox.ac.uk/- 

rmott/ARIADNE/
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Table 3.1: External programs integrated in the 3D-Genomics processing pipeline. VN denotes the version number if available. 00
CO

http://www.ncbi.nlm.nih.gov/-
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Database VN Description Reference URL
NRROT 20/01/01 non-redundant protein sequence database 

from the NCBI (translated GenBank, 
PDB, PIR, SwissProt)

Benson et al. (2002) ftp ://f t p .n c b i .n i h .gov/- 

blast/db/nr.Z

genomes 20/01/01 protein sequences from completed genome 
projects (from NCBI GenBank)

Benson et al. (2002) ftp ://f t p .n c b i .n i h .gov/genomes/

ENSEMBL 0.8.0 protein sequences and other data from the 
human genome

Hubbard et al. (2002) h t t p ://w w w .ensembl.org

SCOP 1.53 Structural Classification of Proteins 
(structural protein domains)

Conte et al. (2002) h t t p ://scop.m r c -lmb.c a m .a c .uk/- 

scop/ &

h t t p ://a stral.stanford.edu/

ASTRAL 1.53 supplement to SCOP (such as sequences) Chandonia et al. (2002)) h t t p ://astral.stanford.edu/

PFAM 6.2 HMMs and annotation for protein domain 
families

Bateman et al. (2002) h t t p ://w w w .sa n g e r .a c .uk/- 

Software/Pf am/

Prosite 16 patterns and annotation for protein se­
quence motifs

Falquet et al. (2002) h t t p ://w w w .e xpasy.org/prosite

taxonomy 15/01/02 taxonomic database (taxonomic trees) 
from the NCBI

- ftp ://f t p .n c b i .n i h .gov/- 

pub/t ELXonomy/

OMIM 15/01/02 hereditary human disease genes (from the 
NCBI)

Antonarakis & McKusick (2000) h t t p :// w w w .n c b i .n l m .n i h .gov/omim/
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Table 3.2: External databases integrated in 3D-GEN0MICS. If no version number ( VN) is available the date of the integration into 3D-GENOMICS 
(day/month/year) is given.
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a database table, and usually has a primary key tha t is unique for the entity, i.e. it 
identifies a particular entity. A weak entity depends on another (strong) entity, and 
usually does not have its own primary key, but uses the primary key of the strong 
entity it depends on (the weak key within the weak entity). The diagram is sim­
plified, showing only the most important tables, attributes and keys of the entities, 
and most of the entity inheritance (superclass-subclass relations) is not shown. The 
diagram only demonstrates the principles on which the 3D-GEN0MICS database 
scheme is built. The paragraphs below describe each of the entities and their rela­
tions.

The green part of the diagram represents part of the database scheme related 
to protein sequences. A Pseq entity represents a protein sequence that has the Seq 
attribute, which is the amino acid sequence string and the primary key Pseqid. One 
protein sequence can have several descriptions, so that the same sequence may be 
present in several sequence databases (having different accession numbers). A se­
quence may have slightly different descriptions in different source databases such as 
‘protein kinase (type A)’ and ‘protein kinase A’. Furthermore, the description has 
a relation to the taxonomy database provided by the NCBI via the Taxld. If a pro­
tein sequence has several descriptions, these may be from different organisms (i.e. 
different organisms with exactly the same sequence). A protein description cannot 
exist without a protein sequence, and therefore the Pdesc entity is weak, although 
for technical reasons it has its own primary key (Pdescid). Each protein description 
may have a list of associated keywords ( Tag entities). Several descriptions may share 
a set of keywords. This relation is implemented via the helper table PdescTag. A 
Tag has a Name (the keyword), and a Type which is either user (the tag has been 
inserted manually to label a protein description or a set of descriptions), static (usu­
ally tags automatically set by scripts that insert sequences into the 3D-GEN0MICS 
database) or db (an abbreviated name of a source database). A description entity 
may have Tags of the same name but different type. Associating descriptions with 
Tags allows the selection of a sets of sequences with a common label. All sequences 
from the ensembl version 0.8.0 dataset of human proteins may have the tags human 
(type user), ensembl (type db) and vO.8.0 (type user). Pseq and Pdesc entities also 
contain attributes keeping track of the date of data integration and modification.

The blue part of the diagram shows entities that store information about the in­
tegrated analysis programs that have been run. The central entity is the Run, which
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keeps basic information about an analysis. This includes an error string returned 
by the analysis software. The Run entity is abstract, i.e. it is a superclass from 
which other entities such as BlastRun (not shown in figure 3.1) inherit. Therefore 
the name of the subclass to which this run belongs (BlastRun) has to be stored, so 
that an instance of the correct entity (or object on the API level) can be recreated 
from the stored data. The Params entity stores an optional set of parameters that 
was used to run the analysis (e.g. an e-value cut-off and the name of the sequence 
database for a BlastRun object). A run can have several parameters, and the same 
set of parameters can be used by different runs. Params entities with the same 
Paramsid define a set of parameters that belong together.

A Run is the superclass (the same as a baseclass) of specialised run entities such 
as a GenomeRun shown in figure 3.4 that treats a genome or proteome as a whole 
or a PseqRun that represents an analysis that was performed on a protein sequence 
or a protein sequence fragment (given by the start and stop attributes). A sequence 
may be subject to many PseqRuns. The PseqRun entity itself is the superclass of 
more specialised sequence based analyses such as BlastRun.

The red part of the diagram shows the results of PseqRuns. These are Features^ 
that describe a region of the protein sequence (given by the Start/Stop  attributes) 
of the corresponding run (referenced by the Runld). A Feature is a weak entity, 
because it cannot exist without a Run^ although this entity has its own primary key 
for technical reasons. A Feature may also be produced by other instances inheriting 
from Run which are not PseqRuns, e.g. a gene feature representing the location of 
a gene on a chromosome. However, in the current version of 3D-GEN0MICS only 
PseqRun based features are implemented. Specialised entities such as an Alignment 
inherit from Feature to extend its list of attributes (and methods on the API level). 
Like the Run entity, the Feature entity is abstract, and the class/entity name of the 
feature has to be stored in the database to reconstruct an API-object of the correct 
class.

The special PerlObject entity is explained later together with figure 3.9.

The complete 3D-GEN0MICS database currently contains 65 tables of which 42 
tables are of relevance to this work. Of these tables 18 may be counted as core tables, 
21 as subclasses that totally participate in a superclass, and 3 tables for the OMIM
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Figure 3.1: Simplified entity relationship diagram of the 3D-GEN0MICS database. Protein 
sequence related entities are coloured in green, Run related entities (representing entities coupled 
with analyses software) are coloured in blue and Features (results from an analysis) are coloured 
in red. ‘Helper’ entities and relations are shown in white. The legend inside the figure explains 
the meaning of the symbols, see text for details.

disease database (part of the 3D-GEN0MICS database). In addition the taxonomy 
database is implemented in its own database which can be obtained from the NCBI 
(see table 3.2) and imported into a relational database system. The SCOP database 
is provided in fiat files via the URL given in table 3.2 and is converted into a simple 
relational database that is linked to 3D-CEN0MICS via accession numbers (in the 
Pdesc table) and tags (see table A.2 in the appendix for the table definitions that 
have been chosen to represent SCOP). In addition a scratch database is required to 
write temporary tables for the web-service and for some analysis scripts. Table A.l 
in the appendix explains the important tables and their attributes.
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3.4.2 Inheritance is a m ajor aspect of the database archi­
tecture

As mentioned above and indicated in figure 3.1, the Run and the Feature entities 
are superclasses for several specialised entities (subclasses). Figure 3.2 schematically 
shows the inheritance as a flow-chart. In the current version of 3D-GEN0MICS, 
all Feature ‘producing’ objects (indicated by lines without arrow head) are PseqRun 
objects.

The PsiBlastRun and PsiBlastHit subclasses have the deepest inheritance in the 
3D-GEN0MICS system. A PsiBlastHit is a BlastHit and adds the iteration attribute 
(in which this hit was found) to the BlastHit. The PSSM of the last iteration is an 
attribute specific to a PsiBlastRun, but it is a BlastRun. A  BlastHit is a special type 
of Alignment, it has a score and an e-value. The Alignment stores information that 
is required to reconstruct the complete sequence alignment. It contains a reference 
to the subject sequence of the alignment, the start and stop of the alignment within 
the subject, the percent sequence identity and insertions and deletions within the 
query and the subject sequences. The last level of inheritance is the Feature (the 
superclass on the database level), that has a start and a stop attribute that is used 
to describe the location of the feature within the sequence that was subject to the 
analysis. The Feature references a PseqRun entity, from which the protein sequence 
for which the analysis was run can be obtained.

The PSSMSdHit indicates that there are Feature types that do not have a spe­
cialised entity that inherits from PseqRun (there is a direct connection between 
PSSMSdHit and PseqRun in figure 3.2). However, on the 3D-GEN0MICS API level 
there is always a corresponding specialised Run class (for example the PSSMSdRun 
class) that at least provides a method to perform the analysis. On the database 
level there is only a specialised entity if information has to be made persistent, for 
example a PsiBlastRun has its own entity because the last PSSM of the PSI-BLAST 
run has to be stored.

The CoilRun/Coil entities are given as examples of other Features that are not 
Alignments. In the current version of 3D-GEN0MICS there are eight such entities 
(and classes on the API level, see tables A .l and A.3 of the appendix).
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Inheritance is implemented by referencing the different tables that represent the 
different levels of specialisation by the same primary key, which is the Featureld for 
Features and the Runld  for Runs. There is total participation between the PseqRun 
entity and the Feature entity, i.e. all Features have a PseqRun they come from. The 
Run entity is also a superclass of other specialised entities that are not PseqRuns. 
The GenomeRun is a superclass for analysis that treat a proteome as a whole, i.e. 
that do not consider individual protein sequences.

BlastRun

Run Feature

GenomeRun

DomainStat CoilRun Coil

PsiBlastRun PsiBlastHit

BlastHit

PSSMSDHit

PseqRun Alignment

Figure 3.2: Flow-chart of inheritance in the 3D-GEN0MICS database. Entities inheriting from 
the Run superclass are shown with blue background, and those entities inheriting from the Feature 
superclass are with red background. The basic superclasses have blue and red outlined boxes. 
Inheritance is shown as arrows, where the arrowhead points to the entity the other entity inherits 
from (subclass superclass), lines without arrowheads indicate that the run produces a particular 
kind of Feature. The same level of indentation of entities of the same colour (red and blue) shows 
the same level within the inheritance tree, e.g. Alignment and Coil directly inherit from Feature. 
The GenomeRun subclass is a special Run class that does not produce Feature objects (it manages 
analyses that treat a proteome as whole), DomainStat is a specialisation of GenomeRun that is 
specifically designed for web purposes.

3.5 Post-processing and summary of primary re­
sults

For fast data retrieval from the database the results from the different types of anal­
ysis are summarised by reducing the complexity of the database queries and the
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amount of data that has to be retrieved. The three steps of data summary imple­
mented in the current version of 3D-GEN0MICS are:

1. Clustering aligned regions from BLAST, PSI-BLAST or IMPALA runs within 
a query sequence, so that a protein sequence can be described with a small 
set of regions rather than a huge number of alignments which often do not 
contribute much additional information.

2. Summarising region clusters and other features such as transmembrane do­
mains to produce a genome wide annotation overview.

3. The above steps are used to generate specialised data warehouses for fast and 
simple data access required for e.g. web based applications.

The sections below describe the summary steps as a processing pipeline. The un­
derlying database scheme that implements the data summary is explained together 
with examples.

Different levels of analysis reduce the com plexity of data

Figure 3.3 shows the flow of data and results within the 3D-GEN0MICS processing 
pipeline starting after the basic analysis has been run. The results of these anal­
yses are symbolised inside the triangle as ‘Atomic Features’ (in red). These basic 
analyses include BLAST and PSI-BLAST runs, assignments to PFAM, prediction 
of transmembrane helices, signal peptides etc ... (see table 3.1 and 3.2 for a list of 
integrated resources). The amount of stored basic (atomic) data is huge, e.g. for 
the human protein dataset (29,000 protein sequences) more than 17,000,000 PSI- 
BLAST alignment objects are stored.

The red rectangles of the left part of the figure show the atomic features. These 
are stored per analysis and per sequence. There are several homologues sequences 
per query, symbolised by the thin coloured lines. These homologues can be clustered 
according to their position within the query sequence (thick black line) and their 
sequence type, symbolised by a common colour of the thin lines (e.g. sequences of 
known structure, homologues from the SwissProt database, etc ...). This produces 
different region types per sequence. The clustering is explained in section 3.5. This
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step reduces the number of alignments to less than 87,000 overlapping regions for 
the human proteome without reducing the annotation quality markedly.

The region information together with some of the basic non-alignment features, 
such as transmembrane helices, are then summarised as genome-wide statistics de­
scribing the extent of the different types of annotation (blue part of the triangle 
and blue boxes to the left). It contains the annotation extent as the number of 
sequences with a particular type of annotation (e.g. the number of sequences with 
at least one homologue of known structure, or the number of membrane proteins), 
the number and types of annotated regions within a proteome (e.g. the number 
of SCOP domains or regions with functional annotation, the number of transmem­
brane domains, etc ...) and the number of amino acid residues that are covered by 
an annotation type. These annotation categories can be easily accessed, and indi­
vidual sequences or regions for a category can be retrieved. There are 4,200 of these 
annotation summaries for the proteome wide summary for human.

For comparative analysis one can compare genome summaries between differ­
ent genomes. Usually this is straightforward and fast using the 3D-GEN0MICS 
API. However, for more specific comparative analyses such as the different frequen­
cies of SCOP superfamilies in globular parts of transmembrane proteins in different 
proteomes (as discussed in section 4.4.7), an additional summary step that uses in­
formation from all three of the above analysis levels is generated. This last summary 
step was developed in a relatively short period after most of the 3D-GEN0MICS 
system was already in use for ongoing research. The interest in a particular re­
search project, the comparison of SCOP domains in different contexts, required this 
additional step to make some of the 3D-GEN0MICS data even more easily acces­
sible. This shows that the 3D-GEN0MICS system is rather abstract and may not 
always allow direct solutions, but also demonstrates that on top of this general and 
abstract core, specialised objects and applications can be developed with relatively 
little effort. This specialised data summary further reduces the amount of data from 
the genome wide summary described above (4,200 annotation descriptions) to 546 
SCOP domain descriptions for the human proteome.
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Figure 3.3: Steps to summarise data and intermediate results. Steps in a particular colour in 
the triangle represent the summary steps and are detailed in the left part of the figure with steps 
framed in the same colour as in the triangle. See text for details.

Supplem entary  entities and relations for the  d a ta  sum m ary

The summary of alignments into clusters that describe the same region within a 
query sequence that was introduced above, is performed in a similar way as the 
clustering of SCOP domains described in the methods section of chapter 2. There 
are currently four alignment based region types that are relevant to this work (these 
are used in chapter 4). Regions of the same type do not overlap, and ends are 
adjusted in the same way as described in section 2.7.3. Different region types may 
overlap, and an alignment may participate in different region types. The four region 
types are explained below.

1. SCO P regions. Clusters of alignments with sequence subjects corresponding 
to SCOP domains.

2. PD B  regions. Clusters of alignments with sequences subjects of known struc­
tures (PDB chains). These chains may contain more than one domain.
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3. A n n o ta ted  regions. Alignments with sequence subjects from any of the 
source databases SCOP, PDB, PIR or SwissProt, and with a textual descrip­
tion of the biochemical or biological function. Entries with descriptions con­
taining the substrings ‘hypothetical’, ‘probable’, ‘putative’ or ‘predicted’ are 
excluded.

4. H om ology regions. These regions contain any homologous sequences includ­
ing conserved hypothetical sequences without any useful functional descrip­
tion. This implies that every member of an annotated region is automatically 
a member of a homology region.

In general the biological information content of these regions decreases starting 
with SCOP domains providing most information with structural and often func­
tional information available on the domain level, followed by PDB regions with 
similar biologically useful information but without distinguishing between domains, 
and, with least information, the homology region that, in the absence of an an­
notated sequence, just highlights the conservation of this region without providing 
direct insight into any biochemical function.

Non-domain regions (all but the SCOP regions), are generated using a greedy 
version of the clustering described in the methods of chapter 2. A new member can 
join an existing cluster if it overlaps with at least one member of that cluster by at 
least one residue. This produces single linkage clusters. If alignment A  overlaps with 
alignment B, and A does not overlap with C but B  overlaps with C, then A, B  and C 
are put into the same region. Before clustering, alignments are sorted decreasingly 
by start position within the query to speed up the clustering. Once a cluster is 
complete, its members are sorted by increasing e-value with the alignment of best e- 
value taken as the representative for this region. In many cases the longest sequence 
of a non-domain cluster defines the expansion of the region over the query sequence, 
and also may often be the closest homologue of the query sequence. The methods 
section of chapter 4 describes the actual constraints that were used to define regions.

For SCOP domains the clustered alignments roughly correspond to domains (ex­
cept for discontinuous domains, i.e. in which a structural domain is formed from 
two or more discontinuous sequence segments). The other region types must not be 
thought of as domains, but instead as summaries of alignments that may be used as 
a general description of the query protein or a part of the query protein. The bene­
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fit is to speed up the analysis and comparisons of complete proteomes as discussed 
above in section 3.5.

Figure 3.4 shows how regions are stored in the database, and how regions and 
other features are used to generate a genome wide summary. For comparative anal­
ysis of genomes a possible starting point may be to compare the frequency and the 
fraction of sequences or residues within the proteome that can be assigned to a par­
ticular feature. The GenomeRun entity with its related entities provides the storage 
for this kind of analysis. Data retrieval is fast and straightforward (in terms of the 
code that has to be written for an application that uses the 3D-GEN0MICS API).

The upper part of figure 3.4 shows that a Region inherits from a Feature^ because 
a Region has a location within a sequence. A Region has a list of members {Region- 
Features), and because all Regions are currently built by clustering alignments, this 
list is in fact a list of Alignments (not shown in figure 3.4), which are in turn Fea­
tures. Regions for a protein sequence are generated by a SummaryRegionRun object 
of the 3D-GEN0MICS API, for which there is no corresponding entity in the data­
base. The different Region types have specialised classes in the API {ScopRegion, 
PdbRegion^ ...) which inherit from the Region baseclass. Currently no Region type 
specific information has to be stored that cannot be retrieved easily via the core 
scheme, so there are no corresponding entities in the database.

The lower part of figure 3.4 shows how the Region information is summarised 
via a GenomeRun^ which inherits from Run and performs a genome wide analysis to 
summarise the available information (see also section 3.5). The genome or the list of 
genomes for which this summary is created is stored within the Tags attribute of the 
GenomeRun entity, which can be multi-valued (e.g. it is possible to store a genome 
summary for a set of genomes such as E. coli and B. subtilis). Global annotation 
counts or numbers for a GenomeRun are stored as GSGounts (‘Genome Summary 
Counts’), with the frequency given by the Number attribute. The Type of the num­
ber describes whether the number refers to a protein sequence, a region or amino 
acid residues. The Name is a description of the number, e.g. ‘to tal’, ‘Non-globular’ 
or ‘003.003.001’ for a SCOP superfamily accession number. For technical reasons 
a special primary key GSGountId has been put into the GSGount entity. For most 
region or sequence based GSGount entries the list of members can be accessed via 
the Memberld which is either a Featureld if the member is a Region or a Pseqid if it
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is a protein sequence. There is a many-to-one relationship between GSMemher and 
Region or Pseq because different versions of a GenomeRun entity may reference the 
same Region or sequence. In addition, if the Memberld is a Pseqid one sequence can 
be part of several GSMemher types. For example a sequence can have structural 
annotation as well as functional annotation.

RegionFeaturehas

Featureld Feature has

Run Id Tags Region PseqI S

GenomeRun
Memberld

Number
has

has GSMemberGSGount

GSGountId Memberld
Run

Run Id Type
Name

Figure 3.4: Entity relationship diagram of the data and result summary part of the 3D- 
GENOMICS scheme. This part of the scheme does not belong to the core scheme. The Memberld 
attribute above the GSMember that connects the relations from GSMember to Region and Pseq 
indicates that the Memberld can be a Featureld or a Pseqid. See figure 3.1 for an explanation of 
the symbols (the Tags attribute of the GenomeRun entity can store a list of values)

Usage and exam ples o f the data summaries in 3D-G ENO M ICS

To demonstrate how to use the summary information represented in figure 3.4 a 
simple code example is given in figure 3.5. The GenomeSummary object gs (which 
inherits from GenomeRun) automatically connects to the database server when the
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r e a d C o u n t  method is called. Once an object is connected to the database, this 
connection will be re-used for all subsequent database requests by this object. The 
parameter ‘ l a t e s t ’ for the construction of the GenomeSummary object automati­
cally generates the latest version of the analysis, alternatively a Params object can 
be provided to specify a particular version. As mentioned in the introduction and 
explained in section 3 .6  on page 105 , several versions of an analysis can be stored 
and retrieved. g s - > r e a d C o u n t ( ‘ 0 0 3 . 0 3 2 . 0 0 1 ’ , ‘ R e g i o n s ’ )  returns the number 
of SCOP domains with the superfamily accession code ‘ 0 0 3 . 0 3 2 . 0 0 1 ’ (P-loop), a 
g s - > r e a d C G u n t ( ‘ 0 0 3 . 0 3 2 , 0 0 1 ’ , ‘ R e s i d u e s ’ )  call would retrieve the number of 
residues that are in P-loop domains.

In the loop to calculate the average P-loop length, a Scop Region object is gener­
ated using the Memberld from the array that was returned from the g s - > g e t M e m b e r  I d s  

call. The optional Parent attribute for the construction of the object will be used 
to borrow the database connection from the gs object, so that only one database 
connection is established for the whole script.

Figure 3.6 shows a screen-shot of the summary for the human proteome from the 
3D-GEN0MICS web-page (http://www.sbg.bio.ic.ac.uk/). The page is generated 
dynamically on request, so that the summary pages do not have to be updated man­
ually after database updates (i.e. if a new GenomeSummary has been produced). 
All information is requested from the 3D-GEN0MICS system in a similar way as 
shown in figure 3.5 using the API which accesses the underlying tables shown in 
figure 3.4. The links within the page (blue text) are generated via the GSMemher 
entity and allow immediate access to the regions and sequences corresponding to the 
different annotation categories. From these lists individual sequences and sequence 
alignments can be accessed.

The different categories (rows) in the table in figure 3.6 correspond to different 
Names in the GSGount entity shown in figure 3.4, and the columns (‘Sequences’, 
‘Residues’ and ‘Regions’) correspond to the Type attribute in GSGount SMART 
domains have not been included in this analysis, and repeats have been excluded 
from the cumulative analysis. See the legend to figure 3.6 for an explanation of 
‘non-cumulative’ and ‘cumulative’.

http://www.sbg.bio.ic.ac.uk/
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# ! / u s r / b i n / p e r l  - w

u s e  G e n o m e S u m m a ry ;  #  t h e  G e n o m e S u m m a ry  c l a s s  

u s e  S c o p R e g i o n ;  #  T h e  S c o p R e g i o n  c l a s s

# # #  g e t  t h e  m o s t  r e c e n t  G e n o m e S u m m a ry  o b j e c t  ( $ g s )  t h a t  

# # #  c o r r e s p o n d s  t o  t h e  ^ E c o l i ’ s e q u e n c e  s e t

m y $ g s  = n e w  G e n o m e S u m m a r y ( T a g s  = >  [ ’ E c o l i ’ ] , P a r a m s  = >  ' l a t e s t ^ ) ;  

p r i n t f  "% d SCOP d o m a i n s  f o u n d  i n  E .  c o l i \ n " ,

$ g s - > r e a d C o u n t ( ' S c o p R e g i o n ^ ' R e g i o n s ’ ) ;

# # #  g e t  t h e  I D s  f o r  a l l  SCOP r e g i o n s  w i t h  s u p e r f a m i l y  a c c e s s i o n  

# # #  0 0 3 . 0 3 2 . 0 0 1  ( P - l o o p )

my © m e m b e r id s  =  $ g s - > g e t M e m b e r I d s ( ’ 0 0 3 . 0 3 2 . 0 0 1 ’ , ’ R e g i o n s ’ ) ;

# # #  c a l c u l a t e  t h e  a v e r a g e  E .  c o l i  P - l o o p  d o m a i n  l e n g t h  

m y $ l e n  =  0 ;  

my $ n  = 0 ;

f o r e a c h  my $ i d  ( Q m e m b e r id s  )  {

m y $ r e g i o n  = n e w  S c o p R e g i o n ( F e a t u r e l d  = >  $ i d ,  P a r e n t  = >  $ g s ) ;

$ l e n  + =  $ r e g i o n - > l e n ( ) ;

$ n + + ;

}
$ l e n  / =  $ n ;

p r i n t  " a v e r a g e  l e n g t h  o f  E .  c o l i  P - l o o p  d o m a i n s  i s  $ l e n  ( $ n  d o m a i n s ) \ n " ;

F igure 3.5: Code example demonstrating the use of the 3D-GEN0MICS summary information 
via the object-oriented Perl API.

