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Abstract

It is widely held that the role of diagrams in mathematical arguments is merely 

heuristic, or involves a dubious appeal to a postulated faculty of “intuition”. To many 

these have seemed to exhaust the available alternatives, and worries about the status 

of intuition have in turn motivated the dismissal of diagrams. Thus, on a standard 

interpretation, an important goal of 19̂  ̂Century mathematics was to supersede 

appeals to intuition as a ground for knowledge, with Euclid’s geometry—in which 

diagrams are ubiquitous—an important target. On this interpretation, Euclid’s 

presentation is insufficient to justify belief or confer knowledge in Euclidean 

geometry. It was only with the work of Hilbert that a fully rigorous presentation of 

Euclidean geometry became possible, and such a presentation makes no non- 

redundant use of diagrams.

My thesis challenges these claims. Against the “heuristic” view, it argues that 

diagrams can be of genuine epistemic value, and it specifically explores the 

epistemology of diagrams in Euclid’s geometry. Against the “intuitive” view, it 

claims that this epistemology need make no appeal to a faculty of intuition. It 

describes in detail how reasoning with diagrams in Euclid’s geometry can be 

sufficient to justify belief and confer knowledge. And it shows how the background 

dialectic, by assuming that the “heuristic” or “intuitive” views above are exhaustive, 

ignores the availability of this further alternative. By using a detailed case study of 

mathematical reasoning, it argues for the importance of the epistemology of diagrams 

itself as a fhiitful area of philosophical research.
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1 : An Old Kind of Reasoning

1.1 Introduction

Can reasoning with diagrams be epistemically valuable? Can it confer justification, 

or knowledge? A common view holds that the role of diagrams in mathematical 

arguments is merely heuristic. On this view, diagrams serve as illustrations, whose 

fimction is to make an argument given wholly in words or formulas easier for a 

reasoner to grasp. The text of the argument alone confers justification, however, and 

so the diagram is—whatever its psychological merits—epistemically redundant. On 

an older view, diagrams have epistemic value, but this value is understood via an 

appeal, now widely considered philosophically dubious, to a postulated special faculty 

of “intuition”. Such a faculty is “special” in that it does not merely draw on the 

perceptual and ratiocinative faculties required to follow a given presentation of an 

argument in words or formulas; it is supposed to be an independent and fimdamental 

source of mathematical justification. On this view, diagrams can play a non- 

redundant role in conferring justification or knowledge, but they do so by utilising a 

reasoner’s intuition.

To many these have seemed—within the traditional picture of mathematical 

knowledge as a priori—to exhaust the available alternatives, and worries about the 

existence or epistemic status of intuition have in turn motivated the dismissal of 

diagrams. Thus, on a standard story, one of the goals of 19th Century mathematics 

was to supersede appeals to intuition as a ground for knowledge, with Euclid’s 

geometry—in which diagrams are ubiquitous—an important target. On this 

interpretation, Euclid’s presentation is insufficient to justify belief or confer 

knowledge in Euclidean geometry. It was only with the work of Hilbert that the 

possibility of a fully rigorous presentation of Euclidean geometry became clear, and 

such a presentation makes, it is claimed, no non-redundant use of diagrams. This 

claim was made by Hilbert himself in a lecture of 1894:



A system of points, lines and planes is called a diagram or figure [Figur]. The 
proof [oï the theorem Hilbert is discussing] can indeed be given by calling on 
a suitable figure, but this appeal is not at all necessary. [It merely] makes the 
interpretation easier [erleichtert die Auffassung], and it is a fruitful means of 
discovering new propositions. Nevertheless, care, since it can easily be 
misleading. A theorem is only proved when the proof is completely 
independent o f the diagram.^

1.2 A Fallacy in Euclid’s Geometry?

The denial that reasoning with diagrams can have epistemic value has often been 

supported by the claim that diagrams (and other visual representations) are not 

reliable, or are actively misleading. A flat map of the world does not preserve correct 

information about distances: someone wishing to fly by the shortest route fi'om 

London to San Francisco would be ill-advised to follow a straight line on an airline 

map, for the shortest route between these cities is not this line, but the shorter of the 

two arcs of the great circle on which they lie. And within mathematical research, the 

discovery in the last century of counterintuitive results in analysis—such as space­

filling curves and continuous but nowhere differentiable functions—had the effect of 

undermining the perceived reliability of diagrams.^

Let’s consider a specific case of the apparently unreliable and misleading nature of 

diagrams in Euclid’s geometry: a well-known fallacious argument to the effect that 

all triangles are isosceles. I reproduce the argument below, as given by E. A. 

Maxwell.^ However, for later convenience I have also annotated the various steps of 

the argument in square brackets on the right hand side so as to bring out its structure. 

The reader may wish to cover over these annotations in following the argument for 

the first time here.

‘ Quoted in Hallett 1994, non-German emphasis added. Note what Hallett calls the “rather abstract 
characterisation” of the figure.
 ̂Hahn 1933.
 ̂Maxwell 1959, Ch. 2. Note that “=” denotes congruence. “SAS” (side-angle-side), “ASA” (angle- 

side-angle) and “Rt. Z-H-S” (right angle-hypotenuse-side) denote established rules for congruence of 
triangles in Euclid. The argument appears to have been invented by Rouse Ball, in Rouse Ball 1905, 
pp. 44-45.



To prove that every triangle is isosceles.

Given: A triangle ABC.

Required: To prove that, necessarily, AB = AC.

Construction: Let the internal bisector of the angle A meet the perpendicular bisector 

of BC [from D] at O. Draw OD, OQ, OR perpendicular to BC, CA, AB respectively.

B CD

Proof:

(1) DO = DO

(2) DB = DC

(3) ZODB = ZODC

(4) AODB = AODC

(5) OB = OC

(SAS)

[self-identity of DO] 

[bisection of BC] 

[OD perp. to BC] 

[1,2, 3]

[4]

Also

(6) AO = AO

(7) ZRAO = ZQAO

(8) ZARO = ZAQO

(9) AARO = AAQO

(10) AR = AQ

(11) OR = OQ

(ASA)

[self-identity of AO] 

[bisection of ZBAC]

[OR perp. to AB, OQ to AC] 

[6, 7, 8]

[9]

[9]



Hence in triangles OBR, OCQ,

(12) ZORB = ZOQC = right angle

(13) OB = OC

(14) OR = OQ

(15) AORB = AOQC

(16) RB = QC

(proved) 

(proved) 

(Rt. Z-H-S)

[OR perp. to AB, OQ to AC]

[5]

[11]
[12, 13, 14]

[15]

Finally,

(17) AB = AR + RB

(18) AB = AQ + QC

(19) AB = AC

(proved)

[by inspection of AB]

[10, 16, 17]

[18; by inspection of AC]

Spelling out the inferential structure of the argument in this way makes explicit that, 

with two exceptions, all the lines of the argument are warranted either by already- 

established results (e.g. line 13), or by established rules of logic (e.g. line 1, by the 

rule that everything is self-identical), or by the text of the construction rubric. As an 

example of the latter, the claim that DB = DC (line 2) is warranted, not by the visual 

appearance of the diagram, but because the reasoner has already been instructed to 

draw OD as the bisector of BC.

The two exceptions are lines 17 and 19. These claims are not warranted by prior 

results, by established rules of logic or by the text of the (admittedly over-concise) 

construction rubric. Rather, they are supposedly warranted, wholly or partly, by the 

reasoner’s reading claims off directly from the diagram. Moreover, for reasons that 

will shortly become evident, it is here that the argument goes wrong. So the case that 

the diagram is misleading here is clear-cut: it seems quite obvious from the diagram 

that AB = AR + RB, for example, but someone who thought she could read this claim 

off from the diagram in this way would have gone wrong.

If the charge of being misleading is to go through, however, we also need a reason to 

believe that the fault is, so to speak, on Euclid’s side. After all, we would not claim 

that airline maps were misleading if they came complete with a set of explicit 

instructions as to how they were to be properly read; we would say that the person



who read the map wrongly without having followed the instructions had simply made 

a mistake of her own, a mistake which could have been avoided had she been 

sufficiently careful. The same is true of someone with a tacit mastery of maps, in the 

absence of explicit instructions: we would not count an airline map misleading if 

such a person, knowing it was an airline map, misread it.

Is the diagram here misleading if we apply this stricter standard? The first thing to 

say is that even someone moderately familiar with Euclid will ask whether there is not 

more than one case to be considered here. Thus Greenberg’s presentation of the same 

argument considers three possible cases: one where point O—the intersection of the 

bisector of angle A and the perpendicular bisector of BC—lies inside triangle ABC, 

one where it lies on line BC, and one where it lies outside triangle ABC.'^ The first of 

these has already been discussed; the other cases are diagrammed below:

B O C

As Greenberg shows, a very similar argument to that given above goes through for the 

case represented by the left hand diagram. It also goes through for that represented by 

the right hand diagram above, except that the conclusion is reached by subtraction, 

not addition, of line segments in lines 17 and 18. At this point the prospect is bleak 

for Euclid, since it now looks as though the fallacious argument succeeds by 

exhaustion. Merely reading offlines 17 and 19 from the earlier diagram was non- 

conclusive; it left open alternative possibilities for the location of the point O, for 

which the argument might not work. But the alternatives above have now been closed 

off. So now it appears that unless the diagram is misleading the reasoner, Euclid’s

Greenberg 1993, pp. 24-5.



argument goes through, and the fallacious conclusion that all triangles are isosceles is 

established.

There is, however—if we continue to talk of cases—a fourth case to be considered. 

This can be represented diagrammatically as follows:

B

O

The argument above does not go through for the case represented by this diagram.

For though RB and QC are equal, it does not follow that AB and AC are equal; 

although R lies between A and B, Q does not lie between A and C. This is the result 

Euclid needs, for here it is true both that the diagram is not misleading and that the 

argument is blocked. Moreover, it is a result that, plausibly, someone with only 

moderate expertise in Euclid’s geometry ought to be able to reach. In the first place, 

it is suggested by the third case already considered above, where it is evident that 

closing the gap between D and O a little would have the effect of making R fall 

between A and B, with Q still falling outside AC. But secondly, although I have been 

following normal practice in talking of different cases here—and although other 

arguments in Euclid do require analysis by cases—in fact there are no different cases 

to be considered: the situation represented by the diagram above—in which R falls 

between AB and Q falls outside AC—is the only correctly drawn one. The other 

diagrams above are misdrawn, as careful examination should make clear to the reader.

But now we can say this: this and other fallacious arguments are often advanced as 

evidence of the misleading nature of Euclid’s diagrams. But here at least, the 

argument only appears to succeed because the correct diagram is never included in the



presentation of the argument. None of Greenberg, Maxwell or Rouse Ball includes it, 

for example; rather, each presentation utilises—and relies for its plausibility on— 

various incorrectly drawn diagrams. But someone who accepts an incorrectly drawn 

diagram provided in a given presentation of an argument has made a mistake; the fault 

is not Euclid’s. Indeed, not only is the correct diagram not misleading; it makes it 

evident where the error in the argument falls. It can be appropriate to include 

misdrawn diagrams as an educational device for students. But it is wrong to infer 

from this clear and correctable misrepresentation that diagrams in Euclid are generally 

misleading. Although diagrams in Euclid may and do sometimes need careful 

handling, this objection in itself offers no reason to think either that they are 

misleading to a suitably competent practitioner, or that reasoning with diagrams of the 

kind(s) we find in Euclid is generally fallacious. We might—and this brings out the 

wider point—make similar remarks about reasoning with quantifiers in a logical 

language, for example, or reasoning with expressions for negation in a natural 

language.

1.3 Diagrams and Intuition

So what, then, of the other view I mentioned above, that reasoning with diagrams can 

have epistemic value? Must someone who holds this view, and who is an apriorist 

about mathematical justification, postulate a faculty of intuition in order to explain 

why? The philosopher who is perhaps most closely associated with positive claims 

for a faculty of intuition is Kant, and the influence of Euclid’s geometry on the 

Critique o f Pure Reason is well known. In the “B” Preface, Kant describes the main 

goal of his work as an “an attempt to transform the accepted procedure of 

metaphysics, undertaking an entire revolution according to the example of the 

geometers and natural scientists.” In the Transcendental Aesthetic he takes the status 

of geometry as a synthetic a priori description of space to be an “apodeictic 

certainty”. And in the Doctrine of Method, he gives a worked example of someone 

following an argument in Euclid to illustrate his doctrine that intuition of a diagram or 

figure is required for geometrical knowledge.^

Bxxii; A716/B744; A47/B64ff.



Kant’s belief that Euclid’s geometry is the science of space is, of course, widely held 

to be untenable. But many commentators have also been dismissive of his claims 

about geometrical reasoning. The discovery of logical gaps in Euclid, many of them 

traceable to the lack of axioms giving an explicit theory of order for points in the line, 

has served to undermine Euclid’s claim to rigour. And a further worry is that Kant, 

while doubtless familiar with the mathematics issuing from Descartes’ Géométrie, did 

not foresee the degree to which the later development of analytic geometry would 

undermine the view of intuition described above. In analytic geometry, the plane is 

defined as the set of ordered pairs of real numbers, and straight lines as subsets of all 

pairs <x, y> satisfying equations of the form ax + + c = 0 (with a and b not both

equal to 0). This allows geometrical properties to be translated into algebraic 

properties of real variables. On a standard modem presentation, the reals are not 

understood in spatial terms, however, and so—at least on some views—geometry 

ceases to be an independent discipline and becomes a branch of real analysis.^ But 

real analysis does not employ diagrams—the thought continues—at least in any 

epistemically non-redundant way; and there does not seem to be any place here for 

geometrical reasoning of the sort that Kant apparently regarded as exemplary of the 

synthetic a priori. So Kant is mistaken in thinking that intuition of a diagram is 

required for geometrical knowledge; and we can plausibly attribute the source of his 

mistake to his lack of a space-independent understanding of real numbers.

The case against both Kant and Euclid was eloquently made by Bertrand Russell in a 

series of writings at the beginning of the Century. Perhaps under the influence of 

his reading of Leibniz, Russell rejects any epistemic role for diagrams in geometry:

Formerly, it was held by philosophers and mathematicians alike that the proofs 
in Geometry depended on the figure; nowadays, this is known to be false. In 
the best books there are no figures at all. The reasoning proceeds by the strict 
mles of formal logic from a set of axioms laid down to begin with. If a figure 
is used, all sorts of things seem obviously to follow, which no formal 
reasoning can prove from the explicit axioms, and which, as a matter of fact, 
are only accepted because they are obvious. By banishing the figure, it 
becomes possible to discover all the axioms that are needed; and in this way

On the translation of geometry into analysis see, for example, Hartshome 2000a and 2000b.



all sorts of possibilities, which would otherwise have remained undetected, are 
brought to light/

Kant, again, bears much of the responsibility for this error, according to Russell, 

through his lack of logical sophistication and consequent unnecessary and erroneous 

emphasis on intuition:

Kant, having observed that the geometers of his day could not prove their 
theorems by unaided arguments, but required an appeal to the figure, invented 
a theory of mathematical reasoning according to which the inference is never 
strictly logical, but always requires the support of what is called intuition/

Russell does not shrink from drawing the conclusion that, since Euclid’s arguments 

employ diagrams, they do not justify; and indeed that perhaps none of the arguments 

advanced before at least the nineteenth century was deductively valid.

It is perfectly true, for example, that anyone who attempts, without the use of 
the figure, to deduce Euclid’s seventh proposition from Euclid’s axioms, will 
find the task impossible; and there probably did not exist, in the eighteenth 
century, any single logically correct piece of mathematical reasoning, that is to 
say, any reasoning which correctly deduced its result from the explicit 
premisses laid down by the author. Since the correctness of the result seemed 
indubitable, it was natural to suppose that mathematical proof is something 
different from logical proof. But the fact is, that the whole difference lay in 
the fact that mathematical proofs were simply unsound.^

On Russell’s view, then, “proofs” containing diagrams are to be replaced by proofs 

containing only sentences, claims advanced on the basis of intuition are to be replaced 

by claims advanced on the basis of logic, and Kant’s authority and doctrines, in this 

regard at least, are pernicious. It is a short step to diagnose Kant’s error as lying in 

the weakness of the then-available logic, a weakness by which Kant was, unlike 

Leibniz, supposedly untroubled.

Similar views have been expressed in extreme form by Alberto Coffa, who identifies 

the start of what he considers the modem semantic tradition with “Conceptualism”, 

described as follows:

’ Russell 1901, p. 93.
* Russell 1919, p. 145 (cf. the very similar remarks at Russell 1901, p. 96). 
 ̂Russell 1903, p. 457.



Conceptualism is defined by an enemy, a goal, and a strategy: the enemy was 
Kant, the goal was the elimination of pure intuition from scientific knowledge, 
and the strategy was the creation of semantics as an independent discipline...

Bolzano’s problem [i.e. to prove that a continuous real fimction that takes 
values above and below zero, must also take a zero value somewhere in 
between] looks like a problem only to someone who [sc. unlike Kant and his 
followers] has already understood that intuition is not an indispensable aid to 
mathematical knowledge, but rather a cancer that has to be extirpated in order 
to make mathematical progress possible.

That is, for Coffa what Bolzano is rejecting in a pioneering way is the attempt to 

argue for this or any mathematical claim by appealing to a figure or diagram, in 

relation to which the reasoner is supposed to exercise some kind of faculty of 

intuition.

The views expressed by Coffa and Russell have now become fairly orthodox among 

philosophers. And they have also been influential among mathematicians. ̂  ̂  But we 

should note that the cognate suggestion by Russell that Euclid’s arguments do not 

justify is—if we take it strictly and literally—drastically revisionary in principle of a 

traditional understanding of Euclid’s geometry and its historical value. On a 

traditional view, the value derived from studying Euclid does not lie simply in 

detecting where he goes wrong. The implication of Russell’s claim is, however, that 

we cannot come to know basic geometrical truths by studying Euclid. The use of the 

Elements as a textbook in schools over the centuries may have been justified by 

expediency, but it was not by itself a way by which students could genuinely acquire 

knowledge of geometry.

We should also note that Russell’s reading of Kant is quite problematic. To be sure, 

Kant was enormously impressed by the methodology and success of Euclid’s 

geometry, and appears to be (perhaps culpably) ignorant of the longstanding doubts 

and debates about it. Otherwise, the strategy of the Aesthetic in this regard seems

Coffa 1982, pp. 679, 686.
See, e.g. Forder 1927, p. 42.
A conclusion Russell Wmself drew (Russell 1901, p. 94-5). But we should also note that Russell was 

himself reacting against the sterility and insularity of the 19 Century Cambridge mathematics 
curriculum. In particular, there had long been heavy emphasis on rote learning of Euclid. See Rouse 
Ball 1905, p. 199ff.

10



inexplicable. Moreover, Kant does not appear to have been an especially deep, and 

certainly not a creative, logician. But he is no enemy of rigour: the point of taking 

Euclid as a model is in part precisely because his arguments are, as Kant sees it, 

exemplary of rigour. Kant’s appeal to intuition is not intended to be at odds with 

the need for rigour in mathematics; on the contrary, it is supposed to be part of the 

explanation of that rigour.

From this perspective, Kant’s discussion of one of Euclid’s arguments in the Doctrine 

of Method is of great (and perhaps underappreciated) interest, for it represents a case 

study in which the reader is invited to consider, analyse and even test the respective 

contributions made by concepts and intuitions as Kant understands them. Moreover, 

the focus here is not so much on mathematical knowledge as such, as on mathematical 

reasoning. He is asking, in effect, the questions with which we started: how, if at all, 

can this kind of reasoning with diagrams justify belief? How, if  at all, can it convey 

knowledge? As I shall describe below, Kant takes himself to be under a 

psychological constraint: to respect what the reasoner actually seems to be doing 

when she follows such an argument. And it is far from clear that predicate logic, even 

if it were available, would suffice to answer our questions in this context.

But this then raises a further worry. For it is part of the dialectic of the story told 

above—and reinforced by the logicist dismissal of intuition—that there are only two 

alternatives on offer here. Either the diagram is epistemically valuable, and we must 

postulate the existence of some special faculty of intuition; or the diagram is merely 

heuristic, and only non-diagrammatic or sentential arguments—and specifically 

arguments in a logical language—confer justification. Must we accept this choice, or 

believe that the reasoning here is empirical?

Though we can make too much of Kant’s supposed neglect and complacency as to logic. It is 
sometimes suggested that Kant believed that logic did not need, and was not capable of, further 
development. But note that, at least as regards the first Critique, this is not what Kant actually says. 
He makes the point that logic (i.e. the logic of the syllogism) had not between his time and that of 
Aristotle been materially discredited or overturned, and then remarks that “until now it has not been 
able to take a single step forward, and therefore seems to all appearance to be finished and complete” 
(Bviii; enphasis added). Of course, one might think of the logic of the syllogism as being discredited, 
in modem eyes, by its expressive limitations. But Kant’s emphasis is, I suggest, on internal 
weaknesses or inconsistency. If so, then given that the logic of the syllogism remains little changed to 
this day, both the claims above were—and indeed are—surely tme.

Kant’s respect for rigour is underscored by, for example, the terms in which he praises Christian 
Wolff in the B Preface, Bxxxvi.

11



1.4 The Unacknowledged Alternative

I shall argue that the answer is No, and that the proffered choice in fact presents a 

false antithesis. There is a further and so far unacknowledged alternative: that the 

diagram can be epistemically valuable a priori, and yet require no special faculty of 

intuition to be so understood. This is the alternative I shall explore. Specifically, I 

shall defend the following three claims:

1. The kind of visual thinking we do in following an argument in Euclid can be 

epistemically valuable—and specifically, that it can justify belief and yield 

knowledge;

2. We can identify in the Critique o f Pure Reason an embryonic account of such 

thinking that is preferable to its major alternatives; and

3. This account can be developed into a persuasive explanation of the epistemic 

value of this type of reasoning; one which is recognisably Kantian, but which 

does not appeal to any special faculty of intuition.

I briefly outline the course of the main argument below. But it may be helpful 

initially to note some of what is not claimed here. I do not claim that Euclid’s 

arguments are proofs. Nor do I seek to defend Kant’s principal claims in regard to 

Euclid from the Transcendental Aesthetic: that Euclid’s geometry is, necessarily, the 

science of space, or that we can have synthetic a priori knowledge of physical space. 

Indeed I hardly discuss Euclid in relation to physical space at all.

Nonetheless, some general objections can already be anticipated to the very 

possibility of arguing in this way, at three progressively more inclusive levels:

• A first worry concerns whether and how diagrams can properly be used in the

presentation of arguments at all, and whether they are in fact indispensable to

12



such presentations; whether they cannot be dropped from these presentations 

without epistemic loss.

• A second worry accepts that diagrams can be used in the presentation of 

arguments, but is concerned with diagrams as spatio-temporal objects. On this 

view, reasoning with diagrams is and can only be a matter of gathering 

empirical evidence, and so Claim 1 above is committed to an empiricist 

epistemology. But this is allegedly implausible on other grounds as an 

account of mathematical reasoning.

• A third worry accepts that diagrams can be used in the presentation of a priori 

arguments, but claims that reasoning with diagrams in this way is not valid. In 

particular, diagrams do not contain instructions as to how they are to be 

understood. So reasoning with diagrams is unreliable, at least with respect to 

generalisation.

We might also note a fourth line of objection, which attacks not the epistemic value of 

diagrams as such, but the claim that there is anything of distinctive epistemological 

interest here. It accepts that diagrams can be used in the presentation of a priori 

arguments, and that reasoning with diagrams in the relevant way is valid, but claims 

that it is so just in virtue of being logical reasoning. That is, though the diagram may 

be indispensable to a given argument, the justification conferred by that argument 

actually derives from the existence of a sentential proof of the same conclusion. It is 

not contested that logical reasoning can confer justification. But on this view, there is 

nothing epistemologically distinctive going on here.

Each of these objections, and others, is addressed in the discussion below.

1.5 The Argument of the Thesis

The goal of this thesis is, then, to explore whether and how the unacknowledged 

alternative can be positively elaborated, and defended against these objections. In

13



order to do this, the discussion breaks down into three parts. The first part sets up the 

problem; the second explores candidate solutions; the third and longest part selects a 

preferred solution, refines it, defends it against a range of objections, and then 

develops it in what I take to be a plausible way. Specifically:

(I) Chapter 2 starts with a given argument as presented by Euclid and describes, 

in what I hope is an open and neutral manner, what a reasoner seems to be 

doing when she follows this argument in a certain way. To make the analysis 

and subsequent discussion as specific as possible, the discussion is focused on 

a single argument: Prop. 1.32 of the Elements}^ to the effect that all triangles 

have internal angles that sum to two right angles: the so-called “angle sum” 

property. Chapter 3 sets out a logically exhaustive Framework of 

Alternatives, covering different theories that can be advanced to account for 

the apparent justification offered by this reasoning. This sorts such theories 

into four categories by their responses to two questions: if there is 

justification here, is it a priori? Does the diagram contribute, in a defined 

sense, to the justification?

(II) Chapters 4-6 describe and appraise three candidate theories that might be 

advanced in each of the categories identified by the Framework of 

Alternatives. These theories can be plausibly attributed to an interpretation of 

Plato by W.D. Ross, to J.S. Mill, and to Leibniz. Each theory holds that 

Euclid’s argument confers justification, but they differ as to how it does so. 

Each chapter analyses the strengths and weaknesses of a given theory.

(III) Chapter 7 considers a fourth candidate theory, attributed to Kant; it argues that 

this account is superior to its alternatives, and defends it against what has 

come to be known as the Generality Objection. Kant’s account has, however, 

been dismissed by even sympathetic interpreters as obviously mistaken. 

Chapter 8 isolates and defends a somewhat different but still recognisably neo- 

Kantian view against three main lines of criticism, in a way that highlights

Euclid’s arguments are known as Propositions, and broadly follow a standard form described in 
Chapter 2 below. This term of art should not be confused with the meaning(s) of the same word in 
philosophy.

14



some of its distinctive features and commitments, as well as areas where it 

diverges from the Kantian account already considered. However, a 

satisfactory explanation should not merely be superior to its alternatives. It 

should also satisfy further positive demands of logic and epistemology if it is 

to make good on the three claims above. Chapters 9 and 10 discuss these 

issues, and Chapter 11 concludes.

1.6 A Case Study

This thesis takes the form, then, of an extended case study of a single argument:

Prop. 1.32 of the Elements. The argument is well-known; indeed, even among 

Euclid’s Propositions, Prop. 1.32 had canonical status not merely with specialists 

debating the technicalities of geometrical reasoning in what became known as the 

Quaestio de Certitudine Mathematicarum in the 16*^-18* Centuries, but also 

throughout more generalist philosophical debates as to the status of mathematics of 

the same period. Virtually every major philosopher of the time discusses Euclid’s 

geometry—including Descartes, Gassendi, Leibniz, Hobbes, Hume, Locke, Berkeley, 

and Kant—and most of them discuss Prop. 1.32 in particular. By contrast, the general 

topic of diagrammatic reasoning has not been much explored in the recent 

philosophical literature. There has been an increasing body of work on this and 

related topics in cognitive and educational psychology, in the study of computing and 

artificial intelligence, and even in logic. However, there has been relatively little 

work on diagrammatic reasoning in mathematics, and no book-length treatment of the 

epistemology of diagrams as such.^^

Proposition 1.32 is perhaps too well-known for any further treatment to be really fresh 

and persuasive. But it is, I suggest, nevertheless a worthwhile choice, for three

For details of the Quaestio, see Mancosu 1996, Ch. 1.
” Overall, see e.g. the collections Glasgow et al. 1995, and Blackwell 2001. Greaves 2002 gives a 
broad philosophical survey of diagrams in geometry and logic, but does not devote detailed 
consideration to the epistemology of reasoning with diagrams as such. For diagrams in computing/AI, 
see e.g., Sowa 1999 and Jamnik 2001; in logic, see e.g. the works of Barwise and his collaborators 
Etchemendy and Allwein, and Barwise’s students Shin, Shimojima and Hammer listed in the 
References; and, for a case study comparing inference using diagrams and sentences in prepositional 
logic, see Norman 1999. For diagrams in mathematics, see the works of Giaquinto, Manders and 
Brown.
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reasons. First, it employs an overall form of argument that is ubiquitous in Euclid’s 

geometry, in which a diagram is constructed that represents a given situation, as to 

which a succession of logically interrelated claims are then made. So we have reason 

to think that conclusions reached here should generalise to other Propositions that use 

this form of argument, and perhaps elsewhere. Secondly, Euclid does not here 

employ any distinctively questionable techniques such as superposition^^ or reductio, 

which might raise further questions for the present discussion before the basic 

approach has been assessed. On the view taken here, it would be a further step to 

argue that the diagram in a reductio, for example—in which there is no consistent set 

of claims to be represented by means of a diagram even in principle—can be 

epistemically valuable. This is a step I do not take, but the present discussion 

prepares the ground for it even so.^^

Thirdly, we can take value from the historical pre-eminence of Prop. 1.32 itself. In a 

different context Alasdair MacIntyre complains of

the persistently unhistorical treatment of moral philosophy by contemporary 
philosophers... We all too often still treat the moral philosophers of the past as 
contributors to a single debate with a relatively unvarying subject matter, 
treating Plato and Hume and Mill as contemporaries both of themselves and of 
each other... Kant ceases to be part of the history of Prussia, Hume is no 
longer a Scotsman.^®

Focusing on a single argument allows us, I suggest, to avoid this pitfall. Prop. 1.32 

has been preserved in more or less the same form since antiquity, and has been 

actively discussed in the modem era since the 17̂  ̂Century. We can with confidence 

say that various different views expressed over time as to Euclid’s arguments—and 

this argument in particular—address the same subject matter. This is not to say that 

the terms, leading concepts or background assumptions of participants have remained 

unchanged through the various debates in which Prop. 1.32 has featured, of course.

But it seems we have as good a case here as one could reasonably expect to test the 

value of this kind of comparison.

A form of argument from the coincidence of lines or angles to their equality, as in Prop. 1.4; widely 
regarded as philosophically suspect, even in antiquity. See Heath 1956, p. 225 ff.

20
On reasoning via reductio in Euclid, see the helpful discussion in Manders 1995. 
MacIntyre 1981, p. 11.
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2: The Euclidean Presentation, Part 1

2.1 Introduction

This chapter examines Euclid’s Proposition 1.32, and the kind(s) of reasoning required 

to follow that argument. To follow this argument, a reasoner must be able to do at 

least two things: first, she must be able to understand the claims made at each stage, 

given appropriate interpretative conventions; and second, she must be sensitive to the 

validity of the transitions from premisses to conclusions.^^ This chapter discusses 

both these aspects of reasoning.

The chapter is divided into three parts. In Part 1 (Sections 2.1-2.5), I introduce some 

relevant terminology, and briefly describe the general way in which arguments in 

Euclid are presented. I then set out Prop. 1.32, and discuss the phenomenology, or 

introspective feel, of a given reasoner’s experience as she works through the 

argument. In Part 2 (Section 2.6), I examine the relevant conventions and 

assumptions lying in the background of Euclid’s argument. In Part 3 (Sections 2.7- 

2.9), I set out a detailed analysis of the argument, and discuss the role of the diagram 

in information representation and inference.

In this kind of analysis, it would be a mistake to assume from the outset that there is 

only one kind of reasoning to be explored. We need to leave open the possibility that 

two or more different types of reasoning can still constitute following a given 

presentation of an argument. We can then ask the question which, if any, of the 

inference types involved is compatible with the relevant phenomenology. However, 

the goal of this chapter is not just to situate Euclid’s argument and the type(s) of 

reasoning involved in following it. It is also to bring out, in quite specific terms, the 

key questions with which subsequent chapters will be more generally concerned. For 

in order to assess various theories that purport to explain this reasoning, we need to be 

clearer as to what is to be explained. On only some of the possible candidate

The notion of validity for inferences involving diagrams is discussed further in Chapter 10.
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explanations will it be the case—even in principle—that the diagram has epistemic 

value.

As an introductory matter, it will be helpful to establish some relevant terminology. 

Following Harman, we can draw a distinction between implication and inference. 

Implication is a logical relation between, canonically, propositions, while inference is 

a type of mental act, whose outcome is a possible change in belief.^^ Specifically, I 

will take it that an inference is a transition between two (personal-level) mental states. 

More generally, I take reasoning to be a personal-level psychological process, 

consisting of inferences. In geometrical reasoning, we are reasoning about 

geometrical objects of a defined type (squares, triangles etc.).^^ These geometrical 

objects can have certain kinds o ï property, including shape properties (e.g. being 

right-angled). Such properties are described mathematically in Euclid in idealised 

terms that refer, for example, to perfectly straight lines without breadth. Geometrical 

objects can be represented by diagrams or figures. However, I will reserve the term 

diagram for physical inscriptions; when we visualise a geometrical object in 

imagination, I will call this a figure?^ The visual properties of a diagram may 

represent geometrical properties, but they are not themselves geometrical properties, 

strictly speaking; a line on a diagram will never be perfectly straight, for example.

This does not rule out a reasoner’s judging of a diagram that “that is square”, but this 

judgement will be an observational (or, as it is sometimes more specifically called, 

perceptual-demonstrative) judgement, not a geometrical one; for the diagram will not 

be, as defined here, geometrically square.

Two further points. First, though some people refer to Euclid’s arguments as proofs, 

it has been widely doubted whether they are in fact proofs; I shall simply refer to them 

as arguments, so leaving the further claim open. Secondly, the discussion of 

reasoning will be concerned solely with the kind(s) of reasoning involved in following 

Euclid’s argument, not with that involved in creating an argument or discovering a

Harman 1986, Harman 1999 Ch. 1.
The word “object” here is just intended to denote the target of representation, and so should not be 

taken here in any metaphysically loaded way. Sometimes I shall refer generally to what is represented 
by a diagram as a “situation”.

This has the advantage of avoiding a possible ambiguity in relation to the word “figure”, as between 
a diagram and an object or objects represented by a diagram. Note that, so as not to weary the reader 
by repeated reference to diagrams and figures, I will normally restrict discussion to diagrams.
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geometrical truth using Euclid’s methods,^^ It has sometimes been suggested that 

thinking with diagrams can have epistemic value in regard to these processes. But 

this is not our topic.

2.2 Presentation and Argument

In logic and mathematics, it is often convenient to distinguish between different 

presentations of a given argument or subject matter. In geometry, one highly 

influential presentation of Euclidean geometry was given in Hilbert’s book 

Foundations o f Geometry?^ But the most historically influential presentation of 

Euclidean geometry has, not surprisingly, been that of the Elements of Euclid himself, 

as we have it in Heiberg’s text of 1883-8. This is a different presentation fi’om that of 

Hilbert, in many respects: for example, it uses fewer and different axioms, and it has 

a quite different style of argument-presentation. One of the most striking differences 

is this: that presentations of arguments in the Elements use constructions of 

geometrical diagrams, and presentations of arguments in Hilbert do not.

We can, then, distinguish between Euclidean geometry (EG) and Euclid’s geometry.

I shall refer to the latter as the “Euclidean Presentation” of Euclidean geometry, and 

where there is no risk of ambiguity I shall refer to Prop. 1.32 itself as “the Euclidean 

Presentation” (EP) or as “Euclid’s argument”, for the sake of variation.^^

The importance of the “argument/presentation of argument” distinction lies in this, 

that when a reasoner is invited to follow a given argument, it is always a presentation

“The reasoning involved in following” is a cumbersome locution, but it is preferable to short-cuts 
such as reasoning “about” the relevant argument (which need not involve following the argument at all) 
or dubiously grammatical alternatives such as reasoning “through” or “with” the argument.

