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Combined Denoising and Suppression of
Transient Artifacts in Arterial Spin Labeling

MRI Using Deep Learning
Patrick W. Hales, PhD,1* Josef Pfeuffer, PhD,2 and Chris A. Clark, PhD1

Background: Arterial spin labeling (ASL) is a useful tool for measuring cerebral blood flow (CBF). However, due to the low
signal-to-noise ratio (SNR) of the technique, multiple repetitions are required, which results in prolonged scan times and
increased susceptibility to artifacts.
Purpose: To develop a deep-learning-based algorithm for simultaneous denoising and suppression of transient artifacts in
ASL images.
Study Type: Retrospective.
Subjects: 131 pediatric neuro-oncology patients for model training and 11 healthy adult subjects for model evaluation.
Field Strength/Sequence: 3T / pseudo-continuous and pulsed ASL with 3D gradient-and-spin-echo readout.
Assessment: A denoising autoencoder (DAE) model was designed with stacked encoding/decoding convolutional layers.
Reference standard images were generated by averaging 10 pairwise ASL subtraction images. The model was trained to
produce perfusion images of a similar quality using a single subtraction image. Performance was compared against Gauss-
ian and non-local means (NLM) filters. Evaluation metrics included SNR, peak SNR (PSNR), and structural similarity index
(SSIM) of the CBF images, compared to the reference standard.
Statistical Tests: One-way analysis of variance (ANOVA) tests for group comparisons.
Results: The DAE model was the only model to produce a significant increase in SNR compared to the raw images
(P < 0.05), providing an average SNR gain of 62%. The DAE model was also effective at suppressing transient artifacts,
and was the only model to show a significant improvement in accuracy in the generated CBF images, as assessed using
PSNR values (P < 0.05). In addition, using data from multiple inflow time acquisitions, the DAE images produced the best
fit to the Buxton kinetic model, offering a 75% reduction in the fitting error compared to the raw images.
Data Conclusion: Deep-learning-based algorithms provide superior accuracy when denoising ASL images, due to their
ability to simultaneously increase SNR and suppress artifactual signals in raw ASL images.
Level of Evidence: 3
Technical Efficacy Stage: 1
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ARTERIAL SPIN LABELING (ASL) is a non-invasive
imaging modality that provides a powerful means of

measuring cerebral blood flow (CBF).1,2 One of the key
advantages of ASL is that it utilizes water in the blood as an
endogenous tracer to measure perfusion, eliminating the need
for an exogenous contrast agent. Instead, a series of label (L)
and control images (C) are acquired, in which inflowing

blood–water proximal to the imaging volume is “tagged”
using RF pulses during the label acquisition. After a delay, to
allow labeled blood to flow into the tissue (the postlabeling
delay, PLD), the perfusion signal (dM) is determined by the
pairwise subtraction of control and label images (dM = C –

L). These are subsequently converted into CBF images, in
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physiological units of ml / 100 g / minutes, using the method
described previously.3

Due to the quantitative nature of the technique, the
lack of exposure to ionizing radiation, and the avoidance of a
contrast agent injection, ASL has excellent clinical potential.
However, an inherent limitation is the comparatively low sig-
nal-to-noise ratio (SNR) of the technique. This is due to a
number of factors. Firstly, T1 recovery of the tagged bolus
during the PLD reduces the signal available from the tracer
itself. In addition, in normal gray matter, perfusion replaces
only �1% of the brain water with in-flowing blood-water
every second.3 As such, inflowing blood can only perturb a
very small fraction of the total magnetization in a typical
voxel, and unwanted signal fluctuations in the static tissue
can easily outweigh the perfusion signal. To counteract this,
background suppression pulses are often used to null the sig-
nal from the static tissue prior to image acquisition.4 None-
theless, generally multiple repetitions of an ASL acquisition
must be acquired in order to provide sufficient SNR, which
leads to increased scan times.

In addition to the inherent limitations in SNR, ASL
images can be corrupted by a number of artifacts.5,6 Some of
these are related to the acquisition protocol and/or the physi-
ology of the subject, such as arterial transit time artifacts
resulting from an insufficiently long PLD.6 Others are tran-
sient, and may occur sporadically during the series of repeti-
tions. These can include artifacts related to subject motion,6

and cerebrospinal fluid (CSF) “shine-through” in the ventri-
cles due to RF instabilities.5,7 As these artifacts typically occur
in only a small number of the total repetitions, their impact
is less conspicuous after signal averaging (Fig. 1).