3.6 Principles of the 3D-GENOM ICS A PI

3D-GEN0MICS stores data from the included source databases and the results from 
the different analyses as objects in a relational database by mapping the objects onto 
the relational scheme. This mapping includes the decomposition of each object into 
its attributes and relations that may be stored across different tables. An alignment 
for example contains a subject sequence (a homologue of the query) which is stored 
as a reference to an entry in the Pseq table. The database is at least in the 1st nor-
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Figure 3.6: Screen-shot from the 3D-GEN0MICS web-page showing a part of the analysis sum­
mary for the human proteome. The pie-chart shows the extent of assignments in different annota­
tion categories. The pie-chart is residue based, i.e. the fraction of the proteome in residues was cal­
culated. The table below the pie-chart gives details of the generated annotation, ‘non-cumulative’ 
means that the actual number of sequence, region or residue assignments are calculated by allow­
ing every sequence, region or residue to be counted more than once across the different categories 
(e.g. a residue of a protein sequence may be part of a SCOP and a PFAM domain), ‘cumulative’ 
means that sequences, regions or residues are counted only once across annotation categories with 
‘SCOP’ having priority followed by ‘PDB’ etc. to avoid exceeding 100% (e.g. sequences assigned 
to a SCOP domain and a PDB chain are only counted for SCOP and not for PDB).

mal form, so that there is no obvious redundancy, and most relations of the database 
core are also in the 2nd and 3rd normal form (Connolly et ai, 1998). Although the 
API should be the interface to the database, for fast access it is possible to bypass 
the API and to access the contents (the stored objects with their relationships) di­
rectly via SQL.

The most central class of the 3D-GEN0MICS API is the Run class with all its 
specialised subclasses. A run object can be executed locally or submitted to a com­
puter farm as shown in hgure 3.9 of section 3.7. It also contains a Params object 
which gives details about the parameters that are specific for the analysis. From
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a PseqRun object the list of features that are specific for this run and a particular 
protein sequence object can be retrieved. The usual way of getting sequence features 
is to get the available PseqRun objects from a protein sequence object, and then to 
request the list of features from each of these PseqRun objects.

The Params object for a Run object allows several different versions of a partic­
ular run to be created, e.g. one can have several PsiBlastRun objects for the same 
sequence that are distinguished by their Params object (these may for example de­
fine different e-values). Figure 3.7 shows a simple example of how to get the objects 
for a particular type of analysis, and from these objects the Feature objects.

my $ p s e q  = n e w  P s e q ( P s e q I d  = >  1 2 3 ) ;

my $ p  =  n e w  P a r a m s ( 7 # B l a s t R u n : : d e f a u l t _ p a r c i m s ,  b l a s t _ e  =>  0 . 1 ) ;  

my O r u n s  = $ p s e q - > g e t R u n s ( ’ B l a s t R u n ’ , $ p ) ; 

f o r e a c h  my $ r u n  ( © r u n s  )  {

my © h i t s  = $ r u n - > g e t F e a t u r e s ( ) ;

#  d o  s o m e t h i n g  w i t h  t h e  h i t  o b j e c t s  , . .

}

Figure 3.7: A simple example to demonstrate how to access sequence features. The protein 
sequence object with the ID 123 is retrieved from the database. A parameter object ($p) is 
generated that contains the default attributes for a BlastRun (this is a class attribute), but overrides 
the b last_e  attribute (the e-value cut-off). All BlastRun objects for this sequence that were run 
with the requested parameter object are retrieved, and for each of these objects the feature objects 
(type BlastHit) are retrieved. Note that several BlastRun objects may be available because several 
fractions of the sequence may have been subject to the BLAST analysis.

The integration of new analysis software is straightforward, mainly due to the 
different levels of inheritance. The hmmpfam program of the HMMer software pack­
age (see table 3.1) to identify PFAM domains in protein sequence via hidden Markov 
models was integrated on demand after most of the API was already developed. The 
HMMRun class inherits from PseqRun. The output consists of Features of the spe­
cial type HMMHit. The integration of hmmpfam  was straightforward. Usually most 
development has to be spent on the run routine tha t performs the actual analysis, 
including the parsing of the program output. For the HMMRun the parser of the 
BioPerl project (http://www.bioperl.org) is used.

http://www.bioperl.org
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The API is implemented in the Perl language. Perl may not be the ideal language 
for bigger object-oriented software projects, it has for example no strict data typing, 
and many developers complain about unreadability of the code. However, Perl is a 
popular programming language within the biology and bioinformatics community, 
and is the consensus language of those people who showed interest in the project. 
An initial objective of the API was to provide some basic compatibility with the 
BioPerl project. 3D-GEN0MICS uses some BioPerl modules, and can also convert 
a 3D-GEN0MICS sequence object into a BioPerl equivalent, but at this time there 
is no extended and consistent compatibility between the two systems. However, it 
is possible to implement appropriate export routines on demand.

The 3D-GEN0MICS API contains nearly 80 Perl modules with more than 17,000 
lines of code defining classes and non-object-oriented code. In addition there are 
about 40 scripts for database maintenance and evaluation, containing more than 
3,000 lines of Perl code. There are 40 CGI scripts for web based applications with 
more than 6,500 lines of code. In addition there are more than 1,500 lines of Python 
code included to manage and parse BLAST and PSI-BLAST runs. Table A.3 ex­
plains the different modules and classes with their methods and functions that are 
currently implemented in the API.

The base class from which most objects are built, is DhConnection. Objects that 
are generated via the annotation pipeline (Run or Feature objects) or objects from a 
source database (e.g. protein sequences) have to be stored persistently in the data­
base for later retrieval and analysis. Therefore such an object is a DbConnection 
object, that is able to insert itself at the correct place within the database, update 
its attributes, retrieve its data and delete itself from the database.

To construct an object from the database the identifier is needed (see line 1 
in figure 3.8 for an example). The constructed TMif object (transmembrane helix 
object) is empty, and can be filled with its attributes by either calling the sync 
routine (line 4) or by just calling the get routine (see lines 5, 6 and 17), that in­
ternally performs the complete read synchronisation with the database and returns 
the requested attributes, which stay within the object, so that subsequent get calls 
do not need to query the database. A new object can be generated by providing 
all required attributes but no unique identifier as shown in line 8. The new object 
writes itself to the database with the next sync call (line 9). The set method (line
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11) sets attributes which must not already exist in the object (an empty object was 
constructed in line 10), the next sync call writes the filled object to the database 
(lines 12). Note, that an object usually has a defined set of attributes tha t have 
to be set. An existing attribute can be modified via a modify call, shown in lines 
13 to 14 (only a few classes allow attribute modification). If the sync method is 
not called before the object is destroyed, all changes, including a complete newly 
created object will be lost.

Lines 2 and 3 shows the usage of the clone method. If the Featureld is known but 
the special class of the feature is unknown, clone will produce a read-synchronised 
copy of the object of the correct type.

Lines 15 to 18 show how an object (line 18) can be constructed that uses another 
object as a Parent The Parent provides the database connection, so that two ob­
jects can share the same connection. This avoids overhead of frequent connect and 
disconnect requests to and from the database server. This technique is also used in 
the example in figure 3.5.
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[  1 ]  $ f  =  n e w  T M H ( F e a t u r e I d  = >  1 0 0 1 )

[ 2 ]  $ f  =  n e w  F e a t u r e ( F e a t u r e l d  = >  1 0 0 2 )

[ 3 ]  $ f  =  $ f - > c l o n e ( )

[  4 ]  $ f - > s y n c ( )

[  5 ]  ( $ b e g i n ,  $ e n d )  =  $ f - > g e t ( ’ S t a r t ’ , ’ S t o p ’ )

[  6 ]  $ t m r u n  =  $ f - > g e t ( ’ R u n ’ )

[  7 ]  $ p a r a m s  =  $ t m r u n - > g e t ( ’ P a r a m s ’ )

[ 8 ]  $ f  =  n e w  T M H C S t a r t  = >  5 ,  S t o p  = >  2 4 ,  O r i  = >  ’ o u t ’ . R u n  =>  $ r u n )

[  9 ]  $ f - > s y n c ( )

[ 1 0 ]  $ f  =  n e w  T M H O

[ 1 1 ]  $ f - > s e t ( S t a r t  = >  5 ,  S t o p  = >  2 4 ,  O r i  = >  ’ o u t ’ . R u n  = >  $ r u n ) ;

[ 1 2 ]  $ f - > s y n c ( )

[ 1 3 ]  $ f - > m o d i f y ( S t a r t  =>  8 )

[ 1 4 ]  $ f - > s y n c ( )

[ 1 5 ]  $ f  =  n e w  T M H ( F e a t u r e l d  = >  1 0 0 3 )

[ 1 6 ]  $ f - > d b C o n n e c t 0  ;

[ 1 7 ]  p r i n t  $ f - > g e t ( ’ O r i ’ )

[ 1 8 ]  $ f 2 =  n e w  T M H ( F e a t u r e l d  =>  2 ,  P a r e n t  = >  $ f )

Figure 3.8: Code examples to demonstrate the connectivity with the database. Note, this is 
not a program, but just a collection of examples to show how objects can be generated from the 
database, filled with data, be modified and how newly generated objects can be written into the 
database. See text for explanations.

3.7 Principles of the analysis pipeline: a parallel 
distributed system

The PerlOhject entity shown in figure 3.1 plays a central role for the data produc­
tion process of the analysis pipeline that is schematically represented in figure 3.9. 
The main annotation script (upper left box) contains code to generate different 
kinds of Run objects, e.g. BlastRun objects. The information to generate these 
objects is retrieved via an SQL interface from the 3D-GEN0MICS database, that 
uses MySQL as the database management system (http://www.mysql.com). For 
a BlastRun object, this contains the protein sequence {the Pseq Object) and the 
processing parameters (a Params object). The 3D-GEN0MICS database server can 
be hosted on a remote machine, and the annotation script runs on a queue-server

http://www.mysql.com
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that manages a computer farm via the OpenPBS load sharing and queueing system 
(http://www.openpbs.org).

The generated Run objects are submitted to the queueing system via a special 
software module of the 3D-GEN0MICS API (the Workstations module), tha t calls 
the queue method of each of the objects to be queued. The method creates a seri­
alised version of the object which is inserted as text into the PerlOhject table of the 
3D-GEN0MICS database, and in return gets a unique ID (identifier) for this ob­
ject. The queue method creates an appropriate command for the queueing system. 
This command contains the name of an executable program {runobject.pl) and the 
ID of the persistent object as an argument. The object may also request special 
resources from the queueing system such as a minimum amount of memory (the 
resource management is implemented in OpenPBS).

The queue-server submits the command to one of the free computers that runs a 
queue client (a PBS-daemon). The runohject.pl script retrieves the persistent object 
via the unique ID from the PerlOhject table of the database and recreates the object. 
The script then executes the run method of the recreated Run object, which first 
inserts some meta information about this run into the database, and then performs 
the particular type of analysis (for example the BLAST program is executed on 
the local machine). Prom the result (e.g. the BLAST program output) the special 
type of result objects are generated (e.g. BlastHit objects). These objects are then 
inserted into the database by calling their sync routine (object synchronisation with 
the database). Finally the Run object cleans up resources such as temporary files, 
updates the object status attribute with the final status and inserts the runtime of 
the analysis. The runohject.pl script removes the run object from the PerlOhject 
table of the database (this is no longer required).

The growth of the data that has to be processed, and in particular the increasing 
number of completed genomes, challenge the development of distributed processing 
systems. It is sensible to re-run previous analyses on a regular basis, because new 
data may change existing annotations. The 3D-GEN0MICS system is a prototype 
that is currently used in-house only, and substantial development and testing has 
to be done to distribute this system to other institutions. However, the system is 
suitable for the distribution of the run objects that perform the analyses over a large 
computer grid allowing for frequent annotation updates.

http://www.openpbs.org
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Queue-Server/Farm-Master

Annotation Script

,C rea te  requested Run O bjects  

O b jl,  Q b ]2  O bjN

M odule: W o rs ta tio n s (0 b j1 , Q b |2 , O b jN )

Q u eu e  O bjects

O b jI.q u e u e O , O b j2 .q u eu e (), O b jN .q u e u e ()-  

Q u eu e  com m and "runobject.pl ID"______
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insert O b ject

get O b ject ID

Database Server

3 D -G E N O M IC S  

S Q L -D a ta b a s e

qu eu e to a free  com puter (c lient)
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O b j1 .sync (), O b j2 .s y n c () O b jN .syn c()
Finish Run -------------------------------------------------------------

c leanup object

Figure 3.9: Flow of the 3D-GEN0MICS annotation pipeline. The three frames symbolise the 
main processing spaces, i.e. the physical location of computers and the execution space of programs 
and objects. Database requests (queries, updates and inserts) are symbolised with red arrows. The 
submission to a computer that executes the analysis is indicated by the green arrow. Arrows with 
a 90 degree angle indicate subsequent actions or a result of the previous step. Inner rectangles 
show the private execution spaces of scripts and objects. See text for details.

3.8 Discussion

The strength of the 3D-GEN0MICS system has been discussed in the above sec­
tions. In particular the distribution of the Run objects for parallel processing is 
an important aspect. The straightforward implementation of new tools is certainly 
another strength. However, there are restrictions and problems with the current 
implementation, the more important of which are discussed below.
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3.8.1 R estrictions o f the current im plem entation

Although it is relatively simple to add new sequences to the 3D-GEN0MICS data­
base and to run these through the processing pipeline, regular updates are not yet 
supported. The main reason is that a single new protein sequence may change PSI- 
BLAST existing results for old query sequences (PSI-BLAST is a major component 
of the analysis pipeline), because it may provide intermediate sequence hits that 
are needed to detect for example a distant homology to a previously undetected 
family of proteins. Therefore on every database update one would have to re-run 
PSI-BLAST for all previously analysed proteins. This approach is time consuming 
and impractical, and in fact results may change for only a few proteins.

The effect of new sequences on PSI-BLAST PSSMs has to be studied to develop 
heuristics that will estimate the change of the path through evolution. Another 
probably simpler approach may be to compare the PSSM of an already processed 
sequence with new protein sequences. This is a relatively fast method that can be 
implemented via IMPALA or RPS-BLAST (part of the NCBI BLAST software).

The summary steps in the 3D-GEN0MICS pipeline discussed in section 3.5 have 
to be re-run whenever the underlying ‘atomic’ data such as alignments changes. The 
genome wide summary does have a rather long runtime (several hours for the human 
proteome), and is mainly restricted by disk I/O  of the database server, so that these 
runs cannot be distributed over a large number of clients to perform these runs in 
parallel. For the sake of speed, some parts of the database may have to be mirrored 
on different database servers, and the new concepts for fast GenomeSummary up­
dates should be developed.

A version of the 3D-GEN0MICS database tha t can be updated frequently may 
also need a history to keep track of changes. The definition of the gene of a pro­
cessed sequence may change, and the old version of the gene should be marked as 
‘old’, but should still be available to track changes.

There is a conceptual error in the 3D-GEN0MICS database that can cause prob­
lems when a new sequence enters the database that is 100% identical to an existing 
sequence that has already been processed. The tag list of the protein description (see 
3.1) is then updated by e.g. ‘mouse’ and may finally contain the keywords ‘human’
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and ‘mouse’ (i.e. human and mouse have an identical sequence). Because of the 
relations between Pseq, Fdesc and Tag there is only one set of results from an anal­
ysis for this sequence (a protein sequence is stored only once, and several FseqRuns 
can refer to the same sequence). If one wants to delete all results for human, then 
the result for this sequence also get deleted for mouse. This systematic error has 
not yet affected the 3D-GEN0MICS system because there are only very few 100% 
identical sequences between the processed genomes. Also, for the analysis described 
in chapter 4 all genomes have been processed with the same parameters and no data 
has been deleted. The problem also implies that only the non-redundant protein 
sequence set is stored, so that a few 100% protein duplications within a genome are 
ignored. This affects the analysis in chapter 4 because sequence features such as 
SCOP domains are only counted for each distinct protein sequence.

It is sensible to process identical protein sequences only once, even if these corre­
spond to different genes. However, identical protein sequences from different genes 
have different accession numbers in the public databases, and the 3D-GEN0MICS 
API should be modified so that the protein based analyses (FseqRuns) refer to an 
accession number rather than a distinct sequence. The API may handle cases for 
identical sequences, so that a requested analysis will not be run if it was already 
run with the same analysis parameters for another accession number referencing the 
same sequence. These ‘virtual’ sequence runs may be managed by reference coun­
ters, the results of an analysis only get physically deleted if the reference counter 
for the accession numbers to this run is zero.

3.8.2 Suggestions for future developm ents

Some technical and rather general enhancements should be considered for the future:

Integration of InterPro (see 1.2.3). The collection of features tha t can be re­
trieved from 3D-GEN0MIGS via a run object for a protein sequence are very 
similar to the different descriptors for an InterPro entry. The InterPro Scan 
software is distributed from the EBI and contains all required programs and 
source databases. The baseline annotation can then be performed via InterPro, 
and 3D-GEN0MIGS can be focused on more specific tasks such as detection
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of remote homologues, structural characterised domains and proteome com­
parison.

• Export of all 3D-GEN0MICS objects in XML format to provide the full reper­
toire of data in an state of the art format that can be distributed. The BLAST 
software from the NCBI can write its output in XML format. General han­
dling of XML as an output format from the analysis programs and as a data 
source for sequence and annotation databases (InterPro and possibly GenBank 
in future) will ease the integration of other resources and data exchange.

• Management of free text information to enhance annotation. This can be ini­
tially approached by extracting text from different categories of the available 
source databases, and in particular the comment blocks of SwissProt entries 
which usually give manually curated detail about the biochemical and biolog­
ical function of a protein. Abstracts from the scientific literature as well as a 
gene ontology may also be integrated to support annotation.

• Although the summary steps described in section 3.5 provide fast ‘top-down’ 
access (from an overview of the annotation down to more detail) to the results, 
it is useful to implement a non-normalised version of the database that can 
be generated from the normalised main database (the production database). 
Such a data warehouse may allow even faster access for research purposes and 
may be distributed to other bioinformatics sites.

• As mentioned in section 3.6, the data of an object is decomposed and stored 
in several tables of the database. On every level of inheritance for which data 
is stored in the database (e.g. for a BlastHit object the levels are Feature and 
Alignment) the data that belongs to a particular inheritance level is also ex­
clusively managed on this level (generally by the particular class or baseclass). 
E.g. retrieval of a BlastHit requires three database requests: one to retrieve 
the feature data, one to retrieve the alignment data and one to retrieve the 
blast hit specific data. All three levels are logically linked by a common Fea­
tureld. It may be much faster to create an object by using a single database 
request via a single join of the required tables. Each (base) class would have 
to contribute statements to the construction of an appropriate SQL statement 
that will join the required tables and to select the table attributes.
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3.8.3 Other autom ated  annotation  system s

Automated annotation systems have been developed previously by others. In general 
these systems provide web based access and do not provide an external API tha t can 
be used for the development of specific research tools. However, these systems may 
be installed locally under special license agreements with the authors. The major 
goal of most public annotation systems is to support genome sequencing projects, 
and to provide up-to-date annotations, whereas the 3D-GEN0MICS architecture is 
designed to provide consistent, but often not up-to-date, annotations that are easily 
accessible for large scale comparisons. In addition it should be pointed out that 
3D-GEN0MICS in its current version is maintained and developed by basically a 
single person mainly for the research described in this thesis, and the annotation 
systems described below are maintained by a team of authors often dedicated to 
maintenance and development of the system. Below a selection of popular annota­
tion systems are introduced.

The ENSEMBL system (http://www.ensembl.org, Hubbard et al. (2002)) from 
which the protein data of the human genome is used within this work, provides an 
annotation system based on a MySQL database back-end with an object-oriented 
software interface written in Perl and C. ENSEMBL has been developed for the 
annotation of the human genome. Special versions for other ongoing metazoan 
genomes are also available. The ENSEMBL architecture is fully open and provides 
all data and software including a stable API. ENSEMBL is developed by a broad 
bioinformatics and biology community.

Despite the general management and dissemination of the human genome data, 
a special focus is the reliable identification of genes. On top of gene predictions 
with several levels of evidence, a baseline protein sequence annotation is performed. 
This includes the assignment of InterPro families and domains to human proteins. 
Some structure based analysis of human proteins (Gough & Chothia, 2002) is linked 
via DAS (Distributed Annotation System, Dowell et al. (2001)). Unlike the 3D- 
GENOMICS API that encapsulates the data processing within the biological objects 
(the Run objects), the data processing (for example BLAST sequence comparisons) 
in ENSEMBL is performed by mainly stand alone scripts that are separate from the 
biological objects (personal communication with Ewan Birney).

http://www.ensembl.org
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GeneQuiz (h ttp ://jura.ebi.ac.uk:8765/ext-genequiz/, Scharf et al. (1994); An­
drade et al. (1999)) is one of the first published large scale annotation systems, 
that can be run remotely via the web. The input for GeneQuiz is a protein se­
quence or set of protein sequences for which the system runs several sequence anal­
ysis tools, including homology searches. A notable feature is the reasoning engine 
within GeneQuiz to accept or reject results contributing to an annotation. Different 
analysis tools and integrated source databases have different trust levels. Functional 
information from text descriptions is extracted for homologous sequences from the 
different source databases at different confidence levels, and together this informa­
tion is used to place a protein into a functional category. GeneQuiz also provides 
structural models for proteins with homologues of known structure.

Magpie (Multipurpose Automated Genome Project Investigation Environment, 
http://genomes.rockefeller.edu/magpie/, Gaasterland & Sensen (1996)) is designed 
for (mainly prokaryotic) genome sequencing projects. The system takes DNA se­
quences such as DNA contigs (unassembled genomic DNA from cloning vectors) as 
input. Magpie guides the genome project from its beginning on, by performing gene 
predictions, detection of DNA frame shifts, homology searches on the protein and 
DNA level and suggests which pathways may exist in the genome. New tools can 
be integrated. The system is installed locally, and the analysis tools may be either 
installed locally or remote, in which case most data exchange is via an automated 
e-mail service. The Magpie system is configured and customised via a set of config­
uration files, so that no code editing is necessary.

Magpie stores the results of any analysis in flat files. Most of the infrastructure 
for data management is implemented in Perl. The results are then converted into 
Prolog facts that are digested and converted into ‘deduced facts’ from which HTML 
formated reports are generated. The Prolog rules for example to determine a coding 
region may be customised. Magpie also allows privileged users to manually edit and 
override automatically generated results

PEDANT  (Protein Extraction, Description and ANalysis Tool, h ttp ://pedan t.- 
mips.biochem.mpg.de, (Frishman et 2001)) initially focused on protein based 
annotation. However, in version 2, many DNA based analysis tools such as those 
for gene prediction by homology to EST sequences or ab initio gene prediction have 
been integrated. PEDANT consists of three main parts: (i) the processing unit

http://jura.ebi.ac.uk:8765/ext-genequiz/
http://genomes.rockefeller.edu/magpie/
http://pedant.-
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to access external databases and tools such as BLAST, (ii) the relational database 
(MySQL) for data storage and (ill) the user interface for user queries and data vi­
sualisation. The code for data management and processing is written in Perl and a 
part of the user interface is implemented in C-|—1-. All external databases such as 
the protein sequence databases and all tools are installed locally. Data processing 
may be performed in parallel by distributing tasks over a computer farm.

The database scheme of PEDANT is relatively simple, results are stored on two 
levels: the raw analysis output is kept as it is (e.g. the output from a BLAST run), 
and the parsed and disassembled output is stored, too (storing the e-value, the se­
quence identity etc. in different fields of a table). The results of an analysis are not 
mapped across several tables as in the 3D-GEN0MICS database.

Since PEDANT is used for genome sequencing projects it implements a system 
to manage different versions of annotations and sequence data. The principle for 
genome annotation is to perform an automated analysis with relatively loose con­
straints to guarantee a great annotation extent over the whole genome, and then to 
allow manual correction of these annotations by accepting or rejecting annotations. 
PEDANT provides special user interfaces for manual data checking and correction.

PEDANT was used for SCOP superfamily assignments to more than 300,000 
protein sequences.

A popular web based protein sequence annotation system is PredictProtein (h ttp ://- 
www.embl-heidelberg.de/predictprotein/predictprotein.html, Rost (1996)). The user 
can submit a protein sequence or a list of sequences to the server which runs a range 
of analysis and prediction software such as transmembrane predictions, homology 
and motif searches. Many tools have been integrated in the PredictProtein system. 
The meta server facility in PredictProtein allows to submit a sequence automatically 
to several other servers that perform a specific analysis such as HMM based sequence 
comparisons. Results are formated as plain text or as HTML. PredictProtein is a 
service to provide biologists with as much information about a protein as possible, 
it is not intended for large scale comparative proteome projects.

Assignments of domains of known structure to proteins of fully sequenced genomes 
are provided by the GeneSD system (http://w w w .biochem.ucl.ac.uk/bsm/cath_new/-

http://-
http://www.embl-heidelberg.de/predictprotein/predictprotein.html
http://www.biochem.ucl.ac.uk/bsm/cath_new/-
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GeneSD/, Buchan et ai (2002)), that is based on the OATH classification of protein 
structures introduced in section 1.4.4. Assignments are based on IMPALA (see sec­
tion 1.3.6) and a set of specialised software to perform the actual delineation of 
domain boundaries within multi-domain proteins. Assignments can be browsed and 
downloaded over the web.
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Chapter 4 

Structural Characterisation of the  
Human Proteom e

4.1 Summary

This chapter describes an analysis of the encoded proteins (the proteom e) 
of the genom es of human, fly, worm, yeast and representatives of bacteria  
and archaea in term s of the three-dim ensional structures o f their glob­
ular dom ains together w ith  a general sequence based study. This work 
shows that 39% of the human proteom e can be assigned to  hom ologues 
of known structure. The estim ated extent o f functional annotation for 
the human proteom e is 77%, but only 26% of th e proteom e can be as­
signed to standard sequence m otifs that characterise function. O f the  
human protein sequences, 13% are transm em brane proteins, but only  
3% of the residues in the proteom e form m em brane-spanning regions. 
There are substantial differences in the superfam ily com position o f glob­
ular dom ains o f transm em brane proteins betw een the proteom es that 
have been analysed. Com m only occurring structural superfam ilies are 
identified w ith in the proteom e. T he frequencies of these superfam ilies 
enables one to  estim ate that 98% of the hum an proteom e evolved by 
dom ain duplication, w ith  four of the ten  m ost duplicated superfam ilies 
specific to  m ulti-cellular organism s. The zinc-flnger superfam ily is mas­
sively duplicated in human com pared to  fly and worm, and occurrence of 
dom ains in repeats is more com m on in m etazoa than in single-celled or­
ganisms. Structural superfam ilies over- and under-represented in human
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disease genes have been identified. D ata and results can be downloaded  
and analysed via web based applications at h ttp ://w w w .sb g .b io .ic .ac.u k . 
This work has been accepted for publication by Genome Research.

