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ABSTRACT

This thesis provides a critical analysis of the use of the theory of plasticity in
the interpretation of Slant Shear Test (SST) results.

The SST is a testing method of evaluating efficacy of bonding systems used
both in new structures and in repair services. Among other similar tests, the SST is
considered as the most appropriate when structural performance is important.
Nevertheless, a theoretically supported analysis of SST results is still necessary.

The theory of plasticity, originally derived for ductile materials such as metal,
has also been applied to concrete which behaves almost like a brittle material.
Hence, this work concisely describes features of ductile and brittle materials and
applicable failure criteria. Principal theorems of limit analysis and basic concepts

such as plastic potential flow are likewise presented.

The upper bound method applied to the SST is examined fully in this thesis.
This study covers missing points found in previous work, such as, restrictions
regarding the flow vector direction, by providing alternative solutions. However,
theoretical approaches were unable to make predictions matching the reported data.

This outcome led to further investigations into material performance.

An experimental investigation was carried out using specially designed
specimens and apparatus to encourage and to monitor plastic response. Experimental
results though, demonstrated virtually no plasticity. In order to identify whether
ductility is required for redistribution of stress within SST specimens, lower bound
analyses were considered by using finite element methods. Resulting stress profiles
showed large differences of stress over failure zones which would require great

ductility to allow a fully developed plastic mechanism.

In conclusion, plastic upper bound methods are shown inadequate for the
analysis of the Slant Shear Test. Recommendations are therefore made for further
work in two areas: empirical bases for assessing SST results and appropriate failure

criterion for brittle materials.
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€, £ &

flow vector direction

softening parameter (FE)

inclination of the yield line

shear retention factor (FE)

shear strain rate

shear strain rate in n-t coordinates

in-plane shear strain (FE)

direct strain rate

components of the strain rate in n-t coordinates
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factor of proportionality (Eq. 2-10)
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angle of friction

coefficient of friction

direct stress

normal stress
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yield stress
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shear stress
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shear modulus
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Q - generalized stress

q - generalized strain

R - radius of curvature
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t - depth (Eq. 3-25)
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W - work

W, - rate of dissipation of internal energy
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CHAPTER 1

Introduction

1.1 - GENERAL POSITION OF THE SLANT SHEAR TEST

1.1.1 - Repair & new materials

Repair services have been in significant demand even before the end of
concrete structure design life (Long, et al, 1986). This fact is due to a wide variety of
factors such as: inappropriate structure design, misapplications of construction
techniques and different types of environmental aggression. Faced with the problem
of ensuring security of the structure and economic factors, remedial action to stop

further deterioration and maintain structural safety must be taken.

The high cost of maintenance and repair of subsequent failures determine that
repair systems and materials be selected with care to ensure that durable and
structurally safe solutions are provided. Before designing a repair system though, it is
necessary to define among many options which is the most convenient material for a
specific application. The main requirement of materials used to repair concrete
structures is that they should have properties and dimensions which will make them
compatible with the substrate for the application in hand (Plum, 1990).

Material properties such as: elastic modulus; creep and skrinkage; effects of
temperature and humidity and bond strength must be defined. However, in the
attempts to produce new materials which combine these properties, an assessment of

bond quality is perhaps of prime importance to ensure durability.
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1.1.2 - Bond needs & applications

The durability of concrete repair services relies on the adequacy of the bond at
the surface between the old concrete and the applied volume repair. As an attempt to
improve the bonding of concrete and of other materials to concrete, both in new
structures and during the process of repairing existing constructions, bond materials,

such as epoxy bonding agent, have been used.

Depending upon the type of application, the bond surface will be subjected to
different loading conditions and stress states. For example, flat paved surfaces are
likely to require bond properties under high compressive direct stress conditions.
While vertical surfaces, such as surfaces originating from repair services in columns,
require bond properties under tension stress conditions and soffits of beams and slabs
demand bond properties under shear stress conditions. Hence, there is a need to
investigate the bond strength of repair and new materials by selecting an appropriate
testing method which anticipates loading conditions and stress states compatible with
the in-service repair material conditions. Many attempts have been made to find a
test procedure for evaluating the bonding strength. A brief description and discussion

of common testing methods available is presented below.

1.1.3 - Common testing methods available

In order to assess the bonding mechanism many testing procedures have been
proposed. Destructive test methods with the bond surface subjected to pure normal or
shear stress present the following limitations:

(i) direct compression - This is an unproductive type of test method as zero bond is
required to transfer stress (Eyre & Domone, 1985).

(ii) direct tension - This type of test method is of little value as the concrete tensile
strength is not high and in most cases the tensile strength of repair materials
surpasses the tensile strength of the original concrete. Hence, this type of test method
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