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Abstract

In this thesis, proteins are considered in two ways: (i) as entities requiring functional
classification, and (ii) as participants in the small molecule metabolism (SMM) of

Escherichia coli.

The first consideration prompts an investigation of functional classification schemes
applicable to gene products. The concepts of depth, breadth and resolution are
used as descriptors of the schemes’ scope and architecture, and selected classifica-
tions compared on that basis. A “Combination Scheme” (CS) is generated, and
a range of representative classifications are mapped against the CS. For compar-
ison, FuncWheels (graphical representations of hierarchical classification schemes)
are generated — these illustrate differences in functional space coverage. The sur-
vey highlights many issues related to the design and implementation of gene prod-
uct functional classifications, which are discussed in the light of emerging second-
generation schemes such as the “Gene Ontology”.

The thesis then focuses on the structural anatomy of E. coli SMM. Domain reuse
within and between enzymes, as well as within and between pathways, is considered.
Special cases such as the “serial recruitment” of blocks of enzymes, and homology
in “parallel enzymes”, are studied. A network view of pathways is then taken, and
correlations between four contexts are analysed: the metabolic context (i.e. the
spatial organisation of enzymes in the SMM network); the genomic context (i.e. the
location of enzyme encoding genes on the E. coli chromosome); the evolutionary
context (i.e. homologies between SMM enzymes); and the functional context (i.e.
the catalytic activity of enzymes). In addition, incidences of “inline reuse” of enzymes
(i.e. the use of the same enzyme at different steps of a metabolic pathway) and
of isozymes (homologous proteins participating in the same metabolic step) are
investigated.

Taken together, these analyses suggest a chemistry-driven patchwork model of path-
way evolution, but other localised mechanisms, as well as regulatory constraints, are
likely to be involved.
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Chapter 1
Introduction

utability, self-duplication and heterocatalysis comprise a necessary and

sufficient definition of living matter (Horowitz, 1959). In basic terms,

this means a living organism can do things (catalysis), change and adapt
(mutability) and reproduce (duplication). Investigations tying together notions of
biochemistry, cell biology and genetics are often assigned to the domain of science
known as molecular biology. Key discoveries in the fields of biochemistry, cell bi-
ology and genetics, leading to the emergence of molecular biology, are illustrated
in Figure 1.1. In this thesis, life is investigated at a micro-level: that of proteins
and organic compounds — even at this level, the three life-defining properties of
Horowitz remain applicable. First, proteins are considered as entities requiring
functional classification, then the proteins and organic compounds of the Small
Molecule Metabolism (SMM) of Escherichia coli are investigated. The chapter con-
cerning functional classifications (Chapter 2) is self-contained and little background
information regarding it is given in this “Introduction”; rather, this chapter concerns
the chapters analysing the SMM of E. coli (Chapters 4 and 5).

In this chapter, theories concerning the evolution of metabolic pathways are de-
scribed in detail. Furthermore, key resources used in the thesis (such as sequence
and structure databases) are described. Programs and algorithms used in this thesis
(e.g. sequence comparison software) are not described in this chapter, but in the
“Methods” chapter (Chapter 3) and in situ in the analysis chapters.

20
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1.1 Pathway evolution

1.1.1 Small molecule metabolism

A useful definition of metabolism is given by the “On-line Medical Dictionary”
(http://cancerweb.ncl.ac.uk/omd/) as: “The sum of all the physical and chemi-
cal processes by which living organised substance is produced and maintained (an-
abolism) and also the transformation by which energy is made available for the uses
of the organism (catabolism)”. Metabolism is therefore divided into two sets of path-
ways: (i) catabolic pathways, and (ii) anabolic pathways. The former are involved
in the degradation of metabolites, and the latter involved in their biosynthesis. The
catabolic breakdown of complex metabolites is exergonic and the free energy made
available during these reactions is harnessed in “high-energy compounds” in reac-
tions such as the synthesis of ATP from ADP and phosphate or the reduction of
coenzyme NADP* to NADPH. In turn, molecules such as ATP and NADPH are
major sources of free energy for anabolic pathways (Voet & Voet, 1995). Nearly all of
these reactions require proteinaceous biological catalysts, in other words, enzymes.