4.2 Introduction

The interpretation and exploitation of the wealth of biological knowledge that can 
be derived from the human genome (Lander et al.  ̂ 2001; Venter et al, 2001) requires 
an analysis of the three-dimensional structures and the functions of the encoded pro­
teins (the proteome). Comparison of this analysis with those of other eukaryotic and 
prokaryotic proteomes will identify which structural and functional features are com­
mon and which confer species specificity. This work presents an integrated analysis 
of the proteomes of human and thirteen other species considering the folds of glob­
ular domains, the presence of transmembrane proteins, and the extent to which the 
proteomes can be functionally annotated. This integrated approach enables one to 
consider the relationship between these different aspects of annotation and thereby 
enhance previous analyses of the human and other proteomes (e.g. Frishman et al
(2001); Iliopoulos et ai (2001); Koonin et ai (2000), including the seminal papers 
reporting the human genome sequence from Lander et al (2001) and Venter et al 
(2001)).

A widely used first step in a bioinformatics based functional annotation is to 
identify known sequence motifs and domains from manually curated databases such 
as PFAM/InterPro (Bateman et al, 2002; Apweiler et al, 2001) and PANTHER 
(Venter et al, 2001) . This strategy was used in the original analyses of the human 
proteome (Lander et al, 2001; Venter et al, 2001). These annotations tend to be 
reliable as these libraries have been carefully constructed to avoid false positives 
whilst maintaining a high coverage. In the absence of a match to these charac­
terised motifs/domains, functional annotation is derived by homology to previously 
functionally annotated sequences. However, transfer of function' by homology is 
problematic and the extent of the difficulty has been recently quantified (e.g. Devos 
& Valencia (2000); Todd et al (2001); Wilson et al (2000)). Below 30% pairwise 
sequence identity, two proteins often may have quite different functions even if their 
structures are similar. Because of this problem, global bioinformatics analyses of 
genomes generally do not use functional transfer from distant homologies for anno­
tation. However, specific analyses by human experts still extensively employ this

http://www.sbg.bio.ic.ac.uk
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strategy, particularly as any suggestion of function can be refined from additional 
information or from further experiments.

A powerful source of additional information is available when the three-dimen­
sional coordinates of the protein are known. The structure often provides informa­
tion about the residues forming ligand-binding regions that can assist in evaluating 
the function and specificity of a protein. For example, recently it has been shown 
that spatial clustering of invariant residues can assist in assessing the validity of 
function transfer in this homology twilight zone (Aloy et al, 2001). At higher lev­
els of identity, knowledge of structure can assist in analysing ligand specificity and 
the effect of point mutations. Valuable tools in exploiting three-dimensional in­
formation are the databases of protein structure, in which domains with similar 
three-dimensional architecture are grouped together. Here the structural classifica­
tion of proteins (SCOP) (Conte et al, 2002) is used. SCOP is described in detail in 
section 1.4.4. In summary: in SCOP, protein domains of known structure that are 
likely to be homologous are grouped by an expert into a common superfamily based 
on their structural similarity together with functional and evolutionary considera­
tions. SCOP is widely regarded as an accurate assessment of which domains are 
homologues. However, SCOP remains partially subjective and one cannot exclude 
the possibility that two domains placed within the same superfamily only share a 
common fold due to convergent evolution and therefore are not homologous.

The above considerations have led to focusing the analysis on the following three 
objectives:

• To estimate the extent to which the known proteomes can be annotated in 
terms of structure and function and how reliable these annotations are con­
sidered to be.

• To place the occurrence of particular SCOP structural super families in terms 
of their biological and species-specific contexts.

• To derive evolutionary insights from frequency based analyses of homologous 
SCOP domains in terms of expansion in different species.
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4.3 Strategy for structural and functional anno­
tations

For details of materials and methods see section 4.6 on page 159.

Protein sequences from the human genome and from thirteen other species were 
analysed. The main strategy was to use the sensitive protein sequence similarity 
search program PSI-BLAST (Altschul et a/., 1997) to scan each protein sequence 
against a database composed of a non-redundant set of sequences, including se­
quences of SCOP domains and, to ensure up-to-date coverage, each protein entry of 
the PDB (Berman et ai, 2000).

A sequence match to an entry of the PFAM domain library Bateman et al. (2002) 
was considered as a functional annotation (excluding families of unknown function). 
In the absence of a match to these characterised motifs/ domains, one needs to eval­
uate functional annotation via transfer from homology. To represent this approach 
computationally, functional annotation is simply considered if a homologue contains 
some textual description of function (see legend to figure 4.1, and section 3.5). Thus 
the total of the proteome that can be functionally annotated is the sections that are 
assigned to a PFAM domain or, if no assignment to PFAM, that are homologous to 
a protein with a text functional description.

4.4 Results

4.4.1 Status o f structural and functional annotations

Figure 4.1 shows the annotation status of the proteomes expressed as the fraction of 
the total residues in each proteome. The residue fraction is used in order to include 
situations when only part of a protein sequence is annotated, since one cannot quan­
tify this as a fraction of domains because one does not know the number of domains 
in un-annotated regions. 39% of the human proteome can be structurally annotated 
from either having a known protein structure or via a PSI-BLAST detectable ho­
mology to a known structure. This percentage is higher than that for yeast, fly and 
worm and is comparable to the coverage of many bacteria and archaea. A further 
38% of the human proteome falls into the category of functional annotation without
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known structure. Since nearly every protein structure has some functional annota­
tion, the total functional annotation of the human proteome is 77%. The remainder 
are (i) either homologous to another protein of unknown function or (ii) potentially 
globular orphan regions without any detectable homology or (hi) an un-annotated 
non-globular region (a region of low amino acid residue complexity, coiled-coil or a 
transmembrane segment).
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Figure 4.1: Annotation status of the proteomes. Coverage for each species is reported as the 
fraction of the residues in the proteome that are annotated. This allows for partial coverage of 
any sequence. Structural annotation is a homology to a sequence or domain of known structure. 
Functional annotation is when there is no structural annotation but there is an homology to 
an entry from SwissProt or FIR that has a description other than those that contain any of 
the following words: ‘hypothetical’, ‘probable’, ‘putative’, ‘predicted’. Any homology denotes a 
sequence similarity to a structurally or functionally un-annotated protein, such as one described 
as hypothetical. See section 3.5 for a more detailed description of the classification of homologues. 
Non-globular denotes remaining sequence regions that were predicted as transmembrane, signal 
peptide, coiled-coils or low-coniplexity. Remaining residues are classified as orphans, i.e. un­
conserved potentially globular regions.
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This work also considers how many protein sequences can be fully annotated. To 
allow for gaps >95% of a particular sequence are required to be covered without gaps 
of more than 30 residues (figure 4.2). The fraction of the human protein sequences 
that are fully annotated in terms of structure is only 15%. A further 14% of the 
human protein sequences are fully annotated in terms of function but not structure. 
The fraction of fully covered annotated sequences for human is much higher than 
for worm, fiy and yeast. Another 8% of the human sequences are fully covered by 
hypothetical sequences or sequences of unknown function.
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Figure 4.2: Structural and functional annotations that cover the entire protein sequence. For 
structural annotation >95% of the sequence is required to be structurally annotated, and there 
was no un-annotated segment of >30 residues. Functional annotation is evaluated after assigning 
structures and requires the same length constraints. Finally, any homologue (including those of 
unknown function) is assigned to the remainder (with the same sequence length constraints, also 
see figure 4.1 for a definition of any homology).

The accuracy of the above analysis is dependent on the quality of the gene pre­



Structural Characterisation o f the Hum an Proteom e 124

diction. For the eukaryotic genomes analysed, particularly for the human genome, 
this is problematic, and it is anticipated that new genes will be identified and some 
present assignments modified. The human proteome that is subject to the analysis 
described here is based on gene predictions that are confirmed by matches to ESTs 
or homologues in other species (see http://www.ensembl.org and Hubbard et al.
(2002)). This use of homology would contribute to the high level of structural and 
functional annotation, and if additional genes were identified the values for coverage 
probably would be somewhat lower. An upper estimate of the magnitude of this 
problem can be obtained by noting that the human genome has 6% by residue of 
orphans. In worm this figure is 17%, and it is considered that most genes have 
been identified in this genome (Reboul et ai, 2001). Similar figures for orphans are 
found in yeast and fly. If one assumes that the true figure for orphan proteins in 
the human genome is 17%, then any other section of the annotation as shown in the 
bar-charts (e.g. of structural coverage) should be reduced to 83/94 (i.e. 0.88). Thus 
the structural coverage is reduced from 39% to 34%. In practise the true value is 
expected to lie between these two extremes.

However even for prokaryotes, errors in gene prediction can affect the survey 
that is described here. For example, the proteome of the archaea Aeropyrum pernix 
contains the largest fraction of orphan regions. This result may be biased because 
the gene prediction in Aeropyrum pernix produced many very short questionable 
ORFs (Skovgaard et al, 2001).

4.4.2 R eliability  o f annotation

The reliability of homology model-building depends on the level of sequence identity 
between the protein of known structure with that of the sequence for which one wants 
to build a model (Bates & Sternberg, 1999; Sanchez & Sali, 1998). Figure 4.3 shows 
the different level of reliability for structural modelling. Only 2% of the residues in 
the human proteome are from domains for which there is an actual crystal structure 
or which share >97% sequence identity with an experimental structure. However, 
11% are within the identity range 97% to 40%, and homology models are likely to 
be of sufficient accuracy to place residues reasonably accurately. Between 40% and 
30% sequence identity, modelling becomes error prone, but advances in modelling 
techniques may allow the inclusion of this homology band for reliable modelling in

http://www.ensembl.org
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the future. Below 30%, modelling is likely to reveal only general features of the fold.
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Figure 4.3: Reliability of structure assignments. Homologies are dissected into sequence similarity 
bands. The >97% identity effectively reports a match to an experimentally determined structure 
or to one that differs in only a few residues. Structures based on these annotations are accurate. 
The next band down to 40% sequence identity denotes annotations for which models can be 
constructed that are expected to be reasonably accurate (Bates & Sternberg, 1999; Sanchez & 
Sali, 1998). Between 40% and 30% sequence identity automated modelling is difficult. Below 30% 
identity, the sequence alignment suggested by the annotation is expected to have many errors and 
the structural annotation primarily provides an indication of the 3D fold.

Figure 4.4 provides an assessment of the reliability of functional annotation. A 
match to a PFAM domain (excluding domains of unknown function) is considered 
to constitute a reliable functional annotation. For the human proteome 26% of the 
residues can be assigned to PFAM domains (dark and light red bars in figure 4.4), 
this includes 19% for which a structural assignment can be made, which often will 
assist in functional annotation (dark red bars). Next, those proteins were identified 
for which the closest homologue that has a text functional description (see legend to
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figure 4.1) shares at least 30% sequence identity. This cut-off was chosen since stud­
ies have shown that below this value homologues often have diverged to radically 
different functions (Devos & Valencia, 2000; Todd et a/., 2001; Wilson et a/., 2000). 
A total of 41% of the proteome could potentially be functionally annotated based on 
a homology to a protein with at least 30% sequence identity (dark and light green 
bars). This 41% contains 15% without any match to PFAM but with an assigned 
structure (dark green bars) that could help to refine the proposed annotation. A 
further 8% of the proteome is below the 30% identity cut-off for functional annota­
tion (blue bars). Of this fraction, 50% (4% of the total proteome, dark blue bars) 
has a structural homologue that may assist in assessing the validity of functional 
transfer. However the remaining 4% of the proteome with functional assignment 
below the 30% cut-off is without any structural information (light blue bars), and 
annotations for these sequence regions must be considered highly tentative.

4.4.3 SCO P superfam ilies

Table 4.1 reports the commonly occurring SCOP superfamilies in human, fly, worm, 
yeast and average values for archaea and bacteria. Complete tables can be accessed 
from the following web-site: http://www.sbg.bio.ic.ac.uk.

First the commonly occurring superfamilies in the human proteome are consid­
ered. The most common domain in human is the C2H2 classic zinc finger, which 
occurs four times more often than the next most common domain, the immunoglob­
ulin. The P-loop SCOP super family involved in nucleotide triphosphate hydrolysis 
is the fourth most common in human and second in fly, but the most common in the 
other analysed proteomes. In general, the commonly occurring superfamilies in the 
human proteome reflect the eukaryotic and multi-cellular organisation. Commonly 
observed superfamilies involved in or part of cell-surface receptors, protein-protein 
or cell-cell interaction, signalling or cytoskeleton structure are represented by su­
perfamilies such as: immunoglobulin, EGF/laminin, fibronectin, cadherin, protein 
kinase, homeo-domain, tetratricopeptide repeat, spectrin repeat, PH-domain and 
SH3-domain.

In general, the fly and worm have similar rankings of the common superfamilies 
to those in human, reflecting the multi-cellular organisation. There are, however.

http://www.sbg.bio.ic.ac.uk
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Figure 4.4: Reliability of functional annotation. Functional annotation is distinguished between 
reliable (30% sequence identity) and ‘fuzzy’ (< 30% sequence identity). The fractions are cumu­
lative, i.e. regions that are assigned to a PFAM domain and a structure are counted first, then 
regions for which a PFAM domain could be assigned but no structural assignment can be obtained 
are counted. See text for details.

some differences. The c-type lectins are at rank 26 with 149 domains in human 
but at rank 5 with 310 domains in worm. C-type lectins have a wide spectrum 
of functions associated with carbohydrate binding and occur membrane bound and 
soluble. The high occurrence of c-type lectins has previously been noted by Koonin 
and co-workers (Koonin et ai, 2000). However, there has been no explanation for 
the abundance of this superfamily in worm. Similarly, the most common DNA bind­
ing domain in worm is the glucocorticoid receptor which is at rank 6 in worm (281 
domains) but only at rank 27 (143 domains) in human and at rank 31 in the fly 
(69 domains). In contrast to the rank order, the domain frequencies of the top su- 
perfamilies in human are generally much higher than the corresponding frequencies
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Human Fly Worm Yeast Archaea Bacteria
SCOP superfamily N R N R N R N R N R N R
Classic zinc finger, C2H2 5092 1 1096 1 190 10 74 9 - 269 - -
Immunoglobulin* 1214 2 483 3 457 2 8 91 1 135 4 94
EGF/Laminin 1192 3 320 4 413 4 - - - - - -
P-loop containing nucleotide 847 4 575 2 516 1 408 1 126 1 168 1
triphosphate hydrolases*
Fibronectin type III* 842 5 247 7 222 8 1 301 - - 1 237
Cadherin 608 6 222 10 135 21 - - 3 72 - -
RNA-binding domain 587 7 282 5 199 9 128 3 - - - 420
Protein kinase-like (PK-like)* 557 8 271 6 434 3 142 2 3 72 5 82
Homeodomain-like 334 9 144 18 145 17 32 20 1 221 17 16
Spectrin repeat 327 10 227 9 150 13 - - - - - -
PH domain-like* 327 10 140 19 100 31 23 29 - - - -
SH3-domain 304 12 105 23 70 37 29 23 - - - 454
EF-hand* 284 13 163 14 120 26 23 29 - - - 420
Ankyrin repeat 278 14 120 21 128 24 31 22 - - 1 342
Complement control mod­ 277 15 57 38 52 43 - - - - - -
ule/SCR domain
PDZ domain-like 265 16 103 24 89 32 6 120 1 169 6 64
Ligand-binding domain of low- 247 17 196 12 143 18 3 194 - - - -
density lipoprotein receptor
Tetratricopeptide repeat 215 18 171 13 115 27 98 5 4 48 16 19
(TPR)*
RING finger domain, C3HC4 207 19 108 22 122 25 33 19 - - - -
Trp-Asp repeat (WD-repeat) 193 20 198 11 142 19 114 4 2 121 3 157
C2 domain (Calcium/lipid- 186 21 68 32 89 32 32 20 - - - -
binding* domain, CaLB)
NAD(P)-binding Rossmann- 177 22 150 16 130 23 88 7 27 3 72 2
fold domains*
ARM repeat* 177 22 137 20 105 28 80 8 1 221 - -
SH2 domain* 161 24 59 37 72 35 8 91 - - - -
Thioredoxin-like* 152 25 148 17 148 14 50 12 8 21 18 13
C-type lectin-like* 149 26 40 53 310 5 - - - - - 454
Glucocorticoid receptor-like 143 27 69 31 281 6 14 59 - - - -
(DNA-binding domain)*
ConA-like lectins/ glucanases* 136 28 66 34 105 28 8 91 1 169 3 157
Actin-like ATPase domain* 135 29 65 35 38 56 58 10 2 97 12 26
Numer of distinct proteins in 28,913 13,922 16,323 6,237 2,176 2,789
proteome
Numer of distinct superfami­ 546 518 482 434 328 499
lies in proteome

Table 4.1: Commonly occurring SCOP superfamilies in the proteomes. R is the rank of a super­
family within a proteome and N is the frequency of domains within this superfamily. * Denotes 
that several PFAM families (and hence several InterPro families) are included within the single 
SCOP superfamily (this association was evaluated by searching each SCOP superfamily against 
PFAM using the HMMer program, see ‘Methods’ section for details). The number of distinct 
proteins and the number of domains per super family (N) for archaea and bacteria are averages 
whereas the number of distinct superfamilies are totals over the species (including seven bacterial 
species and three for species from archea).
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in fly and worm, whereas the frequencies in fly and worm are often similar. The 
human proteome is roughly double the size of that of fly or worm, but for several of 
the most common superfamilies in human (in particular within the first six ranks, 
except for the P-loop) a scaling factor of more than two is observed. At lower ranks 
the ratio is generally around two. The first superfamily that occurs with roughly 
the same frequency in human, fly and worm is the thioredoxin-like domain (152, 
148, 148 domains respectively). Proceeding down the rank order of occurrence in 
human, the first superfamily with a lower frequency of domains in human than in 
another multi-cellular eukaryote is the c-type lectin (see above).

There are, however, major differences in rank order for the single-celled organ­
isms. Several of the superfamilies in table 4.1 have similar ranks in human, fly and 
worm, whereas the rank in yeast often differs markedly (e.g. the immunoglobulin). 
Domains of superfamilies found in cell-cell interaction proteins and cell surface pro­
teins such as the fibronectin and cadherin are not found or only occur infrequently 
in the proteomes of the single-cellular organisms. In bacteria, and especially in 
archaea, the top ranks are mainly occupied with superfamilies associated with en­
zymes. The most common DNA binding domain in bacteria and archaea is the 
winged helix-turn-helix motif (not included in table 4.1).

The abundance of several superfamilies in metazoans that are absent or have 
relatively low domain frequencies in yeast leads to conclusions different to those re­
cently published for the S. pomhe genome (Wood et ai, 2002). The work by Wood 
et al (2002) shows that there are many new protein sequences in yeast {S. pomhe 
and S. cerevisieae) compared to prokaryotes, but only a few new sequence families 
in metazoans compared to yeast (i.e. those proteins found in metazoans only). In 
this work 84 SCOP superfamilies present in metazoa and yeast that are not found 
in any of the processed prokaryota, and 113 new superfamilies in metazoa that are 
not found in yeast (data not shown) were identified. The analysis described in this 
work is based on the identification of structural domains rather than closely re­
lated full-length sequences which allows members of even diverse superfamilies to 
be found. These results suggest that in invention and expansion on the level of 
structural domains there may well be a bigger step from single-cellular eukaryotes 
to multi-cellular organisms than implied by Wood et al (2002).

Domains forming a particular SCOP superfamily are identified on the basis of
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both their similar structure and function. In contrast PFAM, InterPro and PAN­
THER are primarily sequence and function based families. Because homologies can 
be recognised from structural conservation that are undetectable by sequence based 
methods, one SCOP superfamily can include several PFAM, InterPro or PANTHER 
families (also see the legend for table 4.1). In addition, SCOP is a structural domain 
database whereas PFAM identifies a single sequence motif tha t can be repeated to 
form a structural domain. For example, PFAM describes each of the /)-sheet mo­
tifs of a WD-repeat by itself whereas SCOP considers the entire barrel of seven of 
these motifs as a domain. Thus there are several differences between the ranks of 
commonly occurring SCOP domains compared to the results from sequence based 
analyses (Lander et al, 2001; Venter et al, 2001).

The results of this work are in broad agreement with similar analyses by others 
(Frishman et al, 2001; Iliopoulos et al, 2001; Koonin et al, 2000; Gough & Chothia, 
2002; Lander et al, 2001; Venter et al, 2001), in particular with results from those 
describing the distribution of SCOP folds and superfamilies in different genomes. 
Differences in methodology, different confidence cut-offs and different sequence data­
bases used for the analysis do not allow a direct comparison of domain frequencies 
and annotation coverage in proteomes. However, the relative rank order for folds 
and superfamilies within a proteome are suitable for a comparison between different 
work. Recent work from Gough & Chothia (2002) using hidden Markov models 
for SCOP superfamilies shows similar ranks for the top ten superfamilies in the 
processed genomes. The zinc-finger is the most abundant superfamily in human fol­
lowed by the immunoglobulin. Although results from the HMM superfamily analysis 
by Gough & Chothia (2002) on a more recent version of the human genome (based 
on ENSEMBL-4.28.1, see http://stash.mrc-lmb.cam.ac.uk/SUPERFAM ILY/) give 
different total numbers compared to this work, the general trend (i.e. ranks of su­
perfamilies) is stable even for the different interpretations of the human genome. It 
should be noted that the analysis described here has a focus on the globular parts of 
the proteomes, and no PSI-BLAST homology assignments for the membrane all-a 
SCOP superfamily were obtained. However, BLAST assignments for close homo­
logues of this superfamily are included in the analysis of this work (see section 4.6, 
Methods, for details). Therefore this super family is found far further down the list 
lower in the results described here compared to Gough & Ghothia (2002), who con­
structed special HMMs for this superfamily.

http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/


Structural Characterisation o f the H um an Proteom e 131

Some of the top superfamily-rankings from this work are different to those in 
PartsList (Qian et ai, 2001b), which reports the EGF/laminin superfamily at rank 
one for C. elegans (rank four in this analysis) and the P-loop at rank eight, com­
pared to rank one in the results of this work. The HMM superfamily analysis of the 
worm from Gough & Chothia (2002) ranks the P-loop at position two, following the 
membrane all-a superfamily.

Wolf et al. (1999) assigned SCOP-1.35 folds to several prokaryotes, yeast and C. 
elegans using an automated processing pipeline similar to the system used here (see 
section 3). Folds of coiled-coiled domains and immunoglobulins and those domains 
mainly found in viruses were omitted from their analysis. The top ranking SCOP 
folds for archaea are similar to the ranks from this analysis, but there is more varia­
tion in ranks for bacteria, possibly due to differences in the set of bacterial genomes 
that was chosen for this work. As shown by Wolf et al. (1999), the analysis de­
scribed in this work also finds more agreement between archaea and bacterial folds 
compared to eukaryotic folds. The fold analysis by Wolf et al. (1999) was refined 
(Koonin et al, 2000) by including the IMPALA program (Schaffer et a l, 1999) into 
the processing pipeline.

The results for M. genitalium (MC) and M. tuberculosis (TB) reported in chap­
ter 2 differ from the results described in this chapter. Here, 46% and 43% of all 
residues in MC and TB respectively can be assigned to homologues of known struc­
ture compared to only 29% in both proteomes from the analysis reported in chapter 
2. However, the analysis described here was carried out in 2001, and the analysis 
from chapter 2 was from 1998 and 1999. The main reason for the much higher cover­
age is the growth of the protein structure and sequence databases during this period. 
In 1999, there were 11,364 structures in the PDB (in less than 600 SCOP super­
families) compared to 16,973 structures (in more than 1,000 SCOP superfamilies) 
in 2001 (see the database statistics at http://www.rcsb.org). The non-redundant 
protein sequence database grew from about 300,000 proteins to more than 600,000 
proteins between the year 1999 and 2001. New protein folds have entered the data­
base, and to some extent existing classifications have been revised.

The rank order of SCOP superfamilies based on SCOP version 1.37 from the 
analysis in chapter 2 are similar to those from the analysis based on SCOP 1.53 (the 
analysis described in this chapter), but the domain frequencies increased. Especially

http://www.rcsb.org
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the number of identified P-loops increased from 20 to 69. Many new members of 
the P-loop containing nucleotide triphosphate hydrolases superfamily increased the 
coverage of this superfamily in the proteomes of MG and TB. In SCOP version 1.37 
there were only five families within the P-loop superfamily. In SCOP version 1.53 
there are fourteen P-loop families. The rank order in the TB proteome shows greater 
differences in superfamily rank orders. For example the P-loop changed rank from 
10 (36 domain) to 1 (176 domains) when comparing the old with the new analysis. 
The NAD(P)-binding Rossmann-fold formerly the most popular superfamily in TB 
with 123 domains slipped to rank 2, but still with an increase in absolute frequency 
to 142 domains. Nevertheless, as mentioned above (page 130), the rank order of 
superfamilies in different versions of the human proteome has not changed markedly.

