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Abstract 8 

Assets play a significant role in delivering the functionality and serviceability of the building 9 

sector. However, there is a lack of efficient strategies and comprehensive approaches for 10 

managing assets and their associated data that can help to monitor, detect, record, and 11 

communicate operation and maintenance (O&M) issues. With the importance of Digital Twin 12 

(DT) concepts being proved in the architecture, engineering, construction and facility 13 

management (AEC/FM) sectors, a DT-enabled anomaly detection system for asset monitoring 14 

and its data integration method based on extended industry foundation classes (IFC) in daily 15 

O&M management are provided in this study. Following the designed IFC-based data structure, 16 

a set of monitoring data that carries diagnostic information on the operational condition of 17 

assets can be extracted from building DTs firstly. Considering that assets run under changing 18 

loads determined by human demands, a Bayesian change point detection methodology that 19 

handles the contextual features of operational data is adopted to identify and filter contextural 20 

anomalies through cross-referencing with external operation information. Using the centrifugal 21 

pumps in the heating, ventilation and air-cooling (HVAC) system as a case study, the results 22 

indicate and prove that the developed novel DT-based anomaly detection process flow realizes 23 

a continuous anomaly detection of pumps, which contributes to efficient and automated asset 24 

monitoring in O&M. Finally, future challenges and opportunities using dynamic DTs for O&M 25 

purposes are discussed. 26 
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1. Introduction 29 

The Operation and Maintenance (O&M) phase for building and civil infrastructure assets 30 

covers more than 50 years of the total life span [1]. Achieving smart building management is a 31 

complex issue in the O&M phase. Comprehensive information needs to be recorded (e.g., 32 

historical O&M records, performances of facilities, accurate locations etc.) and multiple 33 

technologies would be involved (e.g., sensors, cameras etc.). Keeping data integrity, validity 34 

and interoperability is the key challenge during the process of O&M management [2]. 35 

Consequently, an effective and intelligent O&M management system is needed to maintain 36 

dynamic information, support various activities and contribute to a satisfactory environment 37 

[3]. Various tools and systems have been developed to improve O&M management, such as 38 

Computerized Maintenance Management Systems (CMMS), Computer-Aided Facility 39 

Management (CAFM) systems, Building Automation Systems (BAS), and Integrated 40 

Workplace Management Systems (IWMS) [4]. For instance, CMMS is a computerized system 41 

for O&M management, which can record daily work orders, historical records, service requests 42 

and maintenance information. But it still requires significant effort and time for facilities 43 

management (FM) professionals to extract the diverse O&M information they need (e.g., data 44 

within CMMS, specifications, 3D models) [2]. There is a lack of an integrated platform that 45 

could manage information distributed in different databases and support various activities in 46 

O&M phases. Advances in building information modelling (BIM) is likely to aid in reducing 47 

the time for updating databases in O&M phases by 98% [5]. Some integrated and 48 

comprehensive solutions for O&M management have been proposed by adapting BIM and 49 

developing systems to improve data interoperability and integration. For instance, Motawa and 50 

Almarshad proposed a Case-Based Reasoning (CBR)-integrated BIM system for building 51 

maintenance to improve the efficiency of decision making and communication among different 52 

stakeholders [6]. The restoration team of the Sydney Opera House also designed a unified 53 

central data repository integrating different resources to support effective O&M management. 54 

But overall, a comprehensive and effective data integration/query approach based on BIM, 55 

which can be maintained and updated throughout the O&M phase is still under investigation 56 

[5,7]. In summary, an integrated intelligent approach or system that can help to monitor, update, 57 

communicate and integrate O&M management issues is still required for continuous 58 

development and improvement. 59 

During the O&M phase, anomaly detection for building assets, such as mechanical, electrical 60 

and plumbing systems (MEP), is considered not only the most labour-intensive and time-61 
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consuming but also the most influential process [8]. Extensive studies demonstrate that timely 62 

anomaly detection could ensures the safety, efficiency, and quality of the building operation 63 

processes to a large extent [8]. Essentially, it is a preventive and proactive action that 64 

guarantees the assets maintaining their original anticipated function within their lifecycle. 65 

However, one of the big challenges is that these assets run under changing loads determined 66 

by human demands. Therefore their performance, for instance the pump vibration in the daily 67 

O&M, is not stationary. Conventional point-based anomaly detection algorithm cannot cope 68 

well with this, especially in the targeted built environments where the unavailability of well-69 

labelled data is typical. In response to this situation, contextual anomaly detection, represented 70 

by Bayesian on-line change point detection method (BOCPD), becomes a promising alternative. 71 

Instead of anomalous points, change points are detected where the generative parameters of the 72 

building operational data sequence drift. Combined with the external building operation 73 

information, real anomalies that result in asset failures could be filtered as the trigger for 74 

following-up early warnings.  Generally, the anomaly detection of asset monitoring for O&M 75 

management requires cross-referencing of multiple data sources for building facilities 76 

information. A comprehensive solution is necessary for streamlining anomaly detection, in 77 

which data interoperability and reusability need to be significantly enhanced.  78 

Digital Twins (DTs) are considered to be such a comprehensive solution [9]. The concept of 79 

