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and error analysis of discontinuous Galerkin finite element
methods (DGFEMs) on domains with curved boundaries. In
particular, we review trace estimates, inverse estimates, dis-
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1 | INTRODUCTION

When modeling second- and fourth-order (as well as higher order) elliptic partial differential equations
(PDEs), one may be required to consider a domain that cannot be expressed as a finite union of poly-
topes, for example, the unit ball, B;(0) := {x € R?:| x| <1} C R¥. This necessity could be driven by the
domain considered in the underlying application, where the domain is for example Lipschitz continu-
ous, and piecewise C La ae(0, 1), but not piecewise smooth, or for example the domain is C ! and thus
not polytopal. Such domains arise naturally in the theory of PDEs, for example, a natural assumption
for the Monge—Ampere equation [1-6] is that the domain is uniformly convex [2, 3, 5], and oblique
boundary-value problems [7—-10] in nondivergence form, with bounded and measurable coefficients,
require a C*> boundary assumption [9], both of which rule out the possibility of a polyhedral domain.
When it comes to finite element methods (FEMs), it is useful if the domain is polytopal, then since
one can discretize the domain, Q, exactly by polytopes, that is, there exists a family of shape-regular
meshes (77,)ns0 on Q for which Q = UKEEE (the sets K are often d-simplices or parallelepipeds).

If the boundary of Q is curved, an exact mesh consisting of a finite set of polyhedrons cannot
be obtained; one must instead use curved elements. In [11], the author introduces the concept of
exact curved domain approximation by curved d-simplices, following [12, 13], providing an optimal
(with respect to the parameter /) finite element interpolant (interpolating with and without boundary
conditions), with estimates in W””-norms, m € Ny, p €[1, o0].

We will see, however, that in order to design and analyze discontinuous Galerkin finite element
methods (DGFEMs) for second- and fourth-order elliptic PDEs on domains with curved bound-
aries, one requires further estimates, in particular: inverse estimates; discrete Poincaré—Friedrichs’
inequalities; simplicial curvature bounds; and optimal interpolation estimates in noninteger Sobolev
norms.

One is often motivated to use DGFEMs, other nonconforming FEMs, and mixed FEMs over con-
forming FEMs, due to the structural and computational challenges that conforming FEMs impose. For
conforming FEMs, it is required that the approximation space is a subset of the space of weak solu-
tions to the PDE, examples of this being the spaces Hé(Q) and Hé(ﬂ) for second- and fourth-order
elliptic problems, such as the Poisson problem and biharmonic clamped plate problem, which we shall
consider as our model second- and fourth-order problems. In the H} () case, this can be achieved by
considering piecewise polynomials that are globally continuous, however, for H3(€), one must also
enforce continuity of the gradient across neighboring elements. An example of this being the Argyris
finite element [14], which can be rather expensive to implement, requiring polynomials of degree
five on two dimensional simplicial polynomials. In contrast, nonconforming methods weakly enforce
this regularity by penalizing jumps of the discrete functions, and their derivatives across the edges of
neighboring elements, and as a result, the methods that we consider only require a polynomial degree
greater than or equal to the number of derivatives in the weak formulation of the PDE. Furthermore,
since curved domain approximations require the composition of piecewise polynomials with functions
that are not piecewise polynomials (the details of this will be made clearer in Section 3), applications
of the chain rule show that in general, the piecewise derivative no longer maps from the finite element
space into itself (as is often seen in discontinuous Galerkin [DG] finite element spaces), complicating
the derivation and structure of inverse estimates. For penalty FEMs for fourth-order problems, we will
see that this leads to the necessity of discrete Poincaré—Friedrichs’ inequalities.

When defining a finite element space, it is not always necessary to utilize the composition of
polynomials with nonaffine maps. For example, in [15] an Ap-DGFEM is proposed that allows the
computational domain to be curved, instead defining the finite element functions to be piecewise poly-
nomials on the (potentially) curved elements, instead of on the reference element. The authors prove
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that the scheme is well-posed and approximates the true solution optimally, provided the physical ele-
ments themselves satisfy mild curvature assumptions. It is mentioned in [15] that a given mesh may
have to be further refined, so that such a mesh assumption can hold, however, this is akin to the valid-
ity of one of the necessary assumptions of this paper (see (3.24) in Assumption 3.21), which could
require further refinement of the initial mesh. In contrast, in our case, such a refinement would only
be necessary on the elements corresponding to a nonaffine mapping from the reference element. Fur-
thermore, it is discussed in [15] the computational challenges that may arise from choosing functions
that are polynomials on the physical curved element.

One can also consider inexact domain approximation. For example, the authors of [16] propose
a virtual element method (VEM) for the Poisson problem on curved domains, where the element is
curved in a polynomial manner, and thus the mesh does not always approximate the domain exactly.
The authors prove that the error arising in approximating the boundary does not dominate the overall
approximation of the true solution, and in fact the method approximates the true solution optimally (in
terms of the mesh size). The VEM generally requires that any bilinear forms can be calculated exactly,
using the degrees of freedom of the approximation space. It is not clear in the literature that such
formulations are extendable to nondivergence form elliptic equations with L*(Q) coefficients (whereas
the results of the current paper are shown to be of benefit to [17, 18]); in particular, the discrete spaces
are typically augmented by (theoretically) solving the PDE locally on the physical elements. This
consideration is likely to be nontrivial in the setting of nondivergence form equations. Furthermore,
exact domain approximation is useful in the design of numerical methods. For example, in the works
[17-19] a discrete analogue of the Miranda—Talenti estimate [9] motivates the design of the methods,
and due to this, the exact approximation of the domain is key to the stability of the methods.

The remainder of this paper is organized as follows: in Section 2 we shall discuss the existence
and uniqueness of weak solutions to the Poisson and biharmonic equations, and discuss conforming
FEMs, and DGFEMs (the latter of which falls into the category of nonconforming FEMs) on polytopal
domains, with the goal of highlighting important features, such as the stability and consistency of such
schemes. In Section 3 we review the key tools from finite element analysis that are well known in
the polytopal case, in the context of curved simplicial finite elements. In Section 4 we will provide
the numerical methods for the Poisson and biharmonic problems, and prove that they are stable, and
in Section 5 we prove that the numerical solutions satisfy optimal a priori error estimates in H*-type
norms. Finally, in Section 6 we provide numerical experiments that validate the error estimates of
Section 5.

2 | WEAK FORMULATIONS, CONFORMING, AND NONCONFORMING
METHODS

For k € N, we denote the standard Hilbert—Sobolev space [20]
HY(K) == {v € L*(K) : D" € L*(K) Ya : |a|< k,DPv]ox =0 VB : |f] <k—1},

where the restriction to 0K is considered in the sense of traces.
Let Q c R? be Lipschitz continuous, and consider the following second- and fourth-order elliptic
boundary-value problems, for k = 1, 2, find u; : Q — R such that:

(M =f in Q,

du _ i -
Mk_o on 0Q,0<j<k—-1,

0Q

@2.1)
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where f € L>(Q). When k = 1, (2.1) is the well-known Poisson problem, and for k = 2, (2.1) is the
biharmonic clamped plate problem. In particular, one can show that in each case, there exists a unique
weak solution u; € HS(Q). That is, uy, satisfies

ar(ug,v) = /fv Vv € Hy(Q), (2.2)
Q
where the bilinear forms a; : HS(Q) X H’g (Q) - R are given by
ay(u,v) = /Vu -Vv, Vu,ve H(l)(Q), 2.3)
Q
ar(u,v) == /Au Av, Yu,v e Hg(Q). 2.4)
Q

Note that the existence of such functions follows from applying the Lax—Milgram theorem [20]; in
particular one must show that the bilinear forms are coercive in the H*-norm. In the case that k = 1,
this follows from the Poincaré inequality [20], and for k = 2, the following identity (see (4.1))

/Au Av = /Dzu : D%, uve ch)(Q)
Q Q

implies that |u2) = ||Aull2@) if u € H3(Q), which, coupled with the Poincaré inequality, also
proves the coercivity of a,.

The derivation of the weak formulations (2.2) follows from the following integration by parts iden-
tities, valid for functions u,v € C®(K), where K C R? has a Lipschitz boundary, and extendable to u,
v in suitable Sobolev spaces by density:

/(—Au)vz /VM-VV—/ Ju v, 2.5)
K K ok Onak

/(Azu)v = —/V(Au) . Vv+/ Mv,
K K oK Onok

=/Au Av+/ MV—AMﬂ 2.6)
K p)

9
K ()}101( ()I’l()K

and

where nyk is the unit outward normal to dK. Taking K = Q, the choice of u,v € HS(Q) justifies the
lack of the appearance of boundary integrals in (2.3) and (2.4) (however, for this we utilize the density
of CX(Q) in H5(Q)).

For a conforming FEM, one assumes that the finite dimensional space V C H’g(Q), and so one
may obtain a conforming FEM by directly substituting the finite element functions into the bilinear
forms. That is, one seeks uy ; € Vi, such that

ar(uxp. vi) = /fvh Y, € Vi. 2.7
o

Indeed, since V;; C H’g(Q), the properties of the bilinear forms are still valid on VX Vi, and so
the existence and uniqueness of a numerical solution follow in a similar manner to the existence and
uniqueness of a weak solution. In particular, the bilinear form ; is coercive on Vy;, X V., in the H*(Q)
norm, and so we obtain the stability estimate

axnvi) = Celvillingy Vv € Vi, (2.8)
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where Cy is a positive constant independent of the approximation parameter /. Since the problem (2.7)
is equivalent to solving a linear system of equations, the stability estimate implies uniqueness, which
in turn implies invertibility of the matrix describing the corresponding linear system, which also yields
existence.

Furthermore, we see that the true solutions, u; € H{;(Q) satisfy

ar(ux, vy) = /th Yy € Vip, (2.9)
Q
and so
ar(ug — uk,h,vh) =0 Yy, e Vk,h- (2.10)

A FEM that satisfies (2.9) is called consistent, and (2.10) is referred to as Galerkin orthogonality,
which, when combined with the stability estimate (2.8), yields Cea’s lemma:

g — wipll vy < Cr inf |lug — villaxg)-
Vi€V

Jh

One obtains optimal error estimates, by noting that the infimum over Vj is bounded above by any
choice of z; € Vi 5. In particular, assuming that uy € H*(2) N HS(Q), s > k, one may choose z, to
coincide with a suitable interpolant, yielding

[t — wenllax) < Ckv {C{l‘f g — viallar@y < CuCrllug || sh™ P51+, (2.11)
h k.

where the constant C+ is independent of 4.

Unlike conforming FEMs, where the approximating space V. is a subset of Hi(€2), nonconforming
FEMs involve approximating spaces for which this is not true; in the case of DGFEMs one only has
VinC L*(), and for the C%-interior penalty method proposed in [21], one has V,, C Hé (), which
is nonconforming in the sense that V,, is not contained in Hg(Q).

For DGFEMs, one also has analogues of stability, consistency, and optimal error estimates. How-
ever, since the finite element functions do not have sufficient global regularity, one cannot directly
substitute uy, v, € Vi, == {v € LX(Q) : v|x € PP(K) VK € T3} (implicitly, we assume p > k, and that
(Ti)n>o is a family of regular simplicial meshes on Q) into the bilinear forms ay, k = 1, 2.

Such functions do, however, satisfy a property of piecewise regularity; since,
Vin CHX(Q;T;) = {v € LX(Q) : v|x € H*(K) VK € T} (in particular, piecewise polynomials are
piecewise smooth) and so, assuming u; € HS(Q) N H?*(Q) are the weak solutions to the PDE, we can
sum the integration by parts identities (2.5) and (2.6) over all K € 7y, obtaining (see Definition 3.1, as
well as (3.2) and (3.1) for the relevant notational conventions in present in the identities that follow):

0
Z/Wl Vv —/ a”‘ v = Z/(—Aul)vh = Z/fvh:f(vh) Yo, € Vig (2.12)
Ker, /K oK OToK K K

KeT, KeT,
and
Y [awdn+ [ A8, np R S (A= 3 [ e van @213)
KeT,” K ok ONoK Mok ger, /K KeT,” K

Since ux € H*(Q) N Hi(Q), it follows that

[D°w] =0 VFeé&, |a|<k-1, k=12, (2.14)

[Dw]] =0 VYFeE, la|<2k—1, k=1,2. (2.15)
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Thus, we obtain

z/ ——z/ [ = 3 G ) o

Fe€l Fe&?