This brief comparison between versions of a similar analysis highlights the impact 
of data growth and the importance of the continuous increase in the experimentally 
determined repertoire of protein structures, including a refinement and diversifica­
tion of already known folds with new family members. It is important to monitor 
and benchmark the changes of structural and functional coverage in genomes to 
refine existing results. The 3D-CEN0MICS system described in chapter 3 is a step 
toward this goal.

4.4.4 SCO P superfam ilies specific for phylogenetic branches

Table 4.2 presents SCOP superfamilies that occur within just one species or set of re­
lated species but not in any of the other organisms analysed. To identify species not 
included in the fourteen genomes that were analysed in this work, each member of a 
superfamily that is potentially unique to one of the analysed genomes was compared 
to the non-redundant sequence database using PSI-BLAST (with the parameters de­
scribed in the method). This database contains more than 30,000 species. In table 
4.2 any superfamily that occurs less than four times in a particular branch (human, 
fly, worm, yeast, bacteria, archaea) is excluded to prevent erroneous inferences due 
to the inherent difficulties of automated annotation. This information identifies bi­
ological functions potentially specific for one branch of life.
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SCOP Superfamily N R Functional description

H um an
MHO antigen-recognition domain 57 62 Immune system
Interleukin 8-like chemokines 48 71 Immune system, growth factors
4-helical cytokines 47 75 Immune system, diverse range of interferons and inter­

leukins
K Crystal lin s/protein S/yeast killer toxin 20 144 Eye lens component

Serum albumin 19 150 Major blood plasma component
Colipase-like 11 202 Enzyme regulation for pancreatic lipases, development
RNase A-like 8 237 Different ribonucleases found in pancreas, eosinophil gran­

ules and involved in angeogenesis
PKD domain 7 260 Possibly involved in extra-celluar protein-protein interac­

tion
Defensin-like 7 260 Small anti bacterial, fungal and viral proteins
Uteroglobin-like 5 294 Binding of phospholipids, progesterone, inihibits phospho- 

lipase A2 (involved in metabolism of biomembranes)
Midkine 4 328 Growth factors

F ly
Insect pheromon/ odorant-binding proteins 26 81 Hormone related, sex recognition
Scorpion toxin-like 6 220 Drosomycin and defensin, antibiotic, fungicide

W orm
Plant lectins/antimicrobial peptides 4 234 Anti microbial peptides, pathogen response, fungicides. 

Homologous to plant proteins.
Osmotin, thaumatin-like protein 4 234 Same description as for lectins above.

Y east
Zn2/Cys6 DNA-binding domain 53 11 Transcription factors
DNA-binding domain of M lul-box binding 
protein M BPl

4 155 Transcription factors

B a cter ia
TetR/NARL DNA-binding domain 112 19 Transcription factors
IIA domain of mannitol-specihc and ntr 
phosphotransherase E li

28 99 Carbohydrate transport system: part of 
phosphoenolpyruvate-dependent sugar phosphotrans­
ferase system (PTS)

Prokaryotic DNA-bending protein 18 157 Bacterial histone like proteins
Zn24- DD-carboxypeptidase, N-terminal 
domain

17 165 Found in enzymes involved in bacterial cell-wall degrada­
tion, possibly peptidoglucan binding domain

Glucose permease domain IIB 17 165 Part of PTS
Regulatory protein AraC 14 182 Part of the transcription regulation of the arabinose 

operon
LexA/Signal peptidase 11 211 1. Transcriptional regulation of SOS repair genes, protease 

domain of the LexA protein 2. Cleaves the N-terminal 
signal peptides of secreted or periplasmic proteins.

Histidine-containing phosphocarrier pro­
teins (HPr)

11 211 Part of PTS

Periplasmic chaperone C-domain 11 211 Assembly of extra-cellular and periplasmic macromolecu- 
lar structures

Duplicated hybrid motif 10 224 Part of PTS
Aspartate receptor, ligand-binding domain 10 224 Found in different membrane integral sensor and chemo- 

taxis proteins, often associated with kinase domains.

Table 4.2: Superfamilies unique for one of the processed proteomes or group of proteomes. The 
functional description is taken from PFAM/InterPro and SwissProt homologues. N and R are the 
same as in table 4.1. For Human, fly, worm and yeast the superfamilies with N >  3 and for bacteria 
N > 9 are listed.
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H u m a n  b ranch .T he three most frequent domains are implicated with immu­
nity, in particular the MHC antigen-recognition domain, interleukin 8-like chemokines 
and the 4-helical cytokines. Analysis of results that include the complete sequence 
database showed tha t in addition to mammals the interleukin 8-like superfamily 
is also found in sequences from birds and fish, and the MHC antigen-recognition 
domain is also found in amphibia. Several of the other domains specific to the 
mammalian branch are also involved in immunity - MHC class H-associated invari­
ant chain ectoplasmic trimerization domain and p8-MTCPl (mature T-cell prolif­
eration). The mammalian defensin is involved in defense against a wide range of 
micro organisms, whereas the defensin-like superfamily is also found as neurotoxin 
in some cnidaria such as anemonae. At fifth in frequency in the human branch is 
serum albumin (19 domains in 19 sequences) that is a major protein component of 
blood.

Many of the superfamilies that appear potentially specific for human or other 
mammals (i.e. superfamilies that are not found in any of the other 13 processed 
genomes) are in fact also found in some viruses, amphibia, reptiles, fish and birds 
when considering sequences and species of the complete sequence database (>600,000 
sequences and >30,000 species). These include the following frequently occurring 
superfamilies: colipase-like for enzyme regulation (particularly required by pancre­
atic lipases) and involved in development; RNase A-like (also found in Aspergillus) 
with different ribonucleases involved in endonuclease function in pancreas, blood 
(eosinophil granules) and in angiogenesis; the PKD domain which is possibly in­
volved in extra-cellular protein-protein interaction.

Fly. Insect pheromone/odorant-binding proteins are the most common SCOP 
superfamily (which occurs 26 times). The next most common are the scorpion toxin­
like domains which occur as parts of the fungicide drosomycin, and the anti-bacterial 
defensin. Thus the insect form of immunity/defense leads to a commonly occurring 
branch-specific SCOP superfamily. However, in addition to arthropods, the scorpion 
like-toxin and the anti-bacterial defensin are also found in plants.

W orm . Two superfamilies occur with a frequency four (the osmotin, thaumatin- 
like proteins and the plant lectins/ antimicrobial peptides). These superfamilies are 
not found in any of the other 13 proteomes. Both superfamilies are involved in 
pathogen response. However, further comparison of these superfamilies with the
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complete sequence database identified close homologues in plants.

Y east {S. cerevisiae). This is dominated by the Zn-Cys DNA-binding domain 
of transcription factors. This family is also found in the recently sequenced genome 
of the yeast S. pombe (Wood et ai, 2002).

B acteria . Given the smaller size of bacterial genomes, the superfamilies and 
their frequencies from the seven organisms that were annotated in this work were 
pooled (i.e. the reported frequencies are the sums of domains in superfamilies from 
all seven bacterial proteomes, and not averages). Here, the higher ranking super­
families are discussed. The most frequent domain is a transcription factor - the 
tetR/NARL DNA-binding domain (also found in some archaea and algae when 
considering the complete sequence database). This is followed by the dimérisation 
domain of the AraC protein that is involved in the transcription regulation of that 
operon. Third is the superfamily of the DNA-bending protein. Other potentially 
specific superfamilies are involved in transport (especially the phosphate transferase 
system, possibly also present in fungi). There is one superfamily involved in the 
phosphate transferase system, the duplicated hybrid motif, that is also found in 
mouse (but not human) as previously noted (Nakamura et al, 1994). In addition 
there are superfamilies specific for the cell wall synthesis, with one superfamily, the 
Zn2+ DD-carboxypeptidase, that is also found in plants.

A rchaea. There are only three species of archaea in the set of organisms that 
are included in the analysis described here, and no frequently occurring archaea 
specific SCOP superfamilies could be identified.

The general conclusion from this analysis is that three general classes of biological 
activity lead to commonly occurring branch-specific superfamilies. These functions 
are defense (e.g. immunity), transcriptional regulation and hormone-related sig­
nalling.

4.4.5 G ene duplication

The presence of multiple copies of any particular SCOP domains within the pro­
teome is the result of domain duplication and divergence during evolution, both
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within and between proteins. The extent of this duplication can be quantified:

duplication = (4.1)

where Ni is the number of occurrence of domains in SCOP superfamily type i 
(Teichmann et al, 1998). This can be estimated from the frequencies of the SCOP 
superfamilies in a proteome, using these domains as a sample of the entire proteome. 
Note that the value is for domain duplication and is not necessarily a value for the 
fraction of the proteome residues that arose from duplication. Figure 4.5 shows that 
98% of the human proteome is estimated to arose via duplication. There are 28,913 
different peptide sequences in the data set of human proteome, and 23,573 SCOP 
domains were identified within these sequences, which belong to only 546 different 
SCOP superfamilies with 23,027 duplication events. The figure shows that as the 
number of proteins in the genome increases, there is an increase in the extent of 
domain duplication from the 55% observed in the smallest proteome (M. genital­
ium) to 98% in the biggest proteome (human). There is a very rapid increase in 
the extent of domain duplication in the bacteria and archaea until the smallest eu­
karyote included in this analysis (yeast) is reached. However, one does not observe 
a marked difference in the extent of duplication between the largest prokaryote (E. 
coli, 4257 peptide sequences) and the smallest eukaryote (yeast, 6237 peptide se­
quences) despite the major differences in the organisation of their genes (in terms 
of the presence of introns/exons and of chromosomes). Importantly, since several 
different PFAM families are homologues that belong to the same SCOP superfamily, 
when the same estimate is made using PFAM one obtains a lower estimate of the 
extent of domain duplication in each species.

This estimate of domain duplication relies on two assumptions. First is that 
the duplication frequency of structurally characterised domains (i.e. SCOP) is a 
representative sample of all proteins in the genomes. This has been analysed for 
proteins in the M. genetalium genome by Teichmann et al. (1998) who concluded 
that the SCOP superfamilies are representative for the proteins in the genome. How­
ever, a study by Gerstein (1998a) on eight microbial genomes suggested tha t there 
are several differences between the proteins in the PDB and those in the genomes, 
including differences in the lengths of the sequences. Nevertheless, the trend of in­
creasing domain duplication with the size of the proteome is the same for the SCOP
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Figure 4.5: Extent of domain duplication in different proteomes. The extent of duplication is 
estimated from the frequencies of observing domains in the different SCOP superfamilies is shown 
as the fraction of total assigned domains for each proteome. The size of the human proteome is 
estimated at the number of protein sequences in the ENSEMBL dataset (29,000). Comparable 
results from frequencies of PFAM families are reported

and PFAM based analysis, suggesting that any bias from using SCOP alone is not 
marked. The second assumption is that all the proteins have been identified in the 
genome, and one has to estimate the effect of uncharacterised proteins. However, 
the worm, where gene prediction is more accurate than in human, and therefore 
even rare and orphan protein families are more likely to be identified (Reboul et oA, 
2001), yields a value for domain duplication of 95% which is probably a lower esti­
mate of the extent in human.

The values for domain duplication are without a time scale and substantial fur­
ther work is required to estimate the extent of duplications since divergence of the 
different phylogenetic branches. Recently Qian et al. (2001a) have developed an
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evolutionary model and estimated the extent of fold acquisition within a species. 
Here the extent of duplication in the different species of the ten most frequently 
occurring SCOP superfamilies found in the human proteome is considered (figures 
4.6 to 4.8). Taking the frequency in humans as 100%, figure 4.6 shows tha t all of 
these ten SCOP superfamilies have been expanded in human compared to all other 
species. The greatest expansion from worm and fly to human is for the classic zinc 
finger. This suggests the major increase in importance of transcriptional regulation 
in humans via zinc-fingers compared to fly and worm. In contrast, the smallest 
extent of expansion from prokaryotes to human is for the P-loop that has a central 
role in housekeeping metabolism. This smaller rate of expansion is also observed 
for another housekeeping superfamily, the RNA-binding domain found at rank three 
in yeast. The protein kinase-like superfamily has a markedly bigger expansion in 
worm than in fly, and corresponds to 80% of the expansion in human. This may 
account for the expansion of certain types of signalling in worm. Note that three 
of the superfamilies shown are not found in yeast (EGF/laminin, cadherin and the 
spectrin repeat), and one, the fibronectin, is only found once.

These results can be contrasted with an analysis of the top superfamilies in bacte­
ria. Of the top ten, seven are expanded in bacteria between 150% and 350% relative 
to human (data not shown). The two superfamilies that are reduced in bacteria 
compared to human are the periplasmic binding protein-like II (extra-cellular recep­
tor domains in human and mainly extra-cellular solute binding domains in bacteria) 
with 70% and the thiolase-like domain (84%). In human Chey-like transcription 
factors could not be found at all.

Figure 4.7 shows the relative domain frequencies (number of observed domains 
in a superfamily normalised by the total number of domains in all superfamilies 
in the proteome) of the top ten human superfamilies for the processed proteomes. 
The 5092 zinc-finger domains tha t were identified for human comprise more than 
20% of the identified domains. Zinc-finger domains have an average length of just 
27 residues, and together this corresponds to only 1.5% of the residues in the hu­
man proteome. Compared to the majority of the top ten human superfamilies, the 
P-loop decreases its relative abundance from prokaryotes to human. Although the 
domain fraction comprised by P-loops is much lower than for the zinc-finger, because 
of its average length of 217 residues in human, the P-loop accounts for 2% of all 
residues. In yeast and worm the protein kinase-like superfamily seems to have more
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Figure 4.6: Superfamily expansion relative to the human proteome. For the ten most abundant 
human superfamilies the superfamily expansion within the other proteomes relative to the human 
proteome is plotted as the number of domains in superfamily X in proteome Y divided by the 
number of domains in superfamily X in human (times 100). All superfamilies are 100% in human.

importance than in fly and human. In addition the RNA-binding domain, involved 
in a range of functions, is more abundant in yeast than in the metazoan proteomes 
where this superfamily accounts for roughly the same fraction of domains. The worm 
proteome contains relatively more EGF/laminins compared to fly. In general the 
relative abundance of the top ten superfamilies in human, except for the zinc-finger, 
is similar between the metazoan proteomes. Plotting the top ten superfamilies for 
yeast shows a similar trend (data not shown); there are only slight changes in the rel­
ative domain abundance for most superfamilies between the eukaryotic proteomes. 
These results imply that in general the most popular superfamilies in a particular 
proteome do not comprise a substantially different fraction of the domain repertoire 
in other proteomes. Given an increasing number of domains for larger proteomes.
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it may not be a change in relative domain abundance of a set of superfamilies that 
leads to specialisation.
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Figure 4.7: Relative expansion of the ten most abundant human superfamilies. For all proteomes 
the number of domains in a superfamily is normalised by the number of domains in all superfamilies 
for a proteome (multiplied by 100).

In general, domains of superfamilies found at a high rank are often found in re­
peats. Here a repeat is defined as at least two domains of the same superfamily that 
are found within the same peptide sequence irrespective of the sequence distance be­
tween these domains. Indeed, the zinc finger is the most repeated domain in human. 
The average numbers of repeats for the zinc-finger are 7 (max. 36), 4 (max. 17), 2 
(max. 5) and 2 (max. 5) per zinc finger containing sequence for human, fly, worm 
and yeast respectively. In fly and worm the most repeated domain is the cadherin 
with on average twelve repeats in fly and eight in worm. The most repeated su­
perfamily in yeast is the KH-domain (probably involved in RNA-binding) with four
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repeats on average, and in prokaryotes this is the thiolase-like superfamily (found in 
proteins of degradative pathways such as fatty acid /^-oxidation) with two repeats 
on average.

Considering only the existence (and not the frequency) of a superfamily in a 
sequence to exclude the effect of repeats overall just slightly changes the order of 
the top ranks of superfamilies. The domain based top ten ranks in human are still 
present in the top 22 list that excludes repeats (except for the spectrin repeat at 
rank 43). The immunoglobulin, the EOF/laminin and the fibronectin are still within 
the top ten (data not shown). Figure 4.8 plots the average number of repeats within 
a protein for each of these ten SCOP super families in human. The most notable 
feature is that the fly has far more duplicated copies per protein for cadherins (cell 
surface) and spectrin repeats (e.g. associated with the cytoskeleton) compared to 
human. Both, worm and fly have more repeated copies per protein of fibronectin 
and immunoglobulin than human. Overall five of the ten superfamilies are repeated 
on average at least twice per sequence in human. The most abundant superfamilies 
in yeast and especially in bacteria are not as frequently found in repeats as the most 
popular superfamilies in metazoa (data not shown).

In general this implies that repetitiveness on the domain level may play an im­
portant role in the divergence of the metazoan branch from single-cell eukaryotes. 
As mentioned above, several of the popular superfamilies in human are associated 
with cell-surface functions such as cell adhesion, for which long proteins with regular 
structure may be required.

Another analysis of this work considers the number of different domain-domain 
associations for the commonly occurring SCOP superfamilies. An association is 
taken when two different SCOP superfamilies occur within the same sequence (in­
cluding self association) irrespective of the sequence separation betwwen these do­
mains. For a detailed analysis of pairs of adjacent domains and their phylogenetic 
distributions see Apic et al. (2001). Figure 4.9a plots the number of partners for 
the ten most common superfamilies in human, figure 4.9b for those in yeast and 
figure 4.9c for bacteria (note, that for better scaling of the plots, in 4.9b and 4.9c 
only superfamilies are shown that are not already plotted in 4.9a). The general 
trend is that the numbers of different associations is roughly similar for the three 
multi-cellular eukaryotes.
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Figure 4.8: Average repetitiveness of the ten most abundant human SCOP superfamilies. For 
each superfamily the number of domains divided by the number of sequences this superfamily was 
found in is plotted for each of the each proteome.

An interesting feature is that there tends to be somewhat more domain pair­
ings in fly compared to worm. Although the protein kinase-like superfamily is more 
popular in worm than in fly, and also more than in human when normalised by the 
number of domains in the proteome as in figure 4.7, the worm has fewer partners for 
this superfamily. In addition the most popular partner for the protein kinase-like 
superfamily in human and fly is the SH3 domain with 43 occurrences in human and 
14 in fly (partner data not shown); in worm there are only seven such co-occurrences. 
The most popular protein kinase-like partner in worm is the adenylyl and guany- 
lyl cyclase catalytic domain with a frequency of 24, and 5 in human. In all three 
metazoan proteomes the SH2 domain is a frequent partner for the protein-kinase 
like superfamily.
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The number of partners for EGF/laminin domains decreases from worm to fly, 
but in human there are more partners for this superfamily than in worm. A frequent 
domain partner for EGF/laminin domains in worm is the c-type lectin (found 22 
times) that has been mentioned above (see section ‘SCOP superfamilies’), which is 
not a partner for EGF/laminin domains in the fly but is found as an EGF/laminin 
partner 25 times in human.

The immunoglobulin superfamily has more co-occurrences in fly than in worm 
and human. In fly this superfamily combines for example with di-copper-centre- 
containing domains that are also found in human (but not as a partner of im­
munoglobulins). Also the hemocyanin N-terminal domain, absent in human and 
worm, is found in combination with immunoglobulins. In fly the hemocyanin N- 
terminal domain, the di-copper centre-containing domain and the immunoglobu­
lin are in fact found together in sequences that belong to the invertebrate copper 
containing oxygen transport proteins and larval storage proteins (InterPro family 
IPR000896). In human a popular partner for immunoglobulins is the MHC antigen- 
recognition domain which is not found at all in fly and worm. However, in human, fly 
and worm the fibronectin type III is the most common partner for the immunoglob­
ulin (and vice versa) which may be the reason why these two superfamilies follow a 
similar trend in figures 4.6 to 4.8 (relative domain abundance and repetitiveness).

Figure 4.9b shows the top ten superfamilies in yeast. Only the tetratricoidpeptide 
repeat, a domain probably involved in a wide range of protein-protein interactions, 
expands its domain partner repertoire in a step from yeast and worm to fly and to 
human. The other superfamilies have similar frequencies in the three metazoans.

Figure 4.9c shows that all the popular super families in bacteria have markedly 
fewer co-occurrence partners in archaea, although seven of these superfamilies are 
also found in the top ten superfamilies in archaea (data not shown). W ith 27 part­
ners the Rossmann-fold, involved in a range of enzyme activities, has more partners 
in bacteria than in any of the other processed proteomes. However, the most fre­
quent superfamily partners for the Rossmann-fold are similar between bacteria and 
metazoans (data not shown). In worm five of the popular bacterial superfamilies 
have an increased number of partners compared to yeast, fly and human, possibly 
reflecting a closer phylogenetic relationship between worm and bacteria.
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Figure 4.9: SCOP superfamily partners. The plots show the number of different SCOP super­
families that are found together in the same sequence with a given superfamily, including the 
superfamily itself and irrespective of the order or the sequence space between domains. This im­
plies that at least two domains have to be identified in a sequence. Superfamily partners for the 
ten most abundant superfamilies in human (a), in yeast (b) and bacteria (c) are plotted. Only 
those superfamilies not found within the first ten ranks in human are shown in b (P-loop, protein 
kinase-like, tetratricopeptide repeat and the classic zinc finger), and only those are shown in c that 
are not shown in a or b (P-loop and NAD(P) binding Rossmann-fold).

The plots in figure 4.9 only show the number of different superfamily partners. 
However even if the number of partners is similar, the actual frequencies and com­
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position of these partnerships often shows great variation. Hegyi & Gerstein (2001) 
demonstrated that there is less functional conservation in multi-domain than in 
single-domain proteins except if they have exactly the same domain combination, 
so that a superfamily can have different functional contexts. This observation from 
Hegyi and Gerstein suggests a higher degree of functional variation than expected 
for a superfamily in different proteomes even if the number of domain partners is 
similar. For example, fifteen partners for the c-type lectin are found in human and 
worm, but some of the frequently found partners are different. In worm, many sper- 
madhesin and integrin A domains are found together with c-type lectins, whereas the 
integrin A is not found at all as a partner for c-type lectins in human, although the 
overall integrin domain frequency in human is more than twice as high than in worm. 
In human more complement control modules (SRC domain) and immunoglobulins 
are found in combination with c-type lectins (the immunoglobulin is not found at 
all in the list of lectin partners in worm). In addition, it has been shown that in 
many cases of adjacent domains the domain order is an important functional aspect 
(Apic et a/., 2001; Bashton & Chothia, 2002).

In summary, the analysis described here suggests that for most superfamilies, 
as the organism increases in complexity, specialisation and diversity does not arise 
from an increasing number of domain combinations, but rather from refinement and 
diversification of the superfamily repertoire itself (for example, the immunoglobulins 
belong to a diverse superfamily with many members and possibly different functions 
in different proteomes) and probably by changing the repertoire of domain partners.

The web-site mentioned in the methods section provides a link to an application 
that allows generic ranking of selected proteomes according to selected properties 
such as domain frequencies, superfamily partners or domain repetitiveness of super­
families. The results can be displayed as a table and as a plot similar to those shown 
in this work.

4.4.6 SCO P superfam iles in d isease genes

The OMIM database (Antonarakis & McKusick, 2000) (Online Mendelian Inheri­
tance in Man) identifies genes that have been associated with human disease. Hu­
man proteins were associated with OMIM identifiers via the genelink table from
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ENSEMBL. 6656 different OMIM entries are linked to 5856 human proteins, indi­
cating that a human protein can be associated with several OMIM entries. The 
frequency of each SCOP superfamily in the proteome assigned to disease genes ver­
sus the non-disease genes is then evaluated. 7,621 SCOP domains in 481 different 
superfamilies could be assigned to disease genes.

This analysis directly associates SCOP superfamilies with disease and non-disease 
genes. However, the cause of the disease state could be the result of one (or a 
combination) of effects not directly involving the protein, for example alteration of 
regulation or deletion of the entire gene. In addition, any point mutation or deletion 
within a protein may not be within a particular SCOP domain. However, for many 
genes in OMIM the location of the alteration (e.g. point mutation) is not known. 
Thus to analyse the entire OMIM database one can only gain an overview of the 
distribution of SCOP superfamilies between disease and non-disease genes. A more 
focused analysis would consider only those genes where the location of the alter­
ation has been identified (see Sreekumar et al. (2001) for a review of computational 
analysis of disease genes).

The analysis of the superfamilies in disease genes was performed on the pro­
tein sequence level rather than on the domain level, so that only one domain per 
superfamily per protein sequence was counted. The aim of the analysis is to de­
scribe general trends for superfamilies and their biological function in association 
with disease, and therefore superfamilies with low sequence frequencies but signifi­
cantly high domain frequency due to repeats, which confuse a trend analysis, were 
excluded. For example the extra-cellular domain of the cation-dependant mannose 
6-phosphate receptor has fifteen domains in only two proteins that are associated 
with a disease (one domain in the small mannose 6-phosphate receptor and fourteen 
repeated domains in the big receptor) and only two domains in non-disease proteins. 
This receptor plays an important role in targeting lysosomal enzymes to the lyso- 
some. This superfamily is strongly over-represented in the domain based analysis 
but not in the sequence based analysis.

The overall frequencies of SCOP superfamilies in the two sets of genes are sig­
nificantly different at >99.9% confidence. Table 4.3 reports the SCOP superfamilies 
that are significantly over- and under-represented in the disease genes at >95% con­
fidence as confirmed by a test.
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SCOP superfamily R ND NnD f Description

Interleukin 8-like 
Chemokines (V)

62 36 12 3 Mainly small inducible cytokines (single do­
main proteins), immuno-regulatory and in­
flammatory processes, homoeostasis, develop­
ment. Secreted proteins, activity via GPCRs.

Nuclear receptor 
ligand-binding do­
main (M)

56 40 15 2.67 Growth factor inducible intra-cellular 
steroid/thyroid receptors coupled with 
a DNA binding domain (glucocortocoid- 
receptor like) such as estrogen receptor 
(breast cancer associated). Transcription 
factors and enhancers.

