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Abstract

The governing equations for a high Reynolds number flow in a boundary layer over a
film coated wall are derived from the full two dimensional Navier Stokes equations of
motion for a two fluid flow. Numerical studies of the properties of the base flow and
its stability are described for the case of the flow over an isolated surface roughness
on an otherwise flat surface. Investigations of both short and long obstacles are
undertaken in terms of the flow in a viscous-inviscid interaction region.

An investigation of strongly non-linear vortex wave interaction in a laminar
boundary layer with two pairs of oblique waves is carried out. For a particular
choice of flow parameters a resonance is found linking the two pairs of waves, and
the governing amplitude equation for the leading order disturbance is derived and
investigated.

Wave-amplitude equations are derived for the non-linear modulation of Tollmien-
Schlichting (TS) type disturbances at high Reynolds numbers. An investigation of
the instability of Reynolds-stress generated mean flow to short wavelength secondary
disturbances is carried out. A regime with linear TS/capillary wave resonance is
examined and the governing amplitude equation for non-linear wave interaction is
derived. Two intermediary regimes are also studied.

The linear instability of high Reynolds number boundary layer flow over a film-
coated wall is studied both numerically and analytically for the practically important
limit of high film viscosity. We examine the various instabilities present and relate
them to the instability classifications of Benjamin (1963) and Landahl (1962).

The work presented in Chapter 4 represents a joint investigation undertaken
with Dr S.N. Timoshin and Dr R.I. Bowles and forms the basis of a paper to be
published in Proceedings of the Royal Society.
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Chapter 1

Introduction

The effect of thin liquid film coatings in a high Reynolds number boundary layer
flow on both separation and transition to turbulence is a problem of great practical
importance in many real life situations. These include the flow over rain wetted
planes and cars, the de-icing of plane wings and the use of lubricants in many
engineering applications. We begin this Thesis with a brief review of some of the
developments in the relevant theories for homogeneous flows before examining the
specific role of a film and the alterations its presence entails.

Boundary-layer separation and the transition from laminar to turbulent flow are
two major phenomena typical for high Reynolds numbers. Both can be tackled
using asymptotic methods. We begin with separation, starting with the classical
boundary-layer theory as proposed by Prandtl in 1904. He introduced the idea of
a thin viscous layer on the surface of solid bodies, driven by a prescribed pressure
gradient and satisfying the condition of no slip on the solid boundary. In 1908 Bla-
sius obtained a similarity solution for the flow over an aligned flat plate in a uniform
stream, which held over its entire length, with the exception of the singularities in
the solution at the leading and trailing edges and the wake behind the plate. An
analysis of the 'near wake’ behind the plate by Goldstein (1930) showed the wake
splitting into two separate layers and his order of magnitude balances paved the

way for the later triple-deck theory. The classical theory however was shown to fail
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for almost all applications, by Goldstein (1948), at the point of flow reversal, and
hence separation, via what became known as a Goldstein singularity in the slope of
both the skin friction on the body surface and the boundary layer displacement. A
new theory was required to cope with separation. This was provided by a triple-
deck scheme, a viscous/inviscid interaction theory which allowed for an unspecified
pressure gradient, as developed by Stewartson & Williams (1969), Neiland (1969),
Messiter (1970), Stewartson (1970). The theory split the boundary layer into two
so-called decks with a nonlinear viscous lower deck on the body surface driven by an
external induced pressure and a rotational inviscid main deck, which remains largely
passive, shifted via the displacement caused by the lower deck. A third ’potential-
flow’ upper deck completed the description, with the local displacement from the
lower deck affecting the induced local pressure, of the order of the slope of the stream-
lines in the boundary layer, and hence affecting the lower deck. This ’interactive’
approach avoids the failure of the classical theory due to the unspecified pressure
gradient, and hence unknown displacement. The theory also does not depend on a
particular set of wall boundary conditions, which makes it applicable to a wide range
of different problems e.g. flows over bluff bodies, plates with a local wall roughness
or flows with walls containing fluid injections. For weak distortions, flow separa-
tion leads to a fully viscous eddy and re-attachment further downstream within the
triple-deck region. Larger distortions lead to global (breakaway) separation with the
viscous shear layer centering around an algebraic curve of increasing distance from
the body downstream of the separation point, see Sychev (1972), Messiter (1975),
Smith (1977). There are however some particular cases in which classical boundary
layer theory is still applicable, as in the marginal separation regime examined in
Ruban (1981), complemented by a local interactive structure in Ruban (1982) and
Stewartson, Smith & Kaups (1982) or in the condensed flow of Smith & Daniels
(1981). A detailed review of these issues can be found in Messiter (1979) and Smith
(1982).

In this Thesis a study is made of the effects of a liquid film coating within

boundary layers on both the classical and triple-deck scales.
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The second important topic of research relevant to this Thesis is on the insta-
bility of fluid flows to infinitesimal disturbances and the transition of laminar flow
to turbulence. Instability theory developed from a need to understand why m'ost
high speed flows are of a turbulent rather then laminar nature. With all the early
works based on an inviscid treatment, it has its beginnings in the analytical studies
of Helmholtz, Kelvin and Lord Rayleigh and in the experimental work of Reynolds.
This instability theory for inviscid waves was extended to include the effects of vis-
cosity in the works of Orr, Sommerfeld, Taylor, Prandtl, Tollmien and Schlichting.
The reader is referred to Drazin & Reid (1981) for a review of the early theory.
Tollmien and Schlichting showed that viscous effects could provide the mechanism
for instability, an essentially counter intuitive effect. All these theories were based
on linear approximations, and it was not until Landau (1944), in a quite general
postulation, that a nonlinear theory, now termed weakly nonlinear, was proposed.
Landau’s ideas were confirmed in an examination of plane parallel flows by Stu-
art (1960) and Watson (1960), and these first three authors lend their name to
the typical Landau-Stuart-Watson amplitude equation governing weakly nonlinear
instability waves. Itoh (1974), who derived the same form of equation for the Bla-
sius layer, and many subsequent works were all applied to flows at finite Reynolds
numbers where the effects of the flow non-parallelism are non-negligible. Smith
(1979a,b) began more rigorous investigations of the linear and nonlinear instability
of boundary-layer flows, at large Reynolds numbers, by placing the base flow and
disturbances within the triple-deck scalings (an account of earlier asymptotic ap-
proaches to the viscous-flow instability is given in Lin (1955)). Many other high
Reynolds number studies followed, examining a wide variety of instability mecha-
nisms and disturbance scalings (see review articles by Smith (1993), Hall (1990),
Cowley & Wu (1993)).

A novel nonlinear mechanism for the transition of laminar to turbulent flow was
developed initially by Hall & Smith (1988) which modelled the spatial development
of three-dimensional vortices and their interaction with relatively short wavelength

neutral waves. The theory divides into numerous categories depending on the size of
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the wave disturbance and the proportion of the 3D vortex in the mean flow. When
the vortex part of the flow was simply a small correction to the mean profile the inter-
actions with the disturbances were termed weakly nonlinear, whilst those where the
vortex comprised the entire mean flow were termed strongly nonlinear. Interactions
with small disturbances of the minimum magnitude to instigate non-linear interac-
tions, were investigated for both inviscid Rayleigh and viscous Tollmien-Schlichting
(TS) waves by Hall & Smith (1988, 1989, 1990), Smith & Walton (1989), Blackaby
(1991), Smith & Blennerhassett (1992) for weakly’ non-linear interactions, and by
Smith & Walton (1989) Walton & Smith (1992), Hall & Smith (1991), Seddougui
& Bassom (1991) for ’strongly’ non-linear interactions. The work of Hall & Smith
(1991), a study of both compressible and incompressible flows, relied on the exis-
tence of a saturated neutral wave at some upstream position, at which the interaction
was initiated with the vortex then developing downstream in order to keep the wave
neutral. Brown et al. (1993) studied shorter scale events for the initiation of this be-
haviour in the incompressible case for Rayleigh waves, although still with an abrupt
start to the interaction. Smith, Brown & Brown (1993) examined even shorter
scale events, with the vortex/wave interaction occurring chiefly through the jump
in transverse shear stress across a critical layer. They derived a wave-amplitude
equation governing the wave disturbance and found various solutions for the down-
stream behaviour including wave decay, a finite-distance wave-amplitude blow-up
and periodic solutions, which they conjectured were more likely to occur than the
downstream match to a constant wave amplitude required by Brown et al. (1993),
Hall & Smith (1991).

