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ABSTRACT

A sensitive and specific radioimmunoassay (RIA) has been developed for measurement
of plasma concentrations of cholecystokinin (CCK). A previously described CCK
bioassay has been established and a direct comparison made of plasma CCK
concentrations measured with the bioassay and RIA. These assays have been used to
investigate secretion of CCK and its role in the control of satiety in healthy human

volunteers.

Release of CCK was examined in response to an isocaloric load of fat or glucose
administered orally. Fat, but not glucose, produced a significant increase in plasma
concentrations of CCK compared to fasting values. Similar experiments were
performed with L- and D-phenylalanine and it was shown that only L-phenylalanine
(L-Phe) released CCK and produced peak plasma CCK concentrations similar to those

seen after ingestion of a meal of mixed nutrients.

A rapid intravenous infusion of a mixture of L-amino acids increased plasma
concentrations of CCK and in addition, promoted gallbladder contraction. The rate of
amino acid infusion as well as the amount given determined the extent of gallbladder

contraction and release of CCK.

Two approaches have been used to investigate the physiological role of CCK in
control of food intake in humans. As shown in earlier experiments L-Phe, but not D-
Phe, increases endogenous secretion of CCK from duodenal endocrine cells. An oral
load of L-Phe administered 20 minutes before a test meal significantly increased
plasma CCK concentrations and reduced energy intake during the meal compared to
energy intake after placebo. D-Phe did not release CCK or reduce energy intake
compared to placebo. These results showed that release of endogenous CCK by L-
Phe was associated with a reduction in food intake and provided indirect evidence
that CCK is an important satiety peptide in humans. In a subsequent study subjects
received an intravenous infusion of saline or synthetic CCK-8 to reproduce

physiological postprandial plasma concentrations. Twenty five minutes after the start



of the infusion subjects were presented with a test meal. Energy intake was
significantly less during CCK infusion than during saline infusion. Thus these two
series of experiments provide support that CCK is a physiological satiety hormone in

humans.

Finally the effect of activation of serotonergic (5-hydroxytryptamine, 5-HT) nerves
on CCK release was investigated. Oral administration of dexfenfluramine, which
enhances 5-HT release from nerve terminals, did not increase plasma concentrations
of CCK. It seems unlikely therefore that release of peripheral CCK mediates the

reduction in food intake which is induced by dexfenfluramine.
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1. DISTRIBUTION AND RELEASE OF CHOLECYSTOKININ

1.1 Discovery of Cholecystokinin

On January 23rd, 1902, Bayliss and Starling described their discovery to the Royal
Society of a substance in extracts of the upper small intestine, which when administered
intravenously caused the pancreas to secrete. They named this substance ‘secretin’
(Bayliss and Starling, 1902). In 1919 two Brazilian scientists, Braga and Campos,
found that a preparation of secretin caused emptying of the gallbladder on intravenous
administration. Shortly afterwards it was found that ingestion of cream and eggs in cats
also caused the gallbladder to empty (Boyden 1923). In 1928 Ivy and Oldberg repeated
the experiments with intravenous secretin and concluded that postprandial contraction
of the gallbladder was due, at least in part, to a hormone identical to secretin or to a
previously unknown upper intestinal hormone. In subsequent experiments they
demonstrated that it was possible to prepare a pure solution of ‘secretin’ which did not
contract the gallbladder; thus providing support for the existence of another hormone
which had contaminated earlier, less pure, preparations. They proposed the name
‘cholecystokinin’ (that which excites or moves the gallbladder) for the substance in

intestinal extracts which caused the gallbladder to contract (Ivy and Oldberg 1928).

In 1943 Harper and Raper discovered a humoral substance from duodenal mucosa that
released enzymes from the pancreas, which they named pancreozymin (PZ). It was over
20 years later that Jorpes and Mutt (1966), while working primarily on secretin,
identified cholecystokinin and pancreozymin as the same substance. They found that
the methanol-insoluble material left after extracting secretin from the intestinal mucosa
was active both on the gallbladder and on the enzyme secretion of the pancreas. They
concluded that it must contain both cholecystokinin and pancreozymin. By a number of
purification steps secretin was completely removed from the crude extract and the
activities of cholecystokinin and pancreozymin were increased over one-hundred fold.
They found that the proportional rise in cholecystokinin and pancreozymin activities
were identical and postulated that both the activities were exerted by one and the same

substance. Support for this assumption was gained when it was found that
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cholecystokinin, which contains methionine, could be oxidised by hydrogen peroxide
(like other methionine containing peptides) with complete loss of biological activity.
The pancreozymin activity simultaneously underwent the same changes. What
originally was reported as two distinct hormones turned out to be a single hormone.
Since the cholecystokinetic activity was discovered first, the name cholecystokinin

(CCK) was used instead of cholecystokinin-pancreozymin.