A number of postprocessing techniques have been
investigated to improve image quality in ASL data. Tech-
niques to suppress transient artifacts include outlier rejection
to remove hardware instabilities and motion-corrupted repeti-
tions,7–11 physiological noise correction,12 and temporal fil-
tering techniques.13–15 Techniques to increase SNR have
focused on established image denoising techniques. These
include Gaussian smoothing,13,16,17 which provides a simple
method for increasing SNR in noisy data, albeit at the cost of
a loss of sharpness in the resulting image. More complex
methods include techniques such as non-local means (NLM)
filtering.18 The principle of NLM is to average the value of a
given voxel with values of other voxels in a limited neighbor-
hood, provided that the patches centered on the other voxels
are similar enough to the patch centered on the voxel of inter-
est. This provides effective image denoising, while potentially
preserving fine structures and details in the image. Additional
denoising strategies have also shown promising results, such
as wavelet-based techniques,13,19 Wiener filters,13 adaptive fil-
ters,13 and total generalized variation regularization.15

In recent years, deep learning has emerged as a powerful
tool for image processing and reconstruction. Within this

field, convolutional neural networks (CNNs) have become a
popular choice for processing imaging data, due to their abil-
ity to learn important features of images in a translationally
invariant way. These techniques have been successfully
applied to image denoising,20–22 and several studies have
applied deep-learning approaches to improving SNR in ASL
images.23–28 Kim et al developed a denoising CNN with two
pathways, for extracting local low-level features and large-scale
global features in parallel.23 This was shown to provide
improvements in SNR and CBF accuracy in both single-PLD
and Hadamard-encoded multiple-PLD data. Ulas et al. devel-
oped a CNN that was trained using a custom loss function,
which enforced CBF estimates to be close to model-based ref-
erence values.24 Xie et al. recently developed a model combin-
ing dilated convolutions with wide activation residual blocks,
which provided improved denoising compared to existing
CNN architectures.26 Owen et al. introduced a joint filtering
CNN model, in which maps of the mean and temporal vari-
ance of the ASL signal were used as dual inputs, in order to
improve SNR and partially suppress transient artifacts.28

Finally, Gong et al. demonstrated an unsupervised deep-
learning-based framework that incorporates a subject’s T1-
weighted anatomical image as a structural prior.

The aforementioned studies have shown promising
results for denoising low-SNR ASL images. However, previ-
ous studies have generally applied averaging over a subset of
the total acquired repetitions, in order to generate low-SNR
inputs for model training. Some previous studies have also
applied motion correction24,26,28 and Gaussian smooth-
ing24,26 to the input data. In doing so, the presence of tran-
sient artifacts in the input data will be reduced, and the
ability of these models to identify and suppress these artifacts
may be compromised.

The purpose of this study was to develop a deep-learn-
ing-based denoising autoencoder (DAE) model for simulta-
neous denoising and suppression of transient artifacts in ASL
images. We aimed to develop a DAE model that could pro-
vide both effective denoising as well as differentiate between
abnormal ASL signal associated with pathology, and that asso-
ciated with transient artifacts, using just a single ASL acquisi-
tion (rather than relying on multiple repetitions). Having
developed this model, we aimed to evaluate its performance
in pseudo-continuous ASL (pCASL) and multiple inflow-time
(multi-TI) pulsed-ASL (PASL) data acquired in healthy
volunteers.

Materials and Methods
Arterial Spin Labeling Acquisition
All ASL datasets were acquired using a 3 T MRI scanner (Magnetom
Prisma, Siemens Healthcare, Erlangen, Germany), equipped with a
20-channel head receive coil. PCASL data were acquired using a pro-
totype sequence (Siemens Healthcare), with background suppression
RF pulses and a 3D gradient-and-spin-echo (GRASE) readout. The
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labeling duration was 1800 msec, with a 1500 msec post-labeling
delay, and 10 repetitions were acquired. Additional sequence param-
eters were: relaxation time (TR) = 4620 msec, echo time (TE) = 21.8
msec, field of view = 220 mm, matrix size = 64 x 62, in-plane reso-
lution = 1.7 x 1.7 mm (after zero-filling), number of partitions = 24,
slice thickness = 4.0 mm, turbo factor = 12, echo-planar imaging
(EPI) factor = 31, segments = 2 (with parallel imaging, generalized
autocalibrating partial parallel acquisition [GRAPPA] acceleration
factor = 2). A proton-density-weighted (M0) image was also acquired
(TR = 4000 msec), with identical readout to the ASL acquisition
but with the labeling and background suppression RF pulses
removed, for CBF quantification. Total acquisition time was
3 minutes 19 seconds.

Multi-TI PASL data were acquired using the same prototype
sequence. Acquisitions were acquired at 10 TIs, ranging from
350–2600 msec in 250 msec steps, with a single acquisition per
TI. The TR was 3300 msec; all other readout parameters were
identical to the pCASL acquisition. Q2TIPS RF pulses29 were
applied 700 msec after the labeling pulse to define the temporal
width of the bolus. The total acquisition time was 2 minutes
25 seconds.

