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ABSTRACT

Mucociliary clearance is one of the lungs' non-specific host defence mechanisms and
together with cough helps to keep the conducting airways clean even when exposed to a

polluted atmosphere.

An objective, non-invasive radioaerosol technique was used for the measurement of
lung mucociliary clearance. This technique involves inhalation of five micron
polystyrene particles labelled with technetium-99m under strictly controlled conditions,
followed by deposition and clearance measurements with a sensitive scintillation

counter system and - for some studies - with a gamma camera.

Lung mucociliary clearance was adversely affected in patients with pulmonary
sarcoidosis. Sarcoid patients in apparent remission and those on oral corticosteroid
therapy had better clearance than those on inhaled corticosteroids, but clearance was
still reduced compared to healthy control subjects. Mucociliary clearance was also
found to be substantially compromised in pigeon fanciers compared to healthy control
subjects. The presence or absence of circulating blood precipitins appeared not to be

related to the degree of mucociliary clearance impairment.

During sleep lung mucociliary clearance in patients with stable asthma was significantly
reduced compared to when the patients were awake. Two weeks' treatment with an
oral controlled release beta agonist or slow-release methylxanthine did not enhance lung

mucociliary clearance in asthmatic patients while asleep.

The effect of cough and forced expiration technique (FET) on mucus movement within

the lungs of patients with airways obstruction was studied by a gamma camera method



giving regional lung data. Unproductive cough and FET compared to control
significantly enhanced mucus clearance from all regions of the lungs with the exception
of the forced expiration in the outer region. Productive cough and FET significantly
enhanced mucus clearance from the tracheal, inner and intermediate regions of the lungs
but not from the outer region. Regional and total mucus clearance did not correlate with
the amount of sputum expectorated during the assessments nor with the daily sputum
production of the patients. Neither peak flow, during the forceful exhalatory
manoeuvres, nor viscoelasticity of sputa correlated with regional clearance suggesting
that sputum viscoelasticity as well as peak flow provide no guide to clearance efficacy

in humans in contrast to the in-vitro studies.
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CHAPTER ONE

GENERAL INTRODUCTION

1.1. Introduction to the Respiratory Tract

~ The respiratory tract can be divided into upper and lower airways (fig. 1.1). The upper
airways (nasopharyngeal structure) not only conduct but also condition (warming and
humidifying) the inspired air for the lungs. Additionally many inhaled particles will be
filtered from the main airstream in the nose and oropharynx but the efficiency of this
filter depends largely on the size of the inhaled particles (Proctor, 1977). The lower
airways, including the trachea and lungs, conduct air' and perform gas exchange
(Bouhuys, 1977). The trachea divides into right and left main bronchi while the lung
comprises two distinct zones: the conducting region and the respiratory region. The
conducting region is concerned with bulk movement of air. It includes three lobar
bronchi on the right and two on the left, which themselves divide into segmental
bronchi (containing cartilage in their walls) leading to the bronchioles and terminal
bronchioles (no cartilage in their walls). The terminal bronchiole is at the limit of the
conducting airways and the structures distal to it constitute the respiratory region (fig.
1.2). The respiratory region includes respiratory bronchioles which divide into alveolar
ducts from which open numerous alveolar sacs. Within this region gas exchange of

oxygen and carbon dioxide takes place.

1.2. Deposition of Inhaled Particles

Deposition is the process that determines what fraction of the inspired particles will be
caught in the respiratory tract and thus will fail to exit with expired air (Brain et al.,
1985). All particles that touch a surface are likely to deposit and the site of contact is
the site of initial deposition. There are three main mechanisms whereby inhaled

particles are deposited in the lung during breathing (Agnew, 1984) :
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1980).
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(a) Impaction - When airflow containing particles is deflected, the force exerted on the
particles has to overcome the particles' inertia if they are to follow the change in airflow
direction. This depends on the size and density of the particles and velocity and angle
of deflection of air flow. Therefore the effectiveness of deposition by impaction
decreases with depth into the lung as the flow rate lessens.