DTs evolved as a comprehensive approach to manage, plan, predict and demonstrate 80 

building/infrastructure or city assets. The DT is a digital model, which is a dynamic 81 

representation of an asset and mimics its real-world behaviour [10,11]. Moreover, due to the 82 

data analytical and decision-making capability DT possessed, the way we plan, deliver, operate, 83 

maintain and manage the assets is reinvented, thus better services can be provided [12]. To 84 

maximise the value of DTs and further present how they may support anomaly detection in 85 

daily O&M management, this study presents a DT-based anomaly detection system and an 86 

appropriate method of data integration based on the extended IFC. Then, a novel Bayesian 87 

change point detection methodology is adopted to indicate the suspicious anomalies of pumps, 88 

based on the building DT. This system is brought to life through the development of a dynamic 89 

demonstrator based on the West Cambridge Digital Twin Pilot. 90 

2. Literature Review 91 

2.1 Current Research on Daily O&M Management 92 

Many existing O&M management approaches already benefit from emerging data capture and 93 

management technologies, for instance, radio frequency identification (RFID) [13], sensor 94 
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systems [14,15,16], image-based techniques [17] or virtual reality (VR)/augmented reality (AR) 95 

[17,18]. As shown in Fig.1, technologies used in current O&M management can be classified 96 

as software, hardware, and network technologies. 97 

Commonly adopted software tools include: computer-aided design (CAD), IWMS [23], 98 

CMMS, BEMS, BAS and enterprise asset management (EAM) [24], which can be used to 99 

manage daily activities and provide required services. A pilot construction project at the 100 

University of Southern California aimed at linking BAS, CMMS and Document Management 101 

Systems (DMS) with BIM and provide a demonstrator of BIM-to-BIM-FM in practice [25,26]. 102 

Due to the proliferation of a multitude of software supporting the different O&M and FM 103 

activities, accessing the required information can become difficult for FM professionals 104 

especially when information is stored in disparate systems. Hardware consists of equipment 105 

used in office and on-site (shown in Fig.1). Sensors and tags are gaining popularity in O&M to 106 

aid in the creation of a ‘dynamic’ and ‘intelligent’ asset management environment. Tags (e.g., 107 

QR code, RFID) and sensors connect scattered assets into an integrated unit, and further 108 

support real-time data collection and storage [27,28,29,30]. Network (i.e., web-based) 109 

technology can provide remote connections to different data resources and cloud-based 110 

services for different platforms [31].  111 

 112 

Figure 1 The functional descriptions of technology requirements for O&M management 113 

[19,20,21,22] 114 

Alongside technologies, information directly determines the result of decision making in O&M 115 

[3,32]. Complex information (e.g., historical O&M records, space information, accurate 116 

locations etc.) is recorded and exchanged during O&M management processes (Fig.2). 117 
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Effective decisions usually depend on comprehensive, continuous, reliable and accurate 118 

datasets (e.g., asset information, as-is conditions) [39,40]. Hence, the integrity, validity and 119 

interoperability of information are crucial for improving management efficiency and 120 

intelligence [3,32]. The information required for O&M can be classified and listed as shown in 121 

Fig.2. Nongeometric information (e.g., building/infrastructure asset related information) can 122 

be directly integrated with geometric information via digital devices in the BIM environment. 123 

BIM-enabled asset management would further provide ease of access for information retrieval. 124 

Various practical studies and academic research have proved that BIM-enabled asset 125 

management provides long-term and obvious benefits [31,41,42,43,44]. The time and 126 

resources required in accessing relevant equipment and building materials information could 127 

be reduced [43]. For instance, Hassanain et al. [45] proposed an effective IFC-based data model 128 

for integrating maintenance management information. However, their work mainly focused on 129 

developing a generic framework and only used for roof objects. Hence, an appropriate method 130 

of data integration is still needed to further ease and benefit O&M information exchange and 131 

sharing. 132 

 133 

Figure 2 Information requirements in O&M phases [3,33,34,35,36,37,38] 134 

Although a large amount of effort has been made in achieving smart O&M management, a lack 135 

of well-organised framework/system to link all assets efficiently, as well as the capability to 136 

manage required information, is one of the key problems in O&M management.  137 
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2.2 Review of anomaly detection techniques in buildings 138 

Assets within the building, responsible for delivering the service functionalities of the building, 139 

determine the quality of service that a building provides to its occupants. Therefore, monitoring 140 

the working condition of the assets and further revealing the raised anomalies in a timely 141 

manner is widely investigated for optimizing building operations in the O&M phase. In 142 

particular, the detection of anomalies for asset monitoring is challenging and problematic due 143 

to the high degree of system complexity and large scale and the number of components in this 144 

highly integrated system. A common practice is detecting whether the performance of assets 145 

exhibit anomalies that deviate from the anticipated behaviours [46].  146 

Specifically, anomaly patterns can be classified into two categories: point anomalies and 147 

contextual anomalies. If an individual data instance is diagnosed to deviate from its normal 148 

status, the data instance is regarded as a point anomaly. On the other hand, if a data instance is 149 

anomalous under a specific context scenario, it is termed as a contextual anomaly. For the 150 

mainstream point anomaly detection, the so-called normal operation conditions must be 151 

defined based on either historical operation data or model simulations, which serve as baselines 152 

and are thereafter compared with current behaviour to detect anomalies. Typically, process 153 

history-based methods are extensively adopted because they depend on the past building 154 

operational data without requiring any physical interpretation of the systems. Moreover, the 155 

data-driven nature makes these methods extremely easy and inexpensive to implement, as long 156 

as data satisfying quality requirements are available. For instance, Capozzoli et al. [47] adopt 157 

artificial neural ensembling networks to capture the dynamics behind the normal building 158 

energy consumption data. GESD many outliers detection algorithm [48,49] is used to analyse 159 

the dynamics residuals, identifying patterns of anomalies occurring in a cluster of buildings. 160 

Similarly, Magoules et al. [50] demonstrate the effectiveness of recursive deterministic 161 

perceptron (RDP) neural network in detecting anomalies in building energy consumption 162 

profiles. These methods assume that well-labelled data under normal operating conditions is 163 

available.  164 

However, in practice, it is difficult to distinguish normal and abnormal operating conditions, 165 

which depends heavily on human evaluation for now. Therefore, the unsupervised anomaly 166 

detection techniques can be used to model the intrinsic property of the normal and abnormal 167 

datasets given limited prior knowledge, so that anomalies can be uniquely identified. Clustering 168 

techniques [51,52], such as hierarchical agglomerative clustering or entropy-weighted k-means 169 