Sy o
Fe&?

o(Aur) oy O(Aur) d(Aur)
K;T,,/aK 0naK2 Vh_Auzana};c B Z-/F H : H ol + Z /<< a”F2 >> ]

Feg; Feé" b

“RE) 2l

Feg,

/ << OAuy) >> [vall — (Aus) Hav" H 2.17)

where np denotes a fixed choice of unit normal to F. Let us define

Bi(up,vp) = — Z / << gzz >>

Fe&)’

Bam = 3 [ (2890 ) - qauy | 2.

ib
Feé}

and

Fe&?

and

Then, defining A : Vi X Vin —» R, k= 1,2, by
Axun, vi) = a(un, vi) + Bi(un vir) N, v € Vips k= 1,2, (2.18)

we arrive at the following DGFEMs for the approximation of the solutions u, k = 1, 2, to (2.1): find
U, h € Vi such that

AcCen,vi) = £(vi) vy, € Vi (2.19)

Identities (2.12)—(2.17), imply that the FEMs given by (2.19) for k = 1, 2, are consistent, that is if
ue € H*(Q) N Hi(Q) solve (2.1) for k = 1, 2, then,

Ar(ug,vp) =¢€(vy) Yy, € Vk,h' (2.20)
Furthermore, we see that
ay(vp, vi) = Z |Vh|%.11(K)=:|Vh|%11(Q;771) Yvi € Vi, (2.21)
KeT,
— 2 . 2
ar(vip, vp) = Z NAVAl 20 =:1Val 7)YV € Vo (2.22)
KeT,

but, the remaining terms present in A, and A, are not bounded quite as simply. If F' is a face of K € 7y,
trace estimates yield for wy € H*(K)

2
()Wl

SCZ_I wi|? + w2 s
anF (Fl llHl(K) Fl llHZ(K))

L(F)
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H A(Awy) |I?

o~ < Clhi' |Awalg ) + hel Awa [3p )

L2(F)

2 71 2 T 2
“AWZHLZ(F) < C(hF “AWZHLZ(K) + hFlAW2|H1([()),

where C depends upon the shape-regularity constant of 7;. Then, applying inverse estimates [22] of
the form

W2y < ChEk|W|H2—k(K), (2.23)
for w e PP(K), gives us
6w1 2 g
=1 < Chl w0 s 2.24
‘ onr |2y — g lWllHl(K) ( )
a(Awy) |I* ~
Hiz < Ch® | Aws |7k, (2.25)
anF L2(F)
AW 12y < ChE! (| Awal[2 - (2.26)

so long as wy € PP(K) C H*(K), k = 1, 2. Then, utilizing (2.24)—(2.26), and the Cauchy—Schwarz
inequality with a parameter, yields the following for any 6, >0, and any v, €V 5
1 0 ?
1 2 7 Vh 7 N1 2
Ar(vp,vi) 2 |vh|Hl(Q;Th) -3 Z lath <<an >> + G1hr) "l [[Vh]] ||L2(F)

2Fe£,';” L2(F)
S Ty, [2 6:C 2 57! 2
= |Vh|H1(Q;7h) - ) Z Z Ivhlyl([() - Z (61hrF) ”[[vh]]”LZ(F)
Fe&PKeT, :FcoK Feel®
6,CC(d 1 ~_
2 (1= 25D ) Wil = 55 X T Nl g, 2.27)

h

where the final inequality holds due to the fact that the number of elements that share a given face is
bounded in terms of the dimension, d. Similarly, for any 6, > 0, and any v, € V,_ j, we see that
+ &2hp |l {Ava) ||i2(F)

d(Avy,)
dnp
2
211, )
al’lp L2(F)

+ (52Z2*)_l [ [val ”iZ(F) + (52ZF)_l ‘
2
v
al’lF

The above estimates lead one to supplement the bilinear forms Zk, k = 1, 2, with additional bilinear
forms S, Ji : V), X V), > R, where the bilinear forms J; penalize interface jumps of the inputs and their
piecewise weak derivatives up to order 2k — 1 across interior faces, and up to order k — 1 on boundary
faces, and the bilinear forms S; preserve the symmetry of the scheme. Clearly, the choice of J; and
Sy lead to different FEMs; in [23] the authors present and analyze nine DG methods from [24-32]
for the Poisson problem (k = 1), and in [33] the first interior penalty discontinuous Galerkin method
for the Biharmonic problem (k = 2) was proposed and analyzed. Furthermore, in [34] an hp-FEM is

2
~ 1 ~
Ay (v, vp) > |Vh|,%1A(g;rh) ~5 z llszh?r

ib
Fee!

L2(F)

26 /
2 Fe&?

1 ~_ ~_
> (1 = 6:,CCNvilfy @.7) — ZI@NM&%W+M‘ ].@%)

LX(F)
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introduced for the Biharmonic problem (k = 2) with symmetric and nonsymmetric penalties. For other
examples of nonconforming methods for second- and fourth-order elliptic problems see [17-19, 21,
35-38].

Thus, we may take

1
S1(up, vp) == — Z /[]Mh]] <<3:;>>, Ji(up, vy) = 2 %/Huhﬂ [vall,
F F

Feg? Feg’i,b F
J(A 0
o= 3 fuua ()l o
ree 7T F F
7 ny [ ow, oy,
D) =Y /N—guuhu o] + 1 ”anﬂ ”an”
Feet F hy hr F F

where r]’F, j = 1,2,3, are positive parameter choices independent of T, that are chosen sufficiently

large, in order to compensate for the jumps across F' € S,i’h present in estimates (2.27) and (2.28), as

well as the jump estimates resulting from the terms included for symmetry that are present in S; and S;

(these terms are bounded in exactly the same manner as in the derivation of estimates (2.27) and (2.28)).
By (2.14) and (2.15), we see that J;(ux, vi,) = O for all v, € V},, and so the bilinear forms

AcCun, vi) = A, vi) + S, vie) + Je(un vi)s v € Vi (2.29)

are also consistent, that is, they satisfy (2.20); furthermore, they are symmetric. These particular
choices of J; (and thus A;) coincide with the interior penalty discontinuous Galerkin (IPDG) method
of [26] (k = 1) and the h-version of the symmetric 4p-DG method of [34], with the parameters
M=h=1k=2).
Analogously to deriving (2.27) and (2.28), one can show the following stability estimates [23, 34].

Apvp) 2 Cilvalliy, Yvw € Viy and  As(vp,vi) = Gollvallia Yvi € Vo, (2.30)
where the norms, ||-||n. 1, and ||-||5, o are defined by

Vall7 s 5= Ve + CotdiGaov)s Ivalia = W qur) + Coadarov),  (231)

and the constants C+,; and Cx, a depend only on the dimension, the domain €, the polynomial degree,
and the shape-regularity constants. These estimates of course yield existence and uniqueness of uy ;
satisfying

Ar(uip,vi) = C(v) Vv € Vi,

fork=1,2.

However, in the context of curved finite elements, it does not seem to be possible to obtain the
same stability estimate for A, (i.e., the second estimate of (2.30)). In the polytopal case, one may see
that (2.25) and (2.26) follow from (2.23) due to the fact that A : PP(K) — Pmax{p—=2.0}(K) c PP(K) for
each K € 7, and so we may apply the inverse estimate (2.23) to Aws|k. In the case of curved finite
elements, due to the chain rule, this is no longer true, in general, since a given function of the finite
element space is of the form w|x = poF5!, where p is a polynomial, and F is a given (sufficiently
regular) nonaffine map, and so

Awlg =V - (V(poFg")) = V - (VpoFg YDF¢HT)
= (VpoFi") - (V- (DFHT) + (DF (D*poFi")) = (DF')
# yoFg',
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for some polynomial y, unless Fg (and thus Fg') is affine, that is, the mesh is polytopal. This leads
one to obtain estimates of the form
2

o(Aw ~_
' IAWDI < T (walnge + W2 (2.32)
anF L2(F)
AW2 1122y < CRE (W2 22y + W22 1)) (2.33)

which would not directly lead to the derivation of the stability estimate (2.30) of A, (since we are no
longer able to estimate in the ||-||5, o-norm, as the Laplacian structure is no longer preserved). This
leads us to define a new variant of A, with the goal of replacing the inner product

U, V)ak = /Au Av
K

with

(Dzu,DZV)K = /Dzu . D3y,
K

leading to coercivity in the norm
2 2
”Vh”h,z = |vh|H2(Q;Th) + CipJ2(Vi, Vi).
In order to achieve such a stability estimate, one is required to prove a discrete Poincaré—Friedrichs’
inequality, in order to bound the H'-terms of the right-hand side of (2.32) by H? terms, and factors
that are present in J5(, -).
Finally, we discuss error estimates. Since the methods are consistent, one has
Ax(uin, vi) = €(vi) = A, vi) - Vv € Vi,
and thus, for any z;, € V , the triangle inequality yields

Nk — e nllni < Nx = zallne + N = znlln (2.34)
and the stability estimates (2.30) give us

Neteh — znllne < Ci Axuin — zns Ui — 21)

= Ci ' A(utichs tich — zn) — Ai(Zns Uich — 2n)

= C; ' A(u, wen — z1) — Az, Uih — 2n)

= Ci Ak — 2 tien — 2n)- (2.35)
Unfortunately u; — z; does not, in general, belong to Vy ;, and we cannot utilize the inverse estimates
that lead to the stability estimates (2.30) to bound Ay (uy — zp, Ug, n — z) in the ||-||5, x-norm for k = 1,
2. One can, however show that [23, 34]

Ax(ur = zns e — zn) < Cillug = znll sl ien — znllnks (2.36)
where ||-|[n . = 1s a variant of the |||, x norm, including piecewise derivatives of order 0 <j<k.
Applying (2.36) to (2.35), and applying the result to (2.34), one obtains

Nt — ullne < llue = zallng + CoCi Nuk — zullngs Van € Vi

Choosing z; € Vi, to be a suitable interpolant, if uy € H{(2) N H*(Q) N H%(Q; T;,), where s =
(sk)xer . and each s& > 2k, one obtains

172
218 —2k
Netn = wiell i < Ck( D hi* IIMkIIi].@(K)> , (2.37)

KeT,
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where t’,‘< :=max{p + 1, s’,‘(}; in the case of quasiuniform meshes, the above becomes
max{p+1,s5 )=k
Nt — ullng < Ceh™ PHI K]

and so the estimate is optimal with respect to the mesh size. For k = 1, the estimate is provided in [23]
for the case that s}< = 2 for all K € Ty, that is, the integer case, and for k = 2, the estimate (2.37) is pro-
vided in [34]. In the case of curved finite elements, the method for proving optimal error estimates is the
same (except there are a few more terms that we must estimate), however, one still requires a suitable
interpolate. In the context of (2.37), this means that there is an element z, € V5, uniquely determined
by a function wy, € H%(Q;T},), such that for each K € T, each integer 0 < g <min{p, 2k — 1}, and
each multi-index a, with0< |a | <g,
t—q
[Wi = zZn|Hegy < Chy |Wk|Hs’;((K),

—la|-1/2

o #
ID* (Wi — zn)ll 20x) < Chg [wl (2.38)

B )’
where C may depend upon the polynomial degree, 2, and the shape regularity constant, but is inde-
pendent of hg. A goal of the proceeding section will be to prove (2.38) in the curved case, which will
yield optimal error estimates for both the schemes we propose, and, since the polytopal case can be
viewed as a special case of the curved case, we will provide optimal estimates for the IPDG method of
[26] for the Poisson problem in noninteger Sobolev norms. The first estimate of (2.38) is proven in [11]
for the case that s% is integer valued, we aim to provide such estimates in H*-norms, for noninteger s.

3 | CURVED DOMAIN APPROXIMATION AND FINITE ELEMENT
ESTIMATES

We will begin this section by providing the details of [11], which provides us with a notion of exact
domain approximation, along with essential scaling arguments that allow us to prove the desired trace
and inverse estimates. Such estimates will allow us to prove that our proposed FEMs are stable, yielding
existence and uniqueness of numerical solutions. This requires the following notation.

3.1 | Notation

Definition 3.1 (Face and vertex sets). Given a mesh 7;, we denote by &, b the set of
faces of Tj, by 8;; the set of interior faces of 7}, and by EP the set of boundary faces.

Definition 3.2 (Jump and average operators). For each face F € 8,';’17, we have that
F=Kn K for some K,K' € T, (in the case that F € 8}1’ take F = K N 0Q), with
corresponding unit normal vector nr which, for convention, is chosen so that it is the
outward normal to K, we define the jump operator, [[-]], over F by

(D)|F — (@lx)|F if F € EL
= 3.1
Il {(¢K>|F if Fe g, G-
and the average operator, {(-), by
1 , i i
(@) - 2((¢K>\.F +@lo)le) if F €&, 52
(¢olr it F e &p.
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Definition 3.3 (Element L’-inner product). For an element K, we define the inner
product (-, -)g by

(g = [feu v if u,v € LAK), feu-v if u,v € L*(K;RY), [eu v if u,v € L}(K;R™). (3.3)
Any ambiguity in this notation will be resolved by the arguments of the bilinear form.

The bilinear forms (-, -)sx and (-, -)r for F € é}i’b, are defined similarly.

Definition 3.4 (< and ~ symbols). Herein we write a < b for a, b € R, if there exists a
constant C > 0, such that
a < Cbh,

independent of h := {hx : K € T}, and u, but otherwise possibly dependent on the
polynomial degree, p, the shape-regularity constants of 7, Cr, and d. Furthermore, we
write ax b if botha Sbhand b Sa.

3.2 | Curved simplices
The ability to define a nonaffine approximation of a domain, Q C R? relies upon the Q satisfying a

notion of piecewise regularity, which motivates the following definition.