Much of this basic knowledge can be applied to the high Reynolds number two-
fluid problems studied in this Thesis. In addition to the behaviours noted in the
above works, the presence of an interface greatly influences the flow development.
With regard to the base flow profiles Nelson et al. (1995) examined the boundary-
layer flow development of air blowing over a film of water on a flat plate and showed
that whilst the non-parallel boundary layer growth is of O(ml/ ?), where z is the

streamwise coordinate, the film grows like O(z'/4). They constructed non-similar
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analytic solutions and showed that a linear profile in the water and Blasius profile in
the air are reasonable base-flow profiles for instability calculations. Coward & Hall
(1996), in a study of the stability of thin coatings of water on a porous wall in air
flow, constructed similarity solutions for the base profiles, made possible through
the wall condition. We could not find other works which examined the form of base
profiles for boundary layers with thin liquid film coatings, and in Chapter 1 we aim
to shed some light, computationally, on the behaviour and shape of possible base
flows.

The instabilities present for two-fluid flows in a boundary layer, on the other
hand, have received more attention, both experimentally and theore.tica.]ly. Exper-
imental investigations have been performed by, amongst others, Hanratty & Engen
(1957), Kao & Park (1972), Charles & Lilleleht (1965), Andreussi et al. (1985) and
Ludwieg & Hornung (1989). For two fluids of comparable depths Kao & Park (1972)
found no interfacial modes with the surface distortion being a manifestation of the
shear (TS) waves and concluded that the presence of an interface enhanced transi-
tion. The investigation of Ludwieg & Hornung (1989), for air flow over a thin film
of oil, showed the appearance of visible waves on the interface occuring at different
stages in the transition from laminar to turbulent air boundary layers depending on
the film thickness. The properties of the second fluid, including its depth, density
and viscosity all appear to be important. In the 1950s much theoretical work was
carried out trying to explain the phenomena of water waves generated by wind, with
a variety of mechanisms proposed, initially through the work of Lock (1954), Feld-
man (1957) and later by Miles (1957 ,1959, 1960, 1962). Miles (1957) studied the
instigation of waves on deep water by wind, based on a basic solution of near-neutral
gravity waves. He showed that the instability of a unidirectional air flow to inviscid
Rayleigh-scale disturbances was dependent on a negative curvature of the mean flow
profile at the height where the wave speed was equal to the streamwise velocity
(the critical level), thus showing that non-inflexional profiles were unstable to these
Rayleigh disturbances, in contrast with the requirement in homogeneous flow of an

inflexional profile. A classification of the various instabilities present in two-fluid
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problems was given by Benjamin (1960, 1963) and Landahl (1962) who attempted a
physical explanation of instabilities based on energy levels. They categorized three
different instabilities appearing in flows with flexible boundaries referring to these
as Class A, Class B and Kelvin-Helmholtz (K-H) waves. The first of these, the
Class A instability, which includes Tollmien-Schlichting waves modified by the flex-
ible boundary, is destabilized by dissipative forces. They demonstrated, via the
energy considerations, that an essentially counter intuitive destabilization, with the
wave growth accompanied by a transfer of energy from the wave to the main flow,
is present in the system. The Class B instability on the other hand is stabilized by
the dissipative forces and grows via an energy transfer from the mean flow to the
wave, a more intuitive mechanism. The final class, the K-H instability is driven by
velocity discontinuities. Classification in these papers is based upon near-neutral
calculations and we aim in this Thesis to verify the general classifications by direct
computation of the instabilities.

More recent instability studies involving two phase flows include those made by
Hooper & Boyd (1986), Morland & Saffman & Yuen (1991), Shrira (1993), Morland
& Saffman (1993), Coward & Hall (1996) and Timoshin (1997). Shrira (1993) ex-
amined instabilities of disturbances found in deep water with a current and a free
surface, whilst Morland & Saffman (1993) carried out linear stability analysis of an
inviscid parallel air flow over water and made numerical comparisons, finding fair
agreement with the analytic solution of Miles (1957). Coward & Hall (1996) studied
the three-dimensional flow over a porous flat plate, with suction or blowing chosen
to maintain a constant lower fluid depth. Their stability analysis showed, as in
Hooper and Boyd (1986), that discontinuities in the viscosity and/or density of the
two immiscible fluids greatly enhanced instability. Timoshin (1997) examined linear
instabilities within the triple-deck formulation of a two-fluid flow including the case
of a very viscous film and derived growth rates for TS and interfacial waves.

The inclusion of a second fluid in nonlinear stability problems leads to an en-
hanced mean flow generated by the Reynolds stresses at the fluid/fluid interface,

as first studied by Longuet-Higgins (1953) and subsequently by Dore (1970, 1976,
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1977). This effect is due to the jump in shears across the viscous layers surround-
ing the interface as opposed to a shift in velocities due to viscous layers on solid
boundaries. Dore (1976, 1977) incorporated outer viscous layers about the interfa-
cial layers, based on the double boundary layer theories developed by Riley (1965)
and Stuart (1966), through which the induced mean flow is diffused. The effect of
this stronger mean flow on the wave instability is felt through interactions at a lower
order than those with wall induced mean flow. A second fluid also allows for reso-
nant interactions between the various instabilities that may be present such as those
classified by Benjamin-Landahl, outlined above. One such case is studied in Akylas
(1982), Akylas & Benney (1982) who identify a resonance between ’air’ (Class A)
and ’water’ (Class B) modes in the case of wind on deep water.

We see then that the study of boundary layers with thin films is a complex
and fascinating field, with very little known about the effect of films on separation,
along with the apparently strong effect on stability provoked by the presence of an
interface.

For the majority of this study we simplify our analysis by assuming piecewise
constant-shear base profiles in the regions on either side of the interface with a
thickness comparable to that of the film. However we must begin by examining if
these are satisfactory base profiles, and this justification is undertaken in Chapter 2,
where we investigate the boundary layer flow over a film-coated wall with a surface
obstacle of prescribed magnitude. The first part of this chapter deals with the base
flow development from the source of the film generation. We then proceed to the
flow over a surface roughness, with the choice of scalings and the ’long’ and ’short’
obstacle classification used within this chapter following those given by Smith et
al (1981) in their investigation of homogeneous flow development. We then exam-
ine the flow over ’long’ obstacles on the triple-deck length scale, with a prescribed
pressure gradient dependent on the obstacle shape. Computations, both numerical
and analytic, are undertaken to calculate the flow development and its stability to
Rayleigh-like disturbances. In the second part of Chapter 2 we examine ’short’ ob-

stacles within a condensed flow formulation, again with a numerical treatment of the
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base flow development. This provides an important insight into the role of a film in
the onset of separation, an area which up to now has received scant attention to this
author’s best knowledge. A stability analysis is then carried out on the calculated
profiles.