Hilbert 1899.
And note that the Elements does not in fact include all of what might now be considered Euclid’s 

geometry. For example, the very striking “9-point circle” claim (that in any triangle, the midpoints of 
the three sides, the feet of the three altitudes, and the midpoints of the segments joining the three 
vertices to the orthocentre, all lie in a circle) does not appear in the Elements, and was only proven by 
Brianchon and Poncelet in 1820. Yet it can be derived using only the pure geometric methods of 
Books I-IV (see, e.g., Hartshome 1997). There are many other results that are commonly considered 
results in Euclid’s geometry, but that do not in fact occur in the Elements.
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of the argument that she follows/^ But, unless the individuation of arguments is 

abnormally strict, presentations of a given argument can significantly differ firom each 

other, and can differ in the types of reasoning required to follow them correctly. So, 

if our target is an understanding of the type(s) of reasoning involved in following one 

particular presentation of a given argument, we cannot assume that this type of 

reasoning is the same as that involved in following a different presentation of the 

same argument.

2.3 The Euclidean Presentation

One could mean a variety of slightly different things by the term “Euclidean 

Presentation”, and there has been much debate over what is properly part of the 

Elements. Rather than engage in the relevant historical and exegetical questions, for 

the sake of convenience I will simply treat the standard English language text. Heath 

1956, as canonical. We need only consider Book I. Later books include further 

definitions in Euclid’s geometry, and indeed Euclid’s arithmetic, but these are 

irrelevant for present purposes.

On this view, then, the Euclidean Presentation consists of, on the one hand, an initial 

set of definitions, common notions and postulates; and on the other, a set of 48 

numbered Propositions.^^ Each Proposition contains an argument to one or more 

conclusions. Euclid uses several different broad forms of argument, including 

argument by superposition, such as in Prop. 1.4, which argues from the coincidence of 

two triangles to one case of the side-angle-side claim for triangles;^® argument by 

reductio\ and argument by exhaustion. An example of the latter two can be found in 

Prop. 1.19, which argues that in any triangle the greater side is subtended by the 

greater angle, from exhaustion of the alternatives; and as this brings out, a given 

Proposition can employ several forms of argument. The most common form of 

argument is by construction, however. Arguments by construction first give 

instructions for constructing a given diagram, and then make claims about the

This is not to say that such a presentation must always take the form of a physical inscription, like an 
argument presented in a textbook; it may be accessed via memory, for example.

Recall (from Section 1.6, fri.) that “Proposition” here is a term of art in discussions of Euclid.
Heath 1956, 306.
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situation represented by the diagram/^ Prop. 1.32 contains an argument by 

construction, and it is on this form of argument that I will focus.

Regardless of the form of argument employed, Propositions in Euclid have a 

standardised and rather formulaic structure, which requires a brief discussion. There 

are, normally, six divisions of a Proposition. Proclus describes these briefly as 

follows:

Every problem and every theorem that is furnished with all its parts should 
contain the following elements: an enunciation (protasis), a setting-out 
(ekthesis), a specification {diorismos), a construction (kataskeue), a 
demonstration {apodeixis), a conclusion (siimperasma). Of these the 
enunciation states what is given and what is being sought from i t ... the 
setting-out marks off what is given, by itself, and adapts it beforehand for use 
in the investigation. The specification states separately the thing that is 
sought, and makes clear precisely what it is. The construction adds what is 
lacking in the given for finding what is sought. The demonstration draws the 
proposed inference by reasoning scientifically from the propositions that have 
been admitted. The conclusion reverts to the enunciation, confirming what 
has been demonstrated.^^

The notion of construction in Euclid has a relatively specific meaning. Construction 

is a process consisting of the application of Postulates 1-3. Postulates 1-3 contain 

instructions to the effect that, respectively, a straight line may be drawn from any 

point to any point; a finite straight line may be continuously produced (i.e. extended) 

in a straight line; and a circle with any centre and distance may be drawn (about a 

given point). Given a marker, these three operations can be executed on a flat surface 

by use of a straightedge and (collapsible) compass. A construction procedure is any 

finite sequence of these instructions, in any order. A constructed diagram is any 

diagram that results from execution of a construction procedure.

It is, in effect, a necessary and sufficient condition on a diagram in the Euclidean 

Presentation that it be constructible. Several important types of diagram are given 

separate definitions, such as triangles and squares, but they can also all be 

characterised in terms of different finite orderings of construction procedures, and

Note that in some of Euclid’s Propositions there are different cases to be considered, and each of 
these normally requires its own diagram But Prop. 1.32 is not one of these Propositions, and I will not 
discuss cases or case-branching here.

Proclus, p. 203; I have slightly amended the translation.
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Euclid does not generally use diagrams without giving previous constructions of 

them, or without its being obvious how they may be constructed/^ In mentioning a 

specific type of diagram in the Setting-out of a Proposition, then, Euclid is using a 

kind of shorthand: no new information is being provided, over and above the 

construction procedure for that diagram/"^’

Thus the construction procedure for an argument in Euclid is specified by a set of 

instructions indicating which postulate is to be applied, and in what order. It should 

be evident that this sense of “construction” is not the same as that in which we 

sometimes talk of constructing an argument, for in the latter usage the contrast is with 

following an argument, and following Euclid’s arguments often involves the reasoner 

in constructing a diagram. So I will reserve the term “construction” for the sense 

described above, and where necessary use “creating” an argument for the other sense.

2.4 Proposition 1.32

With this in mind, we can turn to the argument of Prop. 1.32, reproduced below. The 

square brackets are Heath’s annotations; I have, however, labelled the various 

components of the proposition, and numbered the steps of the demonstration, for 

future reference.

Enunciation: In any triangle, if one of the sides be produced, the exterior angle 
is equal to the two interior and opposite angles, and the three interior angles of 
the triangle are equal to two right angles.

Setting-out (Construction): Let ABC be a triangle, and let one side of it BC be 
produced to D;

Note that the same figure may in many cases properly be constructed using the same procedures 
executed in a different order. E.g. for an equilateral triangle constructed according to Prop. 1.1, the 
order in which the sides are constructed will be irrelevant.

Proclus, p. 204 claims that constmction is often irrelevant on the grounds that “in most theorems 
there is no constmction because the setting-out suffices without any addition for proving the required 
property from the data.” But since the setting-out functions in these cases by mentioning a figure, and 
a fortiori a constmction, these cases utilise constmctions, only without naming them as such.

The definitions are, thus, verbal or “nominal”; they do not go to the question of the existence or no of 
the object, which is apparently determined in Euclid by its constmctibility. In determining what is to 
count as a constmction, it seems the postulates are supposed to underwrite the existence assumptions of 
Euclid’s geometry. But this is not necessarily to commit Euclid to what would now be considered a 
constmctivist philosophy of mathematics. See Heath 1956, p. 143ff, and Mueller 1981, p. 15.
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specification: I say that the exterior angle ACD is equal to the two interior and 
opposite angles BAC, ABC, and the three interior angles of the triangle ABC, 
ACB,^^ BAC are equal to two right angles.

Construction: For let CE be drawn through the point C parallel to the straight 
line AB. [1.31]

E

CB D

Demonstration:

(I) Then, since AB is parallel to CE, and AC has fallen upon them, the 
alternate angles BAC, ACE are equal to one another. [1.29]

(II) Again, since AB is parallel to CE, and the straight line BD has fallen upon 
them, the exterior angle ECD is equal to the interior and opposite angle 
ABC. [1.29]

(III) But the angle ACE was also proved equal to the angle BAC; therefore the 
whole angle ACD is equal to the two interior and opposite angles BAC, 
ABC.

(IV) Let the angle ACB be added to each; therefore, the angles ACD, ACB are 
equal to the three angles ABC, ACB, BAC.

(V) But the angles ACD, ACB are equal to two right angles; [1.13] therefore 
the angles ABC, ACB, BAC are also equal to two right angles.

Conclusion: Therefore the exterior angle ACD is equal to the two interior and
opposite angles CAB, ABC, and the three interior angles of the triangle ABC,
ACB, CAB are equal to two right angles. QED.

Note that Heath has BCA here and below. BCA picks out the same angle as ACB, however, and 
ACB also appears in Heath’s version. This variance is common in Euclid. However, since it is not 
clear what the purpose if any of this variance is, and since it may be confusing at first sight, I have used 
ACB for BCA throughout. Similarly, I have rendered CAB as BAC throughout.
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2.5 Phenomenology

Let us take as standard the case in which a competent reasoner follows Euclid’s 

argument carefully. In the course of this she does several different things: she is 

asked to draw a diagram, according to certain instructions given in the text or rubric; 

she reads sentences in the Demonstration, which express claims, some of which she is 

expected to understand, and assess the truth of, in relation to the situation represented 

by the diagram; and she is expected to be able to assess the validity of certain 

transitions in thought between these claims.

In the course of doing these things, the reasoner typically has a certain kind of 

experience. When one has a conscious experience, there is, at least normally, some 

felt quality to that experience. This is sometimes called the experience’s 

phenomenology. Experiences A and B will be said to share the same (or similar) 

phenomenology when what it feels like for one to have A is the same as (or similar to) 

what it feels like for one to have B. On one conception of experience, certain 

perceptual experiences can have a phenomenology; and the same is true of conscious 

thoughts (i.e., occurrent, dated, episodes of thinking; including imaginative thinking). 

Importantly, we do not have to regard these thoughts as linguistically mediated (as 

having linguistic concepts as constituents, or as the result of operations using 

language).

The notion of phenomenology gives us a broad means to type different episodes of 

reasoning, at least on a prima facie basis. Two episodes of reasoning that have the 

same (or similar) phenomenology will be considered prima facie to be tokens of the 

same (or similar) type of reasoning. This typing is defeasible; there may be further 

grounds to differentiate between various types, and such grounds could be strong 

enough to cause us to doubt, and even to alter, an earlier classification. And typing by 

phenomenology is quite vague, though it may be hard to make more precise. But it 

supplies a useful pre-analytic means to identify different types of reasoning as such.

As a result, considerations of phenomenology can impose a strong though defeasible 

constraint on possible explanations of the reasoning involved in following Euclid’s 

argument. We will want to require of a candidate explanation that it be
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psychologically realistic; that is, faithful to the distinctive character of this reasoning, 

insofar as that can be assessed.

I suggested above that a competent reasoner who follows the Euclidean Presentation 

carefully has a certain typical kind of experience. To say this is to presuppose a rather 

broad notion of experience, not restricted to experience of the external world, on 

which conscious thinkings and imaginings can count as experiences. But such a 

broad notion is surely quite intelligible, even commonsensical.^’ Can we describe the 

phenomenology of the reasoner’s experience here?^^ I have already mentioned two 

aspects: it includes a visual experience of (or as of) a diagram; and it includes the 

experience of taking certain claims made in the text to be true of what the diagram 

represents. But I suggest that we can also identify three other distinctive aspects.

First, a feeling of accessibility', the reasoner seems to understand each inference, 

and the argument as a whole, very readily. The argument is short, and the line of 

thought is evident. There is little or no jargon or appeal to specialist knowledge 

here. There is little felt need to scrutinise details of the diagram, which might 

obstruct the flow of thought: the reasoner does not measure the angles of the 

diagram, she does not measure the lengths or assess the straightness of the sides.^^

Second, a feeling of certainty’, the reasoner seems to feel a strong conviction at 

the end in the truth of the general conclusion. This conviction might grow slightly 

with a little further reflection, but it does not grow thereafter. It is not diminished 

by any concomitant recognition that the diagram may not be perfectly drawn, or 

may only be roughly similar to a geometrical triangle.

I will discuss this and narrower conceptions in more detail below, especially in Chapter 3.
Again, I restrict attention to someone who follows the argument in relation to a diagram, rather than 

an imagined figure. But note that a further way to follow Euclid’s argument can be via visual memory. 
That is, one can recall seeing, for example, the page of a textbook containing the argument, and then 
follow the argument by recalling reading the text and reasoning with the figure accordingly.

Note that the feeling of accessibility I have in mind here is not the same as the feeling of immediacy 
that one can sometimes have on perceiving a diagram. For example, experience of a Gestalt “switch” 
in some visual illusions using diagrams can give a feeling of sudden recognition or insight on the 
viewer’s part, and it may be that this involves no mediating inference. However, distinguishing 
between accessibility and immediacy does not rule out that a reasoner following Euclid’s argument can 
nevertheless experience a rush of understanding or insight as a result, or that certain types of inference 
may employ such “switching”.
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• Third, a feeling of clarity: the reasoner has gained not merely belief or knowledge 

of a general truth, but a feeling of understanding: not merely that the conclusion 

must be so, but of why it must be so. By coming to understand the general 

relationship between the angles formed by the auxiliary line CE and the opposite 

angles of the triangle (ZABC, ZBAC), she grasps that the angles of any such 

triangle must equal the angles on a straight line, without exception.

The historical record suggests that this phenomenology should be taken as a datum. 

Many people have had this experience, and some of these features have been noted by 

other writers on geometrical thinking.'^^ It is clear that, like other arguments in 

Euclid, Prop. 1.32 has long been regarded as extremely accessible, convincing and 

clear by many reasoners.

Now the description above is clearly consistent with more than one way in which a 

reasoner might follow Euclid’s argument. Consider someone relatively new to 

geometry who, familiar with the definitions, common notions and postulates of 

Euclid, approaches Prop. 1.32. It seems that she might follow the argument thus: she 

could initially take the sentences in the demonstration to be about a triangle or class of 

triangles that the diagram depicts, i.e., to which she takes it to be relevantly similar in 

visual appearance."^  ̂ When she reaches the end of the argument, she could form the 

belief that the argument succeeds for the class of triangles depicted. If she then 

reflected that no step in the argument depended on any property of the triangles 

depicted that was not a property of all triangles, she could form the general belief that 

the argument succeeded for all triangles.

Call this the naïve approach. We can contrast it with the expert approach', for it 

seems that a more expert reasoner might take the diagram from the outset to relate to 

triangles generally (as determined by the text), including those triangles to which the 

diagram bears no visual resemblance. Unlike that of the novice, the expert’s final 

generalising inference is not reflective; the conclusion she reaches after following the

E.g. Giaquinto 1992 (in relation to similar processes used in discovery by visualisation), which has 
influenced this discussion; cf. Brown 1999, Ch. 3.

What this might amount to is discussed further below, and in Chapter 9.
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argument in relation to the triangles represented by the diagram will already be a 

general one.

The novice’s and the expert’s reasoning have slightly different phénoménologies. For 

the expert, there is no feeling that the diagram depicts any particular type(s) of 

triangle, and there is no conscious experience of any final generalising inference. For 

the novice, by contrast, the phenomenology of the experience may be this: that she is 

“seeing what happens” to a diagram of a triangle or class of triangles, and tracking it 

through a sequence of changes, before a final generalising inference.

For the sake of specificity I will focus on the expert approach; and it will be 

convenient to refer to this in places below as “the” reasoning involved in following 

Euclid’s argument. But, to reiterate, this should not be taken to imply that there is 

only one way to follow Euclid’s argument. Quite the contrary; I suggest that the 

naïve approach is also available, and indeed—as I discuss in Chapter 9—there may 

also be other approaches. The contrast between the naïve and the expert approaches 

is a useful one, however, and it will be further developed below as part of an attempt 

to explain the nature of the cognitive achievement that constitutes mastery of Euclid’s 

argument.

Following Euclid’s argument, however, requires a reasoner to grasp various tacit or 

explicit background assumptions and conventions, in particular as relates to the 

construction of, and claims made as to, the diagram. To these I now turn.
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2: The Euclidean Presentation, Part 2

2.6 Prop. 1.32; Background Conventions and Assumptions'*^

The construction of the diagram in Prop. 1.32 takes place in two stages, as we have 

seen: in the Setting-out, and in the Construction."^  ̂ To carry out the construction 

properly, the reasoner must be able to draw a triangle and label it; to extend line BC to 

D, and label D; and to draw auxiliary line CE and label E. That is, she must 

understand (1) how the diagram is to be drawn, and (2) how it is labelled. If she is 

then to follow the demonstration successfully in relation to the constructed diagram, 

she must understand (3) the representational scope of the diagram, and (4) any other 

relevant properties or features of the object(s) represented. All four aspects are 

controlled by various background conventions and assumptions, and I will discuss 

these in turn.

Drawing the Diagram

Prop. 1.32 leaves unspecified exactly how the diagram is to be drawn: the initial 

instruction is simply “Let ABC be a triangle.” This can be done in various different 

ways in Euclid. At its simplest, a diagram of a scalene triangle may be constructed by 

drawing a line segment BC (according to Postulate 1), drawing circles that cross at 

some point A not on BC or its extensions (using Postulate 3), then drawing further 

lines AB and AC (using Postulate 1 again). Alternatively, it may be equilateral 

(constructed as per Prop. 1.1 ; I give the procedure below) or isosceles (a simple 

variant construction). Having constructed the initial diagram, the reasoner can then 

amend it as instructed. To produce line BC to D, she must be aware of Postulate 2; 

and to draw the parallel line CE, of the construction procedure in Prop. 1.31.

I owe several of the leading ideas in this section to conversations with and work by Marcus 
Giaquinto.

Euclid brings part of the construction process into the Setting-out because the construction of 
exterior angle ACD is required to make his claim in the Specification about it intelligible. CE is an 
auxiliary line because, unlike the extended portion of BCD, it is not required to make the claim to be 
argued intelligible, and it does not appear in that claim, and so not in the conclusion.
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Constructing the diagram, then, relies on a range of background assumptions: for 

example, that the reasoner has the relevant concepts of “point”, “line” and of “straight 

line”; that she understands the Postulates; that the straightedge and compass are used 

as instructed (e.g. that the reasoner can insert the compass into each end-point of BC); 

that the relevant points B and C exist between which line BC can be drawn.

It might seem as though awareness of these assumptions would be enough to allow 

the reasoner to construct the diagram appropriately. In fact, however, this is not the 

case, as the reader can check. For the following three incorrect diagrams are all 

permissibly constructible from the instructions given in Prop. 1.32, supplemented by 

these assumptions:

E

E

CD B
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E

Why is this so? There is a further implicit assumption behind the construction 

procedure here (and elsewhere in Euclid): it is not stated in which direction BC is to 

be extended to D, nor CE drawn relative to BC. These together create four 

alternatives, of which only one is intended, Euclid’s argument cannot proceed in 

relation to the other diagrams, but he does not explicitly supply the relevant 

conventions required to rule them out.

In Heath’s edition, the relevant information is provided by showing the correct 

intended diagram. Strictly speaking, however, further explicit conventions are 

required, to rule the deviant diagrams out. The latter two diagrams can be ruled out 

by noting the implicit convention in Euclid that the ordering of letters in lines 

determines their direction: these would be instances of line CB, not line BC, being 

produced to D, What about the first diagram? We might rule this out in one of two 

ways: either by defining a general convention governing the drawing of parallel lines, 

or by giving a specific instruction here—not supplied by Euclid—in the text of the 

construction procedure. The first route looks unattractive; why should it not be 

convenient to draw CE down as in the first diagram, for other arguments? So what 

we need here is a specific instruction: that E is to lie on the same side of BCD as A,

What this brings out is that the modem tendency to start with a drawn diagram, and 

consider only that plus the demonstration as Euclid’s argument proper, is just a short­

cut to an outcome that should, strictly speaking, be reached via the appropriate 

constmction procedure, given background conventions including that (or similar) 

above.
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Labelling the Diagram

Secondly, there are background labelling conventions and assumptions. We do not 

know whether Euclid in fact labelled the diagrams in the Elements, though some 

ancient manuscripts have labels; but some method is needed to identify and track 

vertices, lines and angles in the diagrams constructed, and labels serve this purpose, as 

in Heath 1956. Here are some of the labelling conventions at work in Prop. 1.32. A 

large Roman letter “X”, “Y”, “Z”. .. next to a vertex is a label for that vertex. A letter 

repeated in the text refers to the vertex labelled by that letter; the letters “XY” in the 

text refer to the line lying between the vertices of the diagram labelled “X” and “Y”; 

“angle XYZ” refers to the angle between the lines labelled “XY” and “YZ” at the 

vertex labelled “Y”, etc. Repeated labels always refer to the same vertex, line or 

angle.

Representational and Depictive Scope

The above conventions govern the drawing and labelling of the diagram, and the 

relation between the diagram labelled and the text of Euclid’s argument. However, a 

drawn and labelled diagram is merely a collection of marks, of letters and lines. What 

makes the diagram a diagram o f something is its representational content, and this is 

constrained by a further set of representational conventions and assumptions.

We need to distinguish here between depictive scope and representational scope. We 

can think of depictive scope as governed by the following convention:

(Cl) The reasoner is to take a diagram to depict all those geometrical objects that it 

appears to her visually to resemble.

Thus drawn lines are to be taken to depict geometric lines, points to depict 

geometrical points, shapes to depict geometrical shapes. Note that a further 

convention can be given in the other direction, in relation to construction:
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(Cl*) The reasoner is to take an instruction to construct a geometrical object of a

certain kind as an instruction to construct a (saliently sized and clearly drawn) 

diagram that appears to her visually to resemble an instance of that kind.

On the other hand, we can think of representational scope as governed by the 

following convention:

(C2) The reasoner is to take a diagram to represent all those geometrical objects 

that can in principle be generated by execution of the construction procedure 

specified in the text.

It is an error to take the diagram to represent only those objects that fall within its 

depictive scope at the conclusion of Euclid’s argument: the conclusion is supposed to 

be true of all triangles, not merely of those that the diagram visually resembles. But 

note that this does not prevent a reasoner from using (Cl*) to draw the diagram.

There is nothing in (Cl*) that requires a reasoner to treat a given diagram as having 

merely depictive scope.

As this brings out, it is the text of Euclid’s argument—and specifically the relevant 

construction procedure—that controls the representational scope of the diagram, and 

the text may require the diagram to be understood as representing classes of 

geometrical objects that it may not appear to the reasoner to depict. A diagram can in 

principle be taken to represent anything. It does not carry with it its own instructions; 

rather, these must be supplied from elsewhere.

These conventions, and the controlling influence of the text of the argument, can be 

seen at work in Prop. 1.32. The reasoner may, in constructing the diagram, construct a 

diagram of an equilateral triangle. However, the instructions in the argument (“let 

ABC be a triangle”) do not require that an equilateral triangle be drawn: she might in 

principle have obeyed them in constructing an isosceles or scalene triangle. Hence, 

for her to treat the diagram as restricted to equilateral triangles is to make an 

additional assumption, and one that has no warrant in the text."̂ "̂  Similarly, the colour

I discuss questions of construction in more detail below, especially in Chapters 7 and 10.
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of the diagram is left open; it may be any colour, and so which colour it in fact is, is 

irrelevant. Similar remarks apply to the size of the diagram; it may in principle be 

any size, and so what size it in fact is, is irrelevant."^  ̂ Here the modem tendency to 

omit the constmction and treat the argument as beginning from an already completed 

figure renders Euclid’s argument unintelligible, unless further and equivalent scope 

conventions are also supplied.

Distinguishing between representational scope and depictive scope allows us to 

unpack the difference between the naïve and expert approaches described above. The 

naïve reasoner takes the representational scope of the diagram to be determined solely 

by its depictive scope. But later, in reflecting that no step in the argument depends on 

the specific properties of the depicted triangles, she does not take the conclusion to be 

limited merely to those triangles that lie within the depictive scope of the diagram. It 

is then a further movement of thought for her to recognise that the representational 

scope of the diagram can be entirely general, as does the expert. Until then, it is 

natural, and not mistaken, to take the diagram to be depictive, and it is in this sense 

that she can be said to be “seeing what happens” to it, and to the object(s) it depicts.

The Target o f Representation

Finally, there are assumptions governing the geometrical objects represented by the 

diagram. It is appropriate to distinguish these assumptions from those relating to the 

representational content of the diagram, because some intended properties of the 

geometrical objects represented may not be detectable from a visual examination of 

the diagram, and yet affect the cogency of Euclid’s argument. We can illustrate this 

by briefly examining a well-known objection to the construction of an equilateral 

triangle in Prop. I.l, as below:

It is sometimes objected that size is in fact relevant; even if space is (as perceived) locally Euclidean, 
since the physical universe appears to be non-Euclidean, very large diagrams will, if they follow the 
shape of space, violate the parallel postulate. But this worry is irrelevant here, for what is in question is 
how objects represented by the diagram would be if the relevant space were Euclidean. We can and do 
follow arguments in Euclid’s geometry containing diagrams that are not themselves perfectly 
Euclidean, even when we know in advance that they are not.
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The construction procedure given in Prop. I.l is as follows:

Setting-Out [Construction]: Let AB be the given finite straight line.

Construction: With centre A and distance AB let the circle BCD be described; 
again, with centre B and distance BA let the circle ACE be described; and 
from the point C, in which the circles cut one another, to the points A, B let 
the s tra i^ t lines CA, CB be joined.

It is often pointed out that Euclid is not entitled to assume the existence of the 

intersection point C between the two circles D and E. It appears that Euclid has a 

notion of continuity, perhaps given in visual perception by the apparently unbroken 

motion of a stylus or pen that is taken to represent a mathematical point, on which it is 

obvious to him that such a point C exists. However, we can provide models of 

Euclid’s axioms in discontinuous geometries in which point C does not exist; it has 

been argued that what is required to fill this gap is a further assumption, akin to a 

postulate, to the effect that the relevant concept of continuity is, or is a derivative of. 

Dedekind continuity.

Now, there is something correct about this view: there is nothing as such about the 

visual features of a drawn line that instructs a reasoner to take it as representing a 

continuous (or non-continuous) geometrical line. A drawn line is, by itself.

A line is Dedekind-continuous if it satisfies the following condition (Dedekind 1963, p. 11): “If all 
points of a straight line fall into two classes such that every point of the first class lies to the left of 
every point of the second class, then there exists one and only one point which produces this division of 
all the points into two classes, this severing of the straight line into two portions.” See also the 
discussion in Heath 1956, p. 234ff.
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representationally neutral as between these alternatives. So what warrants the 

existence of C is not the visual appearance of the diagram, but a further assumption 

about continuity; and the soundness of the argument in Prop. 1.1 relies on this. The 

example, then, correctly brings out the insufficiency of the visual features of a 

diagram alone, even when its representational scope is correctly grasped by a 

reasoner, to convey information as to all the properties of the object(s) represented.

Nonetheless, it would be a mistake, as well as an anachronism, to require of Euclid 

the assumption of Dedekind-continuity. For a suitable continuity assumption for 

circles here can be simply stated: if circle D has one point inside and one point 

outside circle E, then the two circles intersect in two points. And a point P can be 

defined as inside a circle with centre A and radius AB if AP < AB (and outside if AP 

> AB)."̂  ̂ This assumption does not require modem logic to be grasped by a reasoner. 

Euclid simply seems to take it for granted.

If we take Euclid’s goal to be the project of presenting a fully explicit deductive 

geometry, then the absence of a suitable and explicit continuity assumption is not a 

trivial weakness. In a fully explicit presentation of Euclid’s argument, this and other 

background assumptions and conventions, including others not mentioned here,"̂  ̂

would be stated outright. Some of these are given already explicitly, in the Postulates, 

Common Notions and Definitions, though some of these themselves require 

supplementation and emendation, as has often been noted. Other assumptions are 

given implicitly and could be derived firom a careful reading of Book I: for example, 

the convention that an unconstmcted diagram is not to be used in inference is implicit 

in Euclid’s own standard practice."^  ̂ Still others must be supplied from outside 

Euclid; as, for example, with the continuity assumption discussed above. Carrying 

through this programme in detail is beyond the scope of this discussion, and the 

complexity involved would itself generate other possible sources of error; but there is 

no reason in principle to think that it cannot be done.

See the discussion in, for example, Greenberg 1993, p. 94.
Meserve 1955 (p. 231) usefully lists some further tacit assunçtions in Euclid.
Hence, on some views, Euclid delays Prop. 1.32, which uses die construction of line CE parallel to 

AB, until after Prop. 1.31, which sets out this constmction for the first time.
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2: The Euclidean Presentation, Part 3

2.7 Analysing the Argument of Prop. 1.32

With this in mind, we can now use a reconstruction of Prop. 1.32 to analyse each of

the steps of the argument, and the interplay between the diagram and claims made 

about the situation that the diagram represents, in more detail. Here is such a 

reconstruction, in a more modem format.

Claims (Specification):

For any triangle ABC on line BCD

1. ZACD = ZABC + ZBAC

2. ZABC + ZBAC + ZACB = two right angles.

Setting-Out:

Let ABC be a triangle [by Definition 19]

Construction:

Let BC be produced to D [by Postulate 2]

Let CE be drawn through C parallel to AB, E to lie on the same side of BCD as A [by

Prop. I.31]So

E

B C D

Note that Prop. 1.31, and not Postulate 5, shows that through a given point a straight line can be 
drawn parallel to a given straight line, which is what is required here.
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Demonstration:

(1) ZBAC and ZACE are alternate [from the diagram]

(2) Alternate angles are equal [by Prop. 1.29]

(3) ZBAC = ZACE [1,2: by substitution]

(4) ZECD is exterior and opposite to interior ZABC [from the diagram]

(5) Exterior and interior opposite angles are equal [by Prop. 1.29]

(6) ZABC = ZECD [4, 5: by substitution]

(7) ZACD = ZECD + ZACE [from the diagram]

(8) ZACD = ZECD + ZBAC [3, 7: by substitution]

(9) ZACD = ZABC + ZBAC [6, 8: by substitution]

Line 9 is Claim 1.

(10) ZACD + ZACB = ZABC + ZBAC + ZACB [9: by CN2, adding ZACB to 

both sides]^^

(11) ZACD + ZACB is the sum of all the angles on BCD [from the diagram]

(12) BCD is a straight line [by the first Construction step]

(13) ZACD + ZACB is the sum of all the angles on a straight line [11,12: by

substitution]

(14) The sum of all the angles on a straight line = two right angles [by Prop 1.13]

(15) ZACD + ZACB = two right angles [13, 14: by substitution]

(16) ZABC + ZBAC + ZACB = two right angles [10,15: by substitution]

Line 16 is Claim 2.

The 5 steps of the Demonstration in Euclid are indicated by the five clusters of 

sentences— 1-3, 4-6, 7-9, 10 and 11-16—in the above reconstruction. So it should be 

evident that, although it differs in making some of the inferences more explicit than

Recall that Common Notion 2 states that “if equals be added to equals, the wholes are equal.’
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Euclid does, this reconstruction still presents Euclid’s argument, or something very 

similar.

It is interesting to compare this argument with the Rouse Ball fallacy analysed in 

Section 1.2, Here again, many of the lines of the argument are warranted either by 

already-established results (e.g. line 2), or by established rules of logic (e.g. line 3, by 

substitution of co-referring terms), or by the text of the construction rubric (e.g. line 

12, which is warranted by the first construction step).^^ So far, so good; it is 

uncontroversial that a reasoner is entitled to take these claims as known. But some of 

the lines of this argument—lines 1 ,4 ,7  and 11—are warranted by the diagram. This 

is more problematic. How can one’s experience of a diagram justify a belief state 

about something other than the diagram?

Diagrammatic Information

The answer to the question above is this: a diagram may have representational 

content. For example, it may represent one circle as intersecting another, as in the 

previous section; or it may misrepresent, as the first three diagrams in Section 1.2 

misrepresent the situation described in the rubric of the Rouse Ball fallacy. But note 

that this is not to claim that diagrams have (or cannot have) prepositional contents.

The thought being defended here is, not that diagrams have prepositional contents as 

such, but that in certain contexts a proposition can be inferred or known by observing 

a diagram: that someone can reliably infer the truth of a given claim about a situation 

represented by a diagram fi-om observing such a diagram.

Sometimes a diagram’s contribution is not strictly prepositional. Recall that the 

construction rubric says “Let ABC be a triangle...” We can compare a similar type of 

sentence to be found in many sentential arguments: “Let X be a prime number”, or 

“Let’s say Y is an average taxpayer.” These sentences do not present propositions, 

even when represented in the form “Let it be the case: X is a prime number.” They 

do not express claims that could be correct or incorrect, and there is no correct 

response to them along the lines of “No, X isn’t a prime number”, or “It’s true, Y is

Note that, unlike that in Chapter 1, this argument also uses Euclid’s Common Notions directly (e.g. 
line 10).
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an average taxpayer ...” Rather, such sentences serve to introduce a term denoting an 

entity of a given kind into the argument, as to which certain claims will subsequently 

be made. It seems that the same or a very similar function is being played by the “let 

...” sentences of the construction rubric here; they are introducing a term for an object 

(or class of objects) of a particular kind represented by the diagram, as to which 

certain claims will later be made.^^

If this is right, then we do not need to see the diagram as conveying prepositional 

information when it is introduced. Once it has been introduced and labelled, however, 

prepositional claims can be made about the situation represented by the diagram, and 

such claims can serve as the premisses of inferences.

Knowledge from the Diagram

How, then, can a reasoner come to know line 1 of the Demonstration from the 

diagram? One way in which she might is this: she might observe that the diagram 

correctly represented the situation described in the rubric, and that line 1 was true of 

that situation. On this view, if she took the diagram to be a triangle with an extended 

base and an auxiliary line, if she could reliably identify the angles in question on the 

diagram and if the diagram so understood correctly represented the situation described 

by the rubric, then she might see from the diagram that the relevant angles in the 

situation represented were alternate. Given knowledge of enough of the relevant 

background conventions and assumptions, she can readily satisfy the antecedents in 

this conditional. For she has correctly constructed the diagram, following the rubric, 

in order to represent the situation described. So she can come to know line 1 by this 

means.

Similar remarks apply with respect to line 4. But what about line 7? Line 7 claims 

that ZACD = ZECD + ZACE; that is, it states an equality of size between one angle 

and the sum of two others. How can a reasoner come to know this? Here is one way: 

line 7 might be reached by a further inference as follows:

I discuss the relation between the diagram and the “let.. premiss further in Chapter 9.
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(7a) CE divides ZACD into two parts, ZECD and ZACE, without remainder 

[from the diagram]

(7b) The whole of an angle is equal in size to the sum of the sizes of any parts into 

which it is divided without remainder [background assumption]

(7c) ZACD = ZECD + ZACE [7a, 7b: by substitution]

The background assumption in line 7b here is independently plausible. A reasoner 

who has the relevant concept of addition can know line 7a by observation of the 

diagram given her background knowledge that, in the situation represented by the 

diagram, line CE is breadthless (by the definition of “line”). Given these premisses, 

7c = 7 follows straightforwardly.

Is this the only way in which she can come to know line 7? I suggest not. Say (PI) 

we recall Common Notion 4, that “things which coincide with one another are equal 

to one another”, and treat this as entitling a reasoner to conclude from the coincidence 

of two sets of lines that the angles between them are equal in size. Suppose further 

that (P2) we treat different ways of seeing a single diagram as equivalent to seeing 

two diagrams known to be exactly coincident with each other. Given suitably explicit 

background conventions, both these principles are not, I suggest, implausible.^"^ Then 

it seems that a reasoner might come to know line 7 by looking at the diagram in two 

different ways: first, seeing the two lines AC and CD as containing ZACD alone, 

intersected by CE (which can be ignored, since its presence or absence does not affect 

the size of ZACD); and secondly seeing the same lines as containing ZECD and 

ZACE and nothing else. This situation can be represented in the subportion of the 

diagram given below, where the angles between the dotted and whole lines are the 

relevant angles.