Definition 3.5  (Piecewise C* domain). A domain Q C R? is piecewise C¥ for k €N, if
we may express the boundary of Q, 0Q, as a finite union

N
Q= U T, (34
n=1

where each I, CIR? is of zero d-dimensional Lebesgue measure, and admits a local rep-
resentation as the graph of a uniformly C* function. That is, for each n, and at each x €T,
there exists an open neighborhood V,, of x in R? and an orthogonal coordinate system
O, ...,%), such that

Vo ={04, ...y : —a}’ <yj’»‘ <ai,1<j<d};

as well as a uniformly C* function ¢, defined on V, = {(},...,)"_)) : —a; <y <
aj,1 <j<d -1} and such that

|(p,1(y"’)| < ajy/2 for every y”/ =0 Y5-1) € Vi,
QnNV={y"=0"y) eV :y<p,0M),

LAV={"=0"y)eV:y=ap0")

Definition 3.6 (Curved d-simplex). An open set K C R? is called a curved d-simplex
if there exists a C' mapping Fx that maps a straight reference d-simplex K onto K, and
that is of the form

Fx = Fx + @, (3.5)
where

Fy :QHBK/X\'FbK 3.6)
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is an invertible map and ®x € C'(K;RR?) satisfies

C = sup||DOx®)Bg'|| < 1, (3.7)
Rek
where || - || denotes the induced Euclidean norm on R?*¢,

Definition 3.7 (Associated straight d-simplex). Given a curved d-simplex K, with the
associated straight reference d-simplex K, and map Fx : K — K, with Fx = Fg + @,
we define the associated straight d-simplex:

K = Fx(K).

Remark3.8 The associated d-simplex, K.isa straight d-simplex that “approximates” K.
Lemma 3.9 (Afflne invariance of Cx). Given a d-simplex trlple (K, K K ), another ref-
erence d-simplex K’ and a map F x € GLR?) that maps K’ onto K there is a map
Fy - : K’ - K that also satisfies (3.7). Moreover, Cxr = Ck.

Proof.  See Remark 2.3 of [11]. m
Remark 3.10 (Affine mesh). In the case that the domain has a flat boundary, one
employs an affine approximation of the domain, in which case, the corresponding

functions ® in (3.5) are all zero.

Definition 3.11  (Mesh size). For each K € Tj, let hg := diam(K) > C(d)||Bx|| (where
K = Bg(K)). It is assumed that 1 = maxger, hx for each mesh 7;,.

Definition 3.12  (Face-mesh size). For each face F € £ i’b, we define

- {min(hK,hK,) if Feé&l, 38)

hp =
T if Feé&p.

where K and K’ are such that F = dK N oK' if F € 8;;, or FCOKNOJQIif F € 8,?.

Definition 3.13 (Class m curved d-simplex). A curved d-simplex K is of class C™,
m > 1, if the mapping F is of class C" on K.

The proofs of the next four lemmas can be found in [11] (i.e., Lemmas 2.1-2.4).

Lemma 3.14  The mapping Fx is a C'-diffeomorphism from K onto K and satisfies

supl[ DFx®)|| < (1+ Co)l1Bl, (3.9)

XeK

su[gnDF,;l(x)n < (1-Co 1B, (3.10)
XE

VRe K, (1—Cg)|detBk|<|detDFx®)| < (1 + Ck)?|detBxl. @3.11)
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Lemma 3.15  Let us denote by cy, 2<¢ <m, m €N, the constants

c(K) = sup||D” Fx®)|[||Bx || (3.12)
Rek
There exist constants c_y, 2 <¢ <m, depending continuously on cg, c(K), ..., cp(K),
such that
sup|| D’ Fg' (0| < e |1Bx X~ IIBE 1. (3.13)
xeK

3.3 | Scaling arguments

Lemma 3.16 Assume that K is a curved d-simplex of class C". Let | be an integer,
0<I<m, and g€ {2,}. A function v belongs to W™ 4(K) if and only if the function
V := voFy belongs to W™4(K). We also have for any ve W™ 4(K)

i
Vlwau) < Cldet Bx|'/?||Bg' || ( D ||BK||2<’—’>W|W,.#(,?)> : (3.14)
r=min{/,1}
i
Plyuaz, < Cldet Bx|7/9||Bg|! ( > |V|Wr~q(1<)> : (3.15)
r=min{/,1}
where the constants C depend continuously on ck, c2(K), ..., cu(K).

Lemma 3.17  Assume that K is a curved d-simplex of class C", and that F is a face of
K; we denote by By the restriction of Bx to F = FEI(F). Let | be an integer, 1 <1 <m,
s €0, 1—1/2). Then, for any v € H'(K), the function tp(v) belongs to H*(F), and we have

VIl < Cldet Br|'/?[det B | ™ IBRM I (VI ) + 1Bk V] i) (3.16)

where the constant C depends continuously on cg, c2(K), ...c,u(K).

A key tool in the derivation of optimal interpolation estimates on affine meshes is the following
scaling argument (see Theorem 3.1.2 of [14]): for [ € Ny, p €[1, o], assuming v € W (K), and ¥ :=
voFyx € W'(K), we have

Plyii, < ClIBgl'ldet Bx |7 1v] i, k- (3.17)

Here, we are cons1der1ng the affine equivalent straight d-simplices K and K, and an invertible affine
map Fg. That is, K = FK(K) where F is of the form (3.5) with @ =0.

One can see that (3.15) and (3.17) are similar. The main difference is the presence of the lower
order seminorms on the right-hand side of (3.15).

Let us look at the particular example of the H%-seminorm when F is not affine. The chain rule,
and the multivariable change of variables formula yields

< C(d)sup|detDF_ (x)|1/2(SUP||D2FK(X)|||V|H1(K) + SUP”DFK(X)” V) (3.18)

%€k Rek

|V|H2(K)

Note that if Fx were affine, then DFy = INSK, DF,}1 = BI‘<1, and D?Fk =0, thus from the above, we
immediately obtain (3.17) with [ =p = 2.



14 Wl LEY KAWECKI

A sufficient assumption that yields an estimate of the same order as (3.17) with [ = p =2 (in terms
of ||Bk||), is to assume that c,, given by (3.12), is uniformly bounded for £ = 2. This coupled with the
fact that Cx < 1 gives us

sup|| DFx®)|| < (1 + Cx)||Bkll,

ek

supl| D> Fx®)|| = (suplD*Fx®1Bx | ™)IIB|I> = 2 |Bx 1.
ek ek

Applying the above to (3.18) yields

Pl < C sulg|detDF7<1(x)|‘/2||BK||2(|v|H1<K> + V]2 c)-
XE.

In order to appropriately bound the determinant term, one must note that DF' = (DFg)~!, and so

| det DF'| = |det DF|~" < |det Bx|~'(1 — Cx)“.
Ultimately, this gives us

Blie, < Cldet Be|™ 2B P (Vlma + V). (3.19)
This motivates the two following definitions, generalizing the prerequisite assumptions, allowing one

to obtain analogous estimates in higher order seminorms.

Definition 3.18 The family (73,);, of meshes is said to be regular if there exist two
constants, ¢ and ¢, independent of A, such that, for each h, any K € 7}, satisfies
hk/px < o, (3.20)

where pg is the diameter of the sphere inscribed in K. Furthermore, we have

supsupCg <c < 1. 3.21)
h KeT,

Remark 3.19  Condition (3.20) is referred to as nondegeneracy (e.g., in [22]).
Definition 3.20  The family (7},), of meshes is said to be regular of order m if it is regular
and if, for each h, any K € 7}, is of class C"* ! with

supsupsup||D'Fx®||||Bxl| " < oo, 2<I<m+1. (3.22)
h KeT,3ek

Assumption 3.21 We assume that any two elements sharing a face have commensurate
diameters, that is, there is a C7 > 1, independent of 4, such that

max(hg, hg') < Crmin(hg, hg), (3.23)
for any K and K’ in 7, that share a face.
Finally, we assume that each F € 8}1’ satisfies
F=FnT,, (3.24)

forsome ne {1,...,N}, with I, given as in (3.4). This implies that each boundary face is completely
contained in a boundary portion I',,, as well as ensuring that our approximation of the domain Q is
exact.
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Remark 3.22 The assumptions on the mesh given by Assumption 3.21, in particular
(3.23), show that if F is a face of K, then

hi < Crhp. (3.25)

A final, necessary step, before providing optimal interpolation estimates and inverse estimates for
(continuous and discontinuous) curved Lagrange finite element spaces, is to relate the estimates of this
section to the local mesh size, hg. The general rule of thumb in this context is that ||l~3’K|| is of order
hg, and ||§1}' || is of order h,}l. This notion is made more concrete by the following theorem from [14].

Theorem 3.23 Let K and K = F. K(I?) be two affine-equivalent open subsets of R,
where Fx : X — BxX+bg is an invertible affine mapping. Then we have the upper bounds

h(K)

1Bkl < hil?i and B < (3.26)

p
where, for a given open subset E of R?, we define

h(E) = diam(E),

p(E) = sup{diam(S) : Sisaball containedinE}. (3.27)

Corollary 3.24 Assume that the family (Ty), of meshes satisfies (3.20). Then, there
exists a positive constant C depending only on o, such that for any K € T, with an
associated straight element K, that

Bl < Chg and ||Bx'|l < Chg'. (3.28)
Proof.  See [39], Corollary 3.24. L

Definition 3.25 (v, 9, and v") Given a triple (K*, K , K) (fixed reference simplex, ref-
erence simplex, and curved simplex), a pair of invertible maps (Gx : K* — K ,Fg
K- K), and a function v: K —» RY, for some N € N, we define the functions ¥ : K-
RN, v* : K* > RV, as follows:

Vi=voFg, V" :=voGg = voFkoGk. (3.29)
Furthermore, given v : K* = RY, we also define

D= V*OGEI, V= /‘>°FI_(1 = V*OGI;1 OFEI. (3.30)

3.4 | Lagrange finite element spaces

The finite element spaces we consider in this paper consist of discontinuous piecewise polynomial
functions, which fall into the class of discontinuous (curved) Lagrange finite element spaces. In gen-
eral, a finite element is a triple (K, Pk, Zx) where K is a subset of R?, Py is a finite dimensional space
on K, and Zg is a set of continuous linear forms on Py, which we will call the degrees of freedom.
In the context of Lagrange finite element spaces, the continuous linear forms are given by (local)
point evaluations. In the simplicial case, the placement of these points is naturally described using the
barycentric coordinates of the simplex.

Definition 3.26  (Barycentric coordinates). Given a straight d-simplex K, with vertices
ai, ..., dgr1 € R?, we define the barycentric coordinates of K Aty ooy Ay, Agyr via the
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following (invertible) system

1 1 1 Al 1
(a})l (a?)l (ad.+1)1 /1‘2 _ 35.1 ’ (3.31)
@da  @)a ... (day1)a || Aa+1 Xa
where 2 = (xq, ..., x4)" € K.

Definition 3.27 (Straight Lagrange finite element). For a straight d-simplex K with
vertices @y, ..., dq1 € RY, with barycentric coordinates Ay, ..., Ag41, we set

Jp) = {a e NI 1 |a| = p}, (3.32)

and for any a € J(p), we associate the pointd, € K with barycentric coordinates 4; = a;/p,
i=1,...,d+1. Then, we call (K, Pg, Zg) a straight Lagrange finite element of type p,
where

Pe=Pr(K), Sk ={fwa€lp)}, (3.33)
with /’Ia(ff) = f(a,,), forf € Py, and we recall that PP (K) is the space of all polynomials
with total degree less than or equal to p.
Definition 3.28 (Curved Lagrange finite element). The triple (K, Pk, Zg) is a curved
Lagrange finite element of type (m, p) if K is a curved d-simplex of class C"*!, and

Px = {p = poFx'.p € Px = PP(K)}, (3.34)

Sk = {u : Vv € C°(K), u(v) = i(voFx). fi € Sk}, (3.35)
where (IA( , Pk, fK) is a straight Lagrange finite element of type p.
Definition 3.29 (Discontinuous Galerkin finite element space). The discontinuous
Galerkin finite element space V), , is defined by
Vip=1{v € LX(Q) : v|g = poFg!, pe PP(K),VK € T,}, (3.36)
where p € Nj.

Remark 3.30  One could equivalently define V;,,, = U KeT, Pk, where Pk is a curved
Lagrange finite element of type (m, p).

Piecewise polynomial functions naturally satisfy a property of piecewise regularity. This is
accurately captured by considering the notion of broken Sobolev spaces.

Definition 3.31 (Broken Sobolev spaces). Let s = (sx : K € Tj) denote a vector
of nonnegative real numbers and let 7 € [1, co]. The broken Sobolev space WS (Q; T;,) is
defined by

WST(Q Th) = {v € LX(Q) : v|x € W (KWK € T). (3.37)

We denote HS(Q; T) := WS2(Q; T;,), and set WS (Q; T;,) :== WS (Q; T,), in the case that
sg=s,5>0, forall K € T,. Forv e W'"(Q; Ty), let Vv e L'(Q; RY) denote the discrete
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(also known as broken) gradient of v, that is, (V,v)|x = V (v|g) for all K € Tj,. Higher
order discrete derivatives are defined in a similar way. We define a norm on W*"(Q; 7;,)
by

Vlsrry = D IVl
KeT,

with the usual modification when r = co.

