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ABSTRACT

This thesis is concerned with the development of tools and methodologies for non­
destructive fatigue strength evaluation of offshore tubular welded joints.

The sizing capability of new Non-Destructive Technique(NDT), alternating current field 

measurement(ACFM), was investigated. The University College London(UCL) underwater 
Probability Of Detection(POD) trial results were re-analysed to make them suitable for 

reliability fracture mechanics procedures.

Comprehensive thin shell finite element analyses were conducted for 660 tubular Y, T, X and 
DT-joints, with geometries typical of those used in offshore stmctures, subject to different 
modes of loading. The results have been used to produce a new set of stress parametric 
equations. These were assessed by comparing the predicted values with available test data. 
The equations can be used to predict hot spot Stress Concentration Factor(SCF) and Degree 

Of Bending(DOB) at all critical positions for X and DT-joints and also the full SCF 
distribution along both chord and brace toes for Y and T, X and DT-joints. Combination of 
these parametric equations with original UCL HCD equations allows one to recreate the full 
2D stress distribution for tubular Y and T, X and DT-joints. Moreover, stress distribution 
concentration factor(SDCF) has been proposed and parametric equations were derived to 
predict average SCF and SDCF for Y and T, X and DT-joints.

Combining available weight functions and the UCL database of T-butt through-wall stress 
analysis results, a new set of weld toe Stress Intensity Factor(SEF) parametric equations were 
derived for both the deepest and surface points of semi-elliptical surface cracks in T-butt 
welded joints. Using thin pipe weight function as reference data, a novel weight function and 
the corresponding SIF solutions were derived for the deepest point of a semi-elliptical cracks 

at the saddle of tubular welded T-joints. A comparison of the predictions with the UCL 

experimental results, especially early fatigue crack growth data, showed that this new model 

can work well with the constant force shedding and the non-linear moment shedding derived 
from previous line spring FE analysis.
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CHAPTER ONE 
INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

In order to meet the demands of the world's energy requirements, many steel offshore 

platforms have been built for exploration and exploitation of oil and gas reserves from 

hydrocarbon reservoirs below the sea bed. The first steel offshore structure was installed off 

the Louisiana coast shortly after World W ar II. Presently, over 6000 offshore steel platforms 

are operational with predominant locations being the Gulf of Mexico(GOM) and the North 

Sea.

Hydrocarbon production is dominated by use of bottom supported fixed platforms. Among 

them, the most predominant type is the steel jacket or "template" platform pioneered in the 

GOM. It is a truss-work tower consisting of tubular members with a deck on the top and 

piles into the sea-bed (Figure 1.1). Tubular members are used extensively in jacket 

platforms because of their high strength to weight ratio and non-directional buckling and 

bending strength, and low wave resistance. Within the jacket structure, tubular members are 

welded together at their intersections in a variety of forms, normally classified as T, Y, K, 

X, etc. and these joints are referred as tubular joints. The complex intersection of these 

joints represents a structural discontinuity that gives rise to severe stress concentrations at 

the weld toe and may introduce possible fatigue failure. Therefore, the service life of 

offshore jacket platforms is dependent on the structural integrity of tubular joints.

The detailed design of the framing for a jacket stmcture can vary considerably, mainly 

depending on requirements of strength and fatigue. For most jacket platforms in the GOM, 

where calm wave climate largely prevails only occasionally interrupted by hurricanes, 

fatigue criteria are not governing and an ultimate strength approach is used for the rarely 

occurring hurricane loading.

Exploitation and production of crude oil and natural gas moved to deeper and more hostile 

ocean environments following the discovery of oil in the North Sea in the early 1960s. The 

design of North Sea platforms has been traditionally based on the experience gained from 

platforms in GOM. However, the North Sea presents an entirely different situation. During a 

typical operational life, tubular joints experience up to 200 million waves that could produce 

fatigue damage. With the large proportion of the medium sized waves that produce fatigue

27



damaging stress cycles in the structures, North Sea oil production platforms had to be 
designed against fatigue crack growth.

As some of these platforms are now approaching the end of their design lives, the 

maintenance of offshore structural integrity becomes more important to the safety and 
operational reliability of offshore installations. Fatigue damage has been identified as one of 
the most important factors in causing degradation of these joints in the North Sea because of 

the significant levels of cyclic fatigue damage associated with oscillatory wave loading and 
lower fatigue strengths due to high stress concentrations at the weld toes. Therefore, 

periodic in-service inspections are required in order to ensure the structural integrity of 

offshore structures. To provide a cost effective inspection, maintenance and repair policy, 

accurate fracture mechanics modelling is needed so that one can predict the fatigue crack 
growth behaviour. This information needs to be linked to an understanding of the ability of 

non destructive techniques (NDT) to reliably detect and size fatigue cracks in tubular 

welded joints.

The fatigue performance of offshore tubular welded joints is of considerable importance 
both in the original design and also during service for the offshore jacket platforms in the 
North Sea. In response to this challenge, several major European research and development 
programmes, such as United Kingdom Offshore Steels Research Programme(UKOSRP) 
Phases I(HSE, 1988) and U(HSE, 1987), and European Coal and Steel 
CommunitytECSC¥Steel in Marine Structures. 1987), have been carried out in order to 
understand the fatigue and fracture behaviour of these joints for past two decades. 
Meanwhile, a series of cohesive fatigue programmestPatigue of Offshore Structures. 1988) 
have been conducted under management from University College London(UCL) in the 
application of fracture mechanics to predict fatigue crack growth. These programmes 
produced a broad fatigue database and reliable methods of using such data for design and 

certification; this has significantly increased our understanding of fatigue damage for 

offshore welded tubular joints. The results from these programmes have been used to 

develop and update the standards and guidance(Department of Energy, 1984 a)(HSE, 
1990)(AP1, 1993)(CAN/CSA-S473-92, 1992). Taking account of new fatigue data produced 
over recent years, the fatigue guidance of the Offshore Safety Division of the Health and 
Safety Executive(HSE) was recently revised(HSE, 1995).

This chapter will review the main findings from these research programmes in the following 

areas:

i) Behaviour of the fatigue cracks in tubular joints

ii) NDT techniques to detect and size these fatigue cracks and their reliability

iii) Determination of stress distribution in tubular joint
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iv) Assessment of fatigue strength for tubular joint.

The final section of this chapter will address the research objectives of this study and 

describe the scope of the rest of thesis.

1.2 Fatigue Cracks in Tubular Welded Joints

Tubular joints consist ordinarily of joints between main and secondary member tubes. The 

former, which are larger in diameter, are denoted as chord, and the latter, which consist of 

small sized tubes, are denoted as braces. The joints in the main structure of offshore steel 

jackets are often multiplane joints. Uniplane joints are found in the bracings between main 

legs in horizontal planes and in secondary structural elements. In the present state of the art 

the joints are normally classified and evaluated in terms of the simple uniplane joints(Figure 

1.2), disregarding the effect of braces that are not lying in the considered planes. Figure 1.3 

shows the non-dimensional geometrical parameters that define simple welded joints.

It should be emphasised that the classification should not be based only on the geometry of 

the nodes, but also on the load transfer mode. For the fatigue analysis of tubular joints it is 

convenient to separate the loads in multiples of three basic load cases, i.e. axial load, in­

plane bending load and out-of-plane bending load(Figure 1.4).

The fatigue life is a combination of initiation life and crack propagation life. It is been 

known that there are many different types of defects (i.e. undercuts, slag inclusions and 

porosity) caused by the welding process in the weld toes of these joints. Although these 

defects do not exceed the maximum limit permitted in codes, they cannot be eliminated or 

observed by present NDT techniques. Also the severe stress concentration occurs at an 

intersection of the steel tubes. As a result, the cracks initiate at the existing welding defects 

or stress concentration sites such as the weld toe. The first occurrence of detectable cracks 

occurs at a very small fraction of the service life of these joints.

Generally, fatigue cracks initiate at several locations around the weld toe in the form of 

multiple adjacent surface cracks in the chord toe. These cracks grow and eventually coalesce 

to form a single dominant crack. The propagation of this dominant crack will cause failure.

Crack propagation and fatigue damage may occur even at very low stress level. For tubular welded 

joints, propagation often forms a larger fraction of the total life than initiation. Experiments 

have shown that the surface cracks propagate along the weld toe of the intersection and in 

the wall thickness direction. The growth path direction of the weld toe cracks is a function 

of the principal stress field(Remzi and Blackburn, 1987). The through-wall principal stress 

direction generated by brace-chord load transfer varies with crack depth. This causes 

increasing curvature as the crack deepens. In general if a crack is subjected to a mixed mode

29



of deformation, under fatigue loading it curves to minimise the Kjj and Kjjj values. In 
simple joints, fatigue cracks are usually found to have propagated through the chord 
thickness in a direction close the radial direction (normal to the shell surface), but to curve 
towards the brace in the latter stages of crack penetration.

The fatigue strength of a tubular welded joint is mainly characterised by the hot-spot stress. 
The crack growth behaviour is influenced by both membrane stress and ! 
bending stress. Tubular joints having the same hot spot stress but with different through 

thickness stress will have different fatigue lives. A weld toe surface crack, growing in a 

predominantly membrane stress field, will grow rapidly and at an increasing rate to chord 
wall penetration. In contrast, for a predominantly bending stress field, the same crack would 
grow at a steady rate(Dover, 1992).

The thickness of the chord wall influences the fatigue life. The fatigue lives of larger joints 
are found to be less than that of smaller joints in the high cycle range. This thickness effect 
is mainly due to the varying stress intensity in the weld notch region and can be largely 

decreased or eliminated by reducing the weld toe angle(Niu, 1987). The thickness effect will 
be discussed in detail later on in this chapter.

In as-welded tubular joints, residual stresses of yield stress magnitude exist. Thus, any 
load, compressive or tensile, will be equally damaging(Vughts and Kinra, 1976). Post-weld 
heat treatment does significantly improve the fatigue life of tubular joints. This increase is 
believed to be due to an extension of the crack initiation phase in these joints(Reynolds, 
1987).

Both weld angle and weld toe radius can influence the non-linear stress region close to the 

weld toe(Niu and Glinka, 1987). The weld toe radius is the most significant feature affecting 
fatigue crack initiation but the weld toe angle is more important for subsequent crack 

growth. Therefore, modifying the weld profile on these joints can improve the fatigue life.

1.3 Non-Destructive Measurement and Underwater Inspection Reliability

1.3.1 Non-Destructive Inspection Techniques

Offshore structure are subjected to periodic inspections, since in-service inspection is the 
main safeguard against uncertainties in fatigue life prediction. Inspections are frequently 

carried out in service on a selection of joints, based upon their assessed fatigue and 

criticality to system strength. Detection and sizing of any cracks which grow allows the 
fatigue model to be updated, as well as providing the opportunity to repair the crack. The 
inspection interval will be dependent on the quality and nature of the information coming 
from inspection techniques.
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The important part of offshore structure inspection involves examination of the submerged 
part of the platform and this is mainly performed by divers. Over the last 20 years, there has 

been a considerable improvement in the effectiveness of underwater inspection. In the 

1970s, underwater jacket weld inspection consisted mainly of cleaning and close visual 
inspection (CVI). It soon became apparent that CVI would only detect serious through­

thickness cracks that were open at the surface. During the 1980s, use of non-destructive 
inspection methods considerably increased the effectiveness of underwater weld inspection. 
Additionally, flooded member detection (FMD) was introduced, and it has become very 
effective for checking through-thickness cracking.

A range of non-destructive inspection systems have been developed for the underwater 

inspection of tubular welded joints. In particular magnetic particle inspection (MPI) is 
commonly used for the crack detection and measurement of surface crack length. However, 
this technique relies heavily on the skill of the diver, and does not give crack depth. Also the 
use of MPI is time-consuming since it requires extensive cleaning of the area to a bright 
metal finish together with setting up of the encircling induction coils prior to inspection. If 
the defect is confirmed by MPI, the depth of crack is often measured by the alternating 
current potential drop (ACPD) technique which measures crack depth by a comparison of 
surface electrical potential differences in the cracked region. This technique has also been 
successfully used for continuous fatigue crack growth monitoring in array form in 
laboratory. However, electrical contact has to be maintained between the probe and the 
component being inspected for ACPD measurement.

Based on the theoretical developments at UCL of the ACPD technique, a new technique, 
termed alternating current field measurement (ACFM), has been developed recently. The 
basic principle of this technique is to generate a uniform electromagnetic field, to measure 

the magnetic fields in the region of a crack, and to perform calculations according to the 
developed theory to estimate the depth of a crack. ACFM technique is simpler in operation 
and gives a reliable estimate of crack depth in a single pass as it depends on the 
measurement of the near-surface magnetic fields rather than the surface electric fields like 
ACPD. Thus ACFM does not require electric contact with the metal surface. For this 
technique, the input current is induced into the specimen thus making the system fully non­
contacting. Non-contacting probes are useful for the inspection of coated or painted surfaces 

in order to reduce the time spent on cleaning prior to inspection.

The main advantage of the ACPD and ACFM techniques is the ability to size cracks without 
the need for prior calibration. Both the ACPD and ACFM techniques are particularly suited 

for measurement of the depth of surface cracks and the ACFM technique can also be used 
for detection. However, the ACPD and ACFM techniques depend on a theoretical model for 
their accuracy. When the theoretical conditions are not met then corrections need to be
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applied, if available. ACFM and also the eddy current system are recently used more often 
since they offer the possibility of similar performance but reduced time compared to MPI.

1.3.2 Reliability of Underwater Non-Destructive Inspection

The offshore structural integrity assessment relies very much on the information obtained in 

service by underwater non-destructive inspection. The performance of underwater non­

destructive inspection systems is subject to variations and uncertainties. When the 
inspection does not reveal a crack it does not necessarily mean that no crack is present. For 

reliability fracture mechanics based inspection planning, it is necessary to know the 
reliability of the inspection method in detection and sizing. The reliability of an non­
destructive inspection technique for defect detection in a particular application is normally 
expressed as a probability of detection (POD) curve which characterises the uncertainties of 
any particular technique. The POD of cracks, using a particular inspection method, is 
important in determining the likelihood of detecting cracks at a stage where they can be 
repaired before affecting the integrity of the structure.

Non destructive inspection technique capabilities can only be demonstrated through 
experiment. Producing fatigue cracks in tubular welded joints is obviously an expensive 
undertaking and could be prohibitively expensive if these samples were only used for one 
trial and then destroyed in order to yield the true crack sizes. As crack sizes could be 
reasonably accurately determined by laboratory non-destructive inspection techniques, a 
confidential library of tubular welded joints containing known fatigue cracks has been 

established in the underwater NDE Centre at UCL and this has been used for a series of 

trials.

Many research efforts have been made towards improving inspection techniques and 
assessing the reliability of various underwater NDT techniques to detect and size surface 
breaking fatigue cracks in tubular joints at the University College London(UCL) Non 
Destructive Evaluation(NDE) Centre. POD trials(Rudlin and Dover, 1990 a)(Rudlin and 
Dover, 1990 b) have been carried out by the UCL Underwater NDE Centre in collaboration 

with The City University as a series of joint industry projects. These were for many 
underwater non-destructive inspection techniques such as MPI and two well-known eddy 

current systems (Hocking AVIOO and Thorbum EMD 111), all of which have been 

successfully used offshore.

The result of above trials have been reported as POD against crack length. However, It is 
more appropriate to have POD data in terms of crack depth as the crack depth is the primary 
parameter for remaining life estimation and fracture mechanics based calculation of fatigue
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crack growth. Thus POD data in terms of crack size have to be reinterpreted before they can 
be used in probabilistic based inspection scheduling.

1.4 Stress Analysis

1.4.1 Stresses Acting on Tubular Welded Joints

Because fatigue strength is controlled by the maximum local stress anywhere in a 
component, a greater understanding of the stress distribution particularly in regions where 
cracks are likely to initiate and grow would create a basis for the development of a fracture 

mechanics approach for the prediction of fatigue life and provide the essential information 
for stress/life(S-N) fatigue design approach.

The problem with tubular joints is that the stress distribution at the intersection between 
members is uneven with very high stress concentrations occurring at some points. These 
stresses can be as high as twenty times the nominal stress for the intersection and therefore 
have considerable impact upon the fatigue lives of the joints.

The stresses in tubular welded connections can be divided into three categories:

a) Nominal stresses caused by the basic structural response of the system to applied loads

b) Geometric stresses caused by the need to maintain compatibility between the tubes

c) Notch stresses caused by highly localised deformations in part of the tube wall

The nominal stresses arise due to the tubes behaving as beam/columns, and may be 
calculated by frame analysis of the structure. Away from connections this gives an accurate 
assessment of stress levels.

In order to determine the nominal stresses acting on the structural members, a global stress 

analysis is normally performed on an offshore structure. At this level the stmcture is 

modelled as a simplified three-dimensional space frame using beam theory to determine the 
forces and moments acting on the joint. This global analysis will provide basic information 

on the stresses in the members, under the action of applied dynamic loading due to wind 
waves, etc.

Fatigue, however, is a local phenomenon. It depends on the stresses acting around the 

intersection of tubular joints. These local stresses are complex in nature but arise from the 
following two main sources.
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The tube-to-tube intersection of a joint causes local bending of the tubular walls under 
loading. The differences in deformation between the chord and the brace due to this bending 

require the tube walls to bend so that the chord and the brace remain in contact at the weld. 
This bending effect results in stresses adjacent to the intersection known as the geometric 
stresses. The geometric stresses are dependent on geometric parameters of the joints, overall 
joint configuration and applied loading types.

Reinforcement due to the weld at the intersection locally stiffens the tube walls. The notch 

stresses arise because of the finite thickness of the tube walls and weldments. However, this 
effect is not propagated far through the wall thickness, and thus leads to a local region of 

three-dimensional stresses. The notch stresses are mainly determined by the parameters 
representing local weld geometry, such as weld toe angle and weld toe radius, as illustrated 
in Figure 1.5.

The stresses inside the notch region are important for fatigue crack initiation and early crack 
growth. However, they are not the controlling parameter as the cracks grow through the 
thickness because the presence of a crack will produce load redistribution. Also the notch 
stress varies according to the geometry of the weld, and in consequence it is difficult to 
provide a deterministic value of the peak stress. Instead it has been assumed that the most 
important stresses controlling the fatigue behaviour are the geometric stresses at the weld 
toe.

As a part of the UKOSRP programme initiated to investigate the fatigue behaviour of 
tubular joints, various joint geometries were studied using a combination of finite-element 
stress analyses, strain-gauged acrylic models and photo-elastic models, and subsequently 
compared with strain-gauge measurements from the steel tubular test pieces, together with 

the results derived from parametric equations. The results showed that the stress variation on 

the exterior surface close to the weld toe follows a general form, shown in Figure 1.6. Far 
from the weld toe the nominal stresses predominate, close to the weld toe the notch stresses 

due to the weld geometry dominate, between these two regions exists a region where the 
changes in the stress field are linear and this variation is thought to be due to the geometric 
stresses produced by the interaction of chord and brace. Thus, a fictitious stress, known as 
the "hot-spot" stress has been introduced into the analysis. According to the 
recommendation proposed by UKOSRP I(Irvine 1981), the hot-spot stress is defined as "the 
greatest value around the brace/chord intersection of the extrapolation to the weld toe of 
the geometric stress distributions near the weld toe. This 'hot spot' stress incorporates the 

effects of overall joint geometry (i.e. the relative size of the brace and chord) but omits the 
stress concentrating effect of the weld itself which results in a local stress distribution. ". 
This is the stress which may be derived by linearly extrapolating the geometric stress to the 
weld toe. The locations of the points recommended for linear extrapolation for
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tubular welded T and X joints(Irvine, 1981) are illustrated in Figure 1.7, This definition 

of hot spot stress is now held to be the most realistic expression of the fatigue crack growth 
inducing stress acting on a tubular joint.

For convenience these geometric weld toe stresses are often expressed in the form of the 
stress concentration factor (SCF) where the SCF is defined as

extrapolated weld toe stresses  ̂ ^
oCf —  ( 1 - 1 )

nominal stresses

In order to conduct fracture mechanics calculations of remaining fatigue life on tubular 
welded joints, it is necessary to have the information on the magnitude and distribution of 
the stress acting in the anticipated crack path, not just the peak stress at one location such as 

saddle and crown. In particular one could identify another two key pieces of information 
that are needed, as well as the SCF, for fatigue crack growth calculations. These are listed 
below.

1) Stress variation through the thickness. (Degree of Bending)

Figure 1.8 shows a typical stress distribution through the chord wall. The surface stress field 
is predominantly due to chord wall bending (linear) and the stress concentration due to the 
change in section at the weld toe (non-linear). For a deep crack the weld toe stress 
concentration region would have little effect. Also in the design stage, it is difficult to 
predict the non-linear distribution that is dependent on the weld and weld toe geometry. 
Therefore, most efforts have been concentrated on the linear through thickness distribution 
and in particular attempting to define the ratio of bending to tension. Thus the stress 
distribution across the wall thickness is assumed to be a linear combination of membrane 
and bending stress about the plane of the element. The stress distribution through the chord 
wall is often characterised by either the degree of bending(DoB), i.e. the ratio of bending 
stress over total external stress or the ratio of bending to membrane stress.

2) Stress variation along the weld toe between the crown and saddle sites. (Stress 

Distribution around Intersection)

Fracture mechanics calculations on tubular joints require a knowledge of the local stress 
distribution around the joint as the way in which the multiple cracks initiate and coalesce is 

very much dependent on this information. Apart from the hot spot stresses, the average 
stress around a joint(Dharmavasan and Dover 1987) has also been shown to play an 
important role during the fatigue crack propagation. The stress distributions along the 
intersection of tubular joint are shown in Figure 1.9 for a tubular T-joint under axial, IPB 
and OPB loading. One can see from this figure that each load case has its particular 
distribution of stresses along the intersection line and thereby its particular influence on the
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fatigue life. Thus the accurate prediction of stress distribution around a joint is very 

important for fatigue strength assessment especially under multiple axes loading.

1.4.2 Stress Analysis Techniques

The determination of the stress distribution around the intersection in tubular joints by 

analytical techniques has proven to be costly as well as difficult due to the relative 

complexity of the geometrical configuration as well as the thin-shell theory governing their 

behaviour. But some partial solutions have been obtained. These theoretical methods range 

from elementary strength of materials approaches to mathematical theory approaches.

A simple punching shear model was proposed by Carter et al(1969). The load transfer from 

the brace to the chord is assumed to be via shear forces acting through the chord wall and 

the force is considered to be uniformly distributed around the intersection. The method 

ignores the local bending that may occur and this would be an important omission for elastic 

behaviour. However, if larger scale yielding occurred then the stress distribution through the 

chord wall becomes much more uniform and this particular model might be more relevant. 

This elementary strength of materials approach was used to calculate the static strength in 

design codes.

The stress and deflection distributions(Hoff et al., 1953)(Bijlaard, 1955)(Kellog, 1956) in 

tubular chords caused by load transmitted through various attachments were studied using 

the classical thin shell equations for cylindrical shells, such as those presented by 

Donnell(1934) and Flugge(1934). The results show that the stress decays rapidly away from 

the point of load application and that the decay has a characteristic wave length. Although 

these attempts were limited to simple geometries such as T-joints and failed to account 

properly for the stiffening of the chord wall due to the presence of the branches, these 

models were useful because they have been used to provide a physical understanding of the 

joint behaviour that has led to the present definition of hot spot stress.

A more realistic analysis of T joint was developed by Dundrova(1965). She assumed that 

the chord were subjected only to forces directly parallel to the brace axis. The distribution of 

these forces was determined by imposing compatibility of the displacements in the brace 

axial direction between the brace and the chord. Although it did not completely model the 

connectivity of the branches to the chord, this is the first analytical solution which explicitly 

included the brace in the analysis.

However, fatigue fracture mechanics analysis of tubular joints needs a more detailed stress 

distribution around the intersection and with greater accuracy. It has proved to be necessary 

to use numerical and experimental techniques for the determination of the stress
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distribution. In the next section, a brief review of the most commonly used stress analysis 
techniques for offshore tubular joints is presented.

1.4.2.1 Numerical methods

Numerical methods are, in principle, capable of solving any stress analysis problem, to an 
accuracy which is limited only by the computing resources available. Traditionally, Fourier 
series superposition was used to solve the governing equations(Bijlaard, 1955)(Scordelis 

and Bouwkamp, 1970). For example, Bijlaard's solution(Bijlaard, 1955) is based on a 
double Fourier series representation of the displacements: one Fourier series in the axial 
direction, and the other in the hoop direction. However, a large number of terms in this 

solution must be used to obtain a relatively accurate result. It required extensive 
computational efforts and has been largely superseded by more advanced methods.

Nowadays, the principal numerical techniques are the finite difference method, finite 
element method and boundary element method. The finite difference method leads to an 
approximate solution to the exact problem, while the finite element method and boundary 
element method give an exact solution to an approximation of the original problem. The 

basic difference between the finite element method and boundary element method is the 
solution strategy. The finite element method is probably the most versatile and most 
adequate tool to analyse tubular joints. Hence it has been widely used to obtain the stress 

distribution of tubular joints.

1.4.2.1.1 Finite Element Method

The finite element method is a numerical procedure which is ideal for solving physical 

problems, such as for complex structural components, whose closed form solutions are 
almost impossible to obtain. This technique uses the assumption that although a complex 
structure can not be analysed directly, it can be discretized into small, regular, or finite, 

elements from which the solution can be formulated. The governing differential equations 
for a continuous system are approximated with simpler algebraic equations applied to a 
discretized model of the continuous system. By solving the combined effect of loading and 
constraints of these elements through the nodal compatibility, the overall behaviour of the 

structure can be evaluated.

Early attempts to apply the finite element method to the stress analysis of tubular joints 
were difficult due to the relative crudity of the elements used and the lack of computational 

power in dealing with large numbers of elements. Earlier facet shell/plate elements were 
used to model the joint because of their simplicity. For example, using constant strain
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elements superposed with a nine degree of freedom flat plate bending element, Greimann et 

al(1973) obtained results within 20% of the experimentally determined steel joint test 

results.

Facet shell/plate elements introduce geometrical errors and the coupling which exists in 

shells between the membrane forces and bending moments is not reproduced. In these 

formulations at the element level, it is necessary to use more advanced elements for tubular 

joint analysis.

With the development of curved shell elements, finite element stress analysis for tubular 

joint has improved tremendously. These curved shell may be categorised as follows: ^

1) the thin shell elements based on Kirchoff assumptions.

The comprehensive studies of stress concentration in tubular joints using various thin shell 

elements were conducted by Kuang(1975) and Gibstein(1981). It is now generally accepted 

that isoparametric thin shell elements are the most useful elements for tubular joint stress 

analysis, since they combine relatively high accuracy with low cost.

2) the shell element based on Reissner-Mindlin theory which may are be applied to both 

thin and thick shells. They include the Ahmad element(Ahmad et al, 1970) and the complex 

semi-loof element(Irons, 1976).

The difference between these two kinds of curved shell elements is that the latter permits 

shear deformation and is suited to thick shells whereas the former is not.

One significant disadvantage in the use of shell elements for stress analysis in tubular 

intersections is that the tubular joints are modelled as intersecting cylindrical tubes at the 

mid-surfaces of the walls. Thus the weld is not modelled and the three dimensional stresses 

in the joint are lost. This could lead to spurious local bending of the member walls to be 

induced, particular in the brace. However, the shell elements do provide, in many cases, an 

acceptable compromise between accuracy and computational cost. Because the spurious 

local bending at intersections can lead to significant difference between calculated and 

observed stresses in some cases(Dijkstra, 1981), it is recommended that shell elements 

should not be used for tubular joints for which P exceeds 0.8 unless the weld is also 

explicitly modelled.

In order to overcome the above difficulty, three dimensional brick elements have been used 

to model the whole tubular joint. Using this type of element, the weld toe profile could be 

modelled as a sharp notch. This method will provide more accurate and detailed stress 

behaviour near the intersection than a simple thin shell analysis. It is only limited by the 

computational costs involved.



Because the three dimensional elements are very inefficient for shell bending situations, 

Parkhouse(1981) combined them, to model the weld toe, in a conforming manner with shell 

elements to model the portions of the tubular remote from the intersection and obtained 

promising results on an X-joint. However, the interpretation of the results was difficult as  ̂

infinite stresses arise at the notch tip in theory. It is necessary to calculate the stresses at 

some characteristic distance from the intersection which has the additional advantage that 

this may be chosen to coincide with typical strain gauge positions used in laboratory tests. 

Thus some information would be lost in the region close to the weld toe.

The choice of an element for a tubular joint analysis depends on the geometry of the joint 

and the purpose for which the results of the analysis are to be used. Curved-shell elements 

are adequate for SCFs in joints for which [3 does not exceed 0.8. For certain applications 

which require detailed information in the vicinity of the weld and through the wall thickness 

of the members, such as fracture mechanics studies of small defects at tubular joints, three- 

dimensional elements are essential, preferably used in conjunction with conforming shell 

elements to model areas remote from the intersection.

The major difficulty is the generation of the mesh, particular in regions where the stresses

are changing rapidly, and numerous elements may be required for accurate results. The
om

actual mesh chosen is a compgse between achieving acceptable accuracy and reducing the 

cost of the analysis. An important aspect of mesh design is that badly distorted elements 

must be avoided. For an economical analysis, the planes of symmetry and asymmetry in 

each joint are used to reduce the mesh size. Although this resulted in the need for additional 

load cases, there is a net cost saving since the finite element solution cost varies to 

approximately the square of the number of nodes making up the problem. As a "branched" 

structure, the tubular joint leads itself naturally to the technique of substructuring. This 

technique may provide additional savings if a given substructure can be used more than 

once in the same analysis or in a series of analyses.

In general, the advantages of finite element method include the ability to provide 

information on the stress behaviour of an entire joint and the ease with which extra load 

cases may be analysed.

1.4.2.2 Experimental Methods

According to the modelling media, laboratory-based techniques are generally divided into 

the testing of steel models, acrylic models and photoelastic models. All other methods 

should be calibrated against such experimental methods.
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1.4.2.2.1 Strain Gauged Steel Model

The steel tubular joints, to scale or full-scale, may be tested statically to obtained strain 

distributions at the joint intersections using strain gauges. In this technique, the global 

features of geometry.^with the weld toe present and loading can be realistically reproduced. 

Any steel tubular joint must be fabricated to standard offshore procedures e.g. AWI(1984). 

Care must be taken for scaled specimens in the scaling down of the weld size, since large 

welds will produce inaccurate results. Tolerances on dimension must be based on current 

offshore practice and the results must be viewed in light of the actual dimensions of the 

specimen.

In order to obtain the strain and stress produced by the application of a static load, strain 

gauges are used around the intersection. Usually, a set of rosette gauges are placed around 

the intersection to locate the positions of maximum stress. Then the extrapolation gauges

can be mounted to obtain the hot spot stress.

Being the most definitive testing technique, steel model tests provide the most realistic and 

accurate evaluation of the stresses in tubular joints. Hence the results of the other methods 

are validated against them.

However, this technique is costly and time-consuming, because of the extensive and careful 

strain gauging, and the large loading equipment and testing rigs that are required for

representatively sized specimens. The notch stress field is difficult to measure due to the

physical size of the strain gauges. Also for the steel models, the through thickness stress 

distribution is usually unknown as the stress distribution on the inner surface is difficult to 

measure, especially for the small joints. The use of steel models is only feasible when 

further tests, such as fatigue testing, are to be carried out.

1.4.2.2.2 Strain Gauged Acrylic Model

The acrylic models are made from commercially available cast acrylic tubes and are 

normally much scaled down versions of the steel models. It is a low cost alternative to 

testing larger steel joints. The procedure adopted for obtaining the stress distribution is 

similar to that of the steel models.

Acrylic models of tubular joints provide a number of advantages. Firstly, since acrylic has a 

low Young's modulus(E) that is about 1/80 of that of steel, low loads are required to 

produce a measurable strain and consequently the test rigs can be small. Secondly, welds 

can be included or excluded. The welds may be added by attaching acrylic 'weld' machined 

to shape. It is often desirable to carry out the test without any fillets. This is particularly 

beneficial and cost saving when carrying out parametric studies. Thirdly, as strain gauges
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may be fitted before assembly, strain data may be obtained on the inner surfaces of the 
chord and brace walls. This would be very difficult in steel welded joints. Finally, 

additional load cases can be performed easily and the models are available for re-testing and 
modification. Generally acrylic models have shown good correlation with the large scale 
steel model results.

The main disadvantage in using acrylic is that it creeps under loading. In order to obtain 
consistent results, any strain gauge reading must therefore be taken at a fixed time (usually 
one minute) after the loading has been applied.

1.4.2.2.3 Photoelastic Method

The photoelastic method is the only technique that enables a complete three dimensional 
stress pattern including stress distributions on the exterior and interior surfaces and through 
the chord and brace walls in the region of intersection to be obtained. The brace-chord weld 
profiles are modelled, hence continuous stress information in this region is obtained. It is 
particularly useful for joints with complicated geometry and/or loading conditions.

The stress freezing method is the most commonly used photoelastic technique in analysing 
tubular joints. It consists of heating the joint under loading, followed by cooling, so that the 
stresses are effectively frozen in the model and can be used to determine the total tubular 
joint stress distribution.

The photoelastic method can provide a detailed and accurate assessment of the total stress 
distribution. However, the models must be carefully prepared and the analysis of the fringe 
counts obtained can be extremely time-consuming and expensive. Moreover, the 
information obtained from this technique is usually too detailed for use in design.

1.4.2.3 Concluding Remarks

As a summary of the above discussion, although the strain gauge steel model results are 
considered most accurate, the performance of other modelling methods investigated 

indicates that each can be used for accurate stress analysis for tubular joints, with 
appropriate care. The choice of the stress analysis techniques must be considered in terms 
of cost and accuracy. The advantages and disadvantages of above methods have been 

summarised(Clayton and Irine, 1978)(Connolly, 1986).

Photoelasticity and steel modelling give the ability of modelling weldments in detail and the 
former method allows the extraction of stress data from any part of the connection, rather 
than at points where strain gauges have been affixed. Also the stresses in the interior of the 
structure can be determined. Acrylic models have been found in particular to be reliable,
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cheap and flexible. Without weld toe modelling, it reproduced primary membrane stresses in 
close agreement in shape to those obtained from corresponding steel models. The thin shell 
finite element method, which does not attempt to model notch stresses, produces stress 
outputs at the mid surface intersection which broadly agree in shape with the geometric 
stress obtained with steel models. It can significantly over-predict brace stresses.

1.4.3 Parametric Equations

For most design and re-certification work, it is quite expensive and time consuming to 

estimate the stresses, in particular the hot spot stresses, for tubular joints using any of the 
above methods except for a few very important joints. Therefore, parametric equations 
which express the hot spot stresses in the form of the non-dimensional parameters of joints, 
a, p, 7, T, 0 were developed for various joint geometries by carrying out extensive 
parametric studies.

In practise only finite elements and the strain-gauged acrylic model techniques have been 
used for economical reasons. The most widely used equations are the Kuang(Potvin et al, 
1977), Efthymiou and Durkin(1988), Wordsworth and Smedley(1981), Wordsworth and 
Smedley as modified by UEG(UEG 1985), Lloyds Register(Smedley and Fisher 1991) and 
UCL HCD(Hellier Connolly and Dover 1990). Of these equations those by Kuang, 
Efthymiou and Durkin, and UCL HCD are based on finite element models of various types. 
The Wordsworth and Smedley equations are based on results of acrylic model tests, and 
UEG equations are based on the Wordsworth and Smedley equations with modifications 
based on the comparison of the equations with steel joint data. Lloyds Register equations 
have been derived only recently and are based on the database of measured SCFs from steel 

and acrylic joints.

The accuracy of parametric equations can be assessed by comparing their predictions with 
existing strain-gauged steel test results. Unfortunately, the amount of steel data are limited. 
For this reason the data from acrylic model test are often used as well. A steel and acrylic 
test database based on the Lloyds Register data and the UCL database (with the criteria 
developed for acceptance of SCF data) was established by MaTSU(MaTSU 1996). By 
comparing the results derived from all parametric equations against the database, the 
performances of all existing SCF parametric equations have been recently assessed by the 

Fatigue Guidance Review Panel supported by the HSE(DEn.)(MaTSU 1996). It has been 

concluded that only two sets of SCF equations for simple tubular (i.e. X, K and T/Y) joints, 
i.e. the Efthymiou and Lloyd's Register equations, are recommended in the revised fatigue 
guidance for the saddle and crown positions in the chord and brace under axial, in-plane 
bending and out-of-plane bending loading.

Tubular joints of differing geometry or mode of loading but with similar hot-spot stresses 
often exhibited significantly different numbers of cycles to failure. These differences are
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thought to be attributable to changes in crack growth rate, this being dependent on the 

through-thickness stress distribution as well as the hot-spot stress. It is anticipated that a 
joint with a high proportion of through-thickness bending stress, for example, will have a 
longer fatigue life than one with a similar hot-spot stress, but with a greater component of 
through-thickness membrane stress. Despite the degree of bending being important for 
fracture mechanics based crack growth assessment, so far there is only one set of parametric 
equations(UCL)(Connolly et al 1990) to predict the through thickness stress distributions 
and these are for tubular Y and T-joints.

The fracture mechanics calculations on tubular joints also requires a knowledge of the local 
stress distribution around the joint. The simple interpolation formulae based on the peak 

local stress at saddle and crown were reported by UEG(1985) tubular joints programme. 
Similarly, the parametric equations were developed at UCL(Hellier et al 1990) for the stress 
distribution around the brace/chord intersection of tubular Y and T-joints. These 
formulations predict the distribution around a joint based on the peak stresses from 
parametric equations. The UCL equations allow the effect of a hot spot at a point other than 
the crown or saddle to be taken into account. After comparing the UEG equations with finite 
element analysis results, Vinas-Pich(1994) concluded that the stress distribution proposed in 
design guidelines is not accurate enough around the whole brace-chord intersection. The 

problem with the UCL HCD equations and the UEG equations, is that they were derived 
from only a limited number of typical sample results rather than whole database and 
therefore they can not provide enough accuracy to all other cases for detailed analyses.

Despite being borderline in terms of the assumed criteria, the UCL HCD equations are not 
recommended for SCF calculation in revised fatigue guidance. However, the UCL HCD 

equations are the only set of parametric equations that can predict the SCF, the bending to 
membrane ratio and stress distribution in tubular Y and T-joints. The predictions from UCL 
HCD equations are compatible as they are obtained from the same database. All these 
aspects are essential for the fatigue crack growth analysis by using fracture mechanics. 

Given the importance of these three sets of equations for crack growth analysis, it would be 
valuable to conduct the parametric study to derive a further comprehensive set of stress 
equations for other type of joints such as K, X and DT-j oints etc..

1.5 Fatigue Strength Assessment

The fatigue strength assessment is a major consideration in the design and in-service 
assessment of offshore tubular welded joints in North Sea. There are two basic approaches 
used in the fatigue life assessment of these joints. The first method relies on the use of 

stress-life(S-N) curves obtained from carrying out constant amplitude fatigue tests on
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tubular joints. The second method is based on linear elastic fracture mechanics and 
considers the details of how the cracks propagate under the applied loading.

1.5.1 S-N Approach

Historically, the fatigue design life of offshore tubular welded joints is predicted using the 
S-N approach, which relates the stress range at a point under consideration to the number of 
cycles to failure. It is necessary to define the two parameters that describe the S-N curves, 

i.e. stress range and failure criterion, prior to analysis of data. The hot-spot stress range was 
selected as a good representation of the stress range. As most of the tests ignored the details 
of the crack monitoring, the failure life is divided in three stages;

1) Nj: the number of cycles to first discernible surface crack

2) N2 : the number of cycles to first through wall crack

3) N3 : the number of cycles to termination of the test which is normally when the test rig 
can no longer apply the desired load because of increasing compliance of the specimen due 
to extensive cracking

It has been found that once the crack has gone through the thickness of wall, the stiffness of 
the joint decreases rapidly and the crack accelerates(Dover and Petrie 1976). Also the 
complete severance of a joint(N3) in service does not often happen because the load 
redistribution in the frame structure will make the joint redundant and possible non-load 
carrying when N2 has been reached. For these reasons, N2 has been defined as the end of 
fatigue life of a tubular joint.

Based on the results of the experimental test programmes initially as part of UKOSRP-I 
and ECSC tests and by consideration of some safety factors, the S-N curves for tubular 
welded joints was proposed by UK Department of Energy(1983) and revised in current 
fatigue guidance(MaTSU 1996). The new curve for tubular joints has been designated the T' 
curve. The chord wall thickness in the test series ranged from 16 to 75mm. The basic S-N 
curve to be adopted is for joints tested in air with a chord wall thickness up to 16mm. The 
basic design S-N T' curves for fatigue in air are expressed below.

Log^^N = 12.182 -  SLogiQiSg when > 53Mpa ( 1 - 2 )

Log^^N = 15.637 -  5Logjo5g when < 53Mpa ( 1 - 3 )

This design curve was defined as that corresponding to a 2.3% probability of failure which 
is equivalent to two standard deviations of LogiqN below the mean S-N curve since fatigue 

endurance is log-normally distributed.
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given a similar nominal stress
It is generally recognised that the thicker chord wall gives a shorter fatigue lif^  Therefore an 

empirical relationship based on the experimental results of welded joints was suggested for 

the strength (S) of tubular joints with chord wall thickness (t):

/ j ^ 3
5 =  ( 1 - 4 )

V f  y

where Sp is the basic fatigue strength from the basic curve for a given life. A set of curves 

based on this concept can be obtained for different wall thickness.

For variable amplitude loading, it is assumed that each load cycle causes a damage 

proportional to the total fatigue life in that level of load. The proportional damages then 

accumulate to a level which results in failure. The Miner's linear damage summation 

rule(Miner 1945) is often used to calculate the total damage fractions. It is defined as:

D =  ( 1 - 5 )

where D is the linear sum of damage fractions 

iij is the number of cycles at i stress range AS;

Nj is the corresponding mean fatigue life under the stress range AS; taken from the design 

S-N curve

The advantage of S-N approach is that only one value of stress range, i.e. the hot spot stress 

range, is used to estimate the fatigue life. Moreover, it is possible to accommodate complex 

conditions such as combined modes of loading, corrosion, size effect, stress relief and other 

conditions with simple modifications. The S-N approach has gained widespread acceptance 

in design codes because of its ease of application.

However, the S-N curves are limited to the range of tubular joint geometries and loading 

comprising the database from which they are derived. It can be a severe limitation due to the 

variety of tubular designs used. Also, these S-N curves can only be applied to notionally 

crack free joints and can not be used to predict how cracks grow and remaining life when 

cracking is detected in service in a tubular joint because they do not correlate the physical 

damage mechanism to the assessment.

1.5.2 Fracture Mechanics Approach

In common with all engineering structures, offshore structures contain flaws, ranging from 

microscopic material defects to macroscopic geometric imperfections introduced during 

fabrication and construction. Wave action on the submerged structure creates cyclic stresses 

throughout the structure. When these cyclic stresses are magnified by geometric features and 

coincide with pre-existing flaws, fatigue cracking can develop in offshore structures during
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their service. It is important to predict the propagation of a pre-existing crack and decide 
whether remedial action is necessary. Whereas the S-N method can only predict the total 
fatigue life, an alternative approach, based on linear elastic fracture mechanics, allows 
fatigue crack growth to be modelled. This approach can be combined with non-destructive 
evaluation to assess the significance of defects found during inspections and to calculate the 

remaining life of an in-service cracked stmcture in order to make mn, retirement or repair 
decisions. So it is becoming increasingly important to the design and subsequent operation 

of stmctures that may develop cracks during their service life.

It is known that the concept of elastic stress concentration factor breaks down as a stress 
singularity exists close to the crack tip. Fracture mechanics seeks to relate the conditions of 
stress and strain fields in the vicinity of a crack tip to the remote stress and the crack size. 
Using a stress function approach, Sneddon(1946) obtained the stress expression in the 

vicinity of the crack tip as following.

(2^ r)  

_  K,

1/2

{ 2 n r r

(Q']■cos — 1 -  sin — sinUJ- UJ[ 2 )

-
.

- COS - 1-1-sin — sinUJ U J
K, r e i 'O'

-CO S — sin cos —UJ. 2 ,1 [ 2 )

+ non-singular terms

+ non-singular terms

+ non-singular terms

( 1 - 6 a )

( 1 - 6 b )

( 1 - 6 c )

where (r,0) are polar co-ordinates based on the right-hand crack tip, and Gy, T̂ y are the 
stress acting on the element so located.

It has been found that the distribution of the stresses and strains ahead of the crack tip is 
always of the same form and the magnitude of the stress field changes as a result of changes 
in applied stress or crack size. Under the assumptions of linear elasticity, the magnitude of 
the stress field ahead of the crack tip can be used to describe the strength of the singularity 

by a single parameter, K, termed the stress intensity factor (SIF). It is a measure of the stress 
occurring in the highly stressed region at the tip of the crack in an elastic solid.

Successful use of linear elastic fracture mechanics(LEFM) requires a knowledge of the 

stress intensity factor for the configuration being considered. The crack in a three 
dimensional body may be deformed in three independent ways (Figure 1.10): opening 

mode(mode I), shear mode(mode II) and tearing mode (mode III). The opening mode(mode
I) is considered as the most important. In general the SIF can be normalised with a divisor 
( a  -v/tca ) which is the SIF value corresponding to a crack of half length a in an infinite sheet

under a constant normal load G .

K  = TaVTW ( 1 - 7 )
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where Y is SIF calibration factor 

a  is the representative stress 

a is the half length of the crack

As a measure of how the geometry and loading of a particular configuration affect the SIF 

for a crack in an infinite plate, the SIF calibration factor Y is a function of the crack size and 
shape, and the geometry and boundary conditions of stmcture in which it is located. The 
aspect ratio (depth/surface length) is also an important factor because the surface cracks are 
always approximated as semi-elliptical ones in all analytical methods.

Most materials deform plastically once some critical combination of stress is achieved and 
therefore a plastic zone is introduced at the crack tip although the crack tip stress field 
remains predominantly elastic. Under cyclic loading this plastic zone which undergoes 
permanent deformation changes in size and results in crack growth. Since the size of this 
plastic zone is a function of stress field and hence SIF, the changes in the plastic zone can be 

characterised by AK (Kj^^x “ ^min)- Therefore Paris et al(1963) suggested that the fatigue 
crack growth rate can expressed by the range of SIF as follows: ̂= W  ( 1 - 8 )

growth
where da/dN is the crack ' ^  rate(the crack extension per load cycle)

AK is the stress intensity factor range 

C and m are the material constants

The key feature of the stress intensity factor is that it is possible to relate the materials' 
resistance to crack growth since the stress intensity factor provides a measure of the driving 
force for crack propagation. Experiments have shown that the crack growth can be classified 
into three regions according to the relative magnitude of the crack growth rates (Figure 
1.11). Region A starts with a fatigue threshold, AK̂ jj below which cracks do not propagate 

under cyclic loading, and continues until the slope of the curve becomes constant. Region B 
is a linear one where the behaviour can be represented by Paris law. Finally region C 
corresponds to the onset of unstable crack growth rate where AK approaches the material 
inherent fracture toughness K .̂ The majority of fatigue crack growth in engineering 
stmctures can be considered as lying in region B. Although some investigators have 

modified the Paris law to incorporate the threshold level, environment and the nature of the 
cyclic loading(its mean value and other features), it is still most widely used in its original 
form to describe the crack growth rate for the intermediate range of AK.

The procedure for fracture mechanics fatigue assessment is based on linear elastic behaviour 

and development of crack propagation using the Paris law. The determination of the stress
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intensity factor K is very important step in this process since it is a measure of the severity 

of the defect in a given cracked region. Once the SIF solution is known with the material 

constants C and m, the fatigue propagation life from an initial crack size aj to a final crack 

size af can be determined from

Linear elastic fracture mechanics uses the stress intensity factor concept to characterise 

conditions at the crack tip. In conjunction with empirically derived material crack growth 

data, this technique can be used to model fatigue behaviour.

1.5.3 SIF Evaluation Methods

Much effort has been put into the derivation of SIFs and a variety of methods have been 

developed to approach the problem. This section intend'to review these method very briefly. 

However, the emphasis is on the weight function method which has been recently 

developing very rapidly.

1.5.3.1 Analytical Method

Analytical solutions are those which satisfy all the boundary conditions exactly. Based on 

the Airy stress function approach, analytical solutions for the stress field, and therefore the 

SIF, in a large number of 2D Mode I and II crack geometries have been derived in closed 

form using Westergaard and Muskhelishvili's complex stress function method. The 

advantage of this approach is that it extends the possible range of problems by using 

conformai mapping. For example it can map a circular hole into a crack subjected to general 

loading.

However, for an arbitrary region it will usually be impossible to calculate the SIF using the 

analytical method. Instead, weight function, numerical, and experimental methods are 

needed.

1.5.3.2 Weight Function Method

One of the most powerful methods for calculating SIF for a crack subjected to general (non- 

uniform) stress fields is the weight function method proposed by Bueckner(1970) and i

Rice(1972). It has received more and more attention for recent years due to its relative 

simplicity with which SIF can be calculated for arbitrary symmetric loading, while 

preserving accuracy.
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The idea is that if the SIF and corresponding displacement field on all the boundaries of a 

cracked body are identified as functions of crack size, then the SIF for the same body 

subject to any other symmetrical load system can be determined directly. Based on the 

principle of the strain energy release rate, the weight function can be obtained from 

following expression for plane problems.

m(x,a)  = - ^  ( 1 - 1 0 )

where m(x,a) is the weight function for the cracked geometry 

H is the generalised modulus of elasticity 

H=E for plane stress 

H=E/( 1 -v^) for plane strain 

where E is modulus of elasticity 

V is Poisson's ratio 

a is the crack size

Uj-gf is the crack opening displacement field associated with the reference symmetric

loading

Kpgf is the stress intensity factor solution for the reference system.

It has been demonstrated that the weight function is a property of a particular crack 

geometry and is independent of loading. Once the weight function is known for the crack 

geometry, it may be used in the derivation of additional SIFs under different load cases by a 

simple integration.

a

0

where Kj^ew the new stress intensity factor.

Onew represents the new stress field through the crack plane.

The only restriction on a new loading is that it must not have less symmetry than the 

original. For a more general two-dimensional problem, the boundary tractions and 

displacements will be functions of x and y and the integral is evaluated over all boundaries.

It has been shown that the weight function is equal to the SIF at a point along the crack front 

when a pair of opposite unit forces act on the crack surface. Thus it may be thought of as a 

form of the Green's function for a cracked body. This approach separates the effect of 

component geometry from that of the imposed loading. It is one of the indirect methods in 

which a stress analysis of unflawed body is performed initially, and making use of
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superposition principles, the stresses acting on the crack surfaces are used in a separate 
calculation to compute the SIF.

Only one stress analysis is required for the uncracked body and the results may be used in 
all successive evaluations of the crack tip SIFs. Thus the weight function method offers a 

cheap alternative to the finite element method. However, the weight function and the stress 

distribution must be known a priori. Although the SIF solutions are available for a wide 
range of crack problems, the corresponding crack opening displacement solutions are very 

scarce in the literature. In order to overcome this difficulty, it is necessary to make some 
necessary approximations for the crack opening displacement function or weight function 
itself to derive the weight function for a two dimensional cracked geometry. By using 
different assumptions, three approaches have been developed to derive weight function and 
are reviewed as following.

i) Assuming a crack opening displacement (COD) function

An approximation for the crack opening displacement function is required to derive the 

weight function for a two dimensional cracked geometry. The most common approach is to 
assume an expression to define COD in terms of the crack dimensions and stress state. 
Based on correct behaviour and for simplicity in use, Petroski-Achenbach( 1978) proposed 
the particular dependence of Uj-̂ f for plane problems as follows:

' ^ I - ,  r G ( a - x f ^
u

'  H j2
( 1 - 12 )

where Fj-gf is a known SIF calibration function for the reference state and CTgis a 

characteristic (or normal ) stress magnitude.

GQ̂ JKa

This is an approximation for edge cracks under mode I loading and is consistent with the 

behaviour of the crack profile near the crack tip and small crack. The only unknown 

parameter, G, can be determined from self-consistency of solution and expressed as below.

( 1 - 1 4 )

/j = V2 j  F^̂ ada ( 1 - 1 5 )
0

^ 2 = 1 ^  ref -  x f ^ d x  ( 1 - 1 6 )
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( 1 - 1 7 )

Thus the general form of weight functions derived by using the Petroski-Achenbach method 
can be expressed as the 'Bueckner type' function in following form.

m{x,a) =
yjln (a -  x)

1+M j + Mr

Ml =

M, =

4Fref

2G a  — G

4Fref

( 1 - 1 8 )

( 1 - 1 9 )

( 1 - 2 0 )

Therefore^ the task of the derivation of a weight function for any particular geometry can be 
reduced to determination of parameters Mj and M2 only.

Although Petroski-Achenbach COD function is an approximation for edge cracks under 
Mode I loading, it has been widely used to derive the weight function for other more 
complicated cases due to lack of assumed COD function for three dimensional crack. Using 
this approach and choosing the Newman-Raju equations for tension as a reference SIF 
solution, Niu and Glinka(1987)(1989) derived a set of weight functions for the SIF at the 

deepest point of semi-elliptical surface cracks in finite-thickness plates with an angular 
comer.

Although only one reference SIF solution is needed, it is difficult to implement the above 
approach to derive the weight functions for any particular crack geometry due to the 

limitation of the assumptions and the complexity of heavy computation which involves 
numerical differentiation. Thus two approaches using multiple-reference state method has 
been developed and have reviewed by Brennan(1994).

11) Assuming a weight function directly

Fett(1987) showed that the crack opening displacement(COD) could be accurately 
calculated from known SIFs and corresponding load states and expressed in terms of a
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power series. Furthermore, Shen and Glinka derived the 'Bueckner type' function 
independent of the Petroski-Achenbach COD and expressed the weight function as follows.

ml
1

^2n (a -  x)
1 + m J

a - x n 1/2

a y \  a J \  a J
( 1 - 2 2 )

The parameters M%, M2 and M3 for a particular cracked body can be determined by 
knowing at least two reference SIF solutions and corresponding stress states. These 
reference data must be linearly independent of each other. An extra relationship is required 

if there are only two reference data. This is supplied by the observation that the slope of the 
crack surface of central through edge cracks under symmetrical loading is zero at x=0, i. e.

du(x,a^
=  0 ( 1 - 2 3 )

x=Q

hence,

dm{x,a)
dx

=  0 ( 1 - 2 4 )

For deep single edge cracks, due to rotation of the cracked section in a finite thickness body, 
the curvature of the crack mouth is zero, i.e.

9^m(x,a)
dx'

=  0 ( 1 - 25 )
Jt= 0

By solving these constitutive equations simultaneously, the three unknowns M%, M2 and 
M3 specific to a particular cracked geometry may be found. Thus the knowledge of a second 
set of reference data can eliminate the necessity of a formal derivation of crack opening 
displacement.

ill) Assuming a crack opening displacement (COD) derivative function

As it is the derivative of crack opening displacement, not the actual crack profile, that is 

needed for deriving the weight function, another approach of multiple-reference data is 
suggested(Ojdrovic Rasko and Petroski 1991) to directly define the derivative of crack 
opening displacement in the form of a series as below.

du(a,x)  _  40o
da H

V2 X c i l - 4
7=0

,7-1/2
( 1 - 2 6 )

where
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pref { -
Kt ( 1 - 27 )

Cj are unknown coefficients. The number of terms can be assumed to be m+1 for 
convenience where m is the number of symmetrical loading states.

By substituting equation ( 1 - 26 ) into the following equation

] ^ c f { x ) ^ - ^ ^ d x  = K r{a)K ;:>{a) ( 1 - 2 8 )

then

Letting

n ; - 1/2

—  \ dx=K rf{a)K "^{a)
Q, Jj=Q

w , = j a r { x i i - -
n \  ^  J

■ s j - m

dx

( 1 - 2 9 )

( 1 - 3 0 )

gives

p r e f
m

j =0

Knowing Cq gives

p r e f

j = i

K r ' J — -W,iO

( 1 - 3 1 )

( 1 - 3 2 )

The unknown coefficients Cj could be determined by solving a system of m simultaneous 
linear equations with m unknowns(Ojdrovic Rasko and Petroski 1991) and the weight 
function is determined as:

( 1 - 33 )

This approach is to directly define the derivative of COD in the form of a power series, not 

COD itself and determine the coefficients from one or more known SIF solutions. It avoids 
numerical differentiation and thus reduces computational effort significantly and increases 
accuracy.

After comparing the results using the above approaches with published "exact" solutions for 
simple cracked bodies, Brennan(1994) concluded that the multiple reference states is not
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only less troublesome mathematically, but far more accurate and stable than the traditional 
assumed profile approach. However, the disadvantage of this approach is that it generally 
requires at least two known solutions where it is often difficult to get even one reference 
solution.

1.5.3.3 Finite Element Method

As one of the direct methods in which the calculation of the SIF is performed in a single- 
stage analysis, finite element method is most widely used to model the singular stress and 
strain behaviour in the crack tip region. There are two basic approaches for calculating the 
SIF, i.e. using non-singular crack tip representation or singular elements.

i) Non-singular crack tip representations

Early FE model involved the use of a very high density of conventional elements around the 
crack tip to get the stress, <7 ^, or displacement, v, at some small distance, r, from the crack

tip. SIF may be calculated by making use of the relationship between the SIF with the 
displaced shape of crack face or the stress field close to the crack tip as below.

Ki = lim- ( 1 - 3 4 )
r^o 4 \  r  y 

g ,  =  (2n :r)" 'lim O  ( 1 - 3 5 )r-̂ 0

where Kj is SIF in mode I

r is the distance from the crack tip, measured close to the crack tip

E' is effective elastic modulus, equal to E for plane stress conditions and E/(l-D^ ) 

for plane strain conditions, E is Young's modulus

a  y is the stress normal to the crack plane ahead of the crack.

It has been found that the displacement method is consistently more accurate than the stress 
method(Yamomoto et al 1973), and typically yields SIFs within 5% of accurate solutions. 
However, this method requires very accurate stress analysis near the crack tip.

An alternative method, i.e. the energy approach, is widely used in order to avoid the need to 
approach the crack tip and reduce the requirement for large numbers of very small elements 
near the tip of crack. As SIF is a function of the energy release rate during an incremental 
crack extension, this approach calculate the SIF by using following relationship.
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Kl =  4 g Ë ' ( 1 - 36 )

where G is energy released per unit increase in crack size (ôW/Ôa), W is energy, a is crack 
size.

In traditional approaches, finite element analyses have been repeated with every small 
change in crack size in order to calculate the energy change, G. The typical errors are of 

order 2%. A more efficient version of this approach, termed the virtual crack 
extension(VCE) method, was proposed by Parks(1974) to estimate the strain energy release 
rate, G, It does not require a re-analysis of the problem.

Both of the above methods require high or medium density finite element meshes to model 
the stress distribution around the crack tip where the stresses are changing very rapidly. It is 
necessary to develop the techniques which can model the singularity at the tip of the crack 
in order to increase accuracy and reduce the necessary computational facilities.

ii) Singular elements

Various crack tip singular elements have been developed to represent the singular behaviour 
surrounding the crack tip in the element formulation. The near-tip stress and displacement 
fields may be written in terms of stress functions due to Westergaard, Muskhelishvili and 
Williams. Based on these classical-solutions, the special elements can be formed to permit 
the evaluation of SIF directly. Using polynomial displacement functions, appropriate 
singularities may be introduced either by manipulation of element shapes(Levy et al 1971) 
or of displacement fields(Tracey and Cook 1977) to ease the numerical solution process.

By moving some nodes to the particular locations, a conventional eight-noded quadrilateral 
isoparametric element can be modified to obtain a singularity of order on all rays 
emanating from the comer point in a full 3D FE analysis. Further development of this 

technique allows additional elements adjacent to the near-tip element to include the effects 
of the nearby singularity.