As noted above, CN4 was regarded as suspect even in antiquity, and Euclid appears to avoid it where 
he can. Historic worries have standardly related to the tacit introduction of assumptions as to rigid 
translation, to which no appeal is made here, even tacitly.
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E

C D

But then by (P2) above, seeing the diagram in these different ways is equivalent to 

seeing two exactly coincident diagrams, and by (PI) above, the reasoner is entitled to 

conclude that angles ZECD + ZACE and ZACD are equal in size, and so to believe 

line 7.

Note that during this process nothing has changed about the diagram. What seems to 

warrant the inference, rather, is an act of “seeing as”. It is by seeing the diagram as 

presenting information as to the size of angle A, and then seeing the diagram as 

presenting information as to the size of angles B and C, together with (PI) and (P2) 

and background knowledge that the diagram has not altered, that the reasoner is 

entitled to come to believe that for any angles A, B, C: angle A is equal in size to 

angles B and C.^^

We can give a similar analysis of line 11, the claim that ZACD and ZACB is the sum 

of all the angles on BCD. Again, one way to come to know this is by a substitutional 

inference, as follows:

On different kinds of “seeing as”, of. Budd 1989, Ch. 4. The kind of “seeing as” that we can detect 
here does not involve the strongly different and sometimes mutually exclusive experiences 
characteristic of seeing, e.g., a duck vs. a rabbit, or a Necker cube oriented in different ways. But there 
is nevertheless an experience here of “flipping” between two different ways of seeing the lines in 
question.
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( lia )  AC divides the angle on line BCD into two parts, ZACD and ZACB, without 

remainder [from the diagram]

(1 lb) The whole of an angle is equal in size to the sum of the sizes of any parts into 

which it is divided without remainder [= 7b; background assumption]

(1 Ic) ZACD + ZACB is the sum of the sizes of all the angles on BCD [11a, 1 lb: 

by substitution]

And again, there is an alternative visual means to come to know line 11 analogous to 

the process already described, which exploits the different ways in which a reasoner 

can observe the relevant portion of the diagram: seeing it either as a whole angle at C 

formed by line BCD on the same side as A, or seeing the same lines as containing two 

angles ZACD and ZACB.

We can, then, describe three ways in which a reasoner can use the diagram to come to 

know a claim in the argument. First, she can see that the claim is true in relation to 

the situation represented by the diagram (e.g., lines 1 and 4). Secondly, she can infer 

the claim from the conjunction of a claim taken from the diagram and a further 

(perhaps not visually known) claim, using a substitutional form of inference (lines 7c 

and 11c). Thirdly, however, she can infer the claim from different ways of seeing the 

diagram, given a suitable inference rule such as (P2) for “seeing as” (lines 7 and 11, 

reconstructed above). Note that this last inference is not substitutional, is not general 

in nature but apparently limited to geometry, and seems to require the reasoner to 

reason with the diagram: it is by “flipping” between different ways of seeing the 

diagram that a reasoner is enabled to make the inference.

Which of these latter two routes best fits the phenomenology described earlier? We 

need to note the important fact that Euclid’s argument does not in fact mention either 

of the claims in lines 7 and 11 as such; it just passes over them. The reconstruction 

clearly indicates that they (or something similar) are required for the argument to go 

through, however, and a careful reasoner would detect that there is a lacuna between.
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say, the first and second halves of line (III), of which line 7 is an important 

component:

(III) But the angle ACE was also proved equal to the angle BAC; therefore 
the whole angle ACD is equal to the two interior and opposite angles 
BAC, ABC.

Just to speak from personal experience: when I read (III) in context, I seem to focus 

on the diagram. I have difficulty even understanding (III) without looking at a 

diagram, or visualising a figure, and—unless I am talking through the argument or 

self-consciously framing my thoughts in language at each stage—I am not sure I 

consciously think thoughts with linguistic contents at all in relation to the intervening 

claims here. When I think through the transition required to reach line 7 ,1 do not 

seem to do any substitutional reasoning; nor do I entertain any conscious thought 

corresponding to the major premiss in line 7b above. Indeed, I do not seem to use a 

conscious process of inference at all to reach line 7. Rather, I look at the diagram and 

derive the information in a way that is phenomenologically immediate, or almost so.

The third, visual, inferential route described above can in principle explain this feeling 

of accessibility, since it used a kind of “seeing as”, and this is often associated with 

swift, and even apparently immediate, inference. This is hardly conclusive, and of 

course other people may have phenomenologically different experiences. But the 

wider point is that there are several valid routes to belief here; and the visual route I 

have just described is one of them.

Visual Inferences

So far we have identified two distinct inference types, one that operates by making 

substitutions on sentences, and one that operates by seeing the diagram in different 

ways. Are there any others available here?

The reconstructed argument above suggested an underlying similarity of inference- 

structure in four of the five steps of the Demonstration in Prop. 1.32. For in each of 

these cases the inference proceeds from two or more premisses, one of which is
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known in virtue of the diagram, to a conclusion, via substitutional reasoning. The 

exception is the inference to line 10, which has no premiss taken from the diagram.

However, the analysis above suggests that it is not compulsory to regard the 

inferences between lines of the argument as substitutional. If we accept that there is a 

visual route to knowing line 7, as described above, then—for example—we do not 

have to regard the inferences to lines 8 and 9 as inferences by substitution of terms in 

sentences. A substitutional inference is in both cases in principle available to the 

reasoner, since the equalities of angles are already given in lines 3 and 6. But it also 

seems that a reasoner could reason with the diagram to the required conclusion: to 

reach line 9 from line 8, for example, she might visually imagine a copy of ZECD 

sliding rigidly along line BCD until it was mapped it on to ZABC. Given that the 

angles involved are equal, and already known by the reasoner to be so, such a visual 

inference will not go wrong. Moreover, it is a different type of visual inference to that 

of “seeing as” used to reach line 7; there is no seeing of the same set of lines in two 

different ways. And whereas the visual route to line 7 was, in effect, an inference to 

an equality of angles from their coincidence, this inference is one of visual translation 

of angles already known to be equal.

Similar remarks can be made about the inference to line 10, the claim that ZACD + 

ZACB = ZABC + ZBAC + ZACB. This could properly be inferred, as indicated, by 

a form of addition on sentences applied to line 9, given background knowledge of 

Common Notion 2 (“If equals be added to equals, the wholes are equal”). But it could 

also be known by an inference using the diagram. Take someone who reasons from 

the diagram to line 9, that ZACD is equal to the sum of the sizes of the opposite 

internal angles of triangle ABC, as below.

CB D
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The reasoner might then observe from the diagram that ZACB is common both to 

triangle ABC and the angles on line BCD (given that AC is breadthless), as marked 

by the boldface lines. But she can then visually imagine adding ZACB to both, to 

reach the desired result that ZACD + ZACB = ZABC + ZBAC + ZACB. Again, 

this is a distinct form of visual inference: it is not an inference of “seeing as”, and 

though it is additive, it does not involve visual translation of angles.

So far, then, I have contrasted substitutional inference on sentences with three distinct 

types of visual inference using diagrams: using “seeing as”, using visual translation, 

and using visual addition. Note that both broad categories of inference— 

substitutional and visual—seem to require a diagram, at least to supply a reference for 

the various labels in the claims or sentences entertained in thought, so that the 

reasoner can detect what the argument is about. This was brought out by the 

difficulty of even understanding line (III) above from Prop. 1.32 without reference to a 

diagram. But there is a key difference between the visual and substitutional 

categories of inference above: that the former actually use the diagram to make the 

inference, and the latter do not. For example, someone who knew CN2 and who was 

presented with line 9 could make a sentential inference to line 10 without ever having 

seen the diagram. But the same is not true of the inference using visual addition, as 

the name implies. Not only must the reasoner have seen the diagram before; she must 

actually use it if she is to make this kind of inference to the desired conclusion.

To sum up: the focus of this discussion has been on conscious reasoning; that is, on 

inferential transitions between conscious occurrent thoughts. In each of the inferences 

so far surveyed, it seemed that there was a valid conscious inference to the relevant 

conclusion. But in several places more than one type of inference is available; there 

are visual alternatives to substitutional inferences. And considering the 

phenomenology of the reasoning here suggests that, at least for some reasoners, such 

transitions are not substitutional and not linguistic. In the later discussion, we will 

want to prefer candidate theories of the apparent epistemic value of this reasoning that 

can explain these phenomena.
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2.8 Prop. 1.32 Reconsidered

I want to close this chapter by noting an interesting curiosity in Euclid’s argument in 

Prop. 1.32 that has, as far as I can tell, gone unremarked to date by his commentators. 

This is that, short though the argument is, it contains a logically superfluous step.

We can see this from the reconstruction. As it stands, the inference to line 16 is as 

follows:

(10) ZACD + ZACB = ZABC + ZBAC + ZACB

(15) ZACD + ZACB = two right angles

(16) ZABC + ZBAC + ZACB = two right angles [10, 15: by substitution]

However, the inference to line 16 need not use line 10. Rather, it could take line 9 

instead as the first premiss, operating again by substitution.

(9) ZACD = ZABC + ZBAC.

In this case, the inference would not use the claim of the equality of the angles on a 

straight line and the interior angles of a triangle; rather, it would draw directly on the 

decomposition of ZACD.

In Euclid’s argument the equivalent to line 10 is line (IV), and this too can be 

dropped. Thus the reasoning may go from:

(III) But the angle ACE was also proved equal to the angle BAC; therefore the

whole angle ACD is equal to the two interior and opposite angles BAC, ABC.

directly to:
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(V) But the angles ACD, ACB are equal to two right angles; therefore the angles 

ABC, ACB, BAC are also equal to two right angles.

Of course, the unnecessary inclusion of (IV) may be an oversight. But whether it is or 

not, we can ask whether this detour actually achieves anything.

The answer depends on what, if anything, new is established by line (IV) of the 

Euclid’s argument. Line 10, its equivalent here, goes beyond line 9 in bringing out 

what proves, given lines 12-14, to be the crucial relationship between the internal 

angles of a triangle and the angles on a straight line. This is not either of the 

conclusions for which the Euclidean Presentation argues. But it is of obvious 

importance to a proper understanding of the underlying geometry. It would not be too 

much to claim that someone who did not grasp this relationship, but who claimed to 

have even a moderate such understanding, would be mistaken.

If this is correct, it suggests that Euclid’s argument has the important effect of 

explicitly bringing to the reasoner’s attention the relations between the internal angles 

of a triangle and the angles on a straight line. An argument that omitted line 10 and 

contained an inference directly from line 9, together with line 15, to line 16 would not 

at any stage explicitly represent that relationship. Someone could in principle follow 

such an argument and yet fail to notice a fact that is central to a genuine 

understanding of the underlying geometry. Including line (IV), which makes the 

general relationship explicit, closes this possible gap in the reasoner’s understanding. 

Such a closure comes at a small but detectable cost, since line (IV) is, strictly 

speaking, logically superfluous to the overall conclusion to be established. But its 

inclusion is a source, I would suggest, of some of the clarity noted earlier as produced 

by following this argument.

2.9 Summary

Let me sum up. This chapter has introduced, situated and analysed Euclid’s argument 

in detail. In the course of this analysis, it identified several places in which two or 

more different types of valid inference are available to the reasoner; and it drew a
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general contrast between substitutional inferences using sentences, and visual 

inferences using the diagram. Among the latter, three different visual inference-types 

were noted: inference by “seeing as”, inference by visual translation, and inference 

by visual addition. These courses of reasoning—substitutional and visual—all count 

as ways to follow Euclid’s argument. However, in at least one case, I suggested that 

the visual inference better described the phenomenology of a careful reasoner’s actual 

experience in following Euclid’s argument. Finally, I identified a logically 

superfluous step in the argument.

This discussion has deliberately been small-scale and detailed. In the next chapters, I 

turn to some of the more general underlying epistemological issues at stake. The 

strategy of the discussion is to take the findings of this chapter as data, and to ask how 

well each of four candidate theories can explain and situate the kinds of reasoning 

described here, and address—or answer—various questions that arise.
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3: The Framework of Alternatives

3.1 Introduction

The last chapter analysed different kinds of reasoning that a reasoner could use to 

follow Prop. 1.32. It tried to do so in a philosophically neutral way: so as to raise, 

while leaving open, the various epistemological questions with which we will be 

concerned henceforth. This chapter now sets out a general framework within which 

we can categorise various candidate theories that seek to offer epistemological 

accounts of these kinds of reasoning.

Many people, philosophers and non-philosophers alike, have believed that Euclid’s 

argument succeeds; that is, that a reasoner can rationally come to believe, and perhaps 

to know, the angle sum law by following the argument of Prop. 1.32. Others have 

disagreed, for reasons some of which were briefly surveyed in Chapter 1. This raises 

the central epistemological question with which this thesis is concerned: whether 

Euclid’s argument can confer justification, and if so, how we should understand that 

justification. In particular, is the purported justification empirical or a priori! And: 

does the diagram contribute to the purported justification?

3.2 Two Questions about Justification

In order to address the overall question of justification, it will be helpful to start with 

the various candidate theories that have been advanced. We can, I will argue, 

categorize such theories by their responses to the latter two questions above.

However, a preliminary question concerns what we mean at all by a justification’s 

being empirical or a priori, and such that the diagram does or does not contribute to it. 

I want to leave open the possibility that different theories may employ slightly 

different notions under these titles in each case. But a general characterisation will be 

enough at this point to allow us to make the relevant classifications.
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Contributing to Justification

Take an interpreted sentential presentation of a given argument. We can identify at 

least three different kinds of function that the various sentences here might in 

principle have, for a reasoner seeking to follow the argument. In the first place, they 

might serve to fix  the arguments that is, to establish in the reasoner’s mind just what 

the argument is, or is about. Secondly, they might serve to express claims, and in 

particular prepositional claims. Thirdly, they might serve to mediate inference', that 

is, to present claims in such a form that a reasoner can use the sentences themselves to 

infer further claims. And within a given presentation, various sentences might fulfil 

more than one function.

It is plausible that each of these functions must be adequately discharged for the 

reasoner to acquire justified belief, or knowledge, fi’om following the argument; they 

are, that is to say, epistemically necessary for her to follow the argument with 

justification. If it is sufficiently unclear just what the argument is, then it will not be 

possible for a reasoner to get started at all. If the requisite claims are not presented, or 

if they are not presented in a form sufficiently suitable for inference, then it will not 

be possible for a reasoner to acquire justified belief or knowledge from following the 

argument. She may lack epistemically relevant information, or be unable to make 

certain epistemically relevant inferences.

Of these three functions, the first does not seem to bear on justification as such; it is 

more in the nature of a prerequisite, and the question whether a given argument 

justifies can only really be asked once it has been sufficiently established what 

argument is in question. The other two functions, however, clearly do bear on 

justification.

Something similar can be said for diagrams, in the context of diagrammatic or hybrid 

sentential/diagrammatic presentations of arguments. We can think of a diagram’s 

contribution to justification in terms of what it distinctively offers to the justification 

conferred by a given type of reasoning; and in particular, by reference to how, if at all, 

it discharges the functions of presenting information and mediating inference. As
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with sentences, erasing a diagram from a given argument will—if the diagram is not 

superfluous, and if the erasure is not made good in some other way—have a negative 

epistemic effect on any reasoning required to follow that argument: either it may no 

longer be clear to a reasoner from the remainder of the presentation alone just what 

the argument is, or certain information essential to the argument may be lost, or 

certain inferential gaps or defects may appear, or a combination of these three things. 

But of these three, only the latter two bear on justification as such.

We can now broadly characterise what it is for a diagram to contribute to justification 

as follows. Take a process of reasoning by which a thinker can come to believe a 

given claim with justifi cation. Then we can say that if that reasoning uses a diagram, 

and would be impossible, or would fail to justify (unless otherwise supplemented), in 

the absence of the diagram (or something similar), then the diagram contributes to the 

justification conferred by the reasoning in question.

Though it is imprecise, this captures the two main ideas we need. First, the reasoning 

with the diagram is, by hypothesis, sufficient to justify a thinker’s belief in the 

relevant claim. Secondly, the diagram has positive epistemic value: drop the diagram 

without compensating for the loss in some other way, and the reasoning in question 

ceases to justify a subject’s belief, or is impossible. Note that it is consistent with this 

general characterisation that a diagram might offer some degree of justification within 

a given type of reasoning, but not enough to warrant the relevant belief; it would not 

contribute to justification in the sense identified above. Also, note that there is no 

claim here that a given type of reasoning with the diagram may contain only 

reasoning with a diagram; there is nothing to rule out its also containing sentential 

reasoning, for example. And there is no claim that there is only one type of reasoning 

that could constitute following a given argument with justification.

Applying this general ch^acterisation to the present case, we can say this: it needs to 

be shown that a thinker can come to believe the angle sum claim with justification by 

following Euclid’s argument in a given way. If so, we can say that if reasoning in that 

way uses a diagram, and would be impossible, or would fail to justify (unless 

otherwise supplemented), in the absence of the diagram (or something similar), then 

the diagram contributes to the justification conferred by that reasoning.
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As this brings out, we will want to be very sensitive in the discussion that follows as 

to what constitutes a way of following Euclid’s argument. I suggested in the previous 

chapter that consideration of the relevant phenomenology could help us to individuate 

different processes of reasoning, at least prima facie. But we should note here that if 

this approach is not to be question-begging in relation to the issue of whether or not a 

diagram contributes to justification, specification of the relevant phenomenology 

cannot itself mention the diagram. It will not be of interest if  a diagram is found to 

contribute to the justification conferred by a process that has already been specified as 

diagrammatic.

The A Priori vs. the Empirical

I also need to say what is meant here by the thought that a justification can be 

empirical or a priori. It has sometimes been noted that there have historically been 

two aspects to the idea of a priori justification:^^ a negative aspect (that a belief is 

justified a priori if it is justified independently of experience), and a positive aspect 

(that a belief is justified a priori if it is justified through the exercise of reason 

a l o n e ) . A  belief is then empirical (or a posteriori) if its justification either is not 

independent of experience, or involves more or other than the exercise of reason 

alone. It would then be a fiuther claim to equate the two aspects: that is, to claim that 

a beliefs being justified independently of experience amounted to or was the same as 

its being justified through the exercise of reason alone.

In fact it is plausible that, as they stand, the negative claim is the weaker; for the 

positive claim that a belief is a priori if it is justified through the exercise of reason 

alone requires not only the claim that the exercise of reason justifies the proposition, 

but that it does so alone, i.e. independently of experience. (If this were true, the 

negative claim would be a presupposition of the positive claim.) In any case, for the 

purpose of this discussion the claims of reason as such are not at issue, and so it is the 

negative claim that is of interest.

E.g. by BonJour 1998, Ch. 1.
I am restricting attention to beliefs at this point; however, parallel remarks can be made about claims 

or propositions.
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The question then arises as to what is meant by “experience”. In the last chapter, I 

briefly described what I called a broad conception of experience, but I now want to 

situate that by contrasting it with two narrower conceptions.^^ On the narrowest 

reading, “experience” relates to sense-perception: the occurrent deliverances of the 

sense organs as to objects external to the subject’s body. On a broader reading, it also 

includes the proprioceptive or kinaesthetic perception of the subject’s own bodily 

states and events. On the broadest reading—that adopted in Chapter 2—“experience” 

includes not only perception of the external world and bodily states, but also the 

subject’s awareness of conscious events and states of thinking, imagining and 

desiring.

Why should it be appropriate for the present discussion to adopt the widest reading? I 

suggested above that such a reading allowed us to describe a useful notion of the 

“phenomenology” of a type of reasoning. But I also think there are other and more 

general grounds for preferring the widest reading. Recall that on the negative claim 

identified above, a belief is justified a priori if it is justified independently of 

experience. The phrase “independently of experience” is normally taken to mean 

something like “in a way that is not epistemically reliant on experience”; that is to 

say, in a way in which the experience is not used as evidence for the claim, or for any 

member of a set of premisses from which the claim is inferred. In general, it will be 

true of the above classification that the wider the reading of “experience”, the more 

categories of states and events are available in principle to act as evidence, and so the 

narrower the resultant reading of the a priori.

Now there has been much general scepticism in recent years as to the status and 

nature of the a priori. So it is appropriate to assess claims that the justification 

derived from following Euclid’s argument is a priori against the broadest reading of 

“experience”. It might or might not then turn out to be the case that the claim that this 

justification is a priori can be made good; but if it can, this will not be so because the 

relevant conception of experience has been too narrowly drawn.

On this cf. Boghossian and Peacocke 2000, Introduction.
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Finally, we need to ask if the two questions posed above—as to whether the purported 

justification here is empirical or a priori, and whether the diagram contributes to the 

purported justification—are logically independent of each other. If they were not, 

then a given answer to one might entail or be entailed by a given answer to the other.

I do not think the answer to this is quite clear at this stage, given these very general 

characterisations. But a prima facie answer should be No. We did not use either 

notion in the course of characterising the other, and there is no other evident logical 

link between them.

3.3 The Framework of Alternatives

With these distinctions in mind, we can now return to the classification mentioned 

above. Let us call the property of a justification’s being such that a diagram 

contributes to it, the property of being “diagrammatic”. There are then four logically 

possible alternatives. The theory may hold that the justification conferred by 

following 1.32 is (i) empirical and diagrammatic, (ii) empirical and non-diagrammatic, 

(iii) a priori and non-diagrammatic, or (iv) a priori and diagrammatic.

The various alternatives can be classified in the form of a matrix, as follows:
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Does the diagram contribute to justification?

Is the justification a 
prioril

Yes No

Yes

A Priori I  
Justification is a priori 

and the diagram 
contributes to 
justification

A Priori II  
Justification is a priori 

and the diagram does not 
contribute to justification

No

A Posteriori I  
Justification is a 

posteriori and the 
diagram contributes to 

justification

A Posteriori II  
Justification is a 

posteriori and the 
diagram does not 

contribute to justification

Provided it can answer the two questions above in a yes/no way, any candidate 

explanation of this reasoning may be located within this matrix, which I shall 

henceforth call the Framework of Alternatives. Given this proviso, the fi-amework 

exhausts the available alternatives.

The next four chapters explore candidate explanations of this reasoning, which I 

attribute to, respectively, a particular interpretation of Plato by Sir David Ross; J.S. 

Mill; Leibniz; and Kant. I shall argue that each of these occupies one of the positions 

identified in the Framework of Alternatives, as below:
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Does the diagram contribute to justification?

Is the justification a 
priori?

Yes No

Yes Kant Leibniz

No Ross’s Plato Mill

These are, of course, not the only theories (if we can call them that) that have been 

advanced. And indeed they may not be the four best-known such theories; for that 

one might need to include Berkeley’s views, aspects of which I shall also discuss in 

Chapter 7 below. But I shall argue that the four chosen accounts have the merits of 

being both historically well-founded and of allowing the various issues to be 

presented in a relatively clear way. And it is with these issues, and not the historical 

theories as such, that I shall be primarily concerned.

A Dilemma o f Justification?

Given the broad conception of experience outlined above, much of the debate that 

follows will concern what we might term the uses o f experience', and in particular the 

question whether, and if so in what sense, the reasoner’s experience in following 

Euclid’s argument serves as evidence for her belief. Here it may seem at first as 

though there are just two alternatives: either experience of the diagram serves as 

evidence for a reasoner’s belief, in which case it contributes to justification of that 

belief; or it does not. If it does, then the reasoning is empirical. If it does not, one 

may think, the diagram does not contribute to the justification of the reasoner’s belief.
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Someone who believes that these are the only alternatives is committed to the bottom- 

left or top-right hand box in the Framework of Alternatives. Such a person might 

claim that there was, in effect, a dilemma of justification here: that a commitment to 

the reasoning’s being a priori carried with it a commitment to the diagram making no 

justificatory contribution, and a commitment to its making such a contribution carried 

with it a commitment to the reasoning’s being empirical.

The two questions illustrated by the Framework of Alternatives are, at least prima 

facie, logically independent ones, as we have seen. The dilemma therefore is a false 

one, logically speaking: two other positions are logically available. But are these 

positions epistemically possible? Can the justification be empirical and yet receive no 

contribution from the diagram? Can the diagram contribute to justification, but in an 

a priori way? To these positions I shall turn, in Chapters 5 and 7. The next chapter, 

however, explores the first type of candidate account—that of Ross’s Plato—in more 

detail.
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4: The View of Ross’s Plato

4.1 Introduction

The last chapter described a Framework of Alternatives in terms of the responses to 

be given to two questions, relating to the justification apparently conferred by the type 

of visual reasoning discussed in Chapter 2: Is the justification a priori? Does the 

diagram contribute to justification?

Does the diagram contribute to justification?

Is the justification a 
priori?

Yes No

Yes

A Priori I  
Justification is a priori 

and the diagram 
contributes to 
justification

A Priori II 
Justification is a priori 

and the diagram does not 
contribute to justification

No

Ross’s Plato 
Justification is a 

posteriori and the 
diagram contributes to 

justification

A Posteriori II  
Justification is a 

posteriori and the 
diagram does not 

contribute to justification

The lower left-hand box of the grid includes theories on which, as indicated, the 

justification is a posteriori (i.e. empirical) and the diagram contributes to justification. 

One such theory has been advanced by Sir David Ross in an interpretation of a 

passage in Plato. According to this view, in following Euclid’s argument, a reasoner 

gathers evidence by means of sensory experience of the diagram, and the conclusion 

is reached by an inference from this experience.
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The present chapter explores this view, and the considerations for and against it, in 

more detail. I will consider two related types of account. On the first, a reasoner is 

supposed to be able to infer the general conclusion just by following Euclid’s 

argument once in relation to a single diagram. On the second, a reasoner infers the 

conclusion by generalising from her experience of several diagrams. If we think of 

“inductive inference” very broadly, as referring to inference from the particular to the 

general, we might consider both of these accounts inductive, the former being from a 

sample of one. The topic of inductive inference is large and complex, and I cannot 

hope to explore it in detail here. The strategy of this chapter is rather this: to bring 

out, albeit in a fairly crude and introductory way, the main considerations that work 

for and against the different accounts. Further considerations for and against another 

(slightly different type of) inductive view will emerge in the next chapter.

4.2 Ross on Plato

There is a well-known passage in Plato’s dialogue the Meno, in which Socrates leads 

a slave-boy through a piece of geometrical reasoning, apparently using a diagram.

The reasoning addresses the problem of how to construct a square that has exactly 

twice the area of a given square. It proceeds by constructing a second square, of sides 

equal to the diagonal of the first square, and then showing of the second square that it 

is composed of four isosceles triangles of area equal to that of the triangle formed by 

two sides and the diagonal of the original square. Since the area of the original square 

was twice that of such a triangle, and the area of the constructed square is four times 

that of the same triangle, the area of the constructed square is exactly twice that of the 

original square. The apparent state of affairs has been represented diagrammatically 

as follows

Sharpies 1985, p. 69.
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In a very brief discussion of this passage, Sir David Ross remarks as follows:

The method by which the slave-boy is got to discover what square has twice 
the area o f a given square is a purely empirical one; it is on the evidence o f  
his eyesight... that he admits that the square on the diagonal of the given 
square is twice the size of the given square. He admits that certain triangles 
have areas equal, each of them, to half of the given square, and that the figure 
which they make up is itself a square, not because he sees that these things 
must be so, but because to the eye they look as i f  they were.^^

The problem of how to construct a square that has exactly twice the area of a given 

square does not, as far as I am aware, occur in Euclid. But it could readily be 

presented in Euclid’s geometry using only the resources developed in Book I, and its 

conclusion is an instance of Pythagoras’s theorem (Prop. 1.47, where, however, the 

argument is quite different).^^

4.3 Single-Diagram Induction

I shall not, however, discuss the reasoning in the Meno here as such.^^ It is fairly 

evident that Plato did not in fact hold the view that Ross describes above, and Ross 

himself may not have done so. But I will refer to this view as that of Ross’s Plato for 

the sake of convenience. Ross’s remarks do not make clear how the details of this

Ross 1951, p. 18; my italics.
This is just because for the right-angled triangle formed by drawing the diagonal on a square of side 

unit length, the square on the hypotenuse will, according to Pythagoras's theorem, be 2 x (unit length )̂. 
On the epistemology here, see especially Vlastos 1965 and Giaquinto 1993.
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view are to be filled out. But its general cast is clear enough from the italics above: 

the justification here is empirical, and the diagram provides the requisite evidence. So 

it is appropriate to classify it in the lower left hand box in the Framework above.

The question is whether the view of Ross’s Plato or something similar could 

constitute an account of what it is to follow Euclid’s argument with justification. 

Perhaps Ross is suggesting this: that following the argument in relation to a given 

diagram furnishes sufficient empirical evidence for a reasoner to be entitled to infer a 

general geometrical truth. This view can be motivated to some extent by noting that 

we can apparently follow arguments in circle geometry in which we only need to see 

a diagram once to know that the relevant conclusion holds generally. If the latter 

process is empirical, then maybe following Euclid’s argument is like this.

I shall argue below that it is in fact not possible to follow Euclid’s argument in the 

way required here. But even if we ignore this point, this first inductive view is, I 

suggest, unsustainable. Recall that Euclid’s conclusion is not a claim about a 

particular diagram, but a claim about all triangles. So if the diagram is to justify 

belief in Euclid’s conclusion, it must furnish empirical evidence that the angle sum 

claim holds for all triangles. But how can it do this? How can a single diagram 

furnish enough evidence for a reasoner rationally to reach this entirely general 

conclusion? What may secure some reasoning with a diagram in circle geometry to a 

conclusion about all circles is the known background fact that all (plane) circles have 

the same geometrical properties. But this is not true of triangles: different triangles 

can have different geometrical properties. Moreover, there are no circles to which a 

suitable diagram of a circle cannot be taken to have a visual resemblance. But a 

diagram can be used to represent triangles to which it has no visual resemblance, and 

these triangles can have different geometrical properties from those of the triangles 

that the diagram does visually resemble. So a reasoner cannot reliably infer the 

geometrical properties of triangles generally just from a visual experience of a single 

diagram. This creates a central puzzle for any candidate account of our target 

reasoning: how can the reasoner who follows Euclid’s argument be justified in 

believing that the angle sum claim holds for all triangles?
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4.4 M ultiple Diagrams: the Inductive View

There is an obvious rejoinder to this line of thought. This is that the view of Ross’s 

Plato ought to hold that the generalisation here is by induction on several diagrams. 

Maybe it is like this: the reasoner uses the rubric to draw a particular diagram of a 

triangle. She follows the Demonstration and observes that, as far as she can tell, the 

diagram is triangular, and the internal angles of (the relevant portion of) the diagram 

sum to two right angles. She then constructs another such diagram, and observes that 

it too seems to have the same property. On this basis, she formulates a general 

hypothesis: that every triangle has the angle sum property. This hypothesis is then 

tested by her and others by a process of experimentation, in which she draws and 

examines further diagrams, or imagines certain similar figures. (Maybe she re-runs 

the argument for diagrams of equilateral, isosceles and scalene triangles.) The 

inference to the general conclusion is, then, via an inductive generalisation from 

sense-experience.

This is more plausible: let’s call it the Inductive View for convenience. The 

Inductive View seems to create a tight connection between the answers offered to the 

two questions above. Why should one think the diagram contributes to justification? 

On this view: because the diagram presents evidence for the reasoner’s belief. Why 

think the justification is empirical? On this view: because it relates to the diagram, a 

physical object, and the visual information that the reasoner derives from the diagram. 

Indeed, as noted in the previous chapter, it might even seem as though the Inductive 

View is obligatory for someone who thinks that the diagram makes a justificatory 

contribution.

But here is a difficulty: the reasoning process just described goes well beyond the 

kinds of reasoning discussed in Chapter 2. There it was noted that a reasoner does not 

need to consider more than one diagram in order to derive apparent justification for 

her belief; where she does do so, moreover, it seems to be to confirm that she has 

implemented the construction process correctly, not to justify her belief in the 

conclusion of the argument. Moreover, in the kinds of reasoning described in Chapter 

2 there is little that can be plausibly described as evidence-gathering. For example, it 

makes no difference whether the diagram has lines that seem or are perfectly straight
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or angles that seem or are perfectly s h a r p . A n d  the reasoner does not need to 

scrutinise the diagram carefully at the outset, or to monitor it during the course of the 

reasoning, to ensure that it or its properties have not changed. These considerations 

undermine the claim of the view of Ross’s Plato to be an account of the type(s) of 

reasoning that we have taken as our target.

Such considerations are hardly conclusive: perhaps we were just mistaken about the 

phenomenology of the reasoning noted earlier, or the physical state of the diagram is 

so obvious as not to need checking. But they can be strengthened by considering 

some of the properties of the beliefs acquired as a result of following Euclid’s 

argument. I noted in Chapter 2 that, among other things, the reasoning involved in 

following Euclid’s argument appeared to give rise to feelings of accessibility and 

certainty in a reasoner. It seemed as though a reasoner who follows the argument can 

acquire a belief in the conclusion quickly; that is, that the transition from 

understanding the conclusion to believing it is a short one (possibly, for some 

inferences, even a phenomenologically immediate one). And it seemed as though that 

belief amounted to a strong conviction, a feeling that matters could not, or not easily, 

be otherwise.

Can the Inductive View explain these feelings of accessibility and certainty? Take the 

question of accessibility first. In many inductions to new belief, the reasoner does not 

make a rapid transition from understanding a claim to belief in it. Rather, after 

following an argument through for a few early cases, she entertains a general claim as 

a hypothesis; she then comes to form a (frequently tentative) belief in the hypothesis 

after further experimentation. There are at least two types of case, however, in which 

the transition to belief might be very rapid. In the first, a belief is formed via an 

inductive generalisation and becomes entrenched and familiar. New data then 

emerge, where it is obvious that these fall under the existing hypothesis. The scope of 

the existing belief is slightly extended to cover the new data, and this process can be 

very rapid. A second type of case is one in which an entirely new belief is formed, 

but it is based on an overwhelming preponderance of evidence on one side, and little 

or no recalcitrant evidence on the other. Is our target reasoning one of either of these

I use “sharp” to describe the appearance of an angle where the component sides appear to overlap at 
exactly one point; an obtuse angle can be sharp in this sense.
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types of case? Surely not. Belief in Euclid’s conclusion is not a mere extension of 

existing belief, and there is no preponderance of evidence: quite the contrary.

Now take the question of certainty. Some inductive generalisations are such that, 

other things being equal, the strength of the belief produced is rationally positively 

related to the number of instances in the sample that constitutes the evidence. A 

belief that all sheep are woolly can thus rationally be strong for someone who has 

encountered a large number of woolly sheep. And some inductive generalisations are 

such that the degree of belief resulting from them grows incrementally with new 

(positive) evidence. The degree of belief may initially be low, especially in the early 

stages of experimentation, and so very sensitive to new evidence. The subsequent 

rate of growth in degree of belief may be large for further increments of (positive) 

evidence, and it may even start to decline, but it is not normally negative. But if there 

is an inductive generalisation here, it is not like one of these. For the evidence in this 

case, the sample of beliefs reached by drawing different diagrams, is likely to be 

rather small. If it is not, it will not respect a fair description of what actually takes 

place; the reasoner does not, as we have seen, normally draw many different diagrams 

or visualize many different figures. If the belief here is generated by a generalisation 

like those mentioned above, then given the paucity of evidence, the degree of belief 

generated should be relatively small. But in the case we are discussing it is not small; 

on the contrary, it typically amounts to a strong conviction, as noted. Moreover, it is 

not low at the outset. In this case, the degree of belief in Euclid’s conclusion is equal 

or close to 1; this degree of belief is achieved very soon after the reasoner concludes 

the argument; and it shows little or no sensitivity to new “evidence”.

Again, these considerations are not conclusive: maybe there are suitable models of 

induction that can explain these phenomena. But we can get a better understanding of 

what is at stake here by exploring the sharp contrast between the kinds of reasoning 

we saw in Chapter 2 and a process of mathematical reasoning that is clearly empirical. 