Training, Validation, and Testing Data
Retrospective anonymized pCASL data were accrued from the clini-
cal database of ASL acquisitions acquired as part of the clinical

imaging of pediatric patients at our institution, between 2016–2019.
Images that had been severely corrupted due to susceptibility arti-
facts caused by implants or dental braces, or significant patient
motion, had already been excluded prior to entry into the database.
Institutional ethical approval with waived consent was granted for
retrospective access to this database for this study. The training
dataset comprised a cohort of 131 treatment-naïve pediatric neuro-
oncology patients (mean age = 7.1, range = 0.4–17.1 years), all of
whom received the pCASL acquisition described above as part of
their clinical imaging. Following model training, illustrative addi-
tional clinical examples from the same database were used as part of
the model testing. These included ASL images from a further three
neuro-oncology patients (patient #1: 13 years, diffuse astrocytoma;
patient #2: 0.9 years, pilocytic astrocytoma; patient #3: 4 years, glio-
blastoma multiforme), and an additional patient with Sturge–Weber
syndrome (patient #4: 11 years). ASL data for patient #1 was
acquired at 3T using the protocol described above. ASL data for
patients #2 and #3 were acquired with a Siemens Avanto 1.5 T
MRI scanner using a similar pCASL protocol to that described
above, but with thicker slices (5.0 mm), and no zero-filling. ASL
data for patient #4 were acquired at 3 T, again using a similar
pCASL protocol to that described above, but with a PLD of
2000 msec.

In order to produce the reference images for each subject, the
individual control and label images from all repetitions acquired in

FIGURE 1: Illustration of transient artifacts affecting image quality in ASL datasets. Individual dM images for three repetitions are
shown, along with the corresponding image after averaging over 10 repetitions (green box). Individual artifacts are illustrated with
red arrows. Top row: CSF shine-through, demonstrating artifactual high signal in the lateral ventricles. Middle row: subject motion
artifact, resulting in artifactual signal modulation within the brain, and a peripheral ring of high signal intensity. Bottom row:
increased dM signal due to the subject’s eye motion. Given the transient nature of these artifacts, their impact is less pronounced
after averaging over multiple repetitions (right column). Note, the windowing used here, and in all subsequent dM and CBF images,
has a minimum value of zero.
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that subject were first coregistered using an affine transformation
with 12 degrees of freedom, using the flirt algorithm in FSL.30 This
was done to correct any artifacts resulting from subject motion
between the control and label acquisitions. The individual difference
images (dM) were then calculated for all repetitions, using the
motion-corrected control and label images. Following this, the dM
values across all repetitions were converted to z-scores, on a voxel-
wise basis. Averaging was then performed, and outliers were
excluded by only averaging over individual dM values within a voxel
with a z-score less than 3.0, to create the final reference image
(dMmean). This was done to exclude transient artifacts from the sig-
nal averaging, which typically occur in only a small number of repe-
titions, and can be localized to specific regions of the brain, such as
the CSF.5,7 Lastly, the first and last axial slices were excluded for
each subject, to remove registration and wrap-around artifacts from
the 3D-GRASE acquisition.

The above steps resulted in a set of 220 “raw” difference
images (dMraw) per subject (22 slices x 10 repetitions), in which
no motion correction or outlier rejection was applied. Each dMraw

image was matched to the corresponding mean image (dMmean),
after correction of motion and transient artifacts as described
above, which represented the reference standard in this study.
Over the entire cohort, this provided a set of 28,820 noisy dMraw

images (single repetition), each matched to their corresponding
reference standard images. 80% of this dataset was used for model
training, with 20% retained for model validation. The mean and
standard deviation (SD) of the raw image set were used for Z-
normalization of all images before they were entered into the
model.

As the training dataset consisted of ASL images acquired in
pediatric patients with brain tumors, following training we evaluated
the model’s performance in healthy adult volunteers, to determine
its performance under normal conditions (i.e. adult subjects with no
pathology). In addition, the trained model was evaluated using both
pCASL data and multi-TI PASL data. To achieve this, new pCASL
datasets were acquired in 11 healthy adult subjects (mean age
32 years, range 23–40 years). Additional multi-TI PASL data (using
the protocol described above) were acquired in seven healthy subjects
(mean age 30 years, range 21–40 years). All subjects provided
informed written consent, and institutional ethical approval was
granted to use these data.