(b) Sedimentation - Particles travelling in an airstrearﬁ are subject to an external
downward force due to gravity. This depends on the particle settling velocity which in
turn depends on the particle size and the duration of time available for particles to settle.
Thus the sedimentation of particles increases with depth into the lung as the air becomes
stationary where particles may reach their terminal velocity instantaneously.

(c) Diffusion - The random collisions of gas molecules with very small particles pushes
these particles about in an irregular fashion called Brownian motion. Therefore a
particle in stationary air moves around in a random way even in the absence of gravity.
This movement, which promotes deposition on the walls of small airways, becomes

more important as the particle size decreases.

Other forces acting to promote deposition such as acoustic, electric, magnetic, thermal
and radiational, are normally not significant in the lung. Some of these forces may be

used to enhance deposition experimentally.

The effectiveness of the mechanisms responsible for deposition of inhaled particles will
depend on various factors many of which can be controlled by the investigator. These
factors are (i) the physical properties of the particles, (ii) the mode of inhalation of the

particles and (iii) the patency of the airways.

The main physical properties of particles that will affect deposition within the lungs are:
(a) Particle size - The bigger the particle size (diameter = d) the nearer to the mouth it

will deposit due to impaction (Lippman & Albert, 1969; Pavia & Thomson, 1976; Pityn
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et al., 1989).
(b) Density - For a given particle size (diameter : d) increasing the density (f) of the
material from which the particle is made will result in an effectively bigger particle with

an aerodynamic diameter for the particle of d, = f1/2d (Stuart, 1973).

(c) Hygroscopicity - A hygroscopic material will absorb water during entry through the
respiratory passages and will thus increase in size and deposit nearer to the mouth than
the non-hygroscopic material (Cinkotai, 1971; Sinclair et al., 1974; Scherer et al.,
1979).

(d) Electric charge - The surface of the respiratory tract is uncharged but electrically
conducting. When an electrically charged particle approaches such a surface it induces
an image charge of the opposite polarity on the surface and is attracted toward it and
thus contributes to deposition behaviour. The effects of electric forces on deposition in
the respiratory system are not well known, although charged particles exhibit enhanced
deposition (Mercer, 1973; Hashish, 1992).

The main factors during inhalation which can affect deposition of particles in the lungs
are:

(a) Inspired volume - As the inspired breath increases more particles will be carried and
deposited at the peripheral airways (Booker et al., 1967; Camner et al., 1973; Pavia et
al., 1977).

(b) Inspiratory flow rate - As the flow rate increases more particles will be deposited in
the proximal airways by impaction due to air turbulence (Goldberg & Lourenco, 1973;
Pavia et al., 1977a).

(c) Breath-hold pause - Breath-holding at the end of inspiration will enhance deposition
of particles at their furthest point of entry due to sedimentation (Newman et al., 1982).
(d) Lung inflation - Lung volume at the commencement of inhalation will affect the
particle site of deposition (Yeates et al., 1975; Newhouse & Ruffin, 1978; Groth &
Foster, 1992).
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The patency 6f the airways is important since the efficiency of deposition depends
partly on the diameter of the airways. Furthermore, airway anatomy specifies the local
linear velocity of the airstream and thus whether the flow is laminar or turbulent. A
reduction in airway patency will give rise to a more proximal deposition of the inhaled
particles due to impaction (Thomson & Short, 1969; Dolovich et al., 1976; Pavia et al.,

1977; Kim et al., 1989; Svartengren et al., 1989; O'Riordan et al., 1993).

1.3. Lung Defence Mechanisms

In the process of inhaling several thousand litres of air daily by each person for oxygen
uptake and carbon dioxide elimination, the lung is exposed to a wide variety of foreign
substances transported with the inhaled air such as small particulate material,
microorganisms and noxious gases. Despite this, the human lung remains sterile from

the first bronchial division to terminal lung units.

To protect itself against potentially toxic inhaled material, the lung has a complex
protective system that can be divided into a number of different defence mechanisms
(Newhouse et al., 1976 and 1976a). Each mechanism appears to have a distinct role,

but there is a tremendous degree of interaction and cooperation between them.