Cystine-knot cy­
tokines (E)

49 42 17 2.47 Growth factors belonging to TGF-b, cell de­
termination, differentiation and growth. Neu- 
rotrophins, differentiation and function of 
neurons.

Periplasmic binding 
& protein-like I

96 21 9 2.33 Glutamate receptors, ionotropic (ion chan­
nels) and metabotropic (GPCRs with activity 
via a second messenger), also found in recep­
tors involved in regulation of blood pressure.

Serpins (M) 76 26 12 2.17 Serine protease inhibitors of the blood clotting 
cascade.

4-helical cytokines 

(V)

66 32 15 2.13 Different interferons and interleukins (extra­
cellular single domain proteins), regulatory in 
differentiation and proliferation, antiviral, im­
mune and inflammatory response.

Winged helix DNA- 
binding domain

21 70 57 1.23 Associated with at least 25 disease entries. 
Transcription factors (activation and repres­
sion). Dominated by forkhead family mem­
bers, important in embryogenesis of the ner­
vous system in mammals, associated with dif­
ferent leukemia; ETS family of oncogene prod­
ucts; histones (chromatin remodelling) and 
others.

Helix-loop-helix 
DNA-binding do­
main (E)

28 54 45 1.2 Transcriptional control for cell type deter­
mination during development, also transcrip­
tional control of histone acetyltransferases 
(preparation of chromatin for transcription).

continued on next page
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continued from previous page
SCOP superfamily R ND NnD f Description

Glucocorticoid 
receptor-like (DNA- 
binding domain) 
(E)

25 62 52 1.19 Together with nuclear receptor ligand-binding 
domains (see above). Frequently found in pro­
teins of developmental genes. LIM domain 
proteins de-regulated in cancer cell-lines.

Homeodomain-like 8 131 142 0.92 Different homoebox proteins (transcription 
factors), particularly important in early em­
bryogenesis. Some homeobox genes are onco­
genes.

Protein kinase-like 
(PK-like)

4 246 291 0.85 About 100 different associated disease entries 
(e.g. different cancers). Range of kinases such 
as MAP or PKC (signal transduction).

RNA-binding do­
main

6 76 255 0.3 RNA splice factors (alternative splicing), 
rapid degradation of mRNAs in particular 
from cytokines and proto-oncogenes. Involved 
in e.g. spermatogenesis related to male infer­
tility.

RING finger domain, 
G3HC4 (E)

13 43 163 0.26 Zinc-finger like domain associated with 
protein-protein interaction, often found in 
transcription regulatory proteins. Linked to 
e.g. apoptosis inhibitors, breast cancer gene 
BRACAl, acute leukemia.

Classic zinc finger, 
C2H2

2 135 549 0.25 Nucleic acid binding, range of transcription 
factors, cell proliferation and differentiation, 
early development, some are proto-oncogenes.

Tetratricopeptide re­
peat (TPR)

19 25 121 0.21 Interaction partner of regulatory proteins, 
subunit of G-proteins. Involved in a range of 
biological functions such as cell-cycle, activa­
tion of apoptosis, chromatin assembly, actin 
binding, cancer.

Ankyrin repeat 12 33 187 0.18 Protein-protein interaction domain. Found at 
least 17 different OMIM entries describing e.g. 
inhibitor of NFkB and cyclin-dep. kinase in­
hibitors, interaction with p53 in apoptosis. 
Co-occurrence with other interaction and reg­
ulatory domains such as DEATH and SH3.

continued on next page
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continued from previous page
SCOP superfamily R ND NnD f Description

eLSO-like 58 5 45 0.11 Ribosomal protein L30, translation termina­
tion.

Pyk2-associated pro­
tein (3 ARF-GAP do­
main (E)

91 1 31 0.03 RIP protein that assists HIV in replication 
by facilitating the nuclear export of mRNA. 
Corresponds to the putative GTP-ase activat­
ing protein for Arf in PFAM. Non-disease pro­
teins are often associated with PH-domains or 
ankyrin repeats and may have a range of bio­
logical functions.

T able 4.3: Over- and under-represented SCOP superfamilies in OMIM disease genes. For each 
SCOP superfamily, the rank order R of superfamily occurrences in sequences of the human pro­
teome is given (see text for details), followed by the sequence frequency in disease genes (ND) 
and the frequency in non-disease genes (NnD) . The ratio (f) of these occurrences is then given 
as ND/NnD, the double horizontal line separates over-represented from under-represented super­
families. Taking all SCOP domains together, the two populations (disease and non-disease) are 
significantly different (>99.9% confidence) as calculated by a test. For each SCOP superfamily, 
the frequency ratio compared to the others was significant at >  95% confidence, after allowing for 
the number of SCOP domains tested (testing domains of each superfamily against all remaining 
domains). Bold letters in braces in the superfamily field indicate that this superfamily is specific 
for eukaryotes (E), metazoans (M) or vertebrates (V). The Description field gives an overview 
over the broad biological functions associated with the disease genes.

Superfamilies over-represented in proteins of disease genes are mainly associ­
ated with regulation, having biological functions in development, differentiation 
and proliferation, and not being directly involved in metabolism. Overall the over­
represented superfamilies can be put into the following categories, immune-response, 
immune-regulation, growth factors and transcription factors (helix-loop-helix do­
mains, winged helix domains, DNA-binding domain of the glucocorticoid receptors). 
The main biological relevance of the under-represented superfamilies may be sum­
marised as transcription factors (homeodomain and classic zing fingers), protein- 
protein interaction domains involved in signalling and transcription (other than 
transcription factors) and translation. However, many of the superfamilies are in­
volved in a wide range of biological functions and may be placed in more than one 
category, e.g. the interleukin 8-like chemokines are not only involved in immune- 
response but also play a regulatory role during development.

The most over-represented superfamilies (with a ratio >2) are biased towards
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small mainly extra-cellular single or two domain messenger proteins (interleukin, 
cyctine-knot cytokines and 4-helical cytokines), whereas three of the seven strongly 
under-represented superfamilies (with a ratio <0.3) are involved in regulation via 
protein-protein interaction, and another three superfamilies in are involved in tran­
scription and translation. Further, the five most over-represented superfamilies are 
specific for human, metazoa or at least eukaryota, whereas in the set of under­
represented superfamilies only two eukaryotic specific superfamilies are found. On 
the other hand, eight of the nine under-represented superfamilies are in the list of 
the top twenty superfamilies in human sequences, four within the top ten. None 
of the over-represented superfamilies is found within the top twenty ranks. The 
over-represented superfamily with lowest rank (highest frequency) in human is the 
‘winged helix’ DNA-binding domain (rank 21) h

Taking the above observations together, the most over-represented superfamilies 
in disease genes are those likely to have evolved within the metazoan branch of evo­
lution and that are moderately expanded in human (the average sequence rank is 
65 of 463 ranks in total). The homeodomain-like and protein kinase-like superfam­
ilies are just slightly but significantly under-represented, and are found with high 
overall frequencies in both categories. These two superfamilies are associated with 
biological key functions in many regulatory pathways (see table 4.3 for details). The 
results of the analysis of the association of SCOP superfamilies with disease genes 
suggest that it is in general unlikely to find abundant superfamilies with a mas­
sive bias towards disease associated proteins, possibly because the disruption of key 
functions may often be lethal. However, despite this general suggestion, the analysis 
described here does not have any explanation why certain superfamilies are over- 
or under-represented in disease genes. These observations may encourage future 
work to formulate hypotheses that may lead to deeper insight into the relationship 
between disease and protein folds.

4.4 .7  Transm em brane proteins

Transmembrane regions in the proteomes were identified using the hidden Markov 
approach implemented in TMHMM-2 (Sonnhammer et uL, 1998). Figure 4.10 shows

^Note that the ranks and frequencies are based sequence frequencies rather than domain fre­
quencies as in table 4.1
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the fraction of the proteomes that were predicted to occur as membrane spanning 
regions. Within this work at least 13% of the human protein sequences are predicted 
to be membrane proteins (data not shown). However, for the human proteome only 
3% of residues are predicted to be in transmembrane regions (the membrane span­
ning parts of the protein) which is a similar percentage as for yeast and fly but less 
than in worm and the average values for bacteria and archaea. The Figure also shows 
that 13% of the proteome consists of globular regions (regions excluding coiled-coils, 
low complexity regions or signal peptides) that are part of a protein chain that spans 
a membrane (yellow bars, ‘TM /globular’). In human, only about 1% of the residues 
either form short loops (<30 continuous residues) linking two membrane spanning 
regions or appear at a chain terminus of a membrane protein. The ratio between 
the globular part of transmembrane proteins and the membrane spanning part is 
smaller in bacteria and archaea than in the four eukaryotes. This may be due to 
a larger fraction of proteins in bacteria and archaea that are completely membrane 
integral (i.e. proteins mainly built by membrane helices and connecting loops such 
as bacteriorhodopsin and probably those of membrane integral redox-cascades). The 
proteome of C. elegans contains both the largest fraction and the largest absolute 
number of transmembrane proteins (4559 membrane proteins, 28% of the proteome). 
The high number of transmembrane proteins is mainly due to an expansion of the 
family of seven helix transmembrane G-protein coupled receptors (Bargmann, 1998).

Figure 4.11 shows the ratio of residues in globular domains to residues in trans­
membrane regions for different membrane proteins as determined by the number of 
predicted membrane spanning helices. The ratios are substantially different between 
species for proteins with one to three transmembrane regions and become more sim­
ilar as the number of transmembrane regions increases. This shows that the full 
sequence of transmembrane proteins with only one to three membrane-spanning re­
gions differ in length between the proteomes of the analysed organisms reflecting 
a higher number of potential globular domains, with the fly having longer protein 
sequences for transmembrane proteins than the other organisms. In bacteria and 
archaea the ratio drops below one (e.g. the majority of the protein is membrane 
integral) at about six to seven membrane segments. In contrast eukaryotes have the 
majority of the residues of their proteins in potential globular domains, suggesting 
additional functionality such as protein-protein interaction or receptor capabilities 
of these membrane proteins.
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Figure 4.10: Fractions in residues of globular and non-globular parts in membrane proteins. 
Globular denotes globular domains in non-transmembrane proteins, TM/Globular are globular 
regions within membrane spanning proteins (those protein with at least one transmembrane helix 
domain), TM/Loop are short loops in transmembrane proteins and TM are the residues in actual 
membrane integral helices. See text for details.

Table 4.4 reports the frequencies of SCOP superfamilies that occur in protein 
chains that span the membrane. This analysis has a focus on the globular domains 
associated with transmembrane proteins and accordingly excludes completely mem­
brane integral proteins of the analysed proteomes and does not consider the SCOP 
class of membrane proteins. The four superfamilies of highest rank are domains that 
can be found in cell surface proteins involved in cell-cell interaction and receptor 
molecules. In human, the most common SCOP domain associated with membrane- 
spanning chains is the immunoglobulin superfamily, whereas in fly and worm this 
superfamily is at rank four and hve, respectively. The cadherin is the most common 
SCOP superfamily in fly, and in worm the EGF/laminin is the most popular mem­
brane associated superfamily. The relative importance of superfamilies involved in
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Figure 4.11: Ratio of globular regions to transmembrane regions in membrane sequences classified 
according to the number of transmembrane regions. The diagram only shows ratios for which at 
least nine transmembrane proteins were found. See text for details.

cell-cell interaction and cell surface proteins is also pointed out by the absence of 
these superfamilies in yeast (also see table 4.1). All eight immunoglobulin domains 
found in yeast are located in soluble, probably intra-cellular, proteins (no signal 
peptides could be found via prediction).

In conclusion, the results of the transmembrane analysis reflects the multi-cellular 
environment of human, fly and worm, where specialised systems for cell-cell com­
munication and recognition are required in, for example, tissue formation.

Human Fly Worm Yeast
SCOP superfamiliy N % R N % R N % R N % R

Immunoglobulin 463 38 1 126 26 4 74 16 5 - - -
Cadherin 440 72 2 206 93 1 114 84 2 - - -
Fibronectin type III 359 43 3 134 54 3 66 30 7 - - -
EGF/Laminin 216 18 4 139 43 2 163 39 1 - - -
Ligand-binding domain of 
low-density lipoprotein re­
ceptor

126 51 5 106 54 5 79 55 4

continued on next page
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continued from previous page
Human Fly Worm Yeast

SCOP superfamiliy N % R N % R N % R N % R

P-loop containing nu­
cleotide triphosphate 
hydrolases

87 10 6 89 15 6 91 18 3 41 10 1

Protein kinase-like (PK- 
like)

65 12 7 27 10 12 72 17 6

Complement control mod­
ule/SCR domain

56 20 8 25 44 13 3 6 65

C-type lectin-like 53 36 9 3 8 54 34 11 8 - - -
MHC antigen-recognition 
domain

47 82 10

TNF receptor-like 38 73 11 2 100 67 - - - - - -
RNI-like 34 35 12 31 35 8 14 38 23 - - -
Serine proterase inhibitors 32 25 13 17 41 19 18 21 19 - - -
Periplasmic binding 
protein-like I

28 93 14 16 73 22 30 88 11 -

Con A-like 
lectins /  glucanases

27 20 15 28 42 10 27 26 12 5 63 10

RING finger domain, 
C3HC4

25 12 16 17 16 19 20 16 18 5 15 10

L domain-like 25 21 16 25 26 13 23 16 15 1 8 38
Spermadhesin, CUB do­
main

24 19 18 42 50 7 23 13 15 - - -

(Phosphotyrosine protein) 
phosphatases II

23 21 19 7 17 30 14 14 23 - - -

EF-hand 23 8 19 15 9 24 10 8 29 - - -
Met alloproteases 
(‘zincins’), catalytic 
domain

22 33 21 4 15 43 8 16 37

POZ domain 22 18 21 5 5 37 22 15 17 - - -
C2 domain 
(Calcium/lipid-binding 
domain, CaLB)

21 11 23 17 25 19 32 36 10 16 50 2

Ankyrin repeat 21 8 23 18 15 18 34 27 8 5 16 10

Extracytoplasmic domain 
of cation-dependent man- 
nose 6-phosphate receptor

15 88 32 1 100 38

SpoIIaa 5 83 63 4 100 43 5 100 53 2 100 25
Adenylyl and guanylyl cy­
clase catalytic domain

16 67 29 28 76 10 26 70 13 - - -

continued on next page
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continued from previous page
Human Fly Worm Yeast

SCOP superfamiliy N % R N % R N % R N % R

Blood coagulation in­
hibitor (disintegrin)

18 67 26 3 43 54 4 67 58 - - -

Periplasmic binding 
protein-like II

16 62 29 30 77 9 12 92 25

Syntaxin lA  N-terminal 
domain

8 62 47 5 56 37 8 62 37 7 88 5

L-2-Haloacid dehaloge- 
nase

11 61 34 2 10 67 5 28 53 2 13 25

Snake toxin-like 5 56 63 2 100 67 1 50 98 - - -
Metal-binding domain 6 55 58 4 80 43 4 80 58 5 71 10
Transferrin receptor 
ectodomain, apical do­
main

7 54 53 2 50 79 3 75 20

Table 4.4: SCOP superfamilies associated with transmembrane proteins. The table gives the 
number (N) of domains in each superfamily that are found in sequences that have a transmem­
brane section. The list of superfamilies is ordered by the most abundant superfamilies in human 
membrane sequences. The is percentage of the total occurrence of each superfamily in the pro­
teome (the total is the sum of domains in a superfamily in transmembrane and non-transmembrane 
chains, this is the same as in table 4.1). R denotes the rank of N. The lower part of the table 
(separated by a double horizontal line) details superfamilies with highest percentages in membrane 
proteins and with a frequency of at least five domains in human that are not reported in the upper 
part.

Table 4.4 also presents the fraction of the total domain frequency for each super­
family that is associated with membrane spanning chains. Of the superfamilies with 
at least five domains in transmembrane proteins, only the MHC antigen-recognition 
domain and the periplasmic binding protein-like I have more than 80% of their 
representative domains in transmembrane proteins. Further down the list (bottom 
part of table 4.4), several other superfamilies are found with more than 50% of their 
domains in transmembrane proteins. However, in worm all six scavenger receptor 
cystein-rich domains (not shown in table 4.4) are found in membrane glycoproteins, 
and all five spolia domains (involved in sulphate transports) are found in membrane 
proteins.

SCOP superfamilies that are frequently associated with transmembrane regions 
are also common in chains that do not span the membrane. This supports the view
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that domains are mobile elements that are not restricted to co-evolve either always 
in association with a transmembrane section or always in a chain that does not span 
the membrane.

The top ranking superfamilies in bacteria are different from those found in eu­
karyotes (table 4.5). These superfamilies are mainly associated with bacterial sig­
nalling (ATPase domain and homodimeric domain of signal transduction histidine 
kinase, PYP-like sensor domain, CBS-domain) or with small molecule binding prob­
ably as membrane bound receptors or enzymes (P-loop containing nucelotide hy­
drolases, nucleotide-diphospho-sugar transferases of glycosyltransferases, NAD(P)- 
binding Rossmann-fold, L-2-Haloacid dehalogenase of heavy metal transporters). 
In bacteria no globular super family with more than two representatives (an average 
over the seven processed bacterial proteomes) could be identified that is exclusively 
found in membrane proteins. The list of the most popular superfamilies found in 
transmembrane proteins for archaea is similar to those for bacteria (data not shown), 
but the frequencies of which domains are found are much lower, e.g. the top ranking 
superfamily is the P-loop with only eight domains in the three archaea proteomes. 
In addition, domains that may belong to the immunoglobulin (three domains in P. 
horikoschii) and the cadherin (three domains in M. jannaschii) superfamilies were 
found in two archaea sequences.

Metazoa Yeast Bacteria Archaea
SCOP superfamiliy N % R N % R N % R N % R

ATPase domain of HSP90 chaperone/DNA 13 59 1 - - -
topoisomerase Il/histidine kinase
P-loop containing nucleotide triphosphate hy­ 89 14 6 41 10 1 11 7 2 3 2 1
drolases
Homodimeric domain of signal transducing - - - 2 67 25 9 64 3 - - -
histidine kinase
PYP-like sensor domain 2 8 88 - - - 7 41 4 - - -
CBS-domain 8 44 38 2 20 25 5 42 5 1 4 4
Nucleotide-diphospho-sugar transferases 6 29 48 4 80 16 3 43 6 2 40 2
NAD(P)-binding Rossmann-fold domains 13 9 29 2 2 25 3 4 8 1 4 4
L-2-Haloacid dehalogenase 6 32 47 2 13 25 3 33 7 - - 15

Table 4.5: SCOP superfamilies associated with transmembrane proteins in bacteria. The table is 
ordered by the most abundant superfamilies in bacterial membrane proteins (with at least three 
domains associated with membrane proteins). Averages are given for Metazoa (human, fly and 
worm), the processed bacterial and archaea proteomes. Otherwise the legend for table 4.4 applies.

Figure 4.12 shows the frequencies of the overall top ten human superfamilies (the
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same superfamilies as in figure 4.6) with the number of domains in membrane pro­
teins compared to the other processed proteomes (4.12a) and the same for the top 
ranking bacterial superfaniihes (4.12b, the P-loop is not shown as it is already shown 
in 4.12a). As expected, the immunoglobulin, cadherin, fibronectin and EGF/laminin 
are most expanded in human compared to fly and worm. Interestingly the P-loop 
is found with very similar absolute numbers in membrane proteins in all metazoan 
proteomes, compared to the overall expansion shown in figures 4.6. This suggests 
that, although there are more P-loops in human than in fly and worm, the additional 
duplications are associated with soluble proteins only.

(a)
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Figure 4.12: Expansion of SCOP superfamilies in membrane proteins. The number of domains 
in a superfamily that are found in proteins that have at least one transmembrane helix is shown 
for the different proteomes. The ten overall most abundant superfamilies in human (a), as in figure 
4.6, and bacteria (b) are plotted. For better scaling the P-loop is excluded from b as it is already 
shown in a.

The top ranking superfamilies in bacteria (figure 4.12b) are rarely associated with 
membrane proteins in prokaryotes and yeast, and this trend also remains across the 
metazoans for six of the ten superfamilies (no Chey-like domains could be identified 
in human). Note that the total numbers in 4.12b are much lower than in figure 
4.12a. Only one periplasmic binding protein-like II domain is found on average in 
membrane proteins in bacteria, and although the total number of domains in this 
superfamily is higher than for the other proteomes (data not shown), membrane
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association has only been expanded in metazoa. However, the periplasmic binding 
protein-like II is a diverse superfamily that contains at least ten different PFAM 
families, and in bacteria there seem to be many soluble extra-cellular members of 
this superfamily (suggested by signal peptide prediction). Most of the metazoan do­
mains of this superfamily are associated with ligand-gated ion channel proteins and 
receptor family ligand binding proteins, and both of these families are membrane 
proteins. In yeast four of the five domains of this superfamily are part of presumably 
intra-cellular soluble proteins involved in pyrimidine biosynthesis. The divergence 
of the periplasmic binding protein-like II superfamily to produce different functional 
families in bacteria and metazoa seems to be coupled to some extent with different 
sub-cellular locations (soluble and membrane bound).

4.5 Concluding remarks

This work describes an integrated analysis of the human proteome and compared 
the results to those of other proteomes. The key aspect of this study is the inte­
gration in the context of the different species of the following features: the extent 
and reliability of structural and functional annotations of the proteomes; the extent 
of domain duplication; change and expansion of the structural superfamily reper­
toire between different proteomes; the relationship between human disease genes and 
structural superfamilies; and the relationship between transmembrane proteins and 
their globular regions. The study included a structure based analysis from which it 
was possible to make evolutionary insights that could not be obtained from sequence 
based methods alone.

These general bioinformatics analyses require simplifications and are also subject 
to errors in the predictive methods. In particular, a simplified strategy to estimate 
the extent to which there is some functional information derivable by homology had 
to be employed. However, this reflects the standard practice in obtaining an initial 
suggestion of protein function in the absence of characterised motifs as found in 
PFAM. Automated proteome annotation, particularly in eukaryotes, is complex and 
the exact numbers reported here will need to be refined as the bioinformatics tools 
improve and more experimental data becomes available.

This study and related work by others (e.g. Frishman et al. (2001); Iliopoulos



Structural Characterisation o f the H um an Proteom e 159

et al. (2001); Koonin et al. (2000)) have highlighted the extent to which we still 
need structural information as a step towards understanding the function and evo­
lution of the human and other proteomes. The experimental determination of the 
protein structures of these proteomes is the goal of structural genomics initiatives. 
Sander and coworkers have suggested that within 10 years we can have representa­
tives of most protein families (Vitkup et al, 2001). However, today some structural 
information for about 40% of the human proteome is available that can be used to 
provide functional insights.

4.6 M ethods

The analysis described in this chapter is based on the 3D-GEN0MICS system that 
was developed during this work (see chapter 3). This section describes the programs, 
parameters and special rules used for the processing.

4.6.1 P rotein  sequences from com plete genom es

Eukaryota: Saccharomyces cerevisiae (No authors listed, 1997), Caenorhabditis 
elegans (The C. elegans Sequencing Consortium, 1998), Drosophila melanogaster 
(Adams et al, 2000), Homo sapiens (Lander et a l, 2001). Bacteria: Mycobacterium 
tuberculosis (Cole et al, 1998), Escherichia coli (Blattner et a l, 1997), Bacillus subt- 
ilis (Kunst et al, 1997) , Mycoplasma genitalium (Fraser et al, 1995), Helicobacter 
pylori (Tomb et al, 1997), Aquifex aeolicus (Deckert et al, 1998), Vibrio cholerae 
(Heidelberg et al, 2000). Archaea: Aeropyrum pernix (Kawarabayasi et al, 1999), 
Pyrococcus horikoshii citep (Kawarabayasi et al, 1998), Methanococcus jannaschii 
(Bult et al, 1996). See table 1.1 for the size of each of the genomes. The H. 
sapiens proteome is the ENSEMBL-0.8.0 confirmed peptide data set (http://www.- 
ensembl.org). Other sequences were taken from the NCBI (ftp://ftp.ncbi.nlm.nih.- 
gov/genomes/). See also table 3.2.

4.6.2 Sequence analysis

Sequences, annotations and results are stored in a relational database (MySQL, 
http://www.mysql.com), which serves as the back-end for an automated processing

http://www.-
ftp://ftp.ncbi.nlm.nih.-
http://www.mysql.com
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pipeline running on a Linux computer farm. The software and database system 
developed within this work allows for updates of the data and results as well as 
comparisons across proteomes. See section 3 for details.

The sequences were first scanned for: signal peptides (SignalP-1); transmem­
brane helices (THMM-2); coiled-coils (Coils2); low complexity regions (SEG); and 
repeats (Prospero V I.3). See table 3.1 for web resources (URLs) and references. 
The default parameters were used.

Protein sequence database searches were performed using PSI-BLAST version 
2.0.14 (Altschul et a l, 1997), based on the experience from the work described in 
chapter 2. Sequences were masked for low complexity regions, transmembrane re­
gions, coiled-coils and repeats. The h-value and e-value cut-offs both were 5 x 10““̂ 
(the h-value is the e-value cut-off for sequences to be included in the next PSSM), and 
the maximum number of iterations was 20. The sequence database used contained 
634,179 different protein sequences from the NCBI NRPROT (all non-redundant 
GenBank CDS translations, PDB, SwissProt and PIR, the protein sequences of the 
genomes processed in this work and the sequences from the SCOP-1.53 database). 
SCOP sequences were taken from the ASTRAL database, a supplement for SCOP, 
Chandonia et al. (2002), see section 1.2.3 for a description of these databases. Low 
complexity regions of sequences from this database were masked by ‘X’ (the ‘X’ 
character is ignore by the sequence comparison programs).