In Chapter 3 we investigate weakly-nonlinear vortex/inviscid wave interactions,
in the early stages of transition for a two fluid flow, based on the single fluid study of
Smith, Brown & Brown (1993). By utilizing the assumptions of a parallel flow and a
base profile consisting of two constant shears in our region of study, we obtain wave-
amplitude equations governing the evolution of two pairs of oblique waves travelling
with identical phase speed. We show that the nonlinear development of this flow can
lead to finite-distance blow-up of the wave disturbances. In the case of non-resonant
waves we show that the amplitude equations simplify to those derived in Smith,
Brown & Brown (1993).

The stability of nonlinear Tollmien-Schlichting (TS) waves is studied within a
triple-deck framework in Chapter 4, an extension of the linear analysis of Timoshin
(1997). In a weakly non-linear analysis, the temporal evolution of two dimensional
disturbances is modelled via an amplitude evolution equation coupled with equations
governing the Reynolds stress induced mean flow. A twofold investigation of both
the stability of the much altered mean flow to Rayleigh scale disturbances and the
development of the wave disturbance is carried out. The amplitude equation is found
to contain a singularity centered around a specific combination of the surface tension,
gravity, density ratios and film thickness. A close analysis is performed within
this parameter space and a resonant structure found with magnified disturbance
amplitudes. This non-linear resonance is directly related to the linear resonance
between growing TS and decaying capillary waves outlined in Timoshin (1997). A
full investigation of the properties of the governing amplitude equation is carried out,
with the nonlinearity appearing in an unusual differentiated form. The properties
of the amplitude equations are quite disparate and two further intermediate regimes
are studied, giving a full account of the possible disturbance development schemes.

A classical boundary-layer base flow structure is used to examine the Rayleigh-
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scale stability properties of flow over a very viscous film in Chapter 5. The differ-
ent classes of instability suggested by Benjamin (1960,1963) and Landahl (1962)
are shown to be present as different limits of our general formulation, and we
demonstrate that various cases studied previously, (e.g. Kelvin-Helmholtz, Tollmien-
Schlichting, Miles, capillary/TS wave resonance) are all continuously linked in the
parameter space studied here.

We begin our investigation by outlining the dimensional governing equations and
boundary conditions for two-fluid flows which we will use throughout this study with

the specific non-dimensionalizations given at the start of each chapter.

1.1 The dimensional governing equations

The two fluid flows studied in this thesis are governed by the incompressible Navier-
Stokes equations. We define z,, y. to be the dimensional coordinates parallel and
normal to the flow direction and z, to be the spanwise coordinate perpendicular to
z, in the plane y, = 0. Then uf, v, w, pF represent the streamwise, normal
and cross-flow velocities and the pressure respectively, with the superscripts +/—
denoting the regions above or below the interface separating the two fluids at y. =
fs(Zs, 24, ts). All the flows studied take place within a boundary layer which develops
over a surface defined by y. = h,(z.), placed in the flow. The density and viscosity
of the fluid in the film are denoted by p,, . and in the main boundary layer fluid

by pt, uf. With g, representing the dimensional gravitational acceleration, the

governing equations are

Duf -1 Bp* 32 + 62uf 2ut
Dt* p* Ba:, _f: 6’!/* + azf ) (1118.)
Dof _ -10p, B 52 E g 32vi)
L= ot E > : 1.1.1b
D~ pFoun T (0m2 g2 ez ) (1.1.1b)
Duw¥ -1 3?3: pE (0%w 32w*i . 82w g
Dt, B pf!: az* 3: az ayg azg ) A

our ov:t owt
3. + 3. + o7 =0. (1.1.1d)
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The boundary conditions for these equations are firstly those of no slip on the
surface, continuity in the streamwise and spanwise velocities at the interface and

the kinematic condition at the interface

u, = wv, =0,at ¥, = hi(z,), (1.1.2)
Df,
vIo= vl = f uy =uf, vy =w!, at y. = fu(Ts,2.,1.), (1.1.3)

Dt’
where the material derivative is defined by D/Dt, = 8/0t, +u¥d/0z, +vEd/0y. +
w*d/0z,. Secondly, at the interface, defined by y, = f,, between the two fluids the

equation

[e.n]t - nvy, (—};—l + E}Z) =0aty, = f. (1.1.4)

must be satisfied, where o is the stress tensor, v, is the surface tension, the square

brackets [] denote a jump across the interface,

1 8%, 0z? 1 0%f, /022

IR ST TR A (F Y A AR (1.1.5)

are the radii of curvature, and n is the unit normal to the interface given by

1
RV 17 e (T A s (1.1.6)

We write the unit tangent vectors to n as

o o%. o)
b =TT (07 /05, (l’az*’o ! (11.7)

o oi. )
= T @ en) (0’32,’1 ’ (1-18)
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and, taking the dot product of (1.1.4) with tg,, t., n, respectively we obtain three

interfacial jump conditions

Ofe (Ove Ou. of. 2 17
9z, \3y. 5z, ) T4\ 5
py | 9% NOUs . : =0 (1.1.9)
'62* 3:1:,,, * 4 _
6f=r (61’* aw*) af* af* 17t
Oz, \Oy. Oz, *8z, Oz,
o of a5 =0 (1.1.10)
—-B* 1— * C* *
(aZa-) oz, 3
du. (af,)2 dv, . ow, (0f.) ,0f. ¥
—(z=) 5+ St A,
—Da + 2'“* a amt 3y~ az* 62# 633*
of. 0f.
—*B, +222"C,
(9 Oz, Oz, _

d?f,/0z. 82f. /62,2
. =0 (1.11
" ((1+(af./ém)2)3/2 ' (1+(8f*/6z*)2)3’2) -

where square brackets indicate a jump across the interface, parameters in the bound-
ary layer and film are denoted by +/— respectively (a different notation is used in

chapter 2 for these layers) and

1 /0u, Ov. 1 (0v.,  Ow, ! Ou, Ow,
A= (ay. +5,,:> , B, = 5(62* +%‘—> ,Cu= 3 (’67*-}' 62*) (1.1.12)

where A,, B,,C, are represent elements of the rate of strain tensor E;;.
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Chapter 2

Flow over a surface mounted

obstacle

In this chapter we numerically tackle the low within a boundary layer on a wall, for
homogeneous flows and for those with a thin film coating on the wall. The aims here
are to prepare the ground for examination of film coated flows in the subsequent
chapters. First and foremost we provide a realistic model for the base flow, which we
will use for all the subsequent work. Secondly we investigate the effects of a certain
prescribed wall roughness on the base flow, and the form of the singularities which
we expect to find in the boundary layer solution when the pressure on the boundary
layer and in the film is given. We show that for all cases considered the singularities
are always due to zero wall shear, as found in the works of Goldstein (1948), Stew-
artson, Smith & Kaups (1982), Ruban (1981,1982) rather than to flow reversal in
the middle of the flow region as in Sychev (1980), Elliott, Smith & Cowley (1983),
Timoshin (1996). Our final aim in this chapter is to investigate the destabilizing
effect of the wall roughness, or indeed of any other mechanism which affects constant
shear profiles in thin films. We find inviscid instability which is strongly influenced
by the properties of the interface.

In this work hump flows are treated as limiting cases of the triple-deck formula-

tion with the film placed in the near-wall viscous zone. Prescribed-pressure regimes
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arise when the wall roughness is long compared to the triple deck. In §2.5 we also
examine the opposite limiting case of shorter obstacles, leading to a condensed flow
formulation. The second regime is irrelevant to the base flow investigation, which
is one of the primary interests in this chapter, but is a logical analytic compliment
to the solution we derive for the longer obstacle, requiring only a straightforward
change in the problem formulation. An analysis of the single-fluid triple-deck prob-
lem for obstacles in both these limits and of those on the triple-deck scale is given
by, for example, Smith, Brighton, Jackson, Hunt (1981); see also a review article by

Smith (1982).