No strict definition of SMM exists, but the term is generally understood to qualify
the metabolism of all non-macromolecules. For example, nucleotides and amino-
acids are synthesised in SMM, but not DNA and proteins. In E. coli, approximately
600 proteins participate in SMM in a network that involves nearly 800 chemical
substrates (Ouzounis & Karp, 2000). Often, for convenience and to reflect biolog-
ical priorities, these enzymes and substrates are subset into distinct pathways (see
Chapter 3), but in vivo, SMM is a single complex network (Jeong et al., 2000).

A number of theories have been advanced to explain the evolution of an enzyme
catalysed metabolic network from an essentially non-enzymatic “prebiotic soup”.
As early as 1945, Horowitz proposed the retrograde model of pathway evolution
(Horowitz, 1945), and new theories are still being proposed (Lazcano & Miller, 1999).
Of the proposed theories, the retrograde model of Horowitz and the patchwork model
of Y¢as and Jensen have garnered the most support (Horowitz, 1945, 1965; Jensen,
1976; Lazcano & Miller, 1996, 1999).

1.1.2 Retrograde evolution

In the retrograde evolution model, pathways evolve “backwards” from a key metabo-

lite (Figure 1.2). The model presupposes the existence of a chemical environment
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Figure 1.2: The retrograde model of pathway evolution (Horowitz,
1945). An organism heterotrophic for key metabolite A uses up all of
the environmental supply of the metabolite. The fortuitous recruitment
of an enzyme (enz 1) capable of synthesising A from B and C confers
a survival advantage to the organism. In turn, environmental concen-
trations of B and E drop, compensated by the recruitment of enzymes
‘enz 2’ and ‘enz 3’ respectively.

where both key metabolites and potential intermediates are available (Horowitz,
1945). An organism heterotrophic for molecule A will use up environmental re-
serves of the metabolite to the point where falling availability limits growth; in such
an environment, an organism capable of synthesising molecule A from environmen-
tal precursors B and C will have a distinct selective advantage. Such a mutant will
rapidly spread through the environment. In the continued absence of environmental
A, any null-mutation to the enzyme will be lethal, thereby favouring the enzyme’s
preservation. In turn, as the environmental concentrations of B or C drop, the
process will be repeated with the similar recruitment of further enzymes. Horowitz
further suggested that the simultaneous unavailability of two intermediates (say B
and C) would favour symbiotic association between two mutants, one capable of

synthesising B and the other of synthesising C from other environmental precursors.

In 1965, Horowitz restated his theory to take into account the discovery of operons
(Jacob & Monod, 1961; Horowitz, 1965). At the time, the clustering of genes in-
volved in known pathways (e.g. leucine and tryptophan biosynthesis) into operons,
along with a consideration of the probable origin of operons, led him to suggest that
they would cluster genes with overlapping specificities, suggesting structural homol-
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ogy and common ancestry (Horowitz, 1965). Operons are discussed in Section 1.2.1
of this thesis.

The retrograde model of pathway evolution, however, fails to account for the devel-
opment of pathways which include labile metabolites that could not accumulate in
the environment long enough for retrograde recruitment to take place. In addition,
the theory can only explain pathway evolution in a metabolic intermediate rich
environment; the ultimate destruction of the organic environment would prevent
evolution of pathways by retrograde evolution (Horowitz, 1945; Lazcano & Miller,
1999).