It has been shown (Park et al., 1998) that PSI-BLAST detects relationships that 
are not symmetric, i.e. a query with sequence A might not have a significant match 
to B whilst searching with B could have a significant match to A. To address this 
problem, each SCOP sequence was run against the protein sequence database via 
PSI-BLAST to construct a position specific scoring matrix (PSSM) that was used 
with the IMPALA program (Schaffer et al., 1999) to assign SCOP domains to each 
of the genome sequences. This procedure increases the sensitivity without introduc­
ing many new false positives (this was confirmed by manual investigation of SCOP 
domain assignments). The e-value cut-off for IMPALA was 5 x 10“  ̂ (this cut-off is 
higher than for PSI-BLAST because of a different scoring scheme, see sections 1.3.5 
and 1.3.6 for details).

In addition, for all sequences BLAST was run against a sequence database that
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contains only the SCOP sequences to ensure that close homologues not identified by 
PSI-BLAST because of the masking described above are found by BLAST. Query 
sequences were not masked (not even for low complexity regions).

BLAST (Altschul et al, 1997) was run for those sequences that contain a trans­
membrane region, coiled-coil region or a repeat but without removing (masking) 
these regions. Only low complexity regions were masked. This ensures that at 
least close homologues of membrane integral proteins, coiled-coils and proteins that 
mainly consist of repeats, are identified. These close homologues may not be de­
tected by PSI-BLAST because there may not be enough valid residue signal left 
after the masking. The masking, as described above, is necessary for PSI-BLAST to 
avoid the corruption of the PSI-BLAST PSSM and the aggregation of false positive 
alignments. Repeats were masked for PSI-BLAST runs because these tend to in­
crease the number of significant HSPs (alignments) dramatically without providing 
much additional information (a protein A with three domains of the same family 
could in theory produce 3̂  alignments with another protein B that contains three 
homologous domains of the same family). For PSI-BLAST and BLAST the same 
database was used. The e-value cut-off was 5 x 10“'̂ .

Examination of initial results from this work showed that there was a problem 
in PSI-BLAST detecting very short SCOP domains (less than 50 residues) because 
BLAST/PSI-BLAST e-values may not be significant for short alignments, yet man­
ual investigation of the region strongly suggested that it should be assigned to a 
particular SCOP domain (for example by a PROSITE pattern). Within this work a 
heuristic method was developed to address this problem: An assignment to a SCOP 
domain was accepted if the e-value is <10 for an IMPALA or BLAST hit and <1.0 
for a PSI-BLAST hit and if the domain is shorter than 50 residues and the sequence 
identity of the alignment satisfies the identity cut-off described by Rost (1999). This 
identity cut-off requires a much higher sequence identity for shorter than for longer 
alignments (see also equation 2.1 in chapter 2). Overall, this procedure weights 
sequence identity more than e-values for alignments between short domains. If the 
identity condition was not satisfied, a SCOP domain was still accepted if the align­
ment shares a common PROSITE pattern (Falquet et a l, 2002) between query and 
subject.

All accepted SCOP domains must be present with at least 65% of their domain
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in the alignment, to avoid partial domain assignments that are in many cases false 
positives. The analysis described in chapter 2 showed that a 50% coverage of SCOP 
domains is a sensible choice to avoid false positive alignments while maintaining a 
relatively high coverage of true positives. However, manual investigation of a subset 
of alignments between protein sequences from the analysed proteomes and SCOP 
domains showed that many of these alignments that represent just a fraction of the 
actual domain are likely to be false positives. To find a sensible cut-off for the frac­
tion of a SCOP domain that has to be present in the alignment, the highest scoring 
alignments (those with the lowest e-value) were taken from each query region of the 
proteomes (see below for a definition of the term region) to analyse the distribution 
of the fractions represented by the alignments.

Figure 4.13a shows that most of the alignments between protein sequences from 
the proteomes and SCOP domains represent between 90% and 105% of the SCOP 
domains (insertions may contribute to a coverage > 100%). The dataset shown in 
blue in figure 4.13 shows the distribution of alignments between SCOP domains as 
queries and as subjects, and is shown to validate the analysis of alignment frac­
tions. The number of alignments start to increase at about 65% (the domain length 
fraction present in the alignment) in both distributions. However, the proteome 
dataset shows a smoother increase in the number of alignments between 10% and 
80% domain length fraction (i.e. there are more of these alignments than in the 
SCOP/SCOP). This may be because the SCOP single domain sequences are not 
good approximation of the real situation for protein sequences from the proteomes 
which are often multi-domain proteins. An alternative explanation is that some do­
mains may be more flexible in length with only a conserved core that comprises on 
average 65% of the existing SCOP domains. Also, some of the domain definitions 
in SCOP may be wrong, when considering a huge and diverse protein dataset as in 
this analysis. In addition, wrong gene predictions may account for truncated domain 
alignments.

However, the assumption is that the distributions of alignment fractions are com­
parable, and the SCOP single domain dataset is to some extent representative for 
the protein sequences from the genomes. Figure 4.13b analyses the distribution of 
the domain fractions of false positive alignments between SCOP domains as the 
ratio between false positive and true positive domain alignments. This is basically a 
simplified version of the benchmark described in chapter 2. True positive alignments
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are alignments between domains of the same superfamily. Between 60% and 70% 
domain fraction the number of false positive alignments decreases. The assumption 
is that the SCOP domain assignments in the proteomes have a similar distribution 
of false positives to the SCOP/SCOP benchmark in figure 4.13b. Alignments that 
represent less than 20% or more than 105% of their domain are most likely to be 
false positives (the smallest fraction is 6% and the biggest fraction is 173%, only the 
fractions between 10% and 110% are shown).

The above analysis leads to the choice of a 65% cut-off for the domain fraction 
to accept assignments to SCOP domains. On average this reduces the total num­
ber of SCOP regions assigned to the proteomes by about 10%. However, many of 
these alignments can be considered tentative, and are often without any supporting 
evidence by PFAM domains and/or PROSITE patterns. In this study it is critical 
to avoid false positive domain assignments. The SCOP domain partner analysis 
described in section 4.4.5 (figure 4.9) is especially prone to errors, because a domain 
partnership requires only one observation per superfamily, so that a single false do­
main assignment would bias the analysis of domain co-occurrence.

The analysis of domain fractions does not distinguish between superfamilies. 
Further detailed analysis considering specific superfamily cut-offs and domain length 
variability within a superfamily may lead to a better discrimination between true 
and false positive alignments and a good description of the domain core. However, 
in this study only the very simple approach of treating all domains and superfamilies 
as a whole was considered, for the purpose of choosing a fraction cut-off that lies 
outside the main population of domain fraction. Nevertheless, some true positive 
alignments may be missed due to the 65% cut-off.

It should be noted that residue based calculations rely on the accuracy of the se­
quence comparison heuristics that were employed. For the BLAST (and derivatives) 
based assignments this means that ends of domains may not be correctly identified 
during the extension step of the algorithm. Also potential inter-domain regions were 
not considered, so that even in theory 100% residue based assignment may not be 
reached. This affects the results represented in the bar-plots shown this chapter. 
However, this is a systematic error on the algorithm level of the employed methods, 
and one has to assume that this affects the results of all the processed sequences 
equally, so that as a first approximation a comparison of residue based fractions is
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Figure 4.13: Fractions of SCOP domains present in alignments generated by PSI-BLAST. (a) 
Shows the distribution of the fractions of SCOP domains in alignments between proteins from 
the processed genomes (the queries) and SCOP domains (the subject); and SCOP domains as 
queries and SCOP domains as subjects (blue dataset), (b) Shows the distribution of the different 
domain fractions of false positive SCOP/SCOP domain alignments as the ratio of false positive 
alignments to true positive alignments. Alignments between domains of different superfamilies are 
considered to be false positives. Alignments between identical sequences are ignored. Insertions in 
the alignment are counted and may give fractions bigger than 100%. See text for details.

still valid.

As described in section 3.5 the 3D-GEN0MICS system (chapter 3) clusters align­
ments within the same region of a query sequence. These clusters are referred to as 
regions. For reasons of data retrieval performance, alignments produced by BLAST, 
PSI-BLAST and IMPALA are clustered as described in section 3.5, and only the 
representative sequence for a region (the one with the lowest e-value) is taken for the 
annotation described in this chapter. For SCOP domains the criteria to be allowed 
to enter the region clustering is described above. All SCOP domains of the same 
cluster overlap by at least 50% (with respect to the shorter domain). All other se­
quence types described in section 3.5 on page 98 have to be at least 50 residues long 
or must represent 50% of their sequence to be accepted for the clustering. These 
regions are single linkage clusters, and sequences only have to overlap by one residue 
(the main purpose of these regions is to reduce the amount of data).
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PFAM domains were assigned via HMMer (Eddy, 1998) and the PFAM hidden 
Markov model library version 6.2. The e-value cut-off to accept a hit was 0.1 and a 
domain had to be present in the reported alignment with at least 75% of its entire 
length.

For the analysis of transmembrane proteins, sequences were truncated if the Sig- 
nalP program (Nielsen et a l, 1997) could identify a potential signal peptide. This 
avoids false positive predictions of transmembrane regions at the N-terminus of a 
sequence.

4.6.3 A vailability o f annotation

The results of the analysis are available as 3D-GEN0MICS via the web at h ttp ;//-  
www.sbg.bio.ic.ac.uk. This includes query forms for database searches and the dis­
play of tables and alignments. The web-site provides a special section with results 
from comparative analyses, including an application to list different domain prop­
erties such as repetitiveness, association with transmembrane proteins or domain 
partners ranked by frequency in a selected ‘master’ proteome.

http://www.sbg.bio.ic.ac.uk
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Chapter 5 

Summary, Conclusions and 
Outlook

This chapter summarises the work described in the previous chapters. Problems, 
limitations and possible future developments are discussed.

5.1 Summary and conclusions

This thesis described the development of an automated system for the structural 
and functional annotation of proteomes and its application to fourteen proteomes 
including the proteins from the human genome. The main parts of this work are 
summarised and briefly discussed below.

5.1.1 Benchm arking PSI-B L A ST  in genom e annotation

An important step in structural and functional annotation of proteins is the iden- 
tiflcation of homologous proteins of already known structure and/or function. In 
chapter 2 the performance of the commonly used sequence comparison method PSI- 
BLAST (Altschul et al., 1997) for the structural and functional annotation of pro­
teins of completely sequenced genomes was evaluated.

In previous work by others (e.g. Park et al. (1998)) the performance of sequence 
comparison methods was evaluated based on the assumption that a perfect compar­
ison method is able to identify all homologues of a query protein (in a one-to-one 
relationship, i.e. all pairwise relationships should be identified). This one-to-one pro­
cedure describes the overall performance of a method and may be used to compare
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different methods. However, for the functional and structural annotation of genomes 
only one homologue has to be identified to transfer the information from the homo­
logue to the un-annotated query sequence (this is a one-to-many relationship, i.e. 
many homologues provide the same information that is used to annotate a query 
sequence). If several homologues can be identified these can be used as supporting 
evidence for the annotation. This means that previous benchmarks underestimated 
the performance of sequence comparison methods in genome annotation.

In this work the success rate based one the one-to-many relationship was eval­
uated for the PSI-BLAST method. An artificial query proteome assembled from 
SCOP domains (Murzin et uL, 1995) and a database of remotely related SCOP do­
mains serving as targets were constructed. The homologous relationships between 
SCOP domains based are known. For the benchmark the superfamily level was 
considered. The benchmark also takes into account the multi-domain character of 
proteins, and the performance is evaluated on the domain level.

With the assumption that close homologues relationships can easily be identified, 
the benchmark concentrates on the identification of a remote homologues only. For 
about 40% of the domains of the SCOP test proteome the correct superfamily can be 
assigned via a remote homologue of the test SCOP database. This coverage is about 
three times as much as for a one-to-one based approach. Only 1% of the assignments 
are wrong (where the superfamily of the query is different from the superfamily of 
the alignment subject). The sources of common errors were identified. A set of 
sensible parameters for PSI-BLAST was extracted to minimise the number of false 
assignments (error rate) and to maximise the number of true assignments (coverage).

The proteins from two completely sequenced genomes (M. genitalium and M. tu­
berculosis) were analysed in terms of their homology to SCOP domains and proteins 
of known function using PSI-BLAST with the evaluated set of parameters. From 
the success rate of the benchmark the expected fraction of the proteomes with new 
folds and function was calculated.

The work carried out in chapter 2 demonstrated the importance of systematic 
evaluation of the performance of the sequence comparison methods to highlight 
limitations and to estimate the extent of what is still unknown. The evaluation 
described in this work is different from the classical approach (one-to-one versus
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one-to-many relationship) and shows markable differences in the results. This work 
also highlights the importance of structural information via structural classification 
of proteins, that is necessary to identify homologous relationships in the absence of 
detectable sequence homology.

5.1.2 3D -G EN O M ICS: A  proteom e annotation  p ipeline

Based on the experience of the benchmark described in chapter2, a system for auto­
mated large scale structural and functional annotation of proteins from completely 
sequenced genomes was developed to provide a research platform for comparative 
proteome analysis. The analysis of the two genomes described in chapter 2 demon­
strated the requirements for an automated analysis pipeline that is able to processes 
large amounts of sequence data, to store the results and to allow for further analysis 
of these results such as cross comparisons between genomes.

Chapter 3 describes a software and database system to analyse protein sequence 
data and to manage the result from different analyses. The developed system is 
able to manage different versions of data and can be, to some extent, updated. An 
important feature of the 3D-GEN0MICS system is the decomposition of the output 
from an analysis software into several descriptive fields. For example PSI-BLAST 
output is not stored as a single raw text field, instead the informative parts of the 
output such as hits (homologues sequences), e-values, scores, sequence identities 
and alignments are extracted and stored as indexed fields in the 3D-GEN0MICS 
database. Relational queries can then be performed on these data-fields, allowing 
to link and relate results from different analyses.

The database is encapsulated by an object oriented software interface that man­
ages the data stored in the database as well as performing sequence and proteome 
based analysis (for example running PSI-BLAST for a sequence). Analysis objects 
have special properties that allow the distribution of these objects over a computer 
farm for parallel processing. The software interface also allows transparent access 
to the database without requiring the user to know the structure of the underlying 
database.

The developed system is generic and allows to integrate new analysis methods 
and source data. The system has been used for different projects carried out by
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other members of the group. These projects include an analysis of enzymatic path­
ways, analysis of protein-protein interaction and an analysis of protein function via 
automated processing of the scientific literature. Several web based applications 
allow users to query the database, to export data and to perform analyses such as 
comparing distributions of SCOP domains between proteomes.

Existing annotation systems developed by others may serve a similar purpose. 
However, research such as the large scale comparative analyses of proteomes as de­
scribed in this thesis require an open and expandable architecture to allow for easy 
integration of new methods and data as well as for the distribution of the analyses 
for parallel processing. The integration of a processing pipeline capable for large 
scale processing as an open architecture together with the decomposition of the re­
sults for storage and relational retrieval was not provided by the existing systems 
at the time this project was started (1999).

The 3D-GEN0MICS system was applied for a comparative analysis of proteomes 
described in chapter 4 and is summarised below.

5.1.3 Structural C haracterisation o f the H um an P roteom e

Chapter 4 described the extent of structural and functional annotation of fourteen 
proteomes including the human proteome. In particular the distribution of SCOP 
superfamilies (Murzin et a/., 1995) across proteomes was analysed.

For about 40% of the human proteome homologues of known structure could be 
identified, this is comparable with the structural annotation for most prokaryotes 
but is more than for the other eukaryotes that were analysed in this work. For about 
13% of the human proteome a homologue of known structure was identified where 
the sequence alignments provide sufficient sequence identify for reliable homology 
modelling. For about 40% of the human proteome reliable functional annotation 
can be obtained via homology to an already annotated proteins.

From the analysis of domains in SCOP superfamilies within the processed pro­
teomes the extent of domain duplication was calculated (all domains within the 
same superfamily are assumed to be homologues and are therefore the result of du­
plication events of a common ancestor). About 98% of the domains in the human
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proteome is estimated to have arisen via domain duplication, compared to only 55% 
of the smallest organism that was analysed (M. genitalium).

The extent of domain duplication was further analysed. Superfamilies expanded 
in the human and other proteomes were identified and compared. Several super­
families were found that are abundant in metazoans only, these are dominated by 
cell-surface proteins. The results suggest that more superfamilies were invented dur­
ing evolution between yeast and metazoans than between prokaryotes and yeast.

Combinations of co-occurring SCOP superfamilies within the same protein se­
quence were analysed and compared between proteomes showing that the number of 
superfamily partners generally remains stable between proteomes. Nevertheless, the 
composition of the set of partners for a given superfamily differs between proteomes. 
In addition the organisation of domains in repeats may play an important role in 
the development from single- to multi-cellular life.

The distribution of SCOP superfamilies associated with inherited disease in hu­
man was analysed. Superfamilies significantly over-represented and under-represented 
in proteins of disease genes were identified. Those superfamilies that are over­
represented in disease genes are dominated by rare eukaryotic, metazoan or even 
vertebrate specific superfamilies compared to more abundant superfamilies that are 
generally under-represented in disease genes.

In some proteomes nearly 30% of the proteins are predicted to be membrane 
proteins. However, only a small fraction of membrane proteins are completely mem­
brane integral (i.e. with no globular domains inside or outside the cell), and most 
of the residues in membrane proteins are in fact found in globular domains. The 
distribution of SCOP superfamilies in membrane proteins was analysed, showing 
that most SCOP domains are mobile elements that are associated with both types 
of sub-cellular location: soluble and membrane standing. Metazoan proteomes show 
greater expansion of their abundant superfamilies in membrane proteins compared 
to the abundant superfamilies in prokaryotes for which membrane association is 
rather rare.
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5.2 Outlook

The scientific and technical work carried out in this work may be subject to more 
detailed and specific future analyses. Bioinformatics research is mainly driven by 
the available data such as protein sequences, structures or expression data. New 
technologies provide new data sources and usually trigger the development of new 
methods to analyse these new data types. An important aspect in bioinformatics 
will therefore be the integration of these data types and associated methods to dis­
cover parameters and rules that ideally lead to the successful simulation of complex 
biological processes. On a small scale this work gathers the basic requirements to 
understand complex biological processes. However, the work described here is lim­
ited by concentrating on protein sequences and structures.

Between 1998 and 1999 when the number of fully sequenced genomes started to 
increased due to the establishment of automated large scale sequencing technolo­
gies, genome annotation became an important aspect. The rigorous evaluation of 
automated annotation such as described in chapter 2 was a requirement to show 
limits and expectations as well as leading to enhancements of methodologies.

The processing of eukaryotic proteomes using PSI-BLAST described in chapter 
4 highlighted additional problems such as the existence of repeats which often lead 
to an explosion of the resulting data (the number of significant alignments reported 
by PSI-BLAST). Short domains often remain undetected because alignments do 
not produce significant scores due to insufficient length. These short domains, also 
often found in repeats, are frequently found in eukaryotic proteomes. These addi­
tional problems were undetected by the benchmark described in chapter 2, and only 
the extensive processing of the eukaryotic proteomes highlighted these problems. 
Therefore some parameters for the protein processing described in chapter 4 were 
re-evaluated and adjusted, and new rules were added.

The additional experience for large scale protein annotation gathered during the 
analysis of the eukaryotic proteomes showed that additional benchmarking of pro­
teome annotation is required taking into accounts the enormous problems within 
eukaryotic genomes (some of the origins of problems are associated directly with the 
genome such as gene prediction). The 3D-GEN0MICS architecture can be used for 
a continuous benchmark, because different versions of an analysis can be managed
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and compared.

Different processing pipelines and information retrieval systems such as 3D- 
GENOMICS to perform a fully automated annotation of sequences were developed 
(see section 3.8.3). It is now important to extend these systems to integrate different 
sources of information such as expression profiles, protein-protein interaction net­
works, pathways and protein structures to discover complex relationships between 
these biological entities. An important step to integrate several heterogenous protein 
sequence-, domain- and motif databases was the development of InterPro (Apweiler 
et ai, 2001).

The 3D-GEN0MICS system will have to be adjusted to cope with extensive 
data integration. However, it will be generally difficult to gather the required ex­
pert knowledge and resources for extensive data integration. Therefore it may be 
more feasible to connect different domains of expertise (i.g. specialised databases 
and analysis software) via specialised and distributed warehouses, each maintained 
by a specialised research group. To guarantee transparent queries to relate biologi­
cal entities located in different warehouses hosted at different sites, communication 
standards and protocols have to be developed. The DAS project (Dowell et ai, 
2001) and XML in general are promising steps towards distributed data manage­
ment. Nevertheless, biological data integration goes beyond linking annotations 
from different sources in the users web-browser (see Stein (2002) for a recent com­
mentary on web based bioinformatics resources). Such a system has to be fully open 
(i.e. the source code must be available) as well as allowing for large scale queries. 
There will be many technical challenges such as version management (e.g. manag­
ing different revised versions of a genome taking into account dependencies of the 
downstream analyses).

The analysis described in chapter 4 is a top-down approach to classify and com­
pare proteomes. Based on SCOP superfamilies the comparison of the protein domain 
repertoire of different proteomes includes very distant relationships and provides a 
rather general view. On the superfamily level it is difficult to perform functional 
comparisons. It is now important to choose a finer granularity for the analysis of 
protein function by identifying families and sub-families within a superfamily. Func­
tional specificities may be encoded by just a few different residues between highly 
related sequence families. For example, this work showed that there are more nu­
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clear receptor-binding domains in C. elegans than in human. However, different 
functional families have been expanded in worm compared to human (these data 
were not shown or discussed in chapter 4 because they are beyond the scope of this 
work).

The functional context of these families and sub-families (for example the path­
ways these proteins and domains are found in) will show the extent of functional 
flexibility of a superfamily and will provide evolutionary insights into the structure- 
function relationship.

In the past the collection of experimental data was often the bottleneck in bio­
logical research. With the rapid development of high throughput technologies, the 
computational data analysis becomes more a bottleneck. It will be interesting to 
observe how bioinformatics will keep up with these challenges, but it will even more 
exciting to participate.



174

Acknowledgem ents

First, I would like to thank Dr. Robert M. MacCallum for support and discussion. 
In particular I am grateful for his suggestions and participation in the software de­
velopment.

I thank Prof. Michael J.E. Sternberg for supervision. I acknowledge the members 
of the Biomolecular Modelling Laboratory at Cancer Research UK (former Imperial 
Cancer Research Fund) and the Structural Bioinformatics Group at Imperial College 
for support and discussion. Thanks to Drs. Lawrence A. Kelley, Graham R. Smith, 
Adrian P. Cootes and David N. Perkins for discussion and corrections. Also, thanks 
very much to Paul Fitzjohn who reliably maintained the Linux computer farm at 
Cancer Research UK.

Finally, I thank Cancer Research UK for funding and providing an interesting 
research environment.