Extensive finite element work has been done on the use of finite elements to model the 
singular stress and strain behaviour in the crack tip region. The advantage of FE analysis of 
a cracked body is the inclusion of all geometric and restraint parameters. Crack modelling 

accounts for local load redistribution around the crack, so SIF calculations are based on the 
local cracked, rather than the uncracked, stress distribution. However, this method needs a 
complex mesh generation scheme. It usually is quite time consuming and expensive, 

because successive calculations of the stress distribution and the corresponding SIFs are 
required for each increment of crack growth.
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1.5.3.4 Combining Literature Solutions using Superposition Techniques

By using above method, tables and graphs of SIFs for a wide range of cracked geometries 

under simple stress states have been printed in handbooks(Rook and Cartwright 

1976)(Murakami 1987). It is possible to adapt these available standard solutions to practical 

problems. The principle of superposition can be used to combine one or more of the simple 

solutions in order to solve complicated 2D crack problems. Furthermore, If two or more 

different loadings are applied to the system, the effect of the combined loading is the sum of 

their individual effects. In particular, the stress intensity factor for a region under multiple 

loading is the sum of the SIFs for the region under each part of the load. It enables one to 

relate SIFs for different load cases when the geometries are the same.

1.5.4 SIF Solutions of Surface Cracks in Offshore Structures

Accurate fatigue crack growth modelling in tubular welded joints using fracture mechanics 

requires a suitable SIF solution. Unfortunately, it is impossible to calculate the SIF 

analytically due to complex geometry and the non-uniform stress distribution in tubular 

joints. As a consequence, cracks in tubular joints are sometime represented as planar cracks 

in plates or T-butt welded plates, subjected to a combined tension and bending through­

thickness stress distribution. By using this assumption, the SIF solution in form of 

parametric equations have been proposed using different methods. Also attempts have been 

made to use finite element methods and semi-empirical models to obtain more accurate SIF 

solutions for tubular joints. These models will be reviewed as following.

1.5.4.1 SIF Solutions of Surface Fatigue Cracks in Plates

The first SIF solution for a flat elliptical crack embedded in an infinite elastic solid, under 

uniaxial tension (Figure 1.12), was first derived by Irwin(1962) and the SIF at the points 

along the crack front is given by

»  G |̂Ka 
K i =

■ 2 \̂ 0.25
—— Cos^  ̂+ Sin^  ̂
c

-,
2

y
( 1 - 37 )

E{k)

where E(k) is the complete elliptical integral of the second kind 

a and c are the half lengths of the minor and major axis of the crack respectively

({) is the angle around the crack tip where ()) =  0® and (j) =  90° corresponds to the ends of 

the major and minor axis respectively

For a semi-elliptical surface crack in a plate of finite dimensions (Figure 1.13), the effect of 

free surfaces( front and back surfaces) and finite plate dimensions must be included in the
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SIF solutions. However, the analytical solution for this problem has proved to be impossible 

due to the complexity of geometry. To account for these effects, some correction factors 
were used to derive the surface solutions from the embedded crack solution by using 
approximate techniques. The widely used ones are outlined here.

a) Newman-Raju Equations

With singular crack tip elements to model the rapidly changing stress distribution in the 

region of the crack tip, Raju and Newman(1979) presented an analysis on a variety of semi­

elliptical surface crack shapes in flat plates of finite width by extensive three-dimensional 

FEM studies using pure tension and pure bending loadings. The relationship between Kj 
and stress values ahead of the crack tip was used to calculate values of SIF at the deepest 
point. They obtained modifications to the embedded crack results for a range of crack sizes 

and included a correction factor to account for the effects of the finite plate width.

The accuracy of this solution was verified by analysis of a series of embedded cracks and 
the results of the SIF were found to be within 3% of the exact solution. Also, fracture tests 

of surface crack in a brittle acrylic material agreed favourably with the finite element 
analysis.

Raju and Newman studied the boundary layer effect near the surface. They found that the 
SIF near the free surface decrease rapidly across the thin layer called the boundary layer and 
the singularity of the order of which generally exists near the crack tip, does not occur 
at the surface point of semi-elliptical cracks. Their FEM results have shown the boundary 
layer is very thin and the maximum surface SIF is insensitive to the finite element mesh 
configuration.

Subsequently, their results have been used to derive the parametric equations which give the 

values of SIF for embedded and surface semi-elliptical cracks in flat plates in the cases of 
uniform tension and pure bending as a function of the angle around the intersection, the 
crack depth, the surface crack length, the plate thickness and the plate width(Newman and 
Raju 1981).

b) Holdbrook-Dover Equations

In order to model the physical situation more closely, Holdbrook and Dover carried out 
fatigue tests on specimens of finite dimensions, containing a surface crack under tensile 

loading. The SIF solutions(Holdbrook and Dover 1979) for the surface cracks were derived 
to correlate the results of these tests with the fatigue crack growth data in standard 
specimens. Based on the solution of surface cracks in a semi-finite body, these equations
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provided the correction for the finite dimension effects. The correction included the effects 
of finite area, the end conditions, load eccentricity and the induced secondary bending 
produced by changes in the position of the neutral axis as the crack grows. These equations 

provide good correlation between the crack growth data for surface cracks and through 
thickness cracks in pure tension.

c) O-Integral

For cracks in flat plates, one of the most popular weight function has been proposed by Oore 
and Bums(Oore and Bums 1980), known as O-Integral. They derived a general form of the 
weight function for an enclosed crack of arbitrary shape in an infinite continuum subject to a 
variable stress field (Figure 1.14) as

V2
gQQ‘-  ; TTÎÏ ( 1 - 3 8 )

kIqq̂

where gee is the stress intensity factor at a point Q' on the crack front due to a pair of unit 

forces acting at a point q on the crack face

Then the SIF at the point Q' due to a distributed pressureGe on the crack face would be

/SlO'= JJ gQQ GodAq ( 1 - 39 )
A

where dAa is an infinitesimal area around the point Q

A is the area of the crack surface

Cq  is the stress in the uncracked material

This expression allows for any variation of stress across the crack surface (via the parameter 
Iqq' ) and variation in crack shape (via the parameter pe ), whereas earlier models assume

constant stress across the crack surface and a simple crack shape. Its formulation, however, 

requires a numerical solution.

As the O-integral is only valid for embedded flaws in an infinite solid, it has to be modified 

for surface breaking cracks using the relationship:

K s u i f a c e  —  K e m b e d d e d  * A//T ( 1 " 40 )

where Kg^jf^ce 1̂  the SIF due to an irregular surface crack subjected to any stress 
distribution

Kembedded 1̂  the SIF due to an embedded crack with the same half geometry and under the 
same half loading on both halves of the crack surface
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Mf converts the embedded flaw to an equivalent surface breaking flaw. It is a constant and 
dependent on geometry but not on loading. Assuming that the crack shape is always semi­
elliptical, this correction factor can be obtained from the ratio between Newman-Raju 
solutions for a surface crack and an enclosed crack subject to same uniform tension.

One advantage of this two dimensional solution over other methods is that both crack depth 
growth and crack length growth can be modelled at the same time.

d) Shen-Glinka and Wang Lambert Solutions

The weight functions of the surface and the deepest point of semi-elliptical crack in an 
infinitely wide plate of finite thickness(Shen and Glinka 1991)(Shen et al 1991) were 
derived by using two reference SIFs and the general weight function form. They were 
validated against finite element data and differences were less than 2% for the surface point 
and 5% for the deepest point. It has been noted that these weight functions are only suitable 
for semi-elliptical surface crack of relative depth within 0.2 < a / f < 0.8 and aspect ratio 
0.2 < a  I c<  \ . However, the aspect ratio in a welded joint is often less than 0.2. In order to 
extend the use of above weight functions to real problems, three dimensional finite element 
analyses(Wang and Lambert 1995) have been conducted to calculate the SIFs for low aspect 
ratio semi-elliptical surface cracks. Based on these results and some existing FE data for 
high aspect ratios(Newman and Raju 1981)(Shiratori et al 1987), the weight functions for 
the deepest point and surface points were derived and verified by Wang and Lambert(1995) 
using a similar procedure to that of Shen and Glinka(1991). They are suitable for semi­
elliptical surface cracks with aspect ratio in the range of 0 < f l / c < l  and the relative depths 

0.2 < a / f  <0.8.

e) Concluding Remarks

Some plate solutions were assessed in terms of accuracy by comparison with known flat 
plate solution for uniform tension and simple bending by Has well and Dover(1991). The 
Newman-Raju solution can be regarded as a suitable standard for checking other 
formulations. It has been found that O-integral is inaccurate for plate solutions at values of 

crack depth in excess of 30% of the plate thickness(0.3T). More recently. Bums provided 
correction factors for cracks in plates at depths exceeding 0.3T. Unfortunately the correction 

factors are only for the deepest point of the crack front.

The results from Holdbrook and Dover gave good agreement with Newman-Raju for tension 

but lower values of Y for bending. But Dover and Connolly(1986) obtained good agreement 
with the experimental data to predict the crack shape development in plates subjected to
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tension and bending using Holdbrook and Dover equations. It suggested that Newman-Raju 

might be over-conservative in the bending case.

1.5.4.2 SIF Solutions of Surface Fatigue Cracks in Thin Wall Cylinders

The effect of curvature is not considered in the above plate solutions. However, it is 

important for pipes, pressure vessels and tubular joints. By using 3D finite elements, Raju 

and Newman(1982) and Shiratori(1989) obtained SIFs for constant, linear, parabolic or 

cubic stress distributions acting on the crack surface of internal and external longitudinal 

semi-elliptical surface cracks in pipes with a radius/thickness ratio of 10. Based on these 

reference data and using the generalised form of Mode I weight function expressions, Shen 

and Glinka(1993) derived the weight functions for the deepest and surface points of semi­

elliptical cracks in thin pipe. However, these solution are restricted to the cracks with aspect 

ratios between 0.2 and 1.0. In order to overcome this difficulty, Wang and Lambert( 1996) 

conducted a series of 3D FE analyses to obtain the low aspect ratio crack data. Using these 

results together with existing FE data for higher aspect ratios, they(Wang and Lambert 

1996) derived the closed form weight functions for the deepest and surface points of 

longitudinal semi-elliptical surface cracks in thin pipes which are valid for aspect ratios in 

the whole region 0 < r/ / c < 1 .

1.5.4.3 SIF Solutions of Surface Fatigue Cracks in T-Butts

All joints in offshore platforms are welded. Fatigue cracking occurs in the form of surface 

cracks initiating from the weld toe in these welded joints. The presence of the weld usually 

gives rise to a stress concentration, which is function of weld geometry, in the vicinity of 

the weld toe. This stress concentration introduces changes in the stress distribution in a 

section at the weld toe. The T-butt welded plates are usually used in offshore structure and 

can be treated as a simple model of tubular joints. This section reviews some models for T- 

butt.

a) Mk Approach

Maddox(1975) suggested that for the surface cracks located at the weld toe, subjected to 

nominal bending or tension, the SIFs at the deepest point of the crack could be calculated 

from the equation

= ( 1 - 4 1 )
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where Y is the SIF calibration factor for a similar surface crack in a flat plate subjected to 
the same nominal loads. Hence the magnification factor is the ratio of the SIF for a

crack at the weld toe to the SIF for a similar crack in a flat plate subjected to the same 
nominal loads. normally decreases with increase in crack depth, from a value equal to

the stress concentration factor in the absence of a crack down to unity at crack depths of 
typically 30% of material thickness. The factor was obtained from the 2D finite

element analysis of edge cracks at the weld toe and comparing the results with the 

corresponding results for the same crack in a flat plate. By curve fitting these values, the 
analytical expressions for m  ̂ have been derived. Much work was carried out to enhance 

the accuracy of at The Welding Institute(TWI). The final results were included in 

PD6493(1991). It should be noted that this approach is limited to a weld angle of 45° and a 

sharp weld toe and only consider the variation of the ratio of overall weld attachment length 
to wall thickness(L/T). Dijkstra et al(1989) also reported M  ̂ solutions for a range of

surface cracks at the weld toe of a T-butt.

It is common practice to use the 2D factors combined with the 3D flat plate solution to

calculate the SIF for a semi-elliptical surface crack at the weld toe. For the surface point 
where the ends of the semi-elliptical crack meet the plate surface, the M  ̂ factor should be

obtained from 3D analysis and few solutions are available. It is normally assumed to be 
constant and equal to either the elastic stress concentration factor at the weld toe( W, ), or the 

value of corresponding to a very small crack, such as a=0.15mm. The latter approach is 

compatible with the fact that in steels there are inherent crack-like flaws of this order at the 

weld toes. After an extensive review, Pang(1990) concluded that it is conservative when 
applied 2D to 3D situation for calculating the SIFs at deepest point of semi-elliptical

surface cracks in weld joints and the current practice of adopting a constant value for surface 

point, based on the 2D solution is over-conservative.

b) Niu-Glinka Equations

Based on Petroski-Achenbach crack opening displacement expression and using Newman- 

Raju solutions as the reference SIF solution, Niu-Glinka(1990) have derived a weight 

function in closed form for the calculation of SIF at the deepest point of a crack emanating 

from the weld toe of a T-butt welded connection. This weight function is capable of 

incorporating weld profile effects due to different weld angle a  and weld toe radius p under 

any mode I type of loading as an important development of weight function technique.

Initially they derived a weight function for an edge crack emanating from the weld toe in a 

T-butt joint. They also carried out the stress analysis of the uncracked body of this type of 

joint and derived the stress distribution for a range of geometries(Niu and Glinka 1987). Niu
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and Glinka derived a weight function for the deepest point of a surface crack in a plate from 

Newman-Raju solution(Niu and Glinka 1989). They assumed that:

k : = - ^ k '; ( 1 - 4 2 )

where is the SIF for a surface crack in a welded joint

K^g is the SIF for a surface crack in a plate subjected to the same stress distribution 

is the SIF for an edge crack in a welded joint

is the SIF for an edge crack in a plate subjected to the same stress distribution 

This assumption enabled Niu and Glinka to calculate factors and then derive a weight 

function for a surface crack emanating from the weld toe of a T-butt welded joint. Based on 

this weight function they calculated the stress intensity factors for this type of joints having 

a surface crack subjected to pure tension or bending. It has been found that the SIF for a 

semi-elliptical surface crack is more affected by the weld angle than by the weld toe radius. 

However, it also depends strongly on the crack aspect ratio and crack depth. In general, the 

weld profile effect can be neglected for cracks deeper than half the plate thickness.

By using the stress distribution equations, a set of parametric equations(Hall et al 1990) 

have been derived to calculate SIF at the deepest point under tension and bending 

respectively.

The result from Niu-Glinka weight function were found to be substantially the same as 

those from Newman-Raju for all values of a/T in a flat plate. This is because this weight 

function is based on the Newman-Raju solution. The Niu-Glinka weight function gives a 

good agreement with fatigue crack growth data from flat plate welded connections. It is very 

interesting to compare the results from Niu-Glinka and Mk approaches as both of them 

incorporate the weld angle.

1.5.4.4 SIF Models for Surface Fatigue Cracks in Tubular Welded Joints

The fracture mechanics based fatigue crack growth modelling for tubular joints requires a 

model for the prediction of the stress intensity factors in tubular joints. Even if one assumes 

that crack is always located at the saddle position of the joint, and that the crack shape is 

semi-elliptical with constant aspect ratio, the determination of SIFs for defects located in 

tubular joints is an extremely difficult task. However, it is possible to obtain an approximate 

solution of acceptable accuracy to describe the crack growth behaviour by combining 

numerous experimental, numerical and theoretical methods.
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1.5.4.4.1 Semi-Empirical Models Based on Experiment Data

As discussed in the previous section, once Y is determined, the crack growth and fatigue life 

can be evaluated by integrating the instantaneous crack growth rates. There are two semi- 

empirical models for rapidly modelling Y of surface crack growth in simple tubular joints, 

namely the Average Stress Model(AVS) and the Two Phase Model(TPM). These models are 

based on the analysis of fatigue crack growth data obtained during tests on simple tubular 

joints carried out at University College London. The results of measurements of crack size 

during fatigue tests, has provided the data about the variation of crack size as a function of 

the number cycles and hence the crack growth rate. Thus the unique value of the stress 

intensity modification factor, Y can be determined by using the Paris Law.

Early fatigue tests have shown that the growth rate for a T-joint under axial loading was 

higher than that of a similar joint under out-of-plane bending for a similar hot spot stress 

range. It would seem that the hot spot stress range is not sufficient to describe the behaviour 

of crack growth under different type of loading. There are other several other parameters 

which influence the crack growth behaviour in tubular joints. These are the magnitude of 

hot spot stress, the stress distribution around the intersection, mode of loading, joint 

geometry and joint size. Assuming that the stress distribution was important, Dharmavasan 

and Dover(1987) proposed an A VS model based on early fatigue growth data of welded 

tubular joints and derived experimental Y as a function of relative depth (a/T).

Y = DT'\ -  
a

( 1 - 4 3 )

where a is the crack depth 

T is the tubular wall thickness

The parameters D, P and j are functions of average stress around the intersection as 

followings:

D =  1 .18-0 .32 S ( 1 - 44 a )

j = 0.24 + 0.06 S ( 1 - 44 b )

P = 0 .1 3 -0 .0 2  8 ( 1 - 4 4 c )

where S = / SCF^y

SCF^g is hot-spot stress concentration factor

SCF^y is the average of stress concentration factors around the intersection 

For in-plane bending SCF^y is given by:
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SCf„ = ̂  JsCF((|)W(|) ( 1 - 45 )

For axial and out-plane bending:

( 1 - 46 )

where SCF((j)) is the geometric SCF around the intersection and the angle, is measured 

from the crown.

Realising the effect of increasing joint size is to reduce the crack initiation or early growth 

phase, this model was later modified to account for the two phase of crack initiation and 

propagation separately and is called as TPM(Kam et al 1987). The experimental Y factor 

could be adequately expressed as:

Y =  MB
/

« J
( 1 - 47 )

where

M =

M=1

T
0 .2 5 - for a< 0.25T ( initiation) 

for a >0.25T ( propagation)

and

f  =  0.231
T

0.016
0.18

B = (0 .669-0 .1625^)1  -  
 ̂ \ 0.

) t=  (0 .353+  0 .0 5 7 .5 1 -
 ̂ t o .

n O . 1 1

0.016 

T

/
N -0.099

( 1 - 48 a ) 

( 1 - 48 b )

( 1 - 49 ) 

(1  - 50 ) 

( 1 - 5 1 )

(3 is the ratio of brace diameter to chord diameter of a tubular joint

The TPM was formulated using data from nine large scale tubular joints of various 

configurations tested in air under different modes of loading and has found to be able to 

forecast the influence of the wall thickness correctly. This empirical model, derived from 

constant amplitude fatigue data has been successfully applied to variable amplitude fatigue 

crack growth data with modification.

One problem noted is that the right side of (1-43) is not non-dimensional as T is the chord 

wall thickness. Austin(1994) found that the A VS model tended to over-predict the
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experimental Y factors by a factor of approximately 15%. He noted the range-counted 
equivalent stress range was used for the variable amplitude in-air test in order to derive A VS 
model. However, the rainflow method of cycle counting is shown to produce better 
correlation with constant amplitude growth rate data for BS 4360:50D steel rather than 
range counting. Thus, using the rainflow method to re-interpret the variable amplitude test 
data, he suggested the following modified AYS model.

Y =
A

1.15
( 1 - 5 2 )

where A=0.73-0.18S ( 1 - 5 3  a)

j=0.24-h0.06S ( 1 - 53 b )

The predictions using this improved model achieved a better agreement for recent 
experimental data compared to the original model (Myers 1996).

1.5.4.4.2 Application of Simplified Models to Tubular Joints by using Load Shedding 
Model

Due to the complexity of tubular joints, the practical application of fracture mechanics 
analysis usually requires simplification of the structural problem. This difficulty is usually 
overcome by using various simplified models such as plate, thin cylinders or T-butt welded 
plates. These fracture mechanics models with semi elliptical cracks and arbitrary stress 
fields on the crack centreline were derived provided that the boundary conditions remain 
fixed. Therefore they are sufficiently accurate in the case of statically determinant structures 
or in situations where the nominal stress level driving the crack does not change 
significantly with the changes in stiffness of the cracked sections. These models can easily 
be incorporated into approximate tubular joint crack growth models. Comparison of plate 

model predictions with fatigue growth results from full scale tubular joints for the same 
through-thickness stress and crack shape have been done(Haswell and Dover 1991). The 
results from Newman-Raju and Oore-Bums show the divergence between the these plate 
models predictions and experimental results at values of a/T in excess of 0.3. It has been 

found that plate models consistently over predict the Y factor for tubular joints. A small 
improvement could be obtained using the Niu-Glinka approach if the notch stress 
distribution was also included. This improvement could be significant in early crack growth, 
but would probably not have a dramatic effect on results for deep cracks.

It is now believed that this over-prediction is due to the multiple load paths found in tubular 
joints and the load shedding that takes place during fatigue crack growth. The fixed 
boundary conditions is a reasonable assumption for plates. However, in the case of tubular
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joints the stresses responsible for crack growth are the membrane and bending stresses 

which depend on the stiffness of the cross section near the weld and change as a 

consequence of the presence of the crack. Aaghaakouchak(1989) have shown that varying 

the boundary conditions from built-in to simply supported would require special 

consideration in order to reconcile the standard flat plate Y prediction with tubular joint 

data.

Haswell and Hopkins(1991) carried out a study using FE shell models with line spring crack 

modelling, compared the Y prediction for a T joint subject to axial load with Y predictions 

obtained from plate models with different boundary conditions. It has been found that the 

boundary conditions of a cracked plate model influence the load path across the crack plane 

and its compliance. The ability of the plate ends to rotate or the imposition of displacement 

control are of major importance. Plate end rotation is due to a through-thickness bending 

moment resulting from the neutral axis offset caused by the crack and the imposed bending 

stress. Controlled plate end rotation together with changes in the model compliance will 

influence the SIF prediction. A displacement controlled condition provides a better model of 

the tubular joint considered.

In case of tubular joints with a complex geometry the load shedding mechanism is not yet 

fully understood. As the crack grows, the cracked region could gradually lose the local 

bending stiffness and rotational constraints, and the excess bending load could be 

transmitted through the uncracked part of the joint. It is thought that the reduction in local 

bending moment due to cracking, and the allied increase in local flexibility can be modelled 

by a systematic moment release. Assuming the tensile stress component does not change 

while the bending stress component decreases, the moment release models have been 

proposed(Aaghaakouchak 1989). They include the parabolic and the linear releases models. 

The parabolic release model is from the studies of edge cracks in plates and rings. The linear 

moment release model is proposed as a "limiting case". The results show that linear release 

in conjunction with Niu-Glinka method accurately models axial load cases but still slightly 

over-predicts out-of-plane and in-plane bending results. Du and Hancock(1989) found the 

non-linear force and moment shedding in tubular joints by using line spring FE model.

Although the simplified model combined with linear moment release model gives good 

agreement with the experimental data, the linear moment release mode is not based on solid 

theoretical foundation. It could be that this improved agreement is due to the over-prediction 

of simplified SIF solution for tubular joint and severity of linear moment release model.

Experiments show that the K level remains beneath the fracture toughness level during the 

fatigue crack growth in tubular joints due to the load shedding. This is a quite important 

reason why the brittle fracture is not likely to happen during the tubular joint fatigue test.
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1.5.4.4.3 Finite Element Models

A most accurate evaluation of SIF for tubular joints could be obtained by a three 

dimensional(3D) modelling of the joints containing the crack using the finite element 

method. The advantage of FE analysis of a cracked tubular joint is the inclusion of all 

geometric and restraint parameters.

Two types of finite element models have been proposed for tubular joints and outlined as 

followings.

a) Complete Model

The complete tubular joint is modelled using a shell finite element representation with the 

crack and weld geometry modelled using 3D element. The crack front is represented by 

collapsed 3D quarter point elements.

Ritchie and Voerman(1987) used this method to analysis a few cases of tubular joints. In 

their finite element model of a T-joint subjected to axial loading, they introduced several 

cracks of varying sizes obtained from fatigue experiments, which are normal to the shell 

surface. They calculated the SIFs for points along the crack front for each crack shape. The 

SIFs were found to be highest at the surface and lowest at the deepest point of the crack 

which agree with what is suggested by the more rapid surface growth of the crack observed 

in experiments. The calculated SIF values for the surface and deepest points of the crack 

were in excellent agreement with the empirical data. Also, they calculated the contributions 

of the different modes and concluded that for the first part of crack growth, and were 

insignificant compared to K,.

b) Simple Model

In this simple approach, the complete tubular joint can be modelled using a shell finite 

element representation, with the crack modelled using line spring elements. This technique 

has the advantage of modelling the overall geometry of the cracked tubular joint and 

provides a highly efficient numerical model for crack analysis. The limitation of the this 

model is that it cannot model the weld geometry which affects the results for shallow 

cracks.

The line spring model developed by Rice and Levy(1972) provides a well-established, 

computationally efficient method for the analysis of part-through cracks in plate and shell 

structures. Based on Rice and Levy's model, a finite element line spring formulation has 

been developed by Parks and White(1982).
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In this model the surface crack was replaced by a part-through thickness crack where it can 

be represented in a shell FE model as a series of one-dimensional line spring finite elements 
along the line of crack. Having both stretching and bending resistance acted, it simulated the 

constraints provided by the net ligament of the crack and its stiffness varied along the crack 
depending on the surface crack depth.

The line spring elements introduce an additional freedom, which is calculated from existing 
solutions for single edge notched specimens in plane strain. The local solution dominated by 

the crack tip singularity is therefore included in the global response of the structural model. 
Relative displacements and rotations calculated from the analysis are then coupled with the 
respective compliance value to compute the SIF at the line spring element integration 

points.

Huang and Hancock(1988) analysed a shell FE model with line spring representation of a T 
joint. Although the shell model used does not include the weld, Hancock's comparison with 
both semi-empirical and 3D FE results demonstrates the validity of the FE line spring model 
for crack depths between a/T=0.2 and 0.8. However, as the weld has not been modelled, the 
SIF is under-predicted at shallow crack depths.

Clearly an FE analysis can accurately model geometry, loading and structural restraint. 
However, as SIFs are invariably used in fracture mechanics analysis of cracks in offshore 
structures, they must be supported by accurate information on crack propagation and shape 
development. This information is best obtained by experiment and consequently there is a 
need to combine the numerical analysis with comparable empirical data. This combination 
would allow both the numerical models to be validated and their accuracy in terms of 
fatigue predictions be quantified.

1.5.4.4.4 Concluding Remarks

The attempts have been made to use the modified simplified models and finite element 

method and derive semi-empirical models to obtain more accurate SIF solution for tubular 
joints. It seems that there are two reasonable methods for obtaining SIFs in cracked tubular 

joints. The first method is to use simplified models that are analytical and easy to apply. 
However, the SIF solutions derived from these simplified models are influenced by model 
boundary condition assumptions. Thus these simplified solutions cannot be directly applied 
to tubular joints as they do not model major effects such as load shedding. A linear moment 
release modification was found to be appropriate for use with flat plate SIF solutions to give 

predictions of Y for tubular joints(Aaghaakouchak 1989).

The second and more representative approach is an FE analysis of the full-scale joint. SIFs 
for cracked tubular joints obtained from 3D finite element analysis of a tubular joint are in
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reasonable agreement with semi-empirical data. The results of Hancock and co-workers, 
using line spring elements to model the crack, indicate that the weld profile does not 
significantly affect the SIF obtained from numerical analysis for crack depths in the range 
20-80% wall thickness. However, this analysis is slow and expensive.

Finally, it is possible to use the multiple reference weight function method developed 
recently to provide the SIF solutions for fatigue cracks in tubular joints.

1.5.5 Thickness Effect

A size effect was well known in notched machined components whereby fatigue strength 
decreases with increase in size. This effect was also found in welded joints in 1970s. Fatigue 
design curves for offshore structures were developed from the test results of laboratory 
specimens which generally are less than 25mm thick (typical thickness= 12.7mm and 
diameter=500mm) due to the limitation of loading capability of testing machines. However, 
the size of offshore structures are usually larger than that of these laboratory specimens. 
Therefore, the size effect issue has been the subject of considerable research over the past 
decade. Significant advances have been made in the understanding of the mechanisms which 
govern this apparent reduction in fatigue strength with increasing size.

Plate material in the as-rolled condition also shows a thickness effect which is somewhat 
less than that for welded joints, but still significant. It can be explained statistically in that 
the number and severity of flaws is likely to increase with size. However, for welded joints, 
this statistical explanation is probably of lesser significance. Of particular importance is the 

influence of weld joint dimensions on stress concentration and through wall stress 
distribution. This geometry effect has been generally recognised as the major cause to 

thickness effect and can be explained by the following factors(Berge 1985):

1) the magnitude of the stress concentration at the weld toe which is mainly determined by 
the local weld geometry. The notches at the weld toe in large joints are relatively sharper. 
The toe of the weld has nearly always the same radius due to the welding process.

2) the gradient of the stress in the plane of crack growth which is mainly determined by the 

plate thickness. The stress gradients are less steep in large size joints, which means that in a 
large joint a crack of a certain dimension is in a higher strained area than in a smaller joint. 

Moreover the plastic zone size will be larger.

3) the number of cycles in crack growth through the region of a steep stress gradient, 
relative to the total number of cycles to failure which is mainly determined by the size of the 
initial crack and the crack ellipticity.
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Based on theoretical fracture mechanics calculation and considering the effect of joint 
dimension on SIF and crack growth rates by using weld toe SIF correction factor( ) for

fillet welded joints, Gumey(1979) proposed the following model:

s = s. y ]  ( 1 - 5 4 )

W = ( 1 - 5 5 )

where Sg is the stress range and Ng is the fatigue life at the reference thickness, Tg, while 

S is the stress range which results in the same fatigue endurance and N is the fatigue life 

which has the same stress range at a thickness T.

Using a simple fracture mechanics model, Berge(1985) got the same answer as Gurney by 

making following assumptions:

1) Welded joints of the same type in various plate thickness are geometrically similar.

2) Initial conditions of fatigue crack growth are independent of plate thickness( a. constant ).

3) Furthermore, the notch root at the weld toe may be of constant radius, p = constant 

instead of ^  = constant as they are largely determined by the condition of the last pass at

the weld toe.

The experimental data from some plate as-welded joints with thickness from 16mm-100mm 

confirmed the above model. Supported by the experimental data, the model suggested by 

Gurney and Berge has been implemented in UK Department of Energy fatigue guidance in 

1984. (B=22mm for welded plates and 32mm for tubular joints). Insufficient tubular joint 

test data (UKOSRP-I thickness 6.3mm-32mm diameter 168mm-914mm as-welded 

condition and some ECSC data) exist to investigate this effect. However, it is assumed that 

tubular joints will behave in the same way as other welded plates with respect to the 

influence of thickness.

With more data produced from extensive research programs in Europe including UKOSRP 

II data (chord diameter 1830 and thickness 75mm) available, it seems that it is possible to 

have a more reasonable model. By fitting S-N curves to these data at each thickness, a 

conservative thickness correction exponent of 0.3 is proposed in current fatigue guidance:

T
( 1 - 56 )

Additionally, the base line thickness for thickness correction was extended to 16mm for 

tubular joints.
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There is a debate about whether the thickness effect can be largely decreased or eliminated 
by improving weld profiles between the researchers in Europe and US. In the US view, the 
thickness effect can be compensated for by improving weld profiles in thick sections. Weld 

improvement leads to an increase of fatigue strength and a decrease of the thickness effect. 
This means that increasing rate of fatigue strength due to weld improvement becomes larger 
as the plate thickness increases. Use of an improved AWS weld on joints with equal 

attachment as base-plate thickness reduces the effect of thickness from a factor of over four 
to a factor of about two.

European research, especially from UK and Norway, found that the thickness effect is 
essentially the same for a wide range of welded joints and weld geometry. Welds with 

improved weld toe profile showed higher fatigue strength, however the strength decreased 
when the thickness was scaled up. For joints improved by weld toe grinding or TIG re­
melting the fatigue strength in general is improved. However, test data indicate that the 
thickness effect is of the same magnitude as for unimproved joints.

Apart from this debate, it is noted that there are some secondary factors from research 
programmes and these are listed as follows:

1) attachment thickness

There is a reduction of the thickness influence if the attachment thickness is kept constant, 
but it is only secondary effect on fatigue strength compared to the effect of main plate 
thickness because the dominant parameter affecting weld toe SCF is the ratio of weld toe

radius to main plate thickness, (-^ ), which is not influenced by attachment thickness. The

experimental data on tubular joints indicated that the fatigue endurance is proportional to 
and it is small compared to that for chord thickness T~ '̂ .̂

2) Loading mode

The thickness effect is stronger under 
bending than under axial loading.

3) High/low SCFs

Experimental results and fatigue predictions indicate that the thickness exponent decreases 

with decreasing value of the SCF. Welded joints with low SCFs(SCF<1.5) give a smaller 

thickness effect as compared with as-welded joints.

4) Fatigue Life

The thickness effect depends on fatigue life, and increases as the fatigue life becomes 
longer. In particular, this trend is remarkable in the as-welded proportional joints. Both 
crack initiation and propagation lives are reduced with increasing thickness for welded
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joints. The thickness effect is larger for crack initiation life than for failure life, the thickness 
effect on crack propagation life is very small. The thickness effect of a welded joints is 

supposed to be determined by crack initiation behaviour and the growing process of a 
shallow crack to the depth of about 1mm.

However, the thickness effect appears to be the same, regardless of local weld geometry and 
loading. Also it represents the average performance of welded joints and therefore is not too 
conservative when the thickness effect is evaluated for individual data sets. So the design 
rules for welded joints should be amended to include some secondary factors such as a less 
severe thickness penalty for low SCF joint and a stronger thickness effect for high SCF 
joints. It seems that the best solution is to establish the accurate fracture mechanics model 
that can take account the thickness effect. Thus an accurate thickness exponent can be 
applied depend on local geometry and loading.

1.6 Research Objectives and Scope of Thesis

A considerable amount of research effort has been spent to develop the methodology for the 
assessment of fatigue behaviour of welded tubular and plate joints. Non destructive 

evaluation of offshore tubular welded joints involves crack detection, crack sizing, stress 
analysis and fracture mechanics based assessment of crack growth. So far a lot of significant 
developments have been achieved in each of these areas. However, each of these areas still 
poses challenging problems for the offshore industry as reviewed in previous sections. In 
order to use the existing methodology, it is crucial to have the accurate information such as 
POD in NDT reliability, SCF, DOB and stress distribution in stress analysis, and SIF in 
fracture mechanics analysis. However, the task to have these basic modelling tools is far 
from being finished. In this study, it is intended to concentrate on the computational aspect 

of fatigue strength assessment. It will try to provide more information on underwater NDT 
reliability and stress distribution for tubular joints in a format suitable for fracture 

mechanics analysis. With more information available, it will be possible provide the more 

accurate modelling that is needed to improve the accuracy of prediction of fatigue crack 
growth. So the final objective of this study is to develop the models to predict the stress 
intensity factor in welded T-butts and tubular joints. As a summary, this study aims to 
provide the POD information of underwater NDT in convenient format for reliability based 
scheduling and the more accurate models for stress analysis and fracture mechanics analysis 
by carrying out a parametric study.
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This chapter overviews the several important aspects of non-destructive fatigue strength 
assessment of offshore tubular welded joints. The rest of the thesis can be split into the 
following three parts.

1) Underwater Non Destructive Inspection Reliabilitv

Chapter 2 will report the work on underwater NDT reliability. Fatigue cracks on tubular 

welded joints were measured using ACPD and ACFM techniques in order to clarify some 
characterisation data in UCL crack library. The UCL underwater Non destructive inspection 

reliability trial results (POD data) were re-analysed to make them suitable for reliability 
fracture mechanics procedures for the first time and these were incorporated into the 
Reliability based inspection scheduling(RISC) system.

2) Deriving the Stress Parametric Equations for Simple Tubular Joints

Comprehensive thin shell finite element stress analyses have been carried out for 330 
tubular X, DT, and Y, T-joints. Based on the results of these systematic analyses, a series of 
stress parametric equations have been derived by regression analysis and will be presented 
from Chapter 3 to Chapter 6. Chapter 3 is on the derivation of a set of comprehensive SCF 
parametric equations for tubular welded X, DT-joints. A set of parametric equations to 
predict the degree of bending and stress distribution around the intersection of tubular X and 
DT-joints are reported in Chapter 4. In Chapter 5, efforts have been made to derive a new 
set of parametric equations to predict the stress distribution along the intersection of tubular 
Y and T-j oints in order to enhance the prediction capability of UCL HCD stress parametric 
equations. Chapter 6 deals with developing a set of characteristic parametric equations for 

tubular Y, T, X and DT-joints to represent the stress distribution around the intersection of 
simple tubular joints.

3) Developing a set of SIF Parametric Equations for T-butt and Tubular Welded Joints

A series of SIF parametric equations was derived for both the deepest and surface(comer) 

points of semi-elliptical surface cracks in T-butts and the deepest points of semi-elliptical 
surface cracks in tubular welded joints, by using the weight functions and the database of T- 
butt through wall stress analysis results. This aspect is addressed in Chapter 7 to Chapter 9. 
Chapter 7 is on derivation of the deepest point SIF parametric equations for T-butt using the 
Niu-Glinka weight function. Chapter 8 reports on the derivation of the surface point SIF 
parametric equations for T-butt using the Wang-Lambert weight functions. In Chapter 9, 
taking the Wang-Lambert weight function for longitudinal cracks on thin pipe as reference
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data, a new weight function for tubular welded joints is proposed and the corresponding 
deepest point SIF parametric equations are derived. Combined with the non-linear load 
shedding model, this solution can be used to predict the fatigue crack growth in tubular 

joints and this is confirmed by the experimental data.

Finally, Chapter 10 presents the conclusions of the study and proposes the areas which need 
further research and investigation.
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Figure 1.4 Modes of Loading on Tubular Joint
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CHAPTER TWO 
IMPROVED FATIGUE CRACK SIZING USING ACFM

2.1 Introduction

Offshore fixed platforms, as used by the oil & gas industry, are designed to resist both static 

and cyclic loading (topside w eig h t, wind and wave loading) and to have a design life often 

in excess of 100 years. Unfortunately the uncertainties in design and manufacture give rise 

to the possibility of fatigue cracking during service. Hence, regular inspections are required 

in order to ensure the structural integrity of offshore platforms. An important part of the 

inspection involves detecting and sizing the fatigue cracks in the submerged part of 

platforms. Originally it was mandatory to inspect platforms during a five year period but 

more recently cases based on rational inspection scheduling have become acceptable. These 

inspection schedules are based on fatigue fracture mechanics calculations which are in turn 

based on accurate stress analysis, stress intensity factor solutions, crack detection and crack 

sizing. This chapter is concerned with the last mentioned aspects, especially the Probability 

of Detection(POD) and accuracy of crack sizing.

In essence the strength of a cracked member is dependent on crack size or the size of the 

remaining ligament of material. Thus crack depth is the governing parameter and detection 

capability must be assessed in terms of performance with respect to crack depth. 

Conventionally POD data has been expressed in terms of crack length and the method was 

utilised in earlier UCL POD trials reporting. Moving to crack depth instead of length puts 

great emphasis on the quality of sizing data available with the trials data. In the 

circumstances it became apparent that the UCL crack library information needed to be 

reassessed in order to confirm the earlier results with ACPD and to improve confidence by 

using newer equipment. At the same time the non contacting version of ACPD, known 

ACFM, had became available and was being used widely in service. It would thus be 

valuable to investigate the sizing capability of ACFM. Given that ACFM was relatively 

new, this step also allowed procedure investigation. The final step was that given the 

confirmed library crack sizes the POD data would be reanalysed in terms of POD versus 

crack depth.
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2.2 Crack Measurement using Non-Destructive Techniques

2.2.1 Re-Measurement of Fatigue Cracks in Tubular Joints using ACPD and ACFM

As discussed in Chapter 1, the key idea in the UCL study on the reliability assessment of 

underwater non-destructive inspections is to set up a characterised fatigue crack library of 

tubular joints. The POD is a comparison of the underwater non destructive test results with 

the corresponding characterised library data. Whether this approach is successful is very 

much dependent on the accuracy of sizing these fatigue cracks in air.

Inspection of a large number of welded joints for fatigue cracks has been carried out in the 

underwater NDE Centre at UCL for the Inter-Calibration of Offshore NDT(ICON) project 

using several non-destructive inspection techniques. The data is expressed in terms of POD 

versus crack length but it is now considered desirable to reanalyse its data in terms of crack 

depth. Thus it is necessary to remeasure some cracks from the UCL library to give increased 

confidence. Development of the ACPD and ACFM technique has led to the introduction of 

new instruments, the Technical Software Consultants(TSC) crack microgauge model UlO 

(for both ACPD and ACFM) and U 11 (underwater version for ACFM). However, the 

underwater ACFM trials results indicated there were some large differences for three cracks 

on library of cracked nodes between in-air ACPD characterised data using U7 crack 

microgauge and the corresponding underwater ACFM sizing data using U I 1 (Table 2.1). For 

these reason, a project was carried out to re-measurement of these cracks in air with ACPD 

and ACFM techniques using U7, UlO and Ul 1 instruments.

The U7 ACPD measurements were repeated. An investigation has also been carried out to 

compare the behaviour between the U7 and UlO instruments. Finally a new non contacting 

sizing technique ACFM has become available and given its widely use in service, replacing 

ACPD, it was decided to include this approach as well. The details of measurement results 

were reported in reference(Chang et al, 1992 c). The main procedure is listed as below:

i) Check chord and brace identification and record the information

ii) Carry out MPI with magnetic yoke and mark position of crack ends

iii) Size crack with ACPD technique using U7 and UIO

iv) Size crack with ACFM technique using UlO and U 11

v) Re-interpret the old underwater ACFM results using U 11

The crack profiles were measured using ACPD technique based instruments U7 and UlO 

and they are illustrated in Figure 2.1. A comparison of new ACPD measurement results 

using U7 and UlO with in-air ACPD characterised data was made(Table 2.2). The corrected 

data were calculated using the revised calibration equation ( 2 - 1 ) for the ACPD
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technique(Monahan 1991). It can be seen that the old ACPD data using U7 agree very well 

with the new ACPD results using U7. Although being slightly high, the ACPD data from 

UlO are very close to that from U7, The line contact behaviour is also consistent for U7 and 

UlO. Thus it seems that the in-air ACPD data are reliable.

The ACFM measurements using UlO and U ll were carried out in-air for these library 

cracks. Old underwater ACFM data using U ll were re-analysed and some mistakes were 

found on interpreting crack depth from these data. Individual reasons for these mistakes 

were found. Some were due to bad scanning and others are caused by using the wrong 

physical length. After correcting these errors and using revised interpretation procedures, 

better results have been obtained. The detailed information for these measurement results 

were listed in Table 2.3. On can see that the underwater ACFM data using U ll are reliable, 

if one use this instmment and the corresponding software in the correct way.

As a summary, the re-measurement results using ACPD by U7 and UlO agree reasonably 
well with those using ACFM by UlO and Ul l .  Furthermore, some crack depth 
measurements have been carried out on T-butt samples. It has been found that the inferred 
depths from ACPD measurements are also very close to those from ACFM.

2.2.2 Effect of using Different WAMI Versions on Underwater ACFM Sizing Results

Containing theoretically-derived sizing algorithms, automated instrument control, data 
storage facilities and dedicated graphical output, the ACFM crack detection and sizing 
software(WAMI) was developed at TSC to interpret and size the results recorded during the 
underwater inspection using the ACFM technique. Initially, the crack sizing results in 
POD/Probability of Sizing(POS) for the TSC U ll ACFM crack microgauge report(Rudlin 
et al 1992) were obtained by using WAMI version 3.6b. A more recent version, WAMI 3.8b 
has become available since the completion of the trial. It has been found that there are some 
differences in the sizing estimates using the different versions of WAMI with same mean 

Bx, minimum Bx and same physical length. So it is necessary to report this difference.

WAMI version 3.8b has been used to calculate the underwater ACFM trial data again. Some 

mistakes in the old data were found and corrected. The new sizing results have been 

compared with the old data which were calculated with old version of WAMI and 
subsequently revised by TSC(Figure 2.2).

The comparison(Chang 1992 d) has shown that the new data tend to be slightly higher than 
the old data. The effect of using the different WAMI versions on underwater ACFM sizing 
results is basically small since the old data are quite close to the new data after correcting 

mistakes.
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2.2.3 Investigation of Sizing Procedures for Underwater ACFM Inspection Results

It is well known that the fatigue cracking in tubular joint starts as a number of small semi­
elliptical cracks that initially grow on different planes and subsequently coalesce by jumping 
from one plane to the another. This creates small steps or facets perpendicular to the main 

crack face and these facets act as line contacts. As far as alternating current field 

measurements are concerned, each line contact forms an electrical short circuit and the 
whole long crack acts as a series of shorter cracks. There are some long cracks in the UCL 

library. The ACFM sizing algorithm is based on a single crack with a semi-elliptical shape. 
However, the physical length used in initial depth sizing was the whole length of a defect 
indication. This may be one reason why the ACFM depth predictions are greater than the 
destructive and characterised data in most cases. Thus it is necessary to carry out the further 

investigation on the sizing procedure for the TSC U ll ACFM crack microgauge.

Since there are some difference between the sizing results with different versions of WAMI 
as discussed in section 2.2.2, only the latest version, WAMI 3.8b has been used in this 
investigation in order to update and standardise the results. The report from this 
investigation(Rudlin, Chang and Dover 1992 b) is a supplement to the POD/POS report on 
the TSC U ll crack microgauge(Rudlin et al 1992). It should be noted that the length 
estimates used to assess crack depth after the trials must be treated with reservation, as they 
will assume a constant scanning speed. The main steps of this investigation are listed as 
below:

1) Compare the destmctive test data with the ACFM signals including the line contacts and 
other features. Based on these observation, develop the several different sizing procedures.

2) Apply these different procedures to the remainder of the library characterised cracks to 
see which procedure gives the best results.

3) Evaluate other effects on sizing accuracy, particular variations in the value of the 
background Bx.

A comparison of the ACFM signals including the line contacts with all available 
corresponding destructive test results was carried out. A typical example is shown in Figure 

2.3. It was found that the signal between separate cracks always return to the background 

level. A line contact within a long crack can be recognised when the Bx signal does not 
return to the uncracked value and the butterfly tends to form a loop inside the long crack 

butterfly while the Bz signal responds by a peak and trough. One may locate a line contact 
by a Bx peak in the long crack dip in above circumstances.
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As the physical length used in the initial depth sizing procedure in the trial was the length of 

the whole crack range, the sizing results showed that there is a tendency for this procedure 

to oversize the crack depth, particularly where line contacts were known to be present. 

Therefore, it is necessary to develop other procedures. Comparison with destructive test data 

tends to show that the depth predictions using the length between the large visible line 

contact indications or the length between the above line contact and the end of whole crack 

range are better than those using the initial procedure in the majority of cases. In order to 

find a more reasonable sizing procedure, three procedures have been formulated as 

following

Procedure 1: Treat the length between existing markers or whole crack range with Bz 

responding by a peak or trough as the physical length of independent crack.

Procedure 2 : Treat the length between the line contact indications which are equal or greater 

than 90% of the Bx range (Bx background - Bx minimum) with Bz responding by a peak or 

trough (including the end of crack) or the length between above line contact and the end of 

whole crack range as the physical length of separate cracks. The Bx signal within this length 

should contain Bx minimum.

Procedure 3 : Treating the length between the line contact indications which are equal and 

greater than 50% of Bx range (Bx background - Bx minimum) with Bz responding by a 

peak or trough (including the end of crack) or the length between above the line contact and 

the end of whole crack range as separate cracks. The Bx signal within this length should 

contain Bx minimum.

Using the value of the background Bx in initial sizing, a comparison has been carried out of 

the whole inspection results using the three different procedures with the destructive and 

characterised data. An example of the physical lengths obtained using the three different 

procedures is shown in Figure 2.4.

It was found that there is the geometry influence on ACFM signal and the value of 

background Bx was overestimated in initial sizing for long cracks. Assuming that the 

influence on ACFM signal for the same geometry is same, the ACFM depth sizing was re­

evaluated for the cracks at the saddle toe of three right angled braces in DT-joints having the 

same dimensions by using the Bx background in uncracked joints. Comparison of the 

ACFM predictions using this revised background Bx with those using initial background Bx 

was done.

Result details were reported in reference(Rudlin, Chang and Dover 1992 b). The 

investigation resulted in the following conclusions.

1) There are two important factors in underwater ACFM crack depth calculations. One is 

how to decide on the Bx background. The other is how to select the physical length, i.e.
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what is the appropriate procedure. It has been found that the influence of the former is much 

larger and more sensitive than that of the latter.

2) Comparison of the destructive test results and characterised data with the corresponding 

underwater ACFM depth predictions using three different procedures is shown in Figure 

2.5. One can see that the predictions using procedure 3 are better than the results using 

procedure 1 or 2, especially for the cracks with depth less than 17mm. The ACFM depth 

predictions using procedure 2 are close to those using procedure 1, although the former is a 

slightly better.

3) The underwater ACFM sizing results using revised background Bx are better than those 

using initial background Bx. They are closer to the destructive test results and characterised 

data(Figure 2.6).

4) When the effects of using procedure 3 and revised background Bx are combined, the 

underwater ACFM depth predictions agree very well to the destructive test results and 

characterised data(Figure 2.7).

2.3 Underwater Inspection Reliability of Non destructive Techniques

The probability of detection(POD) has been identified as a primary tool for assessing the 

capability of NDT techniques. All inspection processes are uncertain due to inherent POD 

being less than 1 in the range of defect size of interest. The measure of this uncertainty 

always comes from blind trials. The true POD as a function of crack size will never be 

known exactly since NDT technique capabilities can only be demonstrated through the 

experiment. The objective of such an experiment is to provide a point estimate of POD over 

the whole population of any similar inspection area under investigation, and to provide the 

an estimate of how it may vary. There is relationship between the measured POD and true 

POD for the service situation. Statistical methods can be used to provide confidence limits 

on the true probabilities. In other words, the POD estimate can be made by setting a level of 

confidence that the results will be within certain limits. The lower bound of 90% population 

POD with 95% confidence has been chosen as the target. In other words, the objective of the 

POD trial is to estimate the crack size for which there is a 95% confidence that it can be 

detected by 90% of all cases.

It has been shown that both the magnitude and scatter in POD estimates are significantly 

influenced by crack size(Figure 2.8). A very large sample size would be required to reduce 

the "error" in the POD estimates in order to yield more precise crack length predictions of 

detection. Assuming a binomial distribution of the data, the number of cracks which need to 

be successfully detected in a trail within a crack size range can be shown to be 29 out of 29 

to achieve a 90% at a 95% confidence limit.
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2.3.1 UCL POD Trials

POD trials have been carried out by University College London Underwater NDE Centre for 

MPI(Rudlin and Dover 1990 a), two well-known eddy current systems, Hocking and HMD 

III(Rudlin and Dover 1990 b) and ACFM(Rudlin et al 1992), which have been successfully 

used offshore. As discussed above, more than 150 fatigue cracks in tubular welded joints are 

needed to produce the desired experimental POD curves. These fatigue cracks can be 

produced using a variety of fatigue test rigs capable of applying in-plane bending, out-plane 

bending and axial loading. Producing these pre-cracked tubular welded joints is obviously 

an expensive undertaking and could be prohibitively expensive if these samples were only 

used for one trial and then destroyed in order to yield the true crack sizes. Also, it has been 

shown that crack sizes could be reasonably accurately determined by laboratory NDT 

techniques. These consideration led to the concept of producing a library of precracked 

tubular joints which could be used for a series of trials. The confidential library of tubular 

welded joints containing known fatigue cracks have been established in underwater NDE 

Centre at UCL.

Therefore, it should be noted that the POD curves are produced in the way of comparing 

underwater non-destructive trial results using different underwater NDT techniques with the 

characterisation database of a confidential library of fatigue cracks formed by the laboratory 

techniques rather than by comparison of that with the destructive test results. The accuracy 

of POD is therefore dependent on the accuracy of the in-air crack measurement. So it 

requires a high level of confidence in the characterisation of cracks in library specimens to 

establish accurate POD curves. A reasonable estimate of crack size could be obtained by in 

air by MPI, ACPD and time of flight ultrasonic (TOED). The first two are used to establish 

the length of a crack, whereas ACPD and TOED can be used to establish the depth.

It is necessary to check on the quality of characterisation data of the above library cracks by 

carrying out a limited set of destmctive tests since the measure POD values are obtained by 

comparing the air characterisation with the underwater results. Assessing the quality of air 

inspection results by means of destmctive sectioning two double-brace T-joints belonging to 

the UCL confidential library of fatigue cracked tubular joints was therefore carried 

out(Monahan 1991). The results were used to evaluate the existing crack depth 

characterisation procedure for deep cracks and extended the ACPD calibration equation to 

include cracks less than 5mm in depth. The revised calibration equation for the ACPD 

technique which has been adopted for creating new characterisation database in the 

following analysis is listed as below:

J,„ = 0.92-hI.05J ( 2  - 1 )



where is the 'true' or corrected depth (mm)

d is the predicted depth (mm) determined by laboratory NDT techniques.

2.3.2 Re-analysis of POD Trial Results using a New Classification

Cracks are often initiated in a number of places in the same region of a welded joint. The 

final appearance of a crack investigated by MPI may show a number of small indications. 

The criteria for grouping a number of small indications(appearances of cracks) determines 

the crack length. The classification A, B, B1 and C(Figure 2.9) have been used in the course 

of UCL underwater NDE Centre POD trials(Rudlin and Dover 1990 a)(Rudlin and Dover 

1990 b). It is necessary to establish rules for the definition of a success. The resulting 

inspection performance will be strongly influenced by the success criteria chosen. The 

possible outcomes of an inspection are detection, missed (no detection) and spurious 

data(Figure 2.10). However, the detection is complicated by the fact that a number of small 

cracks can be detected together. The degree to which this happens depends on the 

classification. The classifications used in this thesis are outlined as below.

Classification A : Individual Crack Indications

Each small 'in-air' indication is treated as one crack. Cracks located in chord toe, brace toe 

or interbead are treated as the separate cracks.

There are two types of detection, namely isolated detection and combined detection. An 

isolated detection is where the indicated result from the diver corresponds to a single 

indication classified in air. The isolated detection can be further analysed by comparison of 

lengths. A combined detection is where the indicated results from the diver correspond to a 

number of indications in air. A spurious indication in these cases is one which does not 

overlap the in-air indication

Classification B : Dominant Defect in Defect Region

A defect region is defined as a part of the weld with defect indications separated from all 

other defect indications by at least 30 degrees of the circumference.

Classification B l : Dominant Defect in a Weld

As Classification B but expanded to include all the weld (i.e. the total weld area from brace 

toe to chord toe).

For Classification B and B l, a detection is defined as an indication from the diver within the 

cracked region. A spurious indication in these classification is a reported indication outside 

the cracked region. Where the lengths are compared, the length of the dominant crack, the
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largest individual reported in-air crack indication in the cracked region, is used for 

comparison.

Several studies(Rudlin and Dover 1990 a)(Rudlin and Dover 1990 b) have been completed 

on the POD trials of various underwater NDT methods, using divers in a tank in underwater 

NDE Centre at UCL. For cracks which have an isolated detection, it is possible to carry out 

further comparison of the in-air and underwater results using the length ratio in order to get 

crack length sizing accuracy. The length ratio can provide a filter for the POD curves, by 

only admitting results of a certain accuracy as a positive detection.

However, the effect of length ratio on the POD can not be carried out on combined detection 

in the classification A, B, B 1 and C. In order to facilitate further analysis of length ratio, the 

new classification D(Figure 2.9) has been introduced by the author and is defined as below:

Classification D : The Cracks where indications as in classification A are closer than

30 degrees are considered as a single crack. The Cracks in chord toe, brace toe or interbead 

locations are treated as separate cracks.

For this new classification, a detection is defined as an indication which overlap the in-air 

indications. A miss indication is one which does not overlap the in-air indications. A 

spurious data is the indication obtained underwater which have no corresponding indication 

in-air.

The POD trial data for underwater MPI, Hocking and FMD III Eddy Current Inspection 

methods have been re-analysed(Chang et al 1991a) using the new classification D. The POD 

curves in terms of crack length with depth information in the form of thresholds have been 

produced in this analysis. The existing UCL FORTRAN 77 programme was modified to 

calculate the lower bound estimate of the population POD with any specified confidence on 

the VAX/VMS system(Chang et al 1991b). So the lower bound estimates of population 

POD of 90% with 95% confidence level have also been calculated and included on the POD 

curves.

Typical examples are shown in Figure 2.11-2.13. It should be noted that all points are 

plotted on POD curves at the end of the crack size range. From the POD curves in terms of 

crack length with depth information in the form of thresholds, one can see that as the depth 

threshold increases the POD is generally higher. Sometimes, it can become irregular when 

the number of cracks is small at crack size ranges. Also the POD data with effect of length 

ratio threshold have shown that as the length ratio threshold increases, the POD level 

reduces. Increasing the length ratio threshold did not change the general shape of these 

curves. Comparing with the measured POD, the 95% confidence curve reduces but the 

general shape is maintained.
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2.3.3 Re-analysis of POD Trial Results against Crack Depth

Historically, the NDT inspection reliability data have been based on the crack length as they 

are displayed as the variation of POD with surface crack length. It is realised that these data 

generated by the NDT inspection reliability investigations may not be used directly since 

they are not presented in a format readily for the reliability fatigue assessment which rather 

requires information on crack depth. The crack depth is the most important dimension used 

for remaining life prediction and the fracture mechanics based calculation of fatigue crack 

growth. Also, aspect ratios of fatigue cracks do not keep constant during fatigue crack 

growth in welded joints. The large scale test data have shown that different crack shapes 

occur (such as long shallow, long deep or short deep) due to different stress distributions in 

tubular welded joints. So, a fatigue damage assessment needs crack depth based POD 

information. In order to accommodate this requirement, POD curves versus crack depth is 

therefore required for various underwater NDT techniques.

Each characterised crack length in the UCL library for particular classification has a 

corresponding characterised maximum crack depth. This allows re-interpretation of the 

existing POD data. The POD trial data for underwater MPI, Hocking and EMD III Eddy 

Current Inspection methods have been re-analysed to make them suitable for reliability 

fracture mechanics procedures. These analyses(Chang and Dover 1991 c)(Chang and Dover 

1992 a)(Chang and Dover 1992 b) have produced the POD in terms of crack length as well 

as the POD in terms of crack depth using a classification D. The lower bound estimate of 

population POD is included on the POD curves. The confidence level used was 95%. 

Furthermore, for the underwater MPI technique, the similar analyses to those described 

above have been done(Chang and Dover 1992 e) for classification B and B l. The 

underwater MPI trial results(Rudlin and Dover 1990 a) have been extended to include POD 

versus crack depth for the classification B and B 1.

The results of all these studies formed a revised inspection reliability database and were 

incorporated into UCL RISC system(Chang and Dove 1994). Some examples are illustrated 

in Figures 2.14-2.20. The use of the different classifications is dependent on the particular 

application and the eventual remedial action to be taken. The classification Bl was decided 

to be used initially in inspection scheduling work as it is the commonest classification in use 

for a wide range of NDT system.

2.3.4 Comparison of Underwater POD Trial Data for ACFM and MPI

A variety of non-destructive techniques(NDT) are available for this purpose. It is important 

for an offshore operator to know the capabilities such as the minimum detectable crack size 

and often the reliability for detection of these different techniques. By comparison of the
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performances of these individual NDT techniques, the most appropriate NDT technique may 
be chosen at the right price and to the appropriate accuracy. Furthermore, this information is 
crucial for rational inspection scheduling.

The underwater fatigue crack detection capability for the ACFM using TSC U ll 
Microgauge and MPI were compared in this section. To make this comparison, the results 

from the POD trials carried out at the UCL underwater NDE Centre on underwater 
ACFM(Rudlin et al 1992) and MPI(Rudlin and Dover 1990 a) have been used. Since some 

fatigue cracking had been carried out between the two trials, the new cracks have been 
removed from the original database as reported in the underwater ACFM trial document. 
The comparison has therefore been made on an identical database. These POD trials were 
carried out on the 80 brace/chord intersections of the UCL cracked node library, 24 of which 

had no fatigue damage. The others contained the cracks with varying length from 2mm to 
643mm.