Imagine the reasoner who is unaware of the angle sum law and is asked to measure a 

diagram of a triangle with a protractor, as part of an effort to see if the internal angles 

of triangles always sum to 180°. Here we might well see all the factors mentioned 

above in play: very precise drawing of the diagram, careful attending to lines and 

angles, tentative formulation of the hypothesis, keen awareness of the possibility of
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error, the desire to draw many different diagrams to confirm the hypothesis, 

increasing confidence in the hypothesis, and perhaps final strong, but still conditional, 

belief. None of these needs to be in play in the kinds of reasoning surveyed in 

Chapter 2.

4.5 The Inductive View: Further Considerations

The Inductive View thus faces serious difficulties in providing a satisfactory 

explanation of our reasoning. And three further objections can be made, which I think 

make this view unsustainable. These derive from the requirement to take seriously 

the claim that, in this kind of reasoning, it is the reasoner’s experience of the diagram 

that confers justification.

Explaining Euclid’s Inferences

On the Inductive View, a reasoner can be empirically justified in reaching a certain 

belief by following Euclid’s argument. The first question is whether it can explain 

how this occurs. On the Inductive View, the reasoner’s visual experience of the 

diagram is supposed to provide evidence for her belief. Let us imagine then that she 

has very carefully drawn a diagram, including a triangle ABC, the extension of line 

BC to D and the auxiliary line CE, such that—so far as she can tell—the lines are 

perfectly straight and the angles perfectly sharp. She then proceeds to the first step of 

the Demonstration:

(I) Then, since AB is parallel to CE, and AC has fallen upon them, the 
alternate angles BAC, ACE are equal to one another. [1.29]

Say that she now acquires the belief that the alternate angles BAC, ACE are equal to 

one another. What justifies this belief? There seem to be three alternatives: either it 

is justified by the reasoner’s application to the situation represented in the diagram of 

the rule given by Prop. 1.29 (that alternate angles are equal), or it is justified by the 

reasoner’s visual perception that, as far as she can tell, the two angles in the diagram 

she has drawn are in fact equal; or it is justified by both of the above.
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None of these alternatives is acceptable, on the hypothesis that it is the experience of 

the diagram that provides justification. On the first, the experience of the diagram is 

not serving as the justifier; it is merely serving to represent an instance of a general 

rule that the reasoner is supposed antecedently to know. The justification is really 

being conferred by the reasoner’s knowledge of the rule. But this is contrary to 

hypothesis. The second takes it that the experience of the diagram is the justifier; but 

then it is hard to see how the reasoner can be said to be following the argument at all. 

For the argument is explicit in describing an inference by application of a previously 

given rule, and the reconstruction given by the Inductive View makes no mention of 

this rule. So, thirdly: could both the rule and the experience of the diagram serve as 

concurrent justifications? Clearly not, for two reasons. First, if  neither can serve as a 

justification, then both together cannot serve as concurrent justifications. Secondly, 

we can imagine circumstances in which the two could come apart from each other. 

Imagine that on re-inspecting the diagram, the reasoner sees that in fact, as she has 

drawn them, the two angles BAC, ACE are not quite exactly equal. If both the rule 

and the experience of the diagram are supposed to be able to justify, then this is a case 

in which they justify contradictory conclusions. In this case, the reasoner would have 

no justification at all.

It seems there is a quite general problem here for the Inductive View. For the same 

questions can be asked in relation to other inferences from the diagram in Euclid’s 

argument, and in each case there is the same tension between the requirement for the 

experience of the diagram to be the conferrer of justification, and the constraint that 

the inference so construed be plausibly part of the kind(s) of reasoning involved in 

following Euclid’s argument. The latter is a presupposition of this discussion; but 

maybe the former requirement could be relaxed? Maybe the view could be extended 

to allow that some inferences were permissible that were not on the basis of sense- 

experience? This would in itself be an important concession, but the question then is: 

which ones? We seem to have no basis for identifying some inferences as of one type 

rather than another. But say some such basis were found, such that in cases such as 

that above, the reasoner was required to adopt one type rather than another: would 

this solve the problem? I do not think so. For the reasoner would be disregarding an 

experience of the diagram that was in other circumstances sufficient to justify belief.

66



or she would be disregarding the argument’s instruction to apply a given rule in a 

given way. So the tension would remain.

Contrary Evidence?

Secondly, we need to consider more closely the apparent possibility and nature of 

contrary evidence provided by experience of the diagram. On the Inductive View, a 

reasoner would perhaps have contrary evidence if, after following the argument for 

some diagram, she had a sensory experience of the diagram in question on which the 

diagram did not exhibit the angle sum property, and she was satisfied that, so far as 

she could tell, the diagram had not been incorrectly drawn. If the internal angles 

added up to more than two right angles, for example, then this would be evidence 

against the conclusion; it would not be true that for any triangle, the internal angles of 

that triangle are equal to two right angles. This would be enough to disprove a 

universal generalisation. If more of her evidence were like that, it might be enough to 

disprove a conditional, or perhaps probabilistic, generalisation. If all her evidence 

were like this, it would be enough on the Inductive View to support the contrary 

conclusion.

There are two points to be made here. The first is that, again, this does not describe 

how the reasoner normally reasons in following Euclid’s argument. She does not take 

the existence of such a counter-example to undermine her belief in the general 

conclusion. Rather, she continues to hold that belief, and rejects the recalcitrant 

evidence. This is similar to the point about certainty made above, and suggests that 

she is making a deductive generalisation. In generalising from our experience of 

emus as flightless birds, we are normally prepared to admit that it remains, to greater 

or lesser extent, conjectural: there might turn out to be a flying emu, for example. In 

this case, however, the reasoner’s belief in the conclusion of Euclid’s argument 

seemed to be accompanied by the further conviction that there could not be a 

counterexample to it; that there just could not be a triangle of the relevant kind whose 

internal angles did not sum to two right angles.

Now, of course, the mere fact that we may be unwilling to give up a well-entrenched 

belief does not demonstrate apriority, for an empirical belief may be similarly well-
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entrenched. Nineteenth-century physicists did not, initially at least, give up their 

belief in Newtonian mechanics in the face of contrary experimental findings. 

Moreover, the fact that a counterexample may be inconceivable might simply be a 

reflection of our limited human cognitive capacities, and certainly does not rule out 

the possibility that we might learn to conceive one.̂ "̂

Nevertheless—the second point—I would argue that the onus shifts here to the 

proponent of the Inductive View, to say what could constitute contrary evidence to the 

reasoner’s belief. Could there be contrary evidence in this case at all? A reasoner 

could follow Euclid’s argument and consistently believe that the diagram did not 

display the angle sum property, that no other diagrams that she drew displayed that 

property, and even that no diagram she could ever draw could display that property, 

and yet that Euclid’s conclusion is true. But this implies that nothing could, even in 

principle, constitute evidence contrary to her belief. If so, the Inductive View is 

clearly mistaken. For if a reasoner is not even in principle able to reject Euclid’s 

conclusion on the evidence of her experience of the diagram, then it cannot be 

claimed that her positive reason to accept it derives from such evidence.

Reliability

Finally, we can revisit a difficulty raised in the previous section. The Inductive View 

holds that the reasoner is justified by empirical evidence in her belief in Euclid’s 

conclusion. But again, Euclid’s conclusion concerns triangles, not diagrams: it is the 

claim that all triangles have internal angles equal to two right angles. Could someone 

use inductive reasoning to acquire a justified belief in, or knowledge of, this claim, 

even in principle? It is hard to see how she could. It is plausible that it is a threshold 

requirement on something’s being a justification that it should be reliable: that it 

(tend to) issue in true beliefs. It is unlikely, though not logically impossible, that there 

could be a geometrically perfect diagram. But say there were such a diagram or 

diagrams: it lies outside the limits of human perceptual capacities to detect the 

difference between such diagrams and some non-geometrically perfect diagrams that 

appear visually identical to them. So in generalising inductively from a set of

^ Mill 1843, Bk II, 5.6ff gives early form to this objection.
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apparently perfect diagrams, a reasoner might—for all she knew—in fact be 

generalising from non-perfect diagrams. But from this evidence the inference to the 

general conclusion would not be reliable. So, if reliability is a condition on 

justification, this evidence cannot constitute a justification for a belief in that 

conclusion. But if this is true, then someone cannot acquire a justified belief (or, 

knowledge, if knowledge is taken to be subject to the same requirement on reliability) 

in Euclid’s conclusion by this means.

4.6 Conclusion

We can develop at least two views from consideration of some remarks of Ross on 

Plato. On the first view, the reasoner is supposed to infer the general conclusion from 

the empirical evidence of her sense-experience of a single diagram. On a second 

view, termed the Inductive View, she generalises inductively from experience of 

several diagrams. I have argued that neither account offers a satisfactory explanation 

of the kinds of reasoning required to follow Euclid’s argument, as described in 

Chapter 2; and that neither is sufficient to justify belief in Euclid’s conclusion.

In the next chapter, I turn to a second possible type of explanation for our target 

reasoning.
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5: Mill’s View

5.1 Introduction

Let us return again to the Framework of Alternatives from Chapter 3. This was set 

out in terms of the responses to be given to two questions, relating to the justification 

apparently conferred by the type of visual reasoning discussed in Chapter 2: Is the 

justification a priori? Does the diagram contribute to justification?

Does the diagram contribute to justification?

Is the justification a 
priori?

Yes No

Yes

A Priori I  
Justification is a priori 

and the diagram 
contributes to 
justification

A Priori II  
Justification is a priori 

and the diagram does not 
contribute to justification

No

Ross 5 Plato 
Justification is a 

posteriori and the 
diagram contributes to 

justification

Mill 
Justification is a 

posteriori and the 
diagram does not 

contribute to justification

The lower right-hand box of the grid includes theories on which, as indicated, the 

justification is a posteriori (i.e. empirical) and the diagram does not contribute to 

justification. Such a theory can be plausibly attributed to John Stuart Mill. According 

to this view, the reasoning involved in following Euclid’s argument is deductive, but 

the basic axioms of Euclid’s geometry are justified on inductive grounds. The 

justification that such reasoning confers is, thus, empirical. However, the experience 

of the diagram in Euclid’s argument does not contribute to that justification.
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We saw in the last chapter that it is highly implausible that the reasoning used to 

follow Euclid’s argument involves an inductive generalisation based on sensory 

experience of the diagram. Mill’s view tries to avoid this weakness. In his view, the 

axioms are empirical and known by induction, but thereafter the reasoning is 

deductive. Thus the reasoning involved in following Prop. 1.32 is deductive, serving 

to transmit justification from the premisses to the conclusion, without the diagram 

playing any role in justification.

The present chapter locates and explains Mill’s view in more detail, and it assesses 

the plausibility of Mill’s distinctive claim that the axioms and definitions of Euclid’s 

geometry are empirical generalisations.

5.2 Mill on Mathematical Justification

Mill’s view of mathematical justification derives from a deep-seated hostility to the 

idea of intuition, as the following quotation from his Autobiography makes explicit:

The notion that truths external to the mind may be known by intuition or 
consciousness, independently of observation and experience, is, I am 
persuaded, in these times, the great intellectual support of false doctrines and 
bad institutions. By the aid of this theory, every inveterate belief and every 
intense feeling, of which the origin is not remembered, is enabled to dispense 
with the obligation of justifying itself by reason, and is erected into its own 
all-sufficient voucher and justification. There never was such an instrument 
devised for consecrating all deep-seated prejudices. And the chief strength of 
this false philosophy in morals, politics, and religion, lies in the appeal which 
it is accustomed to make to the evidence of mathematics and of the cognate 
branches of physical science. To expel it from these, is to drive it from its 
stronghold.^

Mill states that a central goal of A System o f Logic is to provide an empirical 

explanation of the apparent necessity of mathematics and logic. For our purposes, I 

will take it that Mill’s position can be summarised in terms of six claims, set out 

below. I shall dwell a little here on exegesis, both to identify the claim in question 

and show that it can plausibly be attributed to Mill, and because relatively little

Mill 1873, p. 145.
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attention has been focused on Mill’s interesting view of the role of diagrams in 

geometry.

(1) Geometrical definitions and axioms are generalisations about physical 

objects. “Geometrical objects” as such do not exist according to Mill. He 

thinks geometrical claims are generalisations about physical objects: “Since, 

then, neither in nature nor in the human mind, do there exist any objects 

exactly conforming to the definitions of geometry, while yet that science 

cannot be supposed to be conversant about non-entities; nothing remains but 

to consider geometry as conversant with such lines, angles etc. as really exist; 

and the definitions, as they are called, must be regarded as some of our first 

and most obvious generalisations concerning those natural objects.”^̂

(2) Geometrical axioms are inductively confirmed by observation o f the physical 

world. “It remains to inquire, what is the ground of our belief in axioms— 

what is the evidence on which they rest? I answer, they are experimental 

truths; generalisations from observation. The proposition. Two straight lines 

cannot enclose a space ... is an induction from the evidence of the senses.”^̂  

By “axioms” Mill seems to mean, in relation to Euclid, the Common Notions, 

and perhaps the Postulates (e.g. he mentions Playfair’s Axiom, an alternative 

to the Parallel Postulate).^^

(3) Geometrical definitions are hypothetical. Though both the axioms and the 

definitions of geometry are supposed to be empirical generalisations. Mill 

draws a contrast between them. While the axioms are supposed to be “exactly 

true” or “accurate”, the definitions are “hypothetical” or “fictitious”.̂ ® By this 

Mill seems to mean that the definitions are nearly but not exactly true—“The

^ Indeed Mill’s views on geometry have been much less explored than those on arithmetic, though 
Kim 1982 is an important contribution.

Mill 1843, II.V.l: “There exist no points without magnitude; no lines without breadth, nor perfectly 
straight; no circles with their radii exactly equal.” References to Mill hereafter in this chapter are to 
Mill 1843.

II.V.4.
I give the Common Notions in the EP below. “Playfair’s Axiom” is, in the form quoted by Mill, the 

claim that two straight lines which intersect one another cannot both be parallel to one and the same 
straight line.

II.V.3;n.V.l,note.
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hypothetical element is ... the assumption that what is very nearly true is 

exactly so.”^̂  The axioms, by contrast, are not hypothetical in this sense, 

according to Mill. What secures our reasoning with definitions, if they are 

inexact? Mill’s answer is, in effect, that for most inferences the assumption of 

exactness is harmless; but that the reasoner must always be prepared to drop 

this assumption rather than draw an incorrect inference in reliance on it.̂ ^

(4) Inductive confirmation o f axioms can be by perceiving diagrams. Mill seems 

to have this mind when he says “The truth of the axiom. Two straight lines 

cannot enclose a space, even if evident independently of experience, is also 

evident from e x p e r i e n c e .B u t  he also believes that visualising a figure can 

also count as an experiential route to knowledge of axioms: “[We can] make 

... mental pictures of all possible combinations of lines and angles, which 

resemble the realities quite as well as any which we could make on paper.

(5) Inductive confirmation is sufficient for knowledge o f axioms. This is implied 

by the first quotation in (3) above; and by its continuation: “Experimental 

proof crowds in upon us in such endless profusion ... that we should soon 

have stronger grounds for believing the axiom ... than we have for any of the 

general truths that we confessedly learn from experience.” From Mill’s 

perspective, a priori accounts of mathematics are simply otiose. They are not 

required to account for mathematical knowledge, and should be dispensed 

with.^^

(6) Geometrical theorems follow from axioms and definitions by deduction. 

“When, therefore, it is affirmed that the conclusions of geometry are necessary

II.V.l, note.
II.V.2: “Any hypothesis we make respecting an object, to facilitate our study of it, must not involve 

anything which is distinctly false, and repugnant to its real nature: we must not ascribe to the thing any 
property which it has not; our liberty extends only to exaggerating some of those which it has ... and 
suppressing others, under the indispensable obligation of restoring them whenever, and in as far as, 
their presence or absence would make any material difference in the truth of our conclusions.”

And note also his remarks in II.V.6.
74 II.V.5.

II.V.4.
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truths, the necessity consists in reality only in this, that they correctly follow 

from the suppositions from which they are deduced.”^̂

It might be thought that (6) is contradicted by Mill’s famous assertion in II.V.l to the 

effect that “every step in the ratiocinations even of geometry is an act of induction.” 

But this conflict is only apparent. The axioms of geometry are known inductively, 

and this makes the conclusions ultimately inductive; but the inferences from a given 

set of premisses within a geometrical argument are deductive, proceeding by the 

application of (inductively) known rules or principles rather than by any induction on 

the diagrams within the arguments themselves.^^

Mill’s position, then, contains at least two moves apparently designed to sidestep the 

criticisms made in Chapter 4. The first, noted earlier, relates to the challenge of how 

to explain the reasoner’s apparent feeling of certainty. Mill acknowledges a general 

need for his explanation to be psychologically accurate, and criticises competing 

accounts for failure on this account. But he insists, for reasons that are by now 

familiar, that the appearance of necessity is misleading; there is no necessity here, and 

so there is no objection for the inductive theorist to answer. The second comes in the 

Mill’s acceptance, as described above, that the reasoning is deductive. In Chapter 4 ,1 

argued that given the hypothesis that it is the experience of the diagram that provides 

justification, the Inductive View was unable to explain how a reasoner can follow 

inferences in Euclid’s argument with justification. It seemed as though either these 

inferences proceeded by induction, in which case they did not track the application of 

previously established rules within the argument; or they proceeded deductively by 

application of those rules, in which case there seemed to be no role for the diagram or 

figure, which was contrary to hypothesis. Mill’s view tries to avoid this worry. 

According to this view, as it is understood here, these inferences are deductive, in the 

limited sense identified above. The diagram has no purported justificatory role within 

the argument, and so the possibility of overdetermination is avoided.

II.V. 1. The quotation continues; “Those suppositions are so far from being necessary, that they are 
not even tme; they purposely depart, more or less widely, from the truth.”

And Frege apparently also notices Mill’s treatment of geometrical reasoning as deductive (Frege 
1885, p. 24 fri. 1), with the characteristic comment: “It is remarkable that Mill too (op. cit., Bk II, cap. 
VI, §4) seems to express this view. His sound sense, in fact, from time to time breaks through his 
prejudice in favour of the empirical.”
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Now the fact that on Mill’s view the diagram does not have an justificatory role here 

does not rule out the possibility in principle that it could constitute evidence; it may 

be simply be that any evidence it provides is too weak to justify. As noted, (4) above 

claims that axioms can be inductively confirmed by perceiving diagrams. But for the 

reasons given, I think we can take it that Mill’s position is, in effect, that the diagram 

does not contribute to the justification derived from following Euclid’s argument. It 

is, therefore, appropriate to locate Mill in the lower right hand box of the Framework 

of Alternatives, as above.

5.3 Mill’s View: Initial Considerations

On at least two counts, then. Mill’s view responds to and seeks to correct apparent 

weaknesses in the inductive view described in Chapter 2. What emerges is a position 

that is, if we take it literally, highly revisionary of traditional views about geometry. 

According to Mill, many (perhaps all) geometrical claims are never strictly speaking 

necessary.^^ Moreover, they never achieve absolute certainty, since inductively 

known claims are never absolutely certain. Finally, such geometrical claims are not 

even true: for they are not strictly true of physical objects, and there are no non­

physical objects according to Mill. Indeed, if knowledge is factive (that is, only of 

truths), then Mill’s view implies that we never have geometrical knowledge. So 

Mill’s purported explanations of geometrical knowledge need to be understood with 

this general objection temporarily set to one side.

In relation to Prop. 1.32, Mill’s view is, then, that the angle sum claim is an empirical 

generalisation, and so holds only approximately for all triangles. The reasoning in 

Euclid is deductive, and transfers empirical warrant from axioms and definitions to 

conclusions. But the axioms and definitions are empirical generalisations; they assert 

general matters of fact. The certainty of geometry derives from what Mill takes to be

There are several subtleties in Mill’s views here, which do not affect the present discussion. But it 
should be noted that some claims, e.g. conditionals of the form “if P then P” etc., are avowedly both 
true and necessary even on Mill’s view. How so? Mill draws a distinction between “verbal” 
propositions and inferences and “real” propositions and inferences, and denies apriority and necessity 
only to the real propositions and inferences; and Skorupski 1998 has plausibly argued that conditionals 
such as that above should be taken not as propositional but as formulating rules of inference, and as 
such analogous to verbal propositions for Mill.
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the overwhelming evidence we have for the truth of these generalisations. The 

exactness of geometry is illusory, and derives from the reasoner’s taking the 

definitions to be exact when in fact they are not.

5.4 Euclid’s Axioms as Empirical Generalisations

Are Euclid’s axioms empirical generalisations? Many of the same general arguments 

against the Inductive View advanced in the last chapter will also apply here, so my 

discussion will be brief.

Let us focus on the specifics of Euclid’s argument. I will take it that Mill includes 

Euclid’s postulates under the heading of “axioms”. One postulate and one axiom are 

used directly in Euclid’s argument. The first is Postulate 2, which is used for the first 

construction step, which in turn warrants line 12 of the reconstructed argument:

P2. Let it be postulated: to produce a finite straight line continuously in a straight 
line.

Say we read this as: “For any given straight line segment s, it is possible to produce 

(i.e. extend) s continuously in a straight line.” Is this an empirical generalisation? 

Surely not. First, taken as a summary of human experience, the claim is not true, even 

approximately. As noted, it is often not physically possible to extend a given line at 

all, let alone in a straight line or continuously. We can readily think of 

counterexamples involving very small, very large or highly inaccessible lines: think 

of a straight line located under ground. So we do not have the experiential base for an 

acceptable inductive generalisation, as Mill’s account requires.

Secondly, Mill insists that the empirical evidence for axioms is overwhelming, and 

that this explains their privileged epistemic status, and why many have taken them to 

be a priori But there is no such overwhelming evidence in play here. Indeed, it is 

interesting to note that on one influential tradition, due to Aristotle, what distinguishes

II.V.4.

76



postulates from hypotheses (and axioms) is precisely that in the case of postulates, the 

reasoner may have a prior contrary opinion.Though it is not clear that Aristotle has 

Euclid in mind here, this interpretation “seems to fit Euclid’s Postulates fairly well”, 

as Heath remarks.^^ And it hardly suggests the presence of overwhelming evidence; 

quite the contrary. This is not an ad hominem point: on an empirical account one 

should, with Mill, expect the evidence for axioms to be overwhelming.

The second axiom or postulate used in Euclid’s argument is CN2, which—as I have 

reconstructed it—is used to reach line 10. The relevant inference moves from

(9) ZACD = ZABC + ZBAC

to

(10) ZACD + ZACB = ZABC + ZBAC + ZACB [9: by CN2, adding ZACB to 

both sides]

Recall that CN2 states that “If equals be added to equals, the wholes are equal.” 

Again, we can ask whether this axiom is an empirical generalisation. Let us imagine 

an opponent who simply denies that the available evidence from sense-experience is 

sufficient for us to have knowledge of the general claim that constitutes CN2. We 

often add equals to equals without the results equalling each other, she might say: 

some examples are rabbits, clouds and drops of water. But this evidence is contrary 

to CN2. Given this contrary evidence, the totality of evidence is insufficient for 

knowledge of the axiom. So the axiom cannot be known by experience.

Now Mill can reply to this kind of worry. It is open to him to say, in effect, that like 

other empirical generalisations, CN2 holds conditionally, against a background of 

auxiliary assumptions. These assumptions have the effect of ruling out deviant cases 

such as those (rabbits, clouds, drops of water) listed above. Gillies makes this point 

clearly, in relation to Mill’s view of arithmetic: “The laws of arithmetic are empirical 

generalisations, but hold only under certain conditions, namely that the objects

Aristotle, Posterior Analytics, I. 6, 74 b 5 (quoted in Heath 1956, pp. 117-9). 
Heath 1956, p. 120.
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counted should not reproduce or coalesce etc. As with other empirical laws, these 

limiting conditions are tacitly assumed, without being explicitly stated.”^̂  And, 

indeed. Mill can go on to say that if contrary evidence were to emerge to a given 

axiom, then the proper response would be to reformulate the generalisation and/or the 

auxiliary assumptions, and this process would itself illustrate that the original 

generalisation was an empirical one.

The effect of this move is to give up CN2, since it will need to be replaced with a 

complex conditional specifying the auxiliary assumptions under which it is true. But 

the deeper point is that this process of progressively more complex refinement is most 

implausible in relation to axioms. On Mill’s account, the empirical evidence for 

axioms is supposed to be overwhelming. But this can hardly be so once the process 

of refinement has progressed even a short way.

5.5 Euclid’s Definitions as Empirical Generalisations

Now let us turn to Euclid’s definitions. Are these covertly hypothetical 

generalisations about empirical objects? Euclid’s definitions, and the status of 

definitions in general in mathematics, have been controversial; but we need not 

engage with these controversies here. Given the similarities between Mill’s view of 

axioms and his view of definitions, the overall line of argument here should be fairly 

evident; it will not be surprising that there are several evident sources of difficulty for 

Mill here too. I will focus here on just one.

Recall that Mill’s picture is one in which a definition is reached by generalising from 

a set of empirical objects with a given property and then attending to that property to 

the exclusion of others. Now consider Euclid’s definition of a triangle as, in effect, a 

three-sided rectilinear figure.According  to Mill, this is reached by generalising 

about triangular physical objects and then attending solely to the property of 

triangularity that they apparently share. Since the definition thus reached will not be

Gillies 1982, p. 26.
Strictly speaking, Definition 19 concerns “trilaterals”, not “triangles”; but we can ignore this detail. 

Note that since a figure is defined by Euclid as “that which is contained by any boundary or 
boundaries”, we have no need to talk of a figure’s being “closed”.
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exactly true for any object that he takes to fall under it, Mill postulates a hypothesis or 

condition, whereby we “feign” that the definition is exact.

The problem is that Euclid’s definition of “triangle” is most plausibly regarded as a 

stipulation: it is specifying in advance a rule as to how the term “triangle” is to be 

used in the text that follows. As a stipulation, the definition cannot be confirmed or 

disconfirmed. Compare the definition: a “tweezil” is a man with one arm bom in 

New Guinea after 1954. What could confirm or disconfirm this stipulation? Since 

the definition cannot be confirmed or disconfirmed, no evidence could count for or 

against it. So it cannot be an empirical generalisation, as Mill’s view requires.

5.6 Conclusion

A second type of epistemological account of the kinds of reasoning involved in 

following Euclid’s argument can be found in the writings of John Stuart Mill. 

According to Mill, the justification afforded by following Euclid’s argument is 

empirical, and the diagram does not contribute to the justification. The axioms and 

definitions of geometry are inductive generalisations fi*om human experience of 

physical objects. I have argued that Mill’s view is not sufficient either to account for 

our target reasoning, or to justify belief in Euclid’s conclusion.

In the next chapter, I turn to a third possible type of explanation.
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6: The Leibnizian View

6.1 Introduction

So far, in accordance with the Framework of Alternatives introduced in Chapter 3 ,1 

have examined two types of account of the justification apparently conferred by the 

type(s) of reasoning involved in following the Euclidean Presentation. On both of 

these responses, the justification is deemed to be empirical; where they differ relates 

to whether or not the diagram contributes to the justification.

Does the diagram contribute to justification?

Is the justification a 
priori?

Yes No

Yes

A Priori I  
Justification is a priori 

and the diagram 
contributes to 
justification

Leibniz 
Justification is a priori 

and the diagram does not 
contribute to justification

No

Ross 5 Plato 
Justification is a 

posteriori and the 
diagram contributes to 

justification

Mill 
Justification is a 

posteriori and the 
diagram does not 

contribute to justification

I now want to turn to a third type of possible response to the original question. This 

view differs from the two examined so far, in that it takes the justification in question 

to be a priori, not empirical. However, it shares with the view attributed in the last 

chapter to Mill, the claim that the diagram does not contribute to the justification.

This view can be located in the upper right-hand box of the Framework, and it can be 

plausibly attributed to Leibniz. I will not explore Leibniz’s general views of
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mathematics or logic in any detail here. But it is possible to describe a view of 

Euclid’s reasoning that is both recognisably Leibnizian and motivated by modem 

views of logic, and this will be the target of the present chapter.

We saw in the two previous chapters that it is implausible that the reasoning used to 

follow Euclid’s argument is empirical, whether it is constmed as evidentially based on 

sensory experience of the diagram, or in terms of deductive inference from 

inductively justified axioms and definitions. The Leibnizian view avoids the 

difficulties facing these empirical views, in taking the reasoning to be a priori.

The focus of this chapter, however, will be on the other Leibnizian claim: that the 

diagram does not contribute to justification. In fact, however, the Leibnizian view 

does not so much argue directly against the diagram’s contributing to justification, as 

presuppose a somewhat different background picture of reasoning and justification in 

general. The effect of accepting this picture, which has been highly influential, is to 

make it seem compulsory that the diagram is irrelevant to the justification offered by 

this reasoning. Accordingly, I will sketch this general picture, discuss the claims and 

commitments of the Leibnizian view itself, and assess it specifically in relation to 

Euclid’s argument. This will enable us to judge whether the Leibnizian is correct to 

reject any contribution to justification by the diagram.

6.2 Leibniz and the Leibnizian View

In the New Essays, Leibniz responds to Locke by offering his own view of Euclid’s 

arguments, as follows:

But I do not agree with what seems to be your view, that this kind of general 
certainty is provided in mathematics by “particular demonstrations” 
concerning the diagram that has been drawn. You must understand that 
geometers do not derive their proofs from diagrams, though the expository 
approach makes it seem so. The cogency of the demonstration is independent 
of the diagram, whose only role is to make it easier to understand what is 
meant and to fix one’s attention. It is universal propositions, i.e. definitions
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and axioms and theorems which have already been demonstrated, that make 
up the reasoning, and they would sustain it even if there were no diagram.

Considered in relation to the argument in Prop. 1.32, this passage contains the 

following claims:

1. The Euclidean Presentation expresses an argument consisting of universal 

propositions (definitions, axioms, theorems).

2. These universal propositions are what justify the conclusion of the argument.

3. The diagram has a psychological function, which is to help the reasoner to 

attend to and understand the argument better.

4. The diagram does not contribute to the justification offered by the argument.

5. The expository approach of the geometers makes it seem as though the 

diagram makes a justificatory contribution.

We might also note the suggestion in the first sentence that “particular 

demonstrations” cannot justify, which hints at Leibniz’s overall view that a priori 

truths are general and not justificationally reliant on particular instances.^^

Note that Leibniz does not dispute that the Euclidean Presentation can justify; this is 

implied by the conjunction of (1) and (2). Moreover, we know from external 

evidence that Leibniz believed that all mathematical justification is “independent of 

the testimony of the senses” and so a priori'^^ and (4) above makes clear his view that 

in Euclid’s arguments the diagram is justificationally irrelevant to the proof. So 

Leibniz clearly belongs in the upper right-hand box in the Framework of Alternatives 

above. And it is also evident that he holds several of the views discussed in Chapter 

1 : that the role of the diagram is merely psychological (by (3) and (4)) and that the

Leibniz 1765, p. 360.
Cf. e.g. Leibniz 1765, p. 50. 
Ibid.
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argument conveys the misleading impression that the diagram does contribute to the 

justification (by (4) and (5)).

We can now define a Leibnizian view of our target reasoning simply as one that 

holds, with Leibniz, the two claims identified above: that the justification is a priori 

and that the diagram does not contribute to justification. This view, and in particular 

the denial that diagrams can have epistemic value, has become very influential; 

indeed, I noted in Chapter 1 that it is now the orthodoxy among philosophers, 

including philosophers of logic and mathematics. Why should this be? There are 

three main reasons, I would suggest. First, Euclid’s diagrams were and are regarded 

as intrinsically liable to mislead, and so as unreliable. Secondly, the 19̂  ̂Century saw 

considerable technical successes in reconstructing (partially) diagrammatic 

presentations of arguments with purely sentential presentations. This seems to have 

raised the possibility in principle that all mathematical arguments whatever might be 

presentable using sentences (of arithmetic, or of a logical language); and the further 

thought that only thus could the rigour of mathematical reasoning be assured. As 

noted, Bertrand Russell seems to have held these (or very similar) views, at least in 

1900-1902.

The third reason for the denial of epistemic value to diagrams lies in the 20̂  ̂Century 

development of the study of formal systems, initially, after Principia Mathematica, 

and then in pursuit of Hilbert’s Programme. The study of strictly formal derivation 

systems as representations of systems of proof in various bodies of mathematics led 

directly to a widespread emphasis on such formal derivations as paradigms of proofs. 

From this formalistic perspective, the suggestion that the diagram has epistemic value 

is akin to a category mistake. Euclid’s argument is one in which the purported 

justification exploits a reasoner’s grasp of the representational content of the diagram, 

as conveying information about geometrical shapes. In a formal derivation, by 

contrast, every transition can be completely specified as a purely formal syntactic 

alteration. Transitions that depend on a reasoner’s grasp of the representational 

content of a diagram are ruled out ex ante, since such transitions cannot be specified 

as purely formal syntactic alterations.
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On such a view, then, there can be no epistemic value to the diagram, even in 

principle. This line of thought is, I suggest, tacitly presupposed in many modem 

views of Euclid’s geometry. Here, for example, is a well-known statement about 

diagrams in geometry from Neil Tennant:

It is now commonplace to observe that the diagram [sc. triangle ABC] ... is 
only an heuristic to prompt certain trains of inference; that it is dispensable as 
a proof-theoretic device; indeed, that it has no proper place in the proof as 
such. For the proof is a syntactic object consisting only of sentences arranged 
in a finite and inspectable array. One is cautioned, and corrected, about... the 
mistake of assuming as given information that is tme only of the triangle that 
one has happened to draw, but which could well be false of other triangles that 
one might equally well have drawn in its stead.^^

Here again the diagram is regarded as an heuristic aid that is irrelevant to justification, 

and hence “merely psychological”; and the potential of the diagram to mislead is 

emphasized. However, the passage also gives a further motivation for the dismissal 

of the diagram, in claiming that diagrams are simply out of place in proofs. A proof is 

a “syntactic object consisting only of sentences arranged in a finite and inspectable 

array”. There seem to be two thoughts here: first, that as syntactic objects, proofs 

cannot contain diagrams (an echo of the line of thought described above); and second, 

that as they are composed of sentences, proofs cannot contain diagrams.

6.3 Are Diagrams Out of Place in Proofs?

Let us take the former question first: do considerations of syntax by themselves give 

us sufficient reason to think that diagrams are out of place in proofs? Of course, 

simply replacing one or more steps in a given sentential proof with a diagram is likely 

to be a non-starter. But this is because, and only because, such a diagram falls outside 

the syntax and semantics of the relevant sentential system, and because suitable rules 

of inference in relation to the diagram have not been formulated. If these deficits can 

be supplied, it is not clear what reason there could be in principle to rule out diagrams 

ex ante from proofs on syntactic grounds.

Tennant 1986, p. 304.
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I will return to this point below. But now take the second question: must proofs be 

composed only of sentences? If this were true, then there could not be such a thing as 

a diagrammatic proof, even in principle. But, as it stands, this latter claim is false. 

Indeed, there are logics in which proofs are largely composed of diagrams. For 

example, take the diagrammatic system known as the alpha Existential Graphs (EG), 

developed by C.S. Peirce. Here are diagrams in EG representing the standard truth 

functors:

(D P Q

P a Q P v Q
i.e. P A Q)

P —̂ Q P Q
i.e. -" ( P A Q) i.e. - ’ ( P a - ' Q ) a - ' ( - ’P a Q)

The vocabulary of the alpha graphs just consists of propositional letters and closed 

curves (known as ‘cuts’). A letter by itself is taken assert a proposition; to enclose a 

letter with a cut is to negate it. There is no conjunction sign as such; two letters are 

conjoined by being written on a given region together. There is no need in EG for 

brackets, since the cut defines the scope of the relevant operator by what it encloses. 