Supplem entary m aterial for 3D-G ENO M ICS 175

A ppendix A  

Supplem entary m aterial for 
3D-GENOM ICS

A .l Database tables

Attribute Type Description

A lig n m en t (A lig n m en t) Stores information common to all kinds of alignments
Featureld int ref. to a Feature
Sb.i int ref. to a Pseq (subject of alignment)
SbjStart smallint start of alignment in subjects
SbjStop smallint stop of alignment in subject
Identity tinyint percent sequence identity
A u to A n n o t (-) Dump of text information from other tables, generated by a script for fast annotation
search via the web
Tags varchar space separated list of genome names
Pseqid int ref. to a Pseq of the genomes described by Tags
Descrip text a text description
Type varchar type of annotation (e.g. scop or pfam)
B la stH it (B la stH it): BLAST specific hit information
Featureld int ref. to an Alignment
Evalue double e-value of bit score
Score fioat bit score
B la stR u n  (B la stR u n ): BLAST run information
Runid int ref. to a PseqRun
DbSize int size of sequence database in sequences
Status enum( ‘crash’. final status of BLAST analysis (or run inheriting from a BlastRun),

‘void’, ‘empty’. ‘drifted’ existing confident hits got lost due to possibly corrupted
‘drifted’, ‘lim- PSSM (PSI-BLAST), ‘collecting’ not converged (PSI-BLAST only)
ited’. ‘ blast’. and ‘converged’ (PSI-BLAST only), ‘blast’ means the hit was pro­
‘collecting’. duced by BLAST (otherwise PSI-BLAST), ’rps’ means produced by
‘converged’. ‘RPS-BLAST’ and ‘impala’ produced by IMPALA
‘impala’, ‘rps’ )

C la ssN a m e (F eatu re, R u n): Class names to reconstruct API objects
ClassNameld tinyint identifier

continued on next page
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continued from previous page
Attribute Type Description

Name varchar class name
C oil (C oil): Coiled-coil description
Featureld int ref. to a Feature
Score float confidence score of this coil
C o ilR u n  (C oilR u n ): Description of a Coils2 analysis
RunId int ref. to a PseqRun
NumHits int number of identified coiled-coils
D om ainR artn er  (S co p S ta tR u n ): Domain partners (combinations) for SCOP domains
Runid int ref. to a DomainStat
AC varchar SCOP code for superfamily in DomainStat
AC2 varchar code/accession for other domain
Name varchar Name of other domain
Type enum( ‘scop’, 

‘pfam’ )
type of other domain

Preq smallint total frequency of co-occurrence
D o m a in S ta t (S co p S ta tR u n ): Genome specific SCOP superfamily information
Runid int ref. to a GenomeRun
AC varchar family/ superfamily code
Name varchar family/superfamily name
Type enum( ‘scop’, 

‘pfam’ )
type of domain

FreqDom smallint number of domains in family/superfamily
RankDom smallint rank of FreqDom
FracDom float FreqDom normalised by number of all domains
FreqSeq smallint number of sequences with domain type AC
RankSeq smallint rank of FreqSeq
FracSeq float FreqSeq normalised by number of sequences with domains
FreqTM smallint number of domains in transmembrane proteins
RankTM smallint rank of FreqTM
AvgSeqId tinyint average sequence identity of domain type
StdevSeqId tinyint standard deviation of AvgSeqId
ScopPartners smallint number of co-occurring SCOP superfamilies
PfamPartners smallint number of co-occurring PFAM entries
F eatu re (F eatu re): Describes any kind of sequence feature with its location in the sequence
Featureld int identifier
ClassNameld tinyint ref. to ClassName of feature object
Start smallint start (within sequence)
Stop smallint stop (within sequence)
Runid int ref. to Run that produced this feature
G S C ou n t (G en om eS u m m ary): Genome wide frequencies of different annotation features
GSCountId int identifier
Runid int ref. to a GenomeRun
Name varchar name of annotation feature
Number int number of observations for this annotation
Type enum( ‘Se­

quences’, 
‘Regions’, 
‘Residues’ )

‘Number’ refers to sequences, regions or residues

G S M em b er (G enom eS u m m ary): Members of a GSCount entry
GSCountId int ref. to a GSCount
Memberld int ref. to a Pseqid or Featureld (depends on the ‘Type’ of the GSCount)

continued on next page
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continued from previous page
Attribute Type Description

G aps (A lig n m en t): H elper ta b le  for A lign m en t
Featureld int ref. to an Alignment
QryGaps blob compressed list of gap positions and extent in query
SbjGaps blob compressed list of gap positions and extent in subject
G en o m eR u n  (G en om eR u n ): Genome wide analysis or data summary
Runid int ref. to a Run
Tags varchar space separated list of genome names/tags
H M M  (H M M ): HMM associated information (currently not the HMM itself!). Stores annotation
of PFAM HMMs.
Acc varchar identifier
Name varchar short name
Description varchar annotation
Leng int length of HMM
H M M H it (H M M H it): Match to an HMM (from PFAM)
Featureld int ref. to a Feature
Evalue double e-value of bit score
Score fioat bit score
HMMStart smallint start of hit within HMM
HMMStop smallint stop of hit within HMM
Acc char ref. to HMM
H o st (R u n): Client that executed a run
Hostid smallint identifier
Name varchar name of host (or IP-address)
L C R  (L C R ): Low complexity region
Featureld int ref. to a Feature
Score float confidence score of assignment
L C R un (LCR u n): Run information of SEC (detection of low complexity regions
Runid int ref. to a PseqRun
NumHits int number of LCR features produced
M akeM at (P siB la stR u n ): Binary checkpoint file of last PSI-BLAST iteration
Runid int ref. to a PsiblastRun
Checkpoint mediumblob checkpoint data (platform dependant!)
O M IM genm ap (O M IM ): cytogenetic locations and other information for OMIM entries, see
http://www.ncbi.nIm.nih.gov/omim/ for details
ChrMap varchar numbering system
EntryDate date OMIM entry date
Loc varchar cytogenetic location (locus)
Symbols varchar gene symbols (short names)
Status enum( ‘C’, ‘P ’, 

‘P, T , ‘L’ )
certainty of locus assignment

Title text title of disease or gene
MIM int MIM number (should be unique)
Method varchar method for genetic mapping
Comments text list of comments
Disorders varchar list of disorders
Mouse varchar mouse correlate
Ref varchar list of literature references
P aram s (P aram s): Analysis/Run specific parameters
Paramsid smallint identifies the set of parameters that belong together
Pkey varchar name of parameter (key)
P value varchar value of parameter (may be NULL)

continued on next page

http://www.ncbi.nIm.nih.gov/omim/
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continued from previous page
Attribute Type Description

P d e sc  (P d esc ) Protein description
Pdescid int identifier
Acc varchar accession number of source database (usually a Gl-number)
Name varchar list of all known names and identifiers, NCBI-style
Description text description line
Pseqid int ref. to a Pseq
Date timestamp entry of modification date
Taxld int ref. to a node in taxon database
P d escT a g  (P d esc ): Linker for Pdesc Tag relationship
Tagid int ref. to a Tag
Pdescid int ref. to a Pdesc
P er lO b ject (P er lO b ject): Storage for a persistent peri object (serialised objects)
PerlObjectId int identifier
Class varchar class name of object
Perl mediumblob compressed object
P ro s iteM a tch  (P ro siteM a tch ): A match of a PROSITE pattern
Featureld int ref. to a Feature
AC char accession code of pattern
P ro s iteR u n  (P ro siteR u n ): PROSITE pattern database scan
Runid int ref. to a PseqRun
NumHits int number of matches produced by this run
P ro sp ero H it (P ro sp ero H it): Hit from the prospero program (self alignment to find repeats)
Featureld int ref. to an Alignment
Evalue double e-value of bit score
Score int bit score
P ro sp ero R u n  (P rosp ero R u n ): Repeat analysis with prospero
Runid int ref. to a PseqRun
k float calculated k of scoring scheme
lambda float calculated lambda of scoring system
P seq  (P seq ): Protein sequence
Pseqid int identifier
Seq text amino acid sequence as a string
md5 varchar hexadecimal 16 byte MD5 checksum of Seq
Date timestamp entry date
QuickBits int unsigned annotation bitmask, precompiled from Pdesc list
Len smallint un­

signed
length of Seq

P seq M a sk  (G en om eS u m m ary): 
sition

Bitmask for generated annotation for each sequence residue po-

Runid int ref. to a GenomeRun
Pseqid int ref. to a Pseq
Mask blob compressed list of integers for sequence, each position is a bitmask for 

a residue
P seq O M IM  (P seq , O M IM ): Relationship between Pseq and OMIM
Pseqid int ref. to a Pseq
MIM int OMIM identifier, ref. to OMIMgenmap
P seq R u n  (P seq R u n ): Protein sequence based analysis
Runid int ref. to a Run
Pseqid int ref. to a Pseq
Start smallint un­

signed
start of analysed region

continued on next page
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continued from previous page
Attribute Type Description

Stop smallint un­
signed

stop of analysed region

P siB la s tH it  (P siB la stH it):  A PSI-BLAST hit
Featureld int ref. to a BlastHit
Iteration tinyint iteration of this hit
Flag set( ‘firstPS’, description of iteration, ‘firstPS’ is the 1st position specific iteration

'last', ‘lastSeen’, this hit was found in (at least iter. 2), ‘last’ iteration, ‘best’ iter, is
‘best’ ) where the hit has the best e-value, ‘lastSeen’ is the iter, after which 

this hit disappeared)
P siB Ia stR u n  (P siB la stR u n ): PSI-BLAST analysis
Runid int ref. to a BlastRun
Iters Request tinyint maximum number of requested iterations
ItersDone tinyint number of performed iterations
PSSM blob compressed text PSSM of last iteration
R eg io n  (R eg ion ) : Cluster of alignments within a region produced by a SummaryRegionRun of the 
API
Featureld int ref. to a Feature
RepFeatureld int ref. to a Feature/Alignment
R eg ion F eatu re (R eg ion ): Member of a region
Regionid int ref. to a Region
Featureld int member (ref. to a Feature/Alignment)
R u n  (R u n): Superclass for any kind of analysis
Runid int identifier
ClassNameld tinyint ref. to a ClassName
Date datetime date when analysis was carried out
RunTime mediumint runtime of analysis
Hostid smallint ref. to Host
Paramsid smallint ref. to Params
Error varchar optional error or status string
S ecS tr  (S ecS tr): A secondary structure element
Featureld int ref. to a Feature
State enum( ‘C , ‘T ’, 

‘H’, ‘E ’ )
Coil, Turn, Helix, Strand

Score blob compressed list of scores at each position firom Feature. Start to Fea­
ture. Stop

S ig P ep  (S igP ep ): Signal peptide
Featureld int ref. to a Feature
Model enum( ‘gram-|-’, 

‘gram-’, ‘euk’ )
best model (gram positive or negative or eukaryotic)

Score float confidence score of prediction
T M H  (T M H ): Transmembrane helix
Featureld int ref. to a Feature
Ori enum( ‘in’, ‘out’ 

)

topology, N-terminus of first helix is inside or outside the cell

T M R u n  (T M R u n ): Transmembrane analysis
Runid int ref. to a PseqRun
Score float overall confidence of prediction
NumHits int number of predicted membrane helices

continued on next page
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continued from previous page
Attribute Type Description

Tag (P d esc ): A descriptive keyword or label for sequences, e.g. ‘Ecoli’ to label all sequences of the 
genome.
Tagld
Name
Type

int
varchar
enum( ‘user’, 
‘static’, ‘db’ )

identifier
keyword
keyword was set by a user, automatically or is a database name

Table A .l:  Tables of the 3D-GEN0MICS database. For a detailed description of the data-types 
see the MySQL manual (http://www.mysql.com). For many data-types MySQL allows a size 
definition in digits or characters (for char, varchar, text and blob), these are not shown in the 
Type column. The table name is given in bold  font with the managing class of the API in braces. 
Primary key, non-unique keys andjnugue^keys^are shown, ‘ref.’ is ‘reference’, ‘iter.’ is ‘iteration’.

Attribute Type Description

C lassif: T he SC O P  c lassification
DomainCode varchar e.g. d3sdha_
Release smallint e.g. 1.53
FullCode varchar numerical code, e.g. 1.001.001.001.001.001
ClassDescRef int ref. to Descrip (class name)
FoldDescRef int ref. to a Descrip (fold name)
SfamDescRef int ref. to a Descrip (superfamily name)
FamilyDescRef int ref. to a Descrip (family name)
ProteinDescRef int ref. to Descrip (protein name)
Sped esDesc Ref int ref. to a Descrip (species name)
PDBCode varchar the PDB code, e.g. 3sdh
Region varchar the domain definition within the PDB entry, e.g. ‘i 

283’
i:’ o r ‘a: 143-

D escrip : N a m es
Id int identity
Txt varchar text description, e.g. protein name

Table A .2: Tables of the SCOP database. The table name is given in bold  font. Primary 
keys and non-unique keys, ‘ref.’ is ‘reference’. The FullCode defines the root (1), class, 
fold, superfamily, family and protein-t-species accession number separated by a ‘.’ (e.g.
‘1.002.012.033.004.008’). The classification is taken from ASTRAL fiat files (Chandonia et al. 
(2002), http://astral.stanford.edu/). Sequences and structures are not stored in the tables, but in 
fiat files. The identifier system has changed starting with release 1.55, and is not compatible with 
the Classif table, which stores SCOP releases 1.48, 1.50 and 1.53.

http://www.mysql.com
http://astral.stanford.edu/
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A .2 Classes and m odules of the A PI

Method/Function Description

A lig n m en t (F eature): Baseclass for alignment based classes such as BlastHit.
get
getPairwise
sprintPairwise
fullSbj
calcldentity
hssp
swapQrySbj
coverage

redef. of baseclass method
returns a pairwise alignment as an array
returns a pairwise alignment as a string
alignment with terminal gaps and gaps removed from the query, 
recalculates sequence identity in percent
scores an alignment by length and percent identity (Rost, 1999)
swaps query and subject of an alignment
returns alignment coverage in query and subject sequence

A n n o tR eg io n  (H o m o lR eg io n ): A functionally annotated sequence region.
isAnnot true for this type of region
B la stH it (A lig n m en t): A BLAST HSP (hit). No special methods.
B la stR u n  (P seq R u n ): A complete BLAST run.
makeRuns

queueResourceOpt
queueCommand
getQryMaskedFeatures
getQrySeqString
run
getHits
getSummary
seaview
clustalx

non oop funtion to generate a list of BlastRun objects for a sequence (extension of
baseclass function)
required computing resources
redef. of baseclass method
get feature objects that were used to mask query 
get query string as it was passed to BLAST 
redef. of baseclass method
return list of BlastHits (or other hit types for classes inheriting from BlastHit) 
extension of baseclass method
display a list of hits as a multiple ahgnment using the ‘seaview’ program 
display a list of hits as a multiple alignment using ‘clustalx’

C oil (F eature): A coiled-coil sequence region. No special methods.
C o ilR u n  (P seq R u n ) : A coiled-coil analysis of a sequence.

redef. of baseclass method
D b C o n n ec tio n  (-): A
data into the database, 
the database. Database

database connection object. Provides methods to retrieve data from and to insert 
It is the baseclass for most of the other classes, because most objects are stored in 
connections are managed via the Perl DataBase Interface (DBI).

new
sync
get
modify
set
readonly
dbConnect
isConnected
refresh
RaiseError
dbLogging
dbDisconnect
prepareForDump
reconnect
dbHandle
dbSource
dbName
dbHost
dbUser
dbPasswd

object constructor
synchronises the object with the database (reads from or writes to database) 
takes a list of object attribute names and returns their values 
modifies an object (call sync afterwards!) 
sets value for an attribute (call sync afterwards!)
makes the object read only (changes do not get written to the database)
connects to database
true if object is connected to database
refreshes a database connection (if it was lost)
makes connections verbose on errors (called by dbConnect)
makes data modifying actions logged by the sql-server(called by dbConnect)
disconnects from database
prepares object for PerlObject table (disconnects form database)
opposite to prepareForDump (reconnects persistent object to database)
returns a Perl DBI database handle
returns a Perl DBI database source string
returns the name of the database
returns the database host
returns the database user name
returns the database password for the user

continued on next page
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continued from previous page
Method/Function Description

lastlnsertid 
select Row 
doSQL 
dbQuote 
now

returns the last insert ID from AUTOINCREMENT tables, 
executes an SQL SELECT statement and returns one row 
executes any SQL statement, does not return a value 
quotes a string to be SQL compatible
current date and time in a format readable by the SQL-server

D o m D b R eg io n  (R eg ion ): A Region that is a domain.
isDomain
maxStoredFeatures

true for this type of domain
returns the maximum number of stored members for this region

D o m a in S ta t (D b C o n n ectio n ): Objects of this class store high level information about a domain type 
such as a particular SCOP superfamily. This class was mainly developed for web-purposes.
normalise

getPartners
getLink

normalises data by the number of genomes that were used for the analysis (the number
of Tags from the GenomeRun object)
gets a list of domain partners for a domain type
gets the URL for an attribute to link to a script that gives more information

F eatu re (D b C o n n ectio n ): The baseclass for all feature types that describe a location within an object 
(currently only Pseq objects).
remove
overlaps
within
len
getStringRep
getStringRepChar
getSummary
clone
cloneCopy
insertWeb Feature
webFeature
webLinkText
webLinkUrl
webLeftEndChar
webRightEndChar
webPadChar
webColour
webLinkMouseOver-
Text

removes feature object
returns the overlap (in residues) between two features 
returns true if the other feature is contained within the feature 
returns the length of the feature
string representation of the feature (extended by subclasses)
a single character representation (extended by subclasses)
summary information about a feature (implemented by inheriting classes)
returns a copy of the database synchronised object blessed to its correct class
returns a copy of the current object as it is (including modifications)
inserts the web-representation of the feature into a string
the actual web-feature (extended by subclasses)
the text of the URL (extended by subclasses)
the URL itself (extended by subclasses)
left terminal character of the web-presentation (extended by subclasses)
right terminal character of the web-representation (extended by subclasses)
characters outside this feature (extended by subclasses)
colour of the feature (extended by subclasses)
text to appear in browser on mouse-over (extended by subclasses)

the name of the feature (class name, can be overwritten by other classes)
G apC od er  (-): Not a class, helper module to manage gaps of alignments.
encode
decode

encodes an alignment or a list of gaps into a compact form
decodes an encoded alignment into a list of gap positions and gap-extensions

G en o m e (D b C o n n ectio n ): Simple representation of a genome.
getPseqs
makePseqRuns
writeTable
wri teFeatureTable

linkByBlast

returns all Pseq object for this genome 
generates a particular run type for the genome
writes an SQL table with every Pseqid of the genome, and returns the table name 
writes an SQL-table that contains all requested features for all Pseq objects of the 
genome, returns the table name
returns an SQL-table name with all homologues between the genome and a given 
other genome.

G en o m eR u n  (R u n ): Baseclass for all analysis that treat a genome or proteome as a whole.
alreadyRun

queueStderrld

implementation of baseclass object, returns true if the object is was already processed
before with the same parameters
where the stderr of the analysis is copied to
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queueStdoutId where stdout of the analysis is copied to
G en o m eS u m m a ry  (G en o m eR u n ): Genome wide annotation summary and statistics.
getBitTemplates

getNextPreeBit
run
writeCount
readCount
getCSCountld
getMemberlds
getPfamRegion-
Members
getScopRegion-
Members
getBitMask
queueResourceOpt

returns a hash with annotation types as keys and their corresponding bits in the
residue wise description of a sequence
returns the next bit to be used for a new annotation type
redef. of baseclass method
writes a generated counts to the database
reads the count for a particular annotation type from the database 
returns a GSCountId for the requested 'Name'/'Type' pair of annotation 
returns a list of IDs that are members of this annotation type 
returns a hash of PPAM entries found for within this genome

returns a hash of SCOP domains found in this genome

returns the residue wise bit mask of a Pseq object that is part of the genome 
redef. of baseclass method

H M M  (D b C o n n ectio n ): Simple representation of a hidden Markov model, currently contains PFAM 
annotation information only.
noopGetDesciption fast non oop funtion, returns the HMMs description (annotation)
H M M H it (F eature): A high scoring match of a protein sequence to an HMM.
isAnnot

coverage

true if the HMMHit is to a functional annotated HMM (should be moved to the 
HMM class)
returns length coverage of the query by the HMM and the HMM length coverage by 
the query as two real numbers

H M M R u n  (P seq R u n ): Run class for ‘hmmpfam’ of the HMMer package.
run
queueCommand
getOomains

implementation of baseclass method 
redef. of baseclass method
returns HMMHit objects, temporarily modified to be non-overlapping

H om o lR eg io n  (R eg ion ): A sequence region with homologous sequences.
getRepPdesc returns the Pdesc object of the subject sequence the representative alignment
IM P A L A H it (B la stH it): A Hit and HSP produced by IMPALA (subject is a sequence that is represen­
tative for the PSSM).
getPsiBlastRun returns the PsiBIastRun object that produced the checkpoint file used to generate 

the IMPALA matrix
IM P A L A R u n  (B la stR u n ): Run class for IMPALA program.
run
queueResourceOpt 
queueComm and

redef. of baseclass method 
redef. of baseclass method 
redef. of baseclass method

L C R  (F eature): A Low Complexity Region produced by an LCRun. No special methods.
L C R un (P seq R u n ): Run class for the SEC program.
run implementation of baseclass method
M u ltiR u n  (R u n): Objects of this class contain several other Run objects that will all be executed on the 
same client computer. This avoids overloading the queueing system if the runtime time for the actual Run 
object that performs an analysis is short.
getRuns
run
alreadyRun
queueResourceOpt
queueStderrld
queueStdoutId

returns the Run objects to be executed
redef. of baseclass method
returns the object if it was already run before
redef. of baseclass method
where stderr is copied to
where stdout is copied to
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N a m es (-): Not a class. Contains hashes and arrays of organism names and tags (abbreviations) to group 
genomes. Does not provide any functions.
N o b o d y  (-): This package overwrites some routines of the DbConnection package (but it does not inherit 
from DbConnection), and may be used for anonymous read only database access.
dbPasswd
dbUser
dbName

redef. of baseclass method (no password) 
redef. of baseclass method (‘nobody’) 
redef. of baseclass method

O M IM  (D b C o n n ectio n ): Representation of an OMIM entry.
remove
getPseqs
setPseq
removePseq
getByPseq
getByTextPield
webLinkText
webLinkUrl
webLink

raises and error (object cannot be removed)
get Pseq objects linked to this OMIM object
link a Pseq object to this OMIM object
remove link between Pseq object and OMIM object
non oop funtion to search a OMIM objects by Pseqid
non oop function to search OMIM objects by text
same as Feature.webLinkText
same as Feature.webLinkUrl
same as Feature.webLink

P S S M 3 d H it (A lig n m en t): A hit produced by a PSSMSdRun, a (usually remote) homologue of known 
structure.
confidence returns a confidence measure in percent
P S S M 3 d R u n  (P seq R u n ): Run class to perform the 3D-PSSM analysis.
makeRuns
queueResourceOpt
queueCommand
run

non oop function to generate a list of PSSMSdRun objects for a sequence 
redef. of baseclass method 
redef. of baseclass method 
implementation of baseclass method

P aram s (D b C o n n ectio n ): Parameter sets used by an analysis (Run object).
remove 
get All 
hasKey 
get

remove this object from the database 
get all parameter key/value pairs 
true if the parameter key exists
redef. of the baseclass method that does not raise an error if called with a non existing 
attribute (makes ‘hasKey’ obsolete)

P d b R eg io n  (R eg ion ): A Region defined by homology to sequences of known structure (PDB chains).
isStructure
maxStoredFeatures
myTag

true for this kind of region 
redef. of baseclass method 
‘pdb’

P d esc  (D b C o n n ec tio n ) : A description of a protein sequence, contains free text and different tags (key­
words) .
remove
getDb
getTaxon
webLinkText
webLinkUrl
webLink
webLinkMouseOver-
Text

removes the object from the database
returns the tag of the source database this object come from
returns the corresponding Taxon object if it exists
same as Feature.webLinkText
same as Feature.webLinkUrl
same as Feature.webLink
same as Feature.webLinkMouseOverText

P er lO b ject (D b C o n n ectio n ) : Helper class to distribute Run objects over a computer farm, stores un­
composed PerlObjects as Perl code.
remove removed the object from the database
P ro s iteM a tch  (F eatu re): A match to a PROSITE pattern. No special methods.
P ro s iteR u n  (P seq R u n ): Finding PROSITE patterns within a query sequence.
run implementation of baseclass method
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getPrositePatterns non oop function to retrieve the patterns from a flat file
P ro sp ero H it (A lig n m en t): Alignment produced by the ‘prospero’ program. No special methods.
P ro sp ero R u n  (P seq R u n ) : Runs the prospero program for a protein sequence.

implementation of baseclass method
P seq  (D b C o n n ectio n ): A protein sequence.
remove
getBioSeq
fseq
getPeatures
getPsiBlastHits
getBlastHits
getHits
getXBlastHits
getSeqsHittingMe

getHitsToMe
getSummaryRegions
xmapPeatures

getRuns
getDbs
getPdesc
getPdescs
getTaxIds
makePseqRuns
getPSSMs
getPSSM
getPSSMerror
getOMIM
seaview
clustalx
makeSCOPdom
makeSCOPdoms

getBits

SQLsetBits

removes object from the database (including all objects depending on this object) 
generate a BioPerl object from this object 
write object in fasta format
returns the list of features for this sequences (from all run objects)
returns PsiBlastHit objects
returns BlastHit objects
wrapper for the two methods above
returns both, PsiBlast and Blast hit objects
returns Pseq objects for which a PsiBlastHit object has this Pseq object as subject 
of the alignment
similar to the above method, but it returns PsiBlastHit objects 
returns the list of Region objects for this sequence
uses a list of features and replaces the corresponding sequence positions with the ‘X ’ 
character (sequence masking) 
returns a list of Run objects
returns a hash of source database tags for this sequence
returns a requested Pdesc object
returns all Pdesc objects for this object
returns a hash of corresponding Taxlds (for Taxon objects)
non oop function to generate a list of Run objects
returns a list of PSI-BLAST PSSMs for all sequence fragments of this sequence 
returns one PSI-BLAST PSSM that covers the whole sequence
returns an error message if there was any while calling one of the two above methods 
returns OMIM objects linked to this object
launched the ‘seaview’ multiple sequence alignment viewer and displays homologues 
same as ‘seaview’, but using the ‘clustalx’ program
generates a SCOPdom object if this object corresponds to a SCOP domain
if the object corresponds to a PDB chain, a list of corresponding SCOPdom objects
is generated
returns a hash with source database tags and some other tags and corresponding bits 
(shortcut to get the annotation status and the source databases for the object, this 
bypasses the slow request of Pdesc objects)
non oop function to set the bits described above for the object (should be run by the 
administrator on Pseq or Pdesc table updates)

P seqF rag  (P seq ): A region within a protein sequence.
set
remove
modify
getPull
getBioSeq
getOverlapping-
Features
getWithin Features 
getFeatures 
getBlastHits 
getPsiBlastHits

redef. of baseclass method, raises and error 
redef. of baseclass method, raises and error 
redef. of baseclass method, raises and error 
returns the full-length Pseq object 
same as for a Pseq, but on a fragment
returns feature objects that overlap with this sequence region

feature objects that are contained within this region 
same as get Over lappingFeatures
same as baseclass method, but filters to non-overlapping hits 
same as method above, but for PsiBlastHits
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getHits
getSummaryRegions
getHitsToMe
getRuns
getExactOrFullRuns
getWithinRuns
getOverlappingRuns
getPSSM
xmapFeatures
overlaps
within

same as baseclass method, but filters non-overlapping hits 
same as baseclass method, but filters non-overlapping regions 
same as baseclass method, but filters non-overlapping hits 
same as getOverlappingRuns
gets all runs that are exactly mapped to this fragment or the whole Pseq object 
run objects contained within this region 
run objects overlapping with this region
extends baseclass method, sub-matrix of the full length PSI-BLAST PSSM 
extends baseclass method
same as Feature.overlaps but for a Pseq fragment 
same as Feature.within but for a Pseq fragment

P seq R u n  (R u n ): A Run that is performed on a protein sequence, baseclass for many other Run objects.
alreadyRun

queueStderrld
queueStdoutId
makeRuns
overlaps
within
getPseqId

implementation of baseclass method, returns object if it was already run with the 
same Params object and Start/Stop definitions 
redef. baseclass method 
redef. of baseclass method
non object oriented function, implementation of baseclass function
similar to PseqFrag method
similar to PseqFrag method
fast method to retrieve the Pseqid of the object

P s iB la s tH it  (B la stH it): A hit produced by the PSI-BLAST program. No special methods.
P siB Ia stR u n  (B la stR u n ): Runs the PSI-BLAST program.
writeCheckpointFile
getCheckpoint
drifted

retrieves a checkpoint and writes it to a file, 
retrieves a checkpoint
tries to determine if the run drifted (use with caution!)