(EWKM) method, are used to find anomalous behaviour in building energy data. The advanced 170 
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quantitative association rule mining (QARM) is another promising technique [53,54,55,56], 171 

which is adapted to discover useful knowledge and derive rules from the unlabelled operational 172 

data. The rules discovered are used to identify raised anomalies. It is reported that these 173 

unsupervised techniques are useful in anomaly detection and operation pattern recognition for 174 

building assets [57].  175 

The operating conditions and working loads on building assets are changing throughout time, 176 

which causes continuous baseline behaviour fluctuation. Considering that most existing 177 

methods are unable to handle the temporal contextual features of operational data, contextual 178 

anomaly detection analysis is studied to discover the association within datasets, where the 179 

external contextual attributes are used to reveal anomalous behaviour correlated with such 180 

attributes. Change point detection is a form of contextual anomaly detection, which looks for 181 

abrupt variations or change points in the generative parameters of the building operational data 182 

sequence [58]. More precisely, the found change points could be suspicious candidates for 183 

anomalies but not necessarily need to be an anomaly, serving as an early warning symptom for 184 

the problem within the underlying building system. For instance, Touzani et al. [59] adopt a 185 

statistical change point algorithm to detect potential “non-routine events” in building energy 186 

data, which provides a tractable starting point that can be expanded for discovering changes in 187 

operational characteristics and possible anomalies in building systems. Cross-referenced 188 

external contextual information must be integrated to help determine whether the detected 189 

change point attributes to the normal condition variations or emerging anomalies. However, 190 

the workflow and information exchange behind the cross-referencing process is very complex. 191 

Fortunately, DT of buildings is a solution that integrates multiple fragmented data sources and 192 

thus greatly enhances the data availability for buildings [60]. With the help of the DT model, 193 

normal operating condition changes could be excluded, leaving only the suspicious anomalies 194 

that help facility managers identify the problems as early as possible. 195 

3. DT-based Anomaly Detection Process Flow 196 

The process flows under two different scenarios (i.e., DT-based and traditional) have been 197 

established based on literature review [3,6,9,61,64], and expert interviews (i.e., facility 198 

management and estate management teams in authors’ university). Compared to the DT-based 199 

anomaly detection process, the traditional process shows two main defects, namely scattered 200 

information and manual query processes [3,6,9,61,64]. 201 
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Even though some maintenance and operation data are managed in some facility information 202 

systems (e.g., BMS, AMS in Fig.3 and 4), it still requires a significant amount of time to search, 203 

query, verify and analyse the corresponding facility information from heterogeneous data 204 

sources. For instance, based on the expert interviews, data lists of each system have been 205 

summarised in Fig.3. When the FM professionals receive a maintenance request through the 206 

call service system (Fig.4), they need to search relevant information of the failed asset saved 207 

in the asset management system (such as historical information or manufacturer) first, and then 208 

confirm the location information saved in the space management system. If further required, 209 

some additional information may also need to be queried from BMS or other systems. 210 

Moreover, this process might also cause errors and deviations. The duplication of information 211 

queries frequently occurs in the traditional process. For instance, overlapping data may also be 212 

saved in different databases (e.g., historical records, locations and corresponding contractors' 213 

information) [3]. As shown in Fig.3, data sets of sites, buildings and floors are redundantly and 214 

repetitively saved in some systems, including AMS, BMS and SMS. Besides the scattered 215 

information, manual query processes are also the key problem of anomaly detection delay. In 216 

the traditional process, the facility manager usually acts as a central coordinator and their 217 

decision-making would depend on related information, as well as expert experience [6], as 218 

shown in Fig.4. 219 

These problems of the traditional process indicate that there is a need for an intelligent and 220 

comprehensive platform to integrate and effectively search information, facilitate decision 221 

making and semi-automate/automate processes. In that way, with the consideration for the 222 

convenience of searching, verifying, querying and managing facility information and 223 

automating anomaly detection through a DT-based system, these problems can be improved 224 

and further addressed.  225 
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 226 

Figure 3 Data lists of each system in daily O&M management 227 

 228 
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Figure 4 Anomaly detection process flows in O&M phases: scenario 1 (left) traditional 229 

process and scenario 2 (right) DT-based process 230 

4. The DT-based Anomaly Detection Framework 231 

4.1 Anomaly detection oriented data availability in existing buildings 232 

Detecting anomalies of building assets in the O&M phase involves multi-domain and multi-233 

layer information storage, manipulation, exchange and interaction. Effective data integration 234 

through information sharing is a critical factor in achieving effective anomaly detection, 235 

especially for excluding change points caused by normal operating condition changes, to avoid 236 

any false alarms. In addition to those commonly adopted tools (e.g. BAS, CMMS) introduced 237 

in section 2.1, anomaly detection in building O&M research also relies on other relevant data 238 

sources, such as the emerging sensing systems, access control systems or security cameras in 239 

buildings. Under the well-established communication protocols of building data storage and 240 

exchange, new data sources in O&M are still emerging. For a building HVAC system, the BAS 241 

data emerging from sensors and actuators (which might be Building Management Systems 242 