2.1 Blasius boundary layer on a film-coated wall

In the following chapters the investigations utilize an initial unperturbed upstream
flow consisting of piecewise linear profiles in the near-wall part of the boundary
layer. In this section we outline the general assumptions and scalings we will use for
tackling film coated flows, including the base flow profiles. Once the form of base
flow has been verified, the following subsection outlines the triple-deck scalings used
to examine flow over a wall mounted obstacle.

We assume the flow to be two-dimensional and, further, that at the leading edge
of a flat plate in a uniform stream a boundary layer on a surface is generated in
which we have steady, incompressible planar flow. Downstream of the leading edge
we have a film generated by a slot, in the form of a jet; see fig 2:1(a). Gravity and
surface tension are included in the problem formulation for the base flow calculations,
although they are discarded in the numerical investigation later as in a related work
by Nelson et al. (1995).

The governing Navier-Stokes equations, (1.1.1), are non-dimensionalized using
the distance between the leading edge of the plate and the slot L,, the free stream
speed U,, the viscosity v} and the density p} in the upper fluid. The typical
pressure is p,U2, and we use standard notation for the Reynolds number Re =

p;"U.f/,/pf (> 1), the Froude number Fr = Uf/gj,,. and surface tension coef-



Chapter 2: Blasius boundary layer on a film-coated wall 20

ficient ¥ = v./pt Uff,*. The non-dimensionalized streamwise and normal velocity
components are %, U, we take Z, § as the boundary layer coordinates parallel and nor-

/2_17. With p the non-dimensional

mal to the flow, with z, = z,,(:i +1), 9 = Ij,.}ie_l
pressure and f the interface position between the two fluids, taken initially to be a

, the height of the slot, the governing equations become

our  out L out 185t 0%t
ot Ve T ey T e T e (21.1)
op* out  9v*
= 0. — = 2.1.2
a7 =% o T ey =0 (2.1.2)

where we define p™ = 1, vt =1, p~ = p,” /p.t, v~ = vo—/v,*. The appropriate

boundary conditions are

J— o0 it =1, (2.1.3)
v+ o
L wt=am, o= 2L 000
g=f: Dt oy 8y (2.1.4)
Pt -9 =5fzz— (o~ - 1)f/Fr,
y=0: 4= =0,% =0, (2.1.5)
z=0 it =Up, 4~ = j’_lj(& - 'g)) ) f: a (216)

where Up = Up(¥ — @) is the Blasius profile, J is a constant measuring the strength
of the jet and the shape of the interface is described by § = f(m)

Using the numerical method outlined below, in §2.3.1, a number of different
profiles were placed at the initial station and the profiles calculated for the flow
downstream. We were looking for these test profiles to quickly form two linear
profiles, one in the film and the other in the boundary layer. A model of the case with
a Blasius profile in the boundary-layer fluid and a jet flow from the slot is shown in
fig 2:1(b). We see that the profiles in the near-wall region reach a limiting piecewise
linear form over the distance | X |= 10, where X = &, see also fig 2:1(c). Many
different initial profiles were run and all of them eventually formed two constant

shear profiles. Nelson et al. (1995) established the limiting behaviour as & — oo
for a film within a Blasius boundary layer on a flat plate. The film thickens like
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%1/4 with the main boundary layer growing like £/2, and the interfacial shear in
the boundary layer decreasing like #71/2 with the film flow driven by the applied
interfacial shear. If ¥ is the mass flux at the slot, given by the value of the stream
function ¥ at the interface, so that 4~ = 0¥ /307, then the streamwise velocities and
interface position in the region § ~ O(#/4) are given by

- Ab +

o _ 20 Ay MY w 2‘1’5#"51/2
U = =7, u =(1—-p 9 =4 —
p=VE ( )

”—51/2

(2.1.7)

where )\, = 0Up/0%(0), and the boundary layer flow approaches the Blasius profile
downstream in the region §%°/2 ~ 1. By alfering ¥, either via the size of the
injection slot or the speed of the jet, we can set the film thickness downstream. At
Z > 1 the film forgets about the specific source. This allows us to perform the
triple-deck analysis at a station L, downstream in the next section, which requires a
film of thickness O(Re~5/8), in terms of the local Reynolds number (see fig 2:1(a)), if
we have a flux of O(R’e_l/st/Sf:s/B). Hence we may assume for all our subsequent
analysis that our predetermined initial local base profile consisting of two constant
shears can be obtained, or is indeed typical, in a two fluid system. Other mechanisms
can be treated in a similar fashion, for example injection through a porous wall, cf.

Coward & Hall (1996).

2.2 Triple deck on a wall mounted obstacle

In this subsection we outline the scalings used to investigate the flow within a bound-
ary layer which develops over a local surface roughness defined by y. = h.(z.), see
fig 2:2(a). We quote the rescalings used for a short-scale analysis of flow over a flat
plate, which lead to the triple-deck equations for film coated flows, as derived by
Timoshin (1997), Tsao et al. (1996) from the full Navier-Stokes equations. After
non-dimensionalizing we perform a Prandtl shift, introducing the surface shape into
the problem.

The governing Navier-Stokes equations are non-dimensionalized as in §2.1, but

here we take the characteristic length L, to be from the leading edge of the plate
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to the local point of investigation (taken to be the centre of an obstacle on the wall
later in this section), with corresponding Reynolds number Re = p} U, L./ut (> 1),
Froude number Fr = U2/g,L, and surface tension coefficient 4 = v,/pt U2L,. The
non-dimensionalized temporal and spatial co-ordinates, velocities, pressures and in-
terface shape are denoted by ¢, &, 4, @, 9, p and f With @ denoting the unper-
turbed interface position upstream from the area under investigation, we rescale to

the triple-deck variables in the viscous sublayer (zone I in fig 2:1(a))
['& 9,9, &,9,1t, a, f] [eo/\+3/4u, egA+3/év,e§A+1/2p, eg()\+)'5/4m,
SNy, )2, SOF) e, S| (2.2)
with g = Re /8,y representing the local normal coordinate in the viscous sublayer,
and At denoting the shear of the upper profile. We write p* = 1, vt =1, p~ =

pe”/psT, v~ = v, /v,T and defining y = h(z) to be the non-dimensional wall shape
apply a Prandtl shift to the triple-deck equations,

y=Y +h(z), v= V-}-ua—h (2.2.2)
bz’
This leaves us with
ou* ot out 4 Out 1 gpt | 0%u*
=-— 2.
Y e Y ey T e Y ave (2:2.3)
gur QvE
Bz + ¥ 2 0, (2.2.4)
and the appropriate boundary conditions are
1
Y - 00 ut :Y+a(p'u" — 1)+ A(z) + h(z) + o(1), (2.2.5)
Y =0 v~ =0,v" =0, (2.2.6)
t=Y - U,
T — —00 ¢ 4t T : (2.2.7)

“=X7Y
where A~ = 1/pv~, U, = a)~ and the shape of the interface is described by
Y = f(z,t) with a = f(z = —o0) denoting the film thickness upstream from the

roughness. The interfacial conditions become

_ _ af af out _Ou~
+_ Vt=vV- = +
s "% TV 8 v v (2:28)
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Pt =07 = Y(fox + hez) — (07 = 1)(f + h)/Fr (2.2.9)

where 7 = 3(A+)~%/4, Fr = Fred(At)~5/% are the rescaled surface tension coeffi-
cient and Froude number respectively. Finally the interaction condition for subsonic

flows completes the triple deck formulation,

pr =L [T 0ALG(s1) (2.2.10)

M) T—8

2.3 Boundary layer on elongated obstacles

From now one in this Chapter we examine the steady case, /0t = 0. The first step
now is to rescale the problem taking the length of the hump L as our typical length
scale. We consider long humps with L > 1 on the triple deck scale. The procedure
is similar to that used in Smith, Brighton, Jackson, Hunt (1981). We take

Y~ILI5, z~L, u~Y ~ L3,

+

Then from the balance u*u} ~ pt and, from (2.2.10) we know A ~ zp*, we have

pi NLS‘, ANL%.