Definition 3.32 We define the following for K € 7,, s € Ny, r € [1, o0):

s

r o— r
IVl k) = :E: IVl iy

Jj=min{l1,s}
r — r
W@, = 2 Wy
KeT,
with the usual modification when r = co. Note that |-|ysq.7 ) is a norm when s = 0, and
a semi-norm when s € N. We also define |-| Hs (K) and || HS(@:T;) in the usual way.
Remark 3.33 We can use these semi-norms to equivalently phrase estimates such as

(3.19), which can now be written as

- BA-1201R.112
Pl < Cldet Bx| ™2 || Bk PVl k-

(3.38)

(3.39)

(3.40)

We now provide trace and inverse estimates that we will be utilized frequently. In particular, the

noninteger order trace estimate will be utilized in proving the second estimate of (2.38).
3.5 | Trace and inverse estimates

Lemma 3.34  Assume that T;, is a regular mesh on Q. Then, for any K € T;,, we have
that

IVI3.0x < Crelhg' VI3 ¢ + Ak IVVI3.) Vv € H'(K),

where Cr; is independent of K and hg.
Proof.  See [39], Lemma 3.34. ]

Lemma 3.35 (Noninteger order trace estimate). Assume that {7y}, is a regular family
of triangulations on Q. Then, for any K € T;,, and any (d — 1) face F of K, we have that

-1/2
V2 < Chig Vil + RiIVaro),
for allve H'(K), 1/2 <r < 1. Furthermore, the constant C is independent of hg and the
choice of K € Ty,
Proof.  From the multivariable change of variables formula, we obtain
Vil < C|deth|'/2||$||Lz(ﬁ),

where By is the restriction of B to F = Fx'(F). Under a second change of variables, we
obtain
- A.1/2
191l 25, = 1detz1 210" |2,

(3.41)

(3.42)
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where F* is a (d—1)-face of a fixed reference d-simplex, K*, and Gy : K* -
R, Gi(x*) = Agx* + g, with Ay € GL(RY), @y € RY, and A is the restriction of A
to F* = Gg(F).

Since the trace operator is continuous from H"(K*) — L>(K™) for r > 1/2 [40], we see
that

IV ll2y < CK™, )V I2ke) + 1V k)

where y; and y, are positive, continuous functions that we will soon provide.
Recall the definition of the H"-semi norm:

HE) 2 Jz X — X |d+2r : :

We note that since X;,%, € K,
|[Fk (1) — Fx(X2)| < C(d)sup||DFx(®)|||X1 — %21,
2ek
which, when applied to (3.44), gives us
SR SR [2 - SN S (2
/A V&) — V()| < ClIBK||d+2r// V(1) = vG)l (3.45)
F'¢ e

% X =X % |Fx(®1) — Fx()|4+2

We apply the multivariable change of variables formula once more, obtaining

~2 = \d+2r [v(x1) = v(xo)|? 1 1
V) < CllBkl /K KW| det(DFg (x1))|| det(DF (x2))|
< ClUB N B P 1. (3.46)

Of course, we also have
~ B-11d
Bl < CIBR I IV 2o

We obtain the functions y; and y, in a similar manner, except since Gy is affine, the
scaling argument is simpler, and we have that

n(A) =detA™!], and  ya(A) = [detA”'PIA]|

From the nondegeneracy condition (3.20), it follows (from the proof of Theorem 4.4.20
in [22]) that the collection of the invertible matrices given by the affine maps from K* to
K is contained in a compact subset BL:={B &€ GL(RY):| detB| >e, | Bj| <r} of GL(RY),
where € = (o, d, K*), and r = r(K™). That is, if

E};( K"K, K'ox* HZIA{X*+EIA< ek,
then Z[A( € BL. Thus we have
1i(Ag)? < sup yi(A)? < C(K*,0), i=1,2.
A€BL
Overall, we have obtained
~ Lo~ . d ~ ados ol o~
IVl < Cd, 0, K*)|det B |2 || B ||2 <”V”L2(K) + 1B 112 1| B |2 “BK”erlH’(K))

-1/2
< Chg / UWNlz2x) + Bk IV k)
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where the final inequality follows from (3.28). Furthermore, the estimate is independent
of hg, and the choice of K. Thus, we have obtained the desired estimate. ]

Lemma 3.36  Assume that (Ty), is a family of meshes on Q that is regular of order
meN. For any veV,, ,, the following inverse estimate holds for any K € T, with
0<s<m,and g€[2, 0]

Vlwragy < Crig " [vIwsa . (3.47)
where the positive constant C is independent of K and hg.
Proof.  We first note that (3.47) is trivial when m = 0, since then s = 0, and |-|yms =

[“lwse = ||-llze, so we will assume that m > 1. We will first prove (3.47) when s = 0. By
(3.14),forjeN, 1 <j<m, g€ {2, 0}, and any K € T, we have

J
[Vlwiaw) < Cldet Bx|'/4||Bg' IV < > lIBkl? |$|W,,L,<,Ao) : (3.48)
r=min{1,}
Now, for 0 <r <j,
= i) A 2(—r) |
IBKIPS™ Plyazy < C@ORE " Blyray

where the 1nequahty is due to (3 28). Now, let K* be a fixed reference element, and take
GA K* — K, with G R(X") = Agx* +ag, w1thA € GL(R?) and a3 € RY. As in the
proof of Lemma 3.35, it follows~ that A  belongs to a compact subset BL of GL(R?).

Now, defining v*(x*) = W(Gp(x")), it follows that v € PP(K"), where PP(K") is of
finite dimension, depending only on K*, d and p, thus by the equivalence of norms on
finite dimensional spaces, we see that

Blyraciy < 1Az detAg] /2 1v* [lwrackey
< Cd, p, KA "I det Ag |11V o
< C(d.p. K)max[[Az [Pl e,
< CWd,p, o, K*, D)Vl o - (3.49)
Thus, applying the above inequality, (3.15) with / = 0, and (3.28), to (3.48), we obtain
Mlwiay < C(d.p,o K*)|det B IIBE 19114z,
< C(d.p. o, K*)|det Bk |"/7|| B |V |det By |~/ ||v | ok
< Cd, p, o, K*, mh |Vl o).

Since our choice of 1 <j<m was arbitrary, we may take 1 <k <m, and sum the above
over 1 <j <k, obtaining

VI yta g, < C(d, ps o, KX, mhtIVllwy 1<k<m. (3.50)

We obtain (3.47) with s = 0, by setting k = m above. We will now prove (3.47) for
1<s<m.

In this case we will argue by induction, and as our base case, we shall prove the
result for s = 1. Take 1 <j<m, and let |@ | = j. Then we may write D*v = D?(D"v) for
some |f| =j—1, |y | = 1. One must note that by the chain rule, Dv|x = D(ﬁoF,}')|K =



20 Wl LEY KAWECKI

(D%F ‘)DF,‘( , where the components of (D%F ‘)DF,} do not necessarily belong to
IP’P(K ). It is the case, however, that D% & IPP(K ) for any |6 | = 1. One can see that

||DaV||L‘/(K) < |DyV|W/*'*1"I(]() < |Dvlwi*1~‘l(]()

|(DVoFg )DF'| Wil

j-1

A

supllD’(DF CNIDVFR! |y,
r=min{1,j—1} *

max  sup||D" Fg!(x)|||DVoFy! |W/ Lagg)- (3.51)

min{2,/}<r<j yekx

By (3.10) and (3.13), we have that

A

max sup||D'Frx (x)|| £ max c_, Be |2 V1B " 3.52
e SupIDFE NS | max e IBeIPVIBE | (3.52)
where we are denoting c_; :=1/(1 — Cx). Furthermore, since DV € [IP’P‘I(I?)]"’ C
[PP(K)]¢, we can apply (3.50) with k = j — 1, obtaining

IDVFR! [yt S i 1DV F R k). (3.53)
We also have that

IDVoFg! k) = I(DVoFg' DF¢)YDF) ™ sk
< Sup”DFKlllvlwl‘l(K) (3.54)

ek

Applying (3.52), (3.53), and (3.54) to (3.51), and summing over all | | =j, we obtain

2(r—-1 ~
Wlhwawy S max e ||Bel* VB I" SUPIIDFKIIh /]y

La
K-
min{2,j} <r<j < 2ek

Lastly, applying (3.9) and (3.28) to the above estimate, we obtain (noting that 7;, is regular
of order m)
=171 1—j
Wwigo S max B b Wyrage < i Y]y ogg: (3.55)
Again, our choice of 1 <j <m was arbitrary, and so we can sum (3.55) over 1 <j <k for
any 1 <k <m, obtaining

Ity S max hi 1h}<k|vlw 1<k<m.

< Wk
min{ 2.k} <r<k Kl lw:

V(K) Y(K)

To proceed to argue by induction, we will assume that for 1 <s <k <m —1 we have

|Vlwf‘1(]() s h%_klle;’q(K)v (3.56)
and we will use this to show that

< hs+1 klvlw

|V|W/<li(K) I‘H-‘I(K)a

for 1<s+1<k<m.
To this end, let us take s+ 1 <j<m and let |& | = j. Again we write D*v = D?(D"v)
forsome |f| =j—1,and |y | = 1, and so, analogous to our previous argument, we obtain

ID*VllLaky < |D7V]yiraggey < [DV] -

MKy = (K

S, hl( |DV0FK |W/f“’(K)‘
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Applying our inductive hypothesis (3.56) with k = j — 1 > s, we obtain
1DVl aiy S hig e ™ |1DVOF! | ysa k- (3.57)
Now,

|DVoFg! |yyragey = |(DV)DFkoFi! ok,

N

< Y supllD"(DFxoF YWDV ]k,
r=min(1,s} ¥€K
N
< Sup”Dr(DFKOFI_(l)(x)l Ilvlwi“‘i([()'

r=min{1,s} xek

Applying the above to (3.57), we obtain

s

||DaV||Lq(k)5<h1_<l > supllD’(DFKoF,?)(x)ll)hz“‘flv|wi+l,qm.

r=min{1,s} xeK

Let us momentarily assume that, forany 1 <s<m—1,

s

i Y supllD'(DFgoFghl < 1. (3.58)

r=min{1,s) *€K
Then we obtain

s+1—j
ID*V|| oy S B j"’lwi*""(K)’

where || =, and s+ 1 <j <m was arbitrary. Summing over all |a | = j, and then all
s+ 1<j<k<m, we obtain
s+1—k
D DYl S B Ve, s+1<k<m.
s+1<|a|<k
It is also clear that
s+1-k
D Il S Mlws < Wlyagy S B o,
min{1,s}<|a|<s
and so we obtain
s+1-k
|v|Wf_"’(K) < Z “DaV”L"(K) + Z ”DaV”L"(K) pS h;;— |Vlwi“>‘l(1()7
min{1,s}<|a|<s s+1<|a|<k

s + 1 <k <m, which concludes our inductive argument, and yields (3.47) for 1 <s <m, by
taking k = m. It remains to show that (3.58) is in fact true. Let us recall the formula [11].

D' (fog) = Z(D’fog)< > ca]'[(D’g)“f), (3.59)
i=1

a€E(r,i) =1

where E(r, i) is the set given by:
E(r,i) = {a €Ny :lal=i and ) lo= r}, (3.60)
=1

and the ¢,’s, @ € E(m, r) are some given constants, bounded independently of sg. From
this, we obtain

s

i) supllD'(DFgoFg )

r=min{1,s} Y€K



22 Wl LEY KAWECKI

Z(D“FK)oFK ® ) ca]'[(D’ Fghy(x)

R

r=min{1,s} a€E(r,i) =1
K r
she' Y D enllBel ™ Y H||BK||2”—”"I||B,;‘||l“z,
r=min{1,s} i=1 a€E(r,i) =1

where the final inequality follows from (3.13), and the fact that the mesh is regular of
order m > s+ 1. Applying (3.28), and noting that by definition, if @ € E(r, i), then |a | =i
and Y,_, la; = r, we obtain

1 c 1 1 1 IZI(Zla’ 2a) [Za,
hg' Y supllD'(DFgoF Wl S hy Z Zh” D Hy Iy
r=min{1,s} Y€K r=min{1,s} i=1 a€E(r,i)
s r
=i Y Y X M s
r=min{1,s} i=1 a€E(r,i)

as desired. Note that the estimates we have derived are independent of the choice of
KeT,. n

3.6 | Interpolation estimates

The proofs of the following lemmas can both be found in [11], that is, Theorem 4.1 and Corollary
4.1; one must note that they are both given in a more general context. However, we are considering
Lagrange finite element spaces, which satisfy the hypotheses of Theorem 4.1 and Corollary 4.1 (see
examples 1 and 2 on page 1221 of [11]).

Lemma 3.37 (Optimal local interpolation in V}, ,,). Assume that the family (T,);, is reg-
ular of order m. Let €, s, p € Ny, p > 2, with € <s <min{p, m} + 1. Then for any K € Ty,
and any u € H*(Q; Ty,), there exists a z, € V), , such that

[l = znll ey < Ch?}_f|u|H§(K), (3.61)

where the constant C is independent of hk, u, and K.