The classification A and Bl (Figure 2.9) have been used in this analysis. It should be noted 
that the results using classification A are susceptible to missing of small defects by location 
error. This is due to using tape measurement on the weld and it has been observed that an 
error up to 20mm is possible. The classification A data give some idea of the capability for 
completing coverage of defects areas. On the other hand, the classification B1 data are much 
less susceptible to location error and may be used in further analysis as results of using a 
"first pass detection" criteria.

The information of the missed cracks is very important since a small number of the large 
missed defects can cause significant changes in POD curves. In order to further understand 
the classification A underwater ACFM trial results, the following types of missed defects 
have been introduced.

Tvpe 1: a missed crack adjacent to a detected classification Bl dominant crack (in other 
words, a small crack missed at the end of the large crack which was detected)

Tvpe 2: a missed crack mnning parallel to a detected classification B1 dominant crack (for 
example, an interbead crack is missed which runs parallel with a toe crack which was 

detected)

Tvpe 3: a missed classification B1 dominant crack

Tvpe 4: a missed crack where a classification B1 dominant crack missed nearby

A diagrammatic representation of the types of the missed defects is shown in Figure 2.21.

The comparison of the POD trial results in terms of crack length for the underwater MPI and 
underwater ACFM techniques has been carried out(Rudlin, Chang and Dover 1992 a). For 

the purpose of comparison, crack size ranges have been maintained the same. Comparison
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on a "first pass detection" criteria(using classification Bl) for the cracks with depth 

thresholds showed the POD curves(Figure 2.22-2.23) are similar for underwater ACFM and 
MPI. The small differences observed are no more than one crack in any size range. This is 
exaggerated slightly by the POD curve presentation because of the small number of cracks 
in the larger size range.

From the classification A comparison results, it showed that the POD curves reach 100% in 

the 50-108mm range for both techniques. The POD curve for ACFM is higher than MPI at 
range 29-49mm but lower below this range(Figure 2.24-2.25).

The relative frequency of different types of missed defects for ACFM trials was calculated 
as shown in Table 2.4. Examination of results showed the small cracks missed by 

underwater ACFM are mostly the cracks extending from the end of detected larger detects. 
Some of them may be due to location errors.

A comparison of the numbers of the spurious indications between these two 
techniques(Table 2.5-2.6) showed that the underwater ACFM technique has given a far 
superior performance in the trials for the non-reporting of spurious indications.

More recently, underwater ACFM POD data versus crack depth for classification B 1 have 
been produced and compared with correspondent underwater MPI results(Dover, Chang and 

Rudlin 1994). Again, the POD versus crack depth curves(Figure 2.26) shows they are very 
close with underwater ACFM giving slightly better results. In order to see more detail, the 
cracks are grouped in blocks of 10 rather 29(Figure 2.27) and the conclusion remains the 
same.

As a summary, the POD performances for these two techniques are quite similar. The 
ACFM length measurement does not on a few occasions, include all the small cracks 
extending from the end of a crack. As giving superior performance in the trials for non­

reporting of spurious indications and offering many advantages such as crack depth 
measurement, without prior calibration and requiring no electrical contact, the ACFM 
technique is preferred for underwater inspection.

2.4 Conclusions

The ACPD and ACFM techniques were used to size the fatigue cracks in tubular joints and 

the effect of using different versions of WAMI(ACFM crack detection and sizing software) 
and sizing procedures for the underwater ACFM results were investigated. Moreover, the 
underwater POD trials results for ACFM and MPI were compared. The POD performance 
for these two techniques is close. The ACFM is preferred as this technique offers many 
additional benefits for inspection of offshore structures. However, it does sometimes miss
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the small cracks near the end of long crack. The sizing accuracy of ACFM technique 
depends on a theoretical model and the interpretation of ACFM inspection results is slightly 

complicated. Thus, it is important to use correct procedures.

A new crack classification D has been proposed. The POD in terms of both the crack length 
and the maximum crack depth for MPI and two well-known eddy current systems(Hocking 
and EMD UI) using classification B, Bl and D were produced. These data, especially the 
crack depth based POD information, formed the inspection reliability database and has been 
directly used as input for reliability fracture mechanics based inspection planning of 

offshore jacket structures. Finally, it should be noted that the underwater NDT reliability 

assessment in current study at UCL aims to obtain the capability information for each 
technique and therefore do not include the human effect.
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Table 2.1 Comparison of In-air ACPD Characterised Data using U7 Crack Microgauge and

Old Underwater ACFM Sizing Results using TSC U ll ACFM for Three Library Cracks

Library

Crack

Crack

Location

Crack Depth ( mm )

ACPD U7 ( in-air ) ACFM U l l  ( underwater )

1 Chord Toe 18.4 35.8

II Chord Toe 2.4 17.4

III Chord Toe 18 9.8

Table 2.2 Comparison of New ACPD Measurement Results using U7 and UlO 

with In-air ACPD Characterised data for Three Library Cracks

Library Crack Status Instrument Depth (mm) Corrected Depth (mm)

Old U7 16.28 18.01

1 New U7 16.63 18.38

New UIO 18.9 20 .77

Old U7 2.4 3.44

II New U7 2.44 3.48

New UIO 2.56 3.61

Old U7 18 19.82

III New U7 17.36 19.15

New UIO 17.65 19.45
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Table 2.3 Comparison of New and Old ACFM Measurement Results using UIO and U l l  (In-air and Underwater) for Three Library Cracks

Library
Crack

Measurement
Status

Circumference 
Total Length (mm)

Environment Instrument Start Finish Physical 
Length (mm)

Depth
(mm)

Revised Length 
(mm)

I

Old 1610 underwater U ll 334 525 291 35.8 -

Revised 1610 underwater U l l 334 525 191 18.6 200.1
New 1583 in-air UIO 330 505 175 18.1 184
New 1583 in-air U l l 330 505 175 17.9 184
New 1583 in-air MPI 325 516 - - 191

II
Old 1610 underwater U l l 80 165 85 17.4 -

Revised 1610 underwater U ll 155 165 10 1.7 11.1
New 1580 in-air UIO 145 160 15 3.6 16.4
New 1580 in-air MPI 142 157 - - 15

III
Old 1440 underwater U ll 220 510 290 9.8 -

Revised 1440 underwater U ll 220 510 290 22.9 301.6
New 1406 in-air UIO 174 480 306 20.9 320
New 1406 in-air MPI 167 513 - - 346
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Table 2.4 TSC U ll ACFM Missed Defects Analysis for Classification 'A' Cracks

Type of M issed Crack 1 2 3 4

No. 61 10 10 9

% 68 11 11 10

Notes:

Type 1 : Classification B1 Dominant Crack Detected nearby

Type 2: Classification B1 Dominant Crack Detected on Deferent Positions across the Weld 

Type 3: Classification Bl Dominant Crack Missed 

Type 4: Classification B1 Dominant Crack Missed nearby

Table 2.5 Comparison of Ten Largest Spurious Indications 

Between TSC U ll ACFM and MPI Underwater POD trials 

for Classification 'A' Cracks
TSC U ll ACFM 

Length of Spurious 
IndlcQtlon(mm)

MPI
Length of Spurious 

IndicationCmnn)
23 280
23 280
22 170
21 101
18 100
17 90
16 60
15 30
14 30
11 25

Table 2.6 Comparison of Total Number of Spurious Indication 

Between TSC U ll ACFM and MPI Underwater POD TRIAL 

for Classification 'A' Cracks
TSC Ull ACFM MPI

Total Number 16 45
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CHAPTER THREE 

STRESS CONCENTRATION FACTOR PARAMETRIC 
EQUATIONS FOR TUBULAR X AND DT-JOINTS

3.1 Introduction

Many kinds of offshore structures, such as jacket platforms, are constructed from tubular 

members welded together in a variety of forms (normally classified as T, Y, X, DT, K, etc.) 

because of their high strength to weight ratio and non-directional buckling and bending 
strength. The service life of these offshore platforms is dependent on the structural integrity 
of tubular joints. Fatigue damage has been identified as one of the most important factors in 
causing degradation of these joints in the North Sea because of the significant levels of 
cyclic fatigue damage associated with wave loading and the low fatigue strengths due to 
high stress concentrations at the weld toes. Therefore, periodic in-service inspections are 
required in order to ensure the stmctural integrity of offshore structures.

To provide a cost effective inspection, maintenance and repair policy, accurate fracture 
mechanics modelling, to predict the fatigue crack growth behaviour in tubular welded joints, 
is required. Fatigue strength is controlled by the local stress, and hence a greater 
understanding of the stress distribution, particularly in regions where cracks are likely to 
initiate and grow, is needed for the development of a fracture mechanics approach for the 
prediction of fatigue life. Stress information for tubular joints, including SCFs, stress 
distribution through the wall (degree of bending) and stress distribution around the 

intersection, are important elements in the prediction method.

The problem with tubular joints is that the stress distribution at the intersection between 
members is uneven with very high stress concentrations occurring at some points. These 
stresses can be as high as twenty times the nominal stress for the intersection and therefore 
have considerable impact upon the fatigue lives of the joints.

The fatigue performance of offshore tubular welded joints is also of considerable importance 
in the initial design. Historically, the fatigue design life is predicted using the Stress-Life(S- 
N) approach, which relates the stress range at a point under consideration to the number of 

cycles to failure. For tubular welded joints, the SCF can be used, with nominal loading, to 

calculate the magnitude of the local stress range, or as it is usually termed, the hot-spot 
stress range(HSS). HSS is a representative stress range for estimating the relative fatigue
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strengths of tubular welded joints using an S-N approach. Therefore, much research effect 

has been directed towards the determination of SCFs for simple tubular joints.

Stress variation through the thickness and around the intersection has not attracted as much 

attention as SCFs. However, in order to conduct fracture mechanics calculations of 

remaining fatigue life on cracked tubular welded joints, information is required on the 

magnitude and distribution of the stress acting in the anticipated crack path, not just the 

peak stress at one location. It is therefore necessary to carry out a comprehensive study of 

stresses on various kinds of tubular welded joints.

For most design and re-certification work, parametric equations have been widely used to 

estimate the stresses and in particular the hot spot stresses for tubular joints. These 

equations are based on either extensive finite element(FE) stress analyses or experimental 

data from acrylic model tests. However, to date comprehensive stress studies have only been 

conducted on the Y and T-joints, using finite element method(Connolly et al 1990)(Hellier 

et al 1990 a)(Hellier et al 1990 b). For X and DT-joints as illustrated in Figure 3.1, there are 

some parametric equations for SCFs(Wordsworth 1987)(Efthymiou and Durkin 1988)(UEG 

1985)(Smedley and Fisher 1991) but no equations exist for stress variation through the 

thickness and around the intersection. Even for SCF parametric equations, there is no full 

set of equations especially for single brace loading. Although in some cases one can get this 

information by using simplifying assumptions (i.e., using the solutions for Y and T-joints), 

but they may not always be appropriate. Also the three aspects of stress information should 

be obtained from the same sources in order to maintain the compatibility. All these 

consideration led to the present comprehensive study of stresses on X and DT-joints.

Nearly 2000 thin-shell finite element analyses have been conducted as a systematic study of 

stresses in tubular X and DT-joints. These analyses cover a wide range of joint geometries 

under six loading cases. This chapter aims to present the SCF parametric equations derived 

using regression analysis on the finite element analysis results. The parametric equations to 

predict the degree of bending and a full description of SCF distribution around the 

intersection will be addressed in the next chapter.

3.2 Finite Element Analyses

The determination of the stresses around tubular joints by analytical techniques, has proven 

to be very difficult due to the relative complexity of the geometrical configuration. Instead, 

parametric equations have been produced, which provide the SCF in terms of the non- 

dimensional parameters of joints, a, |3, 7, x, 6 (see Figure 3.1). In practise for economical 

reason, only finite elements and the strain-gauged acrylic model techniques have been used 

to provide the input data for parametric equations.
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The finite element method has been adopted in this study since this numerical procedure is 
ideal for solving physical problems, such as complex structural components, whose closed 
form solutions are difficult to obtain. It is by far the most common approach to determine 
the stress distribution and hot spot stress in tubular joints. The general-purpose finite 

element analysis package, ABAQUS/Standard(HKS 1992 a) was employed for this 
systematic study. ABAQUS/Post(HKS 1992 b) was used to post process the results from 
ABAQUS/Standard analyses.

Fatigue is a local phenomenon. It depends on the stresses acting around the intersection of 
tubular joints. These local stresses are complex in nature but are likely to arise from two 
main sources. Firstly, local bending under loading results in stresses adjacent to the 

intersection, known as the geometric stresses, in order to maintain compatibility between the 
tubes. They are dependent on geometric parameters of the joints, overall joint configuration 

and applied loading types. Secondly, notch stresses arise in highly localised regions in part 
of the tube wall since the weld toe is a region of rapidly varying shape. This effect is not 
propagated far through the wall thickness, however, and thus leads to a very localised region 
of high stresses. The notch stresses are mainly controlled by the weld geometry factors such 
as weld toe angle and weld toe radius.

The initial stresses inside the notch region, may be important for fatigue crack initiation. 

However they are not the controlling parameter as the cracks grow through the thickness. 
Also, as the notch stress varies according to the geometry of the weld, it is difficult to 
provide a deterministic value of the peak stress. For these reasons, only the geometric 
stresses at weld toe have been produced in this study. This is the conventional approach for 
SCF developed within the UK Department of Energy Guidance Notes(Department of 
Energy 1984 b). The hot-spot stress is defined as the largest value around the brace/chord 
intersection obtained by linear extrapolation to the weld toe of the geometric stress 

distribution near the weld toe. Ignoring the local stress arising from the weld profile, the hot 
spot stress is considerably lower than the peak stress but provides a consistent definition of 
fatigue stress for use with the traditional S-N design approach.

3.2.1 Pre-processing

3.2.1.1 Element Types

Shell elements are commonly used for tubular joint stress analysis, since they combine 
relatively high accuracy with low cost. Shell elements are based on shell theory which 

approximates a three-dimensional continuum with a two dimensional theory when the shell 

thickness is less than 1/10 of the typical shell global dimension. They are appropriate for 
modelling tubular joints. Shell elements are divided into two types, thin shell elements and
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thick shell elements. The thin elements do not transmit shear forces, whereas the thick 
elements do. The choice of shell element type, thin or thick, is influenced by the importance 
of shear deformation in the structure. As the ratio of thickness to shell global dimension 

increase, shear deformation becomes more important. It has been shown(Connolly et al 
1990) that there is little difference between results obtained using a thin shell finite element 

mesh and a thick shell element mesh for tubular joints since the ratio of wall thickness to 

diameter for tubular joints used for offshore structures are generally small (in other words, 

the tubes are thin walled). Thin-shell elements are commonly used for tubular joint analysis 
and have been chosen for this study.

The ABAQUS package offers a wide variety of shell elements. Two types of generally 
curved thin shell elements have been used to generate meshes for this study, namely 

quadrilateral eight-noded elements denoted 'S8R5' and triangular six-noded elements 
designated as 'STRI65'. They are fully compatible. These elements possess shape functions 

which make them suitable for any generally curved or folded shell problem and allows 
displacements normal to their surfaces and rotations about their edges. These displacements 
and rotations give rise to a stress distribution which varies linearly across the element. 
Stresses are initially calculated at the Gauss integration points and then extrapolated to 
obtain values at the nodal positions. The diagram of these elements are shown in Figure 3.2. 
They use five degrees of freedom (three displacement components Ux.Uy.Uz and two local in­
surface rotation components (px,(p>) at each node. In order to perform well in thin shell 

situations, a reduced integration technique is used with explicit integration through the 

element thickness. These elements are recommended for 'thin' shell applications since 
Kirchhoff constraints are imposed numerically in these elements.

One disadvantage in the use of shell elements for stress analysis in tubular intersections is 
that the tubular joints are modelled as intersecting cylindrical tubes at the mid-surfaces of 
the walls. Thus the weld is not modelled and some detail of the stresses are lost. This leads 
to hot spot stress locations which are different to steel models especially for the brace. For 

the chord the steel model location of the hot spot stress is close to that of the FE model. 
This is the reason why there are some discrepancies between the finite element results and 
those obtained from steel model test, especially at the brace side. However, the difference is 

generally quite small when comparing with results from strain-gauged acrylic models in 
which the weld is also omitted. The thin shell elements do provide, in many cases, an 
acceptable compromise between accuracy and computational cost except for situations 

where the chord and brace are of similar dimensions. For this reason the present study does 
not include SCFs in tubular joints for which (3 exceeds 0.8.
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3.2.1.2 Mesh Generation

The main difficulty when using the finite element method is generation of the mesh, 

particular in regions where geometric discontinuities occur because stresses are changing 
rapidly in these regions. For the tubular joint, a geometric discontinuity occurs around the 
brace/chord intersection. Thus the stress gradients throughout the joint are not evenly 
distributed. Around the intersection the stress gradients are large, whilst in regions remote 
from the intersection the gradients are more evenly distributed.

In order to conduct a parametric study covering the majority of tubular joints used in 
offshore structures, a large number of finite element analyses must be performed. It is, 

therefore, preferable to use an automatic mesh generation program to produce the input files 
required for the ABAQUS finite element analysis. As mentioned before, this program 
should be capable of producing relatively fine elements in the vicinity of the brace/chord 
intersection, and coarse elements near the ends of the chord and brace, in order to obtain 
accurate results whilst avoiding unnecessary computational effect. Furthermore, the 
elements should not be excessively elongated and distorted in order to obtain the best 
numerical conditioning of the stiffness equations and to ensure maximum numerical 
accuracy.

An automatic mesh generation program for X and DT tubular joints (based on an existing 
program(Dharmavasan 1983) for T and Y tubular joints) has been developed in FORTRAN 
77. This mesh generation program can reliably generate meshes for X and DT tubular joints 
having widely differing geometric parameters a, p, 7, T and 0, and produce input files 
suitable for direct finite element analysis using ABAQUS/Standard. The program requires 
only a small amount of user input, usually only either absolute dimensions or non- 
dimensional geometric ratios.

When modelling the tubular joint, eight-noded quadrilateral elements were used in 

preference to triangular elements, since they are considerably more accurate. The latter were 
only used for reasons of geometric compatibility between adjoining regions. The sequence 
of steps executed in this mesh generation program was as follows. Firstly, the co-ordinates 
of the nodes at the intersection between the brace and chord were calculated and used to 
generate the brace nodes and elements. Secondly, the plug region was filled with a number 
of triangular elements. Thirdly, the remaining regions of the chord were generated.

Application of symmetry boundary conditions can simplify the finite element analysis 
saving CPU time and storage disk space. Only one half of each joint geometry needs to be 
modelled, owing to symmetry in the single/balanced axial loading and single/balanced in­
plane bending cases. Although for single/balanced out-plane bending the situation is no 
longer symmetric, it was found(Connolly et al 1990) that satisfactory results could be 
obtained with the same meshes used for the other load cases by applying appropriate
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restraints on the bisecting plane. A typical X joint mesh comprising 2167 nodes and 718 
elements is shown in Figure 3.3. It took approximately 45 seconds of CPU time to generate 
on a DEC VAX/VMS workstation.

3.2.1.3 Loading and Boundary Conditions

There are two types of loading on tubular joints, single brace loading and double brace 
loading. The former loads are assumed to be axial loading, in-plane bending(IPB) and out- 

plane bending(OPB). Only balanced axial loading, balanced IPB and balanced OPB are 

considered in the latter since they are quite common in service. Figure 3.4 illustrates these 
six modes of loading.

In the case of single/balanced axial loading, the nominal stress was defined as the total 
applied load divided by the sectional area of the brace. Nominal stresses for moment loading 
were calculated from simple beam bending theory, using a moment arm measured from the 

brace end along its outer surface to the crown position for IPB, and to the saddle position for 

OPB. In order to make post processing easy, loads and moments applied to the brace end 
were always set to give unit nominal stress.

It is important to use the correct boundary conditions to obtain a realistic solution of stress 
distribution in tubular joints. The boundary conditions are summarised diagrammatically in 
Figure 3.5. The bottom brace end was rigidly fixed for balanced axial loading whereas both 
chord ends were rigidly fixed for all other load cases. Only one half of the joint was 

modelled owing to symmetry in the single/balanced axial and the single/balanced IPB cases, 
with no out-of-plane displacements and rotations permitted at nodes on the symmetry plane. 
For single/balanced OPB the situations are no longer symmetrical, but it has been 
found(Connolly et al 1990) that results of acceptable accuracy could be obtained by using 
the half-joint meshes with the in-plane displacements restrained over the bisecting plane.

3.2.2 Finite Element Calculation

The finite element analyses were run on a DEC VAX/VMS workstation. Young's modulus 

and Poisson's ratio were taken to be 207 Gpa and 0.3 respectively. Before the parametric 

study, a convergence test was performed in order to check that the meshes used for this 
study were sufficiently fine to predict the stresses at the brace/chord intersection with 

reasonable accuracy. Three meshes with 16, 20 and 24 elements respectively around the half 
intersection were analysed and the SCF results from these meshes are compared in Table
3.1. Comparison of SCF values obtained from these meshes generally has shown a good 
convergence. The coarsest mesh, having 16 elements around one half of the intersection.
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was chosen for this study as an acceptable compromise between accuracy and the 
computational costs.

3.2.2.1 The Influence of brace length

Early studies showed that for balanced axial loading, the intersection stresses on either side 
were not identical. This was because only one brace end was rigidly fixed. It was found that 
a longer brace was needed in order to make the stresses on both sides of the chord identical. 

In order to save materials, most laboratory tests on joints have relatively short braces, these 

have been used to produce the experimental results which are used to assess parametric 
equations. The majority of tubular joints in offshore structures have relatively long braces. 
For this reason an additional study of the brace length effect on stress analyses of tubular 
joints has been conducted.

The geometric ratio CLg = 2U d  has chosen to assess the effect of brace length on SCFs 

around the intersection, where / is the brace length(from centre of brace end to centre of 
plug) and d is the diameter of brace. A comparison of SCF distribution data for the tubular 
X-joints, with different (Xg under single brace loading, is shown in Figures 3.6-3.11. These 
figures show that there is a critical a  g beyond which SCF data converge very quickly and 
a  g has little influence. For this case, critical a  g is about 6 and the corresponding I is 
around 0.36L. This is probably the reason why ttg has not been included in any existing 
parametric equation. However, when (Xg is below the critical (Xg, the hot-spot stress can be

under predicted for Axial and OPB loading and over predicted for IPB Loading. It is 
advisable that the (Xg ratios of the tubular joints of SCF values be considered when

comparing with the experimental database.

In the present study, it was decided to avoid the effect of short brace length. For this reason, 
joints with a brace length of about 0.4L were used. The long brace length did not increase 

the calculation work since coarse elements were used near the end of brace.

3.2.2.2 Parametric Finite Element Production

In order to produce parametric equations which are valid over the ranges of geometric joint 
parameters typically encountered in service, this study encompassed the following ranges of 

the geometric parameters:

6.0 < a  < 40 .0  ( 3 - 1 )

0.2 < P  < 0.8  ( 3 - 2 )

7 .6 < y < 3 2 .0  ( 3 - 3 )
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0 . 2 < t <1.0 ( 3 - 4 )

O.19447C<0<— ( 3 - 5 )
2

Within the above parameter ranges, 330 joints were carefully chosen to give a representative 

coverage of joint sizes. In order to save CPU time, each joint was analysed consecutively for 

six load cases, without the need for recomputing the element stiffness matrices. Generally, it 
took about 3 hours of CPU time to analyse a typical joint. Figures 3.12-3.17 show typical 
examples of the deformed mesh superimposed upon the unloaded mesh for all modes of 
loading.

3.2.3 Post-processing

Stresses are linearly extrapolated through the Gauss integration points to the nodes by the 
nature of the elements chosen. The numerically greatest principal stress on the outer surface 
of the tube, at each node around the intersection, was used to calculate the SCF. Stresses at 
nodes shared by adjacent elements were averaged around, but not across the intersection. 
Since nominal stresses of value unity were chosen for the input files, the values of SCFs 
were obtained directly on both the chord and brace sides of the intersection from finite 

element output files.

The definition of hot-spot stress by Department of Energy(DEn) proposes linear 
extrapolation of the maximum principal stresses, outside the region of weld geometrical 
influence, to the weld toe. The sizes of the elements in the immediate vicinity of the 
intersection were carefully checked in order to make the linear stress distribution region 
similar to that as DEn recommend. However, shell elements are two-dimensional in nature, 

possessing thickness only in a mathematical sense needed to define the element stiffness 
matrix. A tubular joint analysed using these elements is actually modelled as the intersection 
between the brace and chord mid planes and the weld fillet can not be incorporated into this 
model. This means that the intersection stresses are calculated a small distance away from 
the point of interest. For the chord this distance is usually quite small. However it is 
relatively large for the brace. Therefore, it is necessary to verify the results by validating 

against the laboratory data and this will be addressed in later section.

In order to handle the large amount of data generated by the finite element runs, many batch 
files in VMS operating system have been written in order to read the required information 
from 330 ABAQUS output files and write them into a file which was used later in curve- 

fitting.
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3.3 Deriving Parametric Equations by Regression Analyses

Using the database of finite element analysis results, parametric equations can be derived for 
the SCFs under six loading cases for both the chord and brace sides of the intersection. This 
was done using a statistical regression package known as ’MINITAB'(1991) which is 

capable of performing multiple regression and correlation analysis. The methodology used 
in deriving the equations was as follows.

a) The variations of the SCF were plotted as a function of the parameters cc, p, 7 and T and 0 
in order to determine the best forms of the terms required, and also to ascertain if any cross­

correlation existed between the terms.

b) A first attempt at the equation was made using the following simple form:

5CF = ( 3 - 6 )

where A, to Ag were determined from the regression analysis.

c) The above equations were then modified by using other (e.g. exponential) terms, and 
numerous regressions performed until a suitable equation with a large product moment 
correlation coefficient was obtained.

All the parametric equations obtained for each mode of loading and for both the chord and 
brace sides of the intersection are given in Appendices 1 to 12. These equations can predict 
the SCFs for tubular welded X and DT joints at a number of key locations around the brace 
and chord intersection. Also the equations describing angular location of the hot-spot stress 
site around the intersection are derived according the above regression methodology. 

Moreover, a summary of fitting quality for each parametric equations is presented in Table
3.2. For most equations, their correlation coefficient is greater than 90%, where a value 
of R^=100% would imply that the equation fitted exactly all the variations in SCF.

It should be noted that all equations assume the loading direction shown in Figure 3.4. 
Therefore under single/balanced IPB loading negative hot-spot is at or close to crown toe 
while positive hot-spot lie at or near crown heel. In these loading cases, the SCFs on both 

brace and chord saddle positions were taken to be zero since they are generally very small. 
For the same reason, the SCFs on both brace and chord crown positions were also zero for 
single/balanced OPB cases. The hot-spot location in these loading cases was taken to be 

90° because they were close to the saddle position. In order to avoid a large 
underprediction, a minimum SCF value of 1.5 was assigned irrespective of the prediction.
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3.4. Validation

During the design stage, hot-spot stresses are usually estimated from parametric equations to 

assess the fatigue performance of tubular joints by an S-N approach. Underprediction of hot­

spot stress can result in a significant reduction on fatigue life. It is therefore useful to 

examine the accuracy of prediction for all SCF parametric equations including this new set 

of parametric equations(UCL).

The most widely used equations for X and DT-joints are the Wordsworth and 

Smedley(WS)(Wordsworth 1987), Efthymiou(EFT)(Efthymiou and Durkin 1988), 

Wordsworth and S medley as modified by UEG(UEG)(1985) and Lloyds 

Register(LR)(Smedley and Fisher 1991). Of these equations those by Efthymiou are based 

on 3-D shell finite element models. The Wordsworth and Smedley equations are based on 

results of acrylic model tests, and UEG equations are based on the Wordsworth and 

Smedley equations with modifications based on the comparison of the equations with steel 

joint data. Lloyds Register equations are derived recently and are based on the database of 

measured SCFs from steel and acrylic joints.

One way to assess the accuracy of parametric equations is to compare the predicted data 

with existing strain-gauged steel test results. Unfortunately, the amount of steel data for X 

and DT-joints is limited. For this reason the data from acrylic model test are often used as 

well. A steel and acrylic test database based on the Lloyds Register data and the UCL 

database (with the criteria developed for acceptance of SCF data) was established by 

MaTSU(1996). By comparing the results derived from all parametric equations against the 

database, the performances of all existing SCF parametric equations can be assessed. This 

was done recently by the Fatigue Guidance Review Panel supported by the 

HSE(DEn.)(MaTSU 1996). During the review, it was decided that only those recorded SCFs 

greater or equal to 1.5 would be included in the assessment. Also for each equation, ratios of 

predicted SCF(P) to the measured or recorded SCF(R) were determined for those joints 

having their geometric parameters within the recommended range of the particular equation. 

A ratio of 1.0 indicates an exact fit. The mean values of P/R were calculated, together with 

the standard deviation. In addition the percentage of joints for which P/R was less than both 

1.0 and 0.8 was determined, representing the degree of underprediction of each equation. 

The percentage of joints for which P/R>L5 was also recorded, indicating the degree of 

overprediction. These values are given in table 3.13-3.21 for each combination of load case 

and measuring position.

Finally recommendations on the most suitable equations for use in design were made 

according to following criteria of acceptance.

i) If %[P/R<1.0]<25% and %[P/R<0.8]<5% then accept the parametric equation.
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ii) If in addition to the above, %[P/R>1.5]>50% then note the equation is generally 
conservative.

iii) If %[P/R<1.0] is between 25% to 30% and/or the percentage of joints with values of 
P/R<0.8 is slightly in excess of 5% then the equation was regarded as borderline and 
engineering judgement was used in assessing the validity of the equation. Otherwise the 
equation was rejected, since it was considered not acceptable.

Similar procedures and criteria to those described above have been adopted to validate this 
new set of parametric equations(UCL). Firstly, the prediction data from UCL equations 

together with other existing parametric equations are used to compare with steel and acrylic 

test results in order to test the relative accuracy. The results were all assessed in terms of the 
ratio P/R. Moreover, statistical properties such as mean, standard deviation, %[P/R<0.8], 
%[P/R<1.0] and %[P/R>1.5] were also calculated. Based on these data, comments can be 
made about the performance of new UCL equations as a results of using the above criteria. 
Also these values were used to compare with those of other equations to test the relative 
accuracy. The assessment of the UCL equations is presented for each mode of loading in 
turn in following sections.

3.4.1 Single Brace Loading

For single brace subject loading modes, there are not enough test data to assess the accuracy 
of UCL parametric equations. Only a few strain-gauged steel test data for single brace 
subject IPB or OPB(Mshana 1993)(Smith 1995) can be found. Despite this the data have 
been used to compare the results from UCL parametric equations with Efthymiou 
equations(Tables 3.3-3.5). It should be noted that a number of SCFs for a given location on 
joints with same geometry were all included. Other than UCL, the Efthymiou set of 
equations is the only set of equations considering single brace subject loading. However, the 

Efthymiou equations are identical to those for T/Y-joints for IPB and OPB loading. From 

Tables 3.3-3.5 it can be seen that UCL predictions are consistently conservative when 

compared with these small set of steel test data. The predictions from the Efthymiou 
equations are generally slightly lower than those from UCL formulae (3 out of 4 cases 
studied).

3.4.2 Balanced Axial Loading

The comparison between the UCL equations and the steel and acrylic model results 
(together with other parametric equations) is shown in Tables 3.6-3.9 for balanced axial 

loading. The test results were obtained for models within the validity range of UCL 
equations. The statistical analyses were done for UCL equations at crown and saddle
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positions for the brace and chord side respectively and are given in Tables 3.14-3.17 
together Avith those of other parametric equations. All equations are accepted for brace 
saddle point(Table 3.15). However the UCL equation is regarded as conservative borderline 

whilst the Efthymiou one is only accepted as borderline unconservative. Table 3.17 shows 

that all of the equations except the Lloyds Register pass the criteria for chord saddle. For 
both brace and chord crown positions, UCL equations (Tables 3.14 & 3.16) cannot yet be 
recommended since there are less than 15 steel and acrylic joints in the SCF database. 

However, there is a tendency for the UCL equations to underpredict SCF data for the chord 
crown. A large underprediction of SCF, by 40%, for the chord crown was also found in 
previous work(Hamilton 1984). It seems that thin shell element method cannot model 
physical intersection of X and DT joints under balanced axial loading properly over a region 
near the chord crown. The UCL equation for a single brace subjected to axial 

loading(UCLS) at the chord crown was used to compare with the test database, although 
both chord ends were rigidly fixed in this loading case. The predictions were very much 
improved by using the UCLS equations. Therefore, the UCLS may be suggested to be used 
as a useful first estimate for SCF at the chord crown location.

3.4.3 Balanced IPB Loading

The test results and SCFs obtained from UCL and other equations are compared in Tables 
3.10-3.11 for balanced IPB loading. The statistical analysis results for UCL equations at 
maximum SCF positions for the brace and chord side are given in Tables 3.18-3.19 together 
with those of other equations. It can be seen that UCL equations meet the given criteria like 
other equations on the chord side. On the brace side, the UCL equation is acceptable as it is 

not quite as conservative as the WS and UFG equations.

3.4.4 Balanced OPB Loading

Tables 3.12-3.13 contain the comparisons between the test results and SCFs values 
predicted by UCL and other equations for balanced OPB. Again the statistical properties of 
UCL equations were obtained at maximum SCF positions for brace and chord sides and are 
given in Tables 3.20-3.21 together with those of other equations. These tables show that 

UCL equations pass the criteria on both chord and brace sides like all of the other equations.

3.4.5 Summary

Predicting accurately hot-spot stresses is very important as existing S-N curves to estimate 
the fatigue life of tubular joints are based on those values. The finite element analysis is
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virtually the only feasible numerical technique which can be used to compute SCFs of 

tubular joints(UEG 1985). Based on the results of the finite element analyses, the SCF 
parametric formulae, such as Kuang(Kuang et al. 1977), Gibstein(1978), 

Efthymiou(Efthymiou and Durkin 1988) and Hellier, Connolly and Dover(1990), have been 
widely used on current methods of design and assessment of offshore steel structures. The 
UCL equations were derived from the results of the stress linearly distributed thin-shell 
finite element analyses which do not include a weld fillet at the tubular joint intersection. 
This is the same as most of the equations quoted above. The SCFs used to derived the 
formulae were the maximum principal stresses at all locations.

The results show that using either 3D FE, shell element FE or strain gauged acrylic model 
data did not confer a consistent advantage in the prediction of SCF. In contrast the results 
show that all three methods of analysis can give acceptable accuracy in SCF prediction. For 
the new UCL equations, the predictions look to be acceptable across the range studied, 
except for the chord crown under balanced axial loading where single brace axial loading 
equation(UCLS) is recommended as a useful first estimate. Thus one could use any of the 
five quoted equations for calculation of SCF. However only in the case of the UCL 
equations will there be a set of parametric equations for the bending to membrane ratio and 
stress distribution obtained from the same database. Thus the new UCL equations are 

suitable for S/N calculations and remaining life fracture mechanics calculations.

As a summary of validation results, it can be seen that there are not enough data to assess 
UCL equations for single brace loading and those at the crown location for balanced axial 
loading. However, they can be used as a useful first estimate. The UCL equations are 
consistent in meeting the given criteria for estimating hot-spot SCFs for balanced loading. 
Hence they can be used in fatigue design and reassessment of offshore welded tubular X and 

DT-j oints.

3.5 Conclusions

A systematic study of stresses in tubular X and DT joints based on nearly 2000 finite 
element analyses using thin-shell elements have been carried out. The results have been 

used to derive a full set of SCF parametric equations by regression analysis. These equations 
describe SCFs at a number of key locations as a function of non-dimensional joint 

geometric ratios a, p, 7, x and 0 for each mode of loading, and for both the chord and brace 
sides of the intersection in tubular welded X and DT joints. In order to test the accuracy, 
these parametric equations have been assessed by comparing the predicted values with 
results from steel and acrylic model tests and also with other predictions from existing 

parametric formulae given in the literature. It is concluded that this set of hot-spot SCF
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equations can be used to predict hot-spot SCFs of tubular X and DT-j oints under balanced 
loading.
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Table 3.1 Comparison Between SCFs around Upper Intersection from Coarse to Fine 

X Joint Meshes to Show Extent of Convergence ( o=10, P=0,6, 7=20, t=0.5, 6=60°)

No. of elements 

around intersection

Chord Brace

Crown Toe Saddle Crown Toe Saddle

Single Axial Loading

16 2.631 7.386 2.307 8.044

20 2.638 7.372 2.392 8.106

24 2.643 7.368 2.435 8.120

Single In-Plane Bending

16 2.437 0.1583 2.843 0.000

20 2.439 0.1588 2.941 0.000

24 2.436 0.1588 2.990 0.000

Single Out-Plane Bending

16 0.1851 6.540 0.3127 7.366

20 0.2072 6.524 0.2980 7.421

24 0.2220 6.512 0.2881 7.429

Balanced Axial Loading

16 1.013 12.16 1.750 12.58

20 1.021 12.14 1.818 12.66

24 1.036 12.13 1.860 12.66

Balanced In-Plane Bending

16 2.436 0.2048 2.862 0.000

20 2.438 0.2043 2.960 0.000

24 2.435 0.2038 3.009 0.000

Balanced Out-Plane Bending

16 0.1811 6.351 0.3142 7.034

20 0.2024 6.336 0.2984 7.077

24 0.2164 6.325 0.2878 7.081
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Table 3.2 Summary of Fitting Accuracy for SCF Parametric Equations

Location Brace Chord

Circumferential position R2% Equation R2% Equation

Single Axial Loading

Crown toe 81 Appendix A 1.1 93.1 Appendix A2.1

Saddle 97.4 Appendix A 1.2 97.4 Appendix A2.2

Crown heel 84.3 Appendix A 1.3 92 Appendix A2.3

Hot-spot site 97.8 Appendix A 1.4 97.6 Appendix A2.4

Position of hot-spot stress 90.1 Appendix A 1.5 84.2 Appendix A2.5

Single In-Plane Bending

Crown toe 8&2 Appendix A3.1 97.2 Appendix A4.1

Crown heel 84.6 Appendix A3.3 97.4 Appendix A4.3

Positive hot-spot site 95.3 Appendix A3.4 97 Appendix A4.4

Negative hot-spot site 93.7 Appendix A3.5 97.4 Appendix A4.5

Position of hot-spot stress 85.1 Appendix A3.6 82.2 Appendix A4.6

Position of hot-spot stress 83.5 Appendix A3.7 85.2 Appendix A4.7

Single Out-Plane Bending

Saddle 97.2 Appendix A5.2 97.8 Appendix A6.2

Hot-spot site 97.2 Appendix A5.4 97.8 Appendix A6.4

Balanced Axial Loading

Crown toe 88.1 Appendix A7.1 90.2 Appendix A8.1

Saddle 97.2 Appendix A7.2 97.4 Appendix A8.2

Crown heel 82.9 Appendix A7.3 85.6 Appendix A8.3

Hot-spot site 97.8 Appendix A7.4 97.8 Appendix A8.4

Position of hot-spot stress 86.9 Appendix A7.5 79.5 Appendix A8.5

Balanced In-Plane Bending

Crown toe 89.7 Appendix A9.1 97.8 Appendix AlO.l

Crown heel 86.7 Appendix A9.3 97.8 Appendix A10.3

Positive hot-spot site 95.3 Appendix A9.4 97.2 Appendix A10.4

Negative hot-spot site 93.7 Appendix A9.5 97.8 Appendix A 10.5

Position of hot-spot stress 88 Appendix A9.6 81.1 Appendix A 10.6

Position of hot-spot stress 84.8 Appendix A9.7 82.3 Appendix A 10.7

Balanced Out-Plane Bending

Saddle 95.8 Appendix A 11.2 96.8 Appendix A 12.2

Hot-spot site 95.8 Appendix A 11.4 96.8 Appendix A 12.4
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Table 3.3 Comparison Between Predicted and Recordec SCF Data at Chord Crown Position for Single IPB Loaded X and D '-Joints
Ref. S pec.

no.
a P Y X 0

(deg)
M ateriais Rec UCL EFT UCL/

Rec
EFT/R

e c
M shana 1993 IPB-IA 7.84 0.64 10.2 0.5 90 Steei 1.76 2.18 1.72 1.24 0.98
M shana 1993 IPB-2A 7.84 0.64 10.2 0.5 90 Steei 1.76 2.18 1.72 1.24 0.98
M shana 1993 iPB-lB 7.84 0.64 10.2 0.5 90 Steei 1.47 2.18 1.72 1.48 1.17
M shana 1993 iPB-2B 7.84 0.64 10.2 0.5 90 Steel 1.68 2.18 1.72 1.30 1.03

Table 3.4 Comparison Between Predicted and Recorded SCF Data at Brace Sac die Position for Sing e OPB Loaded X and O'"^-Joints
Ref. S pec.

no.
a P Y X 0

(deg)
M aterials Rec UCL EFT UCL/

Rec
EFT/R

e c
Smith 1995 W2 9.90 0.80 10.00 0.99 90 Steei 4.80 8.59 8.13 1.79 1.69
Smith 1995 W4 9.90 0.80 10.00 0.99 90 Steei 4.70 8.59 8.13 1.83 1.73

Table 3.5 Comparison Between Predicted anc Recorded SCF Data at Chord Sac die Position for Single OPB Loaded X and DT-Joints
Ref. S pec.

no.
a P Y X 0

(deg)
M aterials Rec UCL EFT UCL/

Rec
EFT/
Rec

M shana 1993 OPB-IA 7.84 0.64 10.2 0.5 90 Steei 3.81 4.27 4.65 1.12 1.22
M shana 1993 OPB-2A 7.84 0.64 10.2 0.5 90 Steei 3.09 4.27 4.65 1.38 1.50
M shana 1993 OPB-IB 7.84 0.64 10.2 0.5 90 Steei 3.00 4.27 4.65 1.42 1.55
M shana 1993 OPB-2B 7.84 0.64 10.2 0.5 90 Steei 3.66 4.27 4.65 1.17 1.27

Smith 1995 W1/W5 9.90 0.80 10.00 0.99 90 Steel 6.50 10.25 9.21 1.58 1.42
Smith 1995 W2 9.90 0.80 10.00 0.99 90 Steel 6.70 10.25 9.21 1.53 1.37
Smith 1995 W3/W6 9.90 0.80 10.00 0.99 90 Steel 6.70 10.25 9.21 1.53 1.37
Smith 1995 W4 9.90 0.80 10.00 0.99 90 Steel 6.40 10.25 9.21 1.60 1.44
Smith 1995 SI 9.90 0.80 10.00 0.99 90 Steel 6.40 10.25 9.21 1.60 1.44
Smith 1995 S2 9.90 0.80 10.00 0.99 90 Steel 6.00 10.25 9.21 1.71 1.53
Smith 1995 S3 9.90 0.80 10.00 0.99 90 Steel 6.60 10.25 9.21 1.55 1.39
Smith 1995 S4 9.90 0.80 10.00 0.99 90 Steel 6.20 10.25 9.21 1.65 1.48

131



Tab e 3.6 Comparison Between Predicted and Recorded SCF Data at Brace Crown Position for Balanced Axially Loaded X and DT-Joints
S pec.

no.
a P Y X 0

(deg)
M aterials Rec UCL WS EFT UEG LR UCL/

Rec
WS/
Rec

EFT/
Rec

UEG/
Rec

LR/
R ec

E30 9.80 0.38 20.70 0.79 90 Steel 1.50 3.16 3.36 2.35 3.39 2.04 2.11 2.24 1.57 2.26 1.36
E36 9.80 0.38 20.50 0.81 90 Steel 1.70 3.16 3.40 2.36 3.43 2.05 1.86 2.00 1.39 2.02 1.21
E37 9.80 0.38 21.00 0.83 90 Steel 1.60 3.12 3.48 2.34 3.50 2.08 1.95 2.17 1.46 2.18 1.30
lU/1 10.00 0.26 12.00 0.75 90 Acrylic 1.70 3.93 3.10 2.96 3.10 1.95 2.31 1.82 1.74 1.82 1.15
lU/2 10.00 0.50 12.00 0.75 90 Acrylic 2.00 2.78 2.56 2.49 2.56 1.73 1.39 1.28 1.24 1.28 0.86
lU/3 10.00 0.80 12.00 0.75 90 Acrylic 1.70 1.50 1.89 2.35 1.89 1.54 0.88 1.11 1.38 1.11 0.90
lU/5 10.00 0.26 24.00 0.75 90 Acrylic 2.80 4.50 3.79 2.92 3.79 2.35 1.61 1.35 1.04 1.35 0.84
lU/9 10.00 0.26 32.00 0.75 90 Acrylic 3.40 4.19 4.15 2.88 4.34 2.58 1.23 1.22 0.85 1.28 0.76
2U/1 10.00 0.80 24.00 0.75 60 Acrylic 1.80 1.50 2.30 1.50 2.30 1.76 0.83 1.28 0.83 1.28 0.98

Tab e 3.7 Comparison Between Predicted and Recorded SCF :)ata at Brace Saddle Position for Balanced Axially Loaded X and D""-Joints
Spec.

no.
a P Y X 0

(deg)
M aterial

s
Rec UCL WS EFT UEG LR UCL/

Rec
WS/
Rec

EFT/
Rec

UEG/
Rec

LR/R
e c

A 8.50 0.72 10.40 0.94 90 Steel 7.50 14.52 10.90 8.38 11.10 8.64 1.94 1.45 1.12 1.48 1.48
E30 9.80 0.38 20.70 0.79 90 Steel 10.60 22.70 15.30 14.13 15.44 15.04 2.14 1.44 1.33 1.46 1.46
E36 9.80 0.38 20.50 0.81 90 Steel 14.30 23.01 15.52 14.16 15.68 15.21 1.61 1.09 0.99 1.10 1.10
E37 9.80 0.38 21.00 0.83 90 Steel 12.40 24.03 16.24 14.65 16.36 16.02 1.94 1.31 1.18 1.32 1.32
X4 17.50 0.67 25.30 0.82 90 Steel 15.00 29.61 22.96 18.72 23.14 22.94 1.97 1.53 1.25 1.54 1.54

lU/1 10.00 0.26 12.00 0.75 90 Acrylic 7.60 13.10 6.77 6.81 6.77 6.00 1.72 0.89 0.90 0.89 0.89
lU/2 10.00 0.50 12.00 0.75 90 Acrylic 10.50 13.43 10.27 9.28 10.27 8.71 1.28 0.98 0.88 0.98 0.98
lU/3 10.00 0.80 12.00 0.75 90 Acrylic 9.10 13.67 8.90 7.55 9.38 7.30 1.50 0.98 0.83 1.03 1.03
lU/5 10.00 0.26 24.00 0.75 90 Acrylic 13.20 24.43 12.54 12.62 12.54 13.03 1.85 0.95 0.96 0.95 0.95
lU/6 10.00 0.50 24.00 0.75 90 Acrylic 19.20 25.05 19.54 17.55 19.54 19.70 1.30 1.02 0.91 1.02 1.02
lU/7 10.00 0.80 24.00 0.75 90 Acrylic 17.50 25.50 16.80 14.11 17.75 16.24 1.46 0.96 0.81 1.01 1.01
lU/9 10.00 0.26 32.00 0.75 90 Acrylic 21.90 31.64 16.39 16.49 17.31 18.40 1.44 0.75 0.75 0.79 0.79

lU/10 10.00 0.50 32.00 0.75 90 Acrylic 29.10 32.44 25.72 23.07 27.21 28.09 1.11 0.88 0.79 0.94 0.94
l u / n 13.30 0.80 32.00 0.75 90 Acrylic 28.90 33.52 22.07 18.47 24.68 23.06 1.16 0.76 0.64 0.85 0.85
2U/1 10.00 0.80 24.00 0.75 60 Acrylic 11.20 18.66 12.47 10.15 13.16 12.47 1.67 1.11 0.91 1.17 1.17
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Table 3.8 Comparison Between Predicted and Recorded SCF Data at Chord Crown Position for Ba
S pec.

no.
a P Y X 0

(deg)
M aterial

s
Rec UCL UCLS WS EFT UEG LR UCL/

Rec
UCLS/

Rec
WS/R

e c
EFT/
Rec

UEG/
Rec

LR/
Rec

E30 9.80 0.38 20.70 0.79 90 Steel 3.30 2.09 4.70 3.75 3.46 3.79 3.61 0.63 1.42 1.14 1.05 1.15 1.09
E36 9.80 0.38 20.50 0.81 90 Steel 3.60 2.14 4.80 3.82 3.54 3.86 3.69 0.59 1.33 1.06 0.98 1.07 1.02
E37 9.80 0.38 21.00 0.83 90 Steel 3.30 2.15 4.93 3.93 3.65 3.96 3.76 0.65 1.50 1.19 1.11 1.20 1.14
lU/1 10.00 0.26 12.00 0.75 90 Acryl c 3.70 3.58 4.16 3.33 3.62 3.85 4.63 0.97 1.12 0.90 0.98 1.04 1.25
lU/2 10.00 0.50 12.00 0.75 90 Acryl c 2.20 1.76 3.83 2.48 2.28 2.86 2.41 0.80 1.74 1.13 1.04 1.30 1.09
lU/5 10.00 0.26 24.00 0.75 90 Acryl c 4.00 2.93 4.88 4.42 4.24 4.42 5.33 0.73 1.22 1.11 1.06 1.11 1.33
lU/9 10.00 0.26 32.00 0.75 90 Acryl c 4.10 3.15 5.22 5.00 4.53 5.30 5.54 0.77 1.27 1.22 1.11 1.29 1.35
2U/1 10.00 0.80 24.00 0.75 60 Acryl c 1.60 1.50 4.12 2.07 2.35 2.07 1.22 0.94 2.58 1.29 1.47 1.29 0.77

XJOINT2 16.00 0.33 24.00 1.00 45 Acryl c 10.30 3.91 6.36 6.90 5.27 6.90 11.85 0.38 0.62 0.67 0.51 0.67 1.15
XJOINT3 16.00 0.50 24.00 1.00 45 Acryl c 6.20 2.33 6.04 5.39 4.16 5.39 5.89 0.38 0.97 0.87 0.67 0.87 0.95
XJOINT5 16.00 0.83 24.00 1.00 45 Acryl c 2.00 1.50 5.67 2.45 3.55 2.44 1.73 0.75 2.83 1.22 1.77 1.22 0.86
XJOINT9 16.00 0.50 24.00 1.00 30 Acryl c 6.20 3.18 5.66 5.23 4.47 5.23 7.34 0.51 0.91 0.84 0.72 0.84 1.18

anced Axially Loaded X and D -Joints
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Table 3.9 Comparison Between Predicted and Recorded SCF Data at Chord Saddle Position for Balanced Axially Loaded X and DT-Joints
Spec.

no.
a P Y X 0

(deg)
M ateria

Is
Rec UCL WS EFT UEG LR UCL/

Rec
WS/
Rec

EFT/
Rec

UEG/
Rec

LR/
Rec

18 6.70 0.76 12.00 0.50 90 Steel 7.70 8.10 9.10 8.64 9.43 7.64 1.05 1.18 1.12 1.23 0.99
19 7.00 0.71 11.40 0.64 90 Steel 10.20 10.78 11.86 11.23 12.06 9.89 1.06 1.16 1.10 1.18 0.97
20 6.70 0.76 12.00 0.50 90 Steel 7.70 8.10 9.10 8.64 9.43 7.64 1.05 1.18 1.12 1.23 0.99

34-35 10.00 0.50 14.30 0.50 90 Steel 10.90 9.97 11.69 11.25 11.69 10.75 0.91 1.07 1.03 1.07 0.99
39-40 10.00 0.50 14.30 0.50 90 Steel 11.20 9.97 11.69 11.25 11.69 10.75 0.89 1.04 1.00 1.04 0.96

A 8.50 0.72 10.40 0.94 90 Steel 10.90 16.74 15.71 14.88 16.03 12.73 1.54 1.44 1.37 1.47 1.17
E30 9.80 0.38 20.70 0.79 90 Steel 21.80 27.57 22.70 22.24 22.91 23.67 1.26 1.04 1.02 1.05 1.09
E36 9.80 0.38 20.50 0.81 90 Steel 20.80 28.24 23.05 22.58 23.29 23.96 1.36 1.11 1.09 1.12 1.15
E37 9.80 0.38 21.00 0.83 90 Steel 21.40 29.96 24.19 23.70 24.38 25.34 1.40 1.13 1.11 1.14 1.18
X4 17.50 0.67 25.30 0.82 90 Steel 29.50 37.05 34.86 33.01 35.14 37.17 1.26 1.18 1.12 1.19 1.26
X5 17.50 0.67 25.30 0.82 90 Steel 31.80 37.05 34.86 33.01 35.14 37.17 1.17 1.10 1.04 1.10 1.17
X6 17.50 0.35 25.00 0.81 90 Steel 24.00 35.98 26.43 26.03 26.45 29.26 1.50 1.10 1.08 1.10 1.22
lU/1 10.00 0.26 12.00 0.75 90 Acryl c 9.80 14.42 9.16 9.16 9.16 8.21 1.47 0.93 0.93 0.93 0.84
lU/2 10.00 0.50 12.00 0.75 90 Acryl c 13.10 14.42 14.72 14.16 14.72 12.84 1.10 1.12 1.08 1.12 0.98
lU/3 10.00 0.80 12.00 0.75 90 Acryl c 10.70 14.42 12.54 12.00 13.30 10.44 1.35 1.17 1.12 1.24 0.98
lU/5 10.00 0.26 24.00 0.75 90 Acryl c 18.50 30.07 18.32 18.32 18.31 20.23 1.63 0.99 0.99 0.99 1.09
lU/6 10.00 0.50 24.00 0.75 90 Acryl c 25.70 30.07 29.43 28.31 29.43 31.62 1.17 1.15 1.10 1.15 1.23
lU/7 10.00 0.80 24.00 0.75 90 Acryl c 24.10 30.07 25.08 24.01 26.59 25.71 1.25 1.04 1.00 1.10 1.07
lU/9 10.00 0.26 32.00 0.75 90 Acryl c 23.50 40.79 24.42 24.43 29.64 29.40 1.74 1.04 1.04 1.26 1.25

lU/10 10.00 0.50 32.00 0.75 90 Acryl c 39.90 40.79 39.25 37.75 39.80 45.96 1.02 0.98 0.95 1.00 1.15
lU/11 13.30 0.80 32.00 0.75 90 Acryl c 37.80 41.43 33.44 32.01 37.59 37.37 1.10 0.88 0.85 0.99 0.99
2U/1 10.00 0.80 24.00 0.75 60 Acryl c 17.00 22.42 18.20 18.80 19.30 19.28 1.32 1.07 1.11 1.14 1.13

XJOINT2 16.00 0.33 24.00 1.00 45 Acryl c 16.70 22.56 20.31 16.39 20.31 16.39 1.35 1.22 0.98 1.22 0.98
XJOINT3 16.00 0.50 24.00 1.00 45 Acryl c 14.80 22.56 19.97 20.94 19.96 21.08 1.52 1.35 1.41 1.35 1.42
XJOINT9 16.00 0.50 24.00 1.00 30 Acryl c 8.80 11.13 10.16 11.62 10.16 10.54 1.26 1.15 1.32 1.15 1.20
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Table 3. 0 Com parison between Predicted and Recorded SC  ̂Data on Brace Side for Balanced IPB Loaded X  and :DT-Joints

Spec. no. a P Y X 0
(deg)

M aterials Rec UCL WS EFT UEG LR UCL/
Rec

WS/
Rec

EFT/
Rec

UEG
/R ec

LR/R
e c

AA 8.50 0.72 10.60 0.99 90 Steei 1.80 2.96 3.15 2.65 3.15 2.31 1.64 1.75 1.47 1.75 1.28

E30 9.80 0.38 20 .70 0.79 90 Steei 2.50 4.33 3.78 3.52 3.81 2.76 1.73 1.51 1.41 1.52 1.10

E36 9.80 0.38 20.50 0.81 90 Steel 2.30 4.34 3.82 3.52 3.85 2.78 1.89 1.66 1.53 1.68 1.21

E37 9.80 0.38 21.00 0.83 90 Steel 2 .40 4.41 3.92 3 .60 3.94 2.85 1.84 1.63 1.50 1.64 1.19

lU /1 10.00 0 .26 12.00 0.75 90 Acrylic 1.60 3.14 2.83 2.37 2.83 1.83 1.96 1.77 1.48 1.77 1.14

lU /2 10.00 0 .50 12.00 0.75 90 Acrylic 2.30 3.29 2.95 2.67 2.95 2.16 1.43 1.28 1.16 1.28 0.94

lU /3 10.00 0 .80 12.00 0.75 90 Acrylic 2.30 2.81 2.78 2.51 2.78 2.14 1.22 1.21 1.09 1.21 0.93
lU /5 10.00 0.26 24.00 0.75 90 Acrylic 3 .10 4.33 3.77 3 .55 3.77 2.54 1.40 1.22 1.14 1.22 0.82

lU /6 10.00 0.50 24 .00 0.75 90 Acrylic 2.90 4.54 3.96 3.72 3.96 3.20 1.56 1.36 1.28 1.36 1.10
lU /7 10.00 0 .80 24 .00 0.75 90 Acrylic 3.80 3.87 3.69 3.09 3.69 3.17 1.02 0.97 0.81 0.97 0.83

lU /9 10.00 0 .26 32 .00 0 .75 90 Acrylic 4 .20 4.95 4.29 4.29 4.49 3.01 1.18 1.02 1.02 1.07 0 .72

lU /1 0 10.00 0 .50 32.00 0.75 90 Acrylic 5.20 5.18 4.51 4.33 4.73 3.90 1.00 0.87 0.83 0.91 0.75

lU/11 13.30 0 .80 32 .00 0.75 90 Acrylic 4.30 4.42 4.20 3 .40 4.39 3.85 1.03 0.98 0 .79 1.02 0 .90

2U/1 10.00 0 .80 24 .00 0.75 60 Acrylic 2.70 3.26 3.61 3.01 3.61 2.77 1.21 1.34 1.11 1.34 1.03
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'able 3. 1 Comparison Between Predicted and Recorded SCF Data on Chord Side for Balanced IPB Loaded X and DT-Joints
Spec.

no.
a P Y X e

(deg)
Material

s
Rec UCL WS EFT UEG LR UCL/

Rec
WS/
Rec

EFT/
Rec

UEG/
Rec

LR/
Rec

AA 8.50 0.72 10.60 0.99 90 Steel 3.20 4.66 3.41 3.45 3.41 3.31 1.46 1.06 1.08 1.06 1.04
E30 9.80 0.38 20.70 0.79 90 Steel 4.40 5.02 4.42 4.27 4.46 4.51 1.14 1.00 0.97 1.01 1.02
E36 9.80 0.38 20.50 0.81 90 Steel 4.00 5.13 4.48 4.33 4.53 4.56 1.28 1.12 1.08 1.13 1.14
E37 9.80 0.38 21.00 0.83 90 Steel 4.20 5.31 4.64 4.50 4.67 4.75 1.26 1.10 1.07 1.11 1.13
X4 17.50 0.67 25.30 0.82 90 Steel 2.80 5.59 5.04 4.76 5.05 4.84 2.00 1.80 1.70 1.80 1.73
X5 17.50 0.67 25.30 0.82 90 Steel 3.30 5.59 5.04 4.76 5.05 4.84 1.69 1.53 1.44 1.53 1.47
X6 17.50 0.35 25.00 0.81 90 Steel 4.40 5.59 5.00 4.93 5.01 5.51 1.27 1.14 1.12 1.14 1.25

lU/1 10.00 0.26 12.00 0.75 90 Acrylic 2.20 3.82 2.90 2.28 2.90 2.90 1.74 1.32 1.04 1.32 1.32
lU/2 10.00 0.50 12.00 0.75 90 Acrylic 2.80 3.76 3.10 2.93 3.10 2.80 1.34 1.11 1.05 1.11 1.00
lU/3 10.00 0.80 12.00 0.75 90 Acrylic 3.20 3.71 2.82 2.82 2.82 2.81 1.16 0.88 0.88 0.88 0.88
lU/5 10.00 0.26 24.00 0.75 90 Acrylic 4.20 5.13 4.39 4.04 4.39 5.73 1.22 1.05 0.96 1.05 1.36
lU/6 10.00 0.50 24.00 0.75 90 Acrylic 4.40 5.04 4.69 4.62 4.69 4.58 1.15 1.07 1.05 1.07 1.04
lU/7 10.00 0.80 24.00 0.75 90 Acrylic 4.00 4.97 4.27 3.87 4.27 4.14 1.24 1.07 0.97 1.07 1.03
lU/9 10.00 0.26 32.00 0.75 90 Acrylic 5.60 5.80 5.22 5.12 5.53 7.60 1.03 0.93 0.91 0.99 1.36

lU/10 10.00 0.50 32.00 0.75 90 Acrylic 5.70 5.69 5.58 5.59 5.91 5.61 1.00 0.98 0.98 1.04 0.98
lU/11 13.30 0.80 32.00 0.75 90 Acrylic 5.40 5.62 5.08 4.41 5.38 4.86 1.04 0.94 0.82 1.00 0.90
2U/1 10.00 0.80 24.00 0.75 60 Acrylic 3.60 4.51 4.14 3.50 4.14 3.85 1.25 1.15 0.97 1.15 1.07