(BMS) in other cases) could be used federatively to detect the anomalous operating behaviour 243 

in a timely manner [62]. For instance, when the sudden drop in the supply air temperature of 244 

an AHU in heating mode is diagnosed, building sensing data (or access control system and 245 

security camera for occupancy monitoring in other cases) should be integrated to determine 246 

whether the drop is caused by an extreme change of outdoor temperature. However, if the 247 

supply temperature drops below its mixed air temperature, chances are that a potential anomaly 248 

happens in the AHU heating coil valve. The CMMS database keeps a detailed record of the 249 

occupants’ service requests and work-order issues to address these service requests [63]. The 250 

inspection and maintenance data of CMMS could provide an insightful clue to enrich the 251 

building knowledge, like fault trees and relationships between components. Field expert rules 252 

can be acquired to enable the root-cause identification capability for possible anomalies in a 253 

building. However, the fragmented nature of building data sources presents a challenge in 254 

developing a valid anomaly detection strategy.  The next section describes the DT solution 255 

provided to integrate multiple data sources that can support the anomaly detection task.  256 

4.2 DT construction and data integration 257 

Building DTs in this study were constructed based on definitions, namely ‘DTs integrate their 258 

sub-DTs and intelligent functions (e.g., AI, machine learning, data analytics etc.) to create 259 

digital models that are able to learn and update from multiple sources, and to represent and 260 

predict the current and future condition of their physical counterparts correspondingly and 261 
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timely’ [64]. The DT’s construction also follows the designed architecture provided by authors, 262 

referring to [9] and [64]. It includes five layers: data acquisition layer, transmission layer, 263 

digital modelling layer, data/model integration layer and service layer. 264 

In practice, several O&M platforms and databases are used in daily management (e.g., BMS, 265 

SMS mentioned in section 3). The O&M data is usually saved in different formats. It thus 266 

requires great efforts and time for FM staff to extract the diverse and scattered O&M 267 

information required. A unified and standardised data schema is needed for information 268 

integration and achieving smart asset management in the O&M phase. Because of the 269 

flexibility and consistency of IFC schema in the building lifecycle, IFC schema is the most 270 

suitable and fundamental data schema for wider BIM implementation and information 271 

integration. Hence, the extension of the current IFC to fulfil O&M management requirements 272 

would be a critical step. Moreover, the asset information generated in the O&M phase is not 273 

static. For instance, sensor data is dynamic in real time and maintenance events would also be 274 

recorded case by case. A single IFC file would be ineffective for decision making and also 275 

difficult for additional information query, since existing IFC files may only include basic 276 

geometry information. Therefore, a possible and effective solution for representing IFC schema 277 

and integrating information is to provide a centralised data model linking with distributed data 278 

resources in daily O&M management.  279 

Hence, in the data/model integration layer of building DTs, the data structure is designed to be 280 

capable of interchanging and interoperating external data related to each BIM object in the 281 

digital model on a semantic level, to enable IFC-based interoperability between BIM and other 282 

data sources. The IFC is used as the central data model and other data resources are kept in 283 

their original storage locations, which are saved in this distributed manner.  284 

All the current research provides solid evidence of the increasing attention of BIM development 285 

in FM. However, research that systematically studies IFC in O&M phases is missing. There 286 

are no entities in the existing IFC4 schema to specifically represent information and activities 287 

in O&M phases [20]. With these considerations, more subclass data entities, types and 288 

parameters required for FM should be extended for DT data structure development. More 289 

complicated data types and specific O&M activities need to be provided [34,65]. Data schema 290 

about the inspection and maintenance process needs to be defined, and omitted properties and 291 

relationships related to FM need to be supplemented [39,62,65].  292 
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To update the O&M information to as-is DTs and map the data model of maintenance and 293 

inspection activities into the IFC standard, IFC extensions are proposed and developed based 294 

on the maintenance and inspection activities, required information and process as the core step 295 

of DT construction. In this research, IFC4 is used as the base specification for introducing new 296 

entities. In IFC4 schema, IfcProcess can present the activity or process of an 297 

activity/event/task/procedure for a building project. It usually happens in building construction 298 

with the intent of designing, costing, acquiring, constructing, or maintaining products 299 

[66,67]. However, the maintenance and inspection processes are required to be included in IFC 300 

schema, including inspection events, maintenance events and required actions/resources. 301 

IfcControl is the abstract generalization of control or constraint products/processes in general, 302 

which covers the specification, regulation, cost schedule or other requirements [66,67]. Even 303 

if IfcControl can represent the partial required information about the maintenance plan, 304 

schedule and cost, these entities are not initially designed for O&M management and thus 305 

cannot be completely matched with O&M activities. IfcActor defines a person or organization 306 

involved in a project during its life cycle. Specific roles in the O&M phase are not well defined 307 

and classified. IfcRoleEnum only includes one role type about FM, namely FM manager. 308 

IfcAsset presents an identifiable grouping of elements with financial values. However, more 309 

information is required in FM, for instance, history record and status of assets (as shown in 310 

Table 1). Moreover, specific asset types should be developed and classified for O&M 311 

management. For instance, IfcAssetTypeEnum should be further designed for FM and 312 

IfcCostItem needs more items to be added related to O&M management. IfcAsset needs to be 313 

extended for the O&M phase.  314 

[Insert: Table 1. Evaluation of IFC4 support for O&M management information 315 

requirements] 316 

In addition, one of the most important information records in the O&M phase is the historical 317 

record of the asset, but neither IfcOwnerHistory nor IfcPerformaceHistory cover complete 318 

information relevant to FM. For instance, there is no enum designed for FM in 319 

IfcChangeActionEnum. Table 1 lists the details of how asset register requirements can be 320 

matched with IFC4 entities and COBie 2.4 spreadsheet. Some requirements cannot be directly 321 

linked with entities in IFC4. Most of these unmatched data are important elements during O&M 322 

phase, including lacking capital information (e.g., costs breakdown, source of components and 323 

spare parts, and consumption) and incomplete information (e.g., history record, maintenance 324 

cost, and maintenance activities) (as shown in Table 1).  325 
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COBie is one of Information Exchange national standards (in the US, UK, and other countries) 326 

successfully adapted in the industry and the most relevant IE specification that can be 327 

implemented for the integration between BIM and O&M systems. On the other hand, partial 328 

information required for O&M can be presented using the COBie.Job worksheet [68], or FM 329 

software can provide the information manually/semi-automatically through ad-hoc functions. 330 