In subsequent experiments the full amino acid sequence of CCK was demonstrated and
the C-terminal five amino acids shown to be identical with those of gastrin (figure 1).
This explained the similarity in action of these two peptides on gastric and pancreatic
secretions. At the same time the similarity between the C-terminal end of CCK and the
decapeptide caerulein (isolated from the skin of an Australian frog, Hyla caerulea, by
Professor Erspamer and co-workers, Parma, Italy) was shown. The C-terminal
octapeptide of the two compounds is similar except for an exchange of threonine in
caerulein for methionine in CCK. Caerulein was shown by its discoverers to have all
the actions of both gastrin and CCK and has since been used in many studies to

investigate the physiological actions of CCK.
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1.2 Tissue distribution of CCK

1.2.1 Gut endocrine cells

Initial studies with CCK showed that it was distributed in the upper small intestine.
Precise localisation of CCK cells has been possible using an indirect
immunofluorescence technique and antibodies raised against CCK (Polak et al, 1975;
Buffa et al, 1976). The distribution of CCK cells was shown to be similar in intestine
obtained from human, pigs and dogs, with numerous cells scattered in the duodenal and
proximal jejunal mucosa. Fewer CCK cells were seen in the distal jejunum and ileum,
and none were detected in the colon or stomach. The CCK cells were predominantly in
the epithelium lining duodenal crypts and some in the transitional region between the
crypts and villi, but were scarce at the top of the villi. Electron microscopy of CCK
cells demonstrated moderately electron dense secretory granules which closely

resembled the I granules of the modified Wiesbaden classification.

1.2.2 CCK neurones in the gut

CCK neurones in the intestine are predominantly confined to the colon, where they
occur in the circular muscle layer, myenteric plexus of Auerbach and the submucous
plexus of Meissner, where they innervate ganglionic cell bodies (Larsson & Rehfeld
1979). Ganglionic cell bodies in the pancreas are also surrounded by CCK nerve
terminals and in some species, such as human and rat, distinct CCK nerve terminals
surround pancreatic islet cells (Rehfeld et al, 1980). The origin of intestinal and

pancreatic CCK nerve fibres has not been precisely determined.

1.2.3 CCK neurones outside the gut

The brain contains the majority of the CCK neurones; there are a few in the
genitourinary tract and peripheral somatic nerves (Larsson and Rehfeld, 1979).
Radioimmunoassay measurements have shown that CCK is not equally distributed
throughout the brain of rats and humans. The highest concentrations are found in the
cerebral cortex, with lower levels in the hippocampus, olfactory lobes, caudate nucleus
and hypothalamus. Little CCK is present in the brain stem and even less in the

cerebellum (Rehfeld 1978b; Schneider et al, 1979).
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1.3 Molecular heterogeneity of CCK

1.3.1 Introduction

CCK is highly heterogeneous consisting of a large group of peptides. All of these are
fragments of the same translation product (preprocholecystokinin) from a single mRNA
transcribed from the CCK gene located on chromosome 3 (Deschenes et al, 1985). All
CCK peptides are derived from a 58 amino acid fragment of preprocholecystokinin
(figure 2) and have (as a minimum) the o-amidated COOH-terminus
-Trp-Met-Asp-Phe-NH, (CCK-4). Moreover, it is necessary that the peptide contain the
entire tyrosine O-sulphated heptapeptide amide Tyr(SO,)-Met-Gly-Trp-Met-Asp-Phe-
NH, at the COOH-terminus (figure 1) to ensure full biological activity at physiological
plasma concentrations. Sulphation of the tyrosine residue is less important for most of

the cerebral actions.

