Ereira, S;
Hauser, TU;
Moran, R;
Story, GW;
Dolan, RJ;
Kurth-Nelson, Z;
(2020)
Social training reconfigures prediction errors to shape Self-Other boundaries.
Nature Communications
, 11
, Article 3030. 10.1038/s41467-020-16856-8.
Preview |
Text
s41467-020-16856-8.pdf - Published Version Download (2MB) | Preview |
Abstract
Selectively attributing beliefs to specific agents is core to reasoning about other people and imagining oneself in different states. Evidence suggests humans might achieve this by simulating each other’s computations in agent-specific neural circuits, but it is not known how circuits become agent-specific. Here we investigate whether agent-specificity adapts to social context. We train subjects on social learning tasks, manipulating the frequency with which self and other see the same information. Training alters the agent-specificity of prediction error (PE) circuits for at least 24 h, modulating the extent to which another agent’s PE is experienced as one’s own and influencing perspective-taking in an independent task. Ventromedial prefrontal myelin density, indexed by magnetisation transfer, correlates with the strength of this adaptation. We describe a frontotemporal learning network, which exploits relationships between different agents’ computations. Our findings suggest that Self-Other boundaries are learnable variables, shaped by the statistical structure of social experience.
Type: | Article |
---|---|
Title: | Social training reconfigures prediction errors to shape Self-Other boundaries |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41467-020-16856-8 |
Publisher version: | https://doi.org/10.1038/s41467-020-16856-8 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Division of Psychiatry UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience |
URI: | https://discovery.ucl.ac.uk/id/eprint/10102295 |
Archive Staff Only
View Item |