UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

On the Picard group of compact complex projective flat manifolds

Michelacakis, Nickolas John; (1995) On the Picard group of compact complex projective flat manifolds. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[img] Text
out.pdf

Download (3MB)

Abstract

We consider the problem of describing the projective imbeddings of a compact, complex, projective, flat manifold M .L.S. Charlap has studied the algebraic classification of flat manifolds and recently F.E.A. Johnson using Albert's classification of rational positively involuted, finite dimensional algebras, succeeded in giving a necessary and sufficient condition for M to admit at least one complex, algebraic structure. This was done purely and solely in terms of the rational holonomy representation of M. We carry this further and using extension theory we give a description of Pic(M) by proving a generalized equivariant version of the well known Appell-Humbert theorem. We finally classify the projective flat manifolds whose holonomy group is either cyclic Cp or dihedral D2p , where p is a prime. We use our results to provide an estimate for the size of the set of all positive line bundles and construct interesting imbeddings directly in terms of the integral holonomy representation of M.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: On the Picard group of compact complex projective flat manifolds
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by ProQuest.
Keywords: Pure sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10102118
Downloads since deposit
14Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item