The lung protective system can be divided into specific and non-specific defence
mechanisms. The specific defence mechanisms are immunological mechanisms in
which the lung functions as a lymphoid organ and responds to specific antigen with
both cell mediated and humoral antibodies (Green et al., 1977; Holborow & Lessof,
1981). The non-specific defence mechanisms of the lung are aerodynamic filtration,
mucociliary clearance, cough and alveolar clearance which will now be considered in

detail.
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1.3.1. Aerodynamic Filtration

Filtration begins in the nose where deposition of inhaled particles is favoured by the
shape of the nasal cavities. The change in cross-sectional areas within those sites,
coupled with the change in direction of the airflow (turbulence) as it passes through the
nose and beyond, is highly efficient in depositing particles by inertial impaction. The
efficiency of the nasal filter depends largely on the size of the particles inhaled. The
nose traps particles with an aerodynamic diameter in excess of 5-10 pm (Landahl,
1950), while smaller particles bypass the nose and reach the trachea to deposit
somewhere in the lung. The nose also acts as a protective-filter for highly soluble gases
such as ozone, ammonia and sulfur dioxide (Landahl & Herrman, 1964; Speizer &

Frank, 1966; Moorman et al., 1973).

Inhaled particles, trapped in the 'nasal filter', are cleared by mucociliary action (Quinlan
et al., 1969) sweeping the particles backwards either to be swallowed imperceptibly or
to be cleared from the throat whereas particles deposited in the anterior part of the nose

may be blown away voluntarily or by sneezing.

1.3.2. Lung Mucociliary Clearance

The mucociliary clearance mechanism operates from the level of the terminal
bronchioles to the larynx, where the conducting airways are lined with a ciliated mucus-
secreting epithelium. This epithelium is pseudostratified and columnar in the trachea
and bronchi; as the airways become narrower, the epithelium decreases in height and
becomes a single layer of cuboidal cells in the terminal bronchioles (Rhodin, 1966).
The epithelium becomes even thinner in the respiratory bronchioles and eventually
merges with that of the alveolar duct and alveolus. The epithelial cells have been
classified according to the presence of cilia, secretory granules, and their position
within the epithelium. Ten cell types have been identified using electron microscopy

(Jeffery & Reid, 1977).
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1.3.2.1. Cilia

Ciliated cells are present from the level of the trachea to the terminal bronchioles. The
total area covered by the ciliated epithelium is about 0.55 m?2 and the total number of
ciliated cells per person has been estimated at about 3x1012 (Afzelius, 1979). The
ciliated cells form almost a continuous surface to the epithelium of the larger airways,
interspersed with goblet cells and occasional brush cells, but in small airways the
proportion of ciliated cells is less. The percentage of ciliated cells decreases from 53 %
in the trachea to 45 % in the first airway generation, 23 % in the third and 15 % in the
fifth airway generation (Serafini & Michaelson, 1977) of Weibel's model of the human
lung (Weibel, 1963). Each ciliated cell has a diameter of 5 m or so and carries some
200 cilia, which are closely spaced at about 6 to 8 cilia/um?2, interspersed with

numerous short microvilli about 1-2 pm long (Rhodin, 1966).

The cilia (0.3 um in diameter) are longer in the proximal (5-7 um) compared to the
peripheral airways (2-3 um) (Serafini & Michaelson, 1977). These cilia are cellular
projections (fig. 1.3) containing fibrils surrounded by cytoplasm and enclosed by the
cell membrane (Sleigh, 1977). A cilium consists of three main parts: (i) the ciliary

shaft, (ii) the basal body and (iii) the ciliary roots.

The ciliary shaft is composed of longitudinal fibrils called the axoneme which has nine
outer microtubules arranged in a ring around two central microtubules. The outer ones
each have one complete and one incomplete microtubule attached laterally to each other
to form a doublet. They are composed of a contractile protein called tubulin (Mohri,
1968). Dynein arms containing the adenosine triphosphatase (ATPase) protein
(Gibbons, 1965) are attached to the peripheral doublets (Afzelius, 1959). The nine
doublets are connected by nexin links (Gibbons, 1965). These doublets are also

connected to the central tubules through radial spokes (Afzelius, 1959).
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