Remark 3.38 We note that the classical Lagrange interpolation operator can only be
applied functions that have well defined point values. Even in two dimensions, it is not
in general the case that functions in H'! have well defined point values. This leads one to
define other interpolation operators that require less regularity, in particular, we define a
local interpolation operator that is well defined on L? functions (one of the first examples
is due to Clemént [41], using local averaging; however the one we will define is provided
in [11] and is slightly different).

Definition 3.39  (Local L? projection). For v € L*(Q), and K € T, we define p, to be
the unique element of P”(K) that satisfies

[ G-p)p VpeP(K). (3.62)
K

Definition 3.40 (Local Lagrange interpolation operator). For K € 7}, we define the
Lagrange interpolation operator IT;, : L>(K) — Pk, where (K, Px, Xx) is a curved Lagrange
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finite element of type (m, p), by
I, (v) = Z u(py)pys (3.63)

HEZ

where p, = pyoFg', with p, satisfying (3.62), and {p, } ez, forms a basis of P.

Lemma 3.41 (H'-multipliers). Assume that u€ H'(Q), 0<r<1 and yw € C*(Q).
Then, there exists a constant C depending only on d and r, such that

luy @) < V21 s lulir@ + V20, DV + diam@2 1y | g lull 2. (3.64)
Proof.  See [39], Lemma 3.41. u

Lemma 3.42 (Integer and noninteger regularity interpolation estimates). Assume that
Qis piecewise C"t ', withmeN,m>k+ 1,k € {1,2}. Let { T, }, be a family of triangula-
tions on Q that is regular of order m, satisfying Assumption 3.21. Letu € H%(Q; T;), sy =
(S];()Kerh, with s’l} > 2k —1/2 for all K € T,,. Then, there exists a 2y , € Vp, p, p 22k —1,
and a constant C, independent of uy, and hg, but dependent on masz’;(, such that for
each K € Ty, each nonnegative integer q <2k — 1, and each multi-index p with |f| = q,
we have

*—q
llu =zl < Chg Null g

ID* (u = zem)l 20Ky < CHE 2 |jul] (3.65)

HV/;((K)’

where t’,‘( =min{p+ 1,m+ 1, s’,‘(}. Furthermore, under the domain and mesh hypotheses
fork=1,if u e H"(Q;Ty), s1 = (s}()KeTh, with s}( > 5/2, for all K € Ty, then (3.65)
holds for <2 <p.

Proof.  We will first discuss how we will obtain the second bound of (3.65). Letk € {1,
2}. We either have that ¢ < 2k — 1 is a nonnegative integer, and tk —q > 2k—1/2—q > 1/2,
or we have that g <2 <p, and t& —g = min{p+ 1,m+ 1,5k} —qg > 5/2—2 = 1/2. Thus,
under the hypotheses of the lemma, for k = 1, 2 we have that & — g > 1/2.

Since the family of triangulations is regular of order m, it follows that for any f such
that || = g, and any v €V}, p, that Df(u—v) e H’ﬁ‘q(l(). In particular, t’;( —qg>1/2.
Thus, we may apply the trace estimate (3.42) with rg = tﬁ — ¢ > 1/2, obtaining

1D e = V)llar) < Chig (D (= Iz + 11D (=) o).

Let us assume that there exists a z;, € V}, , satisfying the first estimate of (3.65). Then,
setting v = z;, above we obtain
-1/2 r
1D (e = 2l 2oy < Chig (D = 2l 2exy + hE 1D = 2 ey
< Ch 2 Null oy + 1 1D (= 2 i) (3.66)

Thus, to obtain both estimates of (3.65), it suffices to prove that the there exists az, €V, ,,
such that the first estimate of (3.65) holds, as well as the following:

|t = zn oy = |1 = znl ey < CHE™ T ull sk iy - (3.67)
Since, applying the above estimate to (3.66), and noting the factor A;¥ in the second
inequality of (3.66), we obtain the second estimate of (3.65). Note that we already have

such bounds in the case that s is an integer, and as such, we shall assume from this point
on that sy € N.
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We will now prove the first estimate of (3.65). Let § satisfy || = ¢, and let K" be a
fixed reference simplex. Then, from (3.14) we obtain

IDP(u — 2| 12x) < |t = znl ey

q
B 112111 T N12g-D1n o
< CldetBe|"IBMT Y. 1Bl 910 = 2l ik,
Jj=min{1,q}
q
< C(K*, 0)|det B 2B T Y, 1Bk = 2 |k (3.68)

Jj=min{1,q}
We take the function zj, € V;, ,, defined as follows: z;|x = I,u|g where IT;, is the local
interpolation operator, given by (3.63). Due to (3.62), this operator reproduces polyno-
mials in PP (I? ), and so we may apply Theorem 5 of [42] in conjunction with Theorem 1.8
of [43] (applying Theorem 1.8 of [43] allows us to consider noninteger Sobolev spaces
when applying the Bramble—Hilbert lemma), obtaining for min{1, g} <j<g

" = 2wy < lu” Zh”HK(K* < C(K7, 6)|M|HK(K) (3.69)

where by assumption & > ¢ (note that the final inequality follows from a scaling argument
similar to the one used in estimate (3.43), noting that K~ and K are affine equivalent, and
the mesh is shape regular). We now decompose tx = £ + ri, where £ ¢ > k is an integer,
and r¢ € (0, 1). We see that

_ |D7KG(R)) — D KUR,) [ DIk
| |Hf1<+'1<(1<) - = |

2
| I FaFe |’x‘l _§2|d+2r,( H’K(K)

H'k (K)

Recalling formula (3.59), and applying the triangle inequality, we obtain
D %8 e ) < Z (D'uoFg) ) ca H (D'Fy)™

a€E({ly, i) I=1
We now apply (3.64) to the above estimate, obtaining (noting that K is contained in the
unit ball, and thus diam(K) < 2)

HK(K)

‘k

Y [J@'Fo"

a€E(ly,i) =1

tx
DT e 3y < Cdo1) Y

i=1

|DlquKlHrK(1?)

LK)

Ck
Y, [J@Fo"

a€E(£y.i) =1

Ck
+Cd,r) ),

i=1

ID'uoFll az=T1 +To.  (3.70)

CO,I(]/})
By (3.9), and the fact that the triangulation is regular of order m>k+1 (and that
Nolx<tx<m+1,s0 x <m), we estimate T as follows

‘k

fK
T, < CZ Z C“H ||BK||I“1|D'“°FK|H'K(K) < CZ ||BK||fK|DlquK|H,K(K) (3.71)
i=1 a€E({,i) =1

For the second term, we see that

fl(
T,<C Z Y (H(DIFK)“') 1D uoFll,s z,

i=1 [|a€E(¢.i) =1 L“(IA()

Cx Cx
=C 2 Z D <H (DIFK)“’) ID'uoFkll o) (3.72)
=1

i=1 a€E(¢.i) L=(K)
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Since the triangulation is regular of order m >k +1 (and £x + 1 <m+ 1), applying (3.9)
above yields the following for a € E(¢k, i)

fl( f[( fK
D (H (DIFKW) = | X o@'Fo™ [T @Fo
=1 L=®) =1 j=1g#l L=®)
Cx Cx
< C(d, k) Y asupl| D Fx®llsup D" Fxk®[I“~" [ supllDFx®I%
=1 ek 3ek j=1j#1 %€k
fK fK
<C Y all Bl IT 1Bkl
I=1 j=1j#l
Cx Cx

< C Y ol By ||+ 10~k = || By ||+ Y g = CillByl|'*x. (3.73)
=1 =1

Applying (3.73) to (3.72) gives us

‘x ‘x
Ty<CY i D calBel"*[ID'uoFxll oz, < CIBill™* Y ID'ucFll,2 z,- (3.74)
i=1 a€E(fy.i) i=1
We now apply (3.71) and (3.74) to (3.70), obtaining
‘x
DY %0ty 2y < CIUBKII® Y 1D u0Fk |y 2, + IBID w0kl 2 - (3.75)

i=1
Applying the change of variables formula in the L?>-norms in (3.75), and the scaling
argument (3.45) and (3.46) to the |DiuoFx| Hrk (R term for i = £ (noting that this argu-
ment is valid for any rgx € (0, 1), as long as the function has H'«-regularity) in (3.75), in
conjunction with (3.28), we obtain

£x—1
N Cxtre—d]2 ¢ i
|D "M|Hr,((f<) S Chgt® otll gy i) + Chig Z |Dl”°FK|HrK(;Q
i=1
-1
ty—d/2 Z, i
< CHE P llulle iy + ChiE Y ID'UOFk |y - (3.76)

i=1
where the constant C is independent of &g and the choice of K € 7;, (note that we have
utilized the continuous embedding H*x (K) C H'c(K), where the constant in the embed-
ding only depends upon d and rg, due to Proposition 2.1 of [44]). We note, however, that
the terms of the sum on the right-hand side of the final inequality of (3.76) are not present
in the H'’x-norm. Furthermore, for 1 <i < £k, we note the following:

\D'UoFl e 2, < Clo KD = Mg, (3.77)

for any M € [P*(K #)dimD'0) \where the first inequality follows from a scaling argument,
and the fact that the mesh is regular, and the final equality holds due to the fact that
constant functions are in the kernel of |-|5-. We now use the fact that the embedding
H'(K*) C H'x(K*) is continuous, obtaining

|DiM°FK|Hr1<(f() <C(K*,0,d,r%) inf  |(D'w)* = Mgk
Me[IPO(K*)]dim®D'w)

< C(K*,0,d,rg)|D'uoFg| s (3.78)
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where the penultimate inequality follows from an application of Theorem 1.8 of [43], and
the final inequality follows from the fact that the mesh is regular.
Thus, we obtain

£p—1 £r—1 -1

—d/2+1
D IDuoFkl ez, < C Z ID'uoF |z, < Chg'"** Z |D'ut] i i)
i=1 i=1

Applying the above to (3.76) gives us

fe—1
d d K d
AN x—3 Cx+l1-= . te—2
ID"%Ul i i) < Chg *llullmxw) + Chy' 2 Z ID'uliky < Chg * llulle k- (3.79)

i=1

Finally, applying (3.79), (3.69), and (3.28) to (3.68), we obtain

q
- 2(q—j) .t ty—
IDP(u = z)liey < Chi? Y IR il ey < CHE ™ ull o
Jj=min{1,q}

which is the first estimate of (3.66). Estimate (3.67) is obtained in a similar manner,
utilizing (3.13). n

3.7 | Discrete Poincaré-Friedrichs’ inequalities

Lemma 3.43 (Discrete Poincaré—Friedrichs’ inequality). Assume that {T}, };, is regular
of order 2 family of triangulations, and let v € V}, ,. Then, the following inequality holds

2 2 2 7-1 2
||v||L2(Q) <cC |V|Hl(g;7h) + Z ”uh”LZ(F) + Z hr I Huh]] ||L2(F) > (3.80)
Fe&! Feé&l

where the positive constant, C, depends only on the shape-regularity constants of the
mesh, d, and Q.

Proof. LetK € Tj, and take v € V), ,. We see that

/|v|2 /V (xvz)—ZVZx,Dv< </ (xv?) - naK+/f|v|2+22x |Dv|2>

subtracting (1/2) [ xv? from each side and multiplying by 2 yields

d
2 2 2 2
<= /(xv)-n,;K+2 x; D[~ ).
A 2

Summing the above over all K € Ty, and denoting ng to be a fixed choice of unit normal
toF e 6',’1’17, we obtain

S g < f,( S Sl net 3 ZZ/Kx, |Dv|2>

KeT, KeT, i=1

<2 ( Y [0 - ne+ C©Q) z ||v||L2(F) + 20(9)2|v|§,1(g;m>, (3.81)

Feé"
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where C(Q) := max__gmax;=|,._4|x;|. Furthermore, we have that

xXEQ
2 Jelo?lne= X Q) VD - nr
Feé Feél
<2CQ) X KO ez N VT 2y
Feé!
Feél

for any 6 > 0. We then apply the trace inequality (3.41), obtaining

D / [o?] - e < CQ Y. Ghe) 1 [V] gy + 8C@) D V2 + kel VY[
F

Feg} Feé} KeT,

Applying the above estimate to (3.81), we obtain, for any 6 > 0,

Z ||V||i2(]() S % <2C(Q)2|v|%]l(gyrh) + FZ(:? C(Q)z((SZF)_l || HV]] ”%2(}7)
(= U

KeT, ,

+6C(d) T Mg, + 19V + €@ T ||v||§zm> . (3.82)
KeT, Feé&b

h

Choosing § sufficiently small, so that 26 C(d)/d < 1/2, subtracting (1/ 2)||v||%2 @ from each

side of (3.82) and multiplying by 2 we obtain the desired estimate. ]

Lemma 3.44 (Gradient Poincaré—Friedrichs’ inequality). Assume that {T},},, is regular
of order 2 family of triangulations, and let v € V), ,. Then, the following inequality holds

2 2 T-1 2 T-1 2
Vi) < Co|Wingr, + D Ae NIV - nel o + D R NIV |- (3:83)
FeE} Feg’

where the positive constant, Cp, depends only on the shape regularity constants of the
mesh, d, and Q.