We examine now humps with a height scale A ~ L'g', as we want a contribution
(A+h)~ O(L:IT) ie. A= —h+O(L%). This height produces a nonlinear response in
the viscous layer with the induced pressure proportional to the slope of the obstacle
h/L.

To keep the interfacial effects in the analysis we must ensure that the film remains

within the viscous sublayer so we take
a.~f~L:17 = f<h (2.3.1)

Finally in order to keep surface tension and gravitational effects in the problem

formulation we take

L3 ~y(L7Y3) ~ (L33 /Fr = 4~ O(L), Fr ~ O(L). (2.3.2)
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In accordance with the estimates above we introduce new variables,
V:l: — L—1/3,5:i:, p:l: — L2/3ﬁi’ u:b — Ll/sﬂt,
y=13, Fr=£E, = —L3h(z) + L3 A(z). (2.3.3)

The flow scheme is shown in fig2:2(a) and the governing equations expressed in the

new variables are

ot ou* 1 0p* o*a* '
_x0u  _p0uT 1 opT 07U
U+ 0 37 el +v 577 (2.3.4)
dut ot
4+ = 2.3.
55 T 57 0, (2.3.5)
with the boundary conditions
gooo: at=g§—a+ U, + A(Z)+ o(1), (2.3.6)
§=0: @ =0,9" =0, (2.3.7)
at=g-a+U,,
2 — —00 v (2.3.8)
u” =77,
and also at § = f(z)
_ at 7~
at =a-, 7t =97 = 2t fz(3), % = p‘%, (2.3.9)
pt — 5~ = Jhzz — h(p~ - 1)/ Fr, (2.3.10)
_ 1 [ 8h/8s(s)
+ - _Z AT
pr=—c - ds. (2.3.11)

There is no pressure/displacement relation now with the interaction condition re-
placed by a given pressure related to the surface roughness.
For computational purposes the pressure-hump shape relation (2.3.11) is rewrit-

ten taking Fourier transforms,

F(p )=/_: et (2)dz, F(p*)=~|k|F(R(z)), (2.3.12)
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so that

dpt 1 [ gz Tin
G ") "% [~ik | k | F(h(z))] dk. (2.3.13)
For the pressure gradient in the film the relation (2.3.10) can be differentiated and

the derivatives of h calculated explicitly for a chosen roughness.

2.3.1 The numerical method

Numerical solutions are obtained to the problems setup in §2.1 and §2.3, by marching
in the appropriate co-ordinate & or Z, using iferations at each streamwise station.
We outline the numerical method in terms of the variables in §2.3, however the
rescalings take the same form for both problems, replacing all variables Z,... with
#,... and setting h = 0, with the only difference in numerical representations being
the far-field boundary conditions.

To construct the actual solution we rescale the normal coordinate in the film
and make a further Prandtl shift in the boundary layer with respect to the unknown

interface position. In the boundary-layer equations (2.3.4), (2.3.5) we write

Ut =a*t, Vt=st-atf(z), X =1, (2.3.1.1a)
Pt =5t Yt=g-f(z), F=7, (2.3.1.1b)
which yields the equations, valid for Yt > 0,
ou+ out ort Ut
+ + - = i
U X +V YT ax + Gy +? (2.3.1.2)
out avt
—_—t = = 2.3.1.
0X  ovt 0 (2.3.1.3)
with boundary conditions
Yt s 00: Ut=Y+t4+U,-a+ A(X)+ F(X)+o(1) (2.3.1.4)
Yt=0: Vt=0 (2.3.1.5)
X —o0: Ut=Y*+U, Foa (2.3.1.6)

where our initial interfacial speed is U, = a/p v~
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The film region is mapped onto the finite strip 0 < Y~ < 1 using a change of
variables suggested by Dr J. W. Elliott ( private communication ). We write

¥y

Y ==, X=2z, U =147, (2.3.1.7a)
@
< 7
Vi=9"-Y" =4, P~ =35, F=§, (2.3.1.7D)
0z
which give the equations
_oU- V- oUu- 1 8P~ v~ 0%~
oXx T Fav- ~ p 60X T Flay-? (23.18)
(U-F) 08V~
e + 7 = 0, (2.3.1.9)
and boundary conditions
Y =0: U=V =0, (2.3.1.10)
Y =1: V- =0, (2.3.1.11)
X—>-0: U=UY". (2.3.1.12)

The interfacial conditions of continuity of tangential velocity and normal velocity, the
jump in pressures and shears and the viscous-inviscid interaction condition, which

becomes a given pressure relation, are then expressed as

e ou+t p-oU-
+iyv+ — — — 27 (vt = 7 7Y (v —
UHY* =0)= U~ (Y™ =1), (vt =0) = (v =1), (231.13)

Vi yt=0)=V"(Y  =1)=0, (2.3.1.14)

dPt dP~ _&PH  (p-1)dH

dX  dx  Tdxs3 Fr dX'

pr=_1 /°° S_H/B—s(s)ds’ (2.3.1.16)

T ) X-—5

(2.3.1.15)

where h(Z) = H(X).
The problem in §2.1 can also be represented by the same transformations (2.3.1.1),

(2.3.1.7) (with all variables Z, ... replaced by &, ...) and the obstacle removed, H(X) =
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0. The only differences, for numerical purposes, are the boundary conditions, (2.1.3),

(2.1.6), which become

Yt - o0 Ut —1, (2.3.1.17)

X=0: Ut =Ug(Y*), Um=JY(1-Y-), F=g& (2.3.1.18)

where J = 42J.
A three-point backward difference is used for X-derivatives and a two-point

central difference for the normal direction:

0E(X)  3¢(X) - 46(X — AX) + £(X — 2AX)

= = (2.3.1.19)
BE(YE Y+ AYE) - (Y - AY?
g(Yi ) _ & 2)Ayfi( ) (2.3.1.20)

where ¢ is a representative function.
Provided the solution is known at X — 2AX and X — AX the momentum equa-

tions at the next X -station are written in the form

QUL + 55U + U = df (2.3.1.21)

with the coefficients given by

VPAY - v 3UTPAY - 9u-
s o= I - L= J Jdol.
% T T oFe (Fp)?’ 7 ax T (Fr)*’ (2.3.1.222)
/R S 2.3.1.22b
c; = - ST - (FP)Z’ (2.3.1.22b)
— _2 -1
- — = 2.3.1.22
dj = (AY7) ( - dx Taax \ T 2A% » (23122
+P A+ +P A +2
g GAYT oo S0 AT
I 2 ’ J 2AX ’

VIPAY dp+ UFP Ay t? + g+t
P e E—— d‘f:(AY+)2 _ b 2 J F] ,
3 2 7 dX = 2AX 2AX

(2.3.1.22d)
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where the superscripts p,2,1 and subscript ;7 represent, respectively, the predictor
value for the current X- station, the value at the X — AX and at X — 2AX and
the Y* position. Omitting references to the specific fluid layer, to calculate the new

values for U, V, F, the function U€ is written in the form

Usr = p;US + g; (2.3.1.23)

7

which upon substitution into (2.3.1.21) gives

~¢j dj — a;g;

9 g = 2.3.1.24
ajpi +b; 17T ajp;+ b ( )

Pj—1 =

From the boundary conditions, (2.3.1.10), (2.3.1.4), along with the condition of

continuity in U% at the interface we find

po =0, g =Ufys, U =0, U =Ug,. (2.3.1.25)

Jjmaz— -1~ jmaz— -1

For the problem in boundary layer flow in §2.1 the far-field conditions require

+ _ + _
pjmaa:+—1 =0, qjmax+—1 =1, (2.3.1.263.)

and for the triple deck problem described in §2.3 we have

1, ¢f =AY, (2.3.1.26b)

Pimazt—1 = 1 Gzt 1
where the subscripts jmaz™,jmaz™,int refer to values being taken at the final
points in Y*,Y~ and at the interface, respectively. V¢ is then found using the in-
compressibility conditions (2.3.1.9), (2.3.1.3) which have also been discretized using
the two- and three-point difference forms (2.3.1.19), (2.3.1.20).