XJOINT2 16.00 0.50 24.00 1.00 45 Acrylic 4.40 5.30 4.64 4.63 4.64 4.84 1.21 1.05 1.05 1.05 1.10
XJOINT9 16.00 0.50 24.00 1.00 30 Acrylic 5.00 4.19 3.64 3.64 3.64 4.07 0.84 0.73 0.73 0.73 0.81
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Table 3.12 Comparison Between Predicted and Recorded SCF Data on Brace Side for Balanced OPB Loaded X and DT-Joints
Spec.

no.
a P Y X 0

(deg)
Material

s
Rec UCL WS EFT UEG LR UCL/

Rec
WS/
Rec

EFT/
Rec

UEG/
Rec

LR/
Rec

E30 9.80 0.38 20.70 0.79 90 Steel 3.80 9.07 7.06 7.40 7.12 7.05 2.39 1.86 1.95 1.87 1.86
E36 9.80 0.38 20.50 0.81 90 Steel 6.20 9.11 7.16 7.42 7.22 7.12 1.47 1.15 1.20 1.16 1.15
E37 9.80 0.38 21.00 0.83 90 Steel 5.00 9.44 7.46 7.67 7.51 7.48 1.89 1.49 1.53 1.50 1.50
X4 17.50 0.67 25.30 0.82 90 Steel 7.30 15.66 12.93 11.74 13.03 12.47 2.15 1.77 1.61 1.78 1.71

lU/1 10.00 0.26 12.00 0.75 90 Acrylic 2.50 4.53 3.30 3.25 3.30 3.00 1.81 1.32 1.30 1.32 1.20
lU/2 10.00 0.50 12.00 0.75 90 Acrylic 4.90 6.07 5.29 5.17 5.29 4.25 1.24 1.08 1.05 1.08 0.87
lU/3 10.00 0.80 12.00 0.75 90 Acrylic 5.10 7.48 5.91 4.77 6.20 3.90 1.47 1.16 0.93 1.22 0.77
lU/5 10.00 0.26 24.00 0.75 90 Acrylic 5.40 8.54 5.59 6.21 5.59 6.21 1.58 1.04 1.15 1.04 1.15
lU/6 10.00 0.50 24.00 0.75 90 Acrylic 11.00 11.43 9.59 9.64 9.58 9.36 1.04 0.87 0.88 0.87 0.85
lU/7 10.00 0.80 24.00 0.75 90 Acrylic 9.40 14.09 10.81 8.46 11.40 7.83 1.50 1.15 0.90 1.21 0.83
lU/9 10.00 0.26 32.00 0.75 90 Acrylic 10.10 11.11 7.13 8.10 7.49 8.84 1.10 0.71 0.80 0.74 0.87

lU/10 10.00 0.50 32.00 0.75 90 Acrylic 16.40 14.87 12.45 12.34 13.14 13.35 0.91 0.76 0.75 0.80 0.81
lU/11 13.30 0.80 32.00 0.75 90 Acrylic 16.90 19.16 14.08 12.33 15.71 13.62 1.13 0.83 0.73 0.93 0.81
2U/1 10.00 0.80 24.00 0.75 60 Acrylic 6.50 10.51 8.12 6.72 8.55 5.76 1.62 1.25 1.03 1.32 0.89
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Table 3.13 Comparison Between Predicted and Recorded SCF Data on Chord Side for Balanced OPB Loaded X and DT-Joints
Spec.

no.
a P Y X 0

(deg)
M aterial

s
Rec UCL WS EFT UEG LR UCL/

Rec
WS/
Rec

EFT/
Rec

UEG/
Rec

LR/R
e c

E30 9.80 0.38 20.70 0.79 90 Steel 7.70 11.52 9.62 9.32 9.71 10.85 1.50 1.25 1.21 1.26 1.41
E36 9.80 0.38 20.50 0.81 90 Steel 8.90 11.73 9.77 9.47 9.87 11.00 1.32 1.10 1.06 1.11 1.24
E37 9.80 0.38 21.00 0.83 90 Steel 8.30 12.35 10.26 9.93 10.34 11.61 1.49 1.24 1.20 1.25 1.40
X4 17.50 0.67 25.30 0.82 90 Steel 13.20 18.94 18.94 17.93 19.09 20.09 1.43 1.44 1.36 1.45 1.52
X5 17.50 0.67 25.30 0.82 90 Steel 16.80 18.94 18.94 17.93 19.09 20.09 1.13 1.13 1.07 1.14 1.20
X6 17.50 0.35 25.00 0.81 90 Steel 13.90 15.13 11.00 10.91 11.01 13.72 1.09 0.79 0.79 0.79 0.99

lU/1 10.00 0.26 12.00 0.75 90 Acryl c 3.70 5.59 3.65 3.63 3.65 3.71 1.51 0.99 0.98 0.99 1.00
lU/2 10.00 0.50 12.00 0.75 90 Acryl c 6.30 6.83 6.81 6.59 6.81 6.32 1.08 1.08 1.05 1.08 1.00
lU/3 10.00 0.80 12.00 0.75 90 Acryl c 6.20 7.89 7.79 7.15 8.26 5.76 1.27 1.26 1.15 1.33 0.93
lU/5 10.00 0.26 24.00 0.75 90 Acryl c 7.90 11.27 7.29 7.18 7.29 8.99 1.43 0.92 0.91 0.92 1.14
lU/6 10.00 0.50 24.00 0.75 90 Acryl c 13.40 13.76 13.63 12.72 13.63 14.76 1.03 1.02 0.95 1.02 1.10
lU/7 10.00 0.80 24.00 0.75 90 Acryl c 13.10 15.89 15.57 13.13 16.51 12.43 1.21 1.19 1.00 1.26 0.95
lU/9 10.00 0.26 32.00 0.75 90 Acryl c 10.80 15.07 9.72 9.50 10.31 12.94 1.40 0.90 0.88 0.95 1.20

lU/10 10.00 0.50 32.00 0.75 90 Acryl c 21.40 18.40 18.17 16.53 19.27 20.74 0.86 0.85 0.77 0.90 0.97
lU/11 13.30 0.80 32.00 0.75 90 Acryl c 22.40 22.10 20.77 19.41 23.34 21.39 0.99 0.93 0.87 1.04 0.95
2U/1 10.00 0.80 24.00 0.75 60 Acryl c 9.70 11.94 11.31 10.43 11.98 9.32 1.23 1.17 1.08 1.24 0.96

XJOINT2 16.00 0.33 24.00 1.00 45 Acryl c 7.80 8.95 8.36 7.02 8.36 7.63 1.15 1.07 0.90 1.07 0.98
XJOINT3 16.00 0.50 24.00 1.00 45 Acryl c 9.80 10.16 9.25 10.17 9.24 10.54 1.04 0.94 1.04 0.94 1.08
XJOINT9 16.00 0.50 24.00 1.00 30 Acryl c 6.30 5.10 4.70 5.84 4.70 5.27 0.81 0.75 0.93 0.75 0.84
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Table 3.14 Validation of SCF Parametric Equation for X joint

under Balanced Axial at Brace Crown Position

Equation Steel/
Acrylic

No
of
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st 
dev of 
Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

Wordsworth Steel 3 2.13 12.0% 0.0% 0.0% 100% accept but

& Acrylic 13 1.37 35.2% 0.0% 7.7% 38.5% borderline

S medley Pooled 16 1.51 44.1% 0.0% 6.3% 50.0% conservative

Steel 3 1.47 9.2% 0.0% 0.0% 33.3% accept

Efthymiou Acrylic 13 1.45 40.2% 7.7% 7.7% 46.2% but

Pooled 16 1.45 36.1% 6.3% 6.3% 43.8% borderline

Steel 3 2.15 12.0% 0.0% 0.0% 100% accept but

UEG Acrylic 13 1.38 35.3% 0.0% 7.7% 38.5% borderline

Pooled 16 1.52 44.5% 0.0% 6.3% 50.0% conservative

Steel 3 1.29 7.7% 0.0% 0.0% 0.0%

LR Acrylic 13 1.12 12.3% 0.0% 7.7% 0.0% accept

Pooled 16 1.15 13.3% 0.0% 6.3% 0.0%

Steel 3 1.97 12.7% 0.0% 0.0% 100% too

UCL Acrylic 6 1.38 54.6% 0.0% 33.3% 33.3% small

Pooled 9 1.57 52.9% 0.0% 22.2% 55.6% database
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Table 3.15 Validation of SCF Parametric Equation for X joint

under Balanced Axial at Brace Saddle Position

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st 
dev of 
Enq

%P/R<
0.8

%P/R
<1.0

%P/R
>1.5

Wordsworth Steel 4 1.34 18.8% 0.0% 0.0% 25.0%

& Acrylic 12 1.19 18.0% 0.0% 16.7% 8.3% accept

S medley Pooled 16 1.23 18.8% 0.0% 12.5% 12.5%

Steel 7 1.22 13.3% 0.0% 14.3% 0.0% accept as

Efthymiou Acrylic 12 1.06 13.8% 8 J ^ 33.3% 0.0% borderline

Pooled 19 1.12 15.4% 5.3% 26.3% 0.0% unconservative

Steel 4 1.36 18.9% 0.0% 0.0% 25.0%

UEG Acrylic 12 1.26 22.6% 0.0% 8.3% 16.7% accept

Pooled 16 1.29 21.6% 0.0% 6.3% 18.8%

Steel 6 1.32 17.7% 0.0% 0.0% 16.7%

LR Acrylic 12 1.14 14.4% 0.0% 25.0% 0.0% accept

Pooled 18 1.20 17.4% 0.0% 16.7% 5.6%

Steel 5 1.92 19.3% 0.0% 0.0% 100% accept but

UCL Acrylic 10 1.45 24.3% 0.0% 0.0% 30.0% borderline

Pooled 15 1.61 31.8% 0.0% 0.0% 53.3% conservative
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Table 3.16 Validation of SCF Parametric Equation for X joint

under Balanced Axial at Chord Crown Position

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

Wordsworth Steel 3 1.12 63% 0.0% 0.0% 0.0% too

& Acrylic 9 1.14 24.3% 11.1% 44.4% 0.0% small

Smedley Pooled 12 1.14 20.9% 83% 33.3% 0.0% database

Steel 3 1.04 53% 333% 333% 0.0% too

Efthymiou Acrylic 9 1.15 44.2% 333% 333% 22.2% small

Pooled 12 1.12 38.1% 333% 33.3% 16.7% database

Steel 3 1.14 6.2% 0.0% 0.0% 0.0% too

UEG Acrylic 9 1.15 25.3% 11.1% 44.4% 0.0% small

Pooled 12 1.15 21.7% 83% 333% 0.0% database

Steel 3 1.07 5.7% 0.0% 0.0% 0.0% too

LR Acrylic 9 1.23 22.9% 0.0% 22.2% 11.1% small

Pooled 12 1.19 21.0% 0.0% 16.7% 83% database

Steel 3 0.62 3.1% 100% 100% 0.0% too

UCL Acrylic 9 0.69 22.1% 66.77% 100% 0.0% small

Pooled 12 0.68 19.1% 75.0% 100% 0.0% database

Steel 3 1.42 83% 0.0% 0.0% 0.0% too

UCLS Acrylic 9 1.48 76.3% 11.1% 333% 333% small

Pooled 12 1.46 65.2% 83% 25.0% 25.0% database
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Table 3.17 Validation of SCF Parametric Equation for X joint

under Balanced Axial Loading at Chord Saddle Position

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

Wordsworth Steel 8 1.10 4.6% 0.0% 0.0% 0.0%

& Acrylic 17 1.29 27.1% 0.0% 5.9% 11.8% accept

Smedley Pooled 25 1.23 24.0% 0.0% 4.0% 8.0%

Steel 16 1.15 18.9% 0.0% 0.0% 12.5%

Efthymiou Acrylic 16 1.26 28.9% 0.0% 6.3% 12.5% accept

Pooled 32 1.21 24.7% 0.0% 3.2% 12.5%

Steel 10 1.13 6.7% 0.0% 0.0% 0.0%

UEG Acrylic 17 1.36 32.7% 0.0% 0.0% 17.6% accept

Pooled 27 1.27 28.3% 0.0% 0.0% 11.1%

Steel 15 1.09 15.0% 0.0% 46.7% 0.0%

LR Acrylic 17 1.24 20.4% 0.0% 11.8% 11.8% reject

Pooled 32 1.17 19.3% 0.0% 28.2% 63%

Steel 12 1.20 21.7% 0.0% 16.7% 83%

UCL Acrylic 13 1.33 21.4% 0.0% 0.0% 23.1% accept

Pooled 25 1.27 22.0% 0.0% 8.0% 16.0%
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Table 3.18 Validation of SCF Parametric Equation for X joint

under Balanced IPB Loading on Brace Side

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st 
dev of 
Enq

%P/R<
0.8

%P/R<
1.0

%P/R
>1.5

Wordsworth Steel 4 1.55 12.7% 0.0% 0.0% 75.0% accept

& Acrylic 23 1.50 21.2% 0.0% 0.0% 60.9% but

Smedley Pooled 27 1.51 20.1% 0.0% 0.0% 63.0% conservative

Steel 6 1.33 25.6% 0.0% 16.7% 16.7%

Efthymiou Acrylic 23 1.29 22.4% 0.0% 4.3% 17.4% accept

Pooled 29 1.30 22.7% 0.0% 6.9% 17.2%

Steel 4 1.57 10.7% 0.0% 0.0% 75.0% accept

UEG Acrylic 23 1.51 20.0% 0.0% 0.0% 60.9% but

Pooled 27 1.52 18.9% 0.0% 0.0% 63.0% conservative

Steel 5 1.15 11.6% 0.0% 20.0% 0.0%

LR Acrylic 23 1.15 12.9% 0.0% 8.7% 0.0% accept

Pooled 28 1.15 12.5% 0.0% 10.7% 0.0%

Steel 4 1.78 10.8% 0.0% 0.0% 100%

UCL Acrylic 10 1.30 30.0% 0.0% 0.0% 20% accept

Pooled 14 1.44 33.8% 0.0% 0.0% 42.9%
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Table 3.19 Validation of SCF parametric Equation for X joint

under Balanced EPB Loading on Chord Side

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

Wordsworth Steel 9 1.54 68.0% 0.0% 0.0% 44.4%

& Acrylic 24 1.24 18.2% 0.0% 8.3% 8.3% accept

Smedley Pooled 33 1.32 39.7% 0.0% 6.1% 18.2%

Steel 12 1.33 37.9% 0.0% 8.3% 25.0%

Efthymiou Acrylic 24 1.17 15.7% 0.0% 12.5% 0.0% accept

Pooled 36 1.22 25.9% 0.0% 11.1% 83%

Steel 9 1.56 73.4% 0.0% 0.0% 44.4%

UEG Acrylic 24 1.25 17.8% 0.0% 8.3% 8.3% accept

Pooled 33 1.33 42.1% 0.0% 6.1% 18.2%

Steel 12 1.39 42.7% 0.0% 0.0% 16.7%

LR Acrylic 24 1.23 17.1% 0.0% 8.3% 83% accept

Pooled 36 1.28 28.7% 0.0% 6.1% 11.1%

Steel 7 1.44 30.2% 0.0% 0.0% 28.6%

UCL Acrylic 12 1.18 22.2% 0.0% 83% 83% accept

Pooled 19 1.28 27.7% 0.0% 53% 15.8%

144



Table 3.20 Validation of SCF Parametric Equation for X-joint

under Balanced OPB Loading on Brace Side

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

Wordsworth Steel 4 1.57 31.2% 0.0% 0.0% 50.0%

& Acrylic 12 1.35 34.3% 0.0% 16.7% 33.3% accept

Smedley Pooled 16 1.41 34.0% 0.0% 12.5% 37.5%

Steel 4 1.60 31.0% 0.0% 0.0% 75.0%

Efthymiou Acrylic 12 1.26 23.7% 0.0% 16.7% 16.7% accept

Pooled 16 1.35 28.9% 0.0% 12.5% 31.3%

Steel 4 1.59 31.5% 0.0% 0.0% 75.0%

UEG Acrylic 12 1.43 40.2% 0.0% 16.7% 33.3% accept

Pooled 16 1.47 37.9% 0.0% 12.5% 43.8%

Steel 4 1.59 30.3% 0.0% 0.0% 75.0%

LR Acrylic 12 1.21 19.9% 0.0% 16.7% 8 j% accept

Pooled 16 1.31 27.6% 0.0% 12.5% 25.0%

Steel 4 1.97 39.2% 0.0% 0.0% 75.0%

UCL Acrylic 10 1.34 29.6% 0.0% 10.0% 30.0% accept

Pooled 14 1.52 42.9% 0.0% 7.1% 42.9%
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Table 3.21 Validation of SCF Parametric Equation for X joint

under Balanced OPB on Chord Side

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

Wordsworth Steel 6 1.16 21.7% 16.7% 16.7% 0.0%

& Acrylic 17 1.28 37.4% 0.0% 17.6% 11.8% accept

Smedley Pooled 23 1.25 34.0% 4.3% 17.4% 8.7%

Steel 6 1.13 20.0% 16.7% 16.7% 0.0%

Efthymiou Acrylic 16 1.23 33.1% 0.0% 25.0% 18.8% accept

Pooled 23 1.20 30.0% 4.3% 21.7% 13.0%

Steel 6 1.16 22.1% 16.7% 16.7% 0.0%

UEG Acrylic 17 1.35 44.8% 0.0% 11.8% 17.6% accept

Pooled 23 1.30 40.5% 4.3% 13.0% 13.0%

Steel 6 1.32 20.4% 0.0% 16.7% 16.7%

LR Acrylic 17 1.23 16.6% 0.0% 5.9% 5.9% accept

Pooled 23 1.25 17.6% 0.0% 8.7% 8.7%

Steel 6 1.33 18.1% 0.0% 0.0% 0.0%

UCL Acrylic 13 1.15 21.4% 0.0% 15.4% 7.7% accept

Pooled 19 1.21 21.5% 0.0% 10.5% 5.3%
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Crown Toe (j) = 0 Crown Heel (|)= 180

Saddle * = 9 0

2L D t 21
Geometric ratios: a  = —  B = — Y = —  T = — 06̂  = —

D ^ D ' 2T T ® d

Figure 3.1 Geometric Notation for Tubular X-joint
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4

1
(a) Typical Eight Noded Quadrilateral Double 
Curved

Curved Element (S8R5) with Reduced Integration, 

using Five Degrees of Freedom per Node

2

(b) Typical Six Noded Triangular

Element (STRI65) using Five Degrees 

of Freedom per Node

Figure 3.2 Two Kinds of Thin-Shell Elements used in this Study

r////yA

Figure 3.3 Typical Example of Finite Element Mesh Used to Model Tubular Joint 

(  a = 1 0 ,  p = 0 . 6 ,  7 = 2 0 ,  t = 0 . 5 ,  0 = 6 0 °  )
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(a ) S in g le  brace load in g
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B alanced m -p lane  bending Balanced axial loading

(b ) B oth  brace load in g

Balanced o u t-p lane  bending

Figure 3.4 Modes of Loading Used for Finite Element Joint Analyses
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\

c

K

Modes of 

Loading

Restraints on the following Planes

ABC DEF GACIKPDH UK

Single Axial U .̂UyUz.lpx.Cpv Ux.Uy.Uz.lpx.tPv ^Z'Vx'^' N/A

Single IPB Ux.Uy.Uz.CPx.̂ Pv Uz,(Px*^- N/A

Single OPB Ux.Uy.Uz.tPx.^Pv Ux^Uy.Uz.iPx’Vv Ux.Uv N/A

Balanced Axial N/A N/A Uz'Vx'^^' Ux.Uy.Uz.tPx-^Pv

Balanced IPB Ux.Uy.Uz'^X'^Pv Ux,Uy,Uz.iPx’*Pv 1 '^Z*^X'^' N/A

Balanced OPB Ux.Uy.Uz.tPx’̂ Pv Ux,Uy,Uz,iPx.<Pv Ux.Uv N/A

Figure 3.5 The Boundary Conditions for All M odes o f Loading
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A ngle M ea su re d  a ro u n d  In tersection  from  C row n Position ( d e g  )
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Figure 3.6 Effect of ag on the SCF Distribution on Brace Side of Intersection 

for Single Axial Loading X Joint ( a=10, (3=0.6, 7=20, t = 0 . 5 ,  0=60° )
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A ngle  M eo su red  o ro u n d  In te rsec tio n  from C row n Position ( d e g  )

1 . 7

14.22

Figure 3.7 Effect of ag  on the SCF Distribution on Brace Side of Intersection

for Single IPB Loading X Joint ( a=10, P=0.6, 7=20, t =0 .5, 0=60° )
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A ng le  M ea su re d  a ro u n d  In te rsection  from  C row n Position ( d e g  )
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Figure 3.8 Effect of a g  on the SCF Distribution on Brace Side of Intersection 

for Single OPB Loading X Joint ( a=10, (3=0.6, y=20,1=0.5, 0=60® )
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14.22

Figure 3.9 Effect of ag  on the SCF Distribution on Chord Side of Intersection

for Single Axial Loading X Joint ( a=10, (3=0.6, 7=20,1=0.5, 0=60® )
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Figure 3.10 Effect of a g  on the SCF Distribution on Chord Side of Intersection 

for Single IPB Loading X Joint ( a=10, (3=0.6, 7=20, x=0.5, 0=60° )
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Figure 3.11 Effect of ag on the SCF Distribution on Chord Side of Intersection

for Single OPB Loading X Joint ( a=10, (3=0.6, 7=20, x=0.5, 0=60° )
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------------- OhgmalMesh Displaced Mesh

Figure 3.12 The Deformed Mesh Superimposed upon the Unloaded Mesh 

for Single Axial Loading X Joint ( ct=10, p=0.6, 7=20, x=0.5, 0=60°, Og=6.09)

I
Original Mesh Displaced Mesh

Figure 3.13 The Deformed Mesh Superimposed upon the Unloaded Mesh 

for Single IPB Loading X Joint ( a=10, P=0.6, '/=20,1=0.5. 9=60°, Og=6.09)
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Original Mash OIsplaceo Mesh

Figure 3.14 The Deformed Mesh Superimposed upon the Unloaded Mesh 

for Single OPB Loading X Joint ( a=10, P=0.6. ‘p20, x=0.5, 9=600, Og=6.09)

Original Mash CootaoedMasri

Figure 3.15 The Deformed Mesh Superimposed upon the Unloaded Mesh 

for Balanced Axial Loading X Joint ( a=10, P=0.6. 'f=20, x=0.5, 0=60°, Og=6.09)
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-------------Original Mesh Oisptacsd Mesn

Figure 3.16 The Deformed Mesh Superimposed upon the Unloaded Mesh 

for Balanced IPB Loading X Joint ( a=10, (3=0.6. -p20 , %=0.5. 8=600, ^^=^.09)

Original Mesh Oisplacea Mesh i

Figure 3.17 The Deformed Mesh Superimposed upon the Unloaded Mesh 

for Balanced OPB Loading X Joint (o= lO , (3=0.6. - -2 0 . t= ; .5 ,  9=60°, ou=6.09)
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CHAPTER FOUR 
PARAMETRIC EQUATIONS TO PREDICT STRESS

DISTRIBUTIONS THROUGH THE THICKNESS AND 
ALONG THE INTERSECTION OF TUBULAR

X AND DT-JOINTS

4.1 Introduction

During the design stage, the hot spot stress based S-N approach is widely used to estimate 

the fatigue life of offshore tubular welded joints. As the hot spot stress is defined as a 

surface peak stress at the intersection, this method does not take the stress distribution into 

account. However, the analyses of a large number of fatigue tests of tubular welded joints 

have showed that fatigue behaviour is not dependent on the hot spot stress alone, but is also 

significantly influenced by the stress distribution around the intersection and particularly the 

through thickness stress distribution. It becomes apparent that the external surface hot spot 

stress is not enough to characterise all aspect of fatigue failure. Joints of differing 

geometries or modes of loading, but with similar hot spot stresses, may have different stress 

distributions and, as a result, they often exhibit significantly different numbers of cycles to 

failure. It is anticipated that a joint with a high proportion of through thickness bending 

stress will have a longer fatigue life than one with a similar hot spot stress, but with a 

greater component of through thickness membrane stress. Therefore the standard hot spot 

stress analysis may be unconservative for joints with a low degree of bending. Although one 

can use the lower bound S-N curve which is two standard deviations below the mean life 

curve through the experimental data, it can be over conservative for joints with a high 

degree of bending. It seems that the current standard hot spot stress based S-N approach has 

to be modified to include some parameters representing the stress distribution. Therefore 

stress distribution information is needed in order to have more accurate fatigue life 

prediction.

Another problem with the S-N approach is that this method gives only the total life and can 

not be used to predict how a crack grows or the remaining life when cracking is detected in 

service in a tubular joint. In order to deal with these problems, one has to use fracture 

mechanics since it correlates the physical damage mechanism to the assessment. However, 

the accurate determination of a Stress Intensity Factor(SIF) is the key for fracture mechanics 

calculations of remaining life, on cracked joints in service. It is well known that it is 

^-ssary to take the complex stress field in tubular welded joints into account in order to
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have accurate SIF data. The information is required again on the magnitude and distribution 

of the stress acting in the anticipated crack path, not just the peak stress at one location. 

Fatigue crack propagation rates are important to reliability-based inspection scheduling, 

hence the need for this information is becoming more pressing.

In order to obtain the through thickness information from experiments, one has to access the 

inside of tubular joints to attach stain gauges. It is generally quite difficult, especially for the 

joints with small diameters in laboratory tests. The strain gauges are usually only placed on 

several points around the external surface hot spot stress region rather than at many points 

around the intersection. Thus the detailed stress distribution data, and especially through 

thickness information, are usually not available from tests. By using thin shell finite element 

method, parametric equations have been derived for Y and T joints in terms of peak 

stress(Hellier et al 1990 a), stress distribution(Hellier et al 1990 b) and bending to 

membrane ratio(Connolly et al 1990). However, for X and DT-joints, there are no 

parametric equations for stress variation through the thickness and around the intersection. 

For this reason, a comprehensive thin-shell FE analysis has been carried for tubular X and 

DT-joints(Figure 4.1). The details of FE analyses is omitted in this chapter as it was 

reported in chapter three. The SCF parametric equations have been firstly derived and 

presented in the last chapter. This chapter will present the derivation and assessment of the 

parametric equations for predicting the stress variation through the wall(degree of bending) 

and stress distribution around the intersection for tubular X and DT-joints. In particular, new 

two dimensional regression methodology was adopted to fit full stress distribution along the 

intersection as a function of the geometric parameters a , (3, y, x and 6 . This new set of stress 

distribution equation can be used to predict the normalised distribution but also provide an 

alternative method for calculation of hot spot SCFs.

4.2 Prediction of Degree of Bending in Tubular X and DT-joints

As discussed in chapter 1, the through thickness stress field is predominantly due to linear 

chord wall bending and the non-linear stress concentration due to the change in section at 

the weld toe. The non-linear distribution around the weld toe stress concentration region is 

dependent on the weld and weld toe geometry and is difficult to predict during the design 

stage. It would have little effect for a deep crack. Thus, most efforts have been concentrated 

on the linear through thickness distribution and in particular attempting to define the ratio of 

bending to tension. The stress distribution across the wall thickness is assumed to be a linear 

combination of membrane and bending stress. The stress distribution through the chord wall 

is often characterised by either the degree of bending(DoB), i.e. the ratio of bending stress 

over total external stress or the ratio of bending to membrane stress.
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The through wall thickness stress distribution data are important for fatigue strength 

assessment of tubular joints, particularly for fracture mechanics based remaining life 

calculation. Owing to the complexities introduced by the structural geometry and the nature 

of the local stress fields, it is impossible to calculate analytically the SIFs for defects located 

in tubular joints. This problem is often tackled by using the modified simplified models, 

such as the Newman-Raju flat plate solution, with an appropriate load shedding model. DoB 

has to be known before one can use these simplified SIF models to calculate the remaining 

fatigue life of tubular joints.as the high DoB in conjunction with load shedding mechanism, 

make the performance of fatigue crack growth in tubular welded joints different from other 

types of welded joints, such as T-butt.

Recently results of the SINTEF/TWI tubular joint fatigue tests(Eide 1993) confirmed the 

effect of DoB on fatigue life. For these self-reacted load in the double T specimens, a DoB 

of 0.69 was measured. It was found that there was a large difference between the 

experimentally measured fatigue life compared to predictions using S-N data. As the finite 

element analyses of tubular joints show that typical DoBs under axial and OPB loading are 

in the range of 0.8 - 0.9, this low DoB gives an additional membrane component in the 

chord wall. Thus, for any given hot spot stress, a more pronounced acceleration of crack 

growth and a shorter fatigue life may be expected for these specimens.

Fracture mechanics analyses were carried out(Eide 1993) by using both 3-D shell analysis 

with a Y compliance calibration based on line spring model computations, and a simplified 

two-dimensional analysis with a linear moment release load shedding model. They gave 

results in good agreement with the experimental data. The analyses showed that the fatigue 

life of tubular joints is not dependent on the hot spot stress alone, but is also significantly 

influenced by the through thickness distribution of stress. Consideration of load shedding 

makes the effect of DoB on fatigue life more pronounced as shedding of membrane stresses 

due to crack growth occurs at a much slower rate relative to the shedding of bending stresses 

in the same hot spot section. Assuming a "mean" DoB for the S/N tubular joints to be 0.85, 

the effect due to the DoB of 0.69 in the double T geometry was a factor on life of 1.5. With 

this correction the data come very close to the mean line of the current database.

As a summary, the DoB is an important parameter for the calculation of fatigue crack growth 

in tubular welded joints. So it is necessary to derive the parametric equations to predict the 

DoB information in tubular X and DT-joints by post processing the finite element analysis 

results reported in chapter 3. The section aims to report the derivation and assessment of 

these DoB parametric equations.

In order to make the results compatible, the numerically greatest principal stress on the outer 

surface and corresponding principal stress on the inner surface have been used to determine 

the relative amounts of through-thickness bending and membrane stress. A simple linear
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interpolation between the stresses on the inner and outer tube walls was used in order to 

obtain the distribution of stresses through the joints intersection. A simple method of 

representing this linear interpolation is in terms of the ratio of bending to total stress, or 

degree of bending(DoB), expressed as

^  =  ^ -----  ( 4 - 1 )
G T G g + G  ^

where G^ is the bending stress component 

G j  is the total stress on the outer tube surface 

is the membrane stress, = G j - G ^

From the above equation, it can be seen clearly that when the membrane stresses are tensile, 

the ratio ^ i s  less than one and greater than zero whereas it is greater than one when

the membrane portion is compressive.

The results of DoB convergence tests(Table 4.1) showed that the coarsest mesh with 16 

elements around the intersection could be used to obtain DoB with sufficient accuracy. The 

required information was obtained from the FE analysis results of 330 tubular X and DT- 

joints by using several batch files. They were used to calculate DoBs at the critical 

positions, such as saddle and crown position, under six modes of loading for both the chord 

and brace sides of the intersection.

Multiple regression analyses were performed on the database of finite element analysis 

results using a statistical package ’MINITAB'(1991) and the methodology used in deriving 

these equations is similar to that for SCF equations. The parametric equations of the ratio of 

bending to total stress(DoB) were derived at saddle and crown positions for each mode of 

loading and for both the chord and brace sides of the intersection. The equations are listed in 

Appendix B. A summary of fitting accuracy for all DoB equations is given in Table 4.2. The 

is greater than 94% for all the equations except those at brace saddle under single and 

balanced axial loading which are around 80%. As a value of R  ̂= \00%  would imply that the 

fitted equation captures all the variations in DoB, quite good correlation was achieved for 

the DoB equations derived.

In order to test the accuracy, this set of parametric equations was assessed by comparing the 

predicted values with results from acrylic and steel model tests. Due to the difficulty of 

accessing the inside of a tube, only one acrylic test data under single OPB loading was 

found and used for validation(Table 4.3). The prediction from the parametric equations for 

tubular T-joints is also included as a comparison. It can be seen that the prediction from this 

set of parametric equations for DT-joint is slighter higher than that for the T-joint. As both 

are conservative, the latter is closer to the experimental data.
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The parametric equations have been derive to predict the DoBs at the critical positions of 

both the chord and brace sides of the intersection of tubular X and DT-joints under six 

modes of loading. However, the validation of this set of equations is very limited. The 

characterised equations for DoB distribution along the intersection(Cheaitani et al 1995) 

have been derived recently for tubular T-joints and they permit the interpolation of DoB 

between the crown and saddle positions. Combining these two set of equations, the DoB at 

any position along the intersection of tubular X and DT-joints can be estimate.

4.3 Parametric Equations to Predict the Stress D istribution along the Intersection

Tubular joints of differing geometries or modes of loading have different stress distributions 

along the intersection. For a given joint, each load case has its own particular distribution of 

stresses along the intersection line and thereby a different influence on the fatigue life. 

Rigorous fracture mechanics calculations on tubular joints require a knowledge of the local 

stress distribution around the joint, i.e. stress variation along the weld toe between the 

crown and saddle sites. Experimental results show that the initiation and the subsequent 

coalescence of multiple cracks are very much dependent on the stress distribution. Apart 

from the use of hot spot stresses, the average stress around a joint(Dover and Dharmavasan 

1987) have also been shown to play an important role during the fatigue crack propagation. 

Stress distribution equations would also be useful for calculating the average stress.

Some simple interpolation formulae have been reported by UEG(1985). Combined with the 

peak local stress at saddle and crown positions, they can be used to predict SCF variation 

along the brace/chord intersection of tubular joints. The parametric equations which were 

developed at UCL(Hellier et al 1990) for tubular Y and T-joints can provide similar 

information. All these formulations need the values of peak stresses obtained from SCF 

parametric equations. The UCL equations allow the effect of a hot spot at a point other than 

the crown or saddle to be taken into account. After comparing the UEG equations with FE 

results, Vinas-Pich(1994) concluded that the stress distribution proposed in the UEG design 

guidelines is not accurate enough around the whole brace-chord intersection. The problem 

with the UCL equations and the UEG equations is that they were derived by observing a 

limited number of typical sample results rather than whole database and therefore they can 

not provide enough accuracy to all other cases for detailed analyses. As they are only based 

on a restricted sample, they may be unconservative for some situations and this has been 

confirmed by Monahan(1994).

In order to overcome this difficulty, an effort has been made in this study to fit all the finite 

element results as function of all geometry ratio a , p, y, x and 6. The maximum principal 

stress on external surface along the intersection was chosen to derive the equations in order to 

maintain compatibility and be conservative. It should be noted that these maximum principal
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stresses are often not perpendicular to the weld toe along the intersection. The database used 
to derive this set of equations is the same as that used for the previous two sets of equations. 

Typical plots of external surface stress distribution around the intersection of tubular X-joint 
are shown in Figures 4.2-4.4 for three different modes of single brace loading.

The regression analysis methodology is different from that used for the previous two sets of 

equations as it is a two-dimensional fitting process and can be split into the following two 

levels.

1) Performing numerous regressions until the best form of expression for the variations of 
the SCF, (i.e.) the equation with a large product moment correlation coefficient, was found 
for all joints under different modes of loading. After numerous tries, the following 
expressions were considered appropriate for both the chord and brace toes under each mode 

of loading.

For both brace and chord toes under single and balanced axial loading:

SCF{(^) = Co + C,(|) + QCoj({) + qC ojZ* (0<(1)<7C) ( 4 - 2 )

For both brace and chord toes under single and balanced IPB loading:

SCF((^) = CQ + C,Cos(i? + C^Cos2(  ̂ (0<(()<7C ) ( 4 - 3 )

For both brace and chord toes under single and balanced OPB loading:

SCF((^) = Co + C, Sin<̂  + + C^Cos2(  ̂ ( 0 < (j) < 7C ) ( 4 - 4 )

2) Fitting the coefficients in the above equations as a function of the parameters a, p, y, x 

and 0.

By carrying out regression analysis using the statistical package 'MINITAB'(1991), the 
parametric equations for SCF distribution equations have been derived for both chord and 
brace toes under six different modes of loading and are given in Appendix C. These 
equations can be easily programmed and enable the SCF value to be calculated at any 
angular location around both brace and chord toe for all modes of loading. A summary of 
the degree of fit for each equation is presented in Table 4.4. It shows that these equations fit 
the original FE data very well and the correlation coefficient is greater than 95% for the 

majority of cases including both fitting the form of equation and the coefficients. Assuming 

the loading directions shown in Figure 3.4, the negative hot-spot is at or close to the crown 
toe while the positive hot-spot lies at or near the crown heel under single/balanced IPB 

loading. In these loading cases, the SCFs on both brace and chord saddle positions were 
taken to be the average values from the equations from both sides in order to maintain the 
smooth transition of SCF. As the maximum principal stress were used to derive this set of 

equations, the SCFs on both brace and chord crown positions are not necessarily zero but 
are small values for single/balanced OPB cases. If the negative SCF value is predicted at 
crown positions under single/balanced axial and OPB loading, the compensation factor D
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for the whole stress distribution is assigned for conservative reason. It should be also noted 
that a minimum of 1,5 was assigned when this set of equations are used to predict the SCF 
at critical points such as hot spot, saddle, crown toe and crown heel.

Aiming to produce the SCF distribution along the intersection, this set of equations also 
included the hot spot SCF information. Thus, the vahdation of this set of equations has been 
divided into the following two steps.

a) Hot spot SCF estimation

Firstly, following the same procedures described in last chapter, the predictions for hot spot 
SCFs from this set of equations are compared with the values from previous SCF parametric 

equations and together with all available experimental data in Lloyds and UCL database. 
They are presented in Table 4.5-4.15. Furthermore, statistical analyses were carried out for 
hot spot SCFs under the balanced loading which have relatively more data and are hsted in 
Tables 4.16-4.21.

Since a different fitting methodology was used, the hot spot SCF predictions from these two 
set of equations are different despite the fact they are based on the same database. For single 
brace loading, the predictions from this set of equation are more close to experimental data 
compared with the predictions from the SCF equations but are still conservative(Tables 4.5- 
4.8) except for the cases with high P ratio at chord saddle position under single OPB 
loading(Table 4.8). The predictions of the SCFs at crown positions under balanced axial 
loading(Tables 4.8 and 4.10) are similar to those from SCF equations. From the results of 
comparison of hot spot SCF predictions with experimental data(Table 4.9, 4.11-4.21) for 
balanced loading, the tendency to have slightly reduced conservatism is also observed. The 
criteria described in the last chapter were used to validate these cases. As a results, all these 
equations are accepted.

Further examination showed again that most of the predictions that underpredict the test data 
are those with high P ratio. In terms of fitting original finite element hot spot SCF data, this 
set of equations may not be as good as the previously derived SCF equations, especially for 

high p ratio cases, as they aim to fit the distribution rather than hot spot alone. However, a 
comparison with experimental data shows that they can offer a reasonably good performance 
for predicting the hot spot SCF. As a summary, this set of equations shows a reduced degree 
of conservatism when used for hot spot SCF predictions but their predictions are still 
conservative. Care should be taken for those joints with high p ratio and the previous SCF 
equations can be used for these particular cases if necessary.

b) Normalised SCF distribution prediction

Since the predictions from the equations based on the finite element analysis results are 
generally conservative, the validation of distribution predictions are therefore based the
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normalised SCF distribution data that can be obtained by dividing by the hot spot SCF, A 
comparison has been made between the normalised stress distribution predictions from this set 
of equations with all available UCL experimental test data(Mshana 1993)(Smith 1995)(Kam 
1989) and this is shown in Figures 4.5-4.13. As can be seen from these figures, good 

agreement has been achieved for these cases. As the maximum principal stresses are used to 

derive the equations, the SCF predictions at the crown positions for OPB loading are not zero 
but small values(Figures 4.7-4.9). As can be seen from the Figures 4.7-4.S, the predictions 
agree very well with experimental data. However, the predicted curves for the OPB loading 

tend to be slightly high around the crown area for the high (3 ratio cases due to the nature of 
this three items expression. However, the high prediction is of a conservative nature, this 

effect is localised and far away from the hot spot area. As a summary, these equations provide 
a good normalised SCF distribution along the intersection. However, it should be noted that 

validation is limited as only these few test data were available.

4.4 Conclusions

For the accurate fatigue strength assessment of tubular joints, information is required on the 
magnitude and distribution of the stress acting in the anticipated crack path, not just the 
peak stress at one location. In order to meet this requirement, two sets of parametric 
equations have been derived to predict the degree of bending and stress distribution around 
the intersection respectively in tubular welded DT and X joints under six modes of loading 
as a function of the geometric parameters a, |3, 7, T and 0 from nearly 2000 finite element 
analyses results. The stress distribution equations not only can be used to predict the 
normalised distribution for all cases but also have been proven to have capability to estimate 
the hot spot SCF under balanced brace loading. All these equations are directly compatible 
with each other and can be easily incorporated into fatigue life calculation codes. They 
provide a predictive capability for the stress acting on the anticipated crack plane, that is at 
the welded intersection of tubular X and DT-joints. Combination of these two sets of 
parametric equations allows one to recreate the 2D stress distribution around welded tubular 
X and DT-joints. However, it should be noted that the validation is very limited as so far only 

very few experimental data for DoB and stress distribution are available.
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Table 4.1 Comparison between DOB s around upper Intersection from Coarse to Finite 

X joint Meshes to Show Extent of Convergence ( o=10, p=0.6,7=20, t=0.5, 0=60°)

No. of elements 

around intersection

Chord Brace

Crown Toe Saddle Crown Toe Saddle

Single Axial Loading

16 - 0.872 - 0.786

20 - 0.872 - 0.788

24 - 0.872 - 0.789

Single In-Plane Bending

16 0.778 - 0.764 -

20 0.778 - 0.770 -

24 0.779 - 0.774 -

Single Out-Plane Bending

16 - 0.885 - 0.813

20 - 0.886 - 0.815

24 - 0.886 - 0.816

Balanced Axial Loading

16 - 0.885 - 0.789

20 - 0.886 - 0.791

24 - 0.886 - 0.792

Balanced In-Plane Bending

16 0.777 - 0.768 -

20 0.778 - 0.774 -

24 0.779 - 0.778 -

Balanced Out-Plane Bending

16 - 0.886 - 0.807

20 - 0.887 - 0.810

24 - 0.887 - 0.810
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Table 4.2 Summary of Degree of Fit for DoB Parametric Equations

Location Brace Chord

Circumferential position R2% Equation R2% Equation

Single Axial Loading

Saddle 81.1 Appendix B 1.1 96.5 Appendix B1.2

Single In-Plane Bending

Crown toe 94.9 Appendix B2.1 95.3 Appendix B2.2

Crown heel 94.7 Appendix B2.3 95.6 Appendix B2.4

Single Out-Plane Bending

Saddle 96.0 Appendix B3.1 97.0 Appendix B3.2

Balanced Axial Loading

Saddle 79.1 Appendix B4.1 94.0 Appendix B4.2

Balanced In-Plane Bending

Crown toe 94.3 Appendix B5.1 96.0 Appendix B5.2

Crown heel 95.6 Appendix B5.3 95.6 Appendix B5.4

Balanced Out-Plane Bending

Saddle 96.6 Appendix B6.1 96.8 Appendix B6.2

Table 4,3 Comparison of DoB Data between the Predictions from Parametric Equations 

and Experimental Results for Tubular DT-Joints under Single OPB Loading

Joint Geometry DoB

Chord Saddle

Ref. a P y T 0(deg) Parametric 
Equation for 

TandY

Parametric 
Equation for 

X and DT

Exp.

Smith, 1995 9.9 0.8 10.6 1.0 90 0.849 0.862 0.888
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Table 4.4 Summary of Degree of Fit for the Parametric Equations of SCF Distribution 

around the Intersection of Tubular X and DT-joints

Mode of 

Loading/ 

Location

Equations

Form of Expression Co c , C2 C3

Descriptive Statistics (%)

Mean Std. Dev. R2

Single Axial Loading

Brace Appendix Cl. l 97.026 3.256 94.73 93.73 97.91 96.36

Chord Appendix Cl .2 96.423 4.663 97.67 90.02 93.29 96.13

Single In-Plane Bending

Brace Toe Side Appendix C2.1 98.690 1.673 98.29 98.22 98.57 N/A

Brace Heel Side Appendix C2.1 99.242 0.96 98.46 98.39 98.49 N/A

Chord Toe Side Appendix C2.2 99.79 0.210 97.53 98.83 98.06 N/A

Chord Heel Side Appendix C2.2 98.97 0.962 97.98 98.08 97.69 N/A

Single Out-Plane Bending

Brace Appendix C3.1 97.754 2.160 98.34 97.62 96.45 98.52

Chord Appendix C3.2 98.275 1.792 97.42 96.93 94.49 98.77

Balanced Axial Loading

Brace Appendix C4.1 96.162 3.886 93.18 91.31 97.41 99.08

Chord Appendix C4.2 96.867 3.986 98.66 87.89 90.76 98.38

Balanced In-Plane Bending

Brace Toe Side Appendix C5.1 98.251 2.218 97.40 98.39 98.37 N/A

Brace Heel Side Appendix C5.1 99.272 0.949 98.55 98.68 98.40 N/A

Chord Toe Side Appendix C5.2 99.757 0.313 97.55 98.83 98.28 N/A

Chord Heel Side Appendix C5.2 99.139 0.806 97.10 98.21 97.67 N/A

Balanced Out-Plane Bending

Brace Appendix C6.1 97.605 2.261 98.02 97.78 96.61 98.30

Chord Appendix C6.2 98.115 1.858 98.05 97.52 90.22 98.27
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Table 4.5 Comparison between the Predictions from the SCF and SCF Distribution Equations
with the Recorded SCI

Ref. Spec.
no.

a P Y X 0
(deg)

M at Rec SCF
Eq

SCF
Dis
Eq

SCF/
Rec

SCF
Dis

/R ec
M shana

1993
IPB-IA 7.84 0.64 10.2 0.5 90 Steel 1.76 2.18 2.03 1.24 1.15

M shana
1993

IPB-2A 7.84 0.64 10.2 0.5 90 Steel 1.76 2.18 2.03 1.24 1.15

M shana
1993

IPB-IB 7.84 0.64 10.2 0.5 90 Steel 1.47 2.18 2.03 1.48 1.38

M shana
1993

IPB-2B 7.84 0.64 10.2 0.5 90 Steel 1.68 2.18 2.03 1.30 1.21

Table 4.6 Comparison between the Predictions from the SCF and SCF Distribution Equations

Ref. Spec.
no.

a P Y X 0
(deg)

M at Rec SCF
Eq

SCF
Dis
Eq

SCF/
Rec

SCF
Dis

/R ec
Smith 1995 W2 9.90 0.80 10.00 0.99 90 Steel 4.80 8.59 6.04 1.79 1.26
Smith 1995 W4 9.90 0.80 10.00 0.99 90 Steel 4.70 8.59 6.04 1.83 1.29

Table 4.7 Comparison between the Predictions from the SCF and SCF Distribution Equations

Ref. Spec.
no.

a P Y X 0
(deg)

M at Rec SCF
Eq

SCF
Dis
Eq

SCF
/Re

c

SCF
Dis

/Re
c

M shana 1993 OPB-IA 7.84 0.64 10.2 0.5 90 Steel 3.81 4.27 4.08 1.12 1.07
M shana 1993 OPB-2A 7.84 0.64 10.2 0.5 90 Steel 3.09 4.27 4.08 1.38 1.32
M shana 1993 OPB-IB 7.84 0.64 10.2 0.5 90 Steel 3.00 4.27 4.08 1.42 1.36
M shana 1993 OPB-2B 7.84 0.64 10.2 0.5 90 Steel 3.66 4.27 4.08 1.17 1.11

Smith 1995 W1/W5 9.90 0.80 10.00 0.99 90 Steel 6.50 10.25 6.1 1.58 0.94
Smith 1995 W2 9.90 0.80 10.00 0.99 90 Steel 6.70 10.25 6.1 1.53 0.91
Smith 1995 W3/W6 9.90 0.80 10.00 0.99 90 Steel 6.70 10.25 6.1 1.53 0.91
Smith 1995 W4 9.90 0.80 10.00 0.99 90 Steel 6.40 10.25 6.1 1.60 0.95
Smith 1995 SI 9.90 0.80 10.00 0.99 90 Steel 6.40 10.25 6.1 1.60 0.95
Smith 1995 S2 9.90 0.80 10.00 0.99 90 Steel 6.00 10.25 6.1 1.71 1.02
Smith 1995 S3 9.90 0.80 10.00 0.99 90 Steel 6.60 10.25 6.1 1.55 0.92
Smith 1995 S4 9.90 0.80 10.00 0.99 90 Steel 6.20 10.25 6.1 1.65 0.98
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Table 4.8 Comparison between the Predictions from the SCF and SCF Distribution Equations

S pec.
no.

a P Y X 0
(deg)

M at Rec SCF
Eq

SCF 
Dis Eq

SCF/
Rec

SCF
DIs/Rec

E30 9.80 0.38 20.70 0.79 90 Steel 1.50 3.16 2.14 2.11 1.42
E36 9.80 0.38 20.50 0.81 90 Steel 1.70 3.16 2.27 1.86 1.33
E37 9.80 0.38 21.00 0.83 90 Steel 1.60 3.12 2.22 1.95 1.39
lU/1 10.00 0.26 12.00 0.75 90 Acrylic 1.70 3.93 5.72 2.31 3.36
lU/2 10.00 0.50 12.00 0.75 90 Acrylic 2.00 2.78 2.98 1.39 1.49
lU/3 10.00 0.80 12.00 0.75 90 Acrylic 1.70 1.50 1.67 0.88 0.98
lU/5 10.00 0.26 24.00 0.75 90 Acrylic 2.80 4.50 5.57 1.61 1.99
lU/9 10.00 0.26 32.00 0.75 90 Acrylic 3.40 4.19 5.45 1.23 1.60
2U/1 10.00 0.80 24.00 0.75 60 Acrylic 1.80 1.50 11.07 0.83 6.15

Table 4.9 Comparison between the Predictions from the SCF and SCF Distribution Equations

S pec.
no.

a P Y X 0
(deg)

M at Rec SCF
Eq

SCF 
Dis Eq

SCF/
Rec

SCF
DIs/Rec

A 8.50 0.72 10.40 0.94 90 Steel 7.50 14.52 13.61 1.94 1.81
E30 9.80 0.38 20.70 0.79 90 Steel 10.60 22.70 21.73 2.14 2.05
E36 9.80 0.38 20.50 0.81 90 Steel 14.30 23.01 21.85 1.61 1.53
E37 9.80 0.38 21.00 0.83 90 Steel 12.40 24.03 22.53 1.94 1.82
X4 17.50 0.67 25.30 0.82 90 Steel 15.00 29.61 27.29 1.97 1.82

lU/1 10.00 0.26 12.00 0.75 90 Acrylic 7.60 13.10 13.50 1.72 1.78
lU/2 10.00 0.50 12.00 0.75 90 Acrylic 10.50 13.43 14.67 1.28 1.40
lU/3 10.00 0.80 12.00 0.75 90 Acrylic 9.10 13.67 11.16 1.50 1.23
lU/5 10.00 0.26 24.00 0.75 90 Acrylic 13.20 24.43 22.47 1.85 1.70
lU/6 10.00 0.50 24.00 0.75 90 Acrylic 19.20 25.05 25.55 1.30 1.33
lU/7 10.00 0.80 24.00 0.75 90 Acrylic 17.50 25.50 21.42 1.46 1.22
lU/9 10.00 0.26 32.00 0.75 90 Acrylic 21.90 31.64 28.64 1.44 1.31

lU/10 10.00 0.50 32.00 0.75 90 Acrylic 29.10 32.44 35.10 1.11 1.21
lU/11 13.30 0.80 32.00 0.75 90 Acrylic 28.90 33.52 29.33 1.16 1.01
2U/1 10.00 0.80 24.00 0.75 60 Acrylic 11.20 18.66 22.46 1.67 2.01
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Table 4.10 Comparison between the Predictions from the SCF and SCF Distribution Equations
with Recorded SC  ̂data at Chord Crown position for Balanced Axially loaded X and DT- oints

S pec.
no.

a P Y X 0
(deg)

M at Rec SCF
Eq

SCF 
Dis Eq

SCF/
Rec

SCF
DIs/Re

c
E30 9.80 0.38 20.70 0.79 90 Steel 3.30 2.09 1.5 0.63 0.45
E36 9.80 0.38 20.50 0.81 90 Steel 3.60 2.14 1.5 0.59 0.42
E37 9.80 0.38 21.00 0.83 90 Steel 3.30 2.15 1.5 0.65 0.45
lU/1 10.00 0.26 12.00 0.75 90 Acrylic 3.70 3.58 4.23 0.97 1.14
1U/2 10.00 0.50 12.00 0.75 90 Acrylic 2.20 1.76 1.50 0.80 0.68
lU/5 10.00 0.26 24.00 0.75 90 Acrylic 4.00 2.93 3.31 0.73 0.83
lU/9 10.00 0.26 32.00 0.75 90 Acrylic 4.10 3.15 1.72 0.77 0.42
2U/1 10.00 0.80 24.00 0.75 60 Acrylic 1.60 1.50 1.50 0.94 0.94

XJOINT2 16.00 0.33 24.00 1.00 45 Acrylic 10.3 3.91 3.52 0.38 0.34
XJOINT3 16.00 0.50 24.00 1.00 45 Acrylic 6.20 2.33 2.08 0.38 0.34
XJOINT5 16.00 0.83 24.00 1.00 45 Acrylic 2.00 1.50 1.65 0.75 0.82
XJOINT9 16.00 0.50 24.00 1.00 30 Acrylic 6.20 3.18 2.56 0.51 0.41

Table 4.11 Comparison between the Predictions from the SCF and SCF Distribution Equations

S pec. no. a P Y X 0
(deg)

M at Rec SCF
Eq

SCF 
Dis Eq

SCF/
Rec

SCF
Dis

/R ec
18, 20 6.70 0.76 12.00 0.50 90 Steel 7.70 8.10 7.33 1.05 0.95

19 7.00 0.71 11.40 0.64 90 Steel 10.20 10.78 10.29 1.06 1.01
34-35, 39-40 10.00 0.50 14.30 0.50 90 Steel 11.05 9.97 10.46 0.90 0.95

A 8.50 0.72 10.40 0.94 90 Steel 10.90 16.74 15.95 1.54 1.46
E30 9.80 0.38 20.70 0.79 90 Steel 21.80 27.57 27.08 1.26 1.24
E36 9.80 0.38 20.50 0.81 90 Steel 20.80 28.24 27.61 1.36 1.33
E37 9.80 0.38 21.00 0.83 90 Steel 21.40 29.96 29.33 1.40 1.37
X4 17.50 0.67 25.30 0.82 90 Steel 29.50 37.05 34.69 1.26 1.18
X5 17.50 0.67 25.30 0.82 90 Steel 31.80 37.05 34.69 1.17 1.09
X6 17.50 0.35 25.00 0.81 90 Steel 24.00 35.98 33.43 1.50 1.39

lU/1 10.00 0.26 12.00 0.75 90 Acrylic 9.80 14.42 12.77 1.47 1.30
lU/2 10.00 0.50 12.00 0.75 90 Acrylic 13.10 14.42 15.11 1.10 1.15
lU/3 10.00 0.80 12.00 0.75 90 Acrylic 10.70 14.42 12.10 1.35 1.13
lU/5 10.00 0.26 24.00 0.75 90 Acrylic 18.50 30.07 24.31 1.63 1.31
lU/6 10.00 0.50 24.00 0.75 90 Acrylic 25.70 30.07 33.44 1.17 1.30
lU/7 10.00 0.80 24.00 0.75 90 Acrylic 24.10 30.07 24.83 1.25 1.03
lU/9 10.00 0.26 32.00 0.75 90 Acrylic 23.50 40.79 32.38 1.74 1.38

lU/10 10.00 0.50 32.00 0.75 90 Acrylic 39.90 40.79 46.44 1.02 1.16
lU/11 13.30 0.80 32.00 0.75 90 Acrylic 37.80 41.43 33.14 1.10 0.88
2U/1 10.00 0.80 24.00 0.75 60 Acrylic 17.00 22.42 19.73 1.32 1.16

XJOINT2 16.00 0.33 24.00 1.00 45 Acrylic 16.70 22.56 23.19 1.35 1.39
XJOINT3 16.00 0.50 24.00 1.00 45 Acrylic 14.80 22.56 24.98 1.52 1.69
XJOINT9 16.00 0.50 24.00 1.00 30 Acrylic 8.80 11.13 14.26 1.26 1.62
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Table 4.12 Comparison between the Predictions from the SCF and SCF Distribution Equations
with the Recorded SCF data on Brace Sid

S p ec . no. a P Y X 0
(deg)

M at Rec SCF
Eq

SCF 
Dis Eq

SCF/
Rec

SCF
DIs/Re

c
AA 8.50 0.72 10.60 0.99 90 Steel 1.80 2.96 3.03 1.64 1.68
E30 9.80 0.38 20.70 0.79 90 Steel 2.50 4.33 3.85 1.73 1.54
E36 9.80 0.38 20.50 0.81 90 Steel 2.30 4.34 3.83 1.89 1.67
E37 9.80 0.38 21.00 0.83 90 Steel 2.40 4.41 3.86 1.84 1.61
lU/1 10.00 0.26 12.00 0.75 90 Acryli 3 1.60 3.14 3.0 1.96 1.88
lU/2 10.00 0.50 12.00 0.75 90 Acryll 3 2.30 3.29 3.11 1.43 1.35
lU/3 10.00 0.80 12.00 0.75 90 Acryli 3 2.30 2.81 2.57 1.22 1.12
lU/5 10.00 0.26 24.00 0.75 90 Acryll 3 3.10 4.33 4.45 1.40 1.44
lU/6 10.00 0.50 24.00 0.75 90 Acryll<3 2.90 4.54 3.54 1.56 1.22
lU/7 10.00 0.80 24.00 0.75 90 Acryll 3 3.80 3.87 8.06 1.02 2.12
lU/9 10.00 0.26 32.00 0.75 90 Acryll 3 4.20 4.95 5.42 1.18 1.29

lU/10 10.00 0.50 32.00 0.75 90 Acryll 3 5.20 5.18 8.35 1.00 1.61
lU/11 13.30 0.80 32.00 0.75 90 Acryll 3 4.30 4.42 9.57 1.03 2.23
2U/1 10.00 0.80 24.00 0.75 60 Acryll 3 2.70 3.26 3.02 1.21 1.12

Table 4.1' 
with t

1 Comparison between the Free 
le Recorded SCF data on Chon

ictions from the SCF anc 
Side for Balanced IPB

1 SCF Distribution Equations 
^oaded X and DT-joints

S pec.
no.

a P Y T 0
(deg)