According to the standard reading method given by Peirce, graphs can be translated 

into formulas of a sentential language by working inwards from the outside, reading 

cuts as negation and the open area between letters or subgraphs as conjunction. I 

summarise the syntax, semantics and rules of inference for alpha EG, and give a short 

sample proof, in the Appendix.

Alpha EG is widely regarded as a diagrammatic system; and it meets certain other 

independent tests to be considered as diagrammatic.^^ Moreover, it has a specifiab 

syntax and rules of inference for the diagrams, and it is provably sound and

On this see Norman 1999, Chs. 2 and 5.
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c o m p le te .In  this system, however, every diagram is representationally 

homomorphic to a sentence in a standard two-functor (-,, a ) sentence logic; that is, 

every mark in a diagram corresponds to a mark (or set of marks) in the relevant 

sentence in such a logic, a sentence that expresses the same proposition. So for any 

proof in alpha EG, an exactly parallel proof can be given in standard presentations of 

sentential logic by mechanically applying a rule translating the marks of each line of 

one into the marks of each line of the other. There is nothing to choose between alpha 

EG and standard propositional logic in point of rigour or logical expressiveness, 

though their representational forms are quite different.

So far, then, it is not true that diagrams are out of place in proofs. But an objector 

sympathetic to Tennant’s view above might respond by drawing a distinction between 

what might be called intrinsically depictive and intrinsically non-depictive diagrams. 

Call a diagram intrinsically depictive if it can represent in virtue of a similarity of 

visual appearance with its object(s), intrinsically non-depictive if it cannot. Then 

Euclid’s diagrams are intrinsically depictive, but the alpha graphs are intrinsically 

non-depictive: as noted, logical relations do not have a visual appearance, and so it is 

hard to see how they can be depicted by diagrams. So a revised objection might then 

be this: that intrinsically depictive diagrams are out of place in proofs. And the 

objector can motivate this latter claim by recalling Leibniz’s own insistence that 

“particular demonstrations cannot justify,” and claiming that it is the fact that they can 

depict that makes intrinsically depictive diagrams particular, and so problematic. This 

depictive quality is what connects such diagrams with a subject matter; it is what 

makes something a diagram o f a triangle, for example. So again, it seems that what is 

suspect here is the fact that, in effect, presentations of arguments with intrinsically 

depictive diagrams improperly exploit their semantic value under a given 

interpretation.

This revised claim is more plausible. There clearly is the difference noted as regards 

depiction between the diagrams of alpha EG mentioned above and Euclid’s diagrams. 

Moreover, we do have a precise syntax and semantics for the former, and not for the 

latter, as noted. And we can, and often do, reason with diagrams in alpha EG without

As, e.g., shown by Roberts 1973.

86



regard to their semantics; but this is not possible for the diagrams in Euclid’s 

arguments. For example, recall that in Prop. 1.32 the rubric starts “Let ABC be a 

triangle”. This is, in part, an instruction to draw a triangle', we cannot treat the word 

“triangle” as a mark that could in principle be given different semantic values under 

various interpretations. So the revised claim seems to draw a genuine distinction 

between different types of diagram, and this distinction in turn seems to lend support 

to the underlying diagnosis that it is the appeal to the semantic value of diagrams, in 

Euclid and elsewhere, that is problematic.

Nevertheless, I suggest we should reject the revised claim. For there are various 

presentations of Euclidean geometry that use intrinsically depictive diagrams, and 

arguments using diagrams can be given in these systems that are clearly proofs.

These systems work by defining what it is for a diagram to be well-formed, and then 

specifying suitable rules of inference for the system in question. This is the strategy 

adopted in, for example, Luengo 1996, which presents a diagrammatic subsystem that 

she claims (a) reconstructs a small fragment of Hilbert’s (Euclidean) geometry, (b) 

has a specified syntax, semantics and rules of inference, (c) is provably sound, and yet 

in which (d) some (but not all) of the diagrams are intrinsically depictive. Miller 2001 

presents a diagrammatic subsystem that he claims can be used to reconstruct most of 

the arguments of the early books of Euclid, and that also satisfies (b)-(d) above.

It is a mistake, then, to conclude that diagrams—whether intrinsically or non- 

intrinsically depictive—are out of place in proofs, or in mathematical or logical 

arguments more generally. As a result, Tennant’s definition of proof as a “syntactic 

object consisting only of sentences arranged in a finite and inspectable array” is 

needlessly restrictive.

6.3 The Commitment to Sentences

There is, then, no reason to hold a presumption in principle against diagrams in 

proofs, and I shall take it that the same holds a fortiori for arguments that are not 

proofs. Such a presumption would serve to rule out the possibility in advance that the 

diagram in Euclid’s presentation contributes to justification. But to show that the
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presumption is mistaken is not to show that the Leibnizian view is wrong in this 

respect, and that the diagram does so contribute. To assess the latter question, we 

need to consider the specific role of the diagram here in discharging the two functions 

mentioned in Chapter 3 above: in presenting claims, and in mediating inference.

Before doing so, however, it may be helpful to make three prefatory comments. The 

first is just to remind ourselves that we can distinguish in general between belief states 

and propositions believed, and between the justification of belief states and that of 

propositions believed. A belief state is a type of mental state, which may take a 

proposition as content. The justification of a mathematical or logical proposition is in 

many cases a matter of its inferential relations to other propositions previously 

asserted or entertained in an argument. A belief state may be justified in many 

different ways: perhaps by following the relevant argument, but also, for example, by 

testimony. So the justification of a belief state may be in virtue of a reasoner’s 

understanding of the justification offered by an argument of the claim believed; or 

justification may be achieved by some other means. Moreover, one can justifiably 

believe a proposition which is itself unjustified, as with someone who believes a 

mathematical falsehood on the basis of testimony from a previously reliable 

interlocutor. And one can unjustifiably believe a claim that it itself justified, as with 

someone who believes a mathematical theorem on the basis of the Tarot. What we 

are seeking here is a justification of a belief state, not of a proposition believed. We 

are not asking: “What is the ultimate source of justification for the angle sum claim?” 

Rather, we are asking: “What is the nature of the justification afforded to someone by 

following Euclid’s argument in the way described earlier?”

Second, the effect of this is to clarify the nature of the explanatory burden on the 

Leibnizian View. There are, in effect, two tests to be met by the Leibnizian. First, the 

Leibnizian—who rejects any contribution by the diagram to justification—is 

committed to at least this opposing claim: that there is a way of following Euclid’s 

argument with justification that does not rely on a diagram. He is committed, that is, 

to there being a purely sentential presentation of Euclid’s argument. Call this the 

“sentential presentation” test. But the mere existence of such a sentential presentation 

gives insufficient grounds for the Leibnizian to reject the diagram’s putative 

justificatory contribution. So the Leibnizian must pass a further test: he must also
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show that following such a sentential presentation is a genuine way of following 

Euclid’s argument as described in Chapter 2. Otherwise, he is vulnerable to the 

following objection: “All you have given us is a sentential counterpart to Euclid’s 

presentation; that is, an argument presented using sentences, which also argues to the 

angle sum claim. But you have given us no reason to think that the reasoning 

involved in following this presentation is the same as that we are seeking to assess.” 

In the absence of this further reason, the Leibnizian lacks the means to show the 

epistemic irrelevance of the diagram, as required. Call this the “no counterpart” test.

Thirdly, we can make this more precise by recalling the notion of “contributing to 

justification”. In Chapter 3 I suggested that if that part of a process of reasoning by 

which a reasoner arrives at a belief that P does not use a diagram (or similar) and is 

sufficient to justify the reasoner’s belief state, then the diagram does not contribute to 

the justification of that belief state. This is necessary for the Leibnizian’s claim to go 

through. But again, it is not sufficient; on pain of the “counterpart” objection above; 

the Leibnizian must also show that the sentential presentation is a genuine way to 

follow Euclid’s argument in the manner described. Without this, the Leibnizian is in 

fact in danger of showing not the irrelevance, but—contrary to his intention—the 

indispensability of the diagram to Euclid’s argument; for the apparently diagrammatic 

thinking required to follow Euclid’s argument with justification will still stand, and 

the Leibnizian’s counterpart argument can simply be taken as capturing in an 

alternative sentential form the justificatory contribution made by the relevant thinking 

with the diagram.

6.5 Euclid’s Argument Revisited: 1

With this in mind, let us examine Euclid’s argument once again. I suggested in 

Chapter 3 that a given type of representation might contribute to justification in two 

different ways: first, by presenting a claim in an argument; and secondly, by 

mediating inference between one claim and another. We can see both these functions 

being discharged in the following inference:
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(9) ZACD = ZABC + ZBAC

(10) ZACD + ZACB = ZABC + ZBAC + ZACB [9: by CN2, adding ZACB to 

both sides]

Here the sentences clearly have a presentational function. But the sentence in line 9 

also mediates inference: that is, the reasoner can, just by manipulating it, reach the 

sentence in line 10. How so? The sentence in line 9 gives an equation of the form 

X = Y. Common Notion 2 (CN2) states “Equals added to equals are equal.” So 

adding Z to either side of the equation yields an equation of the form: X + Z = Y + Z. 

Substituting back the relevant values for the variables yields line 10.

So far, then, the Leibnizian is on strong ground. This sentential inference does not 

require the diagram, either to present a claim or to mediate inference. So the 

Leibnizian has met the “sentential presentation” test for this inference. But can he 

meet the “no counterpart” test: i.e., can he show that this is a genuine way to follow 

Euclid’s argument in the way described earlier? Fairly clearly, he can. Recall that the 

relevant part of Euclid’s argument is as follows:

(IV) Let the angle ACB be added to each [sc. angles ACD; and angles BAC, 
ABC]; therefore the angles ACD, ACB are equal to the three angles 
ABC, ACB, BAC.

I presented a possible alternative visual route to this conclusion in Section 2.7. But it 

should be evident, given (IV) above, that the sentential inference is available—and 

perhaps even preferable—as a reconstruction of the thinking here.

So, as regards this inference, the Leibnizian has met both tests; it is not plausible that 

the diagram contributes to the justification afforded by the thinking involved in at 

least one possible way of following Euclid’s argument at this point. Moreover, 

though every inference must be examined on its own merits, this overall line of attack 

is looking highly promising for the Leibnizian: there are several apparently similar
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substitutional inferences in Euclid’s argument, as I reconstructed it in Chapter 2, such 

as those to lines 3, 6, 8, 9,13,15 and 16. If he could show that these inferences also 

met both the tests set out above, this would go a long way to establish his overall 

claim that the diagram makes no justificatory contribution to Euclid’s argument.

6.6 Euclid’s Argument Revisited: 2

But now take line 7, which is reached from the diagram: 

A E

C DB

(7) ZACD = ZECD + ZACE 

I reconstructed this inference in Chapter 2 as follows:

(7a) CE divides ZACD into two parts, ZECD and ZACE, without remainder 

[from the diagram]

(7b) The whole of an angle is equal in size to the sum of the sizes of any parts into 

which it is divided without remainder [background assumption]

(7c) ZACD = ZECD + ZACE [7a, 7b: by substitution]

Thus reconstructed, this is a logically valid inference: lines 7a and 7b together entail 

line 7c (= line 7).

91



Again, this is a sentential presentation of the kind required if the Leibnizian is to show 

that the diagram is epistemically irrelevant to the reasoning required to follow 

Euclid’s argument. But again, we need to recall the second “no counterpart” test: is 

this reconstruction faithful to the thinking required to follow Euclid’s argument?

Fairly clearly, it is not. Note first that the reasoner does not seem to entertain the 

general thought in line 7b above, to the effect that the whole of an angle is equal in 

size to the sum of the sizes of any parts into which it is divided without remainder; 

and secondly, that the reasoner does not seem to do any substitutional reasoning to 

reach line 7—reasoning that would be required in using the general claim in 7b.

We can briefly sum up the position as follows. The Leibnizian cannot meet the “no 

counterpart” test in relation to line 7 by this means; a very good candidate for the 

required sentential inference fails the second test. Moreover, it is very difficult to see 

how any purely sentential inference could fare better, since doubtless the diagram 

would still be required to present—and warrant—line 7a, or a similar premiss. It is, 

then, highly implausible that the route to justified belief here is via a sentential 

inference; rather, it seems to be via a piece of specifically geometrical thinking that 

uses the diagram. This part of the thinking involved in following Euclid’s argument 

both uses a diagram and is sufficient to justify the reasoner’s belief state. So, if we 

recall the discussion of “contributing to justification” in Chapter 3, we can say that the 

diagram does contribute to the justification of that belief state here.

6.7 Euclid’s Argument Revisited: 3

Is this an isolated result? No, for two reasons. First, there are other inferences in 

Euclid’s argument that are similar to the inference to line 7 described above. The 

inference to line 11 is markedly similar, for example. This was reconstructed in 

Chapter 2 as follows:

(11a) AC divides the angle on line BCD into two parts, ZACD and ZACB, without 

remainder [from the diagram]
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(11b) The whole of an angle is equal in size to the sum of the sizes of any parts into 

which it is divided without remainder [= 7b; background assumption]

(11c) ZACD + ZACB is the sum of the sizes of all the angles on BCD [11a, 11b: 

by substitution]

Again, the Leibnizian can point to a valid sentential presentation. But again, it is not 

plausible that this meets the “no counterpart” test. And again, there is a geometrical, 

diagrammatic reconstruction that does so.

Secondly, I noted above that the logical inference to line 10 met both tests; it was both 

sentential and, plausibly, a genuine way to follow Euclid’s argument. But we should 

not assume that other apparently similar sentential inferences are in fact genuine ways 

to follow the argument. Thus, take the inference to line 9:

(6) ZABC = ZECD [4, 5: by substitution]

(8) ZACD = ZECD + ZBAC [3,7: by substitution]

(9) ZACD = ZABC + ZBAC [6, 8: by substitution]

Again, this reconstruction takes the form of an inference by substitution on sentences. 

(In Chapter 2 I described an alternative visual reconstruction of this thinking, in which 

the reasoner visually translates a copy of ZECD along line BCD until it is mapped on 

to ZABC.) Again, for familiar reasons, understanding this as a sentential inference 

does not seem to fit the phenomenology. But then it is again plausible that this is just 

a counterpart logical reconstruction of the relevant thinking here, and the true 

explanation is one that understands it as reasoning with the diagram, using a 

geometrical principle of translation of angles already known to be equal.
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6.8 Epistemic Indispensability

What conclusions should we draw from the survey of inferences? Before answering 

this question, it may be helpful to draw a further distinction between two different 

ways in which a given type of representation—here, a diagram or sentence—might be 

said to contribute to justification. A representation contributes to the justification 

conferred by a given type of reasoning involved in following an argument, if that 

reasoning uses the representation in question, and would be impossible, or would fail 

to justify (unless otherwise supplemented) in the absence of the representation (or 

something similar)—this is just the sense of “contribution to justification” aheady 

identified in Chapter 3. On the other hand, a representation indispensably contributes 

to the justification conferred by a given type of reasoning, if (a) it contributes to that 

justification and (b) there is no reasoning that does not employ such representations 

and that could genuinely be used to follow the argument.

Recall the inference to line 10 discussed earlier:

(9) ZACD = ZABC + ZBAC

(10) ZACD + ZACB = ZABC + ZBAC + ZACB [9: by CN2, adding ZACB to 

both sides]

Applying the distinction above, it is plausible to say here that the sentences 

indispensably contribute to the justification conferred by following this inference: the 

reasoning both uses sentences and is sufficient to justify the reasoner's belief state 

(contribution to justification); and it is hard to see how non-sentential—and 

specifically diagrammatic—reasoning could be used here to follow the argument as 

described in Chapter 2. (It may be helpful to recall again that the relevant line (IV) of 

Euclid’s argument runs: “Let the angle ACB be added to each [sc. angles ACD; and 

angles BAC, ABC]; therefore the angles ACD, ACB are equal to the three angles 

ABC, ACB, BAC ”)
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I will take it, then, that the distinction drawn here is fairly clear. With this in mind, 

we can ask whether the diagram indispensably contributes to justification in 

inferences such as that to line 7 described above. If the conclusion of Section 6.6 is 

correct, then the diagram certainly contributes to justification. But does it do so 

indispensably? Could it be true that there is no non-diagrammatic reasoning that 

could be used to follow Euclid’s argument here as described in Chapter 2?

I do not think we can answer this question with absolute confidence either way: for 

all we know at present, there might perhaps prove to be a non-diagrammatic way to 

follow this argument in the way described. But, recalling the discussion at the end of 

Section 6 .6 ,1 suggest that the claim is highly plausible.

6.9 Summary

This chapter has argued that we can identify a Leibnizian View of the reasoning 

involved in following Euclid’s argument, and that this view has been and remains 

highly influential. This view distinctively holds that the justification conferred by 

following Euclid’s argument is a priori, and receives no justificatory contribution 

fi*om the diagram; rather, the reasoning is sentential. In response, I have argued that if 

the Leibnizian View is to succeed, then it must be able to show: first, that there is a 

sentential presentation of each of the inferences in Euclid’s argument; and secondly, 

that following the argument in this way is faithful to the reasoning described in 

Chapter 2. Applying these tests, however, implies that though it is correct to 

understand some parts of the thinking required to follow Euclid’s argument as using 

sentential inferences, other parts use diagrammatic inferences. Someone who follows 

Euclid’s proof in the way described in Chapter 2 uses both sentential and 

diagrammatic inferences. And in the latter, the diagram contributes to justification.

In the next chapter, I turn to a Kantian view of the reasoning required to follow 

Euclid’s argument.
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7: The Kantian View

7.1 Introduction

I turn now to the fourth and—the reader may be relieved to leam—last category of 

possible response to our original question. This view differs from the three examined 

so far, in that it takes the justification in question to be a priori, not empirical, and yet 

such that the diagram contributes to justification.

Does the diagram contribute to justification?

Is the justification a 
priori!

Yes No

Yes

Kant
Justification is a priori 

and the diagram 
contributes to 
justification

Leibniz 
Justification is a priori 

and the diagram does not 
contribute to justification

No

Ross 5 Plato 
Justification is a 

posteriori and the 
diagram contributes to 

justification

Mill 
Justification is a 

posteriori and the 
diagram does not 

contribute to justification

This view can be located in the upper left-hand box of the Framework, and it can be 

plausibly attributed to Kant; I will call it the Kantian View. Again, it is possible to 

differentiate between the Kantian View in general, and the specific cluster of views 

about geometry that Kant himself actually held. As with the discussion of Mill in 

Chapter 5, however, I will spend some time here on exegesis, since I think that—at 

least in relation to our target reasoning—Kant's views have been widely 

misunderstood. Since the epistemological account that I shall argue positively for in 

later chapters is recognizably Kantian, this emphasis is an appropriate one.
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The Kantian View avoids the difficulties facing competing views according to the 

Framework of Alternatives, as discussed in Chapters 3-6. On the basis of the 

discussion so far, I will take it that this view correctly accepts that the diagram makes 

a justificatory contribution to the reasoning involved in following Euclid’s argument 

(contra Mill’s View and the Leibnizian View), while also correctly claiming that this 

contribution is not empirical and evidential (contra Mill’s View and the view of 

Ross’s Plato).

However, the combination of claims that constitutes the Kantian View has seemed to 

be a very unhappy one to many philosophers, and many objections have been raised 

against it. Behind these specific worries, there have been more general concerns. In 

what sense, if  any, can a visual experience make a justificatory contribution without 

being evidential, thereby making the justification a posteriori? In what sense, if any, 

can an appeal to “intuition” be part of a satisfying explanation of this type of 

reasoning?

A plausible positive account should, I think, not only address the specific worries; it 

should also endeavour to answer or defuse the general concerns that motivate such 

worries. What is required—and what I will seek to provide in the following three 

chapters—is a positive explanation and defence of (one version of) the Kantian View. 

First, however, I want to introduce and explore Kant’s own account. Accordingly, the 

purpose of this chapter is: first, to show that Kant held what I have described as the 

Kantian View, and to outline Kant’s response to the well-known Generality 

Objection; second, to argue that we can find in the Critique o f Pure Reason a 

plausible though embryonic account of the kind of visual reasoning under 

consideration; and thirdly, to suggest that this account is at odds with an influential 

strand of interpretation of Kant, which may therefore require further review.

7.2 Berkeley and the “Generality Objection”

We can introduce Kant’s view by considering a central objection to any account on 

which reasoning with a diagram is taken to justify. The Generality Objection is
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simply this: How can the reasoner who follows Euclid’s argument be justified in 

believing that the angle sum claim holds for all triangles?

Berkeley advances this point in the form of an imagined counter to his claim that we 

cannot have abstract general ideas, in the Introduction to the Principles o f Human 

Knowledge".

But here it will be demanded, how we can know any proposition to be true of 
all particular triangles, except we have first seen it demonstrated of the 
abstract idea of a triangle which equally agrees to all? For, because a property 
may be demonstrated to agree to some one particular triangle, it will not 
thence follow that it equally belongs to any other triangle, which in all respects 
is not the same with it. For example, having demonstrated that the three 
angles of an isosceles rectangular triangle are equal to two right ones, I cannot 
therefore conclude this affection agrees to all other triangles which have 
neither a right angle nor two equal sides. It seems therefore that, to be certain 
this proposition is universally true, we must either make a particular 
demonstration for every particular triangle, which is impossible, or once for all 
demonstrate it of the abstract idea of a triangle, in which all the particulars do 
indifferently partake and by which they are all equally represented.^®

It will be recalled that in Section 13 Berkeley famously (and perhaps unfairly)^' 

attacked Locke’s claim that we can form general ideas in geometry, such as a general 

idea of a triangle that is (in Locke’s words) “neither oblique nor rectangle, equilateral, 

equicrural nor scalenon, but all and none of these at once”. As Berkeley notes, this 

rejection creates an apparent difficulty for his own view of geometry, for he concurs 

in the view that geometrical theorems are quite general (“universally true”), and if 

geometrical arguments do not employ abstract ideas, then it is unclear how they may 

be general at all. In particular, there seems to be no means in principle to prevent the 

reasoner from erroneously over-generalising properties from the diagram that relevant 

triangles may not possess.®^

Berkeley’s response is as follows:

Berkeley 1988, Introduction, Section 16.
On Locke here, see Ayers 1991, Chs. 5 and 27.
Note that a reasoner might also over-restrict from the diagram: that is, from following the argument 

in relation to a diagram of a rectangular isosceles triangle, she might conclude that all rectangular 
isosceles triangles had the angle sum property. This would, strictly speaking, be an inaccuracy, but not 
a dangerous one; she would not have gone wrong by so inferring.
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To which I answer, that, though the idea I have in view whilst I make the 
demonstration be, for instance, that of an isosceles rectangular triangle whose 
sides are of a determinate length, I may nevertheless be certain it extends to all 
other rectilinear triangles, of what sort or bigness soever. And that because 
neither the right angle, nor the equality, nor determinate length of the sides are 
at all concerned in the demonstration. It is true the diagram I have in view 
includes all these particulars, but then there is not the least mention made of 
them in the proof of the proposition. It is not said the three angles are equal to 
two right ones, because one of them is a right angle, or because the sides 
comprehending it are of the same length. Which sufficiently shows that the 
right angle might have been oblique, and the sides unequal, and for all that the 
demonstration have held good. And for this reason it is that I conclude that to 
be true of any obliquangular or scalenon which I had demonstrated of a 
particular right-angled equicrural triangle, and not because I demonstrated the 
proposition of the abstract idea of a triangle.^^

Here Berkeley’s point seems to be this. Imagine someone who follows Euclid’s 

argument in relation to a diagram of a right-angled isosceles triangle, perhaps as 

below:

For such a reasoner, there is no valid generalisation available merely from a visual 

experience of this diagram to a claim about all triangles, i.e. including all those that 

are neither right-angled nor isosceles, for reasons noted in Chapter 4. However, 

though the diagram above is of a right-angled isosceles triangle, these particular 

properties “are not mentioned in the proof of the proposition”. That is, it is only qua 

triangle that it plays any role in Euclid’s argument.

Berkeley says that the argument “does not mention” the specific properties of being 

right-angled and isosceles, but this is insufficient, since an argument may fail to 

mention a property or claim and yet still implicitly rely on it. But bearing this in 

mind, his point is surely that Euclid’s argument may be understood as justifying the 

angle sum property generally, because it does not rely on any claim about the triangle 

represented that is not a general property of all triangles. By contrast, the reasoner

Berkeley 1988, Introduction, Section 16.
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who, at the conclusion of the reasoning, takes the concluding claim only to apply to 

those triangles that the diagram visually resembles, has failed to follow Euclid’s 

argument correctly.

Now this line of thought is hardly original to Berkeley: it can be found in Proclus.^"^

It offers an intriguing and potentially plausible account of how the Generality 

Objection can be met in relation to Euclid’s argument.^^ However, Berkeley’s 

account itself might be thought to face a serious difficulty here.^^ For his account is 

vague at the crucial point, as to what if anything determines the representational scope 

of the diagram. There seem to be three candidate answers in principle here. The first 

is that it is the visual features of the diagram alone that determine its scope; but 

Berkeley rejects this fallacious appeal to the diagram, as we have noted. The second 

is that the diagram’s scope is determined by the intentions of the reasoner, and these 

might in principle extend to triangles that the diagram did not visually resemble. But 

this is patently insufficient, since such intentions may vary from reasoner to reasoner; 

what is required is some independent yardstick that can be reliably used to determine 

scope by any suitably informed reasoner. The third is that the scope of the diagram is 

determined by the construction procedure specified in the text of the argument. But 

then it starts to seem as though Berkeley is tacitly appealing to an abstract general 

idea of a triangle. For it is quite unclear in virtue of what, if not abstract ideas, a 

reasoner may grasp ex ante the generality of a given construction procedure.

7.3 Kant’s View

We can read Kant as developing a response of the third kind to the Generality 

Objection. Kant specifically discusses Euclid’s argument in Prop. 1.32 at the end of 

the first Critique, in the Transcendental Doctrine of Method. There he draws a 

general contrast between philosophical and mathematical cognition.

Proclus, p. 207. On Berkeley, see Jesseph 1993, Ch. 1.
But Berkeley’s view is much less persuasive as an explanation of other general ideas. See Prinz 

2002, p. 29.
See Jesseph 1993, Chapter 3, and Coffa 1991, p. 46. I am also grateful to Marcus Giaquinto for 

helping me to understand the force of this objection.
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Philosophical cognition is rational cognition from concepts, mathematical 
cognition that from the construction of concepts. But to construct a concept 
means to exhibit a priori the intuition corresponding to it.^^

A geometrical illustration immediately follows:

Thus I construct a triangle by exhibiting an object corresponding to this 
concept, either through mere imagination, in pure intuition, or on paper, in 
empirical intuition, but in both cases completely a priori, without having had 
to borrow the pattern from it from any experience. The individual drawn 
figure is empirical, and nevertheless serves to express the concept without 
damage to its universality, for in the case of this empirical intuition we have 
taken account only of the action of constructing the concept, to which many 
determinations, e.g., those of the magnitude of the sides and the angles, are 
entirely indifferent, and thus we have abstracted from these differences, which 
do not alter the concept of the triangle.

I interpret Kant’s view here to be this: that the reasoner “constructs” a concept of a 

triangle by drawing or visualising a triangle. However, in doing so she is merely 

implementing the relevant construction procedure for triangles (i.e., has “taken 

account only of the action of constructing the concept”). Although the drawn diagram 

is determinate in respect of the size of its sides and angles, the reasoner does not take 

these properties of the diagram to restrict the class of triangles that she takes the 

diagram to represent.

This interpretation is supported by some of Kant’s later remarks, in elaborating his 

contrast between philosophical and mathematical reasoning:

The former confines itself solely to general concepts, the latter cannot do 
anything with the mere concepts, but hurries immediately to intuition, in 
which it considers the concept in concreto, although not empirically, but rather 
solely as one which it has exhibited a priori, i.e., constructed, and in which 
that which follows from the general conditions of the construction must also 
hold generally of the object of the constructed concept.^^

Again, here—to consider this quotation in relation to geometry—we find Kant 

emphasizing, first, the reasoner’s ability to take an individual diagram to represent a

Kant 1998, A713/B741. Note that the recent Cambridge Edition translation (Kant 1998) denotes 
Kant’s emphasis in boldface, reserving italics for foreign words as indicated in the originals.

A713-4/B741-2.
^^A715-6/B743-4.
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general class of (geometrical) objects; and second and more explicitly than above, the 

role of construction procedures in determining what the diagram is to be taken to 

represent/

That it is Euclid’s geometry that Kant has specifically in mind here is clear:

Give a philosopher the concept of a triangle, and let him try to find out in his 
way how the sum of its angles might be related to a right angle. He has 
nothing but the concept of a figure enclosed by three straight lines, and in it 
the concept of equally many angles. Now he may reflect on this concept as 
long as he wants, yet he will never produce anything new. He can analyse and 
make distinct the concept of a straight line, or of an angle, or of the number 
three, but he will not come upon any other properties that do not already lie in 
these concepts. But now let the geometer take up this question. He at once 
begins to construct a triangle. Since he knows that two right angles together 
are exactly equal to all of the adjacent angles that can be drawn at one point on 
a straight line, he extends one side of his triangle, and obtains two adjacent 
angles that together are equal to two right ones. Now he divides the external 
one of these angles by drawing a line parallel to the opposite side of the 
triangle, and sees that here there arises an external adjacent angle which is 
equal to an internal angle, etc. In such a way, through a chain of inferences 
that is always guided by intuition, he arrives at a fully illuminating and at the 
same time general solution of the question.

It is standardly believed that Kant is referring to Prop. 1.32 in this passage, so that here 

we have an actual worked example which Kant uses to illustrate his general claims 

about mathematical cognition. More specifically, however, this example is clearly 

intended to illustrate the claims discussed above: that an individual diagram may be 

used to represent a general class of objects; and that construction procedures in Euclid 

determine the scope of the diagram. However, the example also introduces two new 

ideas: first, by focussing on a case of reasoning, Kant implies that the inferences in 

Euclid’s argument are valid ones; and second, he claims that intuition somehow has a 

guiding role.

In what follows I will use the now-familiar term “geometrical object” for explanatory purposes. But 
this is not to suggest that Kant believed that geometrical objects as such exist. Space does not permit 
discussion of this question, or of Kant’s use of the key terms “Gegenstand” and “Objekt”; and Kant 
certainly talks of mathematical objects in places (e.g. B147). On this question, cf. the discussions in 
Parsons 1983, p. 147, and Friedman 1992, p. 94. Smit 2000 has an interesting and useful discussion of 
the terms above.

Kant 1998, A715-7/B743-5; emphasis added.
E.g. by the Editors of the Cambridge Edition (Kant 1998), p. 751.
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Now Kant’s focus in this last passage is on discovery of a geometrical truth, not on 

the process of following an existing argument as such. But his overall point surely 

applies to the latter: he is using Euclid’s well-known argument to illustrate the 

epistemic necessity of intuition to a type of mathematical reasoning. On Kant’s view, 

following Euclid’s arguments is a paradigm route to geometrical knowledge; and 

geometrical knowledge would not be possible in the absence of a faculty of intuition. 

In particular, intuition of a diagram does not merely serve to fix the argument for the 

reasoner. Rather, it is taken to be an epistemic prerequisite: a condition on the 

possibility of the reasoner’s having geometrical knowledge at all. So I think we can 

take it that for Kant the diagram contributes to justification in the sense described in 

Section 3.2. Mathematical knowledge for Kant is a priori. So, overall, Kant holds 

what I have termed the Kantian view, and it is appropriate to place Kant in the upper 

left hand box of the framework of alternatives, as above.

7.4 Kant on Construction in Pure Intuition

Let us now return to the question posed in the previous section: What determines the 

representational scope of the diagram in Euclid’s argument? It should be clear that 

Kant takes the third alternative, i.e. he claims that the scope of the diagram is 

determined by the construction procedure specified in the text of the argument.

By itself, this response can only be part of an account of our target reasoning, because 

it has not yet been shown that the constitutive inferences are valid—and, as far as I 

am aware, Kant nowhere addresses this question. But Kant seems to have a 

potentially attractive in-principle response to the Generality Objection. What is 

needed now is an assessment of Kant’s notion of “construction in pure intuition”; and 

of what he calls intuition’s “guiding role”.

Let us start with the difficult notion of construction in pure intuition. It may be 

helpful to review some of the terminology. First, then, we need to recall the 

fundamental distinction for Kant between intuitions and concepts. Any claim to 

knowledge requires representations of both types. Intuitions are singular and

103



unmediated (re)presentations of objects given in se n s ib ili ty /T h e  faculty of 

intuition is the capacity we have to form, and be receptive to information conveyed 

by, intuitions. Concepts, by contrast, are general representations whose source is the 

understanding. ̂  Overall :

[A cognition] is either an intuition or a concept {intuitus vel conceptus). The 
former is immediately related to the object and is singular, the latter is 
mediate, by means of a mark, which can be common to several things.

There has been extensive debate as to how exactly the “mediated/unmediated” 

distinction is to be understood, here and elsewhere. Rather than revisit this debate, I 

shall simply take it that Kant’s point is that concepts represent by means of certain 

marks or features of the object that can in principle be common to other objects, while 

intuitions do not. Though intuitions may represent by means of marks, intuitive 

marks themselves have no generality as such.̂ ®̂  It is important to bear in mind that 

singularity and generality for Kant are here properties of types o f representation, not 

of objects represented. Kant takes concepts to be intrinsically general representations: 

for an object to fall under a concept is for it to belong to a kind of which there are, or 

might in principle be, other instances. Intuitions, however, are singular 

representations, as suggested by the Jasche Logic:

All modes of knowledge, that is all representations related to an object with 
consciousness are either intuitions or concepts. The intuition is a singular 
representation {repraesentatio singularis), the concept a general 
(repraesentatio per notas communes) or reflected representation 
{repraesentatio diseursiva). ̂

Second, as singular representations of objects, intuitions make a distinctive 

contribution to cognition of objects; they present information about objects. But to 

understand an object as an object of a given type, also requires a concept. This seems 

to be the point of the following passage, again from the Jasche Logic:

Kant also apparently believes that intuition can in principle be intellectual (cf. B308, also 
A256/B312); such would be the intuition of a divine being (B145). But we can ignore this point here. 
*°^E.g. A19/B33; A66/B91.

A320/B377.
Here I am broadly following the discussion of marks in Smit 2000. The philosophical and 

exegetical issues are too complex to be helpfully summarised here, unfortunately; but they receive 
detailed analysis in the article above, which also cites most of the relevant recent literature.

Kant 1974, p. 96.
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When a savage sees a house in the distance, the use of which he does not 
know, he has the same object before him as another who knows it as a 
dwelling furnished for men. But as to form, this cognition of one and the 
same object is different in both. In the one it is mere intuition, in the other 
intuition and concept at the same time.̂ ®̂

It seems Kant’s thought here is that someone who lacks a given concept, and who is 

incapable of forming a thought or making a judgement employing that concept as a 

result, may nevertheless be sensitive to an object’s being this way or that way in his 

visual experience. In such a case, “this way” or “that way” do not pick out features 

that the subject is generally aware of as such—it is not that being “this way” is 

something that she could generalise to other objects, since this would make it 

conceptual— and possession of this sensitivity does not rely on any conceptual or 

propositional grasp of what it is for such an experience to be of that kind.