Model Architecture
A schematic of the DAE model architecture is shown in Fig. 2. The
encoder component consisted of three convolution steps. Each con-
volution step employed 64 filter layers, each of which applied a 3 x
3 kernel, with padding used to maintain consistent image dimen-
sions between the input and output. Following each convolution
step, a rectified linear unit (ReLU) activation layer was added,
followed by a 2 x 2 max pooling layer, in order to subsample the
output by a factor of two. The decoder component mirrored the
encoder architecture, with 2 x 2 upsampling used between convolu-
tion operations, in order to reconstruct an output image with the
same dimensions as the input. The last convolution step consisted of
one filter layer only, with no ReLU activation, to produce the final
image. Skip connections were added between the first two convolu-
tion steps on the encoding side and their counterparts on the

decoding side. This allows image details captured in the feature maps
from the encoding components to be concatenated with the feature
maps produced during decoding, improving image restoration and
the ability to train deeper networks.31

Model Training
A batch size of 100 was used for model training. We employed the
RMSProp optimizer with default settings in Keras (using the Ten-
sorFlow backend) to update the network’s weights, and the mean
squared error (MSE) was used for the loss function. Training was
preformed over 100 epochs, with an early-stopping criterion to inter-
rupt the training when the loss in the validation data failed to
improve over 10 consecutive epochs. We additionally trained the
model using subsets of 25, 50, and 75% of the total training data,
in order to investigate the number of training datasets needed to
train the model. For each subset, as before, 80% of the data were
used for training, with 20% retained for validation. In order to com-
pare the training performance across these subsets in a fair manner,
the validation loss function values were normalized to the total num-
ber of validation datasets in each subset.

Comparison With Alternative Denoising Methods
Two alternative denoising techniques, Gaussian and NLM filtering,
were used to compare the performance of the DAE against more
established methods. A subset of 500 training datasets was used to
optimize the parameters for these alternative denoising methods,
with the filter parameters that gave the minimum root-mean-square
error (RMSE) between the denoised and the reference standard
images being optimal. For the Gaussian filter, the optimum window
size was determined. For the NLM filter, the patch size, patch dis-
tance, and cutoff distance were optimized. All filters were applied
using Python 3.7: the cv2 package was used for the Gaussian filter,
and the skimage package was used for the NLM filter. Multi-para-
metric optimization of the NLM filter was performed using non-lin-
ear least-squares minimization, using the lmfit package.

Model Testing

SINGLE PLD PCASL DATA. The pCASL data acquired in 11
healthy subjects was used to test the efficacy of the DAE, Gaussian,
and NLM models on un-seen data. The first repetition from each
subject’s raw dM dataset (using all axial slices) was used as the noisy
input to the models (dMraw). The denoised version of this was calcu-
lated for each model (dMGauss, dMNLM, dMDAE), for comparison
with the reference standard dMmean images. These dM images were
then used to calculate CBF maps for each dataset (CBFraw,
CBFGauss, CBFNLM, CBFDAE, CBFmean), using the standard method
described previously,3 with λ = 0.9, α = 0.85, and T1bl = 1.65 s.
The CBFmean map was used as the reference standard, against which
alternative CBF maps were compared.

MULTI-TI PASL DATA. The performance of each model was also
evaluated on un-seen, multi-TI PASL data, acquired in seven healthy
subjects as described above. Here, the raw multi-TI difference
images were denoised using each model. These datasets were then fit
to the Buxton kinetic model,32 with CBF and bolus arrival time
(BAT) as fitted parameters. The temporal width of the bolus was
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fixed at 700 msec, due to the use of Q2TIPS saturation pulses dur-
ing acquisition. Model fitting was performed using the lmfit Python
package, and the goodness of fit in each voxel was calculated using
χ2 values (sum of squared residuals between the observed and fitted
values over all TIs). Models were compared by calculating the mean
χ2 over all brain voxels within each subject.

EVALUATION METRICS. In order to compare the denoising
performance of each model, the SNR of each dM dataset was cal-
culated. As the images were acquired using parallel imaging, we
used the “difference” method for calculating SNR,33,34 utilizing
the individual ASL repetitions acquired in each subject. First, the
bet algorithm in FSL35 was used to define a brain mask for each
subject, using the M0 calibration image, which provided the
region of interest (ROI) over which SNR was measured. Follow-
ing the method described previously,34 SNR in this ROI was
defined using the dM images from two consecutive repetitions
(dMi and dMi + 1, where i is the repetition index), using the fol-
lowing relationship:

SNRROI =
mean dMi + dMi + 1ð Þð ÞROIffiffiffi
2

p � std dM i−dMi + 1ð Þ� �
ROI

ð1Þ

Equation (1) was applied to all available pairs of dM images
across the 10 repetitions, and the mean value of these was taken to
represent the final SNR value.