However, COBie is still immature from some technical perspectives: 1). model validation after 331 

the information exchange is needed; 2). user-friendly information save and query approaches 332 

and formats are required; 3). clear classification strategies of assets in O&M phases (e.g., 333 

sensors and control points) are needed to avoid misunderstanding of various O&M activities. 334 

Assets in O&M phases can be classified into service-related assets and monitor & control-335 

related assets according to their functions and relationships with existing buildings (Fig.5). 336 

Service-related assets (e.g., HVAC systems, lighting systems etc.) provide daily O&M services 337 

and refer to specific assets belonging to parts of existing buildings. Monitor & control-related 338 

assets (e.g., sensors) are additional assets attached to existing buildings/systems and equipped 339 

with monitoring and controlling functions. As shown in Table 1, subclass entities need to be 340 

included in the existing schema. The entity IfcProcess and the entity IfcControl are suggested 341 

to be extended and two corresponding subclass entities (IfcOperationandMaintenaceProcess 342 

and IfcOperationandMaintenanceControl) can be added to represent the maintenance and 343 

inspection activities. IfcAsset should be further extended for FM based on O&M requirements. 344 

Three subclass IFC entities are also suggested to be developed for enhancing O&M information 345 

management, namely IfcMaintenanceHistory, IfcInspectionHistory and IfcSpareRecord 346 

(Fig.6). 347 

The data integration method provided in this research integrates information in a distributed 348 

and dynamic way. Based on the primary IFC file, required additional IFC entities are first added 349 

to the existing IFC files. Then, the matching tables for other database integration are created 350 

for describing the relationship between the BIM object GUID and its corresponding database 351 

ID from other data sources (e.g., AMS). When relevant data (saved in AMS) needs to be 352 

integrated or queried for some services in the DTs, the matching table provides a linking bridge 353 

between the targeted BIM object (GUID) and the corresponding ID in other data sources (e.g., 354 

AMS) (as shown in Fig.7). In this way, this data integration method enables that IFC and other 355 

data sources (e.g., AMS) are independent of each other, while keeping linkages. Thus, all data 356 

sources (including BIM, AMS etc.) can be updated individually and kept dynamically. 357 
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 358 

Figure 5 Asset classification in the O&M phase 359 

 360 

Figure 6 Three suggested entities (the grey blocks present additional properties) 361 

 362 
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 363 

Figure 7 Asset management and record between BIM and other data sources 364 

4.3 Anomaly detection procedure for asset monitoring 365 

In this section, a general procedure for asset anomaly detection is illustrated to implement the 366 

monitoring of asset anomalies using data managed with the IFC schema that carries diagnostic 367 

information on the operational condition of assets. A block diagram of the framework can be 368 

seen in Fig.8. The whole procedure is divided into two sub-tasks: (1) change point detection, 369 

aiming at finding the time instants at which the underlying symptomatic parameters of 370 

sequential operational data are suspected to change, due to either operating condition variations 371 

or emerging anomalies; (2) anomaly identification, aiming at distinguishing change points 372 

caused by logged operating condition variations or real anomalies through event matching. For 373 

change point detection, different from most of the statistic methods, such as cumulative sum 374 

or likelihood ratio test [69], the BOCPD [71] is a natural approach to segment sequential data 375 

and can be used for online anomaly detection without requiring prespecified thresholds, which 376 

are difficult to establish a priori. Upon finding change points in operational data, a simple cross-377 

over matching is conducted to identify change points caused by actual anomalies, thus 378 

eliminating the points resulting from normal operation condition variations and keeping the 379 

false-alarm rate to the minimum. Generally, the BMS (which might be BAS in other cases) 380 

keeps detailed track of the building system operational processes. Therefore, we could simply 381 

consider that change points identified around recorded operational variation time are normal 382 

reactions, while other unclaimed change points are the consequence of suspicious anomalies 383 

on corresponding assets. Afterward, appropriate responses can be provided promptly. Since the 384 

cross-over match process is quite instinctive, this paper focuses on the change point detection 385 

algorithm. It is also worthwhile noticing that this procedure is general, thus it can also be 386 

implemented on assets in any building system, such as HVAC system and MEP system.   387 
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 388 

Figure 8 Procedure of anomaly detection for asset monitoring  389 

BOCPD approach is adopted in this procedure because it does not require any prior knowledge 390 

of pre-change or post-change operation processes, which is exactly the case of anomaly 391 

detection for building assets. With BOCPD algorithm, the objective is, given a sequence of 392 

operational data  1, , ,tx x=x  collected from a specific asset, to compute the posterior 393 

probability distribution ( )|tp r x  over the run length tr , referring to the number of observations 394 

since the last found change point. The run length is truncated to 0 if a change point is identified, 395 

otherwise, the run length increases by one as the observation of new data points 
tx  comes. It 396 

implies that the last change point occurs at the time 
tt r−  and the set of observed data associated 397 

with the current run is  1, ,
t

r

t t r tx x− +=x . Under the Bayesian framework, the posterior 398 

distribution 
tr  can be expanded using Bayes law:  399 
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Note that ( )1:|t tp r x  becomes the function of ( )1 1: 1|t tp r x− − , which mean that the distribution of 400 

run length can be calculated in a recursive fashion, suitable for the online update using a 401 

recursive message-passing scheme. The scheme updates the posterior over the run length based 402 

on two calculations, the change point prior ( )1|t tp r r −  and the predictive distribution ( )| r

t tp x x  403 

over the new observation given the most recent data points in the single run, respectively.  404 
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For simplicity, the assumption is made that the length of each run follows an exponential 405 

distribution and the prior probability of a change point is given by the pre-specified hazard rate 406 

h  independent of tr , and ( )1|t tp r r h− =  if the run length resets while ( )1| 1t tp r r h− = −  when 407 