It follows that, strictly speaking, there cannot be such a thing for Kant as an intuition 

that P; this is a manner of speaking. For such a propositional grasp would contain a 

conceptual component that is not available to a reasoner who is merely having an 

intuition. And in saying that such a reasoner is having an intuition o f  an object, care 

must be taken not thereby to ascribe on the basis of intuition alone any awareness on 

the reasoner’s part that the object in question has such and such a property or set of 

properties.

Third, intuitions can be either empirical or a priori. A priori or pure intuitions are 

intuitions that do not derive from sense experience, and that lack sensation as a 

result. Kant analyses appearances (i.e. “the undetermined object[s] of empirical 

intuition”, A20/B34) in terms of “form” and “matter”. The “matter” is that which is 

given in sensation, and is therefore a posteriori. The “form” is the unifying structure 

sensations themselves must have if we are to be conscious of them as a single 

coherent experience, rather than as a mere buzz. According to Kant, in relation to 

external objects this structure is spatial, and given by pure intuition: it is only because 

we possess an a priori capacity to understand our outer sensations as spatially ordered

Kant 1974, p. 37f.
A20-2/B34-6. Note that in the discussion that follows, for the sake of convenience, I restrict 

attention to intuitions in “outer sense”; that is, in relation to objects distinct from ourselves, as opposed 
to objects in “inner sense” such as mental states.
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that we can have experience of objects at all. Indeed, for Kant the science of 

geometry is only possible in virtue of pure intuition; and this is home out for him by 

the fact that we can have knowledge a priori of the truths of geometry, without any 

epistemic reliance on experience or sense-perception.'^®

Fourth, it is intuition—and specifically empirical intuition—that is supposed to 

guarantee the objective meaning of a thought, by ensuring that the thought relates to 

an actual or possible object of knowledge. As Kant remarks:

Now the object cannot be given to a concept otherwise than in intuition, and, 
even if a pure intuition is possible a priori prior to the object, then even this 
can acquire its object, thus its objective validity, only through empirical 
intuition, of which it is the mere form. Thus all concepts and with them all 
principles, however a priori they may be, are nevertheless related to empirical 
intuitions, i.e. to data for possible experience. Without this they have no 
objective validity at all, but are rather a mere play, whether it be with 
representations o f the imagination or o f the understanding. One need only 
take as an example the concepts of mathematics, and, first, indeed, in their 
pure intuitions. Space has three dimensions, between two points there can be 
only one line, etc. Although all these principles, and the representation of the 
object with which this science occupies itself, are generated in the mind 
completely a priori., they would still not signify anything at all if we could not 
always exhibit their significance in appearances (empirical objects). Hence it 
is also requisite to make an abstract concept sensible, i.e. display the object 
that corresponds to it in intuition, since without this the concept would remain 
(as one says) without sense, i.e., without significance.^^^

Note that the claim here is not (or not merely) that empirical intuition ensures the 

applicability of mathematics to the everyday world; it is that, according to Kant, 

empirical intuition is required for mathematical principles to have any “objective 

validity” at all. This should not, I think, be taken to imply that mathematical 

principles have no meaning at all in the absence of empirical intuition. Kant 

acknowledges that purely conceptual thought can have meaning. But such thought 

can do no more than allow us to grasp the logical possibility of an object of 

experience: what Kant calls the “formal conditions of an experience in general.”  ̂

Something more is required for objective validity:

A24/B39; A47/B65ff.
*** A239/B298. Emphasis added to the third sentence. 
112 A220-1/B267-8.
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That in such a concept [i.e. a “pure concept, which nevertheless belongs to 
experience”], no contradiction must be contained is, to be sure, a necessary 
logical condition; but it is far from sufficient for the objective reality of the 
concept, i.e. for the possibility of such an object as is thought through the 
concept. Thus in the concept of a figure that is enclosed between two straight 
lines there is no contradiction, for the concepts of two straight lines and their 
intersection contain no negation of a figure; rather, the impossibility rests not 
on the concept in itself, but on its construction in space, i.e. on the conditions 
of space and its determinations.^'^

That is to say, in effect, that without intuition we could not think of a figure as (or, 

better, as representing) an instance of the relevant concept(s). It is only once we can 

entertain such thoughts that the impossibility of a figure contained by two intersecting 

straight lines becomes manifest.

Thus Kant is appealing to a notion of objective or real significance given by a claim’s 

applicability to objects of possible experience. Without empirical intuition, 

mathematical claims would have meaning, but there would be no guarantee of their 

real significance. This applies in principle to “pure” as much as to “applied” 

mathematics, though Kant does not use this modem distinction as such.

Fifth, the contrast between empirical and pure intuition is brought out by Kant’s 

important distinction between the “image” of a given geometrical concept, and the 

“schema” of that concept; and it is this that Kant specifically invokes in order to avoid 

the Generality Objection mentioned earlier:

Now this representation of a general procedure of the imagination for 
providing a concept with its image is what I call the schema of the concept. In 
fact it is not images of objects but schemata that ground our pure sensible 
concepts. No image of a triangle would ever be adequate to the concept of it. 
For it would not attain the generality of the concept, which makes this valid 
for all triangles, right or acute etc., but would always be limited to one part of 
this sphere. The schema of the triangle can never exist anywhere except in 
thou^t, and signifies a mle of the synthesis of the imagination with regard to 
pure shapes in space.

I think Michael Friedman must be right to interpret Kant’s notion of an image as 

referring, in the context of geometry, to any particular diagram produced by a given

Ibid. My italics. 
'‘'‘A141/B180.
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construction procedure, and a schema as a representation of the construction 

procedure itself. “The rule of the synthesis of the imagination” mentioned here is 

then further described in the Axioms of Intuition:

If I say: “With three lines, two of which taken together are greater than the 
third, a triangle can be drawn,” then I have here the mere function of the 
productive imagination, which draws the lines greater or smaller, thus 
allowing them to abut at any arbitrary angle.

We are now in a somewhat better position to assess Kant’s notion of construction in 

pure intuition. As I interpret it, Kant’s point is this: when a reasoner draws or 

visualises a diagram of a triangle, she is not merely using concepts acquired as a result 

of grasping Euclid’s definition. Rather, she is relying upon a (for Kant, non- 

conceptual) sensation-independent capacity to represent something as occupying 

(actual or visualised) space. Though diagrams of triangles can be perceived in 

empirical intuition, Kant takes it that a reasoner can have an image of a geometrical 

triangle via the exercise of her visual imagination that is free of sensory input, and this 

would be pure, or a priori. Moreover, it is the latter that is epistemically primary, if 

the faculty of intuition is to remain independent of the senses.

The source of the generality of Euclid’s conclusion is then this, according to Kant; 

that a reasoner who can grasp the relevant construction procedure in a given argument 

has thereby grasped a rule (a “schema”) by which any object of the requisite kind can 

in principle be visualised or drawn. Thus for Kant, the justification provided by Prop. 

1.32 does not derive from mere generalisation of the visual awareness of a particular 

diagram or image. It is the knowledge of which figures can and cannot be constructed 

from a given sequence of construction procedures that constrains the generality and 

applicability of a given geometrical property, and so provides the warrant for claims 

about such properties.

All well and good. But though Kant is clearly on to something here, it should be 

evident that this more developed account is highly problematic. I will mention three 

specific worries. The first concerns the extreme lack of clarity as to what is meant by 

a schema. Recall that on Kant’s official position, there are just two kinds of

A164/B205; cf. Friedman 1992, p. 124.
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representation: intuitions and concepts. But schemata are neither intuitions nor 

concepts; nor can they be if they are to serve the mediating function Kant gives them 

between intuitions and concepts. So are they a third kind of representation?

The second worry is that this reconstruction is unsatisfactorily dependent on Kant’s 

overall account of pure intuition. In the absence of a showing that space is a pure 

form of intuition, we will need independent reason to believe that pure intuition is a 

prerequisite to the ability to represent objects as in space at all; and more specifically, 

it will need to be shown that there can be a pure visual image of a triangle—i.e. a 

visual representation that is entirely free of all sensory content—as Kant seems to 

claim.

The third worry is perhaps the most damaging. Recall that Kant’s position is, as 

noted, that the representational scope of the diagram in Euclid’s argument includes all 

and only the figures that can be constructed by following the relevant construction 

procedure. Given that a schema is supposed to be a representation of a rule governing 

the exercise of pure imagination, this seems to imply that the reasoner determines the 

generality of the diagram by visualising and then indefinitely iterating different 

alternative constructions “in her mind’s eye”. But I argue in Postscript 2 below that 

indefinite iteration is not a route to justified belief in Euclid’s conclusion, and that in 

any case this is not Kant’s view. Similar considerations rule indefinite iteration out as 

an explanation of the reasoner’s grasp of the generality of the diagram. So if we are 

to respect Kant’s idea that the relevant construction procedure determines the 

representational content of the diagram, this claim needs to be understood in a 

different way; and I shall argue that we can so understand it, and also identify a 

broadly Kantian solution to the Generality Objection, in Chapter 10.

7.5 Intuitive Guidance

So far much of the discussion has focused on Kant’s view as it bears on the 

interrelated issues of the representational scope of the diagram and the generality of 

the justification offered by Euclid’s argument. These topics have received some
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attention in the Kant l i te ra tu re /B u t there is an important further aspect, which 

bears on the general nature of the inferences relating to the diagram, and this has 

received much less attention from Kant’s commentators to date; perhaps from a faulty 

background assumption that these inferences are not, or cannot be, valid or 

knowledge-yielding. ̂

We can approach this topic by asking what Kant means by his insistence in the 

Doctrine of Method that the geometer follows Euclid’s argument by reasoning 

“through a chain of inferences that is always guided by intuition”. One way to 

understand the notion of “guidance” here might be in terms of a justificatory appeal 

by “reading o ff’ properties from the diagram. Michael Potter comes close to this 

reading, in suggesting that Kant believed that what underwrites the existence of a 

constructed point C in the famous equilateral triangle of Prop. I.l is the fact that the 

lines of the diagram or imagined figure actually cross. But if  this is just Kant’s 

view, then it is in serious difficulty from the outset, since we have already noted that 

the justificatory appeal to the figure by itself is fallacious. On the other hand, if 

“guidance” is to be taken purely psychologically and as having no epistemic 

significance, then it is not clear why we should think of the diagram as contributing to 

justification, according to Kant.

Can we do better than this? Kant seems to offer as part of his explanation of the role 

of intuition a contrast between the type of construction to be found in algebra, and that 

to be found in geometry:

But mathematics does not merely construct magnitudes {quanta), as in 
geometry, but also mere magnitude (quantitatem), as in algebra, where it 
abstracts entirely from the constitution of the object that is to be thought on 
accordance with such a concept of magnitude. In this case it chooses a certain 
notation for all construction of magnitudes in general (numbers), as well as 
addition, subtraction, extraction of roots etc., and, after it has also designated 
the general concept of quantities in accordance with their different relations, it 
then exhibits all the procedures through which magnitude is generated and 
altered in accordance with certain rules in intuition; where one magnitude is to

Notably in Friedman 1992; but see also Howell 1973, Parsons 1983 Ch. 5 and Postscript, and Smit 
2000 .

An assumption typically made by exponents of the “logical” interpretation of Kant’s philosophy of 
geometry. I examine some aspects of this interpretation further in Postscript 1.
‘'*A717/B745.
"^Potter 2000, p. 47.
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be divided by another, it places their symbols together in accordance with the 
form of notation for division, and thereby achieves by a symbolic construction 
equally well what geometry does by means of an ostensive or geometrical 
construction (of the objects themselves), which discursive cognition could 
never achieve by means of mere concepts.

Knowledge of algebra and geometry alike requires intuition for Kant, for both 

algebraic and geometrical reasoning rest on constructions in pure intuition. But the 

construction procedures are, he claims, of different kinds: in the case of geometry the 

procedure is “ostensive”, and the construction is “of the objects themselves”; while in 

the case of algebra the procedure is symbolic and “abstracts from the constitution o f ’ 

the object(s) represented.

I interpret Kant’s point here to relate to two different ways in which construction 

procedures can be used to represent mathematical objects or functions. Symbolic 

representation uses symbols such as numerals and function signs; and it is indirect, in 

that the reasoner knows what a certain symbol represents only in virtue of background 

knowledge as to what assumptions link it with its object or target of representation. 

These assumptions are conventional in nature: any symbol can in principle, given a 

suitable set of background assumptions, be taken to represent any object. Thus, for 

example, all of “x”, and “.” are standardly used to represent multiplication, but so 

for example could “a”, “û”, or “X”, if suitable conventions could be established. 

There is no in-principle constraint (though there may be constraints of ease of use 

etc.) on the actual form of representation or notation to be adopted. So symbolic 

representation permits a choice of notation between alternatives, all of which can bear 

the requisite representational relation to what they represent; and there are different 

notations available for numbers and arithmetical operations, for example, as Kant 

would have been aware.

Ostensive representation, by contrast, is direct: the diagram must be such that it can 

itself reliably be recognised as a representation of an instance of the intended 

category. This is an important in-principle constraint on ostensive representation, 

which has the effect of restricting the availability of alternative representational

Ibid.; emphasis added in the last sentence.
I have one serious reservation as to Kant’s account of symbolic construction, but this does not bear 

on the distinction as such, and need not concern us here. See Postscript 3 below.
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forms; there will be few if any alternatives to a diagram or figure of a triangle as a 

means to represent a geometrical triangle ostensively. Contextual assumptions 

notwithstanding, ostensive representation is not a merely conventional relation 

between diagram and object(s).

Euclid’s geometry, as given in what I have termed the Euclidean Presentation, does 

not use purely ostensive representational forms. First, it uses letters as labels, and 

these are symbolic, not ostensive. Secondly, words of natural language (as in the 

sentences of the Propositions) are generally symbolic in the sense above. Euclid’s 

geometry is, then, strictly a mixed or heterogeneous system, in that it uses both 

ostensive and symbolic representations, the latter including the words of the text. But 

the use of diagrams gives it a heavily ostensive character.

We can now see what Kant appears to have in mind in referring to ostensive 

constructions as constructing “the objects themselves”. An initial instruction bids the 

reasoner draw a diagram of the relevant object(s): in Prop. 1.32, this is in the opening 

sentence of the Setting-Out (“Let ABC be a triangle”). Every construction procedure 

used to draw a given diagram can in principle be used to depict each of the objects 

represented by the diagram. There is thus, given the relevant background 

assumptions, a correspondence between the elements and properties of the diagram 

and those of its target or object(s): a correspondence that preserves in the diagram 

what we should now term the mathematical structure of the object(s). The reason 

why Kant claims that ostensive presentation is of “the objects themselves” is that this 

structure preserves all the relevant geometrical properties of the class of geometrical 

objects in question. Thus in looking at the diagram it is in each case “as i f ’ a reasoner 

is looking at a geometrical object (or spatial configuration of geometrical objects). 

Such reasoning can be general in that it relates to a class of objects all of which 

conform to conditions of construction, and thus possess the relevant structure. So any 

claim made by reasoning with the diagram will apply, mutatis mutandis, to any 

member of that class.

What, then, is the force of Kant’s insistence on the “guiding role” of intuition in 

geometrical reasoning? Should we understand this guidance psychologically, as
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referring to the role of the diagram in prompting inferences, or epistemically, as 

referring to the role of the diagram in contributing to justification?

I suggest that Kant has both of these roles in mind. Psychologically, he reminds us 

that on drawing the auxiliary line the geometer “sees that here there arises” an angle 

adjacent to an existing angle—and it is by seeing the alternate and opposite angles on 

the diagram that the geometer is prompted to apply the relevant rules (e.g. Prop. 1.29). 

Epistemically, Kant stresses that it is intuition, via ostensive construction, that permits 

the reasoner to gain an understanding of the diagram on which the diagram can serve 

to justify claims about geometrical objects. For the diagram conveys structural 

information about the objects it represents, when understood in accordance with 

appropriate background conventions, and this feature is exploited by the reasoner in 

making inferences with the diagram.

On this reading, Kant takes the reasoning here—including the reasoning with the 

diagram—to be valid reasoning. Euclid’s argument is then “illuminating” because the 

diagram is used ostensively, to represent geometrical “objects themselves”; and it is 

valid “universally” because a reasoner’s grasp of construction procedures underwrites 

the argument’s general conclusion. We can now better appreciate, for Euclid’s 

geometry at least, why Kant claims that it is construction—and in particular ostensive 

construction—that generates the “apodeictic” certainty of mathematics. For it is in 

ostensive construction, and in the capacities that underlie it, that Kant locates the 

source of the illumination, directness and generality of this kind of reasoning.

But we should again note that there are two critical gaps in Kant’s exposition: first, 

he needs to show, not merely that a diagram can preserve structural information about 

its objects as described, but that the inferences with the diagram in Euclid’s argument 

are valid inferences; second, he needs to show how a reasoner can be justified, indeed 

justified a priori, in believing the angle sum claim in full generality. I return to these 

questions in Chapter 10.

122 A713/B741.
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7.6 Summary

This chapter has argued that we can identify a Kantian View of the reasoning 

involved in following Euclid’s argument. Kant himself held the Kantian View, and 

his treatment of geometry in the Doctrine of Method has been discussed in detail. 

According to the interpretation developed here, Kant is using a case study of 

geometrical reasoning to illustrate his general claim that geometry (and ultimately, of 

course, mathematics generally) is synthetic a priori; and the view of reasoning that 

this implies can be discussed in isolation from Kant’s wider claims for Euclid’s 

geometry, or for intuition.

What emerges is, in effect, a theory of a certain kind of visual thinking or reasoning. 

On this theory, in following Euclid’s argument, a reasoner can use a figure or diagram 

to represent geometrical objects of a given type a priori; the diagram can permissibly 

be altered in accordance with certain given construction procedures; such alterations 

to the diagram preserve structural information about the object(s) represented; the 

generality of the construction procedure is sufficient to justify the generality of the 

conclusion of the argument; and a reasoner who can appropriately grasp the relevant 

construction procedure, and who can follow the argument in relation to the diagram, 

can thereby be justified in forming a general belief a priori in the truth of the 

conclusion. Moreover, we can use Kant’s distinction between ostensive and symbolic 

construction, within the context of the reconstructed theory, to give a plausible in­

principle explanation of Kant’s claim that intuition offers “guidance” and 

“illumination”.

7.7 Postscript 1 : Kant and the “Logical Interpretation”

The interpretation advanced here treats the Doctrine of Method seriously: as, in 

effect, advancing a coherent and in many respects rather persuasive claim for the 

epistemic value of a particular kind of reasoning. By contrast, the consensus amongst 

Kant’s commentators has long been that Kant’s claims in the Doctrine of Method are
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obviously mistaken. This view was famously expressed by Bertrand Russell, as noted 

in Chapter 1 :

Kant, having observed that the geometers of his day could not prove their 
theorems by unaided arguments, but required an appeal to the figure, invented 
a theory of mathematical reasoning according to which the inference is never 
strictly logical, but always requires the support of what is called intuition.

Though this view has been extremely influential among philosophers of many 

different stripes, it has been developed in recent years into what has been termed the 

“logical interpretation” of Kant’s philosophy of geometry. On the logical 

interpretation, the function of intuition for Kant here is, in effect, to compensate for 

deficiencies in the then-available logic. In this Postscript, I want to contrast this 

interpretation with the view developed above.

The logical interpretation has been developed most explicitly in the work of Michael 

Friedman. Friedman claims, of Kant’s discussion of the Euclidean Presentation:

In contending that construction in pure intuition is essential to this proof, Kant 
is making two claims that strike us as quite outlandish today. First, he is 
claiming that (an idealised version) of the figure we have drawn is necessary 
to the proof. The lines AB, BC, CE, and so on are indispensable constituents; 
without them the proof simply could not proceed. So geometrical proofs are 
themselves spatial objects. Second, it is equally important to Kant that the 
lines in question are actually drawn or continuously generated, as it were. 
Proofs are not only spatial objects, they are spatio-temporal objects as well...

Kant’s conception of geometrical proof is of course anathema to us. Spatial 
figures, however produced, are not essential constituents of proofs, but, at 
best, aids (and very possibly misleading ones) to the intuitive comprehension 
of proofs. Whatever the intended interpretation of the axioms or premises of a 
geometrical proof may be, the proof itself is purely “formal” or “conceptual” 
object; ideally, a string of expressions in a given formal language.

Although Friedman regards the claims in the Doctrine of Method as mistaken, his 

overall approach is sympathetic to Kant. It recalls that, on a standard view, the reason 

for many if not all of the logical gaps in Euclid’s geometry is that it lacks existence

Russell 1919, p. 145.
See especially Friedman 1992, Chapters 1 and 2; and Friedman 2000.
Friedman 1992, pp. 57-58. I am assuming here that Friedman is speaking “in his own voice”; that 

is, that he holds the views described here.

115



axioms, a theory of order governing points in the line, and modem concepts of 

continuity, denseness etc. On Friedman’s view, Kant is implicitly aware that he has 

no means in the (canonically syllogistic, subject-predicate) logic then available to 

express certain desired concepts of continuity, infinity and infinite divisibility. The 

function of intuition is, in this regard, to permit such concepts to be represented. A 

concept of continuity is, the suggestion goes, given representation for Euclid by the 

motion of a mathematical point (an idealised stylus) drawing a line; a concept of 

infinity is given representation by the reasoner’s (idealised) ability to iterate, for 

example, the production of a line segment an indefinite number of times by 

application of Postulate 3; and a concept of infinite divisibility is given representation 

by the (idealised) iterable bisection of a line segment according to Prop. 1.10. These 

actions all are, or involve, implementations of construction procedures. Moreover, 

construction procedures are required, according to Friedman, if diagrams in Euclid are 

to give rigorous representation of the relevant geometrical concepts. Thus Friedman 

says of Euclid’s constmction of a circle in Postulate 3:

The underlying idea [behind Kant’s claim that this constmction “first 
generates the concept of a figure” at A234/B287] ... is that the existential 
proposition corresponding to this constmction—that for any point and any line 
there is a circle with the given point as centre and the given line as radius— 
cannot be conceptually expressed for Kant. In mere syllogistic logic this 
existential proposition cannot, strictly speaking, even be stated (as we would 
now put it, it involves the form of quantificational dependence VV3). The 
only way even to think or represent this proposition—so as, in particular, to 
engage in rigorous geometrical reasoning thereby—is by means of the 
constmction itself.^ ^

Thus on this view Kant believes that it is the possibility that the Euclidean 

Presentation provides to constmct diagrams on paper or figures in imagination that 

allows representation of these foundational geometrical concepts, and other concepts 

from complex diagrams constmctible fi*om the basic ones; and it is by means of 

intuition that a reasoner can come to possess these concepts.

On this interpretation, then, the role of intuition for Kant is primarily as a substitute 

for what would in modem terms be logical forms of representation using

Friedman 1992, p. 126.
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q u a n tif ie rs .T h e  stage is now set for Friedman to claim that this view has a crucial 

drawback, however; one that we can appreciate but Kant could not. This comes in 

Kant’s mistaken belief that construction procedures are justificationally required to 

secure the relevant order properties of the geometrical line; mistaken, since these 

properties can only be rigorously formalised, as discussed, via a modem theory of 

order in the style of Hilbert. We can know, thus, as Kant could not, that the diagrams 

in Euclid are “inessential constituents of proofs, but at best aids... to the intuitive 

comprehension of proofs”, which are purely formal objects.

Friedman’s interpretation of Kant is subtle and illuminating; and I have only been 

able to sketch a small part of the overall line of thought. Nevertheless, I think this 

much is enough to suggest that it—and the logical interpretation generally—faces a 

number of difficulties as an account of Kant’s thinking here, on both internal and 

external grounds.

The first difficulty relates to a question of exegesis. Friedman introduces his 

discussion via a consideration of the Doctrine of Method; he uses this to raise modem 

worries about the order properties of the line in Euclid, and then seeks to show that 

these in tum generate questions as to the representation of continuity and infinity for 

Kant, to which the latter is alive (although perhaps only implicitly) in the Aesthetic 

and Analytic. But these logical issues, though important, are plainly not ones that 

Kant has principally in mind in the Doctrine of Method, and do not help, at least in 

any direct way, to explain his thought there.

By contrast, the Doctrine of Method passage is much more clearly focused on the 

epistemology of the different processes of reasoning themselves. Kant is asking: 

given that there are these two apparently different processes of reasoning— 

mathematical and philosophical—how do they differ, and how does each justify and 

guide us in coming to certain conclusions? What seems to distinguish the geometer’s 

reasoning is, at least in the first place, that it relates to a particular diagram, has a 

visual component, and yields “evident and universally valid” conclusions. It is these 

phenomena that require explanation; and the putative role of intuition in guaranteeing

See, for example, Friedman 1992 pp. 70-71.
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representation of certain concepts of continuity etc., while it may be relevant overall, 

is not the target here. Indeed, as its opening words make clear, the wider point of the 

Doctrine of Method as a whole is, precisely, to provide the plan and methods by 

which the various constituents (the “elements” of pure reason) can be combined into 

an entire system of pure speculative knowledge. How they are to do so centrally 

concerns the epistemology of the methods of reasoning involved.

The second difficulty may seem rather fussy; but it has a wider point. Recall that 

Friedman interprets the Doctrine of Method passage as making two apparently 

“outlandish” claims. The first of these is that “(an idealised version) of the figure we 

have drawn is necessary to the proof. The lines AB, BC, CE, and so on are 

indispensable constituents; without them the proof simply could not proceed. So 

geometrical proofs are themselves spatial objects.” But this is surely not Kant’s 

claim. Rather, his claim relates to the proof (strictly speaking: argument) as 

presented by Euclid', he is claiming that the figure is necessary to the Euclidean 

Presentation of the argument, that the presentation could not be understood without it. 

Far from being outlandish, this claim seems to be true, for reasons discussed in 

Chapter 6. Does it mean that the presentation must be spatial? If the presentation 

takes a written form and contains a diagram, then it will occupy physical space. If the 

presentation is simply thought through in the mind, then it will not occupy physical 

space. But even in this case it is nevertheless plausible that the figure as visualised 

presents spatial, specifically two-dimensional, information. So Kant’s point here is— 

in line with the focus of the Doctrine of Method on the epistemology of reasoning—to 

focus on the nature of our interaction with a specific presentation of the argument. 

That is, Kant is seeking an explanation that conforms to what he takes to be the facts, 

and specifically the phenomenology, of the way in which the reasoner can correctly 

follow Euclid’s argument.

Finally, and most crucially, it remains quite unclear why intuition is supposedly 

required to compensate for deficiencies in logic. Why, for example, should the 

absence of a formal language of quantifier logic within which to represent the 

existential proposition corresponding to Postulate 3 have any bearing on the ability of 

Kant—or a geometrical reasoner—to give that proposition conceptual expression? 

Why, for example, could it not be sufficient for this purpose simply to express it with
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the sentence “For any point and any line there is a circle with the given point as centre 

and the given line as radius”? It is not clear that Kant is moved at all by the 

expressive limitations of logic as he then knew it. Quite the contrary: if the reading 

of Kant’s distinction between ostensive and symbolic construction given here is 

correct, a sentence such as that above—or a sentence in a formal language of 

quantifier logic—would be deemed symbolic, not ostensive, precisely because it did 

not present, and preserve through a given process of reasoning, what we might term 

the spatial content of the intuition of the diagram. Moreover, if we regard intuition as 

a mere substitute for logical representation, the main thrust of Kant’s insistence on the 

guiding role of intuition in geometrical reasoning, which allows the reasoner to 

construct and reason as to “the objects themselves”, is lost.

Notice that I am not here disputing the positive claim that intuition may in principle 

be invoked to play a quasi-logical role for Kant in the way Friedman describes. 

However, on the interpretation I propose Kant’s concerns are not purely logical, and 

the role of the diagram is not merely to compensate for deficiencies in his logic. 

Rather, we need to take what he says in the Doctrine of Method at face value. If we 

do so, we can see that Kant is here primarily seeking to explain, not the logical 

presuppositions of a Euclidean argument, but the distinctive patterns of reasoning that 

occur in relation to the diagrams within the Euclidean Presentation. If this is so, then 

the role of intuition in reasoning is distinguishable from any role it may have in, for 

example, guaranteeing the order properties of the line; one could, as it were, add 

Hilbert’s theory of order (in a suitable form) explicitly as background assumptions to 

the Euclidean Presentation and still reason wholly or partly in the way Kant has in 

mind in the Doctrine of Method.

7.8 Postscript 2: Iteration and Justification

In this Postscript I want to consider an alternative reconstruction of Kant’s view of the 

apparent justification offered by following Prop. 1.32. Ian Mueller remarks in a very 

similar context:
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It is natural to ask about the legitimacy of such a p roof... How can one move 
from an argument based upon a particular example to a general conclusion, 
from an argument about a straight line AB to a conclusion about any straight 
line? I do not believe that the Greeks ever answered this question 
satisfactorily ... Of course, insisting that the particular argument is sufficient 
to establish the general protasis is not a justification, but it does amount to 
laying down a rule of mathematical proof: to prove a particular case is to 
count as proving a general proposition.

If Mueller is right here, the generalisation in Euclid’s argument is unwarranted, since 

we have no reason to accept the rule of mathematical proof he proposes; different 

types of triangle can have different geometrical properties.

Are we compelled to accept Mueller’s conclusion? Kant argued for the opposite 

view, as we have seen. But it is sometimes suggested that Kant’s account of intuition 

has an important weakness at precisely this point. Recall that an intuition for Kant is 

an immediate singular (re)presentation. A common approach here is to try to justify 

the generalisation in terms of an indefinitely long process of iteration or repetition; for 

example, this approach is adopted by Reviel Netz in his recent book on deductive 

reasoning in Greek geometry. With this in mind, the interpretation might be: that 

according to Kant the reasoner takes Euclid’s argument to go through for a single 

(intuitively presented) case, which intuition might be of an imagined figure, and so be 

a priori or “pure”; and that the reasoner reaches the general conclusion by iterating 

the result of this individual case indefinitely. But then, the objection goes, this is 

effectively an argument with an infinite premiss. It is of the following form:

Fa Fb Fc

Ga Gb Gc

Vx(Fx->Gx)

'^'Mueller 1981, p. 13.
'^^Netz 1999.

On this see, for example. Potter 2000, p. 47.
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But such arguments, the objection goes, cannot be followed by finite minds. So they 

cannot justify their conclusions.

There is an important philosophical question here as to whether and how we can grasp 

infinite rules of this kind, and someone prepared to embrace this alternative might 

accept this as a reconstruction of Kant but dispute whether it is more than an 

embarrassment. But in fact I suggest that this would not be a correct reading of Kant 

at all. I argued above that Kant’s account is designed to be psychologically plausible. 

If we accept this, then it makes this interpretation problematic fi*om the outset, since it 

is quite evident that the reasoner does not even attempt to follow any indefinitely long 

rule, nor is there any apparent feeling of obligation to do so. Secondly, note that Kant 

does not mention (anything amounting to) iteration, nor describe any iterative process, 

in the Doctrine of Method. What he actually says is that the “individual drawn figure 

... serves to express the concept without damage to its universality.”^ T h ird ly , we 

cannot properly motivate the objection by appealing to the singularity of intuition, for 

the type of representation that underwrites the generalisation for Kant is not an (either 

empirical or pure) intuition, but the schema of a concept. That is, it is not the case 

that the singularity of intuition somehow forces us to understand the generalisation as 

involving repetition of the argument (or diagram) for different geometrical cases. 

Fourthly, iteration is at odds with the overall thrust of Kant’s account, since it 

specifically raises the possibility that the justification is empirical, by induction on 

visualised figures. This would make it similar to the positions explored and rejected 

in Chapters 4 and 5. As I noted there, if there is iteration in following Euclid’s 

argument, its role is not justificatory; it may only be to fix the concept in the reader’s 

mind.

For these reasons, then, we should reject the interpretation offered above as a reading 

of Kant.

131 A714/B742.
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7.9 Postscript 3: Symbolic Construction in Intuition

The goal of this Postscript is to raise a serious question about Kant’s account of 

symbolic construction. Recall that on Kant’s official definition, intuitions are 

immediate singular representations. Thus an empirical intuition of a diagram is an 

immediate singular representation of a diagram, an empirical intuition of a numeral is 

an immediate singular representation of a numeral; and the same goes in principle for 

fimction signs in arithmetic, algebraic symbols etc. Ostensive construction is direct in 

that, when executed and understood correctly, it preserves certain structural 

information as between the constructed diagram and the object(s) it represents. It is 

thus fairly evident why Kant insists that ostensive construction is intuitive, for it 

preserves the direct contribution to cognition made by the diagram as a representation 

of its objects.

But why does Kant insist that symbolic construction is intuitive? After all, symbolic 

construction is not by this criterion immediate: the representational link between a 

symbol and its object(s) is an indirect one, and imposes no in-principle constraint on 

different potential forms of representation, as we have seen. A numeral (or function 

sign etc.) normally denotes only in virtue of a conventionally agreed relation with its 

object. It is quite unclear how someone could, even in principle, become aware of 

this relation without already possessing at least some of the relevant concepts. But 

this calls into question how, for example, intuitions of numerals as representations of 

numbers can be genuine intuitions at all. Of course, there is a spatial component to 

the construction of written arrays of symbols, and this may be what Kant has in mind. 

But even if one may have intuitions of numerals, it is only in virtue of the relevant 

mediating conventions that such intuitions can convey information as to— and so give 

cognitive access to—their objects, and this is surely conceptual. This point is 

independent of the question whether Kant has a plausible account of intuition of 

numbers via processes of reasoning that do not involve numerals and other symbols; 

he may do. In short: though the distinction between ostensive and symbolic 

construction is a valuable one, Kant’s claim that symbolic construction is in his terms 

intuitive is, I suggest, highly questionable.
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8: Making Room for a Neo-Kantian View

8.1 Introduction

The previous chapter completed our survey of the possible types of explanation of the 

reasoning involved in following Euclid’s argument, according to the Framework of 

Alternatives set out in Chapter 3. If the argument so far is correct, then the Kantian 

View not only avoids the difficulties facing its competitor views, but also advances a 

promising though partial explanation of this visual thinking. However, it does so 

within a set of assumptions that many philosophers have found it hard to accept, and 

in the face of important further objections in principle. Can a similar view be 

persuasive that does not require these assumptions? In particular, can it meet these 

further objections? On both counts, I shall argue that it can.

The present chapter is intended to make room for a positive explication and defence 

of one version of the Kantian View: we might for convenience call it a neo-Kantian 

view. This name is meant in a literal and neutral way: not as implicitly affiliating the 

view in question with any neo-Kantian school, thinker or doctrine, nor as suggesting 

that there may not be more than one such view plausibly available. The neo-Kantian 

view advanced here (henceforth for convenience, the neo-Kantian view) is a version 

of the Kantian View because it accepts the distinctive claims of the latter: that the 

reasoning is a priori^ and that the diagram makes a justificatory contribution. It is 

Mgo-Kantian because it does not follow Kant in many of the further claims he makes 

for his overall theory of intuition; it is, in effect, a different subspecies of the Kantian 

View. On several of the relevant issues, the neo-Kantian view simply does not take a 

position; on others, the position adopted is not Kant’s.

Accordingly, this chapter describes the neo-Kantian view, and locates the main points 

at which it diverges from Kant’s own views. It then assesses three further possible in­

principle objections, over and above the Generality Objection already discussed in 

Chapter 7. These objections have been advanced in various forms by a number of
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philosophers, but I shall approach them as presented by Philip Kitcher, in a 

cumulative critique of Kant that forms part of his own case for an empiricist account 

of mathematical knowledge. In Kitcher’s writings, they constitute a convenient, 

accessible and influential body of criticism. I shall not offer any detailed defence of 

Kant’s own position against these arguments, though I shall sketch possible lines of 

defence in places, and especially in a Postscript (Section 8.7). The question will be, 

rather, whether the neo-Kantian position advanced here is undermined by them, or by 

analogues of them; and if  so, how it may appropriately be defended. There may of 

course be other worries, both to the overall project here and to its detailed 

implementation, but this discussion is designed to address at least these main in­

principle lines of objection.