CCK-58 is less potent than CCK-8 and CCK-33 for release of amylase from isolated
pancreatic acini when tested in the CCK bioassay system (chapter 6). CCK-33 and
CCK-39 have 40% bioactivity compared to CCK-8 (Liddle et al, 1985; Schmidt et al,
1994), while CCK-58 has only 12% (Schmidt et al, 1994). Trypsin treatment of CCK-
58, which removes the amino terminus, increases the bioactivity to that of CCK-8 and
thus it appears that reduced bioactivity of CCK-58 is due to shielding of the carboxyl
terminus by some region of the amino terminus. This shielding is an indication that

CCK-58, unlike other molecular forms of CCK, has a stable tertiary structure.
The signal and spacer peptides (figure 2) show considerable species variation, however

the sequence of CCK-58 is similar between species, including humans, pigs, rats and

dogs.
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NH, PREPROCCK - COOH
/ / * SO;H
I
Signal peptide| |Spacer peptide CCK-58
/ * SO;H
|
CCK-39
/ * SO;H
]
CCK-33
/ * SO.H
|
CCK-22
/ * SO;H
I
CCK-8

Figure 2

Presumed post-translational processing of PreproCCK in intestinal endocrine cells.

Fragments framed in bold lines are biologically active forms containing COOH-

terminal carboxyamidated tetrapeptide. CCK, receptors have high affinity only for

CCK forms which have a sulphated tyrosine at position 7 from the COOH terminus.
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1.3.2 CCK forms in the plasma

There is controversy over the predominant molecular forms of CCK in the intestine and
blood of various species. Early studies reported that the smaller CCK peptides were the
predominant forms in venous blood (Calam et al, 1982) and CCK-58 could not be
detected. However CCK-58 is degraded in vitro by plasma enzymes and if this is
prevented (by acidification of plasma) then this form is reported to constitute about
65% of total CCK immunoreactivity in the dog (Eysselein 1987; Sun et al, 1992).
Eysselein and co-workers (1990a) also reported that CCK-39 and CCK-58 were the
major circulating forms in human plasma. In the most recent study, Schmidt et al
(1994) argued that acidification of plasma was unnecessary to prevent degradation of
larger CCK forms. They measured human plasma extracts by a well validated
radioimmunoassay and concluded that postprandial CCK consists of 40% CCK-8, 35%
33/39 and 25% CCK-58. In the rabbit, CCK-22 and CCK-8 are reported to be the main
circulating forms (Rehfeld 1994).

1.3.3 CCK forms in the intestine

Eysselein et al have reported that CCK-58 is the major molecular form in human, dog
and rat intestine (Eysselein et al, 1990b). In these studies high-pressure liquid
chromatography separation of the various molecular forms was performed on acid
extracts of the intestine and this may introduce experimental artefact. Turkelson and
Solomon (1990) have shown that less that 10% of added CCK-8 is recovered in acid
intestinal extracts compared to 43% of added CCK-33. Subsequent urea extraction
yielded approximately 25% of added CCK-8. The low extraction of CCK-8 is thought
to be due to binding of CCK to tissue proteins during acid extraction. In acid/urea
extracts they demonstrated approximately equal amounts of CCK-8, CCK-33/39 and
CCK-58 but were unable to demonstrate any CCK-22.

1.4 CCK receptor family

The results of numerous pharmacological, physiological and biochemical studies
originally suggested that there were at least four receptor types for CCK/gastrin-related

peptides. These were classified on the basis of their relative affinity for sulphated and
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nonsulphated CCK agonists and selective antagonists. These four receptors were
classified as CCK,R, CCKgR, gastrin receptors and finally, receptors preferring the
COOH-terminal tetrapeptide common to CCK and gastrin, named CG-4 receptors. In
addition, these studies suggested that two different subtypes of CCK,R existed: one in
the pancreas and one in the gallbladder. More recent work, performed by Steven Wank
and co-workers, has clearly demonstrated that in the rat, guinea pig and human, there
are only two members of the CCK receptor family: CCK, R and CCKzgR (Wank et al,
1994). The gastrin receptor, found on parietal cells of the gastric mucosa, was shown to
be identical with the CCKgR. Furthermore, this series of experiments indicated that the
CCK4Rs in guinea pig gallbladder and pancreas are identical and not different
subtypes.

The CCK4R has a high affinity only for the CCK peptides that are sulphated in the
seventh position from the COOH-terminus which includes all forms of CCK (CCK-58,
CCK-39, CCK-33 and CCK-8), caerulein, and the invertebrate peptide cionin. In
contrast the CCKgR has high affinity for both CCK peptides and gastrin; sulphation in
either the sixth position (sulphated gastrin-17) or the seventh position from the COOH-

terminus increases potency less that 10-fold.