Proof.  See [39], Lemma 3.44. ]

3.8 | Tangential operators and curved simplex curvature bounds

In order to appropriately define and bound the bilinear forms that define our method, we need to be able
to define tangential differential operators (i.e., operators that involve derivatives that are tangential to
the faces of the curved simplices K of the mesh), and bound the curvature terms arising in the bilinear
form (these curvature terms appear both on boundary faces, and on interior faces if the dimension
d>3).

Tangential differential operators. For F € £:?, denote for s > 1/2 the space of H*-regular tangential
vector fields on F' by Hy(F) = {v € H(F)? : v-np = 0 on F}. Below we define the tangential
gradient Vy : H(F) — H§‘1(F ) and the tangential divergence divy : Hy(F) — H*~Y(F), where
1 <5 <2 (note that in the case that 0Q is piecewise C™, with m > 2, we are able to consider 1 <s <m).

We see that F C 9K, for some K € T,. Since K is piecewise C? (see the proof of Lemma 3.46),
for a.e. x € 0K, there exists a neighborhood W, of x in 0K, sufficiently small to allow the existence of
a family of C? curves that satisfy the following: a curve of each family passes through every point of
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W, and the unit tangent vectors to these curves form an orthonormal system (assumed to be oriented
with respect to 77, where 7 is the unit outward normal to dK) at every point of W,. We take the lengths
s1, ..., Sq—1 along each of these curves, respectively, to be the local coordinate system, and denote ¢,
..., ty—1 to be the unit tangent vectors along each curve, respectively. In this notation, we have the
following for v: 0K — R%:

d-1
v=vr+@W-nn, vr:= Z(V .
Jj=1

For ¢ € C'(K), and y € C'(K)*, with y|ox = ¥, wjt;. we obtain

d-1
op_ op
Volox = Vid + =2n, Vid = ), =Ey, 3.84
Plox T+ " T$ pa as, " (3.34)

and
d—1

diviy = Vr-y =)

Jj=1

%

, 3.85
% (3.85)

which extend to ¢ € H°(K), s > 3/2, by density and the construction of the trace operator. Furthermore,
one can see that by rearranging the first identity of (3.84), that Vp =V — ﬁ% (and thus divry) is well
defined a. e. on 0K, and is independent of the choice of normal 7.

We approach (3.84) and (3.85) in the context of traces and Sobolev spaces, in the following
lemma. In particular we are able to decompose the Laplacian, A, in terms of the tangential Laplacian
At :=divt Vr, the mean curvature of the face, and first- and second-order normal derivatives.

Lemma 3.45 Let Q be a piecewise C* domain, and let {T;,} 0 be a family of meshes
on Q that is regular of order 1 and satisfies Assumption 3.21. Then, for any h> 0, for
each K € Ty, and each face F C 0K, the following identities hold:

tr(Vv) = Vr(zpy) + <TFaav> ng Vv e H'(K), s>3/2, (3.86)
nr
. ov d
tr(Av) = divpVy(tpv) + Hp | tp— | + 17— (Vv - np), (3.87)
dnp 6np

for all ve H*(K), s > 5/2, where ny. is a fixed choice of unit normal to F, H g := Vr - np is the mean
curvature of the face F, and tr is the trace operator from K to F.

Proof. Letus take U € C3(K), and for F € 8;;’1’, let u = U|r. Then, as the family of
meshes {7}, } >0 is regular of order 1, it follows that F C 0K for some K € 7}, where K is
piecewise C? (see the proof of Theorem 3.46). Thus, we may extend (without relabeling)
the unit normal to F, nr (note that this choice of unit normal is fixed, and that (3.86) and
(3.87) are independent of this choice), by np € C! (K) (note that the extension may not be
normal to the other faces of 0K, when restricted there), and so also define an extension
of the tangential gradient, V1 : C3(K) — C'(K)¢, by
VTL/==VIJ—'QE£HP
ongp

This can be rearranged to yield

VU = VU + ﬁnp.
dnp
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Upon restricting to F, we obtain

ou oU
(o) )], = o+ (&)

Thus, by density and the construction of the trace operator, this extends to u € H*(K),
s> 3/2, giving us

VU|F=VTUF+ =Vr

F

ng.

nelp = Vr(Ulr) + < 0U>
F

ong

F

(Vi) = Vp(epu) + (rﬁ”) nr, (3.88)
al’lp

which is (3.86).

For the identity (3.87), we follow a similar approach to [45], in which the statement is
essentially proven for d = 2, 3. Now, for x € F let us take a local coordinate system s, ...,
541, on a neighborhood W, of x in F. Expressing F locally as the graph of a C? function
¢, we see that

u(st, ..., 84-1) = U(s1, ..., 84-1, P(s1, ..., S4-1))-

Furthermore, let us assume that the coordinates have been chosen so that Vy¢(0) = 0
(denoting s’ = (sq,...,54—1)), so that the local coordinates {s’,s;} = {5, ¢(s')} are
tangent to the hyperplane {s; = 0} at x = (0, ¢(0)). Then, in W,, we have that
-1

0%u

d
divyVrtu = —,
VT ;as}

where, forj=1,...,d—1,

2
ou_ 9 (a(U( (s )))) i( i(s' ¢(S,))+ngd(S”¢(s,))>
J

ds? 95 \ s

= Uy(s', p(s) + 2 a"”ud](s (s >>+—¢Ud(s (s ))+<

J

f) Uadls', $(s),
Sj

where U;, Uj denote the first- and second-order partial derivatives in the j and j, k
components of U, respectively. Thus, at x, that is, at s’ = 0, we have

d—1

2

Moreover, at x, Ugy = 32—12], U; = —, and Zd ! a d’ = —Hp. Thus, at x,
g
2
AU = divyVru + Hpal + M
on nr 0nF

This decomposition is valid at any x € F, and so we obtain

*U
+ —
F 6nF

AU|r = divyVru + Hp U
a}’lp

*U
+7
F 6nF

—leTVT(UIF)+ Hr ﬂ
Fong

F F

Thus, by density, applying (3.88), for u € H*(K), s > 5/2, we obtain

()i’lF
which is (3.87). .

tp(Au) = divpVr(rru) + Hp <TF‘)”> + Tpﬁ(w - np),
F
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Lemma3.46 Let Q be a piecewise C* domain, and let {T;,} ;>0 be a family of meshes on
Q that is regular of order 1, and satisfies Assumption 3.21. Then, there exists a constant C,
depending on Q, d and the family of triangulations { T}, } 50, such that for E;;’b 5> F C 0K,
on F we have that

(VeI VinkVyw < C|Vv||[Vaw| Vv, w € HS(K), s> 3/2. (3.89)

Proof.  First, let us assume that F € 5,11’ . Then, since € is piecewise C?, FcT,CcoQ,
where I, is a C? portion of Q. It then follows that for a given F € &/, nf is of class
C'(F). For any two vector-valued functions &', &2 : F — R? tangent to F, it then follows
that

EY'VinE® < SuplanF(x)||§1||§2| < Suplanr @N&i &

xel’,

Thus, for an arbitrary F € &P,

(€)' Vrnpe® < max - sup|Venr, Wl 1&2] = @& l1&],
=1,..., xerl,

where the constant above depends on &, as the portions I',, are determined by Q. If F € &,
then we may express F locally as the graph of a function determined by one of the maps
Fx that make up the mesh 7,; we also have that Fx € C?, as the family of meshes is regular
of order 1. That is, since F C 0K for some K € T}, there exists a (straight) reference face F
such that F = F K(F ). Furthermore, there exists a straight approximating face F=F K(F )
(F x is the affine part of Fg), which provides us with a local coordinate system. As F
is flat, after a suitable change of coordinates, one has that Fc {(&,0) : ¥ € RI-1Y.
Furthermore, without loss of generality, we may assume that ' does not intersect F. Let
us denote ' = {x' € R%! : («,0) € F}. Now, defining @F, - F' - Rby

or, () = [Fkl?oFg' (,0), ¥ €F,

we see that F = {(x', o, (') : X' € F'}. Note that we have now shown that all F € E,’;b
are of class C2, and furthermore, for any K € T;, 0K may be expressed as the finite union
of the closures of F € é’,’;’b, and thus for all K € 7, 0K is piecewise Cc2.

Furthermore, expressing F as the zero level set of the function hpK(x’ ,Xg) = Xg4 —
@r, ('), we see that

o Ve Ve@r. =D (Vegr. =D
F= =- =X -
|VhFK| |(Vx’(pF,<9 _1)| \/1 + |er(pFK|2
T
Then, since Vnk = Vnl — npgﬁ, for any two vectors £!, £2:F — R? tangent to
g
F (with components fk, ,55, k = 0, 1), and hence orthogonal to ng, it follows

that ()T Vrnke? = (1T VnLE2. Furthermore, denoting 67:=1— 6, where §; is the
Kronecker-delta symbol, we see that

jd 0 -1 P, 0
SV o | + 1220k — (5 o ~ ba) X} o o

M = _gid k=1 ax,ox, ox
ox; (Ifoqu,<|2+1)3/2 '
and so
P or, 1 2
it Gk
ox; 0x
EH'vnpg = - < D2 or IIE"1E2).

|Vx’(pFK| +1
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One also has that

sup |} @, ()| < sup [|1D% (FxoF g ), 0 < supl|Di(FxoFgH (0

X’EF’ X’E?’ xeF
2 ~p—1\2
= sup||D"FgX)(By )l
xeF
< sup|D*Fx @B 1> = ¢2 < Cin,
xX€F

where the final inequality follows from (3.22), and Cj, is independent of both /, and
the choice of F, since the family of meshes is regular of order 1. Thus, defining
C:=max{C(Q), Ci, }. Forall F € 8,’,’;’, we have

(EY'Vrnpe® < ClEY|, (3.90)

on F, for any tangent vectors to F. Upon noting that Vtu, and Vv are tangent vectors to
F, we obtain (3.89). ]

Lemma 3.47  Assume that Q is piecewise C*, and let { T, } 0 be a family of meshes on
Q that satisfies Assumption 3.21. Then, there exists a constant C depending on the family
{Th} >0, d, and Q such that for any F € & b the following estimates hold on F":

sup|Hr(x)| < C(d)suprTnF(x)| <C, 391
xeF
Vr <er> < Czp(D)| + |zr(VV))), (3.92)
nr
|divy Vatr()| < C(lze(D*V)] + |7(VV))), (3.93)

forallve H(K), s> 5/2, where F C 0K, and 7 is the trace operator from K to F.

Proof. LetF € Si’b. Then, by definition, we see that

sup|Hp(x)| = SUPIVT np(x)| < C(d)ISUPVTnF(x)I (3.94)

xeF

Furthermore, let us take &', £2 € R?, and decompose them in terms of their tangential and
normal components, that is, & = (&X)g + (& Inp, k = 1, 2. Then, we see that on F

(EY'Vrn[e® = (&) Vinpéq < ClEplIER] < CIEIE, (3.95)

where the penultimate inequality is due to (3.90), as ()7 are tangent vectors. Since this
holds for all &!, &2 € RY, we deduce that sup,.;|Vrnk(x)| < C, which, combined with
(3.94) yields

sup|Hr(x)| < C(d)SUPIVTnp(X)I <C, (3.96)

xeF

which is (3.91). Then, by (3.87) and (3.96) we see that on F

av 02
|diveVezr(v)| = |7r(Av) + Hptp— Fom TF# < C(d)|7r(D*)| + SupIHF(X)“TF(V”)l
nr F

< C(lzr(D*V)] + [7p(VV))),
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which is (3.93). Finally, from (3.96) we obtain the following

ov
\V, A
TTF <anp>

which is (3.92). .

= |Vr(zp(DV)) - np + (Vng) - Vv| < C(Izp(D?v)| + |2r(Vv))),

4 | FINITE ELEMENT SCHEMES AND STABILITY ESTIMATES

We now provide DGFEMs for the approximation of solutions to (2.1) for k = 1, 2. For the case k = 1,
we will not need to alter the bilinear form A; : V;, XV, —» R, given by (2.29). However, as mentioned in
Section 2, obtaining an estimate in a Ha-type norm (given by (2.31)) in the case k = 2 does not seem
possible when considering curved finite elements, due to the form that the inverse inequality takes.
This means that we must define a different bilinear form, which relies on a discrete analogue of the
following identity

/Au Av = /Dzu : D*, Vu,v € HY(Q). 4.1)
Q Q

Indeed, assuming that 0 is Lipschitz continuous, the above estimate follows from an application of
integration by parts (twice), for i, j =1, ..., d, we see that for u,v € C*(Q)

/ dju oy = / oju vlnsal — / o Oy
Q 0Q K

= / Oju O3y — / [07u Opvlngal — ojw dpvlneal’l = / oju o3y, 4.2)
Q Q ’ Q

where the last equality is due to the fact that v|sq = djv|sq = 0 for j = 1, ..., d. Summing (4.2) over
alli,j=1, ...,d, we obtain (4.1). Furthermore (4.1) extends to u,v € HS(Q) by density, and, coupled
with the Poincaré inequality, allows one to prove that the biharmonic problem (2.1) (for k = 2) is well
posed in Hg(Q).