M at Rec SCF
Eq

SCF 
Dis Eq

SCF/
Rec

SCF
DIs/Re

c
AA 8.50 0.72 10.60 0.99 90 Steel 3.20 4.66 4.21 1.46 1.32
E30 9.80 0.38 20.70 0.79 90 Steel 4.40 5.02 5.31 1.14 1.21
E36 9.80 0.38 20.50 0.81 90 Steel 4.00 5.13 5.47 1.28 1.37
E37 9.80 0.38 21.00 0.83 90 Steel 4.20 5.31 5.74 1.26 1.37
X4 17.50 0.67 25.30 0.82 90 Steel 2.80 5.59 3.60 2.00 1.29
X5 17.50 0.67 25.30 0.82 90 Steel 3.30 5.59 3.60 1.69 1.09
X6 17.50 0.35 25.00 0.81 90 Steel 4.40 5.59 5.80 1.27 1.32

lU/1 10.00 0.26 12.00 0.75 90 Aery Ic 2.20 3.82 3.18 1.74 1.45
lU/2 10.00 0.50 12.00 0.75 90 Aery Ic 2.80 3.76 3.73 1.34 1.33
lU/3 10.00 0.80 12.00 0.75 90 Aery Ic 3.20 3.71 3.36 1.16 1.05
lU/5 10.00 0.26 24.00 0.75 90 Aery Ic 4.20 5.13 5.16 1.22 1.23
lU/6 10.00 0.50 24.00 0.75 90 Aery Ic 4.40 5.04 4.84 1.15 1.10
lU/7 10.00 0.80 24.00 0.75 90 Aery Ic 4.00 4.97 4.56 1.24 1.14
lU/9 10.00 0.26 32.00 0.75 90 Aery Ic 5.60 5.80 6.81 1.03 1.22

lU/10 10.00 0.50 32.00 0.75 90 Aery Ic 5.70 5.69 7.88 1.00 1.38
lU/11 13.30 0.80 32.00 0.75 90 Aery ic 5.40 5.62 4.67 1.04 0.86
2U/1 10.00 0.80 24.00 0.75 60 Aery Ic 3.60 4.51 3.63 1.25 1.01

XJOINT2 16.00 0.50 24.00 1.00 45 Aery Ic 4.40 5.30 4.43 1.21 1.01
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Table 4.14 Comparison between the Predictions from the SCF and SCF Distribution Equations
with the Recorded SCF data on Brace Sid

Spec.
no.

a P Y T 0
(deg)

M at Rec SCF
Eq

SCF 
Dis Eq

SCF/
Rec

SCF
DIs/Rec

E30 9.80 0.38 20.70 0.79 90 Steel 3.80 9.07 9.77 2.39 2.57
E36 9.80 0.38 20.50 0.81 90 Steel 6.20 9.11 9.73 1.47 1.57
E37 9.80 0.38 21.00 0.83 90 Steel 5.00 9.44 9.99 1.89 2.00
X4 17.50 0.67 25.30 0.82 90 Steel 7.30 15.66 17.02 2.15 2.33

lU/1 10.00 0.26 12.00 0.75 90 Acryl c 2.50 4.53 4.67 1.81 1.87
lU/2 10.00 0.50 12.00 0.75 90 Acryl c 4.90 6.07 6.98 1.24 1.43
lU/3 10.00 0.80 12.00 0.75 90 Acryl c 5.10 7.48 4.94 1.47 0.97
lU/5 10.00 0.26 24.00 0.75 90 Acryl c 5.40 8.54 7.16 1.58 1.33
lU/6 10.00 0.50 24.00 0.75 90 Acryl c 11.00 11.43 14.43 1.04 1.31
lU/7 10.00 0.80 24.00 0.75 90 Acryl c 9.40 14.09 10.74 1.50 1.14
lU/9 10.00 0.26 32.00 0.75 90 Acryl c 10.10 11.11 8.50 1.10 0.84
lU/10 10.00 0.50 32.00 0.75 90 Acryl c 16.40 14.87 19.86 0.91 1.21
lU/11 13.30 0.80 32.00 0.75 90 Acryl c 16.90 19.16 15.47 1.13 0.92
2U/1 10.00 0.80 24.00 0.75 60 Acryl c 6.50 10.51 7.44 1.62 1.15

Table 4.15 Comparison between the Predictions from the SCF and SCF Distribution Equations
with t le Recorded SCF data on Chord Side :rir Balanced OPB Loadec X and DT-joints

Spec.
no.

a P Y X 0
(deg)

M at Rec SCF
Eq

SCF 
Dis Eq

SCF/R
e c

SCF
DIs/Re

c
E30 9.80 0.38 20.70 0.79 90 Steel 7.70 11.52 10.90 1.50 1.42
E36 9.80 0.38 20.50 0.81 90 Steel 8.90 11.73 11.03 1.32 1.24
E37 9.80 0.38 21.00 0.83 90 Steel 8.30 12.35 11.67 1.49 1.41
X4 17.50 0.67 25.30 0.82 90 Steel 13.20 18.94 22.42 1.43 1.70
X5 17.50 0.67 25.30 0.82 90 Steel 16.80 18.94 22.42 1.13 1.33
X6 17.50 0.35 25.00 0.81 90 Steel 13.90 15.13 13.50 1.09 0.97

lU/1 10.00 0.26 12.00 0.75 90 Acryl c 3.70 5.59 4.86 1.51 1.31
lU/2 10.00 0.50 12.00 0.75 90 Acryl c 6.30 6.83 7.08 1.08 1.12
lU/3 10.00 0.80 12.00 0.75 90 Acryl c 6.20 7.89 3.97 1.27 0.64
lU/5 10.00 0.26 24.00 0.75 90 Acryl c 7.90 11.27 8.57 1.43 1.08
lU/6 10.00 0.50 24.00 0.75 90 Acryl c 13.40 13.76 16.54 1.03 1.23
lU/7 10.00 0.80 24.00 0.75 90 Acryl c 13.10 15.89 15.44 1.21 1.18
lU/9 10.00 0.26 32.00 0.75 90 Acryl c 10.80 15.07 12.96 1.40 1.20
lU/10 10.00 0.50 32.00 0.75 90 Acryl c 21.40 18.40 28.33 0.86 1.32
lU/11 13.30 0.80 32.00 0.75 90 Acryl c 22.40 22.10 29.45 0.99 1.31
2U/1 10.00 0.80 24.00 0.75 60 Acryl c 9.70 11.94 10.08 1.23 1.04

XJOINT2 16.00 0.33 24.00 1.00 45 Acryl c 7.80 8.95 9.34 1.15 1.20
XJOINT3 16.00 0.50 24.00 1.00 45 Acryl c 9.80 10.16 8.12 1.04 0.83
XJOINT9 16.00 0.50 24.00 1.00 30 Acryl c 6.30 5.10 6.79 0.81 1.08

1 7 2



Table 4.16 Validation of SCF Distribution Parametric Equation for X-joint
under Balanced Axial at Brace Saddle Position

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

SCF Eq
Steel 5 1.92 19.3% 0.0% 0.0% 100% accept but 

borderline 
conservative

Acrylic 10 1.45 24.3% 0.0% 0.0% 30.0%
Pooled 15 1.61 31.8% 0.0% 0.0% 53.3%

SCF Dis 
Eq

Steel 5 1.81 18.5% 0.0% 0.0% 100.0% accept but 
borderline 

conservative
Acrylic 10 1.42 30.8% 0.0% 0.0% 30.0%
Pooled 15 1.55 32.6% 0.0% 0.0% 53.3%

Table 4,17 Validation of SCF Distribution Parametric Equation for X-joint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

SCF Eq
Steel 10 1.25 20.7% 0.0% 10.0% 10.0%

acceptAcrylic 13 1.33 21.5% 0.0% 0.0% 23.1%
Pooled 23 1.29 21.1% 0.0% 4.3% 17.4%

SCF Dis 
Eq

Steel 10 1.20 19.0% 0.0% 20.0% 0.0%
acceptAcrylic 13 1.27 22.3% 0.0% 7.7% 15.4%

Pooled 23 1.24 20.8% 0.0% 13.0% 8.7%

Table 4.18 Validation of SCF Distribution Parametric Equation for X-joint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

SCF Eq
Steel 4 1.78 10.8% 0.0% 0.0% 100%

acceptAcrylic 10 1.30 30.0% 0.0% 0.0% 20%
Pooled 14 1.44 33.8% 0.0% 0.0% 42.9%

SCF Dis 
Eq

Steel 4 1.63 6.5% 0.0% 0.0% 100%
acceptAcrylic 10 1.54 40.8% 0.0% 0.0% 40.0%

Pooled 14 1.56 34.3% 0.0% 0.0% 57.1%
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Table 4.19 Validation of SCF Distribution Parametric Equation for X-joint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

SCF Eq
Steel 7 1.44 30.2% 0.0% 0.0% 28.6%

acceptAcrylic 11 1.22 20.3% 0.0% 0.0% 9.1%
Pooled 18 1.30 26.4% 0.0% 0.0% 16.7%

SCF Dis 
Eq

Steel 7 1.28 10.0% 0.0% 0.0% 0.0%
acceptAcrylic 11 1.16 17.9% 0.0% 9.1% 0.0%

Pooled 18 1.21 16.1% 0.0% 5.6% 0.0%

Table 4.20 Validation of SCF Distribution Parametric Equation for X-joint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

SCF Eq
Steel 4 1.97 39.2% 0.0% 0.0% 75.0%

acceptAcrylic 10 1.34 29.6% 0.0% 10.0% 30.0%
Pooled 14 1.52 42.9% 0.0% 7.1% 42.9%

SCF Dis 
Eq

Steel 4 2.12 43.3% 0.0% 0.0% 100.0%
acceptAcrylic 10 1.22 29.7% 0.0% 30.0% 10.0%

Pooled 14 1.47 53.2% 0.0% 21.4% 35.7%

Table 4.21 Validation of SCF Distribution Parametric Equation for X joint 
under Balanced OPB on Chord Saddle Position

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

Steel 6 1.33 18.1% 0.0% 0.0% 0.0%
SCF Eq Acrylic 13 1.15 21.4% 0.0% 15.4% 7.7% accept

Pooled 19 1.21 21.5% 0.0% 10.5% 5.3%
SCF Dis Steel 6 1.35 24.0% 0.0% 16.7% 16.7%

Eq Acrylic 13 1.12 19.7% 7.7% 15.4% 0.0% accept
Pooled 19 1.19 23.1% 5.3% 15.8% 5.3%
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Figure 4.1 Illustration of Tubular X-joint
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Figure 4.2 Plot of Typical External Stress Distribution around the Intersection
of Tubular X-joint under Single Brace Axial Loading
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Figure 4,3 Plot of Typical External Stress Distribution around the Intersection
of Tubular X-joint under Single Brace IPB Loading
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Figure 4.4 Plot of Typical External Stress Distribution around the Intersection
of Tubular X-joint under Single Brace OPB Loading
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Figure 4.5 Comparison of Predicted Normalised External Surface SCF Distribution 
on Chord Toe with Steel Model Test Results for the Single IPB Loaded DT-joints 

(a=7.48, (3=0.64, y=10.2, x=0.5, e=9Q0)
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Figure 4.6 Comparison of Predicted Normalised External Surface SCF Distribution

on Chord Toe with Steel Model Test Results for the Single IPB Loaded DT-joint
(0=7.48, (3=0.64, y=10.2, t=0.5, 8=90°)
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Figure 4.7 Comparison of Predicted Normalised External Surface SCF Distribution 
on Brace Toe with Steel Model Test Results for the Single OPB Loaded DT-joint 

(0=9.9, (3=0.8, 7=10.6, x=1.0, 0=9OO)
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Figure 4.8 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Steel Model Test Results for the Single OPB Loaded DT-joint

(0=9.9, P=0.8, 7=10.6, t=1.0, 0=9QO)
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Figure 4.9 Comparison of Predicted Normalised External Surface SCF Distribution 
on Chord Toe with Steel Model Test Results for the Single OPB Loaded DT-joint 

(ot=7.48, (3=0.64, y=\0.2,1=0.5, 0=90®)
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Figure 4.10 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Steel Model Test Results for the Balanced Axial Loaded DT-joint

(0=4.4, (3=0.51, y=lO.O, x=0.44, 0=90®)
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Figure 4.11 Comparison of Predicted Normalised External Surface SCF Distribution 
on Chord Toe with Steel Model Test Results for the Balanced Axial Loaded DT-joint 
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Figure 4.12 Comparison of Predicted Normalised External Surface SCF Distribution 
on Chord Toe with Steel Model Test Results for the Balanced Axial Loaded DT-joint 

(a=6.67, p=0.76,7^=12.0, t=0.5, 0=90®)
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CHAPTER FIVE 
STRESS PARAMETRIC EQUATIONS 
FOR TUBULAR Y AND T-JOINTS

5.1 Introduction

The stress information needed for advanced fatigue strength assessment of tubular joints 

includes not only the hot spot SCF, but also the DoB and stress distribution along the 

intersection. Much research effect has been made to derive the stress parametric equations. 

Among them, the UCL HCD set of equations(Hellier et al 1990 a)(Hellier et al 1990 

b)(Connolly et al 1990), is the only set of equations which can provide all these two 

dimensional stress information for tubular Y and T-joints. Others were not available for the 

fracture mechanics analysis. However, this set of equations was not recommended by fatigue 

panel(MaTSU 1996) to predict the hot spot SCF for tubular Y and T-joints as they do not 

pass the assessment criteria in some cases. The problem with the HCD stress distribution 

equations is that they were characteristic formulae and derived by observing a limited number 

of results rather than whole database. For this reason, they did not provide enough accuracy 

for all other cases for detailed analyses and may therefore be unconservative for some 

situations. Also the use of these stress distributions requires input on peak stresses. Thus it is 

desirable to enhance the stress prediction capability of this set of equations.

In the last chapter, it has been demonstrated that it is possible to derive a set of parametric 

equations to predict full stress distributions along the intersection of tubular X and DT-joints. 

These equations have the capability to estimate both the normalised SCF distributions and the 

hot spot SCFs. These new expressions are ideal for advanced fatigue assessment, especially 

during the design stage and for rigorous fracture mechanics analysis. Thus, an attempt has 

been made to derive similar equations for tubular Y and T-joints. Although systematic finite 

element analyses were performed for tubular Y and T-joint at UCL before, the original data 

were not available in electronic form now. With the dramatic advance in computing capability 

and the experience obtained in analysis of X and DT-joint, it is possible to obtain the new 

database very quickly. Using the similar procedure with same finite element package for the 

same joint database, the equations to be derived can be fully compatible with the equations for 

tubular X and DT-joints. All these consideration led to carry out over 1000 thin-shell finite 

element analyses. Being similar to that for X and DT-joints, the whole finite element analysis
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process is only briefly presented in this chapter and the emphasis is placed on the curve-fitting 
these results and assessment of this new set of equations

5.2 Systematic Finite Element Analyses

A systematic study of stresses in tubular Y and T-joints(Figure 5.1) have been conducted 
using the general-purpose finite element analysis package, ABAQUS/Standard(HKS 1992 a). 

Two types of generally curved thin shell elements, namely quadrilateral eight-noded elements 

denoted 'S8R5' and triangular six-noded elements designated as 'STRI65', have been chosen to 
model tubular joint. They are fully compatible and allow displacements normal to their 

surfaces and rotations about their edges. These displacements and rotations give rise to a 

stress distribution which varies linearly across the element. Stresses are initially calculated at 
the Gauss integration points and then extrapolated to obtain values at the nodal positions.

It should be noted that the tubular joints are modelled as intersecting cylindrical tubes at the 
mid-surfaces of the walls. Thus the weld is not modelled and some detail of the stresses are 
lost. This leads to hot spot stress locations which are different to steel models especially for 
the brace. This is the reason why there are some discrepancies between the finite element 

results and those obtained from steel model test, especially on the brace side. However, the 

difference is generally quite small when comparing with results from strain-gauged acrylic 
models in which the weld is also omitted. The thin shell elements do provide, in many cases, 
an acceptable compromise between accuracy and computational cost except for situations 
where the chord and brace are of similar dimensions. For this reason the present study does 
not include SCFs in tubular joints for which P exceeds 0.8.

In order to conduct a parametric study, 330 different tubular Y and T-joints have been chosen 
for finite element analyses under axial, IPB and OPB loading respectively. Covering the 
majority of tubular joints used in offshore structures, they spanned the following ranges of the 

geometric parameters:

6.0 < a  <40 .0 ( 5 - 1 )

0 .2 < P < 0 .S ( 5 - 2 )

7 . 6 < y < 3 2 . 0 ( 5 - 3 )

0 .2 < t < 1.0 ( 5 - 4 )

0.19447: <0 < -  
2

( 5 - 5 )

In the present study, the for all joints was assigned to the realistic value of 8 in order to 

avoid the effect of short brace length.
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Based on the mesh generation program for tubular X and DT-joints(Chang and Dover, 1996), 

a pre-processing program was developed to automatically produce the input files for finite 

analysis of tubular Y and T-joints in A B A Q U S form at. This program is capable of 

producing relatively fine elements in the vicinity of the brace/chord intersection, and coarse 

elements near the ends of the chord and brace, in order to obtain accurate results whilst 

avoiding unnecessary computational effect. It can reliably generate meshes for joints having 

widely differing geometric parameters a , (3, y, t and 0. As the hot-spot stress is defined by 

Department of Energy(DEn) as the linear extrapolation to the maximum principal stresses, 

from outside the region of weld geometrical influence to the weld toe. So the size of the 

element in the immediate vicinity of the intersection was carefully chosen in order to make the 

linear stress distribution region similar to that as DEn recommended. The program requires 

only a small amount of user input, usually only either absolute dimensions or non-dimensional 

geometric ratios.

Figure 5.1 illustrates three modes of loading, i.e. axial, in-plane bending(IPB) and out-plane 

bending(OPB) loading. Only one half of each joint geometry needs to be modelled, owing to 

symmetry under axial and IPB loading. Although for out-plane bending the situation is no 

longer symmetric, it was found(Connolly et al 1990) that satisfactory results could be 

obtained with the same meshes used for the other load cases by applying appropriate 

restraints on the bisecting plane. A typical Y-joint mesh, shown in Figure 5.2, comprises 2178 

nodes and 705 elements. It just took few seconds of CPU time to generate mesh on a DEC 

Alpha open VMS workstation.

In the case of axial loading, the nominal stress was defined as the total applied load divided by 

the sectional area of the brace. Nominal stresses for moment loading were calculated from 

simple beam bending theory, using a moment arm measured from the brace end along its 

outer surface to the crown position for IPB, and to the saddle position for OPB. In order to 

make post processing easy, loads applied to the brace end were always set to give a unit 

nominal stress.

It is important to use the correct boundary conditions to obtain a realistic solution of stress 

distribution in tubular joints. Both chord ends were rigidly fixed for all loading cases. Under 

axial and IPB, no out-of-plane displacements and rotations are permitted at nodes on the 

symmetry plane. For OPB the situations are no longer symmetrical, the in-plane 

displacements are restrained over the bisecting plane.

The finite element analyses were mn on a DEC Alpha workstation with open VMS operating 

system. The Young's modulus and Poisson's ratio were taken to be 207 Gpa and 0.3 

respectively. In order to save CPU time, each joint was analysed consecutively for three 

modes of loading cases, without the need for recomputing the element stiffness matrices.
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A convergence test was performed firstly in order to check that the meshes used for this study 
were sufficiently fine to predict the stresses at the brace/chord intersection with reasonable 
accuracy. Three meshes with 16, 20 and 24 elements respectively around the half intersection 
were analysed and the SCF results from these meshes are compared in Table 5.1. Comparison 
of SCF values obtained from these meshes generally has shown a good convergence. The 
coarsest mesh, having 16 elements around one half of the intersection, was chosen for this 
study as an acceptable compromise between accuracy and the computational costs.

Systematic finite element analyses were carried out for 330 different tubular Y and T-joints 

under axial, IPB and OPB loading. With the powerful DEC Alpha workstation, it just took 
about 4 minutes of CPU time to analyse a typical joint. ABAQUS/Post(HKS 1992 b) was 
used to post process the results from ABAQUS/Standard analyses. Figures 5.3-5.5 show 

typical examples of the external stress distribution of a tubular Y-joint under three modes of 
loading respectively.

The numerically greatest principal stress on the outer surface of the tube, at each node around 
the intersection, was used to calculate the SCF. Stresses at nodes shared by adjacent elements 
were averaged around, but not across the intersection. The SCF distributions along the 
intersection have been extracted from the 330 ABAQUS output files for curve-fitting by using 
some batch files in open VMS operating system.

5.3 Deriving stress distribution parametric equations

The database of finite element analysis results was used to derive a new set of equations for 
the full stress distribution along the intersection of tubular Y and T-joints by using a 

statistical regression package known as MINITAB'(1991). The regression analysis 
methodology is similar to that used for X and DT-joints as described in the last chapter. The 
two-dimensional fitting process is split into the following two levels.

1) The best form of expression for the variations of the SCF were found for both the chord 
and brace toes under each mode of loading as below by numerous tries.

For both brace and chord toes under axial and OPB loading:

^CF(({)) = Q-hq(|)+QCoj2(|) (0<({)<7t )  ( 5 - 6 )

For both brace and chord toes under IPB loading:

SCF((^) = Co + qCos(^ + Ĉ Cos2(i;> ( 0<( | ) <7[ )  ( 5 - 7 )

2) Performing numerous regressions to fit the coefficients in the above equations as a function 
of the parameters a, p, 7, T and 0.

The parametric equations for SCF distribution have been derived for both chord and brace 
toes of tubular Y and T-joints under three different modes of loading by carrying out the
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numerous regression analysis and they are given in Appendix D. A summary of degree of fit 
for each equation is presented in Table 5.2. It shows that these equations fit the original FE 
data very well and the correlation coefficient is greater than 95% for the majority cases 
including both the form of equation and the coefficients.

These equations can be easily programmed and enable the SCF value to be calculated at any 
angular location around both brace and chord toes for all modes of loading. Assuming the 

loading direction shown in Figure 5.1, the negative hot-spot is at or close to crown toe while 
the positive hot-spot lies at or near the crown heel under IPB loading. In this loading case, the 
SCFs on both brace and chord saddle positions were taken as the average values of two sides 
in order to maintain the smooth transition of SCF distribution curve. As the maximum 

principal stresses were used to derive this set of equations, the SCFs on both brace and chord 
crown positions are not necessary zero but small values for OPB loading. It should be noted 
that a minimum SCF of 1.5 should be assigned when this set of equations are used to predict 

the SCFs at critical points such as hot spot, saddle, crown toe and crown heel.

5.4 Assessment

A new set of equations has been produced to predict the full stress distribution along the 
intersection of tubular Y and T-joints. However, shell elements are two-dimensional in nature, 
possessing thickness only in a mathematical sense needed to define the element stiffness 
matrix. A tubular joint analysed using these elements is actually modelled as the intersection 
between the brace and chord mid planes and the weld fillet can not be incorporated into this 
model. This means that the intersection stresses are calculated a small distance away from the 
point of interest. For chord this distance is usually quite small. However it is relatively large 
for the brace. Therefore, it is necessary to verify the results by validating against laboratory 
data.

Although aiming to produce the SCF distribution along the intersection, this set of 
equations(SCF Dis) also provide an alternative way to predict the hot spot SCFs. Thus, the 

validation of this set of equations has been split into the following two aspects.

a) Hot spot SCF Estimation

As the SCF information is from the new database of finite element analysis results, which is 
different to that used to derive previous HCD equations, and also a new two dimensional 
fitting methodology was adopted to fit these data, the hot spot SCF prediction results from 
this set of equations are different with those from HCD equations. According to the same 
procedures described in chapter three, the predictions for hot spot SCFs from this set of 
equations are compared with the values from HCD SCF parametric equations and together 
with all available experimental data in the Lloyds and UCL database. They are presented in
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Tables 5,3-5.10 for the SCF at critical points such as hot spot, saddle and crown positions on 
brace and chord toes under three modes of loading respectively. Furthermore, statistical 
analyses were carried out and the criteria described in chapter three were used to validate all 
these cases. The evaluation results are listed in Tables 5.11-5.18. The assessment of this new 
set of equations is presented for each mode of loading in turn as follows.

i) Axial Loading

The SCF predictions from this set of equation(SCF Dis) and HCD equations are compared 
with the steel and acrylic model test data at the crown and saddle positions on the brace 

toe(Tables 5.3-5.4 and 5.11-5.12). Both sets of equations pass the acceptance criteria. 
However, the HCD equation is only accepted as borderline at brace saddle position. The 
comparison between the SCF Dis and HCD predictions with the experimental data is shown 

in Tables 5.5-5.6 and 5.13-5.14 for SCFs at chord crown and saddle positions. Both SCF Dis 
and HCD equations are rejected at the chord crown position(Tables 5.5 and 5.13). The 
predictions from these two set of equations are generally smaller than the test data. Those 

from SCF Dis equations are worst. This underestimation for chord crown was also found in 
the previous the thin-shell finite element analysis(Chang and Dover, 1996). It may be due to 
the limitation in using thin shell finite elements. For the chord saddle position(Tables 5.6 and 
5.14), the SCF Dis equation is accepted while the HCD equation is rejected.

ii) IPB loading

The experimental results and the SCFs from the SCF Dis and HCD equations are compared 
in Table 5.7-5.8 and 5.15-5.16). Both sets of equations are accepted for predicting hot spot 
SCFs at both brace and chord toes.

iii) OPB loading

A comparison is made between the experimental data and the predictions from the SCF Dis 
and HCD equations(Tables 5.9-5.10 and 5.17-5.18). Both sets of equations are accepted for 

predicting hot spot SCF on brace toe. For the chord saddle position, the HCD equation is 
accepted while the SCF Dis equation is rejected.

As a summary, the new set of equations(SCF Dis) are accepted to predict the hot spot SCF 
for all cases except for the chord saddle position under OPB loading. Further examination of 

this case(Table 5.10) showed that the main serious predictions(P/R<0.8) are those for joints 
with high P ratio. This set of equations may not be as good as the earlier one dimensional SCF 

equations, for fitting the original finite element database, especially for high p ratio cases, as 
it aims to fit the two dimensional distribution rather than the hot spot alone. However, a 
comparison with experimental data shows that it can offer reasonable good performance for 
predicting the hot spot SCF except for the high p cases at chord saddle position under OPB 
loading. Under these conditions, it can be replaced by the HCD SCF equation.
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b) Normalised SCF Distribution Prediction

Since the capability of predicting hot spot SCFs was assessed for this new set of equations in 
the last section, the validation of stress distribution is therefore based on the normalised SCF 
distribution data that can be obtained by dividing the hot spot SCF. However, as associated 
information, the comparison of actual SCF values are also carried out for these two set of 
equations.

A comparison has been made between the original and normalised stress distribution 
predictions from the SCF Dis and HCD equations with the existing UCL acrylic and steel 
model test results(Hellier et al 1990 b) and recently UCL steel test data(Myers 1996)(Etube, 

1996) and the results are shown in Figures 5.6-5.31. Again, the evaluation of stress 
distribution is presented for each mode of loading in turn as following.

i) Axial Loading

A comparison of the predicted actual values and normalised SCF distribution data from the 
SCF Dis equations and the HCD equations with experimental test results, is shown in Figures 
5.6-5.13 for brace and chord toes respectively. As can be seen from these figures, a 

reasonably good agreement has been achieved for these cases for both equations. However, it 
has been noticed again that the predictions from the thin finite element analysis results based 
solutions including SCF Dis and HCD equations, underestimate the SCFs at the chord crown 
position.

ii) IPB loading

Figures 5.14-5.21 show the comparison between the predicted SCF distribution from these 

two set of equations with the acrylic and steel model test data for both brace and chord toes 
respectively. The figures show both actual values and normalised distributions. Again, both 
sets of equations provide a good predictions for stress distributions compared with 
experimental results. Moreover, the predictions from SCF Dis equations show a better 

correlation.

iii) OPB loading

A comparison has been made between the predicted actual values and normalised SCF 
distribution from both sets of equations with acrylic and steel test data for both brace and 

chord toes respectively (Figures 5.22-5.31). As can be seen from these figures, a good 
agreement has been achieved for these cases for both equations. As all the maximum principal 
stresses along the intersection are used to derive the equations, the predictions from SCF Dis 
equations agree very well with experimental data along the welds including the area away 
from hot spot. The SCF predictions at the crown positions from SCF Dis equations are not 
zero but small values while zero is assigned at crown position for HCD equations. Generally,
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the predictions from SCF Dis equations show a better correlation. However, a slight 
underestimation from the SCF Dis equation was observed for the chord saddle in Figure 5.30.

As a summary, both sets of equations provide a reasonably good SCF distribution prediction 
along the intersection under all modes of loading compared with acrylic and steel test results, 
the predictions from the SCF Dis equations being a slightly better. However, it should be 
noted that validation is limited as only these few test data are available.

5.5 Concluding Remarks

Comprehensive stress distribution information is needed for the advanced fatigue strength 
assessment of tubular joints, especially under multiple axes loading. However, so far there is 
only one set of stress equations(UCL HCD) which can provide this whole information for 
tubular Y and T-joint. However, this set of equations was not recommended by the fatigue 
panel(MaTSU 1996) to predict the hot spot SCF as they did not pass the assessment criteria 
in some cases. Also the HCD stress distribution equations are only based on a limited sample 
of finite element results and require hot spot SCF input. They may not provide sufficient 
accuracy for all individual joints. In order to enhance the stress prediction capability, 
systematic finite element analyses have been carried out for 330 tubular Y and T-joints which 

are typically used offshore. Based on these finite element results, a new set of parametric 
equations have been derived to predict the full stress distribution along the intersection of 
tubular welded Y and T-joints under three modes of loading as a function of the geometric 
parameters a, p, 7, t  and 0. The stress distribution equations not only can predict the 
normalised distribution for all cases but also provide an alternative method for predicting the 
hot spot SCF.

A comprehensive assessment has been made by comparing the predictions from this set of 
equations(SCF Dis) and HCD equations with available acrylic and steel test results. As a 
result, the new set of equations has been proven to have the capability to reliably estimate the 
hot spot SCFs on both brace and chord toes under all modes of loading except for the chord 
saddle under OPB loading. For this particular case, the HCD SCF parametric equations can 
be used instead. Thus, combining with HCD equations, this new set of equations can be used 
to predict all hot spot SCFs for tubular Y and T-joints.

The assessment also shows that both SCF Dis and HCD equations can provide SCF 

distribution predictions along the intersection under all modes of loading with reasonably good 

accuracy compared with acrylic and steel test results. The predictions from SCF Dis 
equations perform somewhat better. However, it should be noted that the validation of the 
equations is very limited as so far only very a few experimental data for stress distributions 
are available.
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The HCD parametric equations can be used to predict the DoBs at the critical positions of 
both the chord and brace sides of tubular Y and T-joints. The characterised equations for DoB 
distribution along the intersection(Cheaitani et al 1995) have been derived recently for tubular 

T-joints and they permit the interpolation of DoB between hot-spot position. Therefore, with 

these two set of equations, the DoB at any position along the intersection of tubular T-joints 
can be predicted and these equations may also be extended for use in tubular Y-joints as the 

first estimate.

Thus, combination of this new set of equations(SCF Dis) and HCD equations together with 
Cheaitani equations allows one to recreate the 2D stress distribution around welded tubular Y 
and T-joints. All these equations can be easily incorporated into fatigue life calculation codes 
and provide a predictive capability for the stress acting on the welded intersection, anticipated 

crack plane.
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Table 5.1 Comparison between DOB s around upper Intersection from Coarse to Fine 

X joint Meshes to Show Extent of Convergence ( 0=10.39, p=0.5, 7=12.9, t=0.5, 0=90°)

No. of elements Chord Brace

around intersection Crown Saddle Crown Saddle

Axial Loading

16 2.197 7.536 2.775 9.328

20 2.203 7.296 2.825 9.062

24 2.199 7.497 2.813 9.171

In-Plane Bending

16 2.589 0.0548 3.360 0.1533

20 2.549 0.0523 3.322 0.1703

24 2.578 0.0557 3.330 0.1806

Out-Plane Bending

16 0.1520 5.585 0.3842 6.733

20 0.1563 5.377 0.4168 6.445

24 0.1768 5.553 0.4341 6.621
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Table 5.2 Summary of Degree of Fit for the Parametric Equations of SCF Distribution 

around the Intersection of Tubular Y and T-joints

Mode of Form of Expression Co Cl C2 C3

Loading/ Equations Descriptive Statistics (%)

Location Mean Std. Dev. r2

Axial Loading

Brace Appendix ELI 91.34% 9.92% 97.72 93.85 98.35 N/A

Chord Appendix El.2 95.71% 5.29% 98.64 94.55 97.82 N/A

In-Plane Bending

Brace Toe Side Appendix E2.1 97.19% 3.39% 95.78 96.32 96.03 N/A

Brace Heel Side Appendix E2.1 99.28% 1.26% 96.29 97.36 96.93 N/A

Chord Toe Side Appendix E2.2 99.55% 0.57% 96.68 96.88 96.65 N/A

Chord Heel Side Appendix E2.2 99.48% 0.46% 97.46 97.38 96.51 N/A

Out-Plane Bending

Brace Appendix E3.1 93.13% 8.68% 97.17 93.32 98.30 N/A

Chord Appendix E3.2 95.69% 4.59% 98.08 93.37 98.11 N/A
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Table 5.3 Comparison between the Predictions from the SCF Distribution and HCD Equations

Joint
Ref

a P Y X 0
(Rad)

M at Rec HCD HCD/
Rec

SCF
Dis

SCF
Dis/
Rec

40/T 10.2 0.25 14.4 0.28 1.57 Steel 1.9 2.69 1.41 4.22 2.22
TGI 13.5 0.5 12 0.52 1.57 Aery! c 1.9 2.61 1.37 1.91 1.01
3U/1 10 0.26 12 0.75 1.57 Aery! c 1.6 3.65 2.28 4.35 2.72
3U/2 10 0.5 12 0.75 1.57 Acryl c 2 2.64 1.32 2.59 1.30
3U/3 10 0.8 12 0.75 1.57 Aery! c 2.1 2.30 1.09 1.80 0.86
3U/5 10 0.26 24 0.75 1.57 Acryl c 3 5.12 1.71 3.20 1.07
3U/9 10 0.26 32 0.75 1.57 Acryl c 3.2 7.27 2.27 3.24 1.01

9AU/2 10 0.8 24 1 0.79 Acryl c 1.9 2.14 1.13 2.92 1.54
9AU/3 10 0.8 24 1 1.05 Acryl c 2.1 1.82 0.86 2.14 1.02
9BU/1 10 0.8 24 1 1.57 Acryl c 1.5 1.57 1.05 1.50 1.00

llAU/1 10 0.5 12 1 1.57 Acryl c 1.5 2.52 1.68 2.70 1.80
14U/1 10 0.26 12 0.4 1.57 Acryl c 2.6 2.95 1.13 4.55 1.75
14U/2 10 0.5 12 0.4 1.57 Acryl c 2.2 2.47 1.12 2.94 1.34
14U/3 10 0.8 12 0.4 1.57 Acryl c 1.9 2.17 1.14 2.39 1.26
14U/4 10 0.26 24 0.4 1.57 Acryl c 3.1 4.13 1.33 3.14 1.01
14U/5 10 0.5 24 0.4 1.57 Acryl c 1.6 2.27 1.42 1.50 0.94

14DU/2 10 0.8 24 0.4 0.79 Acryl c 1.6 2.06 1.29 3.11 1.94
14DU/3 10 0.8 24 0.4 1.05 Acryl c 1.6 1.77 1.11 2.35 1.47

Table 5.4 Comparison between the Predictions from the SCF Distribution and HCD Equations

Joint
Ref

a P Y T 0
(Rad)

M at Rec HCD HCD/
Rec

SCF
Dis

SCF
Dis/
Rec

19/T 10.5 0.53 13.4 0.86 1.57 Steel 6.5 12.61 1.94 12.44 1.91
20/T 10 0.53 13.3 0.51 1.57 Steel 4.9 8.27 1.69 8.88 1.81
39/T 10.2 0.25 14.3 0.4 1.57 Steel 4.4 7.21 1.64 7.77 1.77
40/T 10.2 0.25 14.4 0.28 1.57 Steel 4.4 5.81 1.32 5.97 1.36
T-O 10 0.57 26.9 0.46 1.57 Steel 8.4 10.79 1.28 13.29 1.58
T-R 10 0.57 19.4 0.33 1.57 Steel 6.2 7.32 1.18 8.49 1.37

T(Steel) 6.3 0.5 24.1 1 1.57 Steel 12 19.35 1.61 16.62 1.39
1 6.9 0.66 23.1 0.91 0.79 Steel 6.5 8.66 1.33 8.49 1.31

TW2 12 0.4 19.7 0.5 1.57 Steel 9.1 10.73 1.18 12.32 1.35
T-ST 7.2 0.71 14.3 0.79 1.57 Steel 6 10.42 1.74 10.53 1.75
1.3 6.2 0.8 20.3 0.99 1.57 Steel 8.2 13.29 1.62 12.83 1.56
1.7 6.2 0.8 31.8 0.91 0.79 Steel 6.1 8.15 1.34 9.80 1.61
1.9 6.2 0.4 20.3 0.94 0.79 Steel 5 8.60 1.72 7.36 1.47
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Table 5.4 Comparison between the Predictions from the SCF Distribution and HCD Equations
with the Recorded Data at Brace Saddle position for Axially Loaded Y and T-joints

Joint
Ref

a P Y X 0
(Rad)

M at Rec HCD MOD/
Rec

SCF
Dis

SCF
Dis/
Rec

TGI 13.5 0.5 12 0.52 1.57 Acrylic 6.3 8.05 1.28 8.97 1.42
3U/1 10 0.26 12 0.75 1.57 Acrylic 6 9.88 1.65 10.25 1.71
3U/2 10 0.5 12 0.75 1.57 Acrylic 8 10.68 1.34 10.77 1.35
3U/3 10 0.8 12 0.75 1.57 Acrylic 5.9 7.87 1.33 8.90 1.51
3U/5 10 0.26 24 0.75 1.57 Acrylic 10.7 14.66 1.37 17.18 1.61
3U/6 10 0.5 24 0.75 1.57 Acrylic 10.5 15.85 1.51 16.77 1.60
3U/7 10 0.8 24 0.75 1.57 Acrylic 13.6 11.66 0.86 14.10 1.04
3U/9 10 0.26 32 0.75 1.57 Acrylic 14.2 16.66 1.17 21.43 1.51

3U/10 10 0.5 32 0.75 1.57 Acrylic 17.4 18.01 1.04 20.09 1.15
3U/11 13.3 0.8 32 0.75 1.57 Acrylic 21.1 13.36 0.63 19.08 0.90
9AU/2 10 0.8 24 1 0.79 Acrylic 7.4 8.14 1.10 8.79 1.19
9AU/3 10 0.8 24 1 1.05 Acrylic 11.6 11.16 0.96 13.00 1.12
9BU/1 10 0.8 24 1 1.57 Acrylic 13.8 14.76 1.07 16.84 1.22

llAU/1 10 0.5 12 1 1.57 Acrylic 8.4 13.18 1.57 11.84 1.41
llA U /2 10 0.5 24 1 1.57 Acrylic 16.6 19.57 1.18 18.64 1.12

TJOINT19 16 0.5 16 0.5 1.57 Acrylic 8 9.38 1.17 10.83 1.35
TJOINT 20 16 0.5 16 0.25 1.57 Acrylic 5.2 5.84 1.12 5.94 1.14
TJOINT 21 16 0.5 12 0.5 1.57 Acrylic 4.7 7.83 1.67 8.92 1.90
TJOINT 22 16 0.5 12 0.25 1.57 Acrylic 3.3 4.94 1.50 4.32 1.31

IT/G 8 0.5 12 1 1.57 Acrylic 11.6 13.10 1.13 10.78 0.93
14U/1 10 0.26 12 0.4 1.57 Acrylic 4.9 6.50 1.33 6.57 1.34
14U/2 10 0.5 12 0.4 1.57 Acrylic 6.4 6.54 1.02 6.85 1.07
14U/3 10 0.8 12 0.4 1.57 Acrylic 4.5 4.84 1.08 4.92 1.09
14U/4 10 0.26 24 0.4 1.57 Acrylic 9 9.57 1.06 12.27 1.36
14U/5 10 0.5 24 0.4 1.57 Acrylic 10.4 9.50 0.91 11.67 1.12
14U/6 10 0.8 24 0.4 1.57 Acrylic 9.2 6.95 0.76 8.93 0.97

14DU/2 10 0.8 24 0.4 0.79 Acrylic 4.6 3.89 0.84 3.28 0.71
14DU/3 10 0.8 24 0.4 1.05 Acrylic 8.1 5.33 0.66 6.07 0.75

TJOINT 6 16 0.5 16 1 1.57 Acrylic 12.7 16.01 1.26 16.99 1.34
TJOINT 10 16 0.33 24 1 1.57 Acrylic 16.2 18.88 1.17 22.35 1.38
TJOINT 12 16 0.67 24 1 1.57 Acrylic 21.5 17.84 0.83 19.96 0.93

2T/0 8 0.5 23.1 1 1.57 Acrylic 16.1 19.09 1.19 17.12 1.06
T-AC 9.3 0.67 15 0.8 1.57 Acrylic 7.6 11.45 1.51 11.83 1.56
Y-AC 9.3 0.67 15 0.8 0.79 Acrylic 6.1 6.34 1.04 6.06 0.99
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Table 5.5 Comparison between the Predictions from the SCF Distribution and HCD Equations

a P Y T 0
(Rad)

M at R HCD HCD/
Rec

SCF
Dis

SCF
Dis/
Rec

19/T 10.5 0.53 13.4 0.86 1.57 Steel 5.2 4.26 0.82 3.86 0.74
20/T 10 0.53 13.3 0.51 1.57 Steel 2.8 2.84 1.01 2.58 0.92
39/T 10.2 0.25 14.3 0.4 1.57 Steel 2.4 2.75 1.14 3.22 1.34
Test 13 0.48 15.9 0.63 0.79 Steel 3.8 3.31 0.87 2.93 0.77
TGI 13.5 0.5 12 0.52 1.57 Acryl c 3.3 2.88 0.87 2.51 0.76
3U/1 10 0.26 12 0.75 1.57 Acryl c 4.5 4.49 1.00 4.68 1.04
3U/2 10 0.5 12 0.75 1.57 Acryl c 3.7 3.80 1.03 3.66 0.99
3U/3 10 0.8 12 0.75 1.57 Acryl c 4.5 3.59 0.80 3.14 0.70
3U/5 10 0.26 24 0.75 1.57 Acryl c 5.1 5.55 1.09 4.00 0.79
3U/6 10 0.5 24 0.75 1.57 Acryl c 3.9 4.42 1.13 2.75 0.71
3U/7 10 0.8 24 0.75 1.57 Acryl c 4.9 4.43 0.91 2.53 0.52
3U/9 10 0.26 32 0.75 1.57 Acryl c 5.3 6.39 1.21 3.95 0.75
3U/1G 10 0.5 32 0.75 1.57 Acryl c 4.4 5.20 1.18 2.66 0.60
3U/11 13.3 0.8 32 0.75 1.57 Acryl c 6.4 5.17 0.81 2.91 0.45
9AU/2 10 0.8 24 1 0.79 Acryl c 6.4 5.29 0.83 4.62 0.72
9AU/3 10 0.8 24 1 1.05 Acryl c 6.3 5.28 0.84 3.82 0.61
9BU/1 10 0.8 24 1 1.57 Acryl c 6.6 5.31 0.80 2.94 0.45
llAU/1 10 0.5 12 1 1.57 Acryl c 6.7 4.70 0.70 4.86 0.73
llA U /2 10 0.5 24 1 1.57 Acryl c 5.5 5.82 1.06 3.95 0.72
14AU/1 10 0.26 12 0.4 1.57 Acryl c 2.8 2.61 0.93 3.36 1.20
14AU/2 10 0.5 12 0.4 1.57 Acryl c 2.6 2.30 0.88 2.35 0.90
14AU/3 10 0.8 12 0.4 1.57 Acryl c 2.6 2.26 0.87 2.20 0.85
14AU/4 10 0.26 24 0.4 1.57 Acryl c 2.5 3.23 1.29 2.53 1.01
14AU/5 10 0.5 24 0.4 1.57 Acryl c 2.2 2.72 1.24 1.50 0.68
14AU/6 10 0.8 24 0.4 1.57 Acryl c 2.9 2.80 0.97 2.17 0.75
14DU/2 10 0.8 24 0.4 0.79 Acryl c 2.8 2.55 0.91 2.55 0.91
14DU/3 10 0.8 24 0.4 1.05 Acryl c 2.9 2.70 0.93 2.27 0.78
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Table 5.6 Comparison between the Predictions from the SCF Distribution and HCD Equations

Joint
Ref

a P Y X 0
(Rad)

M at Rec HCD HCD/
Rec

SCF
Dis

SCF
Dis/
Rec

19/T 1G.5 G.53 13.4 G.86 1.57 Steel 11.4 15.92 1.4G 14.26 1.25
20/T IG G.53 13.3 G.51 1.57 Steel 6.5 7.56 1.16 7.32 1.13
39/T 1G.2 G.25 14.3 G.4 1.57 Steel 4.2 5.85 1.39 6.12 1.46
T-O IG G.57 26.9 G.46 1.57 Steel 11.6 1G.25 G.88 12.12 1.04
T-R IG G.57 19.4 G.33 1.57 Steel 7.1 5.58 G.79 6.48 0.91

T(Steel) 6.3 G.5 24.1 1 1.57 Steel 18.5 29.G4 1.57 25.57 1.38
Test 13 G.48 15.9 G.63 G.79 Steel 5.2 6.G7 1.17 6.06 1.16

1 6.9 G.66 23.1 G.91 G.79 Steel 8.6 1G.79 1.25 10.96 1.27
TW2 7.3 G.71 12 1 1.57 Steel IG 15.42 1.54 14.86 1.49
T25G 12 G.5 19.7 G.5 1.57 Steel IG 9.8G G.98 10.81 1.08
T35G IG G.7 19.7 G.5 1.57 Steel 9.2 8.41 G.91 8.69 0.95
T-ST 7.2 G.71 14.3 G.79 1.57 Steel 8.7 11.86 1.36 11.46 1.32
2-3 IG G.5 13.4 G.5 1.57 Steel 5.7 7.48 1.31 7.32 1.28

4-1G IG G.5 14.3 G.5 1.57 Steel 6.7 7.85 1.17 7.78 1.16
11-12 IG G.25 14.3 G.39 1.57 Steel 4.7 5.67 1.21 5.88 1.25
13-17 IG G.5 14.3 G.5 1.57 Steel 7.7 7.85 1.G2 7.78 1.01
SM-A 9.4 G.4 2G G.77 1.57 Steel 15.8 17.72 1.12 17.45 1.10
SM-B 9.3 G.6 19.8 G.75 1.57 Steel 16.1 16.G8 l.GG 15.18 0.94
SM-C 9.3 G.8 2G.1 G.76 1.57 Steel 15.2 11.71 G.77 12.73 0.84
SR-A 9.4 G.4 2G G.75 1.57 Steel 15.2 17.G7 1.12 16.93 1.11
SH-A 9.3 G.4 2G.1 G.82 1.57 Steel 17.3 19.45 1.12 18.85 1.09

1.3 6.2 G.8 2G.3 G.99 1.57 Steel 11.4 17.83 1.56 18.15 1.59
1.5 6.2 G.8 31.8 G.98 1.57 Steel 29 21.38 G.74 23.55 0.81
1.7 6.2 G.8 31.8 G.91 G.79 Steel 1G.4 9.93 G.95 10.46 1.01
1.9 6.2 G.4 2G.3 G.94 G.79 Steel 9.9 11.42 1.15 11.83 1.19
1 8 G.71 14.3 1 1.57 Steel 12.5 18.GG 1.44 16.49 1.32

4-7 8.1 G.71 14.3 1 1.57 Steel 13.3 18.G1 1.35 16.50 1.24
8 7.3 G.71 12 1 1.57 Steel 9.5 15.42 1.62 14.86 1.56

9-11 7.2 G.71 12 1 1.57 Steel 1G.43 15.41 1.48 14.85 1.42
TGI 13.5 G.5 12 G.52 1.57 Acrylic 5.9 7.27 1.23 7.14 1.21
3U/1 IG G.26 12 G.75 1.57 Acrylic 7.6 11.G2 1.45 11.62 1.53
3U/2 IG G.5 12 G.75 1.57 Acryiic 9.3 11.77 1.27 11.04 1.19
3U/3 IG G.8 12 G.75 1.57 Acrylic 7.5 8.G3 1.G7 8.74 1.17
3U/5 IG G.26 24 G.75 1.57 Acryiic 15.4 17.64 1.15 20.40 1.32
3U/6 IG G.5 24 G.75 1.57 Acrylic 17.3 18.85 1.G9 18.97 1.10
3U/7 IG G.8 24 G.75 1.57 Acryiic 17.4 12.82 G.74 14.32 0.82
3U/9 IG G.26 32 G.75 1.57 Acrylic 2G.4 19.98 G.98 25.74 1.26

3U/1G IG G.5 32 G.75 1.57 Acryiic 26.8 21.21 G.79 23.75 0.89
3U/11 13.3 G.8 32 G.75 1.57 Acrylic 25.8 15.G3 G.58 18.27 0.71
9AU/2 IG G.8 24 1 G.79 Acryiic 11.7 9.78 G.84 11.49 0.98
9AU/3 IG G.8 24 1 1.G5 Acrylic 19.3 14.48 G.75 16.12 0.84
9BU/1 IG G.8 24 1 1.57 Acryiic 21.9 2G.16 G.92 21.25 0.97
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Table 5.6 Comparison between the Predictions from the SCF Distribution and HCD Equations
with the Recorded Data at Chord Saddle position for Axially Loaded Y and T-joints

S pec. no. a P Y X 0
(Rad)

M at Rec HCD MOD/
Rec

SCF
Dis

SCF
Dis/
Rec

llAU/1 10 0.5 12 1 1.57 Acrylic 10.7 18.41 1.72 16.72 1.56
llA U /2 10 0.5 24 1 1.57 Acrylic 26.7 29.48 1.10 26.69 1.00

TJOINT 15 16 0.25 32 1 1.57 Acrylic 26.2 29.48 1.13 37.91 1.45
TJOINT 16 16 0.5 32 1 1.57 Acrylic 30 33.75 1.13 34.73 1.16
TJOINT 17 16 0.75 32 1 1.57 Acrylic 24 26.35 1.10 28.50 1.19
TJOINT 19 16 0.5 16 0.5 1.57 Acrylic 10 8.62 0.86 9.24 0.92
TJOINT 20 16 0.5 16 0.25 1.57 Acrylic 4 3.60 0.90 4.68 1.17
TJOINT 21 16 0.5 12 0.5 1.57 Acrylic 6.2 6.96 1.12 6.89 1.11
TJOINT 22 16 0.5 12 0.25 1.57 Acrylic 3.1 2.91 0.94 3.01 0.97
YJOINT 2 16 0.33 24 1 0.79 Acrylic 14.5 13.56 0.94 18.49 1.28
YJOINT 3 16 0.5 24 1 0.79 Acrylic 14.8 14.55 0.98 17.13 1.16
YJOINT 7 8 0.5 24 1 0.79 Acrylic 14.3 14.18 0.99 15.37 1.07
YJOINT 8 23 0.5 24 1 0.79 Acrylic 14.5 14.75 1.02 18.26 1.26

YJOINT 10 16 0.5 24 1 1.05 Acrylic 20 21.55 1.08 22.29 1.11
YJOINT 11 16 0.33 12 1 0.79 Acrylic 7.3 8.47 1.16 9.56 1.31
YJOINT 12 13.7 0.5 12 1 0.79 Acrylic 6 9.04 1.51 8.97 1.50
YJOINT 13 16 0.67 12 1 0.79 Acrylic 5 8.20 1.64 7.92 1.58

lT/0 8 0.5 12 1 1.57 Acrylic 14.5 18.26 1.26 16.47 1.14
14U/1 10 0.26 12 0.4 1.57 Acrylic 4.3 5.13 1.19 4.99 1.16
14U/2 10 0.5 12 0.4 1.57 Acrylic 4.6 5.20 1.13 5.05 1.10
14U/3 10 0.8 12 0.4 1.57 Acrylic 3.5 3.64 1.04 3.44 0.98
14U/4 10 0.26 24 0.4 1.57 Acrylic 7.7 8.19 1.06 10.68 1.39
14U/5 10 0.5 24 0.4 1.57 Acrylic 9.2 8.29 0.90 10.13 1.10
14U/5 10 0.8 24 0.4 1.57 Acrylic 8.9 5.80 0.65 6.69 0.75

14DU/2 10 0.8 24 0.4 0.79 Acrylic 4.3 3.09 0.72 2.55 0.59
14DU/3 10 0.8 24 0.4 1.05 Acrylic 7.4 4.35 0.59 4.34 0.59

TJONIT 1 16 0.25 12 1 1.57 Acrylic 10.8 16.37 1.52 18.44 1.71
TJONIT 2 16 0.5 12 1 1.57 Acrylic 12.2 18.74 1.54 17.00 1.39
TJONIT 3 16 0.75 12 1 1.57 Acrylic 11 14.63 1.33 14.33 1.30
TJONIT 5 16 0.25 16 1 1.57 Acrylic 15 20.71 1.38 22.50 1.50
TJONIT 6 16 0.5 16 1 1.57 Acrylic 18 23.71 1.32 20.71 1.15
TJONIT 7 16 0.75 16 1 1.57 Acrylic 16.2 18.51 1.14 17.32 1.07

TJONIT 10 16 0.33 24 1 1.57 Acrylic 24.2 27.95 1.16 29.87 1.23
TJONIT 11 16 0.5 24 1 1.57 Acrylic 25 30.00 1.20 27.94 1.12
TJONIT 12 16 0.67 24 1 1.57 Acrylic 27.5 27.08 0.98 24.96 0.91

2T/0 8 0.5 23.1 1 1.57 Acrylic 25 28.71 1.15 25.42 1.02
T-AC 9.3 0.67 15 0.8 1.57 Acrylic 8.8 13.63 1.55 12.71 1.44
Y-AC 9.3 0.67 15 0.8 0.79 Acrylic 7.2 6.97 0.97 6.49 0.90
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Table 5.7 Comparison between the Predictions from the SCF Distribution and HCD Equations

Joint
Ref

a P y X 0
(Rad)

M at Rec HCD HCD/
Rec

SCF
Dis

SCF
Dis/
Rec

19/T 10.5 0.53 13.4 0.86 1.57 Steel 2.1 3.33 1.58 3.47 1.65
20/T 10 0.53 13.3 0.51 1.57 Steel 2.4 2.84 1.18 2.71 1.13
39/T 10.2 0.25 14.3 0.4 1.57 Steel 1.5 2.57 1.71 2.11 1.41
40/T 10.2 0.25 14.4 0.28 1.57 Steel 1.9 2.32 1.22 3.60 1.90

1 6.9 0.66 23.1 0.91 0.79 Steel 2.7 3.51 1.30 3.38 1.25
T-ST 7.2 0.71 14.3 0.79 1.57 Steel 2 3.34 1.67 3.25 1.63
Y-ST 7.2 0.71 14.3 0.79 0.79 Steel 2.5 2.91 1.16 2.64 1.06
TGI 13.5 0.5 12 0.52 1.57 Acrylic 2 2.75 1.37 2.70 1.35
3U/2 10 0.5 12 0.75 1.57 Acrylic 2.3 3.06 1.33 3.08 1.34
3U/3 10 0.8 12 0.75 1.57 Acrylic 2.1 3.09 1.47 2.89 1.37
3U/5 10 0.26 24 0.75 1.57 Acrylic 3 3.76 1.25 4.05 1.35
3U/6 10 0.5 24 0.75 1.57 Acrylic 2.8 3.95 1.41 4.22 1.51
3U/7 10 0.8 24 0.75 1.57 Acrylic 3.3 3.99 1.21 4.09 1.24
3U/9 10 0.26 32 0.75 1.57 Acrylic 3.6 4.18 1.16 4.56 1.27

3U/10 10 0.5 32 0.75 1.57 Acrylic 4.4 5.01 1.14 5.10 1.16
3U/11 13.3 0.8 32 0.75 1.57 Acrylic 4.2 4.44 1.06 5.01 1.19
9AU/2 10 0.8 24 1 0.79 Acrylic 2.4 3.51 1.46 3.36 1.40
9AU/3 10 0.8 24 1 1.05 Acrylic 2.9 4.14 1.43 3.90 1.34
9BU/1 10 0.8 24 1 1.57 Acrylic 2.6 4.34 1.67 4.40 1.69

llAU/1 10 0.5 12 1 1.57 Acrylic 2.1 3.33 1.59 2.89 1.37
llA U /2 10 0.5 24 1 1.57 Acrylic 3.2 4.30 1.34 4.98 1.56

lT/0 8 0.5 12 1 1.57 Acrylic 3.1 3.33 1.07 3.73 1.20
14U/1 10 0.26 12 0.4 1.57 Acrylic 1.9 2.39 1.26 1.98 1.04
14U/2 10 0.5 12 0.4 1.57 Acrylic 2.1 2.54 1.21 2.46 1.17
14U/3 10 0.8 12 0.4 1.57 Acrylic 2.2 2.57 1.17 2.48 1.13
14U/4 10 0.26 24 0.4 1.57 Acrylic 3 3.12 1.04 3.72 1.24
14U/5 10 0.5 24 0.4 1.57 Acrylic 2.7 3.28 1.21 3.07 1.14
14U/6 10 0.8 24 0.4 1.57 Acrylic 2.2 3.31 1.50 3.10 1.41

14DU/2 10 0.8 24 0.4 0.79 Acrylic 2 3.14 1.57 2.40 1.20
14DU/3 10 0.8 24 0.4 1.05 Acrylic 2.3 3.17 1.38 2.81 1.22

TJOINT 2 16 0.5 12 1 1.57 Acrylic 3.2 3.34 1.04 3.83 1.20
TJOINT6 16 0.5 16 1 1.57 Acrylic 3.2 3.71 1.16 3.74 1.17

2T/0 8 0.5 23.1 1 1.57 Acrylic 4.3 4.23 0.98 4.85 1.13
T-AC 9.3 0.67 15 0.8 1.57 Acrylic 2 3.41 1.70 3.40 1.70
Y-AC 9.3 0.67 15 0.8 0.79 Acrylic 2.2 2.94 1.34 2.80 1.27
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Table 5.8 Comparison between the Predictions from the SCF Distribution and HCD Equations

Joint
Ref

a P y X 0
(Rad)

M at Rec HCD HCD
/R ec

SCF
Dis

SCF
Dis/
Rec

19/T 10.5 0.53 13.4 0.86 1.57 Steel 2.5 4.18 1.67 4.49 1.80
20/T 10 0.53 13.3 0.51 1.57 Steel 1.7 2.64 1.56 3.04 1.79

1 6.9 0.66 23.1 0.91 0.79 Steel 3.3 4.33 1.31 4.49 1.36
TW2 7.3 0.71 12 1 1.57 Steel 3 4.68 1.56 4.43 1.48
T-ST 7.2 0.71 14.3 0.79 1.57 Steel 3.1 4.15 1.34 3.97 1.28
Y-ST 7.2 0.71 14.3 0.79 0.79 Steel 2.7 2.99 1.11 4.01 1.49
TGI 13.5 0.5 12 0.52 1.57 Acryl c 1.8 2.51 1.40 3.00 1.67
3U/1 10 0.26 12 0.75 1.57 Acryl c 2.3 2.79 1.21 3.48 1.51
3U/2 10 0.5 12 0.75 1.57 Acryl c 2.7 3.48 1.29 3.89 1.44
3U/3 10 0.8 12 0.75 1.57 Acryl c 3.4 3.65 1.07 3.43 1.01
3U/5 10 0.26 24 0.75 1.57 Acryl c 4 5.01 1.25 5.09 1.27
3U/6 10 0.5 24 0.75 1.57 Acryl c 3.9 4.97 1.27 5.22 1.34
3U/7 10 0.8 24 0.75 1.57 Acryl c 4 4.91 1.23 4.83 1.21
3U/9 10 0.26 32 0.75 1.57 Acryl c 5.3 6.83 1.29 6.90 1.30

3U/1Ü 10 0.5 32 0.75 1.57 Acryl c 5.1 5.73 1.12 6.16 1.21
3U/11 13.3 0.8 32 0.75 1.57 Acryl c 4.2 5.50 1.31 6.14 1.46
9AU/2 10 0.8 24 1 0.79 Acryl c 3.4 6.38 1.88 5.46 1.61
9AU/3 10 0.8 24 1 1.05 Acryl c 4.2 5.81 1.38 6.21 1.48
9BU/1 10 0.8 24 1 1.57 Acryl c 4.1 6.45 1.57 6.16 1.50

llAU/1 10 0.5 12 1 1.57 Acryl c 3.4 4.46 1.31 4.88 1.43
llA U /2 10 0,5 24 1 1.57 Acryl c 5.3 6.52 1.23 7.18 1.36