8.2 Kant vs. the Neo-Kantian View

With this in mind, it will be helpful to make clear from the outset the principal points 

at which Kant’s own doctrines and the neo-Kantian view diverge. We can class the 

differences into three:

1. The status o f Euclid’s geometry. Kant took Euclid’s geometry to be the

science of space: an exact and necessarily true description of the spatial 

structure of the physical universe.

The neo-Kantian view rejects this claim. On the neo-Kantian view, Euclid’s 

geometry is best understood as a piece of pure mathematics. It is a further 

question, one to be settled by empirical investigation, whether or not the 

spatial structure of the physical universe is in fact Euclidean. It is possible to 

reason about a kind of mathematical “space” using Euclid’s geometry. When 

someone does this, she is reasoning not about the actual properties of physical 

space, but about what features or properties physical space would have if it 

were as described in that geometry.

Kitcher 1975, Kitcher 1984, Kitcher 2000. Kitcher 1984 recapitulates arguments against Kant 
originally advanced in Kitcher 1975, and it will be convenient to treat them together.
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2. Intuition as a faculty o f mind. As described briefly in the last chapter, Kant 

postulates intuition as à fundamental mental faculty, and appeals to the 

workings of this faculty to explain, among other things, the synthetic a priori 

status of mathematical knowledge.

It is notable that Kant’s is not a “black box” appeal to intuition, on which little 

further is said, so that intuition comes to seem occult and non-explanatory. On 

the contrary, Kant has a great deal to say about his own specific notion of 

intuition, as we have seen, and it is this positive theory, rather than the fact of 

any missing explanation, that many philosophers have found objectionable.

The neo-Kantian view avoids both these alternatives, since it does not 

postulate or invoke the workings of any mental faculty of intuition. On the 

neo-Kantian view, to put the matter very roughly, the key functions accorded 

by Kant to intuition as a faculty—the capacity to represent spatial content and 

to generalise—are carried out by means of the reasoner’s possession of a 

certain conceptual repertoire, in conjunction with her visual imagination. The 

reasoner is able to form a geometrical concept of a certain kind; having done 

so, she can reason with the diagram by taking it to represent one or more 

instances of the concept. Finally, she employs a conceptual, and not intuitive, 

capacity to generalise.

Note that, though it rejects the claim that we have some faculty of intuition, 

the neo-Kantian view need not reject the claim that there is something 

“intuitive” about the reasoner’s geometrical concepts. On the view to be 

advanced here, the reasoner can form a geometrical concept by reflecting on 

her perceptual experience, and the concept so formed is spatial in that it 

enables its possessor to recognise, use and manipulate two-dimensional figures 

or diagrams as representing instances of the concept. This topic is discussed 

in detail in Chapter 10.

3. Apriority. Kant held that all and only necessary truths are knowable a priori, 

that a priori knowledge is certain, that a przon justification is indefeasible, 

and that truths knowable a priori are not knowable a posteriori.
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The neo-Kantian view is, of course, committed to the claims that there are 

mathematical truths knowable a priori, and that a reasoner may come to know 

at least one such truth by following Euclid’s argument. But beyond that it 

need not make any further commitments. It is thus compatible in principle 

with views that claim that some contingent truths may be known a priori, that 

some necessary truths may be known a posteriori, that a priori knowledge 

may be non-certain, that a priori justification may be defeasible and that some 

truths may be known both a priori and a posteriori.

8.3 The Irrelevance Objection

With this in mind, I now turn to the various objections advanced by Kitcher against 

Kant. The first is what he calls the Irrelevance Objection, and this follows directly on 

from the Generality Objection, a version of which was considered in the last chapter. 

The Irrelevance Objection goes as follows:

Kant believes we can gain a priori knowledge about the general properties of 
triangles by drawing and inspecting a particular triangle. But how do we come 
to generalise over the right properties and avoid generalising over the wrong 
ones? ... Were Kant to suggest that we should only generalise over those
properties which are determined by the concept of the triangle, the process o f
constructing mental diagrams would simply be a vehicle for disclosing 
conceptual relations and Kant’s position would become a conceptualist 
version o f apriorism. Thus Kant must conclude that the presented triangle has 
three types of property: those properties determined by the concept of 
triangle; those properties which reflect the structure which we necessarily 
impose on experience, and those properties which result from accidental 
decisions made in the construction. For his account to succeed we need a 
method of discriminating properties of the two latter types, so that we can 
legitimately generalize over the former and avoid generalizing over the latter. 
But to be able to do this is to have precisely that knowledge of the structure of 
experience for which Kant is attempting to account!

Thus the structure of the objection is to present a dilemma: either the generalisation is 

conceptual or it is not. I f  it is conceptual, then it does not epistemically depend on 

intuition (and so Kant must, it seems, reject this alternative). But if it is not 

conceptual, then the figure or diagram must have, as well as conceptual and accidental

Kitcher 1984, p. 51, emphasis added.
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properties, intuitive or mind-imposed properties; and there is then a question as to 

how the intuitive properties may be non-circularly differentiated from the accidental

properties.

How damaging is this worry to the neo-Kantian view? The view is committed to the 

claim that the reasoner is able to generalise in virtue of the exercise of a conceptual 

capacity. But this need not commit it to the claim, as the italicised clause above 

implies, that the process of constructing the diagram is “simply” a vehicle for 

disclosing conceptual relations. What Kitcher means by this is that the explanation in 

terms of the diagram becomes redundant if it invokes a purely conceptual capacity to 

generalise:

[Kant’s solution in terms of schemata] seems to make the exhibition of a 
particular triangle in intuition quite unnecessary. For if all that we are allowed 
to do is to draw out features of triangles prescribed by the schema of the 
concept “triangle”, then we can do this by conceptual analysis alone.

This statement is inaccurate as a summary of Kant’s notion of a “schema” and its role 

in this kind of reasoning, which we discussed in the previous chapter. A schema or 

representation of a construction procedure is, on Kant’s account, what determines the 

representational scope or generality of the diagram; but, as I have interpreted Kant 

(see Section 7.5 above), the diagram itself—and not the schema—is used to justify 

certain claims in Euclid’s argument. Appeal to the nature of schemata as such gives 

no reason to think that the diagram itself is unnecessary here, as Kitcher claims.

But the deeper question is: “unnecessary” to what? As noted in Section 7.7, in line 

with the overall discussion in the Doctrine of Method, Kant’s focus here is not on 

geometrical knowledge as such, but on the epistemology of the reasoning required to 

follow a given argument in Euclid. The same is true for the neo-Kantian. It is the 

apparent epistemic necessity of the diagram to this kind o f  reasoning, and not to 

geometrical knowledge per se, that is the target of explanation here. Hence Kitcher’s 

objection is off-target. No consideration has yet been advanced against the former 

view.

Coffa 1991 p. 46 seems to express a similar concern. 
‘̂ ^Kitcher 1975,p.43.
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It would be hard to argue that diagrams are necessary for any process of reasoning by 

which someone might acquire geometrical knowledge. But, for the reasons described 

in Chapter 6, it is plausible that a diagram (or figure) is epistemically necessary to the 

kind of reasoning required to follow Euclid’s argument. The neo-Kantian view can 

grant that there may be a valid counterpart means to reason to the angle-sum claim (or 

a similar claim) that is non-diagrammatic, while denying that this has any bearing on 

the question at issue. It can, then, safely accept the first horn of the dilemma posed by 

the Relevance Objection; it can concur that the reasoning here is conceptual, without 

conceding that the diagram or figure is epistemically unnecessary to the process of 

reasoning itself, or that there is nothing at all recognisably “intuitive” about such a 

process.

Note that Kitcher does not argue for his claim that “if  all that we are allowed to do is 

to draw out features of triangles prescribed by the schema of the concept ‘triangle’, 

then we can do this by conceptual analysis alone.” Rather, he simply appears to 

assume that it is somehow a fact about conceptual analysis that a distinctive kind of 

reasoning that employs it can never be epistemically reliant on diagrams or figures. 

This assumption is, 1 have argued, mistaken. But since the assumption is itself 

symptomatic of deeper and more widely held preconceptions as to the epistemic status 

of diagrams, a brief consideration of why Kitcher appears to hold it may be of 

interest. The key point, 1 suggest, is that Kitcher generally associates concepts with 

linguistic meanings; indeed, he devotes the chapter on “Conceptualism” in Kitcher 

1984 to a detailed exploration of the relation between linguistic abilities and 

conceptual knowledge, defending this connection against Quinean-type criticisms and 

ultimately locating it within his preferred psychologistic and empiricist account of 

mathematical knowledge. By “conceptual analysis”, then, Kitcher appears to have 

linguistic analysis canonically in mind.

The first thing to note here is that this is far removed from Kant’s picture, on which 

the diagrams in Euclid are “ostensive” representations, and the relevant thoughts 

depend on intuition for the representation of spatial content. Understanding concepts 

in terms of linguistic meanings, by contrast, predisposes analysis in a quite different

Does Kant’s position have the resources to meet the Irrelevance Objection? I argue in the Postscript 
to this chapter that it does.
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direction. Take a counterpart argument in natural language to the angle-sum claim. 

Here, as in a formal logical language, the argument is—in the normal case—mainly or 

exclusively symbolic, not ostensive; it does not proceed in virtue of taking any actual 

or imagined mark to present spatial properties as such, but in virtue of values 

conventionally assigned to the relevant marks (i.e., words). Moreover, there is a 

positive injunction to the reasoner who tries to follow such an argument not to draw 

on any spatial concepts she may possess, on risk of assuming the existence of 

geometrical properties of objects falling under those concepts that have not been 

explicitly stated or proved within the argument. It is, precisely, a benefit of symbolic 

representation that symbols can be chosen whose visual properties do not even 

roughly resemble the visual properties of the objects they represent, thus removing a 

possible source of error in reasoning with them.

Such a counterpart argument, in a natural or formal language, may be a valid means to 

argue to a given geometrical conclusion, but the reasoning involved in following it 

will be quite different to that involved in following Euclid’s argument. So there is, 

for familiar reasons, no reason to regard it as a satisfactory explanation of what is 

epistemologically distinctive of the latter reasoning. But the further point that this 

discussion brings out is the degree to which taking such purely linguistic arguments as 

a standard or canon can blur fine-grained distinctions between different concepts, and 

so inhibit analysis of arguments that use diagrams. It is, I suggest, easy for someone 

who associates concepts with linguistic meanings to think that the definition of a 

triangle gives the concept of triangle tout court. I shall be arguing against this 

specific claim in Chapter 10.

8.4 The Practical Impossibility Objection

The second of Kitcher’s objections is the Practical Impossibility Objection. This runs 

as follows:

How do we determine that sequences of presentations which we cannot in 
practice achieve are in principle possible for us? ... Kant claims that pure 
intuition can yield the knowledge that line segments are infinitely divisible. 
Now it is evident that we cannot attain this knowledge by observing a line
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segment infinitely divided. So what Kant must intend is that we give 
ourselves a sequence of presentations, showing a continued process of 
subdivision. Since there are practical limits on our ability to do this, we shall 
face an awkward question: are these limits reflections of a structural property 
of experience? To resolve this issue we need, again, that same insight into the 
structure of experience which pure intuition was supposed to provide.

This objection refers to Proposition 1.10 in Euclid, which provides a construction 

procedure for bisecting a given line. Now on Kitcher’s reading of Kant, geometrical 

truths are “about some particular feature of the world—that feature in virtue of which 

they are true”.̂ ^̂  The neo-Kantian, by contrast, takes Euclid’s geometry to be a piece 

of pure mathematics, as I have mentioned. In relation to the neo-Kantian view, the 

Practical Impossibility Objection asks whether following Euclid’s argument can >ield 

a priori knowledge of a general property of finite geometrical lines—here, the 

property of being infinitely divisible—given that we cannot perform the apparently 

requisite infinity of acts of construction. We cannot actually draw, and it seems we 

cannot visualise, the infinite divisibility of a finite geometrical line. So how can 

drawing diagrams or visualising figures here contribute to the justification of a 

geometrical belief?

Questions of infinite divisibility are complex, and some way removed from the 

argument of Prop. 1.32; so it could be readily argued that little in the main line of our 

discussion hangs on this worry. But the general worry is sufficiently relevant to our 

wider concerns to deserve consideration here.

In fact, there is a fairly straightforward response to be made: the reasoner can use 

mathematical induction. Recall that the “weak” principle of induction on the positive 

integers states that for any property P, in order to prove that all numbers have P, it is 

sufficient to prove two things: first, that the number 1 has P; and secondly, that for 

every positive integer n, if  n has the property P, then its successor n + 1 also has the 

property P.‘̂ ’ Thus, where “n” ranges over the positive integers, the inference is of 

the form:

Kitcher 1984, p. 51.
Kitcher 1975, p. 29. I discuss Kitcher’s argument for this view, and argue that it again misreads 

Kant, in the Postscript to this chapter.
On induction generally see any introductory text on set theory or mathematical reasoning; for 

exanple, Eccles 1997, Ch. 5.
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PI

Vn(Pn -> (Pn +1))

Vn(Pn)

Let Pn be defined as the property for any line L of having 2" parts, where parts have 

positive length. Then the argument can proceed by induction on the positive integers. 

The basis step is given by Euclid’s construction: Let a visualised line represent L; 

then the construction given in Prop. 1.10 shows that L has 2 (= 2^) parts. The 

induction hypothesis is: Let L have 2" parts. Then the argument runs:

Let I be any part of L. Letting the visualised line represent /, Euclid’s construction 

shows that I has 2 parts.

So each of L’s 2" parts has 2 parts.

But any part of a part of L is a part of L.

So L has 2 x 2 "  parts, i.e. 2”̂ * parts 

So, by induction, for any n, L has 2" parts.

Hence, for any finite line segment L, for any n, L has 2" parts.

This establishes the desired conclusion, and it does so by a process that involves 

reasoning with a visualised figure. Note that a reasoner can follow a very similar 

process in relation to a line drawn on paper. But the conclusion as to infinite 

divisibility will not relate to the physical composition of the line that has been drawn; 

it would be irrelevant to object that, at some suitably sub-atomic level, the line might 

“run out of parts”, so to speak. Rather, the reasoner is using a physical line to 

represent a geometrical line.

In relation to Prop. 1.10, the neo-Kantian claim is that here too— as in the earlier 

discussion of Prop. 1,32—what justifies the general conclusion is first, that this is 

valid reasoning, which includes reasoning with the diagram, and secondly, that the 

reasoner’s grasp of the relevant construction procedure is sufficient to justify her in

This argument was suggested to me by Marcus Giaquinto.
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believing that the conclusion holds for all such lines. So, provided that these claims 

as to validity and generality can be made good, the fact that she may not actually be 

able to bisect the physical line precisely by using the procedure, nor know whether 

she has done so, is irrelevant; she can be justified in believing that such a procedure, 

applied to the geometrical line she takes the diagram to represent, would bisect it. I 

shall argue for the validity and generality claims in relation to Prop. 1.32 in Chapter 

10.

I suggest, then, that the neo-Kantian view can readily meet the Practical Impossibility 

Objection.

8.5 The Exactness Objection

Kitcher’s third objection is the Exactness Objection:

How can we resist the challenge that the presented entities do not have exactly 
the properties we take them to have?... Just as our powers of ordinary 
perception are limited and fallible, so too are our powers of mental perception. 
Because of this we cannot assume that mental perception will give us exact 
knowledge even of the particular figures we construct. We should concede 
that we might be unable to distinguish a straight line from one that is very 
slightly curved. The concession is dangerous. For imagine that we follow 
Kant’s procedure to arrive at a belief in a geometrical truth. The warranting 
power o f the procedure can be undermined by experiences involving deceptive 
measurement which seem to show that the statement is only a close 
approximation to the truth. Given such experiences, it would be rational for  
us to suppose that our mental visual acuity had failed us, and thus to inhibit 
formation o f the belief.

We can separate out three distinct questions for the neo-Kantian view from this 

passage. The first is this: why is the conclusion of Euclid’s argument not true just 

of those (geometrically imperfect) triangles that exactly resemble the diagram actually 

drawn, and false of geometrical triangles (which do not)? The neo-Kantian should 

accept that the reasoner’s mental powers are finite and fallible, and that a reasoner 

might in some circumstances be unable to distinguish a straight line from one that is

Kitcher 1984, p. 51 and p. 53f. Emphasis added.
I am of course again taking the objection as it putatively relates to the neo-Kantian view, not to

Kant’s own views.
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very slightly curved. But even so, she can readily respond to this question by noting 

the ambiguity in the phrase “presented entities” in the first line: if “presented entities” 

refers to geometrical objects, then she can deny that geometrical objects as 

represented by figures or diagrams may not have exactly the geometrical properties 

she takes them to have, for reasons already described. If “presented entities” refers to 

the diagrams or figures themselves, then the neo-Kantian can again deny that 

diagrams or figures may not have exactly the physical or visualised properties she 

takes them to have; for she does not take them to have geometrical properties. As 

noted, a problem would only arise here if she made the erroneous assumption that she 

can reason validly by appealing directly to the figure or diagram and trying to “read 

off’ from it properties of the geometrical object(s) represented.

The second question concerns what conclusion we are supposed to derive from what 

Kitcher terms the “dangerous concession”: that a reasoner might in some 

circumstances be unable to distinguish a straight line from one that is very slightly 

curved. We can imagine situations in which such an inability to discriminate might 

indeed be dangerous: for example, given a school teacher’s request for pupils to 

measure the internal angles of a diagram of a triangle using a protractor, an 

approximately correct answer would be highly sensitive to a number of factors: for 

example, the accuracy of the drawing process, the flatness of the surface, and the 

pupils’ measuring skills. Any deviation from a required norm on these three counts 

would unsettle the pupils’ reasoning, indeed that of any human reasoner, to the 

desired conclusion (cf. the discussion in Chapter 4). But of course this empirical and 

inexact process has no bearing on Euclid’s argument, to follow which a quite different 

type of reasoning is required. In the case of Prop. 1.32, the reasoning operates by 

leading the reasoner to grasp certain equalities between angles, without regard to the 

exact size of those angles. And the reasoning appears to be much more robust than in 

the empirical case just considered, as a result. Why should this be? In the first place, 

there is no question of any measuring here. Secondly, it seems that even a very 

inaccurate diagram or figure—one in which lines are bent, overlap or do not meet, for 

example—can nevertheless be taken by a reasoner to represent a geometrical triangle; 

and an inaccurate implementation of the construction procedure using such a diagram 

or figure—line CE drawn slightly but noticeably non-parallel to AB, for example— 

need not affect the reasoning. The diagram below illustrates this point:
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So the final diagram constructed can be visibly inaccurate, without a reasoner being 

consciously aware of or attending to and correcting the inaccuracy, and yet still be of 

use for purposes of reasoning.

As yet, then, the concession is not dangerous to the neo-Kantian. What about the case 

in which the reasoner draws a diagram on what is, without her being consciously 

aware of it, a curved surface? Isn’t there a danger here that she might mistakenly 

infer that the angles of a triangle sum for example, to more than two right-angles? 

Note that this is not an unusual or limiting case: this is the situation in which a 

reasoner who follows Euclid’s arguments normally finds herself. But again, we need 

to bear in mind the crucial distinction between claims about the structure of the 

physical universe, and claims about space as it is represented in Euclid’s geometry.

Let us exclude the “reading-off’ view, since it is not a genuine way of following 

Euclid’s argument. Then there seems no reason to think that the hidden curvature of 

the diagram has any bearing at all on the justification for the reasoner’s belief. Recall 

that the belief does not relate to the physical space occupied by the diagram, but— 

again—to what the reasoner takes the diagram to represent. And a reasoner who takes 

the diagram to represent a geometrically curved triangle—a triangle in hyperbolic or 

elliptical space—has made a mistake. So it does not seem as though the concession is 

dangerous here either.

What might make the above worry more plausible is that a diagram drawn relatively 

“large” on a sphere can have internal angles that are plainly more than two right 

angles, and perhaps closer or equal to three right angles. This does not seem to be 

Kitcher’s worry: this is not a case of a reasoner’s inability to distinguish straight from 

curved, or of “deceptive measurement”. But it does suggest that the reasoning here
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might be rationally defeated by the appearance of the diagram. Hence the third 

question: is the neo-Kantian view committed to the claim that the justification here 

cannot be rationally defeated by the visual appearance of the diagram?

The worry is this. Let us imagine hypothetically that justification can be defeated by 

the appearance of the diagram. Then the way seems open for an opponent to claim, 

by parity of reasoning, that the neo-Kantian has not made out the distinction between 

her view and “reading o ff’ views that appeal to the diagram; if she accepts that belief 

can be defeated by the appearance of the diagram, the claim might go, then she must 

accept that her positive belief is partly underwritten by the mere appearance of the 

diagram. But if the neo-Kantian accepts this last claim, then the reasoning must be 

fallacious. And even if she can avoid this outcome, it would seem hard for the neo- 

Kantian to retain her view that the reasoning is a priori in the face of this challenge.

So the neo-Kantian must reject the possibility of epistemic defeat. But why think this 

is difficult? In the quotation above Kitcher talks of “undermining experiences ... 

which inhibit formation of the belief’. However, we need to distinguish here between 

two possible inhibitors of belief-formation. Psychological blockage or hindering 

occurs when, in following an argument, a reasoner has a visual experience of the 

diagram as a result of which she is unable to form (or retain) a given belief, but 

without having any reason to doubt the (putative) justification of that belief. Perhaps 

it is just not clear to her how to proceed. Epistemic blockage or hindering occurs 

when, in following an argument, a reasoner has a visual experience of the diagram as 

a result of which she is unable to form (or retain) a given belief, not because of any 

psychological difficulty, but because the (putative) justification of that belief is 

weakened or destroyed by the experience.

Now take the case above, in which a reasoner draws a diagram on a sphere, and let us 

think of locations on the sphere analogously with the Earth; as having a “North Pole” 

at the top as viewed by us, and an “Equator” running around the middle, etc. With 

this in mind, consider a reasoner who imagines drawing a diagram of a triangle on 

such a sphere, with point A on the “North Pole” and the base lying on the “Equator” 

running from point B on “the Greenwich meridian” to point C at “90 degrees East”. 

Now imagine that she tries to follow Euclid’s argument in relation to such a diagram.
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It will be straightforward for her to extend the base line BC further around the 

“Equator” to a point D (provided she does not go all the way round), as requested by 

the first step of the construction procedure. But how to draw a line through C parallel 

to AB? There is no way to do this: a line segment through C would have to be 

extendable to a great circle parallel to the great circle extending AB. But two great 

circles cannot be drawn parallel to each other; they must intersect at two points. So 

the reasoning to line 1 (the claim that ZBAC and ZACE are alternate) cannot 

proceed; the reasoner has had a psychologically blocking experience. Such a reasoner 

can psychologically “unblock” herself by visualising a Euclidean plane figure of a 

triangle, and reason on that basis.

Note that a reasoner’s knowledge (or rather, meta-knowledge) that she has been 

psychologically hindered or blocked in an earlier inference can rationally ground a 

worry about the epistemic reliability of later inferences; the worry may be that she has 

failed to take in all the epistemically relevant information as a result. But this is not a 

case of epistemic defeat, as defined above; it is not a situation in which a visual 

experience of the diagram is defeating the justification of a given belief. And what 

the example above brings out is the primacy of the text of the argument over the 

diagram; it is this that prevents the non-existence of angle ACE in the case above 

from having epistemic force. If the representational properties of the diagram were 

not specified by the text, then inconsistencies between the diagram and the text could 

in principle count against justification. But since the function of the diagram is to 

represent a situation described in the rubric of the argument, only two possibilities 

exist: either it does so, in which case the argument as such may proceed; or it does 

not do so, in which case there is psychological blockage or hindering. In neither case 

is there epistemic blockage.

8.6 Summary

The goal of this chapter has been to show that we can make room for a positive neo- 

Kantian view of our target reasoning. The chapter first identified the neo-Kantian 

view, and distinguished it from Kant’s own views. It then reviewed in detail three
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well-known lines of potential criticism of the neo-Kantian view, beyond the

Generality Objection discussed in Chapter 7.

1. The Irrelevance Objection suggested that the neo-Kantian could not treat the 

generalisation in Euclid’s argument as conceptual, on pain of making the role 

of intuition irrelevant, and the figure or diagram epistemically unnecessary. 

However, this criticism misses its intended target, which is not the acquisition 

of geometrical knowledge in general, but its acquisition using the kind(s) of 

reasoning required to follow Euclid’s argument. Once this further constraint is 

acknowledged, the claim of epistemic necessity for the diagram (or figure) is 

very plausible. By distinguishing between spatial and non-spatial concepts, I 

argued that neo-Kantian view can both treat the generalisation as conceptual 

and retain the idea that there is something intuitive about this reasoning, 

without conceding that the diagram is irrelevant to it. But this in turn requires 

a more detailed treatment of the relevant concepts; I turn to this in Chapter 10 

below.

2. The Practical Impossibility Objection suggested that, in the absence of infinite 

powers of visualisation, the neo-Kantian lacked an account of the justification 

of general mathematical claims. In response, I argued that the neo-Kantian 

can argue for the general claim by using the accepted principle of 

mathematical induction.

3. Lastly, the Exactness Objection raised a series of worries relating to the 

justification afforded by reasoning using the figure or diagram. The neo- 

Kantian response was to insist on two distinctions: one between the properties 

of the representing diagram or figure and the properties of the geometrical 

entity or entities represented; and one between psychological and epistemic 

blockage. Once these are understood, Euclid’s reasoning was found to be 

significantly more robust than a parallel but distinct empirical process of 

reasoning in geometry, consideration of which may erroneously be part of the 

motivation for these worries.
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The effect of this discussion is to start to bring out the character of, and the specific 

commitments incurred by, what I have termed the neo-Kantian view. In particular, it 

highlights the extent to which the neo-Kantian view recognises a spatial aspect to 

certain geometrical concepts, and an underlying commitment to what might be termed 

a fine-grained approach to such concepts, within which the spatial/non-spatial 

distinction can be articulated. It is here, in the specification of concepts, that the 

deepest contrast is to be found with Kant’s own views.

In the next chapter, I turn to consider the logic of Euclid’s argument.

8.7 Postscript: Kitcher’s Kant and the Irrelevance Objection

In this chapter I have taken various objections originally advanced against Kant by 

Philip Kitcher in relation, not to Kant himself, but to the neo-Kantian view. In this 

Postscript I argue that in fact Kitcher seriously misreads Kant, and specifically that 

the Irrelevance Objection is ill-founded as a result.

As a summary reading of Kant, Kitcher claims that:

Kant proposes that we construct figures in thought, inspect them with the 
mind’s eye, and thus arrive at a priori knowledge of the axioms from which 
our proofs begin ... Kant’s own proposal is tied to a sensuous notion of pure 
intuition—we draw mental pictures and look at them.̂ "̂ ^

But I suggest that this is misleading, and perhaps mistaken, in three respects. First, as 

far as I am aware, Kant does not discuss the specific question of how we know the 

axioms of Euclid’s geometry in any detail in the first Critique, and it is certainly not at 

the forefront of the discussion in the Doctrine of Method, on which Kitcher’s 

reconstruction is based. As I argued at the end of the last chapter, the focus there is 

on the epistemology of the reasoning involved in following Euclid’s argument, and 

this does not concern as such—though it does logically presuppose—an account of 

how the reasoner knows Euclid’s axioms. Secondly, Kant’s notion of pure intuition is 

not, I think, sensuous, at least if this term is taken in the normal way as relating to

Kitcher 1984, p. 49-50.
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sensations. On the contrary, Kant explicitly dissociates pure intuition from sensation, 

which he takes as arising in empirical intuition. Pure intuitions are pure in being 

sensation-free, and they are intuitions in being immediate singular representations. 

Thirdly, Kant’s view is not—as Kitcher later acknow ledges—that the reasoner 

merely draws diagrams and then looks at them. This would be, or would be close to, 

a reading-off view of the kind rejected (both on its own merits and as an interpretation 

of Kant) in the previous chapter. Rather, the reasoner follows the argument in relation 

to the triangles represented by the diagram; and it is this overall process—and not any 

tacit appeal to specific features of the diagram as such—that ultimately confers 

justification.

Does Kant’s own position succumb to the Irrelevance Objection? I suggested above 

that it does not, and that there is a strategy available to him that is broadly analogous 

to that of the neo-Kantian. But there is also a question as to whether the objection, 

which derives from Kitcher’s misreading, ever really gets going against Kant’s 

position. Recall that the Irrelevance Objection presents a dilemma: either the 

generalisation to Euclid’s conclusion is conceptual or it is not. If it is conceptual, 

then—supposedly—it does not depend on intuition, and the figure is redundant. But 

if it is not conceptual, then the figure must have intuitive properties as well as merely 

accidental properties, and a non-circular account is required of how a reasoner may 

differentiate between them.

If Kant is to face this dilemma, then on his account it must be an either/or matter 

whether the generalisation is conceptual or involves intuition. But is this in fact his 

view? Of course, the disjunction between intuition and concept is fimdamental to 

Kant. But recall that, in relation to the kind(s) of reasoning discussed in the Doctrine 

of Method, Kant’s claim is that the scope of the generalisation is determined not by 

the concept of a triangle as such but by the schema of the concept of a triangle; that is, 

by the reasoner’s grasp of what objects are generated by the relevant construction 

procedure. This grasp has a spatial or intuitive component, and schemata are, 

precisely, for Kant what unite the conceptual and the intuitive.

Kitcher 1984, p. 52, Kitcher 1975 recognises, if only briefly, the epistemic role of construction 
procedures in Kant’s account (p. 43); but this recognition is not carried forward to Kitcher 1984, 

On the role of construction procedures in Kant, see Section 7,4 above.
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Kitcher tries to cut off this line of response as follows;

Geometrical truths must either be about some particular feature of the world— 
that feature in virtue of which they are true—or they must state some 
particular property of our concepts. Since they are not analytic, the latter 
cannot be the case. So geometric truths are true in virtue of some facet of the 
world.

Call this the “No-Property” argument. However, in reply Kant can simply deny the 

move from non-analyticity to the claim that geometrical claims do not state properties 

of concepts; he can claim that such claims might state properties of concepts 

understood in relation to their schemata—properties not “contained in” the 

concepts—and still be synthetic. And this seems to be Kant’s p o s itio n :co m p are  

his remarks in the Schematism,^"^* and also (and explicitly) in the Doctrine of Method. 

In a telling passage from the latter, Kant remarks:

[In geometrical reasoning] I am not to see what I  actually think in my concept 
o f a triangle (this is nothing further than its mere definition), rather I am to go 
beyond it to properties that do not lie in this concept but still belong to i t ... I 
put together in a pure intuition the manifold that belongs to the schema o f a 
triangle in general and thus to its concept, through which general synthetic 
propositions must be constructed.

For Kant, this aptly brings out (1) the connection between geometrical concepts and 

geometrical definitions here, (2) the important contrast between a concept and the 

schema of a concept, and (3) the explanatory value of the latter. Since geometrical 

claims rely on schemata for their generality, it does seem that Kant’s view is that they 

are both synthetic and state properties of concepts.

So the “No-Property” argument fails, and Kitcher’s overall argument by dilemma 

cannot really be formulated fairly against Kant. Of course, I am not suggesting that 

Kant’s view of concepts is not problematic, and there are serious difficulties relating 

to his conception of a schema, as noted. But this would not affect the point being

Kitcher 1975, p. 29.
Cf. Friedman 1992, p. 90.
A141/B180, partly quoted in Section 7.4 above. 
A718/B746, emphasis added.
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made here, which is that—at least as formulated—the Irrelevance Objection does not 

properly arise for Kant, once his position is better understood.
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9: The Logic of Prop. 1.32

9.1 Introduction

The discussion in Chapters 7 and 8 so far has been designed to show, first, that we can 

find in Kant a promising account of the kind(s) of reasoning required to follow 

Euclid’s argument in Prop. 1.32; and second, that there is room in principle—several 

well-known objections notwithstanding—to develop a more persuasive neo-Kantian 

view of this reasoning.

I now want to explore this neo-Kantian view further. In Chapter 6, it will be recalled,

I suggested that we should reject the Leibnizian View of our target reasoning. In the 

course of that discussion, I considered several of the inferences in Euclid’s argument, 

and argued that while some of those inferences were sentential, others were 

diagrammatic. I also argued that there is no reason to think that diagrams are 

intrinsically out of place in proofs.

I now want to turn from considering individual inferences to considering Euclid’s 

argument as a whole. Earlier in the discussion I suggested that an interesting 

distinction could be drawn between what were termed “naïve” and “expert” ways of 

reasoning with the diagram in following Euclid’s argument. But how exactly should 

we understand this distinction? In particular, how if at all can we reconstruct the logic 

of these different ways of reasoning? And are there other such ways of reasoning to 

be reconstructed here? The approach I shall take here is a straightforward one. First,

I shall review the “naïve approach/expert approach” distinction, and ask whether we 

can identify other routes to belief that constitute ways to follow Euclid’s argument. 

Secondly, I shall describe various different types of logical reconstruction, and assess 

which if  any of these are appropriately sensitive to the epistemology of the routes to 

belief previously identified.
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9.2 The Naïve and Expert Approaches Reconsidered

At several points in the discussion so far—notably in Chapter 2—I have suggested 

that we can detect two distinct ways in which a reasoner can follow Euclid’s 

argument.

• On the naïve approach, the reasoner takes the diagram to have depictive scope; 

that is, she takes it to represent those geometrical triangles that it visually 

resembles. (Since visual resemblance is not a precisely specified relation, its 

representational scope here will include those geometrical triangles that seem 

to her to be roughly similar to the diagram.) The generalisation is then a 

movement of thought, at the end of the Demonstration, fi’om the narrow claim 

that the depicted triangles have the angle-sum property, to the general claim 

that all triangles have that property. This inference is grounded in the 

reasoner’s recognition that no inferential step depends on any property of the 

triangle(s) depicted that is not a property of all triangles. Note, however, that 

the scope of the diagram has not changed by the end of the above reasoning.

It is a further movement of thought for the reasoner to grasp that, since 

nothing hinges on the special features of the depicted triangles, the diagram 

may permissibly be taken to have wide scope from the outset; that is, as 

representing triangles that it does not visually resemble.

• On the expert approach, the reasoner takes the scope of the diagram to be 

general fi*om the outset. The final generalising inference is not a reflective 

one, for the diagram—and so any claims warranted by reasoning with the 

diagram—is understood in advance to be general. In this case, it would be 

wrong to think of the expert reasoner as following the presentation for a 

particular case, and then making a generalizing inference to the conclusion. 

Rather, she is reasoning generally throughout.

On both approaches it seems to be true that the reasoner can “switch o ff’ from her 

sensitivity to what if  anything the diagram represents and “switch on” again later.

That is, the naïve reasoner and the expert reasoner seem alike to be able to (1) attend
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to the initial diagram, (2) follow the sequence of changes made to the diagram during 

the course of its construction and the transitions in thought involving the diagram, and 

then, (3) having reminded herself of what the diagram represents, reason to the 

general conclusion. There is a certain similarity between this and syntactic reasoning 

with the symbol-strings of a formalised argument in an interpreted formal logic, 

where the reasoner may often find it convenient to ignore the semantics altogether, 

and then later attend to the interpretation of the conclusion derived.