1 1t tr r += + . The predictive distribution ( )| r

t tp x x  depends only on the knowledge of the 408 

generative process r

tx  that was active before the last identified change point. Specifically, the 409 

predictive distributions ( )| r

t tp x x  can be conveniently described by a finite number of sufficient 410 

statistics if generative distributions are members of the conjugate-exponential family 411 

likelihoods. Assuming that the generative process r

tx  follows a Gaussian distribution with 412 

unknown mean   and variance  . In this case, a joint conjugate prior on   and   can be 413 

expressed in a general form of Normal-Gamma distribution with the prior hyper-parameter set 414 
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As new observations arrive incrementally, the hyper-parameter set updates in the form as 416 

follows:  417 
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Following the inference, the posterior predictive distribution ( )| r

t tp x x  follows a generalized 418 

student’s t-distribution with mean t , variance 
( )1t t

t t

 
 

+
 and 2 t  degree of freedom. 419 

5. Case Study 420 
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5.1 DT construction and data integration 421 

 422 

Figure 9 The developed building DT (modified from [44] and [64]) 423 

The pilot evaluation study of the proposed building DT was conducted in the Institute for 424 

Manufacturing (IfM) building at the West Cambridge site of the University of Cambridge. The 425 

IfM building is a 3-storey building and stands over a 40000-square-foot comprehensive area, 426 

including teaching, study, office, research and laboratory spaces. Based on the designed 427 

architecture [9,64], the developed IfM building DT includes five layers, integrates various data 428 

resources and also supports anomaly detection (Fig.9). The objective of this case study is to 429 

demonstrate how the designed data structure can contribute to the data integration of a dynamic 430 

DT of existing buildings, to support its anomaly detection function and further to explore the 431 

opportunities and challenges. 432 

 433 

Figure 10 Application development 434 
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Firstly, the IFC extension application (as shown in Fig.10) is developed for creating new IFC 435 

files in accordance with the existing ones. Three functions are included in this application: 436 

1). Add missing components (e.g., IfcPump) in the existing IFC file; 437 

2). Save needed information of matching tables as a reference/backup in the existing IFC file; 438 

3). Add and create additional entities in the existing IFC file. 439 

Based on the updated IFC file, an IfcObject matching table used for data integration is created 440 

to describe the interconnection between the BIM object Globally Unique Identifier (GUID) 441 

and corresponding item ID from different data sources (e.g., BMS and sensor system). As 442 

shown in Figure 11, when a data item (saved in distributed BMS or sensor system) needs to be 443 

integrated or queried for anomaly detection in the upper layer, the IfcObject matching table 444 

provides linking bridges between the targeted BIM object (GUID) and the corresponding item 445 

ID in BMS, and similarly between the BIM object (GUID) and the required sensor ID in the 446 

sensor system. Through the matching process, the matched item ID is used as a primary key 447 

(PK) in the designed data schema for searching the required data. Through the GUID in the 448 

IfcObject matching table and querying matched item ID number, the required data would be 449 

searched automatically by their unique item ID as primary key and further refined using sort 450 

key (SK). Similarly, required sensor data would also be queried. In this way, data needed for 451 

anomaly detection would be queried automatically and linked to their corresponding BIM 452 

object. This enables IFC and other data sources (e.g., BMS) to be saved separately in a 453 

distributed approach. To keep the consistency of the data, only the IfcObject/IfcSpace matching 454 

table needs to be maintained, which achieves effective CRUD (Create, Retrieve, Update, 455 

Delete). 456 
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 457 

Figure 11 The IFC schema mapping with other data resources (BMS and sensor system) 458 

5.2 Anomaly detection and comparative analysis 459 

In this section, the application of the proposed anomaly detection procedure is illustrated on 460 

monitoring of two centrifugal pumps, and the experiment results are presented. Two pumps of 461 

the same specifications are installed in the plant room of the IfM building. They work in parallel 462 

to pump return chilled water from the air handling units & fan coil units back to the chiller. For 463 

centrifugal pumps, typical failures like defective bearing, sealing, or defect on impeller and 464 

cavitation could result in negative and even catastrophic consequences, such as abnormal 465 

noises, rotating unbalance, shaft breakage. The most revealing and widely accepted diagnostic 466 

information on the mechanical condition of the centrifugal pump is the vibration measurements, 467 

because vibration data contains abundant information about machinery running states with 468 

reasonable sensing costs [70]. Because the vibrations are transferred from the pump outwards 469 

through its casing, for the convenience of measurement, featured vibration frequency measured 470 

by the sensor mounted at the pump casing close to the bearing is adopted as an indirect method 471 

of assessing the conditions inside the monitored pumps. Besides the vibration data, data from 472 
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BMS, such as pump on-duty flag bit, is integrated as external asset operation information for 473 

filtering the identified contextual anomalies.  474 

With the help of embedded sensor systems, a long period of averaged vibration frequency data 475 

is integrated into the DT demonstrator, which makes it possible to continuously conduct a 476 

tentative diagnosis for the pumps’ health condition. The data include the response to both 477 

scheduled operating shutdown and a real anomaly causing strong abnormal noises. Two 478 

datasets with a sampling time of one hour are picked to examine and compare the relative 479 

performance of the conventional cumulative sum control charts (CUSUM) with the proposed 480 

method. In the first case, the studied centrifugal pump 1 undergoes a scheduled shutdown due 481 

to the UK bank holiday. The period of data starts from the 5th December of 2018 and lasts until 482 