Let us define the bilinear form C:V, ; X V; , — R as follows:

- N AN L NN AW
cts = 3 artonn [ )+ (e (G - (5] ), = Coe (5 ) ),

+ Z (Qr(Vrlun, [Vrval) + Qr({Vuy - npng, [Vevill Ve, un, vy € Vi, 4.3)

Feg,

where nr is a fixed choice of unit normal to F, Hf := V- np, and Q@ : R x R? — R is defined by

Qr(&1,&) = E[Vnié,  &,6 € R 4.4)

We now note the following consistency identity from [39] (c.f. [39], Lemma 4.1).

Lemma 4.1 Assume that Q is piecewise C*> and that (Ty)nso is a regular of order 1
meshes on Q satisfying Assumption 3.21. Then, the bilinear form C:V, ,x V), —R
satisfies the following consistency identity:

D (Aw, Avy)k = Y (D*w, D>k + Cw,vp),  Vw € HY(Q) N HH(Q), Vv € Vay.

KeT, KeT,
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4.1 | Numerical methods

We are now ready to provide the finite element schemes for the approximation of solutions to the
Poisson, and biharmonic problem (2.1) for k = 1 and k = 2, respectively. Note that in the sequel we set
Vi, n ="V, p, Wwhere we assume that p > k.

4.1.1 | Poisson problem

One seeks u;, , € V5, such that

Ai(upp,vp) = 2 (Vuip, Vvn)k + Bi(uijp, vi) + Bi(vp, urp) + Ji(uip, vi) = (), 4.5)
ke,

for all v, € Vy_, and we recall that By, J; : Vi , X Vi, — R are defined as follows:
Ouy, np
Bitupv) == 3 [ ({5 Wl Tioovi) = Y =Ll [val)re
Fee’ F F Fegl’ hr

where n is a fixed choice of unit normal to F, and 7. is a positive face dependent parameter.

4.1.2 | Biharmonic problem

One seeks u,, , € V,, p, such that

Ar(ua gy, vp) = Z (D*uz j, D*vi)k + Cluaps vi)) + COvpy ) + Ba(uz s vi) + Ba(vis i)
KeT,

+ o(upp,vi) = €(v), Vv € Vo, (4.6)

where By, J2: Vo 5 X Vo, > R are defined as follows:

Baunvi) = 2, / <<a(f”)>> el = (A l]jh”

Fe&?
n? n; ny
Jo(up, vp) = Z %( (unll, [vill yr + <E([Vup - nell, [Vvn - nell Y + =2 [Vl [Voval e,
Feg F hr hr

where 17, 7, 13 are positive face dependent terms to be provided, and C: V, ;X V5, — R is defined
by (4.3). Note that (4.6) is obtained by replacing ZKGT,,<AM2J!’ Avp)g with ZKGT,, (D*us, D*vi)g +
C(uz.p, vi) + C(vi, ua ), and including a tangential gradient penalty term in J5, in the definition of A,
given by (2.29), and that the C(v;, uz, 1) term results in A, defined by (4.6) being symmetric (while
preserving the consistency of the scheme).

Remark 4.2  (Comparison to the method of [21]). In the method given by (4.6), we have
taken V;, to be the space of discontinuous piecewise polynomials. However, if we instead
use the space Vj . :== Vo N H(l) (€2), and assume that €2 is polygonal, then the scheme (4.6)
coincides with the C%-interior penalty method proposed in [21] (without the second-order
term, see (4.15) of [21]).

4.2 | Stability estimates

We now provide stability estimates for the FEMs (4.5) and (4.6), which yield existence and uniqueness
of a numerical solution. Let us recall the definitions of the norms that the stability estimates will hold
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in. We define the norms ||-||5, x : Vi » = [0, 00) as follows:

vallig = |Vh|%-1A(Q;Th) + Co (Wi Vi)

for positive constants Cx_; are to be determined.

Remark 4.3 (Trace estimates for jumps and averages). We note that for F € &}, v, €
Vin k=1,2, we have that F = K+ nK~ for some K*, K~ € Tj, and denoting v;,—" =y &
that !

(D) = E(D"vﬂp + D% |p) and [D*v] = D*Vi|r — DV} |F,

where the multi-index «a satisfies | | <m — 1, assuming that Q is piecewise C". Then,
momentarily denoting {-} to be either the jump or average operator, it follows that for any

s>0
2 th”{Dth}”iz(F) <2Ctr Z Z h%(hl_(l ”Davlliz(m + hK|DaV|12r-11(K))
reg’ Fegl?KeT, 1 Feok
< CrC(d) Y W (hg 1DV gy + i IDV 3 ).
KeT,

In the sequel we shall utilize the above estimate several times, for various orders of «, as
it simplifies the exposition of the proofs.

Lemmad4.4  Assume that Q CRY is piecewise C2, and that (T;)ps0 is a regular of order
1 family of triangulations on Q satisfying Assumption 3.21. Then, for any k| € (0, 1) there
exists a constant o1 > 0 depending on k1, Cr;, Cy, and d, such that if

ny >0 YFeE?, 4.7)
then
Apv) 2 k1lvalliy Yvn € Vi (4.8)
Thus, there exists a unique uy , € V|, that satisfies (4.5).

Proof. Utilizing the trace and inverse estimates (3.41) and (3.47), as well as the
Cauchy-Schwarz inequality with a parameter, we obtain for any 6; >0, and any v, € V1 _,,

1 -1\7-1 2 7 vy 2
Al(Vh’ Vh) > |Vh|?‘11(9;7h) + Z |:(’1F - 51 )hF ” [[Vh]] ”Lz(p) - 51]’1}:‘” <<i>> ”Lz(p)]

i.b
Feé]

1 -1y7-1 2
> Ivhl%.ll(g;n) - 51 CTrC(d)KZT [|vh|?.11(K) + hKlvhlilZ(K)]_FFzgib(nF - 51 )hF ” [[Vh]] ||L2(F)
€7, es)

> (1 - 51(1 + CI)CTrC(d))lvhlig.]l(Q;Th) + Z (’1117 - 51_1)’}7;1 ” [Ivh]] ”iz(p)-
Fee?
For a given x;€(0, 1), one can choose 6; sufficiently small, such that
1-6,(1+CpC1:C(d) > k1, which yields

2 1 —1\7—-1 2
A1y, vi) > KllthHI(Q;Th) + Z (WF - 51 )hF Il HVh]] ||L2(F)'
Fe&l’

Then, if 5} satisfies (4.7) with o1 > 67!, setting C..; := (61 — 67')/Kk1 > 0, we obtain

2
Ar(vp, vi) 2 K1 llvally g
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Lemmad4.5 Assume that Q C RY is piecewise C*, and that (Ti)ps0 is a regular of order
3 family of triangulations on Q satisfying Assumption 3.21. Then, for any i € (0, 1) there
exists a constant o, > 0 depending on k,, Cr, Cy, Cp, and d, such that if

nnp >0 VF e EP, 4.9)

then
A, vi) 2 1olvallis Vv € Vo, (4.10)

Thus, there exists a unique uy, ;, € V. j, that satisfies (4.6).

Proof. Utilizing the trace and inverse estimates (3.41) and (3.47), and the
Cauchy—Schwarz inequality with a parameter, we obtain for any 6, > 0, and any v, € V5 ,

)

LA(F)

+ S2hp | AV I

2
9
ai’lp

L2(F)
<6((1+ CI)CTrC(d)(lvhﬁil(Q;Th) + |Vh|%.12(9;771))

2
] , @11

L2(F)

1 ~,
[B2(vy, vi)| < 3 Z [52}113?

Feel
d

+ ) N val 1725 + (B277) ™!

v

1 ~_ ~_
+ 2, 2 th3|| [vall ”22(1?) + hi!

i.b
Feé!

al’lF

Furthermore, a further application of the Cauchy—Schwarz inequality with a parameter

yields
2
o2
L2(F) al’lF 12(F)
2
()
al’l}: LZ(F)

+ 3” [[vTVhH Il%Z(F)] .

dvh

+
al’lp

[Cvh, vi)| < % ZhF lllATVhIILZ(F) + M}
Feé"

HIVAE o, <||vT<<vh>>||iz(F> +

1 -1 ()Vh
2 N 2| | 2R
25, Z F l ‘ ”anFH
Fe€l
Then, applying (3.91)—(3.93) in combination with the trace and inverse estimates (3.41)
and (3.47) to the above estimate, we obtain

|[Cvp,vi)| < 62(1 + C[)CTTC(d)(lvhlill(Q;Th) + |Vh|[2.12(g;7h))

2
ovy,
25, Fz;f,hF l ”anF”
From (4.11) and (4.12), and the discrete Poincaré—Friedrichs’ inequality (3.83) it then
follows that for any 6, >0 and any v, €V,
A vi) 2 hlipary = 21B0m vi)l = 21Cs, 1)
> (1 = 4(1 + CNCrC(d)8) il jp oy, — 41+ CNCrC(@)8 Vil o7

Z6hF l ”g;’;” 2

F glb

2

L2(F)

+ 31[Vrval IIiz(F)] ) 4.12)
L2(F)

2 7 — 2
+ | [[VTVh]] “U(n] + 2hF3” thﬂ ||L2(F)
L2(F)
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2
()Vh 774
+ 2 F||nvhu||Lz(F>+~ ”a ” + VTl
Feé"”h MMl

> (1= 4(1 + (1 + Cp)CrC()3) Vil o7

1 4(1 + Cp)C1Cpb, 2
+ - - = Il [valll
Z (hS 52]1% hF H hl] LA(F)

Ovh
an

1 3
+ ) = (r,; -5, A c,)cTrcp(sz)

1
+ Z ]’l (’7}-’ - 5) I HVTVh]] ||L2(F)

Then, for any given k; € (0, 1), we may choose &, sufficiently small so that

L2(F)

1 -4+ C)(1 + Cp)CrC(d)d2 2 K2,

and, for such 6,, if r]%, n},nﬁ satisfy (4.9), with o, > 3/65 +4(1 + C;)CrCpé,, setting
Cx 2 :=(02— ((3/62) +4(1 + C;)C1:Cpéb7)) k> 0, we obtain

A vi) = k2 llvallf

5 | ERROR ANALYSIS

We now use the consistency of the two schemes to prove optimal a priori error estimates for the numer-
ical solutions uy, , k = 1,2, assuming that Q is piecewise C"*!, m € N, and that u; € H5(Q)NH*(Q)n
H%(Q; T,), where s, = (s’,})KeTh and each s’,‘< > 2k, are the true solutions of (2.1) for k = 1, 2. That is,
we prove the following estimate

12
2k~
Upp — U <C s 2 s
et — uellng < k< Z X || k”H (K)>

KeT,

where zJ,‘( =max{p+1,m+ 1,s’,‘(}.

Let us first recap on the approach we shall take, since this will in fact shorten the upcoming proofs.
Let us take zx, , € Vi 5, k =1, 2 to be arbitrary, denoting &y j := ux — 2z, 5 and Wy j, = 2, n — Ug, n, WE S€E
that

leex = wepllng < Nknllng + lwinllng.

Let us first estimate [|x, ,|n, x- Due to the interpolation estimate (3.65) (since the choice of zx_ , € Vi 1,
is arbitrary) one can see that

NEenllhy = |§kh|Hk(g 7y F CoadiCiens Skn) < CZ h K||Mk||2 + CoiJiCip, Erp).  (5.1)
KerT,

Since there are constants C, , k = 1, 2, satisfying n}p < C, and n’F <Cyp,j=2,3,4forall F € Si’b,
we have that

1
Jiiméip) = Z Zl” (141 ”%2(17)

FegtF
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T—1,7-1 2 2
<CCre D Y R R NGl + k1€l k)
Feg}’;bKEﬂ, 1FCoK

< Gy CreCrCd) Y PN allZge) + 1E0al7 k-

KeT,
&
6np

< G, CrCrCd) Y, it leanllogy + P 1E2ul 2 ) + 1E2n 1310
KeT,

Furthermore,

’ np 2
+ = ” [[VTéz,h]] ||L2(F)
L2(F) F

2 3
n n
hnen= Y, =l + 3

FeerF F
)

Thus, from these two estimates, and an application of the interpolation estimate (3.65), we obtain

k
T ) < CrCreCrCd) D Y ™ 18l
Jj=0 KeT,

k
2j—k) , 25— 2
< CCCreCrCd) 3 X ™ Ml
Jj=0 KeT,

21";(—2/( 2
<cc, CTrCTC(d)Kg; e el (5.2)
h

Applying (5.2) to (5.1) and taking square roots, we obtain

1/2
2t/;(—2k 2
knllni < ck< 2 el m) , (53)

KeT,

and so, it remains to estimate ||y, p||s x, Which relies upon the consistency of the schemes, and will
be the objective of the next two proofs.

Lemma5.1  Assume that Q C R? is piecewise C"™* ! for some m € N, and that (T is
a regular of order m family of triangulations on Q satisfying Assumption 3.21. Moreover,
assume that u, € H(l)(Q) N H*(Q) N H%(Q; T,), where s; = (s}<)1<e77x and each s}( >2,is
the true solution of (2.1) for k = 1. Furthermore, let 11}F satisfy (4.7) such that (4.8) holds
for some k1 € (0, 1). Then, the following estimate holds

1/2
)
le1, = urllny < Cl( Z hkt'( “uk”;}((m> , 5.4

KeT,

where 1}, == min{p + 1,m + 1,5} }, u1, € V1, is the unique solution of (4.5), and the constant C;
depends upon the shape-regularity constant of the mesh, C;, Cr., Cr, d, s}o and p, but not upon hg.