Similar to previous studies,24–26,28 the peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) of the CBF
images were used as additional evaluation metrics. PSNR was used
to define the accuracy of each CBF image in comparison to the ref-
erence standard, and was defined as PSNR = 20· log10· (CBFmax/
RMSE). Here, CBFmax is the maximum value in the reference stan-
dard CBF image, and RMSE is the root mean square error between

each CBF image and the reference standard (i.e., the average value

across all brain voxels of √(CBFref-CBF)
2. Higher values of

PSNR indicate that CBF images are more accurate when com-
pared to the reference standard. SSIM was used to quantify the
visual quality of CBF maps in comparison to the reference stan-
dard.36 SSIM is thought to mimic the perceived quality of an
image by a human observer, with values of 0 indicating no simi-
larity, and 1.0 indicating perfect similarity. The skimage Python
package was used to calculate SSIM values, using the default set-
tings. In addition, as denoising methods can often result in
increased blur in the resulting image, the level of “focus” in each
dataset was quantified using the modified Laplacian method.37,38

Here, the mean value of the dM image convolved with a
Laplacian kernel (applied in the x and y directions indepen-
dently) was used to estimate the amount of edges present in an
image, and provide an estimate of “focus,” with higher values
indicating increased sharpness of the image.37 This was
implemented using the cv2 package in Python.

Influence of Signal Averaging Prior to Denoising
In order to determine how the SNR of the input images influenced
the performance of the denoising models, the individual repetitions
acquired in the testing datasets were used to perform signal averag-
ing prior to denoising. In each subject, the following datasets were
created using the set of 10 repetitions (NSA = number of signal
averages): NSA = 2 (5 repetitions), NSA = 3 (3 repetitions),
NSA = 4 (2 repetitions), NSA = 5 (2 repetitions). The DAE,
Gaussian and NLM filters were applied to each of these datasets,
and the denoising performance (quantified using SNR) and accu-
racy (as compared to the reference standard images based on
NSA = 10, and quantified using PSNR) of the resulting images
were measured.

FIGURE 2: Architecture of the denoising autoencoder model, with an example low-SNR, single-repetition dMraw image (left), and the
corresponding high-SNR dMmean image (right; same axial slice averaged over 10 repetitions). Image dimensions are shown for each
step, along with the number of filter layers used. Skip connections are illustrated as horizontal lines, convolution operations (with
subsequent ReLU activation) as green arrows, and max-pooling/upsampling operations as red/purple arrows, respectively.
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Correction of Motion Artifacts Using the DAE
In order to illustrate the ability of the DAE to correct small motion
artifacts in the dMraw images, the ASL data from one of the test sub-
jects was used to simulate the effect of motion in the raw data.
Using the first repetition from this subject, a spatial mismatch was
created between the control and label images, by applying a range of
in-plane rotations (ranging from 0.2–3.0 degrees), as well as transla-
tions in the x- and y-directions (ranging from 0.2–3.0 mm), to the
control image only. A motion-corrupted dMraw dataset was created
for each of these (shifted control image - label image), after which
the DAE model was applied. CBF maps were created using the non-
motion-corrupted dMraw dataset (CBFref), the motion-corrupted dM
dataset (CBFMC), and the motion-corrupted dM dataset after apply-
ing the DAE (CBFMC-DAE). The mean absolute CBF error, using
CBFref as the reference, was calculated across all brain voxels in the
CBFMC and CBFMC-DAE images, in order to quantify the level of
CBF error introduced by the motion artifact, and the extent to
which this was corrected using the DAE model.

Application of the DAE in Additional Clinical
Examples
The DAE model was applied to patients 1–4 (described above), in
order to illustrate its use in additional, un-seen clinical ASL images.
In patients in whom an abnormal CBF hyperintensity was present as
a result of their tumor, the ability of the DAE to retain this signal
after denoising was examined. This was performed by converting the

CBFraw and CBFDAE images to z-score maps, based on the mean
and standard deviation of the CBF values across all brain voxels in a
given patient. This was used to highlight regions of perfusion abnor-
mality (high z-score) both before and after application of the DAE
model.

Statistics
The SciPy Python package was used for all statistical analysis. For
comparison of evaluation metrics between models, the Levine test
was used to test for equal variances.39 In cases of equal variance,
one-way analysis of variance (ANOVA) tests were used for group
comparisons, followed by a Tukey honestly significant difference
post-hoc test. For unequal variance, a Welch ANOVA test was used,
followed by a Games–Howell post-hoc analysis. All P values were
reported after correcting for multiple comparisons, with significance
defined as P < 0.05.

Results
Model Training and Filter Optimization
The training of the DAE model was performed using the
UCL High Throughput Computing Facility, using compute
nodes equipped with nVidia Tesla V100 GPUs and 192 GB
of RAM per node. Typical training time was 25 minutes.
Plots of the training and validation loss during training, using
the full training dataset, as well for model training using

FIGURE 3: Plots of the training and validation loss as a function of epoch, during model training. The loss function was mean-
squared-error, which was normalized to the number of images in the validation pool. The training dataset was split into four subsets,
containing 25% (a), 50% (b), 75% (c), and 100% (d) of the full available training data (N = 28,820 images). An early-stopping criterion
was applied to interrupt training when the loss in the validation data failed to improve over 10 consecutive epochs.