1st January of 2019 (4 weeks). Fig.12 shows the recorded vibration frequency time series 483 

within a given period. The shutdown can be seen to the naked eyes, and a rough judgement can 484 

be made that the studied pump stops working from the afternoon of 31st December of 2018. 485 

 486 

Figure 12 Vibration frequency sequence in the pump shutdown scenario 487 

The intuitive derivation of two-sided CUSUM algorithm is first utilized to detect the shutdown 488 

induced change point in the recorded data. The detection result is illustrated by Fig.13. The 489 

blue upper-sided CUSUM chart detects the increase in the featured vibration frequency, while 490 

the red lower-sided CUSUM chart detects the decrease in the frequency. As shown in the Fig.13, 491 

the CUSUM based detector successfully locates the frequency change point corresponding to 492 

the shutdown scenario within a reasonable time. However, two false alarms events are 493 

generated in this period. 494 
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 495 

Figure 13 Detection of the shutdown event by CUSUM procedure 496 

Then, the proposed BOCPD based procedure is adopted to detect the change points for the 497 

same data sequence. Fig.14 depicts the output of the BOCPD based procedure when applied to 498 

the pump shutdown event. The top plot labels the change point detection result, in which the 499 

vertical dashed blue line represents the identified shutdown time using BOCPD, and the black 500 

cross marks the point detected by CUSUM. The detected change point times using CUSUM 501 

and BOCPD are almost identical. But BOCPD based method effectively avoids the raised false 502 

alarm. The red solid line reveals the local maximum a posterior run length estimation result, 503 

while the blue dashed line marks the most probable run length considering the continuity of 504 

the run length. Although the local optimal run length shows some spikes, the BOCPD is able 505 

to compensate for the side effects caused by occasional measurement errors. This is the key 506 

point to the reduction of the false alarm rate. 507 

 508 

Figure 14 Detection of the shutdown event by BOCPD based procedure 509 
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For the second case, one of the two pumps undergoes a highly suspicious anomaly causing a 510 

strong abnormal degree of noise, while the other one works properly. Here, an artificial dataset 511 

is generated by combining 14 days vibration frequency data from the normal pump with 14 512 

days data from the anomalous pump (from 9th July to 22nd July in 2018). Fig.15 shows the 513 

generated vibration frequency time series within a given period. Different from the shutdown 514 

scenario, it is hard to distinguish the difference between the vibration of normal and anomalous 515 

pumps by unaided eyes. Therefore, both CUSUM and BOCPD are utilized to detect the change 516 

point between two kinds of vibration frequencies. 517 

 518 

Figure 15 Vibration frequency sequence in the pump anomalous scenario 519 

The detection result using the CUSUM control chart is illustrated by Fig.16. The procedure 520 

successfully detects the vibration frequency deviation with a considerable delay of almost a 521 

week. It is because the vibration frequency is not informative enough, thus it only offers a very 522 

rough diagnosis for the working condition of the pump. A longer time is needed to accumulate 523 

the anomaly indicative frequency deviations before reaching the determined threshold defined 524 

in the CUSUM chart.  525 

 526 

Figure 16 Detection of the pump anomalous event by CUSUM procedure 527 



LU Q. et al. (forthcoming). A Digital Twin-Enabled Anomaly Detection System for Asset Monitoring in 
Operation and Maintenance. Automation in Construction (Accepted version). 

 

Similarly, the BOCPD based procedure is utilized for the same data sequence. Fig.17 depicts 528 

the output of the BOCPD based approach when applied to the pump anomalous event. 529 

Obviously, the BOCPD procedure shows a better capability of detecting changes with a little 530 

time delay when compared to CUSUM. However, as shown in the bottom plot, the red cross 531 

labels the awareness time. The advantage of BOCPD based procedure is that although there is 532 

a slight delay before the anomaly of pumps are recognized, actual change point time can be 533 

uniquely pin pointed when subsequent indicative data is available. For the cross-over match 534 

process, a more precise change point contributes to the matching between symptoms and 535 

corresponding normal operations. 536 

 537 

Figure 17 Detection of the pump anomalous event by BOCPD procedure 538 

5.3 DT Platform Design and Visualization 539 

On the basis of the anomaly detection capability established in section 5.2 and data integration 540 

in section 5.1, the DT platform provides the asset monitoring service to facility managers and 541 

other related stakeholders by interpreting professional knowledge embedded in the established 542 

anomaly detection module and practically enabling interaction between the physical and digital 543 

world. Although the DT properly manages and integrates multi-source data through IFC 544 

schema and intelligently analyses these data in a systematic way, the ultimate objective of the 545 

DT platform is to provide intuitional information visualization and decision support to FM 546 

professionals. In order to establish the DT platform, Autodesk Revit was used to develop the 547 

RVT model and then export it to IFC files. The platform was developed based on AWS 548 

DynamoDB, Autodesk forge API and web-based program design (i.e., .Net) using C# and Java 549 

script [9,64]. Taking advantage of these tools, the asset monitoring service is enabled in the 550 

developed DT platform (as shown in Fig.18). With the capability to store and analyse BIM 551 
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object related data collected by heterogeneous data sources, the embedded DT instance 552 

implements the intelligent extraction of pump relevant data and triggers the alarm once the 553 

anomaly detection procedure finds any possible anomalous behaviour for the studied pump.  554 