To begin the solution procedure, guesses are made for the interfacial velocity
and position U, F at the new X —station, together with a predicted velocity
distribution U%P, V*P across the flow. Then the relations (2.3.1.21) -(2.3.1.25) with
the appropriate far-field condition, (2.3.1.26a) or (2.3.1.26b) are used to calculate
the ’corrector’ velocities U*¢, V*¢. This procedure is carried out with three pairs of

initial guesses for the interfacial speeds and positions. Two functions representing

interfacial boundary conditions, A and B defined as

A(Uint’F) = :'cntFJc( - ifm B(Uintz F) = #—(U}-’-— )‘iﬂt - (U;-+ )iﬂt (23127)
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are used to calculate corrector values for U, F with two-point Newton iterations
aimed at satisfying the conditions A = 0, B = 0 and the whole procedure is iterated

until a convergence criterion,
AU <€ 6 AF < ¢, (2.3.1.28)

is satisfied, where ¢; is a chosen tolerance, typically of O(107°).

2.3.2 Results

Having established a credible model for the two-fluid flow, within the film and for a
comparable depth within the boundary layer fluid, we look at the various parameters
which influence the onset of the Goldstein singularity/flow breakdown for flow over
an obstacle. For the purposes of the numerical calculations the obstacle was defined

to be
H(X)=hoe X’ —00 < X < c0. (2.3.2.1)

The first and most obvious parameter is hg, the hump size coefficient. The

velocity profile in the film can be written in the form
U =X"Y +hlU-, (2.3.2.2)

and since the flow breaks down where U~ /Y~ — 0, we expect the height hg to
be important, especially close to the wall where the correction U~ is likely to have
its greatest influence. Looking at our figures 2:2 and 2:3 we see that the slope of the
skin friction approaches the Goldstein singularity, through the marginal singularity
where QU™ /0Y ~(0) — 0, as the obstacle height, |hg|, is increased. Graphs of the
comparative hump effects are shown in figs 2:2(b)-(e), for a system of water in the
film and an equal mixture of silicone oil V2 and 1-2-3-4-tetrahydronaphtalene in the
boundary layer, with the parameters taken from Pouliquen, Chomaz & Huerre (1994)
as an example of a real dynamical system, and in Figs 2:3(a),(b) for a homogeneous
system. The other factors which can affect the onset of the marginal singularity are,
p~, v™, 7, Fr and &, and Table 2:1 shows how the variation of these parameters

)

affects flow breakdown within the obstacle range —0.5 < hg < 0.5.
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Starting with the effect of the density ratios on flow separation, it was found
that if the film fluid is less dense than that in the boundary layer then separation is
retarded, whilst denser films cause separation for smaller obstacles. This is because
the shear is reduced in a denser film fluid and vice versa and so a film coating of a
less dense fluid will cause an otherwise separating flow to remain attached.

Introduction of surface tension into the system appears to enhance flow reversal
as does an increased gravitational influence, Fr # co. As with density, less viscous
fluids in the film do not cause separated flows for the same obstacle height as the
equivalent homogeneous system, whilst more viscous fluids in the film have the
opposite effect, enhancing separation.

The final parameter, the non-dimensional film thickness, does not appear to
affect the behaviour of the system in terms of flow reversal, at least not for the
chosen values of @, although it must be remembered that the assumption has been
made in the scaling of the problem that the film thickness remains within the viscous
sublayer of the triple deck formulation. No internal separation of the type found in
Sychev (1980), Elliott, Smith, Cowley (1993), Timoshin (1996) was encountered in
the cases studied here, with all failures of the numerical method, i.e. the occurrence
of singularities, being caused by zero wall shear.

Leaving separation aside, and concentrating on flows whose streamwise velocity
profiles return to their original linear form far downstream, we turn to the graphs of
the displacement function A(Z) and the skin friction for a given obstacle and two fluid
system. Figs 2:2(b),(e) and 2:3(a),(b) show intervals of z with decreasing wall shear
but increased displacement and hence the likelihood of inflexion points developing
in the velocity profiles fig 2:4(a),(b), which will facilitate Rayleigh instability. This

will be examined in the next section.

2.4 Inviscid instabilities in film-coated flows

It was noted in §2.3.2 that the flow may become unstable to inviscid shorter-scale

Rayleigh-like instabilities. If we write L = LRe™% as the lengthscale of the boundary
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layer flow over an obstacle on the triple-deck scale, with L representing the obstacle

length, then the new disturbance lengthscale scale L,, is taken as
IPRe~% < L, < I (2.4.1)

i.e. short compared to the triple deck scale but at least as long as the characteristic
Rayleigh scale O(Re~5/8). First we examine the case Re™ ¢ L1/3 < L, from which
we obtain a long-wave (in terms of the film thickness) integral condition for the
disturbance phase speed ¢. We then examine disturbances with L, = Re"%fll/"',
variations of the pressure term in y then affect the flow and instability is governed
by the full inviscid Rayleigh equation.

We begin with an analytical examination of both regimes, solving for a slightly
perturbed two shear streamwise linear velocity profile, such as that generated by the
flow over a shallow obstacle, to obtain the disturbance growth rate explicitly. The
results are then compared with those obtained numerically using a discrete iterative '
method for the full Rayleigh problem, as outlined in a subsequent section, on the

profiles calculated in §2.3.2.

2.4.1 The long-wave instability

We introduce small temporal and spatial wave perturburbations, O(6), to the veloc-
ities and pressure fields and define the wave as

E = exp [z’k (Lia:- - -Lc—t')] . (2.4.1.1)

w w

With the governing equations given by (2.3.4)-(2.3.11) we write the velocities and

pressure as

2t = UG +6(FTE +cec)+ ... (2.4.1.2)
7t = L+ Li(ﬁ;’“E +ee)t .. (2.4.1.3)
o= .+ 5(;§CE +ec)+ .. (2.4.1.4)
which lead to the relation
(U* — )iy = Uzt (2.4.1.5)



Chapter 2: Inviscid instabilities in film-coated flows

32

The boundary conditions at the wall, infinity and an interfacial condition relating

the normal velocity and pressure in the film to that in the boundary layer complete

the problem formulation:

) = k*oF
—p~ (57U~ ~ (U~ = )iy)

where 4 = y/LZ%. We solve this and find a general solution in the form
—+ _ o+t R S S,
7 =Q7(U" —¢) m((]‘*——c)i 7+ Q2 (UT —¢)

f
=010 -0 [ e 40 -0

(2.4.1.6)

(2.4.1.7)

(2.4.1.8)

(2.4.1.9)

The boundary conditions (2.4.1.6) force @; = 0, Q7 = 0, from the interfacial

condition (2.4.1.7) we obtain the relation

O L
Qf = Q7 - 7 —,

and the normalization condition #;(f) = 1 gives

7 -1
Q7 = ((Ua_c)/o (U__l:c—)gdﬂ> .