Proof.  Letus take z; € V|, to be arbitrary, denoting &, :=u; —z; and yp, ==z, — uy_p,
we see that

leer — urpllng < Wenllnt + llwnlln- (5.5)

Furthermore, from (5.3) for k = 1, we see that

1/2
2L -2
”§h||h,l < Cl( Z th ”uk”:x;f(K)) > (56)

KeT,
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and so it remains to estimate |yy||; 1. Due to the stability estimate (4.8), and the
consistency of the scheme, since y;, €V j, we see that

lwallz ) < k7 A1(wn, wa) = k7 AL(En wi)- (5.7)

Then, applying the Cauchy—Schwarz inequality for vectors in RY, estimate (5.2), and the
interpolation estimate (3.65), we obtain

ArGnyn) = Y (Y YY)k + Bi(Enwi) + Bi(wi. &) + 11 (G wn)
KeT,

< \&lm@rylwilm@r) + B1(n, wi) + Bi(wn, &) + J1(En, a2 (v wi)'?

12

—1/2 211 -2

< Cmax{l,C*J/ }< ZhKK ||uk”12-1“}<(1<)) I€rlln1 + B1(En, wn) + Bi(wn, En).
KeT,

We again apply the Cauchy—Schwarz inequality for vectors in R", estimate (5.2), the
interpolation estimate (3.65), the trace estimate (3.41), and the inverse estimate (3.47)

yielding
5 1/2 1/2
~ 0 ~_
Bi(&nyi) + Bi(wi &) <[ Y B <<afh>> X R vl 172,
Fe&l F L2(F) Fee?
5 1/2 1/2
7 oy 7-1 2
+ thF <<anp>> i thF Il €] ||L2(F)
Feg& L2(F) Feg)

(ST

1
2
211 -1 1 1
< C< Z hi* ||M1||121;;((K)> Ji(wn, wi)? +< Z |Wh|%,1(,<) +h1<|ll/h|f,z(,<)> J1(Gn, &n)2

KeT, KeT,
1

2
211 -2
< K 2 )
_C<ZhK IImIIHSkK(K)> lwallna

KeT,

It then follows that

7
2112
A1p ) < C1< Z he* llul”i‘ﬁ(x)) [l

KeT,

Applying the above estimate to (5.7), we obtain

2 -1 232 2
<k C Zh Nu ' .
Iyl < 1< Eal ) vl

KeT,

P

Dividing through by ||y ||5, 1 above, and applying the result in conjunction with (5.6) to
(5.5) yields the desired result. [

Lemma 5.2  Assume that Q C R? is piecewise C"* ! for some m €N, m> 3, and that
(Tinso is a regular of order m family of triangulations on Q satisfying Assumption 3.21.
Moreover, assume that u, € Hé(Q) NH* Q) N H%(Q; Ty,), where s, = (s%()KeTh and each
s%{ > 4, is the true solution of (2.1) for k = 2. Furthermore, let 17%, 1113;, nfp satisfy (4.9)
such that (4.10) holds for some x, € (0, 1), and assume that p > 3. Then, the following
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estimate holds

1/2
2
||u2,h—u2||h,zsc2<2h,ék leell? 2 m) , (5:8)

KeT,

where t%( = min{p + 1,m + l,s%(}, ury € Vyy is the unique solution of (4.6), and the
constant C;, depends upon the shape-regularity constant of the mesh, Cp, Cy, Cry, Cr,d,
si, and p, but not upon hg.

Proof.  Let us take z;, € V5, 5, to be arbitrary, denoting &, := up — z, and yp, :== 25, — uz, ,
we see that

ez = uopllny < Wenlln1 + llwnllnz- (5.9)

Furthermore, from (5.3) for k = 2, we see that

1/2
212 — 2
< K 1
1l _Cz< > i Ml (K)> , (5.10)

KeT,

and so it remains to estimate ||y|s 1. Due to the stability estimate (2.22), and the
consistency of the scheme, since y;, € V;, j, we see that

lwalli 1 < &3 As(wn, wa) = k5 Ax(En i) (5.11)

Then, applying the Cauchy—Schwarz inequality for vectors in RY, estimate (5.2), and the
interpolation estimate (3.65), we obtain

Ar(&p,yp) = 2 (D*&, D*wn )k + C(&nwi) + CQyin, &) + Ba(Eny wi) + Ba(Wi, &) + J2 (& wi)
KeT,

1 1
< el Wil e, + CCns wi) + Cwn, §n) + Ba(En, wi) + Ba(wins &n) + J2(Ens E1)2 2 (Wh, win)?

12
2
< Cmax{l,C, 1/2 (thK [|u 2||2 ) 1€n 11k

KeT,
+ C(&n win) + Cyin, &) + Ba(&n, W) + Bo(win, Ep). (5.12)

Furthermore, applying the Cauchy—Schwarz inequality for vectors in R", the interpola-
tion estimate (3.65), and estimates (3.91)—(3.93), we obtain

dy;

al’lp

{am)
()

+ Rl VnH e (uvT«@h»uLz(F) +

2 2

CEnwn) <| D el ArlaN g + hrHE

()

LX(F)

Z 2h;!

L2(F) ) \Feél

L2(F)

1

2 2
LZ(F))

+ th

Fe&"

1
2

| 3 30 1 [Vawnl 122,
Feé&l

1/2 1/2
2 — 2
<C(Zh il ) L) < CC 1/2<Zh"< luall? ) yallnz. (5.13)

KET, KeT7,
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We then apply the Cauchy—Schwarz inequality for vectors in RV, the interpolation esti-
mate (3.65), the trace estimate (3.41), the inverse estimate (3.47), estimates (3.91)—(3.93),
estimate (5.2), and the Poincaré—Friedrichs’ inequality (3.83), yielding
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Now, by the Cauchy—Schwarz inequality for vectors in R", and the interpolation estimate
(3.65), we find that
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KeT,

Finally, after applying the Cauchy—Schwarz inequality for vectors in RY, the interpolation
estimate (3.65), the trace estimate (3.41), the inverse estimate (3.47), estimate (5.2), and
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the Poincaré—Friedrichs’ inequality (3.83), yielding
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Applying estimates (5.13)—(5.16) to (5.12), and applying the resulting inequality to (5.11),

we obtain 1

3

2 -1 22 -4 2

lwallha < 53 C2< > hk ||M2||H,V§((K)> lwallnz-
KeT,

Dividing through by ||y ||, » above, and applying the result in conjunction with (5.6), to
(5.9) yields the desired result. n

6 | NUMERICAL RESULTS

A discussion on the implementation of the numerical methods in Firedrake [46, 47] is provided in [39].

6.1 | Implementation

Software and code: The experiments in this section have been implemented in the most recent
version of the Firedrake software [46, 47] (as of July 3, 2018), which interfaces directly with
PETSc [48, 49] running through a Python interface [50, 51]. There are two Firedrake scripts,
Curved-Dirichlet-DGFEM.py (applicable to (4.5)), and DGFEM-curved-biharmonic.py (applicable to
(4.6)) used to generate the experiments of this section is available in the Github repository: https://
github.com/ekawecki/Firedrake_Poisson_Biharmonic.

6.2 | Experiment 1
In this experiment, we consider the Poisson problem (2.1) (for k = 1), with Q = {(x;,x;) € R? :
x? +x3 < 1}, and right-hand side function f chosen so that the true solution

1 .
u(xy,xp) = 1 sm(ﬂ(x% + x%)).

We took the penalty parameter 5. = 10p? (obtained experimentally), where p is the polynomial degree
of the space V)" For each polynomial degree p = 1, 2, 3, we successively refined the mesh qua-
siuniformly. We observe the predicted optimal convergence rate ||u — uy|[n; = O(’), as well as the


https://github.com/ekawecki/Firedrake_Poisson_Biharmonic
https://github.com/ekawecki/Firedrake_Poisson_Biharmonic
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TABLE 1  Error values in the ||-||, ;-norm and EOCs for Experiment 1

Mesh size p=1 p=2 p=3

0.4981 1.44 3.91x 107! 1.14x 107!

0.2828 8.19x 107! (1.00) 8.38 x 1072 (2.72) 421x1072 (1.76)
0.1627 4.20x 107! (1.21) 4.76 x 1072 (1.02) 8.85x1073 (2.82)
0.0973 2.29x 107! (1.18) 1.70x 1072 (2.00) 1.46x 1073 (3.51)
0.0508 1.09x 107! (1.14) 4.55%x 1073 (2.03) 1.97x 1074 (3.08)
0.0269 5.62x 1072 (1.04) 1.22x 1073 (2.06) 2.59% 107> (3.19)

TABLE 2 Error values in the ||-||;2q)-norm and EOCs for Experiment 1

Mesh size p=1 p=2 p=3

0.4981 1.24x 107! 3.30x 1072 4.67x1073

0.2828 5.17x 102 (1.55) 2.95x 1073 427 1.32x 107 (2.24)
0.1627 1.70x 1072 (2.01) 1.11x1073 (1.77) 1.57x 1074 (3.84)
0.0973 574% 1073 (2.12) 2.19% 1074 (3.16) 1.44% 1075 (4.65)
0.0508 1.38x 1073 (2.19) 2.96x 1073 (3.08) 1.05x 1076 (4.04)
0.0269 3.70 x 10~ 2.07) 4.10% 10°6 (3.10) 7.04 x 108 (4.24)

optimal rate |lu — up|| 2 = O(h"*1), with the true values and EOCs in brackets provided in Tables 1
and 2, respectively.

6.3 | Experiment 2

In this experiment, we consider the biharmonic problem (2.1) (for k = 2), with Q = {(x;,x;) € R? :
x? +x3 < 1}, and right-hand side function f chosen so that the true solution

u(xi, x2) = sin®(z(x? + x3)).

We took the penalty parameter 7z = 0.5p° for p = 2, and n2 = 10p® for p = 3,4, we also took 73, n} =
2p* for p =2, and n;, nj- = 10p? for p = 3,4, where p is the polynomial degree of the space V)™ (the
order of these parameters with respect to p were guided by the choice of penalty parameters in section 6
of [34]). For each polynomial degree p = 2, 3, 4, we successively refined the mesh quasiuniformly. We
observe the optimal convergence rate ||u — up||2 = O(h*~') for p = 2, 3, 4, confirming the estimate
of Lemma 5.2. We also observe the optimal rate |u — u;| 1,7,y = O(F), for p = 2, 3, 4. We provide
the error values, and EOC:s (in brackets) in the |||, 2-norm and |-|z1q;7,)-seminorm in Tables 3 and
4, respectively.

7 | CONCLUSION

In the setting of curved finite elements, we have successfully reviewed several key estimates from
theory of finite elements on polytopal domains, such as trace estimates, inverse estimates, discrete
Poincaré—Friedrichs’ inequalities, and optimal interpolation estimates in noninteger Hilbert—Sobolev
norms, that are well known in the case of polytopal domains. Furthermore, we have proven curvature
bounds for curved simplices, and utilized all of these estimates by providing stability, and a priori error
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TABLE 3  Error values in the ||-||;, ,-norm and EOCs for Experiment 2

Mesh size
0.4981
0.2828
0.1627
0.0973
0.0508
0.0269

TABLE 4  Error values in the || 41 q.7,)-seminorm and EOCs for Experiment 2

Mesh size
0.4981
0.2828
0.1627
0.0973
0.0508
0.0269

p=2
1.05 % 107
7.33x 10!
4.74x 10!
2.60x 10!
1.28 x 10!
6.61

p=2

3.89
2.78
1.49
6.07 x 107!
1.67x 107!
4.71x1072

(0.63)
(0.79)
(1.17)
(1.09)
(1.04)

(0.60)
(1.12)
(1.75)
(1.98)
(1.99)

p=3
5.62x 10!
2.57x 10!
7.76

3.51
9.31x 107!
2.75%x 107!

p=3

4.43

1.26

1.68x 107!
4.97x 1072
6.81x 1073
9.87x 1074

(1.39)
(2.16)
(1.54)
(2.04)
(1.91)

(2.22)
(3.65)
(2.37)
(3.06)
(3.03)

p=4
3.22x 10!
6.38

2.57
5.38x 107!
7.44x1072
1.05x 1072

p=4

1.96
1.61x 107!
4.83x 1072
5.97x1073
4.12x10™*
2.86x 1073

WILEY——*

(2.86)
(1.65)
(3.04)
(3.04)
(3.07)

(4.42)
(2.18)
4.07)
@.12)
(4.19)

analysis, of the IPDG method for the Poisson problem, originally introduced in [26], and for a variant
of the h-version of the ~ip-DGFEM for the biharmonic problem introduced in [34].

In Section 6, we have provided numerical experiments for both the Poisson and biharmonic

problem, where the domain is taken to be the unit disk. We implement a polynomial approximation
of the domain, validating the a priori error estimates of Lemma 5.1. The estimates proven as part of
this paper should serve useful for future applications to second- and fourth-order (as well as higher
order) elliptic problems on curved domains, in particular, nondivergence form second-order elliptic
equations.
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