 555 

Figure 18 Asset Monitoring service provided by DT platform 556 

6. Discussion 557 

In order to reveal the anomalous behaviour of assets in a timely manner, and take preventative 558 

actions before severe and even catastrophic consequences happen, an anomaly detection 559 

system for asset monitoring during the O&M phase is urgently needed. In spite of great efforts 560 

devoted to fulfil anomaly detection automatically, the anomaly detection task of building assets 561 

is mainly completed manually by experienced FM professionals. Advanced analytical tools, 562 

including those based on machine learning or artificial intelligence, should be capable of 563 

distinguishing between different patterns behind the operational data. However, the real 564 

challenge is that single source data couldn’t provide a holistic view under the continuously 565 

changing working condition of typical assets. In this study, an anomaly detection procedure for 566 

circulating pumps is discussed. Typically, vibration sensors are mounted on the pumps to 567 

monitor the vibration frequency, which indicates their working condition. It is easy to identify 568 

that the characteristic of the pump vibration gradually drifts with the changes of working 569 

loads/conditions. For instance, the vibration characteristic during peak loading hours is 570 
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different from that during valley loading hours. However, neither of these two characteristics 571 

manifest the anomalous behaviour of pumps. That is to say, classical point anomaly detection 572 

does contribute to clarifying the asset behavioural changes, but still lacks enough explanatory 573 

factors that  distinguish anomalous behaviours from normal ones. To solve this, one of the 574 

possible strategies is to train an unsupervised or one-class classifier using a refined normal 575 

dataset under various loading scenarios [72]. Additional data and information, such as the BMS 576 

data, is necessary to divide the historical data into normal and anomalous parts. However, to 577 

make the classifier generalized enough, massive data under a large number of normal working 578 

conditions is required for training, which is impractical. Given all the practical constrains, 579 

another strategy adopted here is to temporally identify change point raised non-stationary 580 

events, which manifest as variations in the generative parameters of the data sequence. 581 

Subsequently, BMS in this case, needs to be integrated to eliminate the change points raised 582 

by normal operations and leave anomaly raised change points as the trigger for following-up 583 

early warning. Specifically, the matching between logged operating condition variations and 584 

detected change point determines those eliminated change points. The matching can be simple 585 

or complex, depending on the accuracy of the change point detection algorithm in pin-pointing 586 

the time of change points or non-stationary events. It is verified in the case study that the 587 

Bayesian on-line change point detection algorithm is capable of accurately recognizing the time 588 

of change, even though the awareness time would be slightly delayed. It makes simple cross-589 

over matching sufficient for the pump anomaly detection module.  590 

It is worth noting that the capability to store, manipulate, exchange and analyse BIM objects 591 

(pumps in this case) related data collected by heterogeneous data sources is the core 592 

competence of the DT-enabled anomaly detection system of asset monitoring. In particular, 593 

DT improves data management efficiency, and makes it easier to integrate data from 594 

autonomous, disparate and heterogeneous sources. Traditionally, the efficient execution of 595 

queries to extract the data from disparate systems is non-trivial. With the help of the 596 

standardized IFC schema, an object-oriented and semantic BIM representation is presented that 597 

includes components, attributes, properties, relationships, and most importantly linkages with 598 

multiple data resources. In this way, exchanging information across data source boundaries is 599 

enabled using IFC schema in the DT platform.  600 

Although the proposed anomaly detection procedure can realize asset monitoring, as verified 601 

in the case study, we must realize that considering the budget constraints, it is impossible to 602 

monitor every single asset within such a complicated building system at a fine granularity. 603 
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Only critical assets, for instance, the pumps in the case study, have corresponding monitoring 604 

data in either sensor system or BMS. For those noncritical assets, such as valves or pipelines, 605 

no relevant data is explicitly linked to the specific object. However, the condition of these 606 

noncritical assets can be monitored through the quality of service (QoS)/performance provided 607 

by building systems. For instance, the room temperature would drop significantly in winter if 608 

the radiator valve fails to open properly. Therefore, in addition to the anomaly detection system 609 

of asset monitoring, indoor environment monitoring system also needs to be developed under 610 

the framework of DT to enable better understanding of the working conditions of various 611 

building assets.  612 

7. Conclusions 613 

In order to provide a comprehensive asset monitoring solution in the building O&M phase, a 614 

DT-enabled anomaly detection system was developed in this study. The developed system is 615 

useful for detecting anomalies of building assets and can be crucial for daily O&M 616 

management. It not only demonstrates the application of the designed IFC extension and 617 

BOCPD in detecting suspicious anomalies of pumps, but also contributes to research 618 

advancement by:  619 

• Proposing a new DT-based anomaly detection process flow, realizing effective data 620 

integration and information search, facilitating decision making and automating the 621 

anomaly detection process; 622 

• Designing the structure of data integration based on IFC extension in O&M management 623 

for heterogeneous operational data storage, exchange, query and update;  624 

• Identifying the capability of distinguishing asset behavioural changes caused by normal 625 

operating condition variations or true anomalies using conventional anomaly detection;  626 

• Adopting a Bayesian change point detection methodology that handles the contextual 627 

features of behavioural data to identify and filter asset anomalies through cross-referencing 628 

with external operation information.  629 

A case study using the pumps in HVAC system was used to evaluate and demonstrate the 630 

effectiveness of the proposed framework. The results indicated that the provided solution 631 

realized a continuous condition monitoring of building assets (e.g., pumps) and also contributed 632 

to efficient and automated asset monitoring in the daily O&M management. 633 

This research contributes to the body of knowledge by developing a novel system for future 634 

researchers to systematically and intelligently monitor assets based on DTs. In future work, we 635 
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will keep working on information integration strategies (e.g., expert experience) through 636 

working with Estate Management department in this University, extend building assets to 637 

broader city assets and investigate more practical applications of the DTs development in 638 

supporting the wider management activities and services. 639 
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