6

Journal of Magnetic Resonance Imaging



subsets of 25, 50, and 75% of the available training data, are
shown in Fig. 3. The early stopping criteria, after which the
model is no longer showing improving performance in the
validation data, and is starting to “overfit” to the training
data, was met at epoch 41 using 25% of the training data.
This increased with larger training datasets, with early-

stopping being reached at epoch 67 using 100% of the train-
ing data. Normalized mean-squared-error in the validation
data also decreased with increasing size of the training dataset,
ranging from 3.4 × 10−5 (25% training dataset) to
1.5 × 10−5 (100% training dataset; see Fig. 3). Combined,
this indicated improved performance of the model when

FIGURE 4: Example of the application of the DAE on un-seen data. The illustrative examples shown in Fig. 1 are shown here before
and after denoising with the DAE, along with a further clinical example (bottom row; pediatric brain tumor patient [patient #1],
showing diffuse hyperperfusion in the right temporal lobe). dM images from a single repetition are shown in both their raw form
(left column) and after denoising with the DAE (middle column). The equivalent image after averaging over 10 repetitions is shown
in the right column. Transient artifacts are indicated with arrows.
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trained using increasingly large datasets. The model trained
using the full training dataset was used for the rest of this
study, and is publically available1.

For the Gaussian filter, the optimum window size was
five voxels (standard deviation = 1.9 mm). For the NLM fil-
ter, the optimum patch size was six voxels, the optimum
patch distance was 13 voxels, and optimum cutoff distance
was 6.0.

Exemplary results from the DAE in the un-seen data (not
used during training) are shown in Fig. 4, demonstrating the

model’s ability to suppress the transient artifacts illustrated in
Fig. 1. The clinical example (patient #1) shown on the bottom
row of Fig. 4 illustrates a bright artifactual signal in the lateral
ventricle, which could be misinterpreted as a metastasis of the
tumor in the temporal lobe. This artifactual signal is suppressed
in both the reference standard and the denoised image.

Model Testing: pCASL Data in Healthy Subjects
The mean SNR of the dMraw, dMGauss, dMNLM, and dMDAE

images acquired in 11 healthy subjects is shown in Fig. 5a.

FIGURE 5: (a) Box-and-whisker plot of SNR in the dM images acquired in 11 healthy subjects, using the raw, Gaussian, non-local
means (NLM), and denoising autoencoder (DAE) datasets. (b) Peak SNR values, obtained using CBF images calculated from dMraw,
dMGauss, dMNLM, and dMDAE datasets, compared to the reference standard CBF images. (c) Structural similarity index (SSIM) values,
demonstrating the visual similarity assessment between CBF maps generated by the different models, in comparison to the
reference standard. (d) dM “focus” values for each dataset, indicating the level of blurring introduced by the denoising or signal
averaging. Higher focus values indicate a sharper image. (e) Example dM images from each model, in an axial slice from one
representative subject. The artifactual CSF hyperintensity seen in the raw dM image remains prominent in the dMGauss and dMNLM

images, but is attenuated in the dMDAE image, which more closely resembles the reference standard. Significant differences
between groups (*P < 0.05, **P < 0.001) are illustrated in each plot.
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Mean SNR was 2.6 ± 0.6 (± SD) in the raw images (range
1.5–3.7). The DAE was the only model to produce denoised
images with significantly higher SNR than the raw images
(4.2 ± 0.7, P < 0.001), representing an average gain of 62%.
This was significantly higher than the gain in SNR offered by
the Gaussian (27%) and NLM (15%) models (Fig. 5a,
P < 0.05 for both comparisons).

The accuracy of the CBF images produced by each
model, in comparison with the reference standard, is shown
by the CBF PSNR values in Fig. 5b. PSNR was the highest
in the CBF images produced using the DAE model (mean
PSNR = 41.0 ± 2.9 dB), and this was the only model to
produce a significant increase in PSNR compared to the
raw CBF images (mean PSNR [raw] = 37.0 ±
3.1 dB, P < .05).

The structural similarity of the CBF images against the
reference standard was lowest for the CBFraw images
(0.70 ± 0.10), and highest for the CBFDAE images
(0.88 ± 0.31), followed by the CBFNLM images
(0.86 ± 0.036; Fig. 5c). Both the DAE and NLM models

resulted in significant increases in CBF SSIM compared to
the CBFraw images (P < 0.001).