Continuity of ¥ at the interface then gives the dispersion relation

L [y p——"
4 (1 - (U——c)zdy> ; @ -p®

2.4.2 Rayleigh-wave instability

(2.4.1.10)

(2.4.1.11)

(2.4.1.12)

In this subsection we attain an asymptotic approximation to the disturbance phase

speed ¢ from the inviscid Rayleigh equation for disturbances with wavelength L,, =

Re-1AL3,
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We start by taking an analytic approximation to the streamwise base velocity
profiles U(7) in (2.4.1.2), writing them as piecewise-linear profiles with a small cor-
rection O(e), here proportional to base flow departure from linearity and hence the
hump size ho, where § € € <« 1. A similar analysis applies to the enhanced mean
flow profiles examined in Chapter 4. We also expand the interfacial position in

powers of ¢, and write

Ut = §-a+U,+eGH(3), (2.4.2.1)

U™ = A §+eG (%), (2.4.2.2)

f = atef. (2.4.2.3)

Here @ is the unperturbed interface position, A~ = 1/p~, U, = A~ @ and we normalize

the flow such that at the interface 4 (§ = f) = U, + .

The shortened lengthscale, compared with that of §2.4.1, leads to the full inviscid

Rayleigh equation for the normal velocities 'T)f,

(U* = c)(vi5, — K*0F) = Ugy™ 05" (2.4.2.4)
with boundary conditions
7 (F=0)=0, 57 (§=00) = 0. (2.4.2.5)
Expanding 7; and c in powers of €
v, =Vo+eVi+.., c=co+ecy+ ..., (2.4.2.6)

and, substituting into (2.4.2.4), we find the solutions

-, v

(2.4.2.7)

We take these solutions, which satisfy the boundary conditions (2.4.2.5) and put
them into the interfacial condition (2.4.1.7). Linearizing and taking terms O(1)

gives a dispersion relation for the leading order phase speed co,

(U, = co) (L + k(Us — co) — p~ (A~ = (U, — co)k coth ka)) = 4k%,  (2.4.2.8)
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which has the solution

1-p A"+ /(1= p~2")2 + 47k3(1 + p~ coth ka)

2.4.2,
2k(1 + p~ coth ka) ( %)

COZUs'l'

We note that, for all positive wavenumbers k, cq is real. In particular in the case of
no surface tension

1—-p~ A"
k(1 + p~ cothka)’

co=U, or cg=U, + (2.4.2.10)

The growth rate will be found from ¢;. The next order terms, O(e), in (2.4.2.4) give

(U* = co)(Vigy — B*ViE) = GEVot, (2.4.2.11)

and we look for a solution of the form V() = F*(3)V:(§). The solution now
depends on the position of a critical layer which forms at § = §. where U(%.) = co.

We will first pursue the case of a critical layer in the film. We have

for § < ¥,
_ _ (71 et . _
Vim =V, /0 V0_2 {/; e cods} ds+ b, Vy; (2.4.2.12)
for 7 > 7.,
Vo= v /’7 1_2 {/ G_:,Vo_z ds} ds+Vy /g b—zzdy+bgVo", (2.4.2.13)
A g ATS —¢o 7 Vo

7 1 i G+y+? 7y
vt =vt — 35’0 W s 04
v /a vi? {/& 17—&+U,—cods}ds+ ° /a V0+2dy+b5 {242.14)

where the b;’s are constants of integration. The solution for ¥}~ contains a term of

the form
Vi =B(7-F)n|§— Fe| + .., (2.4.2.15)

and as § — 7.

B (GEQVO- )!7:‘9:

2y =W e 2.4.2.16
wog-1 A=(7 —co/A7) ( )
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so B = Gg3(¥)Vy (9c)/A™ and §c = co/A™. The jump in the derivative of the

normal velocity across the critical layer is proportional to the logarithmic term in
(2.4.2.15),

i Gy(9e)Vo (3c)
A_ )

Vig(#F) - V537 ) =B = (2.4.2.17)

where 7% denotes the limit value taken as y — 7. above or below the critical layer.
The remaining boundary conditions are the normalization (2.4.1.6) at the interface,

the continuity in the normal velocity across the critical layer, i.e.
ViE(a) = - iV (@), Vi @) = Vi (g), (2.4.2.18)

and the pressure jump across the interface written as (2.4.1.7).
Our aim is to find the imaginary part of ¢; so we need concentrate only on

the imaginary parts of the relations (2.4.2.18). Solving for Vi, using the boundary

conditions (2.4.2.17),(2.4.2.18), substituting into (2.4.1.7), and taking the imaginary

terms O(e) we find

_ p~(Us - CO)BWGEg(

"~ A-sinh ka((U, — co)*k(sinh k@ + p— cosh k@) — k2 sinh k@)

'yc)sinh2 kg,

C1z (24219)

In the case of the critical layer occurring in the boundary layer we find

(Us = co)*mGfy(fe )e >~ e)
(sinh k(e — @) + cosh k(F. — a))(k(1 + p~ coth ka)(U, — co)? — k2)
(2.4.2.20)

Ci1: =

Taking the long wave limit £ — 0, the imaginary part of the complex wave speed
is given by the formula

- (= _o\a2
- Ggg('_l/.;)?f(U_, co)¥z

c1i T if 9. < a, (2.4.2.21)

GL(F)m(Us — o)
p-a!

if g, > a. (2.4.2.22)

C1; —

We see that positive curvature at the critical height § = 3. provokes instability if

. < @, and conversely negative curvature is destabilizing if 7. > a.
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We also examine the short wave limit £ — oo of (2.4.2.19), (2.4.2.20) to see if
instability persists. For both the case of the critical layer in the film and the critical
layer in the boundary layer flow we see that surface tension becomes the dominant
effect for short waves and the disturbance is strongly stabilized. If there is no surface

tension ¢;; — 01 as k£ — oo.

2.4.3 The numerical Rayleigh instability calculation

Here we solve the problem numerically for the boundary layer and film flows with
boundary conditions (2.4.1.6), (2.4.1.7) with the velocity profile, 4%, and interfacial
position f calculated using the numerical method of §2.3.1. Our numerical method
uses the inviscid Rayleigh equation (2.4.2.4) rewritten with the second order deriva-

tive in the normal velocity V* in a central difference form,

v

At VE+VE =0, (2.4.3.1)

where

(2.4.3.2)

U; (Ag*)?
Uj—c ’

a; = — (2 + kz(A:lji)z + J

with the base velocity profiles written in terms of the original vertical co-ordinate
7, subscripts 7 corresponding to the discrete § position and primes denoting differ-

entiation with respect to §. We write
+ +17+ +

which, upon substitution into (2.4.3.1), gives us the formulae

1 ¢
+ + J
U S S I 2.4.3.4
Pjt pEtar T TpELGE ( )
with the boundary conditions (2.4.1.6), (2.4.1.7) requiring
of =1, pf =0, ijm+ =0, (2.4.3.5)
g5 =0, p;=0, Vo =1 (2.4.3.6)
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For any given k£ we make a guess on ¢, calculate the appropriate normal velocity
profile as above, and perform Newton iterations to satisfy the interfacial condition
(2.4.1.7).

It is important to note that there are three constraints on the effectiveness of
this method, numerically speaking. The first is due to the normalization in V at
the interface. If the non-dimensional initial film thickness, @, is too large then
the numerical method for the film will struggle, as the solution decays away from
the wall. This in effect means the entire solution is being distorted to satisfy our
condition V* = 1 at the interface.