TJOINT 16 16 0.5 32 1 1.57 Acryl c 7 7.54 1.08 8.43 1.20
TJOINT 21 16 0.5 12 0.5 1.57 Acryl c 2.2 2.42 1.10 2.92 1.33
YJOINT 2 16 0.33 24 1 0.79 Acryl c 3.9 4.68 1.20 7.12 1.83
YJOINT3 16 0.5 24 1 0.79 Acryl c 4.3 4.73 1.10 5.62 1.31
YJOINT 10 16 0.5 24 1 1.05 Acryl c 5 5.74 1.15 6.45 1.29
YJOINT 11 16 0.33 12 1 0.79 Acryl c 2.6 2.90 1.11 5.02 1.93
YJOINT 12 13.7 0.5 12 1 0.79 Acryl c 3.2 3.22 1.01 4.15 1.30
YJOINT 13 16 0.67 12 1 0.79 Acryl c 2.7 3.33 1.23 3.67 1.36

lT/0 8 0.5 12 1 1.57 Acryl c 3.8 4.48 1.18 4.88 1.28
14U/1 10 0.26 12 0.4 1.57 Acryl c 1.6 1.62 1.01 2.65 1.66
14U/2 10 0.5 12 0.4 1.57 Acryl c 1.8 2.01 1.12 2.54 1.41
14U/3 10 0.8 12 0.4 1.57 Acryl c 1.5 2.10 1.40 2.18 1.46
14U/4 10 0.26 24 0.4 1.57 Acryl c 2.4 2.88 1.20 4.17 1.74
14U/5 10 0.5 24 0.4 1.57 Acryl c 2.1 2.74 1.30 3.21 1.53
14U/6 10 0.8 24 0.4 1.57 Acryl c 2.1 2.71 1.29 2.44 1.16

14DU/2 10 0.8 24 0.4 0.79 Acryl c 2.1 2.34 1.12 2.19 1.04
14DU/3 10 0.8 24 0.4 1.05 Acryl c 2.1 2.47 1.17 2.38 1.13

TJOINT 2 16 0.5 12 1 1.57 Acryl c 4 4.43 1.11 4.88 1.22
TJOINT 6 16 0.5 16 1 1.57 Acryl c 4.5 5.16 1.15 5.67 1.26

TJOINT 11 16 0.5 24 1 1.57 Acryl c 6.6 6.53 0.99 7.18 1.09
2T/0 8 0.5 23,1 1 1.57 Acryl c 4.6 6.40 1.39 7.06 1.54

T-AC 9.3 0.67 15 0.8 1.57 Acryl c 2.9 4.26 1.47 4.20 1.45
Y-AC 9.3 0.67 15 0.8 0.79 Acryl c 2.4 3.07 1.28 2.83 1.18
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Table 5.9 Comparison between the Predictions from the SCF Distribution and HCD Equations

Joint Ref a (3 y X 0
(Rad)

M at Rec HCD HCD/
Rec

SCF
Dis

SCF
DIs/R
e c

T23/1-3 14 0.25 14.3 0.39 1.57 Steel 2.07 3.07 1.48 3.58 1.73
T24/1-3 14 0.25 14.3 0.28 1.57 Steel 1.73 2.62 1.52 2.42 1.40

T-ST 7.2 0.71 14.3 0.79 1.57 Steel 5.1 8.77 1.72 9.25 1.81
1.3 6.2 0.8 20.3 0.99 1.57 Steel 7.3 13.51 1.85 13.08 1.79
1.5 6.2 0.8 31.8 0.98 1.57 Steel 10.6 19.67 1.86 18.09 1.71
1.7 6.2 0.8 31.8 0.91 0.79 Steel 6.2 9.19 1.48 10.16 1.64
1.9 6.2 0.4 20.3 0.94 0.79 Steel 3.6 5.26 1.46 5.98 1.66

TGI 13.5 0.5 12 0.52 1.57 Acrylic 5.4 5.46 1.01 6.31 1.17
3U/1 10 0.26 12 0.75 1.57 Acrylic 2.5 3.77 1.51 4.43 1.77
3U/2 10 0.5 12 0.75 1.57 Acrylic 5 6.47 1.29 7.31 1.46
3U/3 10 0.8 12 0.75 1.57 Acrylic 6.7 7.61 1.14 7.79 1.16
3U/5 10 0.26 24 0.75 1.57 Acrylic 5.3 6.79 1.28 9.70 1.83
3U/6 10 0.5 24 0.75 1.57 Acrylic 9.2 11.65 1.27 12.75 1.39
3U/7 10 0.8 24 0.75 1.57 Acrylic 13.2 13.70 1.04 13.28 1.01
3U/9 10 0.26 32 0.75 1.57 Acrylic 9 8.66 0.96 11.94 1.33

3U/10 10 0.5 32 0.75 1.57 Acrylic 14.8 14.87 1.01 15.18 1.03
3U/11 13.3 0.8 32 0.75 1.57 Acrylic 19.8 17.51 0.88 15.74 0.80
9AU/2 10 0.8 24 1 0.79 Acrylic 6.8 7.58 1.12 8.80 1.29
9AU/3 10 0.8 24 1 1.05 Acrylic 10.4 11.26 1.08 12.19 1.17
9BU/1 10 0.8 24 1 1.57 Acrylic 12.2 15.68 1.29 15.18 1.24

llAU/1 10 0.5 12 1 1.57 Acrylic 5 7.41 1.48 7.13 1.43
llA U /2 10 0.5 24 1 1.57 Acrylic 11.6 13.34 1.15 13.56 1.17

TJOINT 19 16 0.5 16 0.5 1.57 Acrylic 6 6.85 1.14 7.97 1.33
TJOINT 20 16 0.5 16 0.25 1.57 Acrylic 4.2 4.95 1.18 5.29 1.26
TJOINT 21 16 0.5 12 0.5 1.57 Acrylic 4 5.37 1.34 6.23 1.56
TJOINT 22 16 0.5 12 0.25 1.57 Acrylic 3.6 3.88 1.08 3.67 1.02

IT/G 8 0.5 12 1 1.57 Acrylic 7.4 7.40 1.00 7.07 0.96
14U/1 10 0.26 12 0.4 1.57 Acrylic 2.2 2.81 1.28 2.66 1.21
14U/2 10 0.5 12 0.4 1.57 Acrylic 4.4 4.82 1.10 5.20 1.18
14U/3 10 0.8 12 0.4 1.57 Acrylic 4.4 5.67 1.29 5.03 1.14
14U/4 10 0.26 24 0.4 1.57 Acrylic 4.5 5.05 1.12 7.56 1.68
14U/5 10 0.5 24 0.4 1.57 Acrylic 8.3 8.68 1.05 9.61 1.16
14U/6 10 0.8 24 0.4 1.57 Acrylic 9.2 10.20 1.11 9.14 0.99

14DU/2 10 0.8 24 0.4 0.79 Acrylic 5.1 4.94 0.97 5.23 1.02
14DU/3 10 0.8 24 0.4 1.05 Acrylic 8.3 7.33 0.88 7.11 0.86

TJOINT 6 16 0.5 16 1 1.57 Acrylic 9 9.48 1.05 9.57 1.06
TJOINT 10 16 0.33 24 1 1.57 Acrylic 9.2 10.06 1.09 11.09 1.21
TJOINT 11 16 0.5 24 1 1.57 Acrylic 13.2 13.37 1.01 13.76 1.04
TJOINT 12 16 0.67 24 1 1.57 Acrylic 18 15.01 0.83 15.20 0.84

2T/0 8 0.5 23.1 1 1.57 Acrylic 12.2 12.90 1.06 13.06 1.07
T-AC 9.3 0.67 15 0.8 1.57 Acrylic 6.2 9.05 1.46 9.70 1.56
Y-AC 9.3 0.67 15 0.8 0.79 Acrylic 4.1 4.49 1.10 5.98 1.46
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Table 5.10 Comparison between the Predictions from the SCF Distribution and HCD Equations

Joint Ref a P Y T 0
(Rad)

M at Rec HCD HCD
/R ec

SCF
Dis

SCF
Dis/
Rec

T703/1-3 17.1 0.53 13.4 0.86 1.57 Steel 8.03 9.70 1.21 8.97 1.12
T704/1-3 17.1 0.53 13.4 0.51 1.57 Steel 5.27 5.75 1.09 5.43 1.03
T23/1-3 14 0.25 14.3 0.39 1.57 Steel 2.5 3.23 1.29 3.32 1.33
T24/1-3 14 0.25 14.3 0.28 1.57 Steel 1.7 2.32 1.36 2.65 1.56

T204CJ211C 5 0.5 14.3 0.5 1.57 Steel 5.1 5.93 1.16 5.36 1.05
T223 5 0.5 28.6 1 1.57 Steel 22 25.39 1.15 20.49 0.93
TW2 7.3 0.71 12 1 1.57 Steel 8.5 10.01 1.18 12.58 1.48
24 5.6 0.5 16.5 0.82 1.57 Steel 8.6 11.40 1.33 10.73 1.25

T-ST 7.2 0.71 14.3 0.79 1.57 Steel 9.1 9.59 1.05 9.80 1.08
1.5 6.2 0.8 31.8 0.98 1.57 Steel 18.5 28.59 1.55 23.14 1.25
1.7 6.2 0.8 31.8 0.91 0.79 Steel 10.9 12.37 1.13 10.75 0.99
1.9 6.2 0.4 20.3 0.94 0.79 Steel 6.2 7.88 1.27 8.11 1.31
2-3 10.9 0.71 14.3 0.78 0.61 Steel 3.3 3.54 1.07 2.91 0.88

TGI 13.5 0.5 12 0.52 1.57 Acryl c 4.9 5.16 1.05 4.94 1.01
3U/1 10 0.26 12 0.75 1.57 Acryl c 3.7 5.41 1.46 5.25 1.42
3U/2 10 0.5 12 0.75 1.57 Acryl c 6.4 7.41 1.16 7.51 1.17
3U/3 10 0.8 12 0.75 1.57 Acryl c 8.9 7.56 0.85 7.78 0.87
3U/5 10 0.26 24 0.75 1.57 Acryl c 8 11.57 1.45 10.40 1.30
3U/6 10 0.5 24 0.75 1.57 Acryl c 13.3 15.85 1.19 13.32 1.00
3U/7 10 0.8 24 0.75 1.57 Acryl c 18.5 16.17 0.87 14.00 0.76
3U/9 10 0.26 32 0.75 1.57 Acryl c 10.8 15.86 1.47 14.49 1.34

3U/10 10 0.5 32 0.75 1.57 Acryl c 21.6 21.73 1.01 17.47 0.81
3U/11 13.3 0.8 32 0.75 1.57 Acryl c 26.7 22.25 0.83 19.73 0.74
4U/1 5 0.5 28.6 1 1.57 Acryl c 24.2 25.39 1.05 20.49 0.85
4U/2 5 0.5 28.6 0.5 1.57 Acryl c 10.4 12.69 1.22 8.55 0.82

9AU/2 10 0.8 24 1 0.79 Acryl c 12.3 10.46 0.85 11.03 0.90
9AU/3 10 0.8 24 1 1.05 Acryl c 19 15.19 0.80 15.35 0.81
9BU/1 10 0.8 24 1 1.57 Acryl c 21.4 21.56 1.01 19.92 0.93
llAU/1 10 0.5 12 1 1.57 Acryl c 7 9.88 1.41 10.84 1.55
llA U /2 10 0.5 24 1 1.57 Acryl c 18.7 21.13 1.13 18.70 1.00
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Table 5.10 Comparison between the Predictions from the SCF Distribution and HCD Equations
with the Recorded Data on Chord Side for OPB loaded Y and T-joints

Joint Ref a P Y X 0
(Rad)

M at Rec HCD HCD
/R ec

SCF
Dis

SCF
Dis/
Rec

TJOINT 15 16 0.25 32 1 1.57 Acryl c 14 20.06 1.43 21.22 1.52
TJOINT 16 16 0.5 32 1 1.57 Acryl c 24.5 29.16 1.19 25.85 1.06
TJOINT 17 16 0.75 32 1 1.57 Acryl c 23.7 29.71 1.25 27.00 1.14
TJOINT 19 16 0.5 16 0.5 1.57 Acryl c 7.7 6.81 0.88 6.39 0.83
TJOINT 20 16 0.5 16 0.25 1.57 Acryl c 3.5 3.41 0.97 4.08 1.17
TJOINT 21 16 0.5 12 0.5 1.57 Acryl c 5.2 4.97 0.96 4.69 0.90
TJOINT 22 16 0.5 12 0.25 1.57 Acryl c 2.5 2.48 0.99 2.73 1.09
YJOINT 2 16 0.33 24 1 0.79 Acryl c 8.5 9.29 1.09 9.57 1.13
YJOINT 3 16 0.5 24 1 0.79 Acryl c 10 10.31 1.03 11.19 1.12

YJOINT 10 16 0.5 24 1 1.05 Acryl c 15.5 14.98 0.97 15.05 0.97
YJOINT 11 16 0.33 12 1 0.79 Acryl c 3.5 4.80 1.37 3.67 1.05
YJOINT 12 13.7 0.5 12 1 0.79 Acryl c 4.6 5.31 1.15 5.44 1.18
YJOINT 13 16 0.67 12 1 0.79 Acryl c 5.4 5.41 1.00 5.23 0.97

lT/0 8 0.5 12 1 1.57 Acryl c 9.8 9.85 1.00 11.43 1.17
14U/1 10 0.26 12 0.4 1.57 Acryl c 2.3 2.88 1.25 2.67 1.16
14U/2 10 0.5 12 0.4 1.57 Acryl c 3.8 3.95 1.04 3.82 1.01
14U/3 10 0.8 12 0.4 1.57 Acryl c 4.9 4.03 0.82 3.36 0.69
14U/4 10 0.26 24 0.4 1.57 Acryl c 4.3 6.17 1.43 5.78 1.34
14U/5 10 0.5 24 0.4 1.57 Acryl c 7.5 8.45 1.13 7.04 0.94
14U/6 10 0.8 24 0.4 1.57 Acryl c 10.2 8.62 0.85 6.96 0.68

14DU/2 10 0.8 24 0.4 0.79 Acryl c 5.3 4.18 0.79 2.32 0.44
14DU/3 10 0.8 24 0.4 1.05 Acryl c 8.5 6.07 0.71 4.61 0.54

TJOINT 1 16 0.25 12 1 1.57 Acryl c 4 6.84 1.71 6.41 1.60
TJOINt 2 16 0.5 12 1 1.57 Acryl c 9.8 9.94 1.01 9.74 0.99
TJOINT 3 16 0.75 12 1 1.57 Acryl c 8 10.13 1.27 10.16 1.27
TJOINT 5 16 0.25 16 1 1.57 Acryl c 7 9.38 1.34 9.11 1.30
TJOINT 6 16 0.5 16 1 1.57 Acryl c 13 13.63 1.05 12.50 0.96
TJOINT 7 16 0.75 16 1 1.57 Acryl c 14.8 13.88 0.94 13.29 0.90

TJOINT 10 16 0.33 24 1 1.57 Acryl c 12.5 19.16 1.53 16.77 1.34
TJOINT 11 16 0.5 24 1 1.57 Acryl c 20.2 21.26 1.05 19.02 0.94
TJOINT 12 16 0.67 24 1 1.57 Acryl c 23.2 21.61 0.93 19.93 0.86

2T/0 8 0.5 23.1 1 1.57 Acryl c 18.1 20.21 1.12 17.98 0.99
T-AC 9.3 0.67 15 0.8 1.57 Acryl c 8.1 10.25 1.27 10.08 1.24
Y-AC 9.3 0.67 15 0.8 0.79 Acryl c 5.3 5.32 1.00 5.58 1.05
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Table 5.11 Validation of SCF Distribution Parametric Equation for Y and T-j oint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

HCD
Steel 1 1.41 N/A 0.0% 0.0% 0.0%

acceptAcrylic 17 1.37 40.3% 0.0% 5.9% 23.5%
Pooled 18 1.37 39T9& 0.0% 5.6% 22.2%

SCF Dis
Steel 1 2.22 N/A 0.0% 0.0% 100.0%

acceptAcrylic 17 1.35 48.2% 0.0% 11.8% 29.4%
Pooled 18 1.40 51.0% 0.0% 11.1% 33.3%

Table 5.12 Validation of SCF Distribution Parametric Equation for Y and T-j oint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

HCD
Steel 13 1.51 24.5% 0.0% 0.0% 53.8%

accept but 
borderline

Acrylic 34 1.16 26.7% 8.8% 23.5% 14.7%
Pooled 47 1.25 30.3% 6.4% 17.0% 25.5%

SCF Dis
Steel 13 1.56 20.3% 0.0% 0.0% 53.8%

acceptAcrylic 34 1.24 27.2% 5.9% 20.6% 20.6%
Pooled 47 1.33 29.1% 43% 14.9% 29.8%

Table 5.13 Validation of SCF Distribution Parametric Equation for Y and T-j oint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

HCD
Steel 4 0.96 14.7% 0.0% 50.0% 0.0%

rejectAcrylic 23 0.97 15.9% 4.3% 60.9% 0.0%
Pooled 27 0.97 15.5% 3.7% 59.3% 0.0%

SCF Dis
Steel 4 0.94 27.6% 50.0% 75.0% 0.0%

rejectAcrylic 23 0.77 18.6% 69.6% 87.0% 0.0%
Pooled 27 0.79 20.5% 66.7% 85.2% 0.0%
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Table 5.14 Validation of SCF Distribution Parametric Equation for Y and T-j oint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

HCD
Steel 29 1.19 25.3% 10.3% 24.1% 13.8%

rejectAcrylic 51 1.10 26.1% 13.7% 37.3% 11.8%
Pooled 80 1.13 26T9& 12.5% 32.5% 12.5%

SCF Dis
Steel 29 1.19 20.7% 0.0% 17.2% 6.9%

acceptAcrylic 51 1.14 24.9% 7.8% 27.5% T8%
Pooled 80 1.16 23.4% 5.0% 23.8% 7.5%

Table 5.15 Validation of SCF Distribution Parametric Equation for Y and T-j oint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

HCD
Steel 7 1.40 24.1% 0.0% 0.0% 42.9%

acceptAcrylic 28 1.31 19.7% 0.0% 3.6% 14.3%
Pooled 35 1.33 20.7% 0.0% 2.9% 20.0%

SCF Dis
Steel 7 1.43 30.7% 0.0% 0.0% 42.9%

acceptAcrylic 28 1.30 16.5% 0.0% 0.0% 14.3%
Pooled 35 1.33 20.3% 0.0% 0.0% 20.0%

Table 5.16 Validation of SCF Distribution Parametric Equation for Y and T-j oint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

HCD
Steel 6 1.42 20.8% 0.0% 0.0% 50.0%

acceptAcrylic 38 1.24 16.9% 0.0% 2.6% 5.3%
Pooled 44 1.26 18.4% 0.0% 2.3% 11.4%

SCF Dis
Steel 6 1.53 21.5% 0.0% 0.0% 33.3%

acceptAcrylic 38 1.38 20.9% 0.0% 0.0% 23.7%
Pooled 44 1.40 21.4% 0.0% 0.0% 25.0%
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Table 5.17 Validation of SCF Distribution Parametric Equation for Y and T-j oint
une er OPB Loading on '3race Side

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

HCD
Steel 7 1.62 17.9% 0.0% 0.0% 57.1%

acceptAcrylic 35 1.13 16.5% 0.0% 14.3% 2.9%
Pooled 42 1.21 24.8% 0.0% 11.9% 11.9%

SCF Dis
Steel 7 1.68 13.8% 0.0% 0.0% 85.7%

acceptAcrylic 35 1.22 25.3% 0.0% 14.3% 14.3%
Pooled 42 1.30 29.2% 0.0% 11.9% 26.2%

Table 5.18 Validation of SCF Distribution Parametric Equation for Y and T-j oint

Equation Steel/
Acrylic

No of 
Pts

Database Pred SCF/Recorded SCF Decision

Mean %st dev 
of Enq

%P/R<
0.8

%P/R<
1.0

%P/R>
1.5

HCD
Steel 13 1.22 13.8% 0.0% 0.0% 7.7%

acceptAcrylic 51 1.11 22.4% 3.9% 31.4% 3.9%
Pooled 64 1.13 21.3% 3.1% 25.0% 4.7%

SCF Dis
Steel 13 1.17 20.8% 0.0% 23T9& 7.7%

rejectAcrylic 51 1.04 24.5% 11.8% 47.1% 5.9%
Pooled 64 1.06 24.3% 9.4% 42.2% 6.3%
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Brace

Crown Toe (|)=0

Chord Crown Heel (j)=180Saddle

Geometric ratios: a  = P ~ ~
D

^ ~ 2 T
t

T =  —

Figure 5.1 Geometric Notation for Tubular Y-Joint

Figure 5.2 Typical Example of Finite Element Mesh Used to Model Tubular Joint
( a=10, (3=0.5,7=24, t=0.8, 0=60° )
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Figure 5.3 Plot of Typical External Stress Distribution around the Intersection 
o f Tubular Y-joint under Axial Loading
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Figure 5.4 Plot of Typical External Stress Distribution around the Intersection 
of Tubular Y-joint under IPB Loading
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Figure 5.6 Comparison of Predicted External Surface SCF Distribution 
on Brace Toe with Acrylic Model Test Results for the Axially Loaded Y-joint 

(0=9.33, P=0.67,7^15.0, x=0.8, 6=45»)
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Figure 5.7 Comparison of Predicted Normalised External Surface SCF Distribution
on Brace Toe with Acrylic Model Test Results for the Axially Loaded Y-joint

(0=9.33, p=0.67, '^15.0, x=0.8, 0=45»)
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Figure 5.8 Comparison of Predicted External Surface SCF Distribution 
on Chord Toe with Acrylic Model Test Results for the Axially Loaded Y-joint 

(0=9.33, P=0.67, y=15.0, x=0.8, 0=45O)
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Figure 5.9 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Acrylic Model Test Results for the Axially Loaded Y-joint

(0=9.33, p=0.67, 7^15.0, x=0.8, 0=45O)
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Figure 5.10 Comparison of Predicted External Surface SCF Distribution 
on Chord Toe with Steel Model Test Results for the Axially Loaded T-j oint 

(0=7.26, p=0-71, 7^14.28,1=1.0, 0=9OO)
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Figure 5.11 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Steel Model Test Results for the Axially Loaded T-joint

(0=7.26, p=0.71, 7^14.28, x=1.0, 0=9OO)

214



24

 S C F  D is E q.

-  -  H CD  Eq.

 B e s t Fit(E xp.)

o  T e s t  D a ta

22

Ü 14

- 00.0

20 80 100 
A ngle from  c ro w n (d eg )

120 140 160 180

Figure 5.12 Comparison of Predicted External Surface SCF Distribution 
on Chord Toe with Recently Steel Model Test Results for the Axially Loaded T-joint 

(oc=7.26, P=0.71, 7^14.28, x=1.0, 0=90®)
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Figure 5.13 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Recently Steel Model Test Results for the Axially Loaded T-joint

(0=7.26, P=0.71, 7^14.28, t=1.0, 0=90®)
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Figure 5.14 Comparison of Predicted External Surface SCF Distribution 
on Brace Toe with Acrylic Model Test Results for the IPB-Loaded Y-joint 

(0=9.33, P=0.67, y=l5.0, x=0.8, 0=45O)
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Figure 5.15 Comparison of Predicted Normalised External Surface SCF Distribution
on Brace Toe with Acrylic Model Test Results for the IPB-Loaded Y-joint

(0=9.33, P=0.67, y=15.0, x=0.8, 0=45O)
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Figure 5.16 Comparison of Predicted External Surface SCF Distribution 
on Chord Toe with Acrylic Model Test Results for the IPB-Loaded Y-joint 

(0=9.33, P=0-67, 7^15.0, x=0.8, 0=45O)
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Figure 5.17 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Acrylic Model Test Results for the IPB-Loaded Y-joint

(0=9.33, p=0.67, y=15.0, t=0.8, 0=45O)
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Figure 5.18 Comparison of Predicted External Surface SCF Distribution 
on Brace Toe with Steel Model Test Results for the IPB-Loaded T-joint 

(0=8.01, p=0.71, 7^14.28, x=0.78, 0=9OO)
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Figure 5.19 Comparison of Predicted Normalised External Surface SCF Distribution
on Brace Toe with Steel Model Test Results for the IPB-Loaded T-joint

(0=8.01, P=0.71, 7^14.28, x=0.78, 0=9OO)
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Figure 5.20 Comparison of Predicted External Surface SCF Distribution 
on Chord Toe with Steel Model Test Results for the IPB-Loaded T-joint 

(0=8.01, p=0.71, 7^14.28, x=0.78, 6=90°)
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Figure 5.21 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Steel Model Test Results for the IPB-Loaded T-joint

(0=8.01, p=0.71, 7^14.28, x=0.78, 0=9OO)
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Figure 5.22 Comparison of Predicted External Surface SCF Distribution 
on Brace Toe with Acrylic Model Test Results for the OPB-Loaded Y-joint 

(0=9.33, P=0.67, y=l5.0, x=0.8, 0=45°)
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Figure 5.23 Comparison of Predicted Normalised External Surface SCF Distribution
on Brace Toe with Acrylic Model Test Results for the OPB-Loaded Y-joint

(0=9.33, (3=0.67, ^15.0, t=0.8, 0=45O)

220



o -

0 3

 SCF Dis Eq.

 HCD eq.

o  test data

4020 50 80 100 120
Angle from Crown Heel(deg)

140 160 180

Figure 5.24 Comparison of Predicted External Surface SCF Distribution 
on Chord Toe with Acrylic Model Test Results for the OPB-Loaded Y-joint 

(0=9.33, (3=0.67, y^l5.0, t=0.8, Q=45̂ )
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Figure 5.25 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Acrylic Model Test Results for the OPB-Loaded Y-joint

(0=9.33, p=0.67, T=15.0,1=0.8, 0=45O)
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Figure 5.26 Comparison of Predicted External Surface SCF Distribution 
on Brace Toe with Steel Model Test Results for the OPB-Loaded T-joint 

(0=8.01, p=0.71, 7^14.28, t=0.78, 0=900)
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Figure 5.27 Comparison of Predicted Normalised External Surface SCF Distribution 
on Brace Toe with Steel Model Test Results for the OPB-Loaded T-joint 

(0=8.01, (3=0.71, 7^14.28, x=0.78, 0=90 )̂
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Figure 5.28 Comparison of Predicted External Surface SCF Distribution 
on Chord Toe with Steel Model Test Results for the OPB-Loaded T-joint 

(0=8.01, (3=0.71, '^14.28, x=0.78, 0=9OO)
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Figure 5.29 Comparison of Predicted Normalised External Surface SCF Distribution
on Chord Toe with Steel Model Test Results for the OPB-Loaded T-joint

(0=8.01, P=0.71, 7̂ =14.28, x=0.78, e=9Q0)
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Figure 5.30 Comparison of Predicted External Surface SCF Distribution 
on Chord Toe with Recently Steel Model Test Results for the OPB-Loaded Y-joint 

(a=10.85, (3=0.71, 7̂ =14.28, t=1.0, 0=35°)
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Figure 5.31 Comparison of Predicted External Surface SCF Distribution
on Chord Toe with Recently Steel Model Test Results for the OPB-Loaded Y-joint

(0=10.85, p=0.71, 7=14.28, t=1.0, 8=35»)
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CHAPTER SIX 
CHARACTERISTIC PARAMETERS FOR STRESS 

DISTRIBUTION ALONG THE INTERSECTION 
OF TUBULAR Y, T, X AND DT-JOINTS

6.1 Introduction

The hot spot stress has been used to characterise the intensity of the stress field around the 
intersection and to provide a useful means for estimating the relative fatigue strengths of 

tubular welded joints. However, early fatigue tests have shown that the crack growth rate for 

a T-joint under axial loading was higher than that of a similar joint under out-of-plane 
bending for a similar hot spot stress range. It would seem that the hot spot stress range is not 
sufficient to describe the behaviour of crack growth under different types of loading. There 
are several other parameters which influence the crack growth behaviour in tubular joints. 
One of most important factor is the stress distribution along the intersection.

The characteristic parameters representing the whole stress distribution along the intersection 
are convenient for use in advanced fracture mechanics modelling. Dharmavasan and 

Dover(1987) suggested one of these parameters in terms of an average stress and proposed 

an A VS model based on early fatigue growth data of welded tubular joints. This study will 

extend this concept and will allow more complex interpretations to be made.

Furthermore, it is extremely valuable to the overall methodology that these parameters could 
be used as an alternative to the single value of hot spot stress for evaluating stress/life or 
remaining life(fatigue crack growth) as they provide the information on both magnitude and 

shape of the stress distribution around the intersection of tubular joint.

Despite the fact that these parameters are valuable, they can only be calculated from stress 
distribution data obtained by using either simple interpolation equations or fitting limited 

experimental data along the intersection in current practice, which would lead to inaccurate 

results. Systematic finite element analyses have been conducted for tubular Y, T, X and DT- 
joints as reported in last three chapters. Based on these results, regression analyses have been 
carried out to derive parametric equations for these important parameters.
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6.2 Characteristic Parameters for Stress Distribution along Intersection of tubular Joints

Due to the geometry of a tubular joint, the SCF distribution curve has a bell shape. A typical 

example is shown in Figure 6.1 for the stress distribution along the chord toe of a tubular 
welded Y-joint under axial, IPB and OPB loading respectively. A pair of characteristic 

parameters can be defined to represent the magnitude and spread of SCF distribution along 

the intersection of tubular welded joints respectively(Figure 6.2).

Measure of Magnitude

As representing the magnitude of SCF distribution along the intersection, the concept of the 
average SCF has been proposed before(Dharmavasan and Dover 1987) as follows:

  1 ^
SCF = — J  5CF(0)J0 for Axial and OPB Loading ( 6 - 1 )

SCF Toe = — j  SCF{Q)dQ for IPB Loading around the Crown Toe side ( 6 - 2 )

SCF Heel = — j  5CF(0)J0 for IPB Loading around the Crown Heel side ( 6 - 3 )

2

This useful parameter has been used in the empirical Stress Intensity Factor(SIF) models 
such as A VS (Dharmavasan and Dover 1987) and TPM(Kam et al 1987) for tubular joints.

Measure of Spread

So far these is no proposed parameter to describe the spread of stress distribution along 
the intersection of a tubular joint. However, experimental results showed that apart from 

the hot spot SCF and average SCF, the number of initiation cracks and the subsequent crack 
shape development are very much dependent on the spread of stress distribution. Therefore 

it is valuable to propose a characteristic parameter to represent the spread of stress 

distribution.

Following similar form used for the spectrum width in spectrum analysis, the non 
dimensional SCF Distribution Concentration Factor(SDCF), is proposed below to
provide the relative measurement on spread of stress or SCF distribution curve along 
the intersection of tubular welded joints.
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6.3 Regression Analyses

The SCF distributions along the intersection were extracted from the ABAQUS output files 
for tubular Y, T, X and DT-joints. FORTRAN programs were written to calculate the 
average SCF and SDCF for 330 tubular Y, T, X and DT-j oints respectively. As only 
magnitude of SCF is interested, all SCFs along the intersection are assigned to be absolute 

value under each loading including IPB loading. Thus all average SCF values are positive 
for all cases.

This database of finite element analysis results was used to derive parametric equations for 
the average SCF and SDCF in tubular Y, T, X and DT-j oints by using a statistical 
regression package known as 'MINITAB'(1991). The regression analysis methodology is 

similar to that used for deriving SCFs and is listed as follows:

a) The variations of the average SCF and SDCF were plotted as a function of the parameters 

a, p, 7 and i  and 0 in order to determine the best forms of the terms required, and also to 

ascertain if any cross-correlation existed between the terms.

b) A first attempt at the equation was made using the following simple form:

( 6 - 10 )

( 6 - 1 1 )

5CF = A |a '^P '‘'Y ''n '‘>0'^ 

p = A,a'''p''>Y'^T‘'=0'̂  

where A, to A  ̂were determined from the regression analysis,

c) Process adopted to get the final form:

The above equations were then modified by using other (e.g. exponential) terms, and 
regressions performed until a suitable equation with a large product moment correlation 
coefficient was obtained.
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The parametric equations for average SCF and SDCF have been derived for both chord and 
brace toes under three different modes of loading for tubular Y and T-j oints and six different 
modes of loading for tubular X and DT-j oints by carrying out regression analysis. They are 

given in Appendix D. These equations can be easily programmed and enable the stress 
distribution characteristic parameters, average SCF and SDCF, to be calculated both for the 
brace and chord toes for all modes of loading. A sununary of the degree of fit for each 

equation is presented in Tables 6 .1-6.4. The tables show that these equations fit the original 

finite element data very well and the correlation coefficient is greater than 95% for the 

majority of cases.

As there is very little experimental data on SCF along the intersection of tubular joints, it is 

difficult to validate fully these parametric equations, especially for SDCF. An effort has 
made to collect all available early UCL steel test data(Dharmavasan 1983)(Kam 1989) and 

other recent experimental data(Monahan 1994) in order to test the average SCF equations. 
Data from early tests were obtained by using simple interpolation equations to fit limited 
experimental data along the intersection. Recently experimental tests involved several 
multiple(M) plane and X-j oints and test data were calculated by best-fitting these steel test 
data. A comparison of predictions from derived parametric equations with test data has been 
made(Table 6.5) and shown in Figure 6.3. From this figure, one can see that reasonable 
agreement has been achieved. It should be noted that the test data are obtained by combining 
some experimental data and the simple interpolation equations and therefore are not very 
accurate.

6.4 Conclusions

The new concept, SCF distribution concentration factor(SDCF) was proposed. The 

systematic finite element results has been used to derive the parametric equations for 
average SCF and SDCF by regression analysis. These equations describe average SCF and 
SDCF as a function of non-dimensional joint geometric ratios a, p, 7, x and 0 for each 

mode of loading, and for both the chord and brace sides of the intersection of tubular welded 
Y, T, X and DT-j oints. The stress distribution characteristic parameters, average SCF and 
SDCF, together with hot-spot SCF and DoB, can be used to define fully the two 
dimensional stress distribution of a tubular joint. They are useful parameters to develop new 

advanced fracture mechanics modelling and are also valuable for fatigue design of offshore 

tubular welded joints.
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Table 6.1 Summary of Degree of Fit for Parametric Equations for Average SCF

Along the Intersection of Tubular Y and T-Joints

Loading Case Location R2 (%) Equation

Single Axial Brace Side 97.29 Appendix E L I

Single Axial Chord Side 98.41 Appendix E l .2

Single IPB Brace Side(around Crown Toe) 95.19 Appendix E2.1

Single IPB Brace Side(around Crown Heel) 95.83 Appendix E2.2

Single IPB Chord Side(around Crown Toe) 97.36 Appendix E2.3

Single IPB Chord Side(around Crown Heel) 97.7 Appendix E2.4

Single OPB Brace Side 96.41 Appendix E3.1

Single OPB Chord Side 96.36 Appendix E3.2

Table 6.2 Summary of Degree of Fit for Parametric Equations for Average SCF 

Along the Intersection of Tubular X and DT-Joints

Loading Case Location R2(%) Equation

Single Axial Brace Side 96.2 Appendix F 1.1

Single Axial Chord Side 97.8 Appendix F 1.2

Single IPB Brace Side(around Crown Toe) 97.6 Appendix F 2 .1

Single IPB Brace Side(around Crown Heel) 95.8 Appendix F2.2

Single IPB Chord Side(around Crown Toe) 98.0 Appendix F2.3

Single IPB Chord Side(around Crown Heel) 98.4 Appendix F2.4

Single OPB Brace Side 97.4 Appendix F3.1

Single OPB Chord Side 94.3 Appendix F3.2

Balanced Axial Brace Side 95.6 Appendix F4 .1

Balanced Axial Chord Side 95.8 Appendix F4.2

Balanced IPB Brace Side(around Crown Toe) 97.6 Appendix F5.1

Balanced IPB Brace Side(around Crown Heel) 95.8 Appendix F5.2

Balanced IPB Chord Side(around Crown Toe) 97.8 Appendix F5.3

Balanced IPB Chord Side(around Crown Heel) 98.2 Appendix F5.4

Balanced OPB Brace Side 98.4 Appendix F6.1

Balanced OPB Chord Side 99.4 Appendix F6.2
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T a b le  6 .3  Sum m ary o f  D e g ree  o f  F it for Param etric E q u ation s o f  S tress D istr ib u tion  

C on cen tration  Factor A lo n g  the In tersection  o f  T ubular Y  and T -Join ts

L o a d in g  C ase L ocation R 2(% ) E q u ation

S in g le  A x ia l B race S id e 9 5 .3 4 A p p en d ix  G  1.1

S in g le  A x ia l C hord S ide 9 6 .4 9 A p p en d ix  G  1.2

S in g le  IPB B race S ide(around  C row n T o e) 9 6 .3 1 A p p en d ix  G 2 .1

S in g le  IPB B race S ide(around  C row n H ee l) 9 6 .0 4 A p p en d ix  G 2 .2

S in g le  IPB C hord S ide(around  C row n T o e) 9 5 .1 8 A p p en d ix  G 2 .3

S in g le  IPB C hord S ide(around  C row n H eel) 9 5 .5 1 A p p en d ix  G 2 .4

S in g le  O P B B race S ide 9 5 .1 8 A p p en d ix  G 3.1

S in g le  O PB C hord S ide 9 5 .5 A p p en d ix  G 3 .2

T a b le  6 .4  Sum m ary o f  D eg ree  o f  F it for Param etric E q u ation s o f  S tress D istr ib u tion  

C oncentration  Factor A lo n g  the Intersection  o f  T ubular X  and D T -Jo in ts

L oad in g  C ase L ocation R 2(% ) E q u ation

S in g le  A x ia l B race S ide 9 6 .6 A p p en d ix  H l . l

S in g le  A x ia l C hord S id e 9 6 .6 A p p en d ix  H I . 2

S in g le  IPB B race S ide(around  C row n T oe) 9 5 .5 A p p en d ix  H 2 .1

S in g le  IPB B race S ide(around  C row n H eel) 9 5 .6 A p p en d ix  H 2 .2

S in g le  IPB C hord S ide(around  C row n T o e) 8 9 .3 A p p en d ix  H 2 .3

S in g le  IPB C hord S ide(around  C row n H eel) 9 6 .2 A p p en d ix  H 2 .4

S in g le  O PB B race S id e 9 6 .4 A p p en d ix  H 3.1

S in g le  O PB C hord S id e 9 6 .0 A p p en d ix  H 3 .2

B a la n ced  A x ia l B race S id e 9 6 .0 A p p en d ix  H 4 .1

B a la n ced  A x ia l C hord S id e 95 .1 A p p en d ix  H 4 .2

B a la n ced  IPB B race S ide(around  C row n T o e) 9 5 .6 A p p en d ix  H 5.1

B a la n ced  IPB B race S ide(around  C row n H ee l) 9 6 .4 A p p en d ix  H 5 .2

B a la n ced  IPB C hord S ide(around  C row n T o e) 90 .1 A p p en d ix  H 5 .3

B a la n ced  IPB C hord S ide(around  C row n H eel) 9 5 .5 A p p en d ix  H 5 .4

B a la n ced  O PB B race S id e 9 7 .0 A p p en d ix  H 6 .1

B a la n ced  O PB C hord S id e 9 7 .2 A p p en d ix  H 6 .2
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Table 6.5 Comparison of Predicted Average SCF with Test Data for Tubular Joints

Ref Joint
Type

M ode of 
Loading

a P Y T 0

(deg)

Test
D ata

Pred

(Dharmavasan 1983) T Axioi 7.20 0.71 14.30 0.79 90 6.35 6.68

(Dharmavasan 1983) T OPB 7.30 0.71 14.40 0.80 90 4.10 4.08

(Dharmavasan 1983) Y IPB 9.10 0.71 14.28 0.78 45 1.51 2.27

(Dharmavasan 1983) Y Axial 13.0 0.48 15.90 0.63 45 4.45 4.32

(Kam 1989)-UCX1 X B alanced  Axial 4.44 0.51 10.00 0.44 90 3.94 3.74

(Kam 1989)-UCX2 X B alanced  Axial 5.33 0.61 10.70 0.54 90 5.29 4.69

(Kam 1989)-UCX3 X B alanced  Axial 6.67 0.76 12.00 0.50 90 4.17 4.36

(Monahan 1994) M-T IPB 4.44 0.51 14.06 0.63 90 2.08 2.39

(Monahan 1994) M-Y OPB 4.44 0.36 14.06 0.56 35 2.03 1.23

(Monahan 1994) M-T OPB 4.44 0.51 14.06 0.63 90 4.10 3.46

(Monahan 1994) M-Y IPB 4.44 0.36 14.06 0.56 35 1.58 1.64

(Monahan 1994) X OPB 7.86 0.90 12.73 1.00 90 3.42 3.93

Note: M-T: T-brace/chord intersection of multiple-brace M-node
M-Y : Y-brace/chord intersection of multiple-brace M-node

20 T

Axial

IPB

OPB

10 -

-Q-SCF

100 120 140 160 180

-10

Angle from Crown Toe along the Intersection (deg)

Figure 6.1 Typical Example of SCF Distribution along the Intersection of Tubular Y-Joint
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Figure 6.2 Illustration of Characteristic Parameters for SCF Distribution 

along the Intersection of Tubular Joint
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Figure 6.3 Comparison of Predictions from Derived Parametric Equations 

with Test Data for Average SCF along the Intersection of Tubular Joint
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CHAPTER SEVEN 

DEEPEST POINT SIF PARAMETRIC EQUATIONS 
FOR THE SEMI-ELLIPTICAL SURFACE CRACKS 

IN T-BUTT WELDED JOINTS

7.1 Introduction

The accurate solution for Stress Intensity Factor (SIF) is the essential element for predicting 

fatigue crack growth rate in offshore structures using a fracture mechanics approach. In 
particular, it is important to have the deepest point SIF for semi-elliptical surface cracks 
which are the most frequently observed crack shape in welded joints, such as T-butt and 
tubular welded joints. Many SIF solutions(Newman and Raju 1981)(Holdbrook and Dover 
1979)(Oore and Bums 1980) have been derived for flat plates. However, for T-butt welded 
joints, there are not many solutions available as one has to consider the surface stress 
concentration influence at the weld toe. Currently there are two approaches to determine the 
deepest point SIF of surface semi-elliptical cracks in T-butt welded joints(Figure 7.1). One 
method is to use the Niu-Glinka weight function(Niu and Glinka 1989) that can incorporate 
weld angle and weld toe radius influences. This method also requires the through thickness 
stress distribution information at the weld toe for the joint in question in order to integrate 
them together to obtain the SIF. Therefore it is not convenient to use this method, especially at 
design stage, due to the complexity of the equations and heavy computational requirement. 
Recently, using the Niu-Glinka weight function and many finite element stress analysis 
results, a set of deepest point SIF parametric equations for T-butt welded joints for both 

membrane and bending loading have been derived by Hall, Topp and Dover(HTD)(Hall et al 
1990). This set of equations include the influence of crack size and shape, weld toe radius and 

weld angle and have been included into new fatigue guidance for offshore stmctures(MaTSU 

1996).

The other approach is to use a plate solution with a modification factor due to presence of 
weld toe, known as Mk. The Mk factor was obtained from the two dimensional finite 

element analysis of edge cracks at the weld toe and comparing the results with the 
corresponding results for the same crack in a flat plate. By curve fitting these values, 
expressions for Mk (Maddox 1975) have been derived. Much work was carried out to 
enhance the accuracy of Mk at The Welding Institute(TWI). The final results were indued 
as part of the PD6493(1991). It should be noted that this approach is limited to a weld angle
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of 45° and a sharp weld toe and only considers the variation of the ratio of overall weld 
attachment length to wall thickness(L/T).

One problem with the HTD approach is that it excludes the effect of attachment size. This 
parameter has been demonstrated to be quite important for SIF in the Mk approach. Thus it 
was considered valuable to carry out a study in order to extend the HTD equations to include 

the effect of attachment size. Having done this, it is of value to compare the results from these 
two different approaches with the available finite element data,

7.2 Niu-Glinka Weight Function

The weight function method is a powerful technique for the calculation of SIFs for a variety 

of complex loading conditions. Based on Petroski-Achenbach crack opening displacement 

expression and using Newman-Raju solutions as the reference SIF solution, Niu- 
Glinka(1990) has derived a weight function in closed form for calculating the SIF at the 
deepest point of a crack emanating from the weld toe of a T-butt welded connection. This 
weight function is capable of incorporating weld profile effects due to different weld angle a  
and weld toe radius p under any mode I type of loading.

The key idea in the Niu and Glinka weight function is to assume that the influence of the 
weld toe, i, e, the weld angle a, was the same for an edge crack and for the deepest point of 
a semi-elliptical crack with the same depth under the same stress system. This assumption 
can be explained as equivalence of the two-dimensional Mk and three dimensional Mk, This 
enabled Niu and Glinka to set up following relationship:

( 7 - 1 )

where is the SIF for a surface crack in a welded joint

is the SIF for a surface crack in a flat plate subjected to the same stress distribution 

is the SIF for an edge crack in a welded joint

is the SIF for an edge crack in a flat plate subjected to the same stress distribution

In order to derive a weight function for a surface crack emanating from the weld toe of a T- 
butt welded joint, the other three weight functions are needed. The only one available in the 
literature is the two-dimensional weight function for an edge crack. For this reason, Niu- 
Glinka initially derived a two-dimensional weight function m“ (Niu and Glinka 1987) for

an edge crack emanating from the weld toe in a T-butt joint. Then, they derived a three 
dimensional weight function for the deepest point of a surface semi-elliptical crack in a

plate using Newman-Raju solution as reference data(Niu and Glinka 1989),
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With all these weight functions available, Relation ( 7 - 1 ) can be expressed in terms of 
derived weight functions as following:

“ \c{x)n{^{x,a,al t ,a)dxa
I {x,a! t,a I c,a I w,a)dx = - ^  J c(x)m^(x,a,a 11,a / c,c/ w)dx
0 j^o(x)m^(x,a,a / t)dx °

( 7 - 2 )

The reference SIF for a uniform tensile local stress system can be easily obtained from ( 7 - 
2 ). Using the Petroski-Achenbach method again, Niu and Glinka derived the following 
closed form weight function for calculation of the SIF at the deepest point of a crack 

emanating from the weld toe of a T-butt welded joints.

^( x ,a l  t , a l  c , c l w , a )  =m.

where

y j2n( a - x )

" 2"
l + <

a — X
+ < 2

a — x

V a ) V a )

= A “ +3B“ - 4

< = 5

A“ =

4 

2Fa

( 7 - 3 )

( 7 - 4 )

( 7 - 5 )

( 7 - 6 )

5V27: j  F^ada
( 7 - 7 )

This weight function is supposedly valid for weld angles 7 i : / 6 < a < 7 l / 3 ( a i n  radians), 

crack aspect ratios 0 < fl / c < 1 and crack depths 0 < a / f < 0.5. However, as deep cracks 

should not be significantly affected by the weld, the Niu-Glinka method should also be used 
for cracks of depth a I t > Q 5 . The result from the Niu-Glinka weight function were found 

to be substantially the same as those from Newman-Raju for all values of a/T in a flat plate. 
This is because this weight function is based on the Newman-Raju solution. It should be 
noted that Niu-Glinka itself only considers the influence of weld angle. The other effects of 
weld toe, such as weld toe radius and attachment size will be incorporated into the stress 

distribution later on.

7.3 Systematic SIF Calculation

The weight function is a unique property of crack shape and component geometry and is 

independent of loading. It needs to be integrated with the uncracked stress distribution in order 
to calculate the SIF. The Stress Intensity Factor(SIF), K, can be expressed as follows:
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K  = J m ( f l  / c,fl / T ,% )a(a,p  / T,LIT,a  /  T,x)dx ( 7 - 8 )
0

It is well known that through-wall stress distributions at the weld toes are well-represented by 
combining the results of models loaded in pure tension and pure bending. In order to simplify 
the use of the weight function method, the deepest point SIF parametric equations for T-butt 

welded joints in tension and bending would be desirable. Therefore, it is necessary to carry 

out the stress analysis of the uncracked body for this type of joint with different geometries 
under pure tension and pure bending respectively to obtain the stress distribution 

information. For this reason, systematic two dimensional finite element analyses(Brennan et 
al 1996) for wide range of T-Butt welded joints were conducted using the IDEAS package. 
Based on these results, the uncracked through-wall stress distribution database which allows 
all weld toe effects to be incorporated, has recently been established. This database covers T- 
butts within the following parameter ranges:

Parameter Range

Weld Toe Angle (a) 0=300, 450  ̂6Q0

Weld Toe Radius/Wall Thickness (p/T) 0 .0 1 < p /r< 0 .0 6 6

Attachment Width/Wall Thickness (L/T) 0 . 1 5 7 7 < L / r < 4

Location Along Wall Thickness (x) 0 < j c < r

Combining this uncracked T-butt weld toe through-wall stress distribution database with the 
closed form Niu-Glinka weight function, it is possible to produce a new set of deepest point 
SIF parametric equations for semi-elliptical surface cracks in T-butt welded joints under 
tension and bending. A FORTRAN program was written to integrate the Niu-Glinka weight 

function with the uncracked through-wall stress distribution to generate SIF database for the 

deepest point of semi-elliptical surface cracks in T-butt welded joints.

The database used for each parameter in this SIF database is shown in following table.

Parameter Range

Weld Angle a(deg) 30, 45, 60

Weld Radius Ratio p/T 0.01,0.02, 0.04, 0.066

Attachment Ratio L/T Many data between 0.1577 and 4

Aspect Ratios a/c 0.01, 0.05, 0.08, 0.1, 0.12, 0.15, 0.18, 0.2, 0.4,0.6, 0.8, 1.0

As can be seen from this table, this SIF database includes the cracks within whole range of 
aspect ratio(0<  a / c < l ) .  In particular, sufficient data have been generated in the range 
a I c <  0.2 since most fatigue cracks in welded joints are long and shallow and their aspect 
ratios are often lower than 0.2. A study of the effect of plate width was carried out. As a 
result, the ratio of c/w was fixed to be 0.25 for conservative reasons in this database. Also it
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should be noted that due to a limitation from the Newman-Raju SIF solution(Newman and 

Raju 1986), this weight function is not valid for long cracks with low aspect ratios and the 
validated relative crack depth ratio ranges is as follows:

if 0 < fl / c < 0.2 then a!  T < I25{a I c + 0.6) ( 7 - 9a )

if a /  c >  02 then a /  T < l ( 7 - 9 b )

7.4 Deriving Parametric Equations

The above large database has been used to derive the parametric equations. The regression 
analyses have been carried out by using the Minitab statistical package(MINITAB 1991). 
Due to the two dimensional nature, the curve-fitting has to be divided into two steps. The first 
step is to find suitable expression for both tension and bending loading cases. The results have 

shown that SIF data can be fitted very well by the following expressions for tension and 
bending respectively.

K  = YG^(na)

/
Y = Exp + a

\ T ,

2\

Y = C ,  + Q \ -
f a ] 2 f a ]

+ Cj + C^Ln
/ . T ,

( 7 - 1 0 )

under Tension Loading ( 7 - 11) 

under Bending loading ( 7 - 12 )

Efforts have been concentrated on the fitting the coefficients Cq, C j , C ,̂ C3 from the first step 
regression analysis results. Regression has been performed until a suitable equation with a 
large product moment correlation coefficient was obtained.

As a result, the parametric equations to predict the SIF at the deepest point of semi-elliptical 

surface cracks in T-butt welded joints under tension and bending loading, have been derived 

in the form of continuous single functions by carrying out the regression analysis and they 

are given in Appendix I.

As a series of SIF parametric equations in this study were derived in the same way, i.e. by 
combining weight functions with the UCL database of T-butt through wall stress analysis 
results, it was decided that the names of these SIF solutions were referred in the form of 
"abbreviation of particular weight function*S" where * and S stand for the integration 
process and T-butt through stress distributions respectively and they are explained in 
footnotes.
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A summary of degree of fit for this set of parametric equations(N&G*S)^ is presented in 
Table 7.1. It shows that these equations fit the original SIF data extremely well and the 
correlation coefficient is greater than 96% for all cases including both the form of 
equation and the coefficients Cq, Cj, Cj, C3. This set of parametric equations is valid for the 
following parameter ranges:

71 n
- < a < -  ( 7 - 1 3 )
6 3

0.01 <-^<0.066 ( 7 -  14)
T

0.1577 < — < 4  ( 7 - 1 5 )
T

0 < - < l  ( 7 - 1 6 )
c

if 0 < / c < 0.2 then a l  T <  I25(a / c + 0.6) ( 7 - 17a)

if a / 0 O2  then a l T < \  (7  - 17b)

It is worth noting that this set of equations is appropriate for the whole crack aspect ratio 
range and works well for cracks with low aspect ratio as sufficient data in database have 
been generated in the range a/c<0.2 where the coefficients vary rapidly for this aspect ratio 

range.

7.5 Validation

By using the Niu-Glinka weight function with the through-wall stress distribution 

information, a set of parametric equations(N&G*S) have been derived to calculate SIF at 
the deepest point of surface semi-elliptical cracks in T-butt welded joints under tension and 

bending respectively. In order to establish the accuracy of prediction, it is necessary to carry 

out the assessment for this set of parametric equations. Two and three dimensional finite 
element data available in the literature(Bell 1985)(Nykanen 1987)(Straalen et al 
1988)(Dijkstra et al 89)(Dijkstra et al 93) have been collected for validation. However, 

comparison of the results from both the N&G*S and Mk(PD6493) approaches could 
produce useful information for future guidance. Thus, the predictions from the N&G*S and 
Mk(PD6493) methods were compared with available two and three dimensional finite 

element data(Figures 7.2-7.20). The validated ranges of parameters used for this comparison 

are listed in Table 7.2. The results of vahdation are presented for three and two dimensional 
cases in turn.

 ̂N&G represent Niu and Glinka weight function, S denotes the T-butt through Stress distributions 
database, * stands for the integration process.
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a) Three Dimensional Surface Cracks

The comparison of the N&G*S and Mk(PD6493) predictions with three dimensional finite 

element data are presented in the format of SIF calibration factor, Y, for surface cracks with 

different aspect ratios in T-butts with different weld angles. The predictions from the N&G*S 
equations were first compared with the results from the flat plate Newman-Raju(N&R) 
equations for tension and bending respectively(Figures 12-13). The stress concentration 
effect of a weld toe is clearly shown in the results from N&G*S as it decays quickly and 
disappears at about a/T=0.1. The figures also show the undershoot for N&G*S predictions 
as required by the self equilibrating nature of the stresses across the section.

A comparison of Y predictions from N&G*S and Mk(PD6493) solutions with increasing L/T 

is made for the shallow cracks(a/T=0.01) with two different aspect ratios under tension and 
bending respectively (Figures 7.4-7.5)(as the attachment size is the only weld toe variable 
considered in PD6493). They show that there is a critical attachment size beyond which Y 

remains same for the PD 6493 approach, whilst a continously changing curve is observed 
for the N&G*S predictions.

Figures 1.6-1.1 show comparison of predictions from N&G*S and PD6493 with Bell's three 
dimensional finite element results for the T-butt with 0=45°. For tension, the N&G*S 
predictions agree very well with Bell's data while the PD6493 results are slightly 

conservative. For bending, the predictions from both methods are quite good. Also it was 
found that the predictions from the N&G*S are quite close to Bell's data for the T-butt with 
o=30°(Figures 7.8-7.9). A comparison of the N&G*S results with Bell's data for the T-butt 
with 0=70° is shown in Figures 7.10-11. As the weld angle upper limitation for the N&G*S is 
60°, the N&G*S results for both o=60° and o=70° were produced. The results indicated that 
they were very close to each other and agree extremely well with Bell's results. It should be 
noted that Bell's data and PD6493 predictions are based on a T-butt with p/T=0 and the 

minimum validated value p/T=0.01 for N&G*S equations were used for comparison in 

Figures 7.6-7.11.

Nykanen's three dimensional data(Nykanen 1987) were also used to compare with the 

N&G*S prediction for the T-butt under tension(Figure 7.12). The agreement between these 
data is not good, especially for high aspect ratios. This may due to that fact that the T-butt 
model considered in Nykanen data does not include the attachment, which is different to the 

conventional one used in the N&G*S method. The weld radius used by Nykanen, p/T=0.17,

is well beyond the validated range( 0.01 -  — 0X)66) for the N&G*S method.

b) Two dimensional Edge Cracks
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Dijkstra's two dimensional finite element data were used to compare with the predictions from 
the N&G*S equations for the T-butt with different weld radius and attachment expressed in 

the form of Mk factors for convenience(Figures 7.13-17). Again, the values for 
a=70®(Figures 7.13-14, 7.17-18) were produced although the N&G*S equations are normally 
only valid up to a=60®. The results show that there is httle difference between the cases with 

0=60° and 0=70° for the N&G*S predictions. They all agree very well with Dijkstra's 
data(Figures 7.13-18). Again, the minimum vahdated value p/T=0.01 for the N&G*S 

equations was used to compare with the Dijkstra's results with p/T=0.0071 in Figures 7.15- 
7.16.

Finally, the results from both the N&G*S and HTD equations were compared in Figures 
7.19-7.20. In tension, the N&G*S results are higher, especially for large cracks while the 

HTD predictions are slightly higher in bending. However, they follow the same tendency 
and are quite close up to a/T=0.25.

Validation of the predictions from this set of parametric equations(N&G*S) has been carried 
out by comparing with the results from the PD6493 approach and available two dimensional 
and three dimensional finite element data. As a summary, excellent agreement is achieved for 
the N&G*S equations when compared with a variety of available finite element results for 
both tension and bending. As can be seen from this validation, it seems that the predictions 

from PD6493 are conservative under tension.

7.6 Conclusions

Based on the closed form Niu-Glinka weight function and UCL uncracked T-butt weld toe 

through-wall stress distribution database, a new set of SIF parametric equations(N&G*S) for 

deepest point of surface semi-elliptical cracks in T-butt welded joints have been derived. 
These equations have included the influence of crack aspect ratios, weld toe angle, weld 

attachment length and weld radius. They are available for both membrane and bending 
loading. The comprehensive assessment shows that this set of equations can give the reliable 

predictions within their broad validated parameter ranges. These equations can be easily 

programmed and used in application of fracture mechanics to welds.
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Table 7,1 Summary of Degree of Fit for the Deepest Point SIF Parametric

Equations(N&G*S) for Semi-elliptical Cracks in T-butt Welded Joints

Loading Equations

Form of 

Expression
Co Cl Cz C3

Descriptive Statistics (%)

Mean
R2

Std.
Dev.