P siP r ed R u n  (P seq R u n ): Runs the PSI-Pred secondary structure prediction program (requires a PsiBIas­
tRun).

implementation of baseclass method
R eg io n  (F eature): A cluster of Features (currently alignments only), that define a region within a sequence, 
base class for many specialised region types.
getFeatures
countsAs
isDomain
isStructure
isAnnot
maxStoredFeatures
myTag
getRepPdesc

list of features that are a member of this region
this region is only a fraction of a domain (e.g. a region from a discontinuous domain)
true if the region is a domain
true if region has known 3D-structure
true if region is annotated
default of maximum number of members to store 
a tag/keyword for this region (to be implemented by other classes)
Pdesc object of the subject of the representative alignment

R u n  (D b C o n n ectio n ): The basic analysis object, to manage execution of the actual analysis. Baseclass 
for all other runs.
makeRuns
remove
getFeatures
getSummary
run
queue
queueCommand
queueName
queueStdoutDir
queueStderrOir
queueStderr

generate one or more run objects (to be implemented by other run classes)
remove this object from the database
list of Feature object from this Run object
descriptive information about the object (to be implemented by other run classes)
execute the analysis (to be implemented by other Run classes)
submit object to the queueing system
the command submitted to the queueing system
the name of the queue
directory to which stdout gets copied to
directory to which stderr gets copied to
filename of stderr
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queueStdout
queueStderrld
queueStdoutId
queueSleep
queued Max
queueResourceOpt
alreadyRun

clone

countFeatures
makeNonOverlapping-
Features
getRunldsBy Params

filename of stdout
unique name for object stderr
unique name for object stdout
pause between subsequent submissions to the queue 
maximum number of objects in the execution queue 
required computing resources to execute the analysis
true if the analysis was already run before, e.g. if the object already exists in the 
database (to be implemented by specialised classes)
copies and returns the database synchronised object blessed with the correct class
(similar to Feature.clone)
number of Feature objects from this run
returns a list of read only non overlapping Feature objects (temporarily modifies the 
Features Start/Stop)
non oop function that returns a list of cloned Run objects that satisfy given parameter 
key/value pairs of Params objects.

S C O P d o m  (P seq ): A sequence that is a SCOP domain. Links the 3D-GEN0MICS main database to the 
scop helper database. Currently provides attributes only (also see A.2)
S cop R eg ion  (D o m D b R eg io n ): A sequence region defined by SCOP homologues.
isStructure
getRepScopDom
getSuperfamilies
myTag
countsAs

true for this region type
returns a representative SCOPdom object
the superfamily of the region
‘scop’
1, or the fraction of a discontinuous SCOP domain

S co p S ta tR u n  (G en om eR u n ): High level analysis of SCOP superfamilies, requires many other analysis 
to be done before (e.g. GenomeSummary).
run
getHash
getGS
getDomainPairs

implementation of baseclass method 
a hash of DomainStat objects 
get corresponding GenomeSummary object 
gets all domain pairs for this run with one request

S cratch D b  (D b C o n n ectio n ): Database connection to a user writable database (even ‘nobody’ is allowed 
to write to the scratch database). Stores temporary user specific objects.
dbName
dbUser
dbPasswd

redef. of baseclass method (‘scratch’) 
redef. of baseclass method 
redef. of baseclass method

SecS tr  (F eature): A Secondary structure element (produced by a PsiPredRun).
getResi dueScore score for the secondary structure state at a residue position
S ig P ep  (F eatu re): An N-terminal signal peptide. No special methods.
S ig P ep R u n  (P seq R u n ): Searches for signal peptides.
queueResourceOpt
run

redef. of baseclass method 
implementation of baseclass method

S u m m ary R eg io n R u n  (P seq R u n ): Clusters alignments into different types of regions (specialised Region 
objects).
run implementation of baseclass method
T M H  (F eatu re): A transmembrane helix. No special methods.
T M R u n  (P seq R u n ): A transmembrane hehx prediction for a sequence.
makeRuns
run

redef. of baseclass method 
implementation of baseclass method

T axon (D b C o n n ec tio n ) : Taxonomy object, interface to the taxon helper database.
remove
getParent
getChildren

redef. of baseclass method, raises and error
get the Taxon object of parent node of the taxonomic tree
get all Taxon objects that have this Taxon as parent
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getRank
inSubTree
isRoot
webLinkText
webLinkUrl
webLink

the name of the rank of the object (e.g., ‘kingdom’, ‘genus’) 
true if the object is in a tree rooted by a given other node 
reverse of ‘inSubTree’, true if object is root of a given other node 
same as Feature.webLinkText 
same as Feature.webLinkUrl 
same as Feature.webLink

W o rk sta tion s (-): Not a class. Helper module to submit Run objects to a computer farm.
run submit several Run objects to the queueing system
fa sta D B  (-): Not a class. Inserts sequences and sequence descriptions together with specific user informa­
tion as objects into the database. Used for large scale database insertions and updates.
insertEntries
insert

nextSeq

insert a Pseq and with several Pdesc entries into the database
insert all entries of an annotated (description line) fasta formated sequence file into 
the database
returns the next fasta entry of the sequence file

p b P S S M  (F eature): A PSSM generated by PSI-BLAST.
remove
getResidue
getScore
getScores
getSubMatrix

redef. of baseclass, raises and error 
the amino acid at a given position
the score for a given amino acid type at a given position 
all amino acid scores for a given position 
a sub-matrix that describes a given region of the sequence

Table A  3: Overview over modules and classes of the 3D-GEN0MICS API. The class or module 
name is given in bold  font above each subtable, and the base class is given in braces. Only 
methods and functions are described. Class attributes are usually the same as the attributes 
of the corresponding SQL table (see A .l). Some specialised modules, classes or methods of the 
API are not shown. For simplification the returned data types and the list of possible arguments 
for methods are not explicitely shown, ‘redef’. means redefinition, ‘def.’ means definition. If a 
class does not provide any special methods it may still redefine or extend baseclass methods. For 
example most classes that inherit from Feature redefine some of the web* and getS tr in g*  methods 
as well as the getSummary method. Classes inheriting from Run redefine the getSummary method.
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Internet resources

U R L D escr ip tio n

f tp : / /f tp .e b i .a c .u k /p u b /s o f t w a r e /u n ix /c o il s - 2 .2 /
f tp : / /f tp .n c b i .n ih .g o v /b la s t
f tp : /  /  ftp . n cb i.n ih . g o v /b la s t /d b /n r .Z
f tp : / /f tp .n c b i .n ih .g o v /g e n o m e s /

f tp : / /f tp .n c b i .n Im .n ih .g o v /g e n b a n k /g e n o m e s /
f tp : / / f tp .n c b i .n ih .g o v /p u b /s e g /
f tp : / /f tp .n c b i .n ih .g o v /p u b /t a x o n o m y /
f t p : / /f tp .n c b i .n lm .n ih .g o v /b la s t /d b /

h t tp : / /a s t r a l .s ta n fo r d .e d u /
h ttp : / /b io in f .  c s .u c l .a c .u k /p s ip r ed /
h t tp : / /g e n o m e s .r o c k e fe l le r .e d u /m a g p ie /
h t tp : / /h m m e r . w u s t l .e d u /
h t t p : / / j u r a . e b i.a c .u k :8 7 6 5 /e x t-g e n e q u iz /
h ttp : / /p e d a n t .m ip s .b io c h e m .m p g .d e
h t tp : / /p r e s a g e .b e r k e le y .e d u /
h t tp : / /p r o d e s .to u lo u s e .in r a .fr /p r o d o m /d o c /p r o d o m .h tm l
h t tp : / /s c o p .m r c - lm b .c a m .a c .u k /s c o p /
h ttp ://s r a a r t.e m b l-h e id e lb e r g .d e
h ttp ://s te ish .m r c - lm b .c a m .a c .u k /S U P E R F A M IL Y /
h ttp : / /w it .in te g r a te d g e n o m ic s .c o m /G O L D

h t t p : / /w w w . b io c h e m .u c l.a c .u k /b s r a /c a th /
h t tp : /  /  w w w .b io c h e m .u c l.a c .u k /b s m /c a th _ n e w /G e n e 3 D /
h ttp : / /w w w . b io in f. m an. a c .u k /d b b r o w se r /P R IN T S
h ttp : / /w w w .b io p e r l.o r g
h t tp :/ /w w w .b lo c k s .fh c r c .o r g
h t tp : / /w w w .b m m .ic n e t .u k
h ttp : / /w w w .c b s .d tu .d k /s e r v ic e s /S ig n a lP -2 .0 /
h t tp : / /w w w .c b s .d tu .d k /s e r v ic e s /T M H M M /
h t tp : / /w w w .e b i .a c .u k

h t t p : / /w w w .e b i.a c .u k /in te r p r o  
h t tp : / /w w w .e b i .a c .u k /p r o te o m e  
h ttp : / /w w w .e m b l-h e id e lb e r g .d e /  r o s t /

h ttp ://w w w .e m b l-h e id e lb e r g .d e /p r e d ic tp r o te in /p r e d ic tp r o te in .h tm l)

http : / / w w w .en sem b l .org  
h t tp : / /w w w .e n z im .h u /h m m to p /
h t tp :/ /w w w .e x p a sy .c h /sw is sm o d /S M _ 3 D C r u n c h .h tm l
h ttp : / / w w w .e x p a sy .o r g /p r o s ite
h ttp :/ /w w w .g e n e o n to lo g y .o r g
h ttp : /  /  w w w .in te g r a te d g e n o m ics .c o m /
h t tp : / /w w w .m y s q l.c o m
h t tp : / /w w w .n c b i.n lm .n ih .g o v

h ttp : / /w w w .n c b i .n lm .n ih .g o v /B L A S T /

so ftw a re  to  p red ict c o ile d -co ils  in p ro te in  seq u en ces  
B L A S T , P S I-B L A S T  and IM PA L A  e x e cu ta b le  p rogram s  
n on -red u n d a n t p rotein  se q u en ce  d a ta b a se
N u cle ic  acid  and p rotein  seq u en ces  from  c o m p le te ly  seq u en ced  
g en o m es  (or n early  fin ish ed  g en o m e p ro jec ts )  
th e  o ld  s it e  for gen o m e seq u en ces
so ftw a re  to  d e te c t  low  c o m p le x ity  r eg io n s in p ro te in  seq u en ces  
ta b le s  o f  th e  N C B I ta x o n o m y  d a ta b a se
se q u en ce  d a ta b a se s  for B L A S T  a nd  P S I-B L A S T  (n u c leo tid e  
an d  p ro tein )
p ro te in  seq u en ces for S C O P  d o m a in s
seco n d a ry  str u c tu r e  p red ictio n  o f  p ro te in  seq u en ces
M agp ie, gen o m e a n n o ta t io n  so ftw a re  p ack age
H M M er so ftw a re  package for h id d en  M arkov m o d e ls
G en eQ u iz  so ftw a re  for w eb  b a sed  for p ro te in  a n n o ta t io n
g en o m e and p ro teo m e a n n o ta t io n  d a ta b a se
d a ta b a se  for str u c tu r a l g en o m ics  p r o jec ts
P ro D o m , protein  d o m a in  d a ta b a se
S tru ctu ra l C la ss if ica tio n  O f P r o te in s
d o m a in  d a ta b a se
H M M s for S C O P  and p ro teo m e a ss ig n m e n ts  o f  S C O P  d o m a in s  
l is t  and  s ta tu s  o f  co m p le ted  and  o n g o in g  g e n o m e  seq u en cin g  
p ro jec ts
an o th er  str u c tu r a l c la ss ifica tio n  o f  p ro te in s  
C A T H  d om ain  a ss ig n m en ts  t o  g en o m es  
d a ta b a se  o f  p ro tein  d o m a in s and  m o tifs  
B io P er l so ftw a re  p roject  
B L O C K S d o m a in  and m o tif  d a ta b a se  
B io m o lecu la r  M o d e llin g  s it e  a t C an cer R esearch  U K  
s ig n a l p e p tid e  p red ictio n  o f  p rotein  seq u en ces  
tra n sm em b ra n e  h e lix  p red ictio n  o f  p ro te in  seq u en ces  
E u ro p ea n  B io in fo rm a tics  In s t itu te , gen era l b io in fo rm a tic s  re­

co m b in ed  d a ta b a se  o f d o m a in s, m o tifs  a nd  p rotein  seq u en ces  
p ro teo m e a n n o ta tio n  s ite
B . R o st h o m ep a g e  w ith  su p p lem en ta ry  m a te r ia l for a lig n m en t  
a ccu ra cy
P red ict  P ro te in , p rotein  seq u en ce  a n n o ta t io n  a n d  str u c tu r e  
p red ictio n
hu m an  g en o m e a n n o ta tio n
tra n sm em b ra n e h e lix  p red ictio n  in p ro te in  seq u en ces
re su lts  from  large  h o m o lo g y  m o d e llin g  o f  protein  seq u en ces
P R O S IT E  p a tte r n s  for fu n c tio n a l m o tifs
G en e  O n to lo g y  p roject
b io in fo rm a tic s  co m p an y
re la tio n a l d a ta b a se  sy ste m
g en era l b io in fo rm a tic s  reso u rce . N a tio n a l C en ter for B io tec h ­
n o lo g y  In form ation  
in te r a c tiv e  B L A S T  and P S I-B L A S T

continued on next page

ftp://ftp.ebi.ac.uk/pub/software/unix/coils-2.2/
ftp://ftp.ncbi.nih.gov/blast
ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.ncbi.nIm.nih.gov/genbank/genomes/
ftp://ftp.ncbi.nih.gov/pub/seg/
ftp://ftp.ncbi.nih.gov/pub/taxonomy/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://astral.stanford.edu/
http://genomes.rockefeller.edu/magpie/
http://hmmer
http://jura
http://pedant.mips.biochem.mpg.de
http://presage.berkeley.edu/
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html
http://scop.mrc-lmb.cam.ac.uk/scop/
http://sraart.embl-heidelberg.de
http://steish.mrc-lmb.cam.ac.uk/SUPERFAMILY/
http://wit.integratedgenomics.com/GOLD
http://www
http://www.biochem.ucl.ac.uk/bsm/cath_new/Gene3D/
http://www.bioperl.org
http://www.blocks.fhcrc.org
http://www.bmm.icnet.uk
http://www.cbs.dtu.dk/services/SignalP-2.0/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.ebi.ac.uk
http://www.ebi.ac.uk/interpro
http://www.ebi.ac.uk/proteome
http://www.embl-heidelberg.de/
http://www.embl-heidelberg.de/predictprotein/predictprotein.html
http://www.ensembl
http://www.enzim.hu/hmmtop/
http://www.expasy.ch/swissmod/SM_3DCrunch.html
http://www.expasy.org/prosite
http://www.geneontology.org
http://www.integratedgenomics.com/
http://www.mysql.com
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/BLAST/
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continued from previous page
U R L D escr ip tio n

h ttp
h ttp
h ttp
h ttp
h ttp
h ttp
h ttp
h ttp
h ttp
h ttp
h ttp

/ / w w w .n c b i.n lm . n ih .g o v /e n tre z /q u e r y .fc g i? d b = O M IM  
/ / w w w .n c b i.n lm .n ih .g o v /o m im /
/ /w w w . o p en p b s.o rg  
/ /w w w .  r c sb .o r g /
/ /w w w .  sa n g e r .a c .u k /P r o je c ts /M _ tu b e r c u lo s is  
/ / w w w .sa n g e r .a c .u k /S o ftw a r e /P fa m  
/ / w w w .s b g .b io .ic .a c .u k  
/ / w w w .s b g .b io .ic .a c .u k /3 d p s s m /  
/ / w w w .s tr u c tu r a lg e n o m ic s .o rg /
/ / w w w .tig r .o r g /
/ /w w w . w ell. ox . a c .u k /r m o tt /A R I A D N E /

Table B .l: URLs for Internet resources

resou rce  for in h er ited  h u m an d isea se  (O M IM )  
th e  o ld  O M IM  p a g e  (d ifferen t in terfa ce)  
load  sh a r in g  sy s te m  for d is tr ib u ted  p ro cess in g  
d a ta b a se  o f  p rotein  s tru c tu res
M. tubercu losis  seq u en ce  an d  a n n o ta t io n  resou rce  
P F A M , p rotein  fa m ily  and  d om ain  d a ta b a se  
S tru ctu ra l B io in fo rm a tic s  G rou p  a t Im p eria l C o lleg e  
rem o te  h o m o lo g y  d e tec t io n  o f  p ro te in  o f  know n s tru ctu re  
resou rce for stru c tu ra l g en o m ics  
T IG R  gen o m e seq u en c in g  cen tre
p ro te in  seq u en ce  com p arison  so ftw a re  in c lu d in g  r ep ea t d e tec ­
t io n  in p ro tein s

mentioned or used within this work.

http://www.ncbi.nlm
http://www.ncbi.nlm.nih.gov/omim/
http://www.sanger.ac.uk/Software/Pfam
http://www.sbg.bio.ic.ac.uk
http://www.sbg.bio.ic.ac.uk/3dpssm/
http://www.structuralgenomics.org/
http://www.tigr.org/


Abbreviations 191

A ppendix C

Abbreviations

C .l Am ino acids

A ALA Alanine
C CVS Cysteine
D ASP Aspartate
E GLU Glutamate
F PME Phenylalanine
G GLY Glycine
H HIS Histidine
I ILE Isoleucine
K LYS Lysine
L LEU Leucine
M MET Methionine
N ASN Asparagine
P PRO Proline

Q GLN Glutamine
R ARG Arginine
S SER Serine
T THR Threonine
V VAL Valine
W TRP Tryptophane
Y TYR Tyrosine
X - ‘ignored’ residue position

T able C .l:  One letter and three letter codes for amino acids.
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C.2 Proteins, domains and other biom olecules

ARF-GAP Adenyl-Ribosylation-Factor, GTPase Activated Protein
ARM repeat Armadillo Repeat
ATP Adenosin Tri-Phosphate
BRAGA 1 Breast Carcinoma 1 gene product
CBS domain named after a protein (Cystathionine-/3-Synthase) that contains this 

domain
CUB probably named after the first proteins this domain was found in 

(human complement components Clr and C2r, sea urchin uECF and 
human bone morphogenic protein)

CaLB Calcium/lipid-binding domain, CaLB)
DD-carboxypeptidase D-alanyl-D-alanine-cleaving carboxypeptidase
DEATH domain first described in TNF-mediated cell death signalling
EF-hand Protein domain named after two important helices E and F
EGF Epidermal Growth Factor
ERK2 Extracellular Signal-Regulated Kinase 2
EST Expressed Sequence Tag
ETS domain Erythroblast Transformation Specific
GPCR C-Protein Coupled Receptor
GSK-3/? Glycogen Synthase Kinase 3-/3
GTP Cuanosin Tri-Phosphate
HPr Histidine-containing phosphocarrier proteins
HSP90 Heat-Shock Protein 90
KH domain K (ribonucleo protein) homology domain
LIM domain zinc finger domain named after the proteins containing this domain 

(Lin-11 from C. e/e^ans vertebrate Isl-1 and Mec-3 C. elegans)
MAP Mitogen-Activated Protein kinase
MBPl Mlul-box binding protein
MHC Major Histo-Compatibility Complex
NAD(P) Nicotinamide Adenine Dinucleotide (Phosphate)
NFkB Nuclear Factor k-B
PDZ domain signalling domain also known as DHR or CLCF (named after ZO-1 

a zonula occludent protein)
PH domain Pleckstrin homology domain
PK-like protein kinase-like
PKG Protein Kinase C
PKD domain first identified in the PKDl protein (Polycystic Kidney Disease)
PMSl Post Meiotic Segregation Protein 1
POZ domain Pox virus and Zinc finger
Pyk2 Protein Tyrosine kinase

continued on next page
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continued from previous page
PYP domain domain found in Photoactive Yellow Protein
RING domain ‘Really Interesting’ (zinc finger) domain
RIP REV protein (RNA binding protein) Interacting Protein
RMS Root Mean Square
RNI-like domain Ribonuclease Inhibitor
RNaseA Ribonuclease A
RNaseH Ribonuclease H
SH2 SRC (Scavenger Receptor) homology-2 domain
SH3 SRC (Scavenger Receptor) homology-3 domain
SpoIIaa stage II Sporulation Protein AA
SRCR Scavenger Receptor, Cysteine-Rich
TFIIA Transcription Factor IIA
TGF-b Transforming Growth Factor (3
TIM Triose-phosphate Isomerase
TNF Tumour Necrosis Factor
TetR/NARL Tetracycline Resistance regulator and Nitrate/Nitrite metabolism 

regulatory protein
TPR Tetratricopeptide repeat
WD repeat the motif of the repeat is defined by the C-terminal amino acids 

tryptophan and aspartate
aa-tRNA Amino-Acyl transfer RNA (Ribonucleic Acid)
aaRS Amino-acyl-tRNA Synthetase
mRNA messenger RNA (Ribonucleic Acid)
p8-MTCPl Mature T-Cell Proliferation-1 protein

Table C.2: Abbreviations of proteins, protein domains and other biomolecules. Capitalisation of 
the explanations may give a hint how the abbreviation was derived. Some capitalised names are 
nouns rather than abbreviations, and explanations are given where the origin of the name is not 
clear.

C.3 Other abbreviations including tools, databa­
ses and programs

ID one dimensional
3D three dimensional
3D-PSSM three dimensional PSSM (Position Specific Scoring Matrix)
API Application Program Interface
ASTRAL Sequence and structure database, supplement to SCOP
ASV avian sarcoma virus

continued on next page
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continued from previous page
BLAST Basic Local Alignment Search Tool
BLIMPS BLocks IMProved Searcher
BLOCKS ‘alignment Blocks’ (no abbreviation)
BLOSUM Blocks Substitution Matrix
GASP Critical Assessment of Structure Prediction
CATH Class(C), Architecture(A), Topology(T) and Homologous superfamily 

(H) (a structural classification of proteins)
CDS Coding Sequence
CGI Common Gateway Interface
DAS Distributed Annotation System
DBI Database Interface
EBI European Bioinformatics Institute
EMBL European Molecular Biology Laboratory
ENSEMBL Human genome resource (not an abbreviation)
ERGO Genome annotation system from Integrated Genomics, Inc. (not an 

abbreviation)
ETS domain Erythroblast Transformation Specific
FASTA Fast Alignment Search Tool
GO Gene Ontology
HIV Human Immune-deficiency Virus
HMM Hidden Markov Model
HMMer Hidden Markov Model software package
HSP High-scoring Segment Pair
HTML Hypertext Markup Language
ID Identifier
IMPALA Integrating Matrix Profiles And Local Alignments
IP-address Internet Protocol (-address)
Kb Kilo bases (1000 bases)
KEGG Kyoto Encyclopedia of Genes and Genomes (enzyme pathway database)
Mb Mega bases (million bases)
MD5 Message-Digest Algorithm
MG Mycoplasma genitalium
MULTICOIL Multiple Coiled-Coil (prediction)
MySQL Product name for a relational database management system
NCBI Natioanl Center for Biotechnology Information
NMR Nuclear Magnetic Resonance
NRPROT Non-Redundant Protein Database
OMIM Online Mendelian Inheritance in Man
ORE Open Reading Frame
OpenPBS Open Portable Batch System
PAM Point Accepted Mutation

continued on next page
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continued from previous page
PANTHER A protein classification database
PDB Protein Databank
PEDANT Protein Extraction, Description and ANalysis Tool
PFAM Protein Family database of alignments and HMMs
PIR Protein Information Resource
PRINTS, PRINTS-S finger Prints
PRODOM, ProDom Protein Domain (database)
PROSITE not an abbreviation (protein sequence pattern database)
PSI-BLAST Position Specific Iterated BLAST
PSI-Pred Position Specific Iterated Prediction
PSSM Position Specific Scoring Matrix
ProDom-GC ProDom for genome wide domain assignments
RMS Root Mean Square
RMSD Root Mean Square Deviation
RPS-BLAST Reversed Position Specific Blast
SAMT98 Sequence Alignment and Modelling software (using HMMs)
SAMT99 Sequence Alignment and Modelling software (using HMMs)
SCOP Structural Classification Of Proteins
SEC not an abbreviation, detection of composition biased segments in protein 

sequences
SMART Simple Modular Architecture Research Tool
SQL Structured Query Language
TB Mycobacterium tuberculosis
TIGR The Institute of Genome Research
TIGRFAM TIGR Family (protein family database)
TM Transmembrane
TMHMM Transmembrane Hidden Markov Model
TOPPRED Topology Prediction (of transmembrane proteins)
TrEMBL Translated EMBL (protein database)
TrEMBL-NEW, new entries in Translated EMBL
URL Unified Resource Locator
WIT Genome annotation database from Integrated Genomics, Inc.
XML extended Markup Language
def. defined
iter. iteration
max. Maximum
redef. redefined

Table C.3: Abbreviations of programs, databases, non standard abbreviated organism names 
and commonly used abbreviations. Capitalisation of the explanations may give a hint how the 
abbreviation was derived. Some capitalised names are nouns rather than not be abbreviations, 
and explanations are given where the origin of the name is not clear.
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