The film thickness also affects the size of the phase speed ¢ which, as was seen in
the analytic approximation where ¢; = ¢;(co), affects the magnitude of the instability.
Further, the method is unable to detect weak instabilities, ¢; = O(107%), as these
would require a grid size smaller than our minimum computationally reasonable
stepsize, 2.5 x 1073,

The final constraint is the value for the numerical far field. In the numerical
solution for the viscous sublayer flow over an obstacle, a value of § = 7; + 10 was
used since, at this point, the gradient of the profile was always unaffected by the
obstacle (i.e. it remained constant). This was sufficient then for a calculation of
the profiles over the length of the obstacle, a more distant far field would have just
increased calculation time unnecessarily. However for the instability calculations,
especially at small wavenumbers, the numerical method requires a more distant far
field such that a smooth and natural decay of the normal velocity can occur. To
overcome this problem the profiles calculated for the flow over the hump were linearly
extended such that the far field became 9, = %; + 80. This number was reached
upon comparison of values calculated for the phase speed ¢ for different values of
Joo. At this distance our solutions did not alter before the third decimal place, an

accuracy we were willing to accept in return for a realistic computational time.
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2.4.4 Numerical results for instability

We examine the case of non-separating flows which remain attached over the entire
obstacle. We will compare the instabilities of two fluid flows over a given obstacle
with those of its homogeneous counterpart.

We start by examining the displacement function A(Z) and the skin friction for a
given obstacle and two fluid flow, figs 2:2(a),(d), and 2:3(a),(b). We observe intervals
of ¢ with decreasing wall shear but increased displacement and hence the likelihood
of inflexion points , see figs 2:4(a),(b), developing in our velocity profiles, which will
facilitate Rayleigh instability.

We discovered, as in Bodonyi & Smith (1985), Tutty & Cowley (1986), that
for homogeneous flow inflexional profiles are not necessarily sufficient for instability.
We examined an obstacle of a slightly different form but, as was seen in Bodonyi &
Smith, there appears to be a minimum obstacle height required to instigate instabil-
ity. In the next section we will examine the stability of a flow with parameters based
on two realistic fluids but first we compare the stability of a two fluid system with
its homogeneous counterpart taking into account the effect of varying parameters in
the two fluid system. We look for instabilities in the flow over an obstacle of height
h = 0.35, close to the greatest common obstacle height for which both flows remain
attached. When the skin friction (86U~ /8(§ = 0)) becomes zero a singularity occurs
in the slope of the skin friction and displacement and the flow scheme breaksdown,
indicating a strong effect of the obstacle on the flow development. Using the size
of the skin friction as an indication of the effect on flow development we compared
a variety of homogeneous and two fluid systems. Even for two fluid systems with
a larger skin friction than the homogeneous counterpart we find instabilities where
none could be found for the single fluid case. When we examine the hump size
(ho = 0.42) which causes the minimum non-zero, i.e. calculable, skin friction for
a homogeneous system, we did eventually find a small pocket of instability for the
single fluid system, fig 2:5, but this was still much smaller than that of a two fluid

counterpart with p~ = 2, v~ = 0.5, a = 2 which had much larger minimum skin
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friction.

These instabilities, which we found analytically in equations (2.4.2.20), (2.4.2.19),
appear to be present for many non-homogeneous flows. We can have confidence in
the validity of the asymptotic approximation to the growth rate when we see how
well it correlates with our numerical solution, see figs 2:6(e). We will show that
the presence of a film significantly enhances the instabilities present in homogeneous
flows over an obstacle, with instability found for arbritrarily shallow obstacles in

two-fluid flow.

2.4.5 A particular two-fluid flow

In this subsection we examine the instabilities present for a particular two fluid
flow, that of water in the film and an equal mixture of silicone oil V2 and 1-2-3-
4-tetrahydronaphtalene in the boundary layer, as used in §2.3.2, and compare the
results with its homogeneous counterpart over an obstacle of height hg = 0.35. In
the two fluid case strong instabilities were discovered at the z-stations before and
after the hump maximum, in the areas of greatest velocity variation, as the flow first
accelerates and later deccelerates. With a film thickness a = 2, we discover, in the
area leading up to the hump, that the profiles are unstable to long waves which decay
in strength and become much shorter as the hump is approached (figs 2:6(a),(b)).
At the crest of the hump no instabilities could be found. Soon after the crest the
profiles again become susceptible to long wave instabilities, and the strength of
these instabilities decreases and their wavelengths become shorter, until eventually
no unstable waves were detected for profiles further downstream (figs 2:6(c),(d)).
Comparison of the numerical calculations, using the full numerical solution, for
long waves £k — 0 is favourable with the numerical solutions calculated using the
integral condition (2.4.1.12). Further comparisons were made with the analytic main
approximation to the growth rate (2.4.2.19) and, as shown in fig 2:6(e), there appears
to be a fair degree of correlation.

For homogeneous flow over the same obstacle height no instabilities could be

found. It was unclear however if this lack of instability in the homogeneous flow was
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realistic or simply a failing in the numerical method to detect small instabilities. To
establish which of these eventualities was more likely we devised a 'merged’ profile,

where the two calculated profiles for each distinct station were combined in the ratio
U= (1 - )\)Uw/oﬂ + )\Uhg, 0< A<, (2.4.5.1)

where the subscripts 'w/oil’ and ’hg’ refer to water/oil, and homogeneous flows
respectively. As can be seen in figs 2.7 (a)-(c), there do not appear to be any
significant instabilities in the homogeneous flow. Fig 2:7(c) shows the value for the
growth rate calculated using the integral condition (2.4.1.12), for varying values of

A

2.5 The condensed flow problem

In this section we consider a different regime of the previous problem, that of con-
densed flow over a short surface mounted hump on a film coated wall, of length
L < 1 on the triple deck scale. The formulation is exactly the same as §2.3 but with

the hump size and displacement written as
h~ L3, A~ L%3. (2.5.1)

The obstacle size is the minimum required to illicit a non-linear response from the
viscous layer, and now the far field boundary condition for the viscous sublayer,

(2.2.5), is replaced by
at =g+ h(z)-a+ U, asf— oo (2.5.2)

The problem is rescaled as in §2.3.1, using (2.3.1.1), (2.3.1.7) and we obtain the
governing equations (2.3.1.2),(2.3.1.3) and (2.3.1.8),(2.3.1.9). Taking the derivative
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with respect to Y'* of these equations we find

Ut 6;? + Vvt ?9?: = %2}%, (2.5.3)
aaL; L .g%t_ _— (2.5.4)
U_?-(—?m%-i-%—-%—[f_g?—; = %%’ (2.5.5)
32’% N ZTV:' = 0, (2.5.6)

where W* = §U*/8Y*, and the boundary conditions are
Wt —1aY?t - oo, (2.5.7)

and, at the interface Y+ =0,Y~ =1
pWT/F=WT, (2.5.8)
Fr (600 g+ e+ O e 1) =

(2.5.9)

The last of these conditions comes from the equations (2.5.3), (2.5.5) at the interface
at Yt =0,Y" =1 where

§Pt 8P~ __8F (1-p7)OF

+ _ — = =
V==0 3% ~3x ~Taxe Pr 08X’ (2.5.10)
+ -_
Ut=u-, %UY = %Uf (2.5.11)

and is required to fully specify the problem.

2.5.1 The numerical method

Exactly as before we discretize (2.5.3)-(2.5.9), writing derivatives with respect to
X in a three point backward difference form and those in Y in a central difference

form. In the same manner as in §2.3.1, W* is written as

Whii=PiWH+QF, Wi, = PfW;;+Q7, (2.5.1.1)

















































































































































































































































































































































































































































