In all denoised dM images, as well as the reference stan-
dard dMmean images, focus values were significantly lower
than those in the raw images (Fig. 5d, P < 0.05). As such,
some degree of blurring was added, either as the result of sig-
nal averaging (in the dMmean images), or from the denoising
process. There was no significant difference between the dM
focus values in the dMGauss, dMNLM, or dMDAE images; how-
ever, the dMNLM images were the only ones not to show sig-
nificantly lower focus values than the dMmean images,
indicating a marginally better performance of the NLM
model in terms of image blurring.

Model Testing: Influence of Signal Averaging Prior
to Denoising
Plots of dM SNR and CBF PSNR values, using input data
obtained after averaging over 1–5 repetitions, are shown in
Fig. 6. As expected, the SNR increased by a factor of approxi-

mately √NSA in the raw data, ranging from 2.6 ± 0.6 at

FIGURE 6: Influence of signal averaging prior to denoising for the different models. SNR values are shown in (a), and CBF PSNR
values in (b), for input data ranging between 1–5 signal averages. Significant differences between groups (*P < 0.05, **P < 0.001)
are illustrated in each plot.
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NSA = 1 to 5.7 ± 1.3 at NSA = 5 (Fig. 6a). Across all averag-
ing levels, the DAE was the only model to provide a signifi-
cant increase in SNR compared to the raw images (P < 0.001
for NSA = 1–2, P < 0.05 for NSA = 3–5). In terms of CBF
PSNR, although the DAE model was the only model to pro-
vide a significant improvement over the CBFraw images at
NSA = 1; there was no significant difference between the
PSNR values for any of the CBF images at NSA = 2–5
(Fig. 6b), and the PSNR values of all the denoising models
appeared to plateau after NSA = 3. As such, although
improvements in SNR occurred across the full range of NSA
values, in terms of combined improvements in CBF accuracy
as well as denoising, the DAE model appears to be most use-
ful for raw data acquired with between 1 and 3 signal
averages.

Model Testing: Correction of Motion Artifacts
Using the DAE
The error in the CBF maps as a result of simulated subject
motion, both before and after application of the DAE model,
are shown in Fig. 7. As the CBF maps were calculated from a
single repetition, even small levels of motion between the

label and control acquisition can result in very large errors in
CBF quantification. After application of the DAE model, the
CBF error, while still large, was markedly reduced. For
instance, for a rotation of 1.6 degrees, the average absolute
CBF error across all brain voxels was 157% using the raw
motion-corrupted images, which reduced to 57% after appli-
cation of the DAE. Similarly, for a translation of 1.6 mm in
the x direction, the absolute CBF error was 239% using the
raw images, reducing to 80% after application of the DAE.
The full results are given in Fig. 7, along with an illustrative
example of the motion-corrupted and denoised images.

Model Testing: Multi-TI PASL Data in Healthy
Subjects
The mean voxelwise χ2 values, after fitting the Buxton kinetic
model to multi-TI PASL data in seven healthy subjects, are
shown in Fig. 8a. Model fitting using the dMGauss, dMNLM,
and dMDAE datasets resulted in significantly lower voxelwise
χ2 values compared to model fitting using the dMraw datasets
(P < 0.05, all comparisons). The Buxton fit to the dMDAE

images produced significantly lower χ2 values than all other
dM images (P < 0.05, all comparisons). Example CBF, BAT,

FIGURE 7: Simulation of motion artifacts before and after application of the DAE model. The simulated motion comprised a range of
rotations (a), and translations in the x (b) and y (c) directions. The mean absolute percentage error in CBF quantification throughout
the brain is shown in a–c for the raw motion-corrupted images (red lines) and motion-corrupted images after application of the DAE
model (blue lines). An illustrative example of the dM images after a simulated translation of 0.5 mm in the +y direction is shown (d).
Here, the raw motion-corrupted image is shown on the left, the same image after application of the DAE is shown in the middle, and
the reference image (without any simulated motion) is shown on the right.

10

Journal of Magnetic Resonance Imaging



FIGURE 9: Clinical examples of implementation of the denoising autoencoder (DAE). T1-weighted images after injection of
gadolinium contrast agent (T1 + c) are shown in the left column. Raw pCASL dM images are shown in the center column, with the
equivalent denoised dM image shown on the right. Data shown in (a) and (b) were acquired at 1.5T (without zero-filling), data shown
in (c) were acquired at 3T. (a) Patient #2: a 0.9-year-old with a pilocytic astrocytoma; (b) Patient #3: 4-year-old with a glioblastoma
multiforme; (c) Patient #4: 11-year-old with Sturge–Weber syndrome, demonstrating a cortical angioma and marked atrophy.