It was originally thought that CCK, receptors were found only in the periphery and
CCKp receptors were confined to the brain. However, further studies showed that
CCKg receptors are found in the periphery as well as being widely distributed in the
CNS (Table 1). CCK, receptors are found in a limited distribution in the brain
(interpeduncular nucleus, area postrema, nucleus of the solitary tract). There is a broad
correlation between the distribution of CCK and its receptor in the rat brain (Saito et al,

1980).
In some tissues (e.g. guinea pig pancreatic acinar cells, gastrointestinal smooth muscle

from stomach and gallbladder, guinea pig chief cells, somatostatin-releasing cells of the

stomach and in the CNS) both types of CCK receptors exist on the same cells.
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The CCK R and CCKgR constitute a family of receptors within the guanine
nucleotide-binding regulatory protein-coupled superfamily of receptors. Each receptor

is highly conserved between species.
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1.5 Release of CCK from intestinal endocrine cells

1.5.1 Introduction

In humans and other species luminal nutrients are potent stimulants of CCK release
from I cells. In the earliest studies performed, pancreatic enzyme secretion and bile salt
output, measured in vivo, were used as a bioassay for measurement of CCK release. In
the rat, intraduodenal administration of protein stimulated pancreatic enzyme secretion,
but hydrolysed protein or amino acids were without effect (Green et al, 1973). In
addition, feeding trypsin inhibitor is a potent stimulus for pancreatic enzyme secretion
in the rat (Green and Lyman, 1972). In contrast, in human subjects, intraduodenal
infusion of amino acids (Ertan et al, 1971) and fatty acids, but not dextrose or saline
(Go et al, 1970) stimulated enzyme secretion and gallbladder contraction. The
magnitude of the response with amino acids was similar to that seen with maximally

tolerated doses of an intravenous CCK infusion (Go et al, 1970).

Subsequently with the development of specific and sensitive assays for measurement of
plasma CCK these experiments have been repeated. It has been confirmed, that in the
rat, intact protein is the most potent stimulus of CCK release; in humans, protein,
amino acids and fatty acids are the most potent stimulants. These studies are discussed
in more detail below. The mechanisms by which food and its different components
induce CCK release are not fully understood and appear to be species specific. Most

work has been done in the rat and I will deal with these studies first.

1.5.2 Release of CCK by luminal nutrients in the rat

Liddle et al (1986) demonstrated that in rats, fed via an orogastric tube, an 18% solution
of the milk protein casein, was a potent stimulus of CCK release. This produced a
prompt and significant elevation in plasma CCK concentrations from basal levels of 0.5
pmol/l to 7.9 pmol/l at 5 minutes post meal. Plasma levels gradually fell but remained
significantly elevated above basal levels at 30 minutes post meal. The response to
casein was dose dependant; feeding 9, 13 and 18% solutions caused progressively

higher plasma CCK concentrations. In contrast, an equal weight of bovine serum
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albumin was a much weaker stimulus and a casein hydrolysate did not stimulate CCK
release. Similarly orogastric solutions of amino acids (L-tryptophan and L-
phenylalanine), fat (corn oil and oleic acid), and carbohydrates (10% glucose and 20%
starch) did not stimulate CCK release. To exclude any confounding effects of gastric
emptying rates of nutrients and CCK release, Lewis and Williams (1990) infused
foodstuffs directly into the duodenum and also found that intact protein, but not casein
hydrolysate, was a potent stimulus of CCK release. Thus, in summary, these studies

indicate that proteins are the major food stimulants of CCK release in the rat.

In contrast to the findings in vivo, isolated mucosal cells from the rat duodenojejunum
do not secrete CCK in response to protein or protein digests (Sharara et al, 1993). Two
other secretagogues, bombesin and monitor peptide (see below), stimulated CCK
release in a dose-dependant manner thus demonstrating that the cells in this system
were viable and responsive. These results suggest that proteins in the rat stimulate CCK

release via an indirect mechanism and not by direct interaction with I cells.