1.1.3 Patchwork evolution

In 1969, the outline of a possible alternative to the retrograde model of evolution
was beginning to be sketched (Waley, 1969). Waley described two key concepts:
(i) the distinction between the evolution of new enzymatic functions based on the
conservation of substrate binding with a modification of chemistry and that due to a
change in preferred substrate with a change in the type of reaction (with the former
suggested as more likely); and (ii) the notion that enzymes performing a specific
and specialised catalysis may well have evolved from a broadly catalytic ancestor.
Further thought to the issue was given by Hegeman & Rosenberg (1970). Based
on the evidence available at the time, Hegeman and Rosenberg suggested that the
tandem gene duplication mechanism proposed by Horowitz in 1965 to account for
the process of retrograde evolution was questionable. The idea that all enzymes in
a pathway —catalysing a number of varying chemistries on sometimes very different
substrates— evolved from a repeatedly duplicated gene appeared unlikely. Rather,
they suggested that “metabolic pathways grow by making use of pre-existing infor-
mation in the cell, whatever its origin or genetic location” (Hegeman & Rosenberg,
1970). Genes “borrowed” from other pathways could subsequently be duplicated
and specialised and, if advantageous, be brought together into a single operon by
translocation.

These concepts all crystallised in the mid 1970s. Considering the possible earlier
states of biochemical systems, Y¢&as (1974) proposed an alternative to the retrograde
evolution. Two years later, Jensen proposed his theory of pathway evolution (Jensen,
1976); this theory expands and refines that of Y¢as but, in essence, both propose
that pathways evolved from a system of broad-specificity enzymes, a concept that
has come to be known as the “patchwork evolution” model illustrated in Figure 1.3
(Lazcano & Miller, 1996).
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In the patchwork model, enzymes exhibit broad substrate specificities and catal-
yse classes of reactions (Y&as, 1974). For Y¢as, this breadth of catalysed reactions
was the probable consequence of an error-prone translation mechanism generating
a whole spectrum of enzymes with varying efficacy: the “statistical proteins” de-
scribed by Woese (1965). For Jensen, the diversity of chemistries derived mostly
from “substrate ambiguity”, i.e. the capacity of the enzyme to catalyse a reaction
using a range of different substrates; extant enzymes with such properties are known
(O’Brien & Herschlag, 1999). In addition to spontaneous non-enzymatic reactions,
these enzymes would mean that many paths, some synthesising key metabolites,
may have existed, albeit at a very low level, within a large network of possible in-
teractions. Duplication of genes in such key metabolite synthesising paths, followed
by their specialisation, would account for extant pathways (Figure 1.3). Such a
duplication would be selectively advantageous since increased levels of the enzyme
would generate more of the key metabolites. Furthermore, fortuitous evolution of a
novel chemistry along with the biological leakiness of such a system could allow for
the production of a key metabolite from a novel intermediate, even if it is several
enzymatic steps away from the original substrate provided (Jensen, 1976).

1.1.4 Further theories

A number of other pathway evolution theories have been advanced. In the forward
evolution model, prebiotic compounds do not play a role; pathways evolve forward
because each intermediate in the pathway is of use to the organism, e.g. in the
heme and chlorophyll metabolism pathways (Garnick, 1965; Lazcano & Miller, 1999).
Thus, any enzyme recruitment capable of catalysing a reaction provides a selective
advantage to the organism and the development of multiple genes simultaneously
is not required (Garnick, 1965). Recruitment of enzymes to catalyse pre-existing
non-enzymatic reactions has also been suggested as a possible explanation for the
evolution of metabolic pathways. One theory suggests that extant anabolic pathways
may be the result of successive enzyme recruitments to non-enzymatic degradative
pathways (Degani & Halmann, 1967); once enzymes developed, the decomposition
pathways could be reversed to synthesise the required metabolite (Lazcano & Miller,
1999).

Somewhere between the retrograde and patchwork models lies the “retro-evolution
by jumps” model of Roy (1999). This theory borrows from the retrograde model
by suggesting that multiple contiguous metabolic steps will have evolved from a

single common ancestor, and from the patchwork model by suggesting that the
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