R2

Tension Appendix 11 99.85 0.25 98.23 97.26 99.26 97.52

Bending Appendix 12 99.71 0.32 96.83 97.78 99.46 97.55
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Table 7.2 Comparison of the validated parameter ranges for N&G*S and PD6493(Mk) methods together with available FE data

Solutions a p/T L/T q / c a/T M ode of Loading Form

N&G*S 30°<a<60° 0 .0 1 < p /r< 0 .0 6 6 0.1577<L/r<4 0 < fl/c< 1 .0 * s e e  n o te Tension, Bending Y
PD6493(MI<) 4 5 0 N/A L/T>0 0 < fl/c< 1 .0 o<fl/r<i.o Tension, Bending Mk

3D FE D ata a p /T L/T a /c a/T Loading Form
Beii 30° 0 2.3 0.25, 0.33, 0.5, 0.67, 1 0 .0 0 5 < f l / r< 0 .4 Tension, Bending Y
Beii 4 5 0 0 2.3 0.25, 0.33, 0.5, 0.67, 1 0 .0 0 5 < « /r < 0 .4 Tension, Bending Y
Beii 70° 0 2.3 0.25, 0.33, 0.5, 0.67, 1 0 .0 0 5 < f l /r< 0 .4 Tension, Bending Y

Nykanen 4 5 0 0.17 1.952 0.2, 0.4, 0.6, 1 0.2, 0.4, 0.6 Tension Y
Straaien 70° 0.125 1.31 0.64,0.566,0.458,0.393 0.162,0.224,0.296,0.4 Tension, Bending MK

2D FE D ota a p /T L/T a /c a/T Loading Form
Dijkstra'89 7QP 0 1.312 N/A 0 .0 0 7 1 < fl/r< 0 .5 Tension, Bending Y
Dijkstra'89 7CP 0.0071 1.319 N/A 0<a/T<0.5 Tension, Bending Y
Dijkstra'89 70° 0.0125 1.322 N/A 0<a/T<0.5 Tension, Bending Y
Dijkstra'89 70° 0.0714 1.383 N/A 0<alT<0.5 Tension, Bending Y
Dijkstra'89 70° 0.125 1.434 N/A 0<a/T<0.5 Tension, Bending Y
Dijkstra'89 4 5 0 0.0071 1.864 N/A 0<a/T<0.5 Tension, Bending Y
Dijkstra'93 70° 0 0.562 N/A 0 .0 0 7 1 < fl/r< 0 .5 Tension, Bending Y
Dijkstra'93 70° 0 0.812 N/A 0 .0 0 7 1 < fl/r< 0 .5 Tension, Bending Y
Dijkstra'93 70° 0 1.062 N/A 0 .0 0 7 1 < a /r< 0 .5 Tension, Bending Y
Dijkstra'93 700 0 1.312 N/A 0 .0 0 7 1 < a /r< 0 .5 Tension, Bending Y

Note: * if 0<fl/c<0.2  then a / f < 1.25(fl/ c + 0.6), if a / c>  0.2 then a /r< l
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(a) T-butt Welded Joint (3D)

A)

Crack

(b) Local Weld Geometry (2D)

Figure 7.1 Semi-elliptical Crack in T-butt Welded Joint
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Figure 7.2 Comparison of Deepest Point SIF Predictions from N&G*S
for Semi-elliptical Cracks in T-Butt Welded Joint (cc=45°, p/T=0.02 and L/T=2)

with N&R for Flat Plate under Tension
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Figure 7.3 Comparison of Deepest Point SIF Predictions from N&G*S
for Semi-elliptical Cracks in T-Butt Welded Joint (a=45°, p/T=0.02 and L/T=2)

with N&R for Flat Plate under Bending
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Figure 7.4 Comparison of Deepest Point SIF Predictions from N&G*S and PD6493 
for Semi-elliptical Cracks in T-Butt Welded Joint (o=45^, p/T=0.01 and a/T=0.01)

against L/T under Tension

247



(a) a/c=0.2

1.

2

N&G*S
PD6493

0 0.5 1 1.5 2 2.5 3 3.5 4
\JT 

(b) a /c= 0 .8
1.5

1.4

1.3

1.2 N&G*S
PD64931.1

1
0 0.5 1 1.5 2 2.5 3 3.5 4

>

UT

Figure 7.5 Comparison of Deepest Point SIF Predictions from N&G*S and PD6493 
for Semi-elliptical Cracks in T-Butt Welded Joint (oc=45  ̂p/T=0.01 and a/T=0.01)

against L/T under Bending
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Figure 7.6 Comparison of Deepest Point SIF Predictions from N&G*S and PD6493
with Bell’s 3D FE Data(p/T=0) for Semi-elliptical Cracks

in T-Butt Welded Joint (a=45°, L/T=2.3 and p/T=0.01) under Tension
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Figure 7.7 Comparison of Deepest Point SIF Predictions from N&G*S and PD6493
with Bell’s 3D FE data(p/T=0) for Semi-elliptical Cracks

in T-Butt Welded Joint (0=45°, L/T=2.3 and p/T=0.01) under Bending
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Figure 7.8 Comparison of Deepest Point SIF Predictions from N&G*S and PD6493
with Bell’s 3D FE Data(p/T=0) for Semi-elliptical Cracks

in T-Butt Welded Joint (a=30°, L/T=2.3 and p/T=0.01) under Tension
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Figure 7.9 Comparison of Deepest Point SIF Predictions from N&G*S and PD6493
with Bell’s 3D FE data(p/T=0) for Semi-elliptical Cracks

in T-Butt Welded Joint (a=30°, L/T=2.3 and p/T=0.01) under Bending
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Figure 7.10 Comparison of Deepest Point SIF Predictions from N&G*S 
with Bell’s 3D FE Data(a=70°, p/T=0) for Semi-elliptical Cracks 

in T-Butt Welded Joint(L/T=2.3 and p/T=0.01) under Tension 
(Note: alpha - Weld Angle in degree)
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Figure 7.11 Comparison of Deepest Point SIF Predictions from N&G*S 
with Bell’s 3D FE Data(a=70°, p/T=0) for Semi-elliptical Cracks 

in T-Butt Welded Joint(L/T=2.3 and p/T=0.01) under Bending 
(Note: alpha - Weld Angle in degree)
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Figure 7.12 Comparison of Deepest Point SIF Predictions from N&G*S 
with Nykanen FE Data(p/T=0.17) for Semi-elliptical Cracks 

in T-Butt Welded Joint (0=45°, L/T=l .952 and p/T=0.066) under Tension
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Figure 7.13 Comparison of Deepest Point SIF Predictions from N&G*S with Dijkstra’89 
FE Data (ot=70 )̂ for Semi-elliptical Cracks in T-Butt Welded Joint under Tension 

(Note: alpha - Weld Angle in degree, rho - Weld Radius p)
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Figure 7.14 Comparison of Deepest Point SIF Predictions from N&G*S with Dijkstra’89
FE Data (a=70°) for Semi-elliptical Cracks in T-Butt Welded Joint under Bending

(Note: alpha - Weld Angle in degree, rho - Weld Radius p)
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Figure 7.15 Comparison of Deepest Point SIF Predictions from N&G*S 
with Dijkstra’89 FE Data (p/T=0.0071) for Semi-elliptical Cracks 

in T-Butt Welded Joint (a/c=0.2, 0=45° L/T= 1.864 and p/T=0.01) under Tension
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Figure 7.16 Comparison of Deepest Point SIF Predictions from N&G*S
with Dijkstra’89 FE Data (p/T=0.0071) for Semi-elliptical Cracks

in T-Butt Welded Joint(a/c=0.2, 0=45°, L/T=l .864 and p/T=0.01) under Bending
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Figure 7.17 Comparison of Deepest Point SIF Predictions from N&G*S 
with Dijkstra’93 FE Data(a=70^ p/T=0) for Semi-elliptical Cracks 

in T-Butt Welded Joint (a/c=0.2, p/T=0.01) under Tension 
(Note: alpha - Weld Angle in degree)
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CHAPTER EIGHT 
SURFACE POINT SIF PARAMETRIC EQUATIONS 

FOR SEMI-ELLIPTICAL SURFACE CRACK 
IN T-BUTT WELDED JOINTS

8.1 Introduction

The key for application of fracture mechanics to offshore welded joints is to have the correct 
Stress Intensity Factor(SIF) solution for semi-elliptical surface cracks. The determination of 
SIFs for the surface intersection point of surface semi-elliptical cracks in welded joints has 
not attracted as much as attention as those for the deepest point since these cracks always 
grow rapidly along the weld toe and the fatigue crack length is easy to be detected and 
measured by NDT technique such as MPT. However, surface point SIFs would be useful for 
predicting crack aspect ratio development during fatigue crack growth. Using surface point 
SIFs, one can calculate the aspect ratio of fatigue crack for each paticular crack depth and 
thus simulate the fatigue crack growth stey by step.

Based on finite element analysis results, surface point SIF parametric equations have been 
derived for flat plates(Newman and Raju 1986). However there is no parametric equation 
available for T-butt or tubular welded joints. With the recent developments on the multiple 

reference data approach, it has proved to be possible to produce weight functions for the 
surface point of semi-elliptical surface crack in finite thickness plate(Shen, Plumtree and 
Glinka 1991)(Wang and Lambert 1995). Using these new weight functions and the UCL T- 
butt weld toe through-wall stress distribution database, it is possible to produce a set of 
surface point SIF parametric equations for semi-elliptical surface crack in T-butt welded 
joints under tension and bending. This chapter will present the work on the derivation and 

validation of this set of equations.

8.2 Wang-Lambert Weight Function

The weight function is a unique property of crack shape and component geometry and is 
independent of loading. With the uncracked weld toe through-thickness stress distribution at 
hand, it can be used to obtain SIFs. However, previous weight functions were only derived for 
the deepest point of semi-elliptical cracks in welded joints. By using the universal weight 

function form and two reference SIFs, Shen, Plumtree and Glinka(1991) have derived the 
closed form weight function for the surface point of a semi-elliptical surface crack in a plate 

of finite thickness.
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Unfortunately Shen-Plumtree-GIinka weight functions are only valid for a!c>0.2. However, 

most fatigue cracks on welded joints are long and shallow and their aspect ratios are often 
lower than 0.2. Recently, work has been done on improving Shen-Plumtree-Glinka weight 
function by Wang and Lambert(1995). They conducted the three dimensional finite element 
analyses for low aspect ratio semi-elliptical surface cracks. Combining these results with the 

existing finite element data(Newman and Raju 1981)(Shiratori et al 1987) for high aspect 

ratio and following the same procedure for deriving Shen-Plumtree-Glinka weight functions, 
the Wang and Lambert weight functions covering the entire range of aspect ratios were 

derived as follows:

m(x,a) = 1-h M,
\ a  J

+ Mr + M 3
3/2"

( 8 -1
UJ

n
( 8 - 2 )

M j = (60F„-90f;)-i-15

fo = C„ + Ci
J

( 8 - 3 )

( 8 - 4 )

( 8 - 5 )

( 8 - 6 )

f a ]
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8.3 Deriving SIF Parametric Equations

The weight function method is a powerful technique for the calculation of SIFs for a variety 

of complex loading conditions. Weight functions need to be integrated with the uncracked 
stress distribution to obtain the SIF. However, this procedure is not convenient to use at the 

design stage. The early finite element results have demonstrated that weld toe stress 

distributions in welded joints are well-represented by combining the results of T-butt models 
loaded in pure tension and pure bending, provided the weld geometries are the same in both 
cases. In order to simplify the use of weight function method, the surface point SIF parametric 
equations for T-butt welded joint in tension and bending would be desirable.

As the first step in the process, one would have to obtain the SIF results database by 
combining the above weight function with the T-butt through wall stress distribution 
database. The Stress Intensity Factor(SIF), K, can be expressed as follows:

K  = |m (fl / c,a / T,x)a(a,ç> / T,L /T ,a  / T,x)dx ( 8 - 1 3 )

The UCL uncracked through-wall stress distribution database(Brennan et al 1996) was used 
again. It was based on the results of systematic two dimensional finite element analyses for T- 
Butt welded joints and allow all weld toe effects to be incorporated. This database covers T- 

butts with the following peirameter ranges:

Parameter Range

Weld Toe Angle (a) 0=30», 450, 600

Weld Toe Radius/Wall Thickness (p/T) 0 .01<p/r< 0.066

Attachment Width/Wall Thickness (L/T) 0 .1577< L /r< 4

Location Along Wall Thickness (x) o<jc<r

The SIF database was establish by integrating the Wang-Lambert closed form surface point 
flat plate weight function with the UCL uncracked through-wall stress distribution of T-butt 

welded joints. The database used for each parameter in this SIF database is shown in 

following table.

Parameter Range

Weld Angle a(deg) 3Q0, 450, 6Q0

Weld Radius Ratio p/T 0.01,0.02, 0.04, 0.066

Attachment Ratio L/T Many data between 0.1577 and 4

Aspect Ratios a/c 0.01, 0.05, 0.08, 0.1, 0.12, 0.15, 0.18, 0.2, 0.4, 0.6, 0.8, 1.0

As can see from the above table, this SIF database includes the cracks within the whole range 
of aspect ratio(0<a/c<l ). Most fatigue cracks in welded joints are long and shallow and
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their aspect ratios are often lower than 0.2. For this reason, sufficient data have been 
generated in the range alc<0.1.

This new large database was used to derive the surface point SIF parametric equations SIF 
for semi-elliptical surface cracks in T-butt welded joints under tension and bending 
respectively. The regression analyses were carried out by using Minitab statistical 
package(MINITAB 1991). This two-dimensional curve-fitting process is split into following 
two levels.

1) Performing numerous regressions until the best form of expression for the variations of the 

SIF, i.e. the equation with a large product moment correlation coefficient, was found for all 
joints under tension and bending. After numerous tries, the following appropriate expressions 
were found under each mode of loading.

K  = YCyl{TZa) /Q

g  = l-f-1.464
\ c j

Y = Exp Cq + Cj
y

+ C.
\ T j

2\

F = C o  +  C J -  + Q
y

+ CjLn
y

( 8 - 1 4 )

( 8 - 1 5 )

For Tension Loading ( 8 - 16 ) 

For Bending loading ( 8 - 17 )

2) Fitting the coefficients in the above equations as a function of the parameters a, P, 7, T and 

0.

As a result, the parametric equations(W&L(FP)*S)^ to predict the SIF at the surface point of 

semi-elliptical surface crack in T-butt welded joints under tension and bending loading, have 
been derived in the form of continuous single functions by carrying out the regression analysis 
and they are given in Appendix J. A summary of the degree of fit for this set of parametric 
equations is presented in Table 8.1. From this table, one can see that SIF data are fitted very 
well by this set of parametric equations. The correlation coefficient is greater than 96% for 
all cases including both the form of equation and the coefficients Cq, C,, C ,̂ C3. These 

equations are valid for the following parameter ranges:

— < a  < — 
6 3

0.01 < -^<0 .066  
T

( 8 - 1 8 )

( 8 - 1 9 )

 ̂ W&L(FP) represents Wang and Lambert Flat Plate weight function, S denotes the T-butt through 
thickness Stress distribution database, * stands for the integration process
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0.1577<—<4 ( 8 - 2 0 )
T

0 < - < l  ( 8 - 2 1 )

0 <  — < 0.8 ( 8 - 2 2 ) 
T

8.4 Validation

Strictly speaking, it is not correct to calculate the SIF for semi-elliptical cracks in a T-butt 
welded joint by combining the flat plate weight function with the T-butt stress distribution. 

The weld toe effects are considered only in the uncracked through-wall stress distribution 
database rather than also in the weight function. Hence before use, it is necessary to carry out 

validation work to show whether the approach is a reasonable approximation.

The predictions from this set of equations(W&L(FP)*S) were first compared with the results 
from the flat plate Newman-Raju(N&R) equations for tension and bending 
respectively(Figures 8.2-8.3). The stress concentration effect of weld toe is clearly shown in 
the results for W&L(FP)*S and it decays quickly and disappears at about a/T=0.1. These 
figures also show that the W&L(FP)*S results are much higher than the flat plate data(N&R), 
especially for tension.

Bell's three dimensional finite element data(Bell 1985), generally considered to be the most 
accurate when compared with other numerical methods, were used to compare with the 
predictions from the parametric equations(W&L(FP)*S). The results are shown in Figures 
8.4-8.9 for the T-butt with three different weld angles under tension and bending respectively. 
In these figures, the minimum validated value p/T=0.01 were used for W&L(FP)*S equations 
as Bell's data were based on T-butts with p/T=0. As can be seen from these figures, this set of 
equations derived by using a hybrid method gave good modelling of the several trend but quite 
conservative values when compared with Bell's three dimensional data, especially under 
tension. For this reason, modification factors( 8 - 23 )( 8 - 24 ) were developed. The new 

W&L(FP)*S results show excellent agreement with Bell's data irrespective of weld angles and 

aspect ratios.

TZa

Modified

K
for tension ( 8 - 23 )
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TZa

M odified

— 06  for bending ( 8 - 24 )

It should be noted that these modification factors have been developed for the particular case 

of L/T=2.3. When more three dimensional finite element data becomes available, it should be 

possible to fit modification factors as functions of weld toe parameters, such as attachment 
size.

As a summary, the predictions from the W&L(FP)*S equations are very conservative when 
compared with Bell's finite element data. However excellent agreement can be achieved with 
the modified W&L(FP)*S equations for both tension and bending.

8.5 Conclusions

Based on the Wang-Lambert Flat Plate Weight function and the UCL uncracked through-wall 
stress distribution database for T-butt welded joints, a set of SIF parametric 
equations(W&L(FP)*S) for surface point of surface semi-elliptical cracks in T-butt welded 
joints have been derived for the first time. These equations have included the influence of 
crack aspect ratios, weld toe angle, weld attachment length and weld radius. They are 
available for both membrane and bending loading. The predictions from W&L(FP)*S 
equations are quite conservative when compared with Bell's three dimensional finite element 
data. Given the simple modification factors shown in equations( 8 - 23 )( 8 - 24 ), they can 
give quite accurate estimations. These equations can be easily programmed and used in the 
prediction of fatigue crack growth along the welds and the fatigue crack shape development in 

T-butt welded joints.
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Table 8.1 Summary of Degree of Fit for the surface point SIF Parametric

Equations(W&L(FP)*S) for Semi-elliptical Crack in T-butt Welded Joints

Loading Equations

Form of 
Expression

Co Cl Cz C3

Descriptive Statistics (%)

Mean
R2

Std.
Dev.

R2

Tension Appendix K1 99.60 1.86 97.96 99.30 99.52 98.50

Bending Appendix K2 96.72 9.05 97.89 98.09 97.74 99.06
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(a) T-butt Welded Joint (Three Dimension)

A)

Ml

Crack

(b) Local Weld Geometry (Two Dimension)

Figure 8.1 Semi-elliptical Crack in T-butt Welded Joint
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Figure 8.2 Comparison of Surface Point SIF Predictions from W&L(FP)*S
for Semi-elliptical Cracks in T-Butt Welded Joint (oc=45®, p/T=0.02, L/T=2)

with N&R for Flat Plate under Tension
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Figure 8.3 Comparison of Surface Point SIF Predictions from W&L(FP)*S
for Semi-elliptical Cracks in T-Butt Welded Joint (oc=45°, p/T=0.02, L/T=2)

with N&R for Flat Plate under Bending

272



(a) a/c=0.25 (b) a/c=0.33
10

8

6

cr
4

2

0
0.3 0.40.1 0.20

a/T 

(c) a/c=0.5
25

0.40.1 0.2
a/T

0.3

(e) a/c=1.0

0*0"^“ ' "O' — 'O— • O' — *0— • -0 —

14

12

10

6

4

2

0
0.1 0.2 0.3 0.40

a/T 

(d) a/c=0.67
40

Q .
t  20
c r

0.3 0.40.2
a/T

-W&L(FP)*S

Modified W&L(FP)*S

o Bell 3D FE Data

Figure 8.4 Comparison of Surface Point SIF Predictions from W&L(FP)*S
and Modified W&L(FP)*S with Bell's 3D data for Semi-elliptical Cracks

in T-Butt Welded Joint (oc=45®, p/T=0.01, L/T=2.3) under Tension

273



(a) a/c=0.25 (b) a/c=0.33
3.5

Ô o' Q - t )  ()
0.5

0.1 0.2
a/T

0.3 0.4

(c) a/c=0.5

0.2
a/T

0.40.3

(e) a/c=1.0

o .

0.1 0.2
a/T

0.3 0.4

4

3.5

3

2

1.5 (X

o " - .1

0.5
0 0.1 0.2 0.3 0.4

a/T 

(d) a/c=0.67
5

4

i s
t
w 2
t

1
o " -

0
0 0.1 0.2 0.3 0.4

a/T

-W &L(FP)*S 

-Modified W&L(FP)*S 

o  Bell 3D FE Data

Figure 8.5 Comparison of Surface Point SIF Predictions from W&L(FP)*S
and Modified W&L(FP)*S with Bell's 3D data for Semi-elliptical Cracks

in T-Butt Welded Joint (o=45°, p/T=0.01, L/T=2.3) under Bending
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Figure 8.7 Comparison of Surface Point SIP Predictions from W&L(FP)*S
and Modified W&L(FP)*S with Bell's 3D data for Semi-elliptical Cracks
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CHAPTER NINE 

SIF PARAMETRIC EQUATIONS 

FOR SEMI-ELLIPTICAL SURFACE CRACKS 
AT THE SADDLE OF TUBULAR WELDED T-JOINTS

9.1 Introduction

The stress analysis for tubular welded joints has been discussed in previous chapters. With this 
information at hand, it is necessary to develop the accurate fatigue crack growth modelling for 
rational inspection scheduling and maintenance of offshore jacket platform. The crack growth 

relationship such as Paris law, relates crack growth rate to the Stress Intensity Factor(SIF) 
range. Thus, accurate estimation of SIF for semi-elliptical cracks in tubular welded joints is of 
primary importance for the fatigue strength assessment of offshore tubular joints.

The occurring of through-thickness crack was been regarded as the fatigue failure of joints. Also 
fatigue cracks always grow rapidly along the weld toe and the crack length is easy to be 
measured by NDT technique such as MPI. Thus, much effort has been made to derive the 
deepest point SIF solutions to predict fatigue crack grow in thickness direction and to develop 

the advanced NDT techniques, such as ACPD and ACFM to size the depth of cracks.

The tubular joints of real structures are usually of complex geometric configuration and loading. 

As a result, currently there is no analytical solution for SIF for these joints. Although one can do 

three dimensional finite element analysis, it is very expensive. Instead, SIF for tubular joints is 
usually predicted using a simple flat plate or T-butt solution in conjunction with an appropriate 
load shedding model. Among them, the Niu-Glinka weight function based solution(N&G*S) 
with a linear release moment model is most successful for predicting fatigue crack growth in 
tubular welded joints.

However, all previous solutions including N&G*S do not consider the curvature of a tubular 
structure. Thus it is not accurate to assess the SIF for tubular joints using these simple models 
since weight function is the property of a geometry. Therefore, it is necessary to develop more 

accurate weight function based on real geometry of tubular joint. With the recent development of 

weight functions for longitudinal cracks in thin pipes, it is possible to develop a new weight 
function for the deepest point of a semi-elliptical crack at the saddle position of tubular welded 
T-joints. Furthermore, using the available UCL T-butt stress through-wall distribution database.

279



parametric equations can be derived to predict the deepest point SIFs for semi-elliptical cracks 
in tubular welded joints.

9.2 Weight Function for Semi-elliptical Cracks at the Saddle of Tubular Welded T-Joints

As an important development of the weight function technique, Niu and Glinka(1990) have 
proposed a closed form weight function for a semi-elliptical surface crack emanating from the 

weld toe of T-butt welded joint. This weight function is capable of incorporating weld profile 

effects due to different weld angles a  and weld toe radii p under any mode I type of loading. 
But this solution does not consider the curvature of the tube as it uses the Newman and Raju flat 
plate solution(1986) as reference data. However, the effect of curvature is important for pipes, 

pressure vessels and tubular joints.

By using three dimensional finite elements, Raju and Newman(1982) and Shiratori(1989) 
obtained SIFs for constant, linear, parabolic or cubic stress distributions acting on the crack 
surface of internal and external longitudinal semi-elliptical surface cracks in pipes with a 
radius/thickness ratio of 10. Based on these reference data and using the generalised form of 
Mode I weight function expressions, Shen and Glinka(1993) derived the weight functions for 
the deepest and surface points of semi-elliptical cracks in thin pipes. However, these solutions 
are restricted to aspect ratios between 0.2 and 1.0. In order to overcome this difficulty, Wang 
and Lambert(1996) conducted a series of three dimensional finite element analyses to obtain the 
low aspect ratio crack data. Using these results together with existing finite element data for 
higher aspect ratios, they (Wang and Lambert 1996) derived the closed form weight functions 
for the deepest and surface points of longitudinal semi-elliptical surface cracks in thin 

pipes(Figure 9.1) which are valid for all aspect ratios as follows:

^ = =  1 + m ;̂  1 -
V V V V

m
^ 2 n ( a - x )

1 - - 1 - - ( 9 - 1 )

MS =2 n

( 9 - 2 )

( 9 - 3 )

( 9 - 4 )

( 9 - 5 )

280



j

0  = 1 + 1.464
/ o \ ' w

\ c j

Bn = 1.1492-0.4322f -1 - 1+ 0.2984
U J

B, = 4-8 .98
y c j

+ 5.29 -

^ 2= -7 .44+  14.559

^  = 0.484-0.5211

fa^ f a ]
-8.305

U J [ c j
+ ■

0.066 +

f - 1 - 1  -0.453^+ 0.788
y c j  V

/  \  1.094' a '
\ c j

3

( 9 - 6 )

( 9 - 7 )

( 9 - 8 )

( 9 - 9 )

( 9 - 1 0 )

2.4478-5.0937 -1 + 2.85f -1
U J

^2=-5.69+  9.653 -1 -5 .0 6 2
\ c )

+
\ c j

0.097 +
/  N 1.006‘ a '

( 9 - 1 1 )

(9-12)

( 9 - 1 3 )

With the above weight function available, it was assumed that the relative influence of weld toe, 
i. e. weld angle a, was the same for an edge crack and the deepest point of a semi-elliptical 
surface crack with the same depth under the same stress system. This assumption is similar to 
that for the Niu and Glinka weight function but uses different reference data for the different 
geometries. It enables one to derive a weight function for the deepest point of semi-elliptical crack 
at the saddle position of a tubular welded T-joint(Figure 9.2) in the following relationship:

where is the SIF for the deepest point of semi-elliptical surface crack at the saddle position of 

a tubular welded T-j oint

Kl  ̂ is the SIF for an external longitudinal surface crack in a thin pipe subjected to the same 

stress distribution

is the SIF for an edge crack in a welded joint
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is the SIF for an edge crack in a plate subjected to the same stress distribution

In order to derive a new weight function for the deepest point of a semi-elliptical crack at the 

saddle position of a tubular welded T-joint, the other three weight functions are needed. The 
weight functions for an edge crack in plate( ) and an edge crack emanating from the weld toe 
in a T-butt joint (m“ ) were available in reference(Niu and Glinka 1987). With the recently

derived Wang-Lambert thin pipe weight function, relations ( 9 - 1 4 )  can be expressed in terms 
of derived weight functions as follow:

« \ (5{x)n{^{x,a,al t ,a)dx .a
\<5{x)m]{x,a / t ,a / c,a)dx = - ^ -----------------------------I G{x)mf (x,a,a  / t , a /  c,)dx
0 j  G{x)m^(x,a,a I t)dx °

( 9 - 1 5 )

The reference SIF ( Kf  ) for uniform tensile local stress system( a  q ) can be easily obtained 

from ( 9 - 15 ) as below:

/ t,a)dx ^
Kf  -----------------------j m f  (x,a,a 11,a I c)dx

j m^(x , a , a  / t)dx °
( 9 - 1 6 )

By substituting all three available weight functions into the above equations, the reference 
SIF( Kf  ) can be given as :

Kf =

F /  =
-JÏ F'‘ f  15 + 5A f*+ 3M ’'’ "'
6k  F 90

(12 + 6M'f, +  4M 5 + 3Mf, )

( 9 - 1 7 )

( 9 - 1 8 )

where the geometric correction factor ratio(Niu and Glinka 1990):

for a  in radians
n i - / i f

f ( - 1  = 1.0355 -  3.3324f- 1  + 21.5999f- 1  -  58.85 u f  -
1.5

+81.62461 ÿ j  -56 .9396fyj +15.8784^ y
2.5

( 9 -  19a)

( 9 - 19b)

the parameters in the weight function for an edge crack emanating from the right comer 
in a finite thickness plate(Niu and Glinka 1990):

282



M * = 0 .6 6 4 3 -12.7438| + 397.808lfyl -  3285.18lfy

+14162.5871 -30127.158fyl +258119.53sfy ( 9 - 2 0 a )

1.5

M * = 0 .1117-3.857| y j  + 30127.158|^yj + 285.4393fy
4.5

-647.6118|^yl +934.4538^^1 -596.8319^y (9  - 20b )

the parameters in the weight function for an edge crack in a plate of finite thickness t 
(Bueckner 1971):

= 0.6147 + 17.1944|^yj +

=0.2502 + 3.2899 +70.0444|^y

( 9 - 2 1 a )

( 9 - 2 1 b )

Using the Petroski-Achenbach method again, the following closed form weight function for 
calculation of SIF at the deepest point of a semi-elliptical surface crack emanating from the 
saddle position of a Tubular welded T-joint was derived.

^ 2 n ( a - x ) \  a )

where m.tj —= A!" +3B* - 4

= 5

, _ 2 (F /) «A" =

=

. . . A

5^l2n\{F^fada  

8a"F*

(9  - 22a ) 

( 9 - 221)) 

( 9 - 2 2 c )

( 9 - 22(1)

( 9 - 22e )

Instead of Newman Raju's jplat plate solution, Wang-Lambert thin pipe weight function has been 
used as new reference data to derive the new weight function for a tubular welded T-joint, 
following the same procedure adopted by Niu and Glinka. This weight function can be used to
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calculate the SIF for tubular welded T-j oints containing semi-elliptical chord saddle cracks with 
different aspect ratios which were usually generated under axial and OPB loading.

This weight function is valid for weld angles 7 C / 6 < a < 7 l / 3 ,  aspect ratios 0 < a / c < 1 and 

relative crack depths 0 < a  / 1 <0.8. It should also be noted that this new function was derived 
for the tubular joint with ŷ =9 and only considers the influence of weld angle. The other effects 

of weld toe, such as weld toe radius and attachment size and global geometry effect in the form of 
Degree of Bending(DoB) can be incorporated into a SIF solution subsequently. It is also be aware 
that the effect of through-wall curvature of the crack, caused by the mode II contribution to crack 

opening is ignored at the deepest point of the semi-elliptical surface cracks.

9.3 SIF Parametric Equations for the Deepest Point of Semi-elliptical Surface Cracks 

at the Saddle of Tubular Welded T-Joints

Based on the Petroski-Achenbach crack opening displacement expression and using the Wang- 
Lambert thin pipe weight function as the reference SIF solution, a new weight function in 
closed form for calculation of SIF at the deepest point of a semi-elliptical crack emanating from 
the saddle position of a tubular welded T-connection has been derived. This weight function 
needs to be integrated with the uncracked stress distribution to obtain the SIF. However, this 
numerical integration procedure is not convenient to use at design stage. Finite element analysis 
results(Kare 1989) have demonstrated that weld toe stress distributions in tubular welded joints 
are well-represented by combining the results of T-butt models loaded in pure tension and pure 
bending, provided the weld geometries are the same in both cases. Therefore simple two 
dimensional finite element models can be used to calculate the weld toe through-wall stress 
distribution in tubular welded joints. The proportion of bending to total stress is characterised by 

Degree of Bending(DoB). In order to simplify the use of the weight function method, the deepest 
point SIF parametric equations for semi-elliptical saddle crack in tubular welded T-joint in 
tension and bending would be desirable.

To derive parametric equations, one would have to produce the SIF results database by combining 
the above weight function with the T-butt through wall stress distribution database. Stress 
Intensity Factor(SIF), K, can be expressed as follows:

a
K  = j w { a  / c,a / r,x )cy (a ,p  / T,L /T ,a  / T,x)dx ( 9 - 2 3 )

0

The UCL uncracked through-wall stress distribution database(Brennan et al 1996) was used 
again. It was based on the results of systematic two dimensional finite element analyses for T-
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Butt welded joints and allow all weld toe effects to be incorporated. This database covers the T- 
butts with the following parameter ranges:

Parameter Range

Weld Toe Angle (a) 7 c / 6 < a < 7 i / 3

Weld Toe Radius/Wall Thickness (p/T) 0 .0 1 < p /r< 0 .0 6 6

Attachment Width/Wall Thickness (L/T) 0 . 1 5 7 7 < L / r < 4

Location Along Wall Thickness (x) o <j c <r

The SIF database was establish by integrating the new derived closed form weight function for the 
deepest point of semi-elliptical saddle cracks in tubular welded T-joints with the UCL uncracked 

through-wall stress distribution of T-butt welded joints. The database used for each parameter in 

this SIF database is shown in following table.

Parameter Range

Weld Toe Angle a 7C/6, 7U/4, 71/3

Weld Radius Ratio p/T 0.01,0.02, 0.04, 0.066

Attachment Ratio L/T Many data between 0.1577 and 4

Aspect Ratios a/c 0.01 0.05 0.08 0.1 0.12 0.15 0.18 0.2 0.4 0.6 0.8 1.0

As can see from the above table, this SIF database includes cracks within the whole range of 
aspect ratios(0< / c < 1 ). In particular, sufficient data have been generated in the range 
a!  c <  0.2, i.e. applicable to most fatigue cracks in tubular welded joints.

This new large database was used to derive the deepest point SIF parametric equations(TJ*S)^ for 
semi-elliptical surface saddle cracks in tubular welded T-joints under tension and bending 
respectively. The regression analyses were carried out by using the Minitab statistical 
package(MINITAB 1991).

This two-dimensional curve-fitting process was conducted along the same lines as explained in 

section 8.3. The following forms of expression were fitted:

= (y^Rr + DoB .

(
y ; = Exp Cq + Cj

y
+ Co —J For the Tension Loading

( 9 - 2 4 )

( 9 - 2 5 )

 ̂TJ represents Tubular Joint weight function, S denotes the T-butt through thickness stress distribution 
database, * stands for the integration process.
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Y b  -  Q  + C'if — + Cj + C , L n \ j For the Bending loading ( 9 - 26 )

The coefficients Cq, Cj, Ĉ , C3 are provided in appendix K as a function of the crack aspect ratio 

and weld toe parameters. As a result, the parametric equations(TJ*S) to predict the SIF at the
deepest point of semi-eUiptical surface crack at saddle position of tubular welded T-joint under

tension and bending loading, were derived in the form of continuous single function. The degree 
of fit is indicated in Table 9.1 where it can be seen that the correlation coefficient is greater 
than 96% for all cases. The force(tension stress) release component release function(R^) and 
moment(bending stress) release component release function(Rg) in above formulae will be 

identified in next section. This set of equations is valid in the following parameter ranges:

7C 7Ü
- < a < -  ( 9 - 2 7 )
6 3

0.01 <-^<0.066 ( 9 - 2 8 )
T

0.1577 < — < 4  ( 9 - 2 9 )
T

0 < - < l  ( 9 - 3 0 )
c

0 < - < 0 . 8  ( 9 - 3 1 )
T

9.4 Models for Load Shedding and Crack Shape Development

As the crack grows, the cracked region could gradually lose the local bending stiffness and 

rotational constraints, and the excess bending load could be transmitted through the uncracked 
part of the joint. It is thought that the reduction in local bending moment due to cracking, and 
allied increase in local flexibility can be modelled by a systematic moment release. Thus, in 
order to have a realistic SIF solution for a tubular joint, the load shedding mechanism has to be 
taken into account. Unfortunately, it is not fully understood for tubular joints due to the complex 
geometry. However, so far there are several load shedding models available.

Assuming the tensile stress component does not change while the bending stress component 
decreases, moment release models have been proposed(Aaghaakouchak 1989). They include the 
parabolic and the linear release models. The parabolic release model is derived from the studies
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of edge cracks in plates and rings. The following linear moment release model(LRM) is 
proposed as a "limiting case".

f
( 9 - 32 )n L M R  __ 1 - “ 

T j

Although the simplified SIF model combined with linear moment release model gives good 
agreement with the experimental data, there is no solid theoretical foundation for the linear 

moment release model(LRM). It is just the borderline for load shedding. It could be that this 

improved agreement is due to the over-prediction of simplified SIF solution in conjunction with 
severe linear moment release model and the usually high DoB for tubular joints.

Du and Hancock(1989) found the non-linear sigmoidal load shedding both for force and 
moment for tubular joints by using line spring finite element model and it is relatively 
insensitive to crack shape or loading mode. As a result of further study of these finite element 
results, the non-linear sigmoidal moment release model(NMR) was suggested by Kam(1989) as 
below:

+ 0.5 ( 9 - 3 3 )
TZa

\  J- J

Comparison of these two moment release models is shown in Figure 9.3. It shows that NMR is 
higher than LRM for the crack up to half-through wall and lower for the large cracks(a/T>0.5). 
This confirms that LRM is severe when used to predict early small crack growth(a/T<0.5).

Apart from the moment release, the force release was also found by Du and Hancock(1989). 
However, it is secondary effect compared with moment release as the proportion of tensile 
stress component is usually small. As a compromise, the constant release force(CRF) which is 
equal to DoB, i.e. Rj.=DoB, was proposed in this study.

The empirical equations such as A VS and TPM, do not need crack shape information since they 

include this information implicitly. However, for all fracture mechanics solutions, fatigue crack 
aspect ratio data is cmcial. By fitting the UCL experimental data for tubular joint under axial 
and OPB loading, Hancock and co-worker derived the following relationship(Du and Hancock 

1989):

^  = 0.167f|;J + 0.05 ( y > 0 . 2 )  ( 9 - 3 4 )

Based on the study of a series of fatigue test results for X joints and multiple-brace nodes, 
Dover and co-worker(Dover et al 1988) also suggested a lower bound value as a forcing 
function as below:
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When 0 < — < 0.1 then — = — ( 9 - 35a )
T c T

When 0.1 < — < 1.0 then — = 0.2— ( 9 - 35b )
T c T

Figure 9.4 presents the comparison of these two different models. The fatigue crack often grows 
initially as several small cracks which eventually join up to form a single crack at about 

a/T=0.1. This feature is reflected in Dover model. However, sometimes, the linking up process 

may not be particular significant if individual cracks are fairly close. In this case, the single 

relationship such as Hancock model may be more appropriate. This model was extrapolated into

the area 0 < — < 0.2 in this study as shown below.

— = 0.167

9.5 Validation

+ 0.05 ( 0 < y < 1 . 0  ) ( 9 - 3 6 )

Based on ideas similar to those used for deriving the Niu-Glinka weight function and using the 
Wang-Lambert thin tube weight function as reference data, the weight function for the deepest 
point of semi-elliptical saddle cracks in tubular welded T-joints has been derived. Furthermore the 
SIF parametric equations were derived. It is necessary to assess the accuracy of this new set of 
equations by comparing them with experimental data and the predictions from other methods.

The predictions from this new set of equations(TJ*S) were firstly compared with the results 
from the N&G*S T-butt and Newman-Raju plate solutions for a particular case(a=45°, 
p/T=0.02 and L/T=2) with different aspect ratios for tension and bending respectively(Figures 
9.5-9.6). The stress concentration effect of weld toe is clearly shown in the TJ*S and N&G*S 

predictions and it decays quickly and disappears at about a/T=0.1. These figures show that the 

results from the new model follow the tendency of that of the N&G*S and are general slightly 
lower except for the large crack with lower aspect ratio(a/c=0.2).

A direct comparison of plate and thin pipe SIF solutions is not made in this chapter. However, it 
can be demonstrated from the Figures 9.5-9.6 as the only difference between TJ*S and N&G*S 
is that they use these two different reference data. For low aspect ratio(a/c=0.2) which is quite 
common for the fatigue cracks in tubular joints, the values from TJ*S are lower than that from 
the N&G*S for the small cracks(a/T<0.5) and higher for the large cracks(a/T>0.5). Two load 

shedding models, the LMR and NMR were used for TJ*S solution initially. The results
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indicated that NMR is a suitable load shedding model for TJ*S. Thus NMR is used with TJ*S 
when compared with experimental data.

The available UCL in-air fatigue crack growth data(Dharmavasan 1983)(Kam 1989)(Monahan 

1994)(Smith 1995) were re-analysed(the general information about these tests is shown in Table 

9.2). They include one T joint under axial loading, one T joint under OPB loading and several 
DT and Multiple plane(M) joints under OPB and IPB loading. As both TJ*S and N&G*S 
solutions include the influence of weld toe, the emphasis is on the early fatigue crack growth. 
However, it is difficult to collect weld toe information for most of fatigue test data. As a result, 
the average weld angle and radius taken from the reference(Kare 1989) were used in this study.

Figures 9.7-9.20 show the comparison between the predictions from the new model(TJ*S) and 

N&G*S with these experimental results together with the most sophisticated empirical 
equation, i.e. the TPM solution. From these figures, one can see that the N&G*S works well 
with LMR whilst the TJ*S predictions fits well with experimental data with CRF and NMR. 
With suitable load release models, excellent agreement is achieved between the predictions from 
both TJ*S and N&G*S. They agree very well with test data as well.

All TJ*S and N&G*S data are calculated by using the experimental crack shape evolution 
information. However, they are available only for limited number of different crack depths. In 
order to obtain the complete fatigue crack grow curve, crack shape development information is 
needed. Two different crack shape evolution models were tried initially. It was found that the 
predictions using Dover model were too conservative for a/T>0.1. The Hancock model was 
therefore chosen in the comparison(Figures 9.7-9.20). The results indicated that this crack shape 
development model work very well for the tubular T-joints under axial and OPB 
loading(Figures 9.7-9.8) as this model was derived form the test data of these joints. For other 
cases(Figures 9.9-9.20), it is shown that it can be used as a reasonable low bound estimations of 

aspect ratio as it produces the conservative values for SIFs. As a summary. Figures 9.7-9.20 
demonstrated that this single aspect ratio relationship can be used in conjunction with TJ*S and 

N&G*S solutions to predict the SIFs for tubular welded joints. The advantage of the TJ*S and 
N&G*S solutions is that they can incorporate the aspect ratio information. With the accurate 
crack shape development relationship available, they can provide reliable SIF predictions.

It is not surprising that the predictions from TMP solutions agree well with some experimental 
data(Figures 9.7-9.11) as they are the data used to derive these equations. However, they are 

quite conservative for other cases(Figures 9.15-9.18 and 9.20).

Although the TJ*S was derived for the deepest point of semi-elliptical surface cracks at the 

saddle positions of tubular welded T-joints under axial and OPB loading, it was found that it
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could work well for many other cases such as X(Figures 9.9-9.11) and multiple-brace 

nodes(Figures 9.12-9.19) and IPB loading(Figures 9.19) as long as the DoB and crack shape 

evolution information for these cases was accurate.

The differences between the predictions of TJ*S+CRF+NRM and N&G*S+LRM are very small 

for majority cases and they agree with the experimental data very well except for Figure 9.20 

where the prediction accuracy can be improved by approximately 11% at a/T=0.2 and up to 

13% at a/r=0.46 by using the TJ*S+CRF+NRM model when compared with those from the 

N&G*S+LRM solution.

9.6 Conclusions

Based on the Petroski-Achenbach crack opening displacement expression and using the Wang- 
Lambert thin pipe weight function as the reference SIF solution, a new weight function in 
closed form for calculating the SIF at deepest point of a semi-elliptical surface crack emanating 
from the saddle position of a tubular welded T-connection has been derived. Using this new 
weight function and the UCL T-butt through-wall stress distribution database, parametric 
equations(TJ*S) in the form of continuous single functions were derived for tension and 
bending loading. With the DoB information, they can be used to predict the deepest point SIF 
for semi-elliptical surface crack in tubular welded joints.

Available UCL in-air tubular joint fatigue test results, especially early crack growth data, were 
used to validate this new model. Considering the curvature of tube, TJ*S was found to work 
very well with the non-linear load shedding relationship derived from line spring finite element 
model(Du and Hancock 1989). In conjunction with the constant force release(CRF) and non­

linear moment(NRM) release models, a new analytical model(TJ*S+CRF+NRM) has been 
developed for predicting the deepest point SIF for semi-elliptical surface fatigue cracks in 
tubular welded joints.

The predictions from this model agree very well with the experimental results, especially for 
early fatigue crack growth. In one case(Figure 9.20), the results showed that the predictions 
from this model are more accurate than those from the N&G*S+LRM when compared with 
experimental data. This new model can incorporate the influence of the local weld geometry and 

allows a rapid modelling of fatigue crack growth in tubular welded joints.
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Table 9.1 Summary of Fitting Degree for the SIP Parametric Equations(TJ*S)

for the Deepest point of Semi-elliptical Crack at Saddle Position of Tubular Welded Joint

Loading Equations

Form of Expression Co Cl C2 C3

Descriptive Statistics (%)

Mean
R2

Std.
Dev.

R2

Tension Appendix K1 99.74 0.523 97.8 98.56 98.53 98.07

Bending Appendix K2 99.54 0.809 96.84 97.44 98.49 97.72

Table 9.2 The Details of UCL Steel Tests for Tubular Joints

Ref

Joint

Type

M ode

of
Loading

G eom etry

Stress

information W eid Toe Details

T

(mm)
P ^CF^ SCF,,

SCF
DoB a

(d eg )
P

(mm)
L

(mm)

(Dharmavasan 1983) T Axial 16 0.71 8.70 1.37 0.82 47 0.75 20.70

(Dharmavasan 1983) T OPB 16 0.71 9.10 2.22 0.84 47 0.75 20.70

(Kam 1989)-UCX1 DT Axial 45 0.51 6.70 1.70 0.84 47 0.75 28.62

(Kam 1989)-UCX2 DT Axial 35 0.61 9.40 1.78 0.86 47 0.75 27.65

(Kam 1989)-UCX3 DT Axial 25 0.76 7.70 1.85 0.82 47 0.75 21.25

(Monahan 1994) Tl-M OPB 32 0.508 6.57 1.57 0.88 38 1.65 36.00

(Monahan 1994) T2-M OPB 32 0.508 6.29 1.57 0.88 39 1.25 36.00

(Monahan 1994) T4b-DT OPB 20 0.898 8.43 2.52 0.85 33 1.58 30.00

(Monahan 1994) Yla-M OPB 32 0.359 3.36 1.52 0.94 40 1.63 32.00

(Monahan 1994) Ylc-M OPB 32 0.359 2.96 1.52 0.94 41 1.89 32.00

(Monahan 1994) Y2a-M OPB 32 0.359 2.87 1.52 0.94 41 1.38 32.00

(Monahan 1994) Y2c-M OPB 32 0.359 2.94 1.52 0.94 39 1.66 32.00

(Monahan 1994) Tl-M IPB 32 0.508 2.73 1.31 0.83 54 1.28 36.00

(Smith, 1995) TS-DT OPB 19 0.8 6.4 1.55 0.89 23 2.10 50.00

Note; X-Y : X-brace/chord intersection of Y-node

M: Multiple-brace M-node

SCF  ̂ : H ot s p o t  SCF
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Figure 9.5 Comparison of Deepest Point SIF Predictions from N&G*S and TJ*S
for Semi-elliptical Cracks in Welded Joint (a=45^ p/T=0.02 and L/T=2)

with N&R for Flat Plate under Tension
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Figure 9.6 Comparison of Deepest Point SIF Predictions from N&G*S and TJ*S
for Semi-elliptical Cracks in Welded Joint (ot=45°, p/T=0.02 and L/T=2)

with N&R for Flat Plate under Bending
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Figure 9.7 Comparison of Deepest Point SIF Predictions from N&G*S and TJ*S 
for Semi-elliptical Cracks in Tubular Welded T-Joint under Axial Loading 

(0=47", p/T=0.047 and L/T= 1.294)
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Figure 9.8 Comparison of Deepest Point SIF Predictions from N&G*S and TJ*S
for Semi-elliptical Cracks in Tubular Welded T-Joint under OPB Loading
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Figure 9.14 Comparison of Deepest Point SIF Predictions from N&G*S, TJ*S and TPM 
for Semi-elliptical Cracks in Tubular Welded Joint(T4b-DT) under OPB Loading 
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CHAPTER TEN 
CONCLUSIONS

10.1 Overall Summary

Fatigue damage has been recognised as one of most important failure modes for offshore 

tubular joints in the hostile North Sea environment. Periodic inspection using NDT techniques 

is necessary to ensure the integrity of offshore platform. Given crack detection, remedial 

methods such as grinding can be used to extend the life before the fatigue crack reach an 

unacceptable size. The methodology of non-destmctive fatigue strength assessment for 

offshore tubular joints is illustrated in Figure 10.1. An appropriate inspection, repair and 

maintenance strategy relies on the accuracy of stress and fracture mechanics modelling to 

predict the fatigue crack growth behaviour and the ability of non destructive techniques to 

reliably detect and size fatigue cracks in tubular welded joints. Research work on these areas 

was reviewed in Chapter 1. It was concluded that more basic information and tools are needed 

in order to derive more advanced fatigue strength modelling and apply the sophisticated 

methodology to offshore stmctures.

Aiming toward this purpose, comprehensive parametric studies have been conducted on the 

major areas of non-destructive fatigue strength evaluation of offshore welded tubular joints. 

As a result, these studies have produced much useful information in the form of databases and 

parametric equations and they are fully reported in the preceding chapters(Figure 10.1). A 

summary of these developments are given below in turn.

NDT Measurement and Underwater Inspection Reliabilitv

i) Fatigue cracks on tubular welded joints were re-measured using MPI, ACPD and ACFM 

techniques in order to clarify some UCL crack library characterisation data. The effect of 
using different versions of WAMI(ACFM crack detection and sizing software) and sizing 

procedures for the underwater ACFM results were investigated. The results showed that the 
sizing accuracy of ACFM technique depends on not only the theoretical model but also the 
correct procedures to interpret ACFM inspection results.

ii) The underwater POD trials results for ACFM and MPI were compared. The POD 
performance for these two techniques is close. The ACFM technique is preferred to use as 
this technique offers many benefits to industries for the inspection of offshore structures. 

However, it does sometimes miss small cracks near the end of a long crack.
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iii) The UCL underwater non destructive inspection reliability trial results (POD data) were 

re-analysed to make them suitable for reliability fracture mechanics procedures for the first 
time. A new crack classification D was suggested. The POD in terms of both the crack 
length and the maximum crack depth for MPI and two well-known eddy current 
systems(Hocking and HMD III) using classification B, B1 and D were produced. These data, 
especially the crack depth based POD data, formed the inspection reliability database and 
were incorporated into the UCL Reliability based Inspection SCheduling(RISC) system for 

reliability fracture mechanics based inspection planning of offshore jacket structures.

Stress Analysis of Tubular Welded Joints

Many sets of stress parametric equations have been derived for tubular welded joints during 

the last two decades. Except for the UCL HCD equations, all these equations can only be 
used to predict hot spot SCFs. However, for the fracture mechanics calculation of remaining 
life for in-service cracked joints, information is required on the magnitude and distribution of 
the stress acting along the anticipated crack path, not just the peak stress at one location. Thus 
it was necessary to derive parametric equations which can predict the full two dimensional 
stresses for tubular joints. For this reason, comprehensive thin shell finite element analyses 
were conducted for 660 tubular X and DT, Y and T-joints typical of these used in offshore 
structures, subject to principal modes of loading. The results from this work have been used 
to produce by regression analysis a family of stress parametric equations as a function of 
non-dimensional joint geometric ratios a, (3, 7, T and 0. They are listed in Table 10.1 and 
summarised below.

I) Comprehensive stress parametric equations were derived for tubular X and DT-joints. 
They can be used to predict SCFs and DoBs at all critical positions for each mode of 

loading, for both chord and brace, as well as the angular location of the hot-spot stress site 
around the intersection. Furthermore, the parametric equations to predict the full stress 
distribution along the intersection were also derived as a function of non-dimensional joint 
geometric ratios a, P, 7, x and 0 for each mode of loading. They can be used to predict the 
normalised distribution but also provide an alternative method for calculation of hot spot 

SCFs. This set of parametric equations has been assessed by comparing the predicted values 
with results from steel and acrylic model tests and also with the predictions from existing 
parametric formulae given in the literature. All these equations are directly compatible with 

each other. Thus the full two dimensional stress distribution can be recreated for tubular X 
and DT-j oints.

ii) So far, the UCL HCD equations are the only ones which can predict not only hot spot 
SCFs but also the degree of bending and the characteristic stress distribution for tubular Y 
and T-j oints. However, they were not recommended for estimating hot spot SCFs as they were
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borderline in terms of the proposed acceptance criteria(they were unconservative at the chord 
saddle under axial loading). The problem with the UCL HCD stress distribution equations is 

that they were derived by observing a limited number of typical sample results rather than 

whole database and therefore they can not provide enough accuracy to all other cases for 
detailed analyses. Thus it was desirable to enhance the capability of this set of equations.

For this reason, systematic thin shell finite element analyses have been conducted for tubular 
Y, T-j oints following similar procedures for tubular X and DT-j oints. A regression analysis of 
the computed results has been carried out to produce a new set of parametric equations. This 
set of equations can be used to predict the full SCF distribution along both chord and brace 

toe for each mode of loading. The validation against experimental data has shown that they 

can provide SCF distribution predictions along the intersection under all modes of loading 
with reasonably good accuracy. Moreover, the results of assessment indicate that this set of 

equations also has the capability to reliably estimate the hot spot SCFs on both brace and 

chord toes under all modes of loading except for the chord saddle under OPB loading. For 
this particular case, the HCD SCF parametric equations can be used instead. Thus, 
combining this new set of equations with the original UCL HCD DoB and SCF(only for the 
chord saddle under OPB loading) equations, one can predict the full two dimensional stress 
distribution at any location around the tubular intersection.

iii) A new concept, i.e. stress distribution concentration factor(SDCF), was proposed to 
characterise the degree of concentration(or the spread) of stress distribution along the 

intersection. Based on the systematic finite element database, parametric equations were 
derived to predict average SCF and SDCF for Y and T, X and DT-joints. Availability of the 
parametric equations to predict average SCF would promote the use of the fast empirical 
fatigue crack growth modelling such as the A VS and TPM models. The average SCF and 
SDCF can also be used to estimate stress distributions at the design stage and used to 
develop advanced fracture mechanics modelling. Furthermore, it is extremely valuable to 
the overall methodology that these parameters could be used as an alternative to the single 

value of hot spot stress for evaluating stress/life or remaining life(fatigue crack growth) as 
they provide the measurement on magnitude and spread of the stress distribution around the 
intersection of tubular joint.

As a summary, comprehensive stress parametric equations were derived for tubular Y, T, X 
and DT-joints. These equations can be used to recreate the two dimensional stress 
distribution around intersection. They are valuable for multiple-axis stress analysis, fatigue 

design, fatigue strength assessment and fatigue crack growth analysis(e.g. application of 
advanced fracture mechanics modelling, especially for those considering 2D stress 
distribution).
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SIF Parametric Equations for Semi-elliptical Surface Cracks in Welded Joints

Based on the weight function approach, a series of SIF peirametric equations was derived for 
the deepest and surface point of semi-elliptical surface cracks in T-butts and deepest point of 
semi-elliptical surface cracks in tubular welded joints, by using the UCL database of T-butt 
through wall stress analysis results. These equations are listed in Table 10.2 and 
summarised as follows in turn.

i) Using the three dimensional Niu-Glinka weight function and the stress analysis results for 

T-butts, the new SIF parametric equations have been derived for the deepest point of semi­
elliptical cracks for T-butts under tension and bending loading. Apart from a number of 
factors such as crack shape ratio, weld angle, weld radius, these solutions also include the 
effect of attachment width. The predictions from these equations were validated against 
known finite element results and predictions from Mk factor approach as given in PD 6493.

ii) The SIF parametric equations for the surface point of semi-elliptical cracks for T-butts 
under tension and bending loading were derived by combining the Wang Lambert surface 
point weight function for semi-elliptical cracks in plates and the T-butt through wall stress 
analysis results. The validation of this set of SIF parametric equations was conducted by 
comparing the predictions with finite element analysis results from literature. Given the 
simple modification factors, they give quite accurate estimations and can be used to predict 

the fatigue crack growth along the welds. Combination of this set of equations with the 
deepest point SIF equations, such as those derived in chapter 7, allows one to predict the 
fatigue crack shape development in T-butt welded joints.

iii) Using the Wang-Lambert thin pipe weight function as reference data and assuming that 

the contributions of the weldment geometry to the SIF for edge cracks in plates is the same as 
those of semi-elliptical cracks in thin pipes, a new weight function for the deepest point of a 
semi-elliptical surface crack at the saddle of tubular welded joints was derived. Combining 

this new weight function and the UCL database of T-butt through wall stress analysis 
results, a new set of SIF parametric equations(TJ*S) in the form of continuous single 
functions was derived for tension and bending. With the DoB information and a suitable 
load shedding model, they can be used to predict SlFs for fatigue cracks in tubular joints.

Available UCL in-air tubular joint fatigue test results, especially early crack growth data, 
were used to validate this new model. Considering the curvature of tube, TJ*S works very 

well with the non-linear load shedding relationship derived from line spring finite element 
analysis(Du and Hancock 1989). In conjunction with the constant force release(CRF) and 
non-linear moment(NRM) release models, a new model(TJ*S+CRF+NRM) has been 
developed for predicting the deepest point SIF for semi-elliptical surface fatigue cracks in 
tubular welded joints.
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The predictions from this model agree very well with the experimental results, especially for 
early fatigue crack growth. In one case(Figure 9.20), the results showed that the predictions 

from this model are more accurate than those from the N&G*S+LRM when compared with 

experimental data. This new model can incorporate the influence of the local weld geometry 
and allows a rapid modelling of fatigue crack growth in tubular welded joints.

In overall terms, this study has produced an improved underwater NDT Inspection 
reliability database and new parametric equations for predicting stresses in tubular joints and 
SIFs of semi-elliptical surface cracks in welded joints. They can be used for non destructive 

evaluation of fatigue strength of offshore tubular welded joints. Availability of these tools 
also creates the base to develop more sophisticated methodology. It will lead to an better 

understanding of fatigue crack growth in tubular welded joints and, in turn, permits more 

rational inspection scheduling to be planned with respect to the assessment of fatigue cracks 
in offshore structures, including decision on potential remedial work.

10.2 Recommendations for Further Research

Recommendation for future work that would contribute to a better understanding of the 

fatigue properties of tubular joints based on the understanding of this study are outlined 
below:

Stress Parametric Equations for Tubular Joints:

a) Extending comprehensive finite element stress studies to K and KT and furthermore 
multiple-plane joints.

b) Improving the accuracy of stress parametric equations by fitting the finite element database 
with available steel and acrylic test results together in order to reduce the uncertainty when 

used for predicting fatigue life.

Fatigue Design of Offshore Tubular Joints

The accuracy of using S-N curve, such as T  curve to predict fatigue life, can be improved by 
deriving the semi-empirical fatigue life equation based on experimental data which incorporate
not only the hot spot SCF, but also the DoB, SCF and SDCF to consider the stress variations 

through the wall thickness and along the intersection.