Several studies in the rat have since shown that fatty acids, but not whole fat, do in fact
stimulate CCK release however the response is less than with protein (Cuber et al,
1990; Lewis & Williams 1990). The mechanism of fat induced CCK release has not
been studied. CCK release by luminal nutrients is not affected by cholinergic or

intramural nerves (Cuber et al, 1990; Lewis & Williams 1990)

1.5.3 The mechanism of CCK release by protein in the rat

An understanding of the mechanism of protein induced CCK release has developed
from work which demonstrated that intraluminal trypsin in the upper small intestine
inhibits pancreatic enzyme secretion (Green and Lyman 1972), i.e. a negative feedback
mechanism. Further work demonstrated that this was probably mediated by inhibition
of CCK release as orogastric administration of trypsin completely inhibited casein
stimulated CCK release (Liddle et al, 1986). Furthermore, administration of trypsin
inhibitors alone resulted in increased plasma concentrations of CCK, which in turn
stimulated pancreatic protein secretion (Liddle et al, 1984). The potency of various

proteins to stimulate release of CCK is directly related to their ability to inhibit trypsin
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in vitro. Liddle et al (1986) studied the ability of various dietary proteins to inhibit
tryptic hydrolysis of a radiolabelled protein. This method detects substrates of trypsin
(e.g. dietary proteins) as well as conventional trypsin inhibitors (e.g. soybean trypsin
inhibitor). In agreement with the studies discussed above, in this system, casein is a
much more potent inhibitor of trypsin than bovine serum albumin or casein hydrolysate

(Liddle et al, 1986).

There is now good evidence that in the rat, CCK release by protein is mediated by at
least one trypsin sensitive CCK-releasing protein. These are discussed in more detail

below.

Pancreati K releasi tide (monitor peptide

In 1987 Iwai et al, purified and sequenced a CCK-releasing peptide from rat pancreatic
juice. They demonstrated that the peptide, comprising 61 amino acid residues, was
trypsin sensitive and had a high degree of homology with pancreatic secretory trypsin
inhibitors. Based on this work, they postulated that the peptide acts as a mediator of
pancreatic enzyme secretion in response to dietary protein intake. The peptide was
designated “monitor peptide” and in subsequent studies monitor peptide was shown to
directly stimulate CCK release from isolated intestinal mucosal cells (Shirara et al,
1993; Liddle et al, 1992). Monitor peptide is secreted into the gut lumen from the rat
pancreas via a cholinergically independent mechanism. When trypsin is engaged in the
digestion of dietary proteins, present in the duodenum after a meal, then monitor
peptide is protected from tryptic digestion (figure 3). It is likely that monitor peptide
binds to receptors on the luminal surface of the CCK cell and initiates a series of

intracellular events leading to release of CCK from the basolateral surface.

Intestin K releasin id

There is also thought to be a second intestinal CCK-releasing peptide. This peptide has
not been identified but experiments suggest that it is secreted from intestinal cells into
the lumen in response to intraluminal peptone. It is trypsin sensitive and secretion is
inhibited by atropine (Miyasaka et al, 1989; Spannagel et al, 1994). Studies in the

isolated vascularly perfused rat duodenojejunum support the existence of this intestinal
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CCK-releasing peptide (Cuber et al, 1990). In this model, pancreatic secretion and
hence monitor peptide is excluded from the intestinal lumen. A luminal infusion of a
hydrolysate of casein or ovalbumin (predominantly composed of peptone) was the most
potent stimulus of CCK release in contrast to whole protein which was a weak
stimulus. CCK release was inhibited by the addition of trypsin which would
presumably destroy the CCK releasing peptide. However, as discussed previously
(section 1.5.2), in the intact rat protein hydrolysates do not stimulate CCK release and
thus the physiological role of this intestinal CCK-releasing peptide is not clear.

CCK

f

CCK-RP I-Cell

VU OUUNANY

_J

Trypsin\
Monitor peptide - )

Figure 3

Illustration of the regulation of CCK release by CCK-releasing peptides |
(CCK-RP, ﬂ) ) present in pancreatic juice (monitor peptide) or secreted by the small
intestine into the lumen in the rat. The peptides, acts on intestinal “I” cells to release
CCK. In the presence of trypsin, the releasing peptide is degraded ( ), preventing
CCK release. In the absence of trypsin activity (e.g. with trypsin inhibitors or when
trypsin is engaged in the digestion of dietary proteins) the peptides survive in the lumen

and act on intestinal “I” cells to release CCK.
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