FIGURE 8: (a) Mean, voxelwise χ2 values (sum of squared residuals), after fitting the Buxton kinetic ASL model to dM images from
the raw, Gaussian, non-local means (NLM), and denoising autoencoder (DAE) datasets. Data points represent the mean voxelwise χ2

values throughout the brain in individual subjects. Significant differences between groups are illustrated (*P < 0.05). (b) Example
fitted maps of bolus arrival time (BAT), cerebral blood flow (CBF), and χ2 values, in a representative subject.
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and χ2 maps in an axial slice from a representative subject are
shown in Fig. 8b.

Clinical Examples
Further examples of the DAE model applied to clinical ASL
images, none of which were used during model training, are
shown in Fig. 9. Furthermore, Fig. 10 illustrates the CBF z-
score maps for patients #1 and #2, in which the patient’s
tumor resulted in a region of hyperperfusion. As shown in
these illustrative examples, following denoising, the abnormal
signal associated with pathology is indeed retained, and is in
fact more prominent as a result of the denoising of the signal
throughout the brain. The examples shown here show prom-
ise for the DAE for improving the conspicuity of perfusion
abnormalities in noisy clinical ASL scans; however, further
work is needed to investigate the clinical potential of this.

Discussion
In this work we have developed a deep-learning model for
denoising ASL images, based on an autoencoder architecture.
Our model was effective at both increasing SNR and
suppressing transient artifacts in low-SNR ASL images, pro-
ducing CBF images with the greatest accuracy in comparison
to the reference standard. This is due to the ability of our
model to not only learn how to denoise images, but to iden-
tify artifactual signals in a single image. In comparison, tradi-
tional denoising approaches such as Gaussian and NLM
filters can be effective at improving SNR, but cannot learn to
separate a prominent artifactual signal from a “true” signal.
As such, transient artifacts remain in the denoised CBF
images, which results in reduced accuracy.

As the SNR of the input images was increased, the
DAE model continued to provide significant improvements
in SNR. However, as signal averaging also reduces the

prominence of transient artifacts in the input images, the
improvement in CBF accuracy after denoising tended to level
off as the number of averages was increased. As such, we
believe the DAE model is most beneficial when applied to
raw data acquired with a small number (�1–3) of averages.
In this regard, the model is particularly well suited to multi-
TI ASL data, as typically fewer signal averages are acquired
per TI in these acquisitions, in exchange for a wider coverage
of inflow times. Our results demonstrate that the DAE model
performed well on multi-TI PASL data, providing dM images
that had the best fit to the widely used Buxton kinetic model.
This represents a promising future application for our pro-
posed model.

By training on the large database of clinical pCASL
scans, a further aim of this study was to produce a model that
could differentiate between abnormal signals associated with
pathology, and fluctuating abnormal signals associated with
transient artifacts. Our model performed well in this regard,
producing denoised images in which artifactual signals were
suppressed, while pathological signals remained, and even
appeared more prominent. In addition, despite being trained
on clinical pediatric datasets, our results also suggest that the
model performs well in healthy adult data, indicating that our
model performs well under both pathological and non-patho-
logical conditions.

In comparison to previous work, in this study no aver-
aging, motion correction, or smoothing was applied to the
noisy images used as inputs during training. This was done to
maximize the conspicuity of transient artifacts in the noisy
images, so that the model could effectively learn to suppress
these, in conjunction with increasing SNR. One previous
study also focused on a deep-learning approach for joint den-
oising and suppression of transient artifacts28; however, this
required joint inputs relating to the mean and standard

FIGURE 10: Raw and denoised dM images for patient #1 (a), and patient #2 (b), with the corresponding CBF z-score maps shown
below. Only CBF z-scores > 2.5 are shown, to highlight regions of abnormal blood flow.
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deviation of the ASL signal over multiple repetitions. In com-
parison, our proposed model can suppress transient artifacts
in single subtraction images alone. Also, in contrast to some
previous studies, our model does not rely on additional ana-
tomical T1-weighted images25 or a CBF signal model prior,24

which should improve the generalizability of our model.

Limitations
A potential limitation of our study was that we employed a
relatively simple model architecture compared to some recent
studies in this area.26 However, the performance of our
model, in terms of PSNR and SSIM values, compares favor-
ably with previous work.25,26 In addition, the aim of this
study was to develop and train the model, and test its perfor-
mance in healthy datasets, rather than perform an in-depth
assessment of its diagnostic utility under different pathological
conditions. As such, further work should focus on a system-
atic subjective assessment of denoised images in different clin-
ical scenarios, in order to fully explore the potential benefits
of this model. Additionally, validation against an external
standard for CBF quantification would be beneficial.

Conclusion
We have proposed a deep-learning-based framework for
simultaneous denoising and suppression of transient artifacts
in ASL images. The model works effectively on low-SNR
ASL data acquired without signal averaging, and produces
CBF maps that show good agreement with those acquired
with 10 signal averages. As such, our model could provide a
significant saving in the scan time required to acquire
ASL data.
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