Tools for Whole Methodologv

An artificial neural network(ANN) neural network can be used to fit the computational and 
experimental data into parametric equations and empirical relationships for examples the SCF 
and DoB equations, and fatigue crack growth rate.
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Table 10.1 Stress Parametric Equations for Simple Tubular Joints

Parametric Type of Simple Tubular Joint

Equations T/Y DT/X

Hot spot SCFs Hellier Connolly and Dover 1990 Appendix A

DoB Connolly et al 1990 Appendix B

SCF Distributions Appendix D Appendix C

Average SCF Appendix E Appendix F

SDCF Appendix G Appendix H

Table 10.2 SIF Solutions for Semi-elliptical Cracks in Welded Joints

Parametric

Equations

Type of Welded Joints

T-Butts Tubular Joints

Deepest Point SIF Appendix 1 Appendix K

Surface Point SIF Appendix J Rhee et al 1991
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Appendix A 
Stress Concentration Factor Parametric Equations 

for Tubular X and DT-Joints

Appendix A1 - Single brace axial loading, brace toe SCF

A l.l Parametric equation for SCF at the brace crown toe position (0  = 0°)

SCF  ̂= exp(-0.0358y -  0.969t -1.340)

A 1.2 Parametric equation for SCF at the brace saddle position 

SCF̂  = 0 .963«°^j8-° sin^^ 0

A 1.3 Parametric equation for SCF at the brace crown heel position (0 = 180°)

SCF̂ ^̂  = 0.1188j9°"""'̂ -'̂ /°"°"'̂ exp(0.895j8̂  -0.000403/^ - 0.134t  ̂+ 2.15/«0)

A 1.4 Parametric equation for SCF at the brace hot-spot stress position

= 1.1549a" sin'”  $

A 1.5 Parametric equation for position of brace hot-spot stress site

=-333.4 + 51.40 + 646.9 sin 0 -  326 sin̂  0 + 0.26—+1.567^ + 48.9 -  -  1.47vr
0 0 0

Appendix A2 - Single brace axial loading, chord toe SCF

A2.1 Parametric equation for SCF at the chord crown toe position (0 = 0°)

^CF;° = 1.6145a°"°"j0-°"""y°"'"T°""' sm°'»" 0

A2.2 Parametric equation for SCF at the chord saddle position 

=0.8504cK°^jg-°^y^Y^^sin^°^ 0

A2.3 Parametric equation for SCF at the chord crown heel position (0 = 180°)

ĈF̂ îO = lOg2']cĈ -̂ 57p-0.2l2̂ 0.262̂ Q.822 ^^1.34 g

A2.4 Parametric equation for SCF at the chord hot-spot stress position 

SCF^ = 1.061«°^^^)9^^^y°^°^T'^^ sin’ 0

A2.5 Parametric equation for position of chord hot-spot stress site

3 1 9



= -189.1-0.00002/ -17.9t“ +403sine-140sm^e-33.3-^ + 2.17^ + 38.8--0.0074-^** 0 e  e  p

Appendix A3 - Single brace in-plane bending loading, brace toe SCF

A3.1 Parametric equation for SCF at the brace crown toe position (0 = 0°)

5CF,° = - 4 5 . 6 0 4 2 ) 8 ° ^ " ' 0exp( - l . l j 8- 0. 812t -  1.81sin 0)

A3.2 Parametric equation for SCF at the brace saddle position 

SCF̂  = 0

A3.3 Parametric equation for SCF at the brace crown heel position (0 = 180°)

S c f M  ^  3 2 8 7 Jy0 .742-O 382ffl.j.o .582  g ^ g - 1 4 3  0exp(-O.793i8- 0 .0169r- 0.708t)

A3.4 Parametric equation for SCF at the brace negative hot-spot stress position 

SCF' = -5.9895)3“ sin' ”  0 e x p (-1.43)3 -  05 17t)

A3.5 Parametric equation for SCF at the brace positive hot-spot stress position

= 3.1268j8°'^-°'^^^y°^"'-°^^^^T°^'^-°°^^^/^ s in '’°̂  0exp(-O.996j8 -  0.127t^)

A3.6 Parametric equation for position of brace negative hot-spot stress site 

^;, = -72 .54  + 0 .283«+  79.1)3- 37#" + 1.267y + 27.9 f  +12.2 e

A3.7 Parametric equation for position of brace positive hot-spot stress site 

0+ = 269.7 -  0.404a -  6 l6 p  -1 .2 5 3 / -  28.5r -  35.4 sin 8

Appendix A4 - Single brace in-plane bending loading, chord toe SCF

A4.1 Parametric equation for SCF at the chord crown toe position (0 = 0°)

SCF̂  ̂ = -1 .3258/°"^% °^ s in '^  0

A4.2 Parametric equation for SCF at the chord saddle position 

SCF̂  « 0

A4.3 Parametric equation for SCF at the chord crown heel position (0 = 180°)

5CFJ^° = 2.0077a-°°^^^)8'^°^^/°^^T°^ sin°^^ 0

A4.4 Parametric equation for SCF at the chord negative hot-spot stress position 

SCF,] = -1.0784a°°^^/°^^^T°^ sin'^^ 0
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A4.5 Parametric equation for SCF at the chord positive hot-spot stress position

A4.6 Parametric equation for position of chord negative hot-spot stress site

38.99 + 67 .3 /3"-0 .00003 /-4 8 .2 5 /n 0 -5 8 .2 |-3 .2 -|+ 1 3 .7 6 ;8 V -1 7 .2 8 /ÿ 7 + 1 .9 9 5 rr
9 p

A4.7 Parametric equation for position of chord positive hot-spot stress site

7.4
9199.2 + 0 .00001 /-11.910-O.O125ar-7.24/3"r+9.19)3"/+7.44-2. 46j6)T’

Appendix AS - Single brace out-plane bending loading, brace toe SCF

A5.1 Parametric equation for SCF at the brace crown toe position (0 = 0°)

A5.2 Parametric equation for SCF at the brace saddle position 

SCF̂  = 0 . f  ̂  sin^°^ 9

A5.3 Parametric equation for SCF at the brace crown heel position (0 = 180°)

5CFj®° « 0

A5.4 Parametric equation for SCF at the brace hot-spot stress position 

= 0.8781«°'^)9°^^y°^^^T°^^^ sin^ 9

A5.5 Parametric equation for position of brace hot-spot stress site 

<I>H, = 90

Appendix A6  - Single brace out-plane bending loading, chord toe SCF

A6.1 Parametric equation for SCF at the chord crown toe position (0 = 0°)

5'c f ;° = 0

A6.2 Parametric equation for SCF at the chord saddle position 

SCF̂  =  0.8694cK°^^y^^^y°^T^" sin*°° 9

A6.3 Parametric equation for SCF at the chord crown heel position (0 = 180°)

SCF}̂  ̂ « 0
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A6.4 Parametric equation for SCF at the chord hot-spot stress position

S C F h s  =  0 .885  sin^ 6

A6.5 Parametric equation for position of chord hot-spot stress site

Appendix A7 - Double brace balanced axial loading, brace toe SCF

A7.1 Parametric equation for SCF at the brace crown toe position (0 = 0°)

j"CF° = 8 .3 5 -8 .5 2 j9 -H ^ _ 0 ,0 0 4 2 6 /-0 .1 2 9 « T + 0 .1 7 2 j9 'y + 0 .0 7 3 6 -+ 0 .0 1 5 7 ^ + H Ë 2 + 0 .0 1 2 7 ^
e e  p r

A7.2 Parametric equation for SCF at the brace saddle position

A7.3 Parametric equation for SCF at the brace crown heel position (0 = 180°)

SCF;^ = - 9 . 3 7 - l3 .6 p + ^ .4 4 p ^ - 0 A 0 2 y - 2 . 6 5 T + 3 A 3 e + 2 2 A S i n d - l 0 .1 S in ^ d - 0 .n 5 a P - 0 . 0 7 l5 y v

+ 0 .0 4 9 I -  + 4 .0 7 ^ + 0 .0 5 4 4 ^  + 1 .4 3 --0 .1 0 1 i3 V  
e  e 6 9

A7.4 Parametric equation for SCF at the brace hot-spot stress position 

S C F h s  =  1 ^ 3 1 3 a ° ° ^ ^ °  ° ^ y  sin -̂*  ̂0

A7.5 Parametric equation for position of brace hot-spot stress site

0 ^  =  597399^300943/0^0.236/0^0.323/0-0,192 ^^1.22 0 e x p ( - O .1 5 2 j3 "  -  0 . 0 0 7 9 6 /  -h 0 .1 4 0 )

Appendix A8  - Double brace balanced axial loading, chord toe SCF

AS. 1 Parametric equation for SCF at the chord crown toe position (0  = 0°)

SCF° = -2.54 -  -  1.08t" -1.050 -k 3.72 sin0 -  0.0953vr + 0.0292^ +1.99-4-1.42- -h
p^  ̂ e  p  e  Pt

AS.2 Parametric equation for SCF at the chord saddle position

S C F ^  =  1 . 3 5 3 9 0 ° sin^°" 0

AS.3 Parametric equation for SCF at the chord crown heel position (0 = 180°)
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5CF’*° = 0.121 -  4.35/5 -  0.0044 ly^ + 0.000003y" + 2.5 sin 0 + O.OSljSV +1.98-^ + 0.0272^ + 0 .904- -1 .0 5 -
e G p e

AS.4 Parametric equation for SCF at the chord hot-spot stress position 

SCF^ = 15 sin*-̂  ̂0

AS.5 Parametric equation for position of chord hot-spot stress site

= -30.28 -  + 69.6T -  37.3t' +192 sin 0 -  SSSin̂ G -  27.7 ̂  + 0.939 ̂  +12.9 -  -  3 .5 8 - -  1.49yr + 0.68dyr 'ŷ  e e e p

Appendix A9 - Double brace balanced in-plane bending loading, brace toe SCF

A9.1 Parametric equation for SCF at the brace crown toe position ( 0  = 0 ° )  

SCF;° = - 4 1 . 6 7 9 1 / 9 ° si n^^ 0exp(-l.O l/3-O .818T -1.85sin  6) 

A9.2 Parametric equation for SCF at the brace saddle position 

SCF̂  « 0 

A9.3 Parametric equation for SCF at the brace crown heel position ( 0 = 180° ) 

SCFJ^° = 6.0497(%^°^^/9°^^^/°^^-°^^^^T°^^'^ sin'^^^ 0 exp(-1.37/3 -  0.0195/ -  0.748t) 

A9.4 Parametric equation for SCF at the brace negative hot-spot stress position 

SCF  ̂ = -5.8709j3°^^y°'^T°^^-°^^^^^ sin' 0exp(-1.51/5 -  0.486t) 

A9.5 Parametric equation for SCF at the brace positive hot-spot stress position 

SCF^ = 3.0957/9°"'^°'^/^/°^^-°^^/^%°^'^-°°^^/^ sin"°-*̂  ̂0exp(-O.9O8j8 -  0.13t'')

A9.6 Parametric equation for position of brace negative hot-spot stress site

B T
<t>- =  - 8 5 .0 4 + 1 4 5 .9 i3 -  44/3" +1.182 7 + 1 2 .5  e -  34.3  ̂ + 3 1 . 7 - + 0 . 4 4 2 a r

A9.7 Parametric equation for position of brace positive hot-spot stress site

<I>1 = 174,i64/3‘’'«'*-“ " '7 ^ '” t-" '* ’ 0 e x p ( - ^ ^ ^ )
p T

Appendix AlO - Double brace balanced in-plane bending, chord toe SCF

A 10.1 Parametric equation for SCF at the chord crown toe position (0 = 0°)

SCFq = -1.2399/9"° °^ / ° ^  sin' ̂  ̂0
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A 10.2 Parametric equation for SCF at the chord saddle position 

SCF̂  « 0

A 10.3 Parametric equation for SCF at the chord crown heel position (0 = 180®)

sin®^ 9

A 10.4 Parametric equation for SCF at the chord negative hot-spot stress position 

SCF  ̂= -1.0292a°‘'“ y ‘'’"T‘’’® sin' “ e

A 10.5 Parametric equation for SCF at the chord positive hot-spot stress position 

= 1.7126)9-® ®̂ /̂®"*̂ T sin®^ 6

A 10.6 Parametric equation for position of chord negative hot-spot stress site

= -20 .68  + 99/3" -  0.00003 /  + 0.0115 « 7 + 1.685rr+17.73j8" y - 24.6/3V

A 10.7 Parametric equation for position of chord positive hot-spot stress site 

037
(/I* = 212 -  66/3“— ^ +0.0000ly“ -17.8 sin" d -  0.018ay - 1 1.3/3"y + 15.7j8"y -  1.87/3yr

Appendix A ll - Double brace balanced out-plane bending, brace toe SCF

A l l . l  Parametric equation for SCF at the brace crown toe position (0 = 0®)

5CF,® = 0

A11.2 Parametric equation for SCF at the brace saddle position 

SCF̂  = 0.6 9 7 « ® ^ ^ ) 9 ® y ® f  sin^^  ̂6

A l l .3 Parametric equation for SCF at the brace crown heel position (0 = ISO®)

SCF̂ ^̂  « 0

A 11.4 Parametric equation for SCF at the brace hot-spot stress position 

SCF^ = 0.6998«®^^ )̂9®^^y® '̂'^T®^^  ̂sin^®̂  6

A l l .5 Parametric equation for position of brace hot-spot stress site 

ĥs « 90

Appendix A12 - Double brace balanced out-plane bending, chord toe SCF

A 12.1 Parametric equation for SCF at the chord crown toe position (0 = 0®)

5CF® « 0
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A12.2 Parametric equation for SCF at the chord saddle position 

A 12.3 Parametric equation for SCF at the chord crown heel position (0 = 180°)

^  Q

A 12.4 Parametric equation for SCF at the chord hot-spot stress position 

SCF^ = sin* 6

A 12.5 Parametric equation for position of chord hot-spot stress site 

«>^=90

Notes:

1) All equations are valid in the following ranges of the geometric parameters:

6.0 < « < 4 0 .0  

0 .2< P < 0 .8  

7 . 6 < r < 3 2 . 0  

0 . 2 < t S 1 . 0

0 .1 9 4 4 tr< e< -
2

2) The following minimum SCF applies for predicting the SCF at critical points such as hot 

spot, saddle, crown toe and crown heel.

2a: For Single Brace/Balanced Axial and OPB loading,

ifSCF<1.5then SCF=1.5

2b: For Single Brace/Balanced IPB loading

if ISCFI <1.5 and SCF>0 then SCF=1.5

if ISCFI <1.5 and SCF<0 then SCF=-1.5

3) 6 in radians

&  and in degrees
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Appendix B 

Parametric Equations for Degree of Bending 

in Tubular X and DT-Joints

B1 - Single brace subjected to axial loading

B1.1 Parametric equation for degree of bending at the brace saddle position 

^  = 1.125 -  0185^' + Q.0926Lny -  0.462t + 0.29LnT + 0 .1 3 8 -^  -  0.09030 +
Oj" u p'V

B1.2 Parametric equation for degree of bending at the chord saddle position

—  = 0.8202 -  0.253)3" + 0.0067 \ y  -  0.00014/" + 0.0577T -  0.0888 sin 0 + 0.00494)3"/
Gj-

B2 - Single brace subjected to in-plane bending loading

B2.1 Parametric equation for degree of bending at the brace crown toe position ((f) = 0^)

■ ^  = 0 . 5 1 2 2 1"“"" exp(0.301)3-0.506 T + 0.4OlSm0-0.0189)3"/)
Gj

B2.2 Parametric equation for degree of bending at the brace crown heel position (^  = 180 ) 

= 1.004)3"'""/ “‘*'r""” *‘’"'™ exp(-0.537T-0.018)3"/)
Gj

B2.3 Parametric equation for degree of bending at the brace crown toe position (0 = 0^)

_  Q yyg^.O 9O 7y).O 451/0-O .O 368 0.449 q
G j

B2.4 Parametric equation for degree of bending at the brace crown heel position (0=180° )

’ B
=  0
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B3 - Single brace subjected to out-plane bending loading on brace toe

B3.1 Parametric equation for degree of bending at the brace saddle position

■^ = 0.878 >»■+»«>' 'V  exp(-0.115#'- 0.354-r- 0.00737#  ̂7 )
G j

B3.2 Parametric equation for degree of bending at the chord saddle position 

^  = 0.8816#"'""̂ '""̂ ' sin"""® 0exp(-O.O684#  ̂+0.00185#)^)
G j

B4 - Double braces subjected to balanced axial loading

B4.1 Parametric equation for degree of bending at the brace saddle position

- ^  = 0.06561+0.01149y+2.25T-2.18T^+0.606T^-0.219^-0.0233^ + 0 .215 --0 .0085rr
Gj e  p  e  '

B4.2 Parametric equation for degree of bending at the chord saddle position

■^ = 0.8472 -  0.2551#' + 0 .0 0 5 0 8 7 - 0 .0 0 0 1 7  ̂+0.0467T-0.0674sin 0+O.OO437#V

B5 - Double braces subjected to balanced in-plane bending loading

B5,1 Parametric equation for degree of bending at the brace crown toe position ((j) =  0^)

■ ^  = 0.9716#""“ sin " eexp(-0.503 T -  0.0152#^)
G j

B5.2 Parametrie equation for degree of bending at the brace crown heel position (0  =  180°)

^ .2 9 6 + 0 .2 3 2 /0  e x p ( - Q .  53 t -  0.0864 0 -  0.0177^^)
G j

B5.3 Parametric equation for degree of bending at the brace crown toe position (0 =  0°)

^  = i,0876#"'’'̂ ''"-"“'7“°“’'"sin"'” @exp(0.125#- 0.5075m@)
G j

B5.4 Parametric equation for degree of bending at the brace crown heel position (0  =  180°) 

. ^  = 0 .4431a^ '“®'"#^®*'-"‘’' “ 'Y " “ -̂'>“ '"5m -'“ eexp(0.607Smél)
GT
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B6 - Double braces subjected to balanced out-plane bending loading

B6.1 Parametric equation for degree of bending at the brace saddle position

= 0.3606)3“ exp(-0.426)3̂  -0.00559r-0.34lT)
Gj

B6.2 Parametric equation for degree of bending at the chord saddle position

= 1.0034-0.1658)3^ -0.0905sin 6»+ 0.00223)3^/+ 0.0017)3/:^
ov

Notes:
1) All equations are valid in the following ranges of the geometric parameters:

6.0 <«<40 .0
0.2<j8<0.8  

7.6 < 7 <  32.0 

0 . 2 < t <1.0

0.1944;r < 0 < -  
2

2) 6 in radians

3 2 8



Appendix C 

Parametric Equations for the SCF Distribution 

around the Intersection of Tubular X and DT-Joints

Cl - Single Brace Axial Loading

Cl.l Parametric equation for SCF Distribution on Brace Toe

SCf{(j>) = C q + + C^Coscff + C^Cos2<f) ( 0<( j )<7 t )

Co = 29^4 + 0.468a + 0.214/ + 8.52% + 8.540 -  163Sin6 + 345Sin^e -  01 + 0.17^8"/ -  0.195j3 V  

-1.9lS— 0.283^ -  2.19 -  -  + 0.0145-^
e  e  e

c, = p o m  y>5M.sæ/e ̂ 0.42 exp(-3.294 + 2.07)8 -  O.OSSy -13.66 -1.59:" + 18.18Sm"6 

-0.13)8"7 + 0.069y3rr")-0.1

Q  = p o -^ io y o m  exp(l9.252 -  29.856 -  33.35in6 + 54.55Sin"6) -  0.01

C, = -0.2801 -  0.162a -  0.13 Ir + 2.98)8" + 0 .0703- + 0.1512^ +1.17-  -  0.2739rr +
" '  6 6 6 /3"

C1.2 Parametric equation for SCF Distribution on Chord Toe

SCF{<f) = C„ + C,^ + CjCosi^ + C,Cos2<l> ( 0<( l ><Ji )

Q  = y0.i56-o262m^i2A6-oimie exp(0.37875 + 0.366Sm"6 -1.674/8")

C, = a'"” '̂ )8“' "6exp(3576 + 2.26)8 -  0.976 -  3.985m6

+0.00077a" -  0.00065y" -  0.203:" -  0.0747/3"/ + 0.0539/3/:") -  0.6

Cj = « - 0 5 8 ^ 1 loi/ê o 57/«̂ 61 gxp(5.306 +1.09)8 -11.786 + 0.00084a"

-0.00053/" + 8.235m"6 -  0.099/8"/ + 0.0303/3/:") -  0.11

Cj = -16.8 -  0.189/ + 2855m6 -  5.09:" -  0.369/: -  125Sin"6 + 0.2504/3"/

+ ^ : ^  + 6 .6 8 -  + 0.191^
8" 6 6
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C2 - Single Brace In-Plane Bending Loading

C2.1 Parametric equation for SCF Distribution on Brace Toe
S C F { ^ )  =  C q +  C iC o 5 0 +  C2CO5 2 0

K
when 0 < 0 < — Crown Toe Side 

2

Co = 7.295 + 3.47j3 + 0.1114/ -  16.75m0 + 0.032aj8 -  2.77^ -  0.1287^ + 8.O55m'0 + 0.49j9yr -  0.33j8 V

B T y 0 25 0 094
C  = -5 .0 1 1 -0 .1 7 6 7 -0 .0 7 2 5 a j3 -0 .4 3 6 5 7 r + 2 .1 9 ^ + 1 .7 0 9 -+ 0 .2 3 8 7 -^ + ^ ^ -^ ^ ^

'  ̂ ^  ̂ d p  e p r  p"

C2 = 7.777 + 3.44p+O.11557-17.35m0+O.O315aj3-2.85^-O.13^ + 8.315m"0+O.479j37r-O.312^V

when —< <b< 7T Crown Heel Side
2

Co = -0.2774 -  O.S5Sine -  O.OOOBÔa/ + 0.0565-^ +1.457 ̂  + ̂  "  O.Ojgyr + 0369p^yr

C, = 3557 -  0 .4 5 3 ^ ^  -  4.05L/z/3 -  6.916C»y + 2 .3 4 9 ^  -  2.13Lait + 3.1t" + 0.378^3"/ -  0.475j3/r" 
0 0

Cj = - 1 .3 3 9  -  0.00085«r + 0.0557 ̂  +1.884 ̂ +^ + 0.407J3 V  -  0.643j3yr 

;r
when 0 = — Saddle Position

2
Cq, Cj, C2 are taken to be the average of two values from above two side equations

C2.2 P a ram e tric  equation  fo r SCF D istribution on C hord  Toe

5CF(0) = Cq + CiCo50+ C^Coslip

K
when 0 < 0 < — Crown Toe Side

2
Co = jg2.7i_0.762/a î.055^0j53 .̂^2.5iigg^p^^^g^_ _ I.693j9  ̂- 0.0000017  ̂+0.0343j87r^)-0.8

q  =  -^2.868-0.441/0^ 1 . 5 4 4 ^ 0 . 9 2 7 + 0 . 4 3 8 / 0 ^ . ^ 2 . 1 7 0 _  5  2 7 ^  _  0 .0 2 7 1 /)

C2 =  jgl 6,2_O.828/0^].527_O.262/0^O.872^.^1.O16gg^p^_^^^^3_ 2  gQ^^4 _ Q +  0.0344^3/:^) -  05

when —< d)< 7t Crown Heel Side
2

Co = -7.1463- 2 5 5 t  + l53Sine-  0.2463/r + 0.0682^ + 5.11^- 7.195m^0 + O.OOOOOlŷ  -  0.864/3V  + 0.982j8V
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c, = 0.44369 -  7.92T -  0.63lyr + 0.722-^ + 0.089^ + 8 .5 3 | + 0.000001/“ - 1.212)3"/ + 1.504j8’/

Q  = -8.489 -  2.76t + 17.365m0 -  0.2654/r + 0.0859^ + 5.19^ -  ISHSin ê + O.OOOOOI7" -  0.893)3^ + 0.989)3V 

 ̂ 7Twhen 0 = — Saddle Position
2

Cq, Cj, C2 are taken to be the average of two values from above two side equations

C3 - Single Brace Out-Plane Bending Loading

C3.1 Parametric equation for SCF Distribution on Brace Toe

SCFi(l>)=CQ+qSin(l)+C^Sin2(t)+C^Cos2(l) ( 0 < 0 < ;r )

Q  = ̂ 1 « 3+0.37/Y  582 ̂ »7n-0.Mrtj. îi05 gxp(-0.49474 -  0.399 -0.0723)3"/)

C, =-71.08-15.72)3-0.4/-5.56T+11.940+142.9Sm0-83Sin"0-O.182«)3+15.89^+O.423|

+7.74--0 .818)3/r  
6 

Q = /3'™'®'“’Y * “'V ™ ’‘’®‘'®5m““"0exp(1.0075+1.56)3-0.933T" -2.0570-0.0866)3"/ 

+0.025^/r")-0.4 

C;= 0 .3 - «°'“̂ ")3'““̂ +''““" 'Y V ^ “'"'"'%M"^""eexp(-0.9126 -  0.285T“-0.0741)3"/)

C3.2 Parametric equaOon for SCF Distribution on Chord Toe

SCF(^)=C„+qSm^C^Sin2(l>+C,Cos2(l> (0<<j><n:)

Co = 093-0.295/0̂ .837 ̂ .2+0.592/g e x p (^ .3 0 1 1-1.45/3^ - 1 . 19T+ 4 . 0 . 0 4 8 5 ) 9 7 ^ )  -  0.03

C, =-123.2-21.5)3+18.10+223.65m0-O.473aT+O.224- + 21.O95 + O.696^+13.51--O.O2O87"
' ^ e e e e

-124.9Sin^e+ 0 .00001/ -  2.41pr^+1.24)9"yr

Cq ==-O.3422 + O.2O50-O.O295a)3+O.O242aT+0.464^  + 0 .0 0 2 2 9 ^ -0 .6 0 7 -+ ̂ 9 9 e
+ ^ -0 .0 0 0 2 6 ^ + 0 .0 1 5 )9 " /rr p
a  = O.l-)9"’®V’̂ '"T'^^^®^"*'®5m"^^^0exp(-l.O8O9-l. 76)9̂  -0.0578)971")
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C4 - Double Brace Balanced Axial Loading

C4.1 Parametric equation for SCF Distribution on Brace Toe

(ÿ) = Cg+ Q C o j Q ( 0 <  0 <  ;r)

C„=76.O7-8.61^+6.8T"+lO.36l-145Sm0-O.454^+O.OO65^-^^+68.2Sm^0-^ 
“ 0 d p 0̂  f

-0.00156-^-4.23-^-^|^+0.036-|--3.8j3  p̂  e Pr P

C,=exp(1.4879+1.79^-^-ll.O6e+14.9Sm'0-O.617-^+O.O431^+O.O64)3V ' e f  p e
- ^ ^ + 0 .0 0 1 1  l-Z -0 .l06p‘Y)-0.25 

Pr  j8"

Q = po.mv0^o.n5ie^oiim gxp(15.943- 31.310 + 54.465in 0̂ -  26.7 SinO -  0.444t“) -  0.01

C3=O.5-y3"‘‘"'®*'V’***‘’“'"V“'*°''‘''®Sm̂ ‘̂ 0exp(2.564-1.767l3’+O.45/

-1.4f-1.15m0)
C4.2 Parametric equation for SCF Distribution on Chord Toe

SCF(<li)=C„+C,<t>+C2Cos(l>+C,Cos2<j) ( 0 <  ^ <  t r )

C„ =54.9+O.4Olrr-7.79^-2.4O5fl"rr-O.244^-12.47--93.95m0+l 1.39f+58.35m"0 
°  0 0 0

-9.740+2.62j3yr-O.746j9yf +0.244#' y

C ,=-11 .947+5.99^-O .O 156-+O .6O 5#V +25.145m 0-13#-O .347-^+1.68-^+9.9#"
0 0 p 0

1R8
-O .284#’y -O .3 9 7 # y r -^ -1 5 .2 5 m " 0 + 2 .8 3 0 + O .O 3 2 yr
C, = -2 4 .8 6 + 8 .0 2 ^ -0 .0 0 0 0 0 1 7 “-O .O 2O 4--1 .37T ^+4O .7Sm 0+3.62--23.9Sin"0+3.460  

 ̂ 0 0 0
-1.7#+0.938#V-0.246#V-1087#7r+0.177+0.386#7#

C3=0.1-#"-‘‘Y''‘“'"“""'r’'^‘’'“™5in“ ‘0exp(2.848-4.32#-0.0325#r#)

C5 - Double Brace Balanced In-Plane Bending Loading 

C5.1 Parametric equation for SCF Distribution on Brace Toe
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SCF{^) = Cg + C,Co50+

when 0 < 0 < — Crown Toe Side
2 

Q =5.9116 -  0.002990^+O.lO27-13.O95m0+O.262ai3-1.95|-O.1247-^+6.525m"0

+ 0 .4 9 /3 r r -0 .332)3 V

C, = -3 .4 6 9 -O .2 3 1 y -3 .6 8 T -G .O 7 8 a 0 -O .3 1 O 9 r r + 3 .l2 + G .2 1 6 7 -^ + 2 .1 2 8 -+ ^ ^ -^ 4 )!^' ' ^  '  0 e  p  p t  fi-

Cj = 6.6489 + 2.97)3+0.0988/-14.71SOT0-2.9^-O.117-^+O.lOla)3-O.OOO87a^

+ 6 .985m^ 0 + 0 .501)3rr- 0. 354)3^)t

when — < é < K  Crown Heel Side
2

q, = 2.292 -  0.425Lna -  2.209LnP -  2.48 ILny + 0 .847-^  -  0.664L«t +1.314?" 
6

+ 0 .1507^ ^ + 0 .2382 /3 /!^

C, =2.913- 0.623Lna -  4.43LnP -  6.298Lny + 1.909-^ -  2.331»? + 3.04?" 
0 

+0.385)3 -̂0.456)37?^

LtlT!Q = 1.415 -  0.46L«a -  2.12Ln)3 - 1.6631»/ - 1.8951»? +1.199 -------  4.7841»(Si«0)
0 

+1.253?" + 0.1298)3 /̂ -  0,222)8/?" 

 ̂ ;rwhen 0 = — Saddle Position
2

Cq, Cj, Cj are taken to be the average of two values from above two side equations

C5.2 Parametric equation for SCF Distribution on Chord Toe
SCF((j)) = Cq + C^Cos(f>+ C2 CO5 2 0

K
when 0 < 0 < — Crown Toe Side 

2

C„ = «“'“ / ' “ V ’” 5m "” 0exp(-2.5584-^^^^-G .1512)ÿ/-G .O 6O 3)3/r+G .149^/r)-O .5 

q  = - / " " ^326, o.«7/«5j.^i,345@gxp(_() Q2281 -0 .3 0 7 9 ^ -0.0639)3"/)
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Q  =  cf°>37j30-762-0.437/Y179 ̂  903̂ .̂ 1.492 0 e x p ( - l .  79  -  -  0 .041  p y ü - 0.1524j9^y+0.149j9" /r )  -  0 .5

when —< é < K  Crown Heel Side 
2

Co = -2.735+0.105a -  0.108r + 7.95m0 -  0.28ar + 0.00199â  -454Sin^0 -  2.03^ + 0.056^
° e 0

44.13--0.603j3yr+0.26)3^y+0.000001/ -3.01^" +0.437)f yr 
0

C, = 15 -  a° '̂ ''®j3'’''‘"V‘””"'‘”“™î "”̂ ''’‘'‘’"''Sm"’*0exp(8.352 + 0.8j3 +1.210 -  lO5Sin0 

- 0 . 0 9 8 7 +  0.0297/3yr")

C; = -6.778 +12.75in0 + 0.00192a"' -  0.00326f -1.08?"' -  5J»Sin^0 -  0.1426ar + 0.065^

+4.22- -  0.304)3"'/ -  0.616)3/r + 0.000001/" + 0.615)3’/ + 0.387)3"'/r -  5.8)3’

, 7t
when 0 = — Saddle Position

2
Cq, Cj, C2 are taken to be the average of two values from above two side equations 

C6 - Double Brace Out-Plane Bending Loading

C6.1 Parametric equation for SCF Distribution on Brace Toe

SCF{(l))=CQ+qSin(l>+C2Sin2(l)+C^Cos2(l> ( 0 < 0 < ;r )

Co = a"“’)3’ ”Y  V “’5m"''"'0exp(3.8862-4.46)3-1.28T) 

C, =-7O.13-8.96)3+lO.70+128Sm0-O.OO542/’ -74.45m"0-O.O615aT+13.39- 
0 

+0.4381 +6.22.^ -  0.381)3’/ - 1 . 832)3/r+1.205/3’ /r  

Q  = a'>“’'«-‘’“ ’)3'’"’'^‘ y  •'12'V  ®'‘“ "” '®0’ “ exp(3.88+1.59,8- 6 .4 7 0 - 0.8 0 8 f  + 0.785m’0 

-0.0748/3’/+ 0 .0 1 9 2 ^ /r ’ ) - 0 ,4  

C, = 0 .3 - J3' »2+o-3«/Y'3» .J» 957+0.244/9̂  .̂ 2.168 ̂ exp(-0.21389 -  0.48 I t ’ -  2.17)3’ )

C6.2 Parametric equation for SCF Distribution on Chord Toe

5CF(0)=Co+Ci5m0+C25m20+C3Co520 ( 0 < < j ) < 7 r )
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Q  =  065-0.304/Y  ^.28*o.«8/ej,■̂ 2.824 0 g x p ( 0 .13723  - 1 . 79/J* - 1 . 4 3  T -  0 . Ol Si pyf  )  -  0 .0 5

c, =-114.12 -  26.98*+ 160+2OO.4Sine-112.1S/n"0+18.73 ® + 0 .7 3 3 -+ 1 2 .7 - -^‘ e e e
-3.066Pyt-4.59P^y+4.99(8*7+1.66(8* yr

Ci = -1.712 + 1.948+0.03437+ 0.7240-2.248*+1.458*-O.332Sm*0+O.OO396^+l.O2l|-O.OO59-^ 

-0.346-^ -  0.047T+ 0.185 ̂  -  0.0657/3*7+0.0698j3* yr 

C, = 0.1 -  /3* y*®* 0exp(4.022-5.28/3-1.69 T)

Note:
1) Ail equations are valid in the following ranges of the geometric parameters:

6.0 < Of < 40 .0  

0 .2 <)8 < 0.8 

7 .6 < 7 < 3 2 .0  

0 . 2 < t<1.0

0.1944;r < 0 < ^2
2) If the negative SCF value is predicted at crown positions under single/balanced axial and OPB loading, 
the compensation factor D for whole stress distribution is assigned in following rules:

scf^ { ^ ) = s c f (^)+d

a) if SCF(0)<0 and SCF(tc)>0 then D = - SCF(O)

b) if SCF(0)>0 and SCF(7c)<0 then D = - SCF(ti)

c) if SCF(0)<0 and SCF(tc)<0, and

if SCF(0)<SCF(7c), D = - SCF(O) 

if SCF(j:)<SCF(0), D = - SCF(ti)

3) When used to predict the SCF at critical points such as hot spot, saddle, crown toe and crown heel, the 
following minimum SCF applies.

if ISCFI <1.5 and SCF^O then SCF= 1.5 

if ISCFI <1.5 and SCF<0 then SCF= -1.5

4) (j) and 6 in radians
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Appendix D 

Parametric Equations of SCF Distribution 
along the Intersection of Tubular Y and T-Joints

D1 - Axial Loading

D l.l Parametric equation for SCF Distribution on Brace Toe

SCF{(l))=CQ+q(t)+C^Cos2(t) (O<0<;r)

B T 0.114
C  =  6.644 +  0.305yr +  2.85 ̂  +  0.653aT -  2.39 -  -  O.lSlaP -  +  0.00018” 9 6 Pt P

941 y T-  -p- -  0.0981^ -  0.895- -  3550 + 6.O85m̂ 0 -  0.195;3rr -  l.lT"

C, = 0.7016 +1.390 -  6ASin0 + 0.201 ^  + 0.1 ip^y + + 0.0614a)9

-  0.2931  + 2.985m"0 -  0.099P^y -  0.0083 ̂  -  0.033a -  0.00066
6 6 p

C, = 1955 -  16.7Sm̂ 0 -  0.152)3yr" -  35 lLn(a) + 2Z9P* -  255Ln(y) + 2.52- 0

+ 2O.lLn(Sm0) -  2.21 Ln(x) + 2 .1 6 -= ^ -2.49Ln(P) + 9.21 Ln(d) +1.9
9 9

+ 0.68 + 2.07t“ + 0353̂ 3V  -  0.322y + 0.000001/“ -  4.9t
9

D1.2 Parametric equation for SCF Distribution on Chord Toe

5 C f(«>)= C„ +C ,ft-C.,Cos2<l> ( 0<<1) <K)

C(, = -0.1326 + 0.417/r -  0 .1501^ - 0.316j8^/r + 0.01351a/ + 1.75t“
9

T R
-  5.1 - + 8.45t + 4.16 -  0.362aj3

9 9

C, = 3.629 -1 .056^  + 0.2280 -  7.665m0 + 0.0376^ -  0.00696^ + 3.945in"0 
9 p 9

y B 091
+ 0.555T -  0.1 16t" -  0.00478 ̂  + 0.0101 P ^y  -  0.208 ̂  —

9 9 a

3 3 6



Q  = -25362 -  0341/1- + 0.21-^ + 7.8 ̂  + 0.284)3V  - 1 4 1 ^ -  5.52t  ̂-  0.308/
O u  6

+ 0.000001/“ + 48.34Sm0 +  -  3 0 3 S i n ^ 6  +  4 . 2 6 0  +  —)3t a

D2 - In-Plane Bending Loading

D2.1 Parametric equation for SCF Distribution on Brace Toe

SCF((j)) = Cq + Ĉ Cos(I)+ C^Coslij)

K
when 0 < 0 < — Crown Toe Side 

2

C„ =  -3.6487 + 0.2156)3/r +1.610 -  0.203^ +  0.22/ +  351^ -  1.79t^
o o

-0.00194-^-0.0181^
P ^

y  0193Ci=-1.8399-0.822j87r+0.431^'7r+0.3532-^-0.3887+^^

Q =-2.9616 + O.21j3rr-O.1894-^+O.2137+2.54--O.OO185^+1.210-l.O4T^
2 e e

K
when —<(b<K  Crown Heel Side 

2

Co = 5.2337 -  0.5614^/r- 5.945m0-t- 0.3660^ yv+ 0.512^

T 1454
Ĉ  = -0.2456 -  1.765)3/r -  5.23Sm0 -t-1.346)3V  + 0.445

P  f

-1-0.1427^4-2.391“
d

Cj=2.O4O2-O.5643;8/r-2.875in0-O.OO124a/-(-^^^^4-O.355)3V+l-39-^

K
when 0 = — Saddle Position

2
Cq, Cj, Cj aro taken to be the average of two values from above two side equations

D2.2 Parametric equation for SCF Distribution on Chord Toe

S C F ( ( j ) )  = Cq + CjCo50+ C j C o s l i j )
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when 0 < 0 < — Crown Toe Side
2

.2

C„ =  2.3106 -  0 .1086^  + 0.11 \ j  -  0 . 0 0 0 3 1 ^ -  0.853)3 V  +  0.171;Syr"
6 p

+ O.isepyi - 1 .2 6 ^  -  2.73Sm0 
6

C  = - 3 .9 3 9 - 0 .6 6 9 7 y r + 0 .1 4 7 ^ + 3 .5 7 -+ 7 .5 5 )8 = +  -  2 .2
e 0 p̂

q  =  3.7474 +  0.2713yr -  0 .1 2 3 7 ^ - 0 .4 3 9 ^  +  0.849)3V  -  0.896;8V
0 p

-  0 .0000017“ +  -  3.85Sme -1 .9 4 1-

K
when —< 6 < n  Crown Heel Side

2

C„ =  0 .3909 -  0 .3352 7T+ 3 .6 3 7 -+ 0 .0 0 4 6 1  /  + 1 .1 5 7 9 p V “  1- 006P" 7
0

C,=O.6957-3.O28P7T+2.799PV-lO.88L«(Sm0+O.OOOOOl7“+1.74—
0

Q = 1.7333- 1.218P7r - 5.63ü ( 5m 0 +l.lO 3P"7r+1.565— + 0 .0000017“
0

when 0 = — Saddle Position
2

Cq, Cj, C2 are taken to be the average of two values from above two side equations

D3 - Out-Plane Bending Loading

D 3.1  P a ra m e tr ic  eq u a tio n  fo r  S C F  D is tr ib u tio n  o n  B ra c e  T oe

^C F(0 )= Co+ q 0+ Q Co^20 ( 0 <  0 <  ;r)

C„ = 1.6749 + 0.4167 - 1 .3 2 4 - = ^  + 0.1 lipyv^ + 0.0114a -  1.76P^
0

+ 1.904Ln(P) + 2.48Ln(f) - 1 .2 2 - = ^  -  0.17ipV -1 3  1t“
0

+ 3.765m"0 -  3.SLni0) + 0.28 -  0.00463 f
0

Cj = ccO.2O4/0̂ -O.4O2+1.464/ê l.l4/0̂ O.786-O.719/0̂ 14.8 gxp(10.399 -  9.820 -  0.0922^^/

-  0.02097 + 0.0305/37t' -  3.65Sind + O.58j0'' -  0.726t^ -  0.009a)

3 3 8



Cj = 7.8816 -  0.168)8yr" -  8.235m"0 -  0514/ + 2.64-=^^ -  0.017a

+ 8.36Ln(Sin0) -  3.46Ln(j3) + 134^ ^ ^ ^  + 0.075,8^/ +1.25 
0 0 

+ 7.49?" + 0.00585/" + 4.16Ln(8) + 253/8"' -12.17?

D3.2 Parametric equation for SCF Distribution on Chord Toe

SCF((/>)=C(,+C,fl-CjCos2^ (0<(j><Jt)

Co = 4.814 + 03551/r -  3.19Sin9 -  0.0853^ -  4.45 §  +132?" -  0532/3"/ 
0 0

+ 0.408/3"/ -  ^  + 4.23? -  0.421^
r  P

T R
C, = 0.4117 + 0.356- -  0.0079/3/? -  0.227^-0.178? + 0.128/3"-0339Sine 

0 0
/  a  0.0034 11.2

-  0.00477% + 0.00399/ -  0.00114—---- ------ -%e e Pt y
Q = -24.41 -  0.283/? -  26.45i»"e + 0.1793^ + 5.61  ̂-  0.016a/ -  0.92?"

0 0
1 T B

+ U3Sine + 0.0024a + 4.1 W -10.65? +1.338— + 221 ̂  + 0.296a? 
P o

Notes:

1) All equations are valid in the following ranges of the geometric parameters:

6 . 0 < a < 4 0 . 0  

0 .2</3<0 .8

7.6 < / <  32.0 

0 .2 < ? < 1.0

0.1944tr <e< — 
2

2) If the negative SCF value is predicted at crown positions under single/balanced axial 
and OPB loading, the compensation factor D for whole stress distribution is assigned in 
following rules:

5C F „„W  = SCF((/.) +  D
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a) if SCF(0)<0 and SCF(7t)>0 then D = - SCF(O)

b) if SCF(0)>0 and SCF(7t)<0 then D = - SCF(7c)

c) if SCF(0)<0 and SCF(7t)<0, and

if SCF(0)<SCF(7t), D = - SCF(O) 

if SCF(7c)<SCF(0), D = - SCF(Tt)

3) When used to predict the SCF at critical points such as hot spot, saddle, crown toe and 

crown heel, the following minimum SCF applies.

if ISCFI <1.5 and SCF>0 then SCF= 1.5

if ISCFI <1.5 and SCF<0 then SCF= - 1.5

4) (j) and 6 in radians
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Appendix E 
Parametric Equations of Average SCF 

Along the Intersection of Tubular Y and T-Joints

E l  - A x ia l L o a d in g

E l.l Parametric equation for Average SCF on Brace Toe

SCF = «02,8̂ 0618̂ 0̂ 143 ^  exp(0.08261 -  0.03125^ V )

E l.2 Parametric equation for Average SCF on Chord Toe

SCF = «0.223̂ 0.5656̂ 1.148 g)gi485 gexp(0.6787 -  0.639)3)

A p p e n d ix  E 2  - IP B  L o a d in g

E2.1 Parametric equation for Average SCF on Brace Toe at Crown Toe Side

0.0535
SCF Toe = 0.6636 + 1.03L«7 + 2.612L«(sin Q) + 1.26L«t -

y  ̂  LnT
+  0.00007 - ^ - 0 .5 5  — —  0 387^“

p 0

p

E2.2 Parametric equation for Average SCF on Brace Toe at Crown Heel Side

183.3 4 0.03539
SCF Heel = exp(0.8406 + 0.0231yv -  — — -  0.00975-^ -  0.368t  ̂-

f  0 P

+ 0 .00145^ + 0308t -  0 3 9 2 P *  )

E2.3 Parametric equation for Average SCF on Chord Toe at Crown Toe Side 

SCFro. = s in '“" 0exp(-O.1593)

E2.4 Parametric equation for Average SCF on Chord Toe at Crown Heel Side 

SC Fh../ = sin"“ '  0exp(-O.2O561)

3 4 1



Appendix E3 - OPB Loading

E3.1 Parametric equation for Average SCF on Brace Toe

SCF = 0.94563 +  0.1209yr +1.27 sin 6 -  0 .4 9 9 ^  -  0.1096/3 V  +  0 .0 0 0 7 9 a /

r  0107
-0.1099-^ + 0 . 1 6 3 9 7 - ^ ^e Pt
E3.2 Parametric equation for Average SCF on Chord Toe

SCF =  25215  +  0.2825/7  -  0.0698 -  2.14 -  +  1.17t“ +  0.0255ar

Note:

1) All equations are valid in the following ranges of the geometric parameters:

6 .0  < a <  4 0 .0

0.2<j8<0.8  

7 . 6 < 7 < 3 2 . 0  

0 .2 < t < 1 .0  

O .1 9 4 4 n :< 0 < -  
2

2) 6 in radians
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Appendix F 
Parametric Equations of Average SCF 

Along the Intersection of Tubular X and DT-Joints

Appendix FI - Single Brace Subjected to Axial Loading

F l.l  Parametric equation for Average SCF on Brace Toe 

5CF = 1.1185a“ 52̂ -0.372̂ 0.403̂ 0.5TO jjjjl.48 g

F I.2 Parametric equation for Average SCF on Chord Toe

S C F  = 1.0846a°“ ’j3'“ sin"" 0

Appendix F2 - Single Brace Subjected to n*B Loading

F2.1 Parametric equation for Average SCF on Brace Toe at Crown Toe Side

S C F  Toe = 1.3553^“ ™ sin' " 0  exp(-0.656r -  0.0334/3V )

F2.2 Parametric equation for Average SCF on Brace Toe at Crown Heel Side 

5CFh„, =0.4809/3“ ^y'’” ‘T''” ’ sin"" 0exp(-O532r^ -0.0418/3"/+  0.0204/3/7^) 

F2.3 Parametric equation for Average SCF on Chord Toe at Crown Toe Side 

SCFroe = 0.7657/““ t ‘“  sin'"" 0

F2.4 Parametric equation for Average SCF on Chord Toe at Crown Heel Side 

SCFh«/ = 0.7953/“ ‘*t' “  sin'" 0

Appendix F3 - Single Brace Subjected to OPB Loading

F3.1 Parametric equation for Average SCF on Brace Toe

SCF = 3 0 5 6 9 4 / 3 ' sin'“  0exp(-3.27/3 -  1.04t)

F3.2 Parametric equation for Average SCF on Chord Toe

^CF = o^sg4po.m^oj(n 0̂.986 ^ ^ 1.53 q

Appendix F4 - Double Braces Subjected to Axial Loading

F4.1 Parametric equation for Average SCF on Brace Toe

S C F  = sin' 6

F4.2 Parametric equation for Average SCF on Chord Toe

SCF = 15699j8+"*/"®"t"’ sin'" 0
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Appendix F5 - Double Braces Subjected to IPB Loading

F5.1 Parametric equation for Average SCF on Brace Toe at Crown Toe Side

5CFr». = 1.2751/3"’' sin' “  0exp(-O.654T -  0.0338J3V)

F5.2 Parametric equation for Average SCF on Brace Toe at Crown Heel Side

5CF«.w = 0.6873;3'’ ” ‘y  " exp(-0.7 14t +1.01 sin 0 -  0.0327)3 V )

F5.3 Parametric equation for Average SCF on Chord Toe at Crown Toe Side 

S C F  Toe =  0.761 “  sin‘ “  0

F5.4 Parametric equation for Average SCF on Chord Toe at Crown Heel Side 

SCF«../ = 0.8328r‘’̂ ®T’'® sin"” 0

Appendix F6 - Double Braces Subjected to OPB Loading

F6.1 Parametric equation for Average SCF on Brace Toe 

5CF = 1.377 jjjji.73 0  exp(-1.92^’ -  0.47t^ )

F6.2 Parametric equation for Average SCF on Chord Toe 

5CF = 1.0754;8“‘'“ 7 “™t°’“  sin'“ 0exp(-1.97)3’)

Note:

1) All equations are valid in the following ranges of the geometric parameters:

6 . 0 < a < 4 0 . 0  

0.2<j8<0.8  

7 . 6 < 7 < 3 2 . 0  

0.2 < t < 1.0 

0.1944;r < 6 < -  
2

2) 6 in radians
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Appendix G
Parametric Equations of SCF Distribution Concentration
Factor(SDCF) Along the Intersection of Tubular Y and T-

Joints

Appendix G1 - Axial Loading

G1.1 Parametric equation for SDCF on Brace Toe
PscF = a-oo386^ - 2i38+o.o963/0^-o.i89i+o.o757/e^-o.2O26 exp(-L392-0.00843j8)f +0.226/3̂  

-K).277t+0.0000017")

G 1.2 Parametric equation for SDCF on Chord Toe

PscF = sin-""""" 0exp(-O.9816 + 0.2609j8" + 0.00011 7 "

+0.0359^ + 0.0001»")

Appendix G2 - IPB Loading

G2.1 Parametric equation for SDCF on Brace Toe at Crown Toe Side

p^" =0.5515+0.073ie-0.00473^+0.1159-+0.01536j3V+0.003367-0.0107i3V  
0 0

G2.2 Parametric equation for SDCF on Brace Toe at Crown Heel Side

,Heel 1 n f \ r \  . r v n n z r  r  . r \ r \ o ^ T ^ . O  , rv o / - v c  r  Z , M 7  , L w »PscF = l.O99 + O.O236Ln7 + O.O87Lnj3 + O.8O5LM(sin0) + O.O561-^ + O.O189
0 0

L n T
-  0.0934—  + 0.0928LnT -  0.0755/3“ -  0.4415m0 

0

3 4 5



G2.3 Parametric equation for SDCF on Chord Toe at Crown Toe Side

pj“  =0 .7651-0 .00443^  + 0.0872^ + 0.00622r-0.4963T^ -0.115;8’
0 &

+ 0.00202^3 V  -  0.0267^ -  0 .0918^ -0 .607  sin e  + 0.562? +
p  u p

+ 0.1683 -  0.00012-^  + 0359 sin" 0 -  0.05240 + 0.124?" + 2 :^ ^
P )3?

G2.4 Parametric equation for SDCF on Chord Toe at Crown Heel Side

Psce = 0.5664 + 0.0609Lny + 03557Ln(sin 0) + 0.00253#/?" + 0 .0206-= ^
V

T.r ,R
-  0.0825^3^ + 0.064SLnP -  0.0399

e

Appendix G3 - OPB Loading

G3.1 Parametric equation for SDCF on Brace Toe

PscF = sin""” "̂ 0exp(-1.442 -  0.01109#"/?)

G3.2 Parametric equation for SDCF on Chord Toe

PscF = a-<’“»#-»"^"^“'«/-<»‘'̂ ?-"''™« sin-"'’”  0exp(-1.418 -  0.00868#"/)

Note:

1) All equations are valid in the following ranges of the geometric parameters:

6.0<Cf<40.0  

0.2<j3<0.S

7.6 < / <  32.0 

0.2 < t < 1.0

O.1944æ< 0 < -
2

2) 6 in radians
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Appendix H
Parametric Equations of SCF Distribution Concentration

Factor (SDCF) Along the Intersection of Tubular X and DT-
Joints

Appendix HI - Single Brace Subjected to Axial Loading

H l.l Parametric equation for SDCF on Brace Toe
PscF  = 0 . 3 1 350f-« 0347^.0962/0-0.234 y).O759/0-O.199 -̂0.0809 -  0 . 0 0 3 7 5 j 9 ) f  )

H I.2 Parametric equation for SDCF on Chord Toe

PscF  = 0 . 3 8 1 -̂0 owi e x p ( 0 .0 0 0 0 3 8 « "  +  0 .3 4 3 / ?  +  0 .0 0 7 6 7 )  

Appendix H2 - Single Brace Subjected to IPB Loading

H2.1 Parametric equation for SDCF on Brace Toe at Crown Toe Side 

=  0,i38icK0.0]42/g^_o.0539/gy^.066/e^0.0897/6 ^ e x p (0 .2 6 4 ) 8

+  0 . 0 0 5 9 5 / +  O .4 3 3 5 m 0 )

H2.2 Parametric equation for SDCF on Brace Toe at Crown Heel Side

P s c F  =  0. 2322/ 3“ s i n“ ® 6 e x p (-0 .1 0 5 /3 “ + 0 .0 0 1 2 3 /3 V )

H2.3 Parametric equation for SDCF on Chord Toe at Crown Toe Side

p j "  =  e x p ( - 0 .I 5 9 ^ ^  - 0.000000037“
-  0 .0 5 2 7 ? “ +  0 .0 0 7 2 2 )8 7 ? ^  -  0 .3 9 6 s in  0 )

H2.4 Parametric equation for SDCF on Chord Toe at Crown Heel Side 

p fc F  =  o .2 1 6 5 a ‘’'” “ /3“ ‘” 7 ° " * ‘ T‘’“ *' s in “ ” ’ 0 e x p (-O .2 O 9 )8 )

Appendix H3 - Single Brace Subjected to OPB Loading

H3.1 Parametric equation for SDCF on Brace Toe

H3.2 Parametric equation for SDCF on Chord Toe

P  = 0  2753CC~^'^^^^0.176/0-0.382^0.104/0-0.271^-0.0749
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Appendix H4 - Double Braces Subjected to Axial Loading

H4.1 Parametric equation for SDCF on Brace Toe

pscF =  0.1959/8"“ sin-°™ 0exp(O.278)3' -  0.00933/ + O.llr'' -  0.0169j9/r")

H4.2 Parametric equation for SDCF on Chord Toe 

PscF = 0.3 0

Appendix H5 - Double Braces Subjected to IPB Loading

H5.1 Parametric equation for SDCF on Brace Toe at Crown Toe Side 

=0.2276a‘“’“‘’™)3“'™‘"‘”® 'V "™ "V “*™exp(0.156j3+0.00443/)

H5.2 Parametric equation for SDCF on Brace Toe at Crown Heel Side
p H e e l  =  ^0.0686+0.0457/0^0.0168+0.071/0^0.11-0.102/0 §jj^0.536 q

H5.3 Parametric equation for SDCF on Chord Toe at Crown Toe Side

pj" = exp(-O.180* -  0.00000003/"
-O.O542T‘‘ +O.OO7120/r^)

H5.4 Parametric equation for SDCF on Chord Toe at Crown Heel Side 

p g ; ' = sin"""' Q

Appendix H6 - Double Braces Subjected to OPB Loading

H6.1 Parametric equation for SDCF on Brace Toe

PscF = 0.2894̂ 3° sin“" 0  exp(-O5390 -  0.00886/)
H6.2 Parametric equation for SDCF on Chord Toe

PscF = 0.2592)8̂  y0.i%/8-0.22s ̂ -0.084 exp(-O.O1430^)

Note:

1) All equations are valid in the following ranges of the geometric parameters:

6.0 < « < 4 0 . 0  

0 .2< j9<0 .8

7.6 < r <  32.0 

0 .2 < t< 1 .0

O .19 4 4 n :< 0 < - 
2

2) 6 in radians
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Appendix I 
Deepest Point SIF Parametric Equations for 

Semi-Elliptical Surface Crack in T-Butt Welded Joints 
using Niu-Glinka Weight Function

K  = Yg 4 M

Appendix II -Subjected to Tension Loading

Y — e X p ( C q +  C j y, +  Q
k t ] J

/  \  0.056 /  y \-0 .0459 /aa \  ( L
J kT ̂

exp(03653-
0.0888  f  0.2234 0.00002

+ 0.267
\ c j Sin{a)

+ ■

2.307 ' p ' + 1.74f - 1 f p ] f - 1
I r j <cj

+ 3.26

" p Y
[ tJ_

yTy

-1 .39a U J \ c j

\ c j

C  =3.88-3.024 -2.528
y c j a

0.153
+ 0.0603

a
+

0.0114
+ 0.927

+ 0.00001
a

Ln

' p Y
kT ,

+ 0.0571

\ c j

Ln

J \c  ̂
-OlSOlLn + 0.0494 y

y a

-0.1313 y + 0.474L»
a \ c j

f - 1= -1 6 .6 7 8 6 -4 .5 188L« -7 .749
U J

0.0489
+ 23.98,

\ c j

f  T \
Ln

+ 0.0417 + 1.559
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  0.02388
q  = -0 .4069+ — 0.123Zy?i(cc) — 0.26

{.t K c J
+ 0.0874

y c j
+ 0.802cc

y

+ 0.00951
^ L Y a \  0.00001 0.00113

^ T A c )
-0.00738 0.01731»

\ c j
Vi  J

\ c j

kT ,

Appendix 12 -Subjected to Bending Loading

K  =

r = C o  + Ci — + C2
Vi y

+ C^Ln
Vi y

0.0402 0.00019
Cn——1.228 H— / , \   ̂ + 7.71(%

\ T j

-0 .6 9 11»
Vi y

+
0.02991

\ c j

Vcy

+ 1.523a

Vi y
-0.801 f-T

l e y

1»
a + 0.3245

r i ^

a

\ c j

-4 .25 P
vT’y

a
vey

_ 0.00122 
C, =2.54+ 2

<e>

-1 .2961»(a)-0 .115

-12.81

^ L \
\ T ,

r p Y

r i ^
^Tj

+ 0.2723
Vi y

a

+ 0.517 V_e_y
a

0.2154
( L \

-10.87
v c ;

— 13.73a
v r y

-2 .054 ' - T
l e y

0.18
V ’
^e>

1»
-0.3533

y I- V

Vi y
a

+ 3.1665/»(a) + 8.51f -T
le>

+ 0.4051»
y Ï- V

Vi y
+ 29.1

r p Y

r i" !
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0 44237 
C  = 0.2593 + —. X • -  0.866

\ c j

+ 0.12241»
v-t y

\ c j

0.0348
( L \

0.00285

\ c j

+ 2.2111»
\ c j

Ln
( a \

-0.1571 \ c j
a

C, = -exp(0.3346 -
0.1517

r  T \ -5 .76 -0.00046
\ c j

y

vZV

\ c j

0.00194
-3.59

\ c j y

-4 .2
Ln

+ 0.1981 \ c j
\ c j a

-0.0828
a

+ 9.09
\ c j

+ 0.085ûf — 
\ T

l Y a ^
\ c j

+ 0.086 -0 .472

 ̂a 

Cf
0.00416

\ c j

-)

Note:

1) Ail equations are valid in the following ranges of the geometric parameters:Î-4
0 .0 1 < ^ < 0 .0 6 6

T

0 .1577< -< 4
T

0 < - < l

if 0<a/c<0.2  then a / T  < 1.25(a/ c + 0.6) 

i fa /c>0.2 then a /T < l

2) a  in radians
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Appendix J 
Surface Point SIF Parametric Equations for 

Semi-Elliptical Surface Crack in T-Butt Welded Joints 
using Wang-Lambent Weight Function

Appendix J1 -Subjected to Tension Loading

K  = Yo^jim)/ Q 

0  = 1 + 1.464
\ c j

Y = Exp Cq + Cj + C
V / / /

L
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UJ IrJ
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Q  = 3.668 -17.689
y c j

0.00204

y c j

+ 18.339f - T 0.00152 0.0193

f p ] ( L \
I r j I r J
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-4 .3 4
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V
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Appendix J2 -Subjected to Bending Loading

K = Ya4(jca)lQ

0  = 1 + 1.464
\ c j

Y — Cq + Cl
T j
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T)
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c  = 0 .0 7 -
f ̂  \  0 .1 0 4 8 /a -0 .4 4 7 8  /  ^  \  0 .4 0 4 -0 .0 9 5 9 /a

\T  )
cxp(—1.703 —

0.03625 0.109

U J [ t j

+
0.0019

r -0.00562

/ p '
\ T j

f - T
yCj

+ 0.056

' p ' :  
\ T j

f - T
IC ; \ c j

y

Note:

1) AU equations are valid in the following ranges of the geometric parameters:

7Ü ^

0.01 < ^ < 0 . 0 6 6  
T 

0 .1577< -< 4  
T

0 < - < l

0 <  —  ^  0.8 
T

2) (X in radians
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Appendix K 
The Deepest Point SIF Parametric Equations 

for Semi-Elliptical Surface Cracks 
at Saddle Position of Tubular Welded Joint

K« = (Y^Rr + DoB •

Rr = DoB ; R.=0.5Cos(— )+0.5

Appendix K1 -Subjected to Tension Loading

r /  = Exp
T

C = - |^
0.27l-K).0108/a / r \-0.02714/aII exp 0.6805- 0.07525 

L 
T

Q = 2.833-0.144 j | - ] + 9 . 6 3 [ - ]  -1 0 .4 9 f-l - 2 . 0 5 1 ^  + - 0 .0 4 2 8 ^
c I c  j  U j  (X a \  L \  a
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002331
c , = -0.09611 +  —  0.2307Sin(a) -  0.1577^w \ c j

+ 0.67 locf p ]
[ t J
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+ 0.00956 -  0.0231Ln
r

Appendix K2 -Subjected to Bending Loading
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(f) (!)
+ 5.56 a

A ■-(!)■
0 .1 4 5 7 /0 / T \  0.146

I) “P0 .521-0366 (?) 0.1 I)
Note:

1) All equations are valid in the following ranges of the geometric parameters:

2) a  in radians

0.01 <-t-< 0.066 
T 

0 .1577<-<4 
T

0 < - < l

0 < - < 0.8
T
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