So much is common to the naïve and the expert approaches. However, there is also 

an interesting phenomenological difference between them. During her experience of 

following the argument, the naïve reasoner can be quite committed to the thought that 

she is “seeing what happens” to a particular diagram, when manipulated in such-and- 

such a way. It may not seem to her as though she is reasoning about all triangles, or 

making any universal claims as such. Rather, she is following a particular object of 

her attention through a series of changes, to its ultimate “fate”.̂ °̂ By contrast, though 

the expert is reasoning with a given diagram, and so will be sensitive to claims made 

in the text about the diagram, she will, so to speak, be professionally unconcerned 

with the identity of the diagram as such; for her the reasoning is general from the 

outset, and the particularity of the diagram itself is of little or no relevance.

9.3 Is the Expert Approach a Way to Follow Euclid’s Argument?

I have argued that both the naïve and the expert approaches constitute valid ways to 

follow Euclid’s argument; neither novice nor expert has gone wrong in following the 

argument as she does. But someone might nevertheless claim that there is internal 

evidence to suggest that the expert approach cannot be used to follow Euclid’s 

argument in the way intended. Recall that in Euclid’s argument (cf. Section 2.4) there 

is a clear distinction between the claim made by the initial Enunciation and that made 

by the subsequent S p ec ifica tio n .T h e  Enunciation makes a quite general claim:

A similar point is made by Kit Fine in Fine 1985, p. 133.
We might note that the Greek term “diorismos” (“Specification”) has the connotation of delineating 

something, or giving it better definition.
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In any triangle, if  one of the sides be produced, the exterior angle is equal to 
the two interior and opposite angles, and the three interior angles of the 
triangle are equal to two right angles.

The Specification, not surprisingly perhaps, is more specific:

I say that the exterior angle ACD is equal to the two interior and opposite 
angles BAC, ABC, and the three interior angles of the triangle ABC, ACB, 
BAC are equal to two right angles.

How should we understand the logical relationship between these two parts of 

Euclid’s argument?

Note that the Conclusion recapitulates not the Enunciation, but the Specification.

That is, the official Conclusion of Euclid’s argument is not the real conclusion, if we 

take the latter to be the general angle sum claim for triangles, following normal 

practice. So, if the Enunciation is not to be left hanging, the argument must take for 

granted that the overall claim to be established (given originally in the Enunciation) 

follows directly from the Conclusion. But what, then, is the intended contrast 

between the Specification and the Enunciation? If there is to be a genuine contrast 

here between these two parts of Euclid’s argument, then it seems as though the 

Specification must be intended to make a claim about a particular case, such that a 

successful argument in this case for that claim is to be taken later, when understood in 

full generality, as a successful argument for the general proposition. This impression 

is reinforced by the position of the Setting-Out (“Let ABC be a triangle”) between the 

other two parts, on this reading; for on this reading the Setting-Out invites the 

reasoner to consider a given triangle and construct a diagram accordingly, and this 

then provides the particular case required. If this interpretation is right, then it would 

suggest that Euclid intends this: that the reasoner is invited to establish a particular 

claim, and then to recognise that the argument for that claim can be reinterpreted as an 

argument for the general conclusion. But this in turn implies that the expert approach 

is not available; for on the expert approach there is no transition in thought from 

particular claim to general conclusion.

Tempting though this line of thought is, it cannot be quite right. If it were, then there 

would be some specifiable place in the reasoning at which the expert reasoner, who
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takes the argument to be general from the outset, has gone wrong. But there is no 

such place, and indeed there is no reason to think that the expert does go wrong. In 

particular, it is not clear that the term “ABC” mentioned in the Setting-Out has to be 

taken as (in effect) a name. On the contrary, there appear in principle to be several 

different possible logical ways to read the argument, and on some of these readings 

the term “ABC” can be taken as a variable. It may be that we can use these latter 

readings to preserve the expert approach as a means to follow Euclid’s argument.

9.4 Are Other Approaches Possible?

Before we consider these logical readings, however, I want to ask whether there may 

not be other ways to follow Euclid’s argument, in addition to the naïve and the expert 

approaches already considered. We can approach this question by considering 

different possible sequences of thoughts, as follows. Here “ASP” refers for 

convenience to the angle-sum property, and I use “T” as a placeholder for different 

types of name, or for a variable, that might figure as a replacement for “ABC” in the 

various thoughts. The dots “ ...” abbreviate the intermediate reasoning, much of 

which was analysed in Chapters 2 and 6:

1. Let T be any triangle.. .T has the ASP. So all triangles have the ASP.

2. Let T be any triangle as depicted.. .T has the ASP. But the reasoning does not 
depend on any feature of T not shared by all triangles. So all triangles have the 
ASP.

(Recall that “as depicted” here means, in effect, “of similar shape to the diagram”.) I 

will take (1) to describe the expert approach, and (2) the naïve approach, as described 

just above.

The representational scope of the diagram is narrower in (2) than in (1). Are there 

sequences that constitute ways to follow Euclid’s argument, on which the diagram has 

narrower scope, or none at all? Consider these alternative sequences of thoughts:
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3. Let T be the triangle depicted.. .T has the ASP. But the reasoning does not 
depend on any feature of T not shared by all triangles. So all triangles have the 
ASP.

4. Let T be this (pointing to the diagram). This is a triangle.. .T has the ASP. But 
the reasoning does not depend on any feature of T not shared by all triangles. 
So all triangles have the ASP.

We can call (3) the Super-Naïve approach, and (4) the Ultra-Naïve approach. Are 

these latter approaches genuinely ways to follow Euclid’s argument? Consider the 

Ultra-Naïve approach first. On this approach, the diagram does not represent at all 

(unless it is in some sense self-depictive), and the role played by “this” is one of non­

deferred ostension; that is, it is supposed to indicate the diagram itself, not some 

object(s) represented by the diagram. The difficulty with the Ultra-Naive approach is 

this: if the reasoner is to carry out the Construction correctly, the diagram must itself 

instantiate the relevant geometrical properties mentioned. That is, line CE on the 

diagram must be exactly parallel to line BA. But in following Euclid’s argument, the 

reasoner does not, and is not required to, check or measure between the lines to ensure 

that they are parallel. So the Ultra-Naïve approach does not describe a genuine way 

to follow Euclid’s argument.

What about the Super-Naive approach? Here the difficulty lies in the implausibility 

of the reasoner’s commitment to there being one and only one triangle depicted by the 

diagram: which one is it? Moreover, the reasoner has to deny that the diagram also 

depicts triangles which may only be very slightly different in visual appearance from 

that which she takes it to depict; or which are of exactly the same shape but slightly 

different size; or that are of exactly the same shape but of slightly different 

orientation. But this is, I suggest, an absurdity to which someone who follows 

Euclid’s argument is not committed. If so, then the Super-Naïve approach is also not 

a way to follow Euclid’s argument.

There remains the possibility that there are other ways to follow Euclid’s argument. 

But this is unlikely, and I shall focus on the expert and naïve approaches in what 

follows.
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9.5 Logical Readings of Prop. 1.32

I now want to consider five different candidate logical readings of the reasoning here. 

The question is which, if any, of them is the best formalisation of the particular 

sequences of thoughts that constitute the naïve and expert approaches. It may be 

helpful to recall again what these sequences are:

1. Let T be any triangle.. .T has the ASP. So all triangles have the ASP [expert].

2, Let T be any triangle as depicted.. .T has the ASP. But the reasoning does not 
depend on any feature of T not shared by all triangles. So all triangles have the 
ASP [naïve].

But I also want to leave open a slightly variant pair of sequences:

1 *. Let T be a [not: any] triangle.. .T has the ASP. So all triangles have the ASP 
[expert].

2*. Let T be a [not: any] triangle as depicted.. .T has the ASP. But the reasoning
does not depend on any feature of T not shared by all triangles. So all triangles 
have the ASP [naïve].

The concluding thought in each case is surely the same:

(C) All (Euclidean) triangles have the ASP.

What about the premiss in each case? We can see it as implicitly expressed by the 

initial “Let...” sentence, where that is read as an indicative sentence with an optative 

“introduction”, roughly thus for (1) and (2) above:

(PI) (Let it be the case that) T is any triangle [expert].

(P2) (Let it be the case that) T is any triangle as depicted [naïve].

With this in mind, we can identify five different candidate ways in which one might 

read either of the premisses above. (Let us assume that the predicate “F” denotes “ ... 

is a triangle”, and that “G” denotes “ ... has the angle sum property”.) They are:
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a) Universal quantifier/bound variable: Vx(Fx -> x = a)

b) Proper name: Fn

c) Existential quantifier/bound variable: 3x(Fx a  x = a)

d) Arbitrary name: Fa

e) Open sentence: Fx

The Universal Quantifier Reading

I suggest we can rule out (a), the universal quantifier reading, at once in relation to 

both premisses. On that reading, the thought would be

Everything is such that, if it is a triangle, then it is T.

In other words, T is every triangle. But this dubiously grammatical thought is not the 

thought expressed by (PI) or (P2), and it cannot be, since it would imply that there is 

just one triangle, T.

Proper Name Reading

A second possibility is that the reasoner takes the diagram as, in effect, a proper name 

denoting a particular geometrical triangle. Kit Fine criticises this reading as follows:

[This view] is ... psychologically unrealistic. If we ask ourselves what we are 
doing ... it is most implausible to suppose that we are reasoning about a 
particular individual. In this respect, the standard historical example of a 
triangle is misleading. For in geometric demonstrations of a traditional sort, it 
is usual to draw a diagram of the figures one is reasoning about; and so there is 
some room for the hypothesis that one is actually reasoning about those 
figures. But change the example and the implausibility of the hypothesis 
becomes immediately clear. Suppose I wish to establish that all natural 
numbers have a prime factorisation. I take an arbitrary natural number n, 
establish that it has a prime factorisation, then conclude that all numbers have 
a prime factorisation. But in this case one is under no temptation to suppose 
that the reasoning is about a particular number. For which one is it? 3? 15?
10' ° +  6?'“

152 Fine 1985.
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This argument would be cogent if we had any prior reason to regard the contrasted 

geometrical and arithmetical reasoning as logically or epistemically equivalent. But 

Fine gives no reason to think that they are, and there are good reasons to think they 

are not equivalent. First, the arithmetic example starts from the premiss that the 

natural number selected is arbitrary. But it is not clear that the premiss thought “Let 

ABC be a triangle” is necessarily understood ab initio by the reasoner as claiming that 

the triangle is an arbitrary one. Secondly, the arithmetic example does not involve 

any representation with depictive content. But the diagram is a depictive 

representation, and it is the contrast between this depictive content and the reasoner’s 

general grasp that in part makes the case an interesting and distinctive one for 

analysis.

Nonetheless, we should reject the proper name reading. There are two difficulties: 

first, as noted already (and noted by Fine), it is mysterious how the reasoner can be 

reasoning about just one individual. Secondly, there does not seem to be any 

plausible rule of logical inference available from the premisses containing the proper 

name to the general conclusion. And without that, the reading cannot be used to 

capture valid sequences of thoughts which do contain such general inferences, such as 

those in (1) - (2*) above.

The Existential Quantifier Reading

The existential quantifier reading, advanced by Hintikka, is harder to a s s e s s . O n  

the one hand, the treatment of the premiss seems quite natural if  we consider the 

expert and naïve approaches as in (1*) and (2*): for in these it is rendered “T is a 

[not: any] triangle ...”, and this is a standard type of case for the use of an existential 

quantifier. On the other hand, if we prefer (1) and (2) above, then there is something 

slightly artificial about reading an “any” claim in terms of an existential quantifier.

On this reading the skeleton of the argument can be reconstructed as follows:

Hintikka 1967. Hintikka tries to motivate this reading by appealing to a notion of “ekthesis” to be 
found, he claims, in Euclid and Aristotle. But even if it is granted that the concept of ekthesis is the 
same in both cases, it is far from clear that it must be read in terms of existential instantiation.
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3x(Fx A X = a)

Ga

3x(Fx A X = a) -> Ga 

Vy[3x(Fx A  X = y) ^  Gy]

The final inference is one of Universal Generalisation, and—as usually presented in 

formal logic—this is a valid form of inference from a sentence containing an arbitrary 

name to a general claim, provided that no step in the reasoning relies on any 

assumption expressed by a sentence containing the arbitrary name. (I will take it that 

arbitrary names are sufficiently well understood in general to be used in possible 

readings of Euclid’s argument.)^

Again, however, this reconstruction is rather unnatural. For the Universal 

Generalisation to go through, the conclusion must contain a disguised existential 

antecedent in the conditional. We cannot reject this out of hand; but a more natural 

reading would be preferable.

The Arbitrary Name Reading

The fourth reading uses arbitrary names, but without a prior existential 

instantiation.'^^

Fa

Ga

Fa-^Ga

Vx(Fx->Gx)

See Lemmon 1965, p. ix and the discussion in pp. 107-9. Fine 1985 contains a detailed discussion 
of reasoning with arbitrary names.

See the discussion in Beth 1956 and Parsons 1983, Ch. 5 and Postscript, for example.
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Again, the final inference is via Universal Generalisation.

Now the arbitrary name reading seems to capture the naïve reasoning rather well. In 

particular, “Fa” strikes an attractive balance as a reading of the premiss. On the one 

hand, it preserves the desired difference between an “any” claim and an “all” claim, 

unlike the Universal Quantifier reading; and it is not at odds with reading “any” as “a” 

in (1 *) and (2*) above. On the other hand, it also respects the phenomenology of the 

naïve reasoner’s thinking, as noted earlier: her sense that she is “seeing what 

happens” to (the object(s) depicted by) it, and the way in which the reasoner follows 

the diagram through the process of reasoning.

However, the reading has an important drawback: it is far firom clear that, on the 

naïve (or indeed the expert) approach, the reasoner ever entertains a thought with the 

content “F a^G a”, i.e. “If [arbitrary entity] is a triangle, then [arbitrary entity] has the 

ASP.” On the contrary, the relevant thought seems to be, again, “T [or: arbitrary 

triangle] has the ASP” (or perhaps, “T is a triangle that has the ASP”); that is, there is 

no implication apparent here. Moreover, the argument presented here reads Euclid’s 

conclusion as “Vx(Fx^Gx)”. But, strictly speaking, this formalizes not (C) above 

but rather :

(C*) All things are such that: if they are (Euclidean) triangles, then they have the 

ASP.

(C*) is true if and only if all things in the universe have this property: that if they are 

(Euclidean) triangles, then they have the ASP. This could be vacuously true, given a 

standard reading of material implication, if there were no (Euclidean) triangles at all. 

But, though the issues are not clear-cut, it is a standard worry here that this latter 

condition is not sufficient for the truth of (C). Moreover, it mistakes the target of a 

reasoner’s thoughts. The reasoner here is not reasoning about all things in the 

universe. She is reasoning about triangles. She is entertaining a thought of the form 

“All Fs are G” or similar, and there is no apparent implication here, as the 

suggests. Hence “Vx(Fx^Gx)” is not an appropriate way to formalize (C).
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This argument has broadly tracked one made by Mark Sainsbury, and I shall assume 

that Sainsbury is correct in claiming that it can be shown that no truth functional 

sentence connective can be inserted into the position in “Vx(Fx->Gx)” in such a 

way as to yield an adequate formalisation of sentences such as As Sainsbury

points out, this suggests that the overall problem lies not in the choice of connective, 

but in the relation between the universal quantifier and the single open sentence “Fx 

Gx” that it takes to form a sentence; and be uses this analysis to motivate treatment 

of sentences such as (C) in terms of binary, and not unary, quantifiers. A binary 

quantifier is a quantifier that takes two open sentences to form a sentence (I use “A” 

to denote a binary universal quantifier below; Sainsbury gives a suitable rule of 

interpretation for the relevant quantifier in Sainsbury 1991).^^^

The appeal to binary quantifiers is not sufficient to settle the worry about vacuous 

truth-making raised above, as Sainsbury is careful to note. But it does introduce 

another—and perhaps more natural—means to formalise the overall argument. This 

is as follows, using arbitrary names ().

Fa

Ga

Fa;Ga

Ax(Fx;Gx)

This avoids the difficulties mentioned above. Note, too, that the conclusion is more 

natural than that presented by the Existential Reading. We can also use the device of 

binary quantifiers for the latter, reconstructing it as follows (“E” denotes an existential 

binary quantifier):

Ay[Ex(Fx;x = y);Gy]

See Sainsbury 1991, Section 4.17 passim. 
Ibid., p. 197.
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But this does not remove the existential quantifier, and so does not remove the source 

of the unnaturalness already noted above.

To sum up so far: I suggest that the arbitrary name reading, using binary quantifiers, 

is both plausible in its own right as a reconstruction of the naïve reasoning, and 

superior to the alternatives surveyed here.

The Open Sentence Reading

On the open sentence reading, the diagram is understood as, in effect, a variable. 

Presented using unary quantifiers, the argument is as follows:

Fx

Gx

Fx Gx

Vx(Fx Gx)

The open sentence reading faces a well-known objection, summarised by Fine as 

follows:

Open sentences ... are not susceptible of truth and falsehood and cannot 
therefore enter directly into inferential relationships. Since our understanding 
of variables is tied to their use with variable-binding operators, it must be 
presumed that the instantial terms are somehow implicitly bound and that the 
direct object of reasoning is not the open sentences themselves but the closed 
sentences resulting from their bondage.

On this view, the open sentence reading is only defensible if  the sentences are 

understood as being implicitly bound by a universal quantifier at each stage of the 

argument. A thought construed in terms of an open sentence would then be true iff 

the proposition expressed by the universal closure of the relevant sentence was true;

Fine 1985, p. 132. Potter 2000 (p. 45) advances what is essentially the same objection in relation to 
arbitrary names.
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and an inference would be valid iff it was constituted by a movement from one such 

thought to another such thought.

There are two difficulties with this proposal. First, the initial claim that non­

susceptibility of truth and falsehood renders sentences (here, open sentences) 

incapable of entering inferential relationships is a suspect one. Take an example of 

Frege’s: “William Tell shot an apple off his son’s head.”^̂  ̂ This proposition is 

plausibly neither true nor false. Yet it can readily enter into some inferential 

relationships; we can validly infer that William Tell shot something off his son’s 

head. So we should not accept Fine’s first suggestion. Second, we should not accept 

Fine’s claim that “it must be presumed that the instantial terms are somehow 

implicitly bound and that the direct object of reasoning is not the open sentences 

themselves but the closed sentences resulting from their bondage.” The effect of this 

would be to turn the argument above into the following:

VxFx

VxGx

VxFx -> VxGx 

Vx(Fx Gx)

But this is plainly invalid, and so not a possible reconstruction of either the naïve or 

the expert thinking above.

Fine’s objection is not successful; and his preferred remedy is hardly satisfactory. We 

should, I suggest, take the open sentence reading seriously. Again, we can improve 

the overall form of the argument by using binary quantifiers:

From Frege’s “Logic” of 1897; of. Beaney 1997, p. 230.
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Fx

Gx

(Fx;Gx)

Ax(Fx;Gx)

Presented like this, the reading has much to recommend it. First, the premiss “Fx” 

captures the expert reading of “T is a [or: any] triangle” well. Secondly, the 

argument above does not contain the suspect open sentence “Fa -> Ga”. Moreover, 

its conclusion also contains no implicational arrow, and thus offers a more natural 

reading of (C). Nevertheless, the reading also loses the idea, which was characteristic 

of the naïve approach, that the reasoner is tracking the changes to, or seeing what 

happens to, the triangle(s) to which the diagram is similar in shape. If we are to take 

the variable in the argument above as a variable—as we need to, if  there is to be a 

genuine contrast with the arbitrary name reading—then there can be nothing 

distinctive about the entity or entities to which it refers. But it seems as though we 

can only understand the thought here as employing a variable if  we ignore any 

tendency the naïve reasoner has to take the diagram as representing triangles to which 

it is similar in shape.

This makes the open sentence reading unattractive as a construal of the naïve 

approach. But, by the same token, the reading seems to capture the expert reasoning 

very well. For what was distinctive about the expert approach was precisely that the 

expert reasoner took the representational scope of the diagram to be not merely 

depictive, but entirely general from the outset. And yet at the same time we can retain 

and make intelligible a distinction between “all” and “any” using it—and hold on to 

the “any” reading for the premiss, as we cannot using universal quantifiers.

We are now in a position to return to the issue raised in Section 9.3 above. There I 

identified a question as to whether the expert approach was available at all as a way to
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follow Euclid’s argument. The problem was as follows. Recall that the Enunciation 

in Euclid makes an entirely general claim:

“In any triangle, if one of the sides be produced, the exterior angle is equal to 
the two interior and opposite angles, and the three interior angles of the 
triangle are equal to two right angles.”

The Specification, however, is more specific:

“I say that the exterior angle ACD is equal to the two interior and opposite 
angles BAC, ABC, and the three interior angles of the triangle ABC, ACB, 
BAC are equal to two right angles.”

Euclid’s official Conclusion recapitulates the Specification. But the real conclusion, 

the angle sum claim, is given by the Enunciation. I noted above that the contrast 

between Specification and Enunciation seems to demand a movement of thought from 

particular to general, a transition which does not occur on the expert approach.

We can now see a response to this worry: this is that we do not have to take the 

diagram as playing the role of a name. We can, using the open sentence reading, see 

it as operating as, in effect, a variable. If we do this, we can agree that there is a 

transition from the Conclusion of Euclid’s argument to what I have termed the real 

conclusion: the overall claim to be established (i.e. the Enunciation). But we do not 

need to see this as involving any movement of thought from particular to general. 

Rather, we can read it as the valid transition from (Fx;Gx) to Ax(Fx;Gx) described 

above. The expert reading thus remains a valid way to follow Euclid’s argument.

9.8 Summary

This chapter has further explored what were termed the naïve and expert approaches 

to our target reasoning. It identified distinct sequences of thoughts corresponding to 

these approaches, and surveyed five possible logical construals of these sequences. 

Of these, I argued that we should reject the first two, using universal quantifiers and 

proper names. The third, using existential quantifiers, was more plausible; but I
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suggested that we should prefer a fourth treatment using arbitrary names as a 

reconstruction of the naïve reasoning, and a fifth using open sentences as a 

reconstruction of the expert reasoning. If we do this, we can meet a possible worry 

that the expert approach is not in fact a means to follow Euclid’s argument.
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10: The Epistemology of Prop. 1.32

10.1 Introduction

I turn now to the last part of my elaboration and defence of a neo-Kantian view of our 

target reasoning. This view holds, with Kant, that a reasoner can be justified in 

believing the angle sum claim by following Euclid’s argument, that the diagram 

contributes to that justification, and that the justification is a priori. However, it does 

not postulate the existence of a faculty of intuition. On the neo-Kantian view, to state 

the matter positively, a reasoner can follow Euclid’s argument by using geometrical 

concepts, together with her visual imagination. I will take it that the existence of a 

reasoner’s general capacity to exercise visual imagination is not in doubt, given the 

amount of relevant psychological evidence.

Chapter 8 showed that we could make room for a neo-Kantian view in principle, by 

reviewing and answering some main lines of possible objection. Chapter 9 then 

analysed the overall skeleton of the argument, showing that we could formalize the 

different inferences of the naïve and expert reasoner by using arbitrary names and 

open sentences.

However, in order to introduce and locate the neo-Kantian view, I have deliberately 

postponed discussion of four critical epistemological questions. The first directly 

addresses a key claim made by the neo-Kantian view:

1. How can the neo-Kantian view avoid postulating a faculty of intuition?

The second question arises fi*om Chapter 7:

2. Is the reasoning required to follow Euclid’s argument valid reasoning?

Robertson 2002 usefully lists some of this literature.
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The third and fourth questions arise from Chapter 9;

3. How can the reasoner who follows Euclid’s argument be justified in believing 

that the angle sum claim holds for all triangles?

4. If this reasoning is sufficient to justify belief in Euclid’s conclusion, is that 

justification a priori?

This chapter addresses each of these questions in turn.

10.2 Spatial Intuition and Spatial Concepts

First, then, let us consider how the neo-Kantian view can avoid the need to postulate a 

faculty of intuition. It is a characteristically Kantian claim, as I have noted, that the 

very possibility of our having thoughts with spatial contents depends on the existence 

of a faculty of intuition. In the case of Euclid’s argument, the suggestion is that it is 

this capacity that enables the reasoner to draw a diagram of a triangle at all (“I 

construct a triangle by exhibiting an object corresponding to this concept, either . . . in 

pure intuition ... or in empirical intuition” A713/B742). What the neo-Kantian view 

needs to show is that it can account for the representation of spatial contents in 

geometrical thoughts, and specifically here for the representation of a triangle in such 

thoughts, without invoking such a faculty.

In order to make the discussion as specific as possible, I will use the approach 

developed by Peacocke in Peacocke 1992, which individuates concepts in terms of 

possession conditions. Although this approach is hardly uncontroversial, it has two 

particular merits: first, it is relatively familiar, at least to many Anglo-American 

philosophers, and so I shall do no more than sketch the bare bones of it here; 

secondly, it is—as far as I am aware—the most developed single philosophical 

analysis of concepts available. However, nothing is intended to hang on the precise 

details of Peacocke’s approach as such.

On this broadly Fregean view, concepts are constituents of thoughts, and thoughts are 

the possible contents of various types of mental state. Concepts are not identified
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with linguistic meanings, though we can use language to describe concepts. Concepts 

are not truth-evaluable, and do not express propositions, make claims, state facts or 

convey information. There is thus a strong distinction here between concepts and 

what might be termed theories: what one might take to be, at a minimum, sets of 

rationally interrelated thoughts. For the latter are normally the results of reasoning, 

and do express propositions, make truth-evaluable claims etc. Differentiating theories 

from concepts allows for the possibility of constitutive explanations of the former in 

terms of the latter.

On Peacocke’s approach, it is assumed that different concepts are individuated by 

their possession conditions; that is, in terms of sets of necessary and sufficient 

conditions on what it is for a user to possess the concept in q u e s t i o n . T h e  

conditions elucidate the concept in terms of what inferences the reasoner who 

possesses the concept is deemed to find primitively compelling, where an inference is 

primitively compelling if, broadly, there are no other reasons intervening between 

premiss and conclusion. Thus in the simplest case, a concept of CONJUNCTION can 

be specified as that concept possessed by someone who finds inferences of the form 

“A, B” to “A & B” and from “A & B” to “A” or “B” primitively compelling. In the 

case of perceptual concepts, the possession conditions may mention two types of non- 

conceptual content. First, they may mention scenario content, where a scenario is a 

spatial type whose tokens are sets of perceptible features taken in relation to a given 

origin and set of axes. Second, they may mention proto-propositional or aspectual 

content; that is, ways of perceiving features such as symmetries, which are too fine­

grained for scenario content to capture, but of which it is nevertheless plausible that a 

perceiver can be non-conceptually aware. Finally, as well as having possession 

conditions, each concept has a “determination theory”, which is supposed to explain 

how those conditions, and the world, jointly determine the semantic value of the 

concept. Thus for the concept CONJUNCTION, the determination theory states that 

the semantic value of the concept is given by the truth fimction that makes the 

inferences mentioned in its possession conditions truth-preserving.

See Peacocke 1992, Chapters 1, pp. 6-18. For non-conceptual content, see his Chapter 3.
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We can say that someone’s developing the relevant dispositions to make inferences 

marks the move to her acquiring a given concept. But these dispositions may not be 

operative at a given time—I may have the concept NARCISSUS, and see a narcissus 

without realising it is one. Moreover, even when they are operative the subject may 

not be able to articulate or describe what is distinctive of the concept possessed—as, 

in my own case, with the concept LARCH. Thus when someone possesses a concept, 

we can identify three distinct aspects or levels of possession: a concept may be 

possessed simpliciter while being inoperative and inarticulable by its possessor; or it 

may be operative and inarticulable, or it may be articulable. Peacocke’s approach 

applies, in effect, to possession simpliciter.

Let us say, following Peacocke, that a visual concept is one whose possession 

conditions, correctly stated, mention some feature(s) of the actual or possible visual 

appearance of objects that fall under the concept. Then a visual concept TRIANGLEv 

can be specified, following Peacocke’s style of formulation, as follows.

TRIANGLEv is that concept C for a thinker to possess which:

1. She will believe of any object presented under perceptual-demonstrative mode of 

presentation m that C(m), whenever the object presented under m occupies a 

triangular plane region of the scenario that her experience represents as 

instantiated around her, and she takes her experience at face value; and

2. For an object thought about under some other mode n, she will believe C(n) iff she 

accepts that the object presented under n has one of the shapes that objects are 

represented as having by experiences of the kind mentioned in the first clause.

The claim is that these conditions are individually necessary and jointly sufficient to 

individuate the concept in question. Condition (1) here can mention triangularity in a 

non-question-begging way, since the concept does not fall within the prepositional 

attitudes of the thinker. Condition (2) accommodates the possibility that someone can 

believe of an unperceived object that it is visually triangular. Finally, the language of 

(2) also allows for the fact that something can be one of many different shapes and 

still be triangular.
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The possession conditions for TRIANGLEv are relatively complicated. But it is more 

straightforward to give possession conditions for a geometrical concept appropriate to 

Euclid’s definition, for the characteristics mentioned in the definition are, and are 

fairly clearly intended to be, individually necessary and jointly sufficient for 

triangularity. Thus we can specify TRIANGLEeg as follows.

A geometrical concept TRIANGLEeg is that concept C for a thinker to possess which:

1. If she entertains a thought of an entity m as being a rectilinear trilateral plane 

figure, then she will judge without further reasons that C(m); and

2. If she entertains a thought of an entity m as C(m), then she will judge without 

further reasons that m is a rectilinear trilateral plane figure.

TRIANGLEv and TRIANGLEeg are different concepts. Someone who possessed 

TRIANGLEv can in principle draw a triangle ABC, as Euclid requests in the Setting- 

Out at the start of Prop. 1.32. If she also possesses the concept TRIANGLEeg, and 

understands the background conventions as to representation, then she can properly 

take a diagram thus drawn to depict one or more geometrical triangles of the kind 

specified in the definition. This is what is required for the reasoner to follow the 

Setting-Out; parallel remarks apply to the Construction, in which the reasoner is 

instructed to extend line BC to D, and to draw line CE parallel to line AB.

10.3 Visual Geometrical Concepts

I suggested in Chapter 9 that we could understand the Setting-Out of Euclid’s 

argument as a claim of the form “(Let it be the case that) ABC is a triangle;” that is, as 

embedding a prepositional claim that can serve as an initial premiss for the argument. 

Differentiating between the visual and geometrical concepts as I did just above allows 

us to explain how the reasoner is to understand this premiss, given her knowledge of

Recall that Euclid’s definition of a figure is as “that which is contained by any boundary or 
boundaries”; that is to say, figures in Euclid are always “closed” figures.
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the definition. But we should also note that it is not the case that a reasoner must have 

Euclid’s definition to hand in order to form a suitable geometrical concept of a 

triangle. On the contrary, she may form such a concept by a process of reflecting on 

the diagram or figure itself.

How might this occur? Imagine someone who has the visual concept TRIANGLEv 

and uses it to draw the following diagram of a triangle:

She might well notice that although the two upper sides were straight-ish, they were 

not as straight as the bottom line: they could be straighter. And that two of the lines 

were thicker than a third; they could be thinner. And that while the lines do not quite 

touch in two places, in a third place one line overruns the other: these lines could 

touch, and at their points, with no overrun. Now she might imagine being presented 

with a series of such triangles, in each of which the lines were progressively straighter 

and thinner, and the angles progressively sharper. At some point, the progression will 

cross the threshold of her perceptual acuity; she will not be able to distinguish one 

from another. As far as she can tell, these will be perfect triangles. Does she have to 

give up any possibility of differentiating later triangles in this succession? No, though 

she will not normally have any perceptual means to do so. She can still imagine that, 

though the threshold of her perceptual acuity has been crossed, there are real 

differences between these subsequent triangles, and so that they can be partially 

ordered. But she can quite consistently imagine what it would be to be the limit case, 

and this is a geometrical triangle. She could then take a diagram to represent such a 

geometrical triangle, without in fact taking the diagram itself to be perfectly 

triangular. And she is not committed to taking an apparently perfectly triangular 

diagram to represent an instance of the geometrical concept; she can consistently

I owe this idea, and much else in this chapter, to Giaquinto 1998.
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believe both that the diagram is, as far as she can tell, perfectly triangular and that it is 

not a representation of a perfect triangle.

This suggests a route via which a reasoner can form a visual geometrical concept, by 

reflection on an instance of a visual but non-geometrical concept. Take the case of 

someone who has the visual concept TRIANGLEv, and who is presented with an 

object that appears perfectly triangulary to her.̂ "̂̂  We can then specify a concept of 

perfect triangularity, TRIANGLE?, as follows.

A concept TRIANGLE? is that concept C for a thinker to possess which:

1. For any object n that appears perfectly triangular to her, if  she believes m to have 

the same shape that n appears to have, she will believe without further reasons that 

C(m); and

2. If she believes C(m), she will take the apparent shape of an object n to be the real 

shape of m only if n appears perfectly triangular to her.

Euclid’s definition is, then, not strictly speaking necessary for a reasoner to form a 

geometrical concept of a triangle; she can do by reflection on a visual but non- 

geometrical concept.

What is the significance of this? In the first place, it suggests that—contrary to an 

line of thinking advanced in Komer 1960—we should resist the claim that there is a 

neat partitioning between visual and geometrical concepts: for the concept 

TRIANGLE? is both geometrical and visual (note the mention of visual features in the 

possession conditions). Secondly, the existence of this and similar routes to 

geometrical concept-formation implies that we are not required to see Euclid’s 

arguments as invalidated by the absence of formally satisfactory definitions. So the 

possibility that they can be knowledge-yielding is still available. Thirdly, on the 

independently plausible assumption that the human representation of space is

Note that “appears” here should be taken in its core sense of visual appearance. We need to leave 
open the possibility of other perceptual routes to geometrical concepts. For example, it is plausible that 
there is a parallel tactual route to a tactual geometrical concept of a triangle. In this case, the 
possession conditions will mention the tactual “appearance” or feel of perfect triangularity.
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Euclidean, the concepts TRIANGLEeg and TRIANGLE? are co-extensive. We can 

now see the utility of Euclid’s definition: a reasoner can acquire the non-perceptual 

geometrical concept TRIANGLEeg directly from the definition, and then move 

interchangeably between that and the perceptual geometrical concept TRIANGLE? 

without introducing any risk of invalid inference, since the truth conditions of 

thoughts with these conceptual constituents will be unaffected by the switch.

But the main point is, I suggest, this: that this kind of conceptual specification allows 

us to bring out the precise point of divergence between the neo-Kantian view and the 

specific set of views attributed in Chapter 7 to Kant. The neo-Kantian view does not 

invoke a faculty of intuition. But there is nevertheless something intuitive about the 

concepts we have specified so far. All of these concepts are spatial concepts. We can 

say that a spatial concept is one whose possession conditions, correctly stated, 

mention some spatial feature(s) of the objects that fall under the concept. But this is 

true of all of TRIANGLEv, TRIANGLEeg and TRIANGLE?, for in each case the 

possession conditions mention triangular regions or figures.

In Peacocke’s account, a thinker’s awareness of environmental features is supposed to 

be captured in terms of the notion of non-conceptual scenario content. It is a distinct 

further step to argue for the existence of this type of non-conceptual content, and one 

to which the neo-Kantian view is not committed. But, though this is more 

contentious, it is hard to imagine how there could be any genuine explanation of 

spatial visual concepts (including visual geometrical concepts) that did not mention a 

thinker’s awareness of spatial features of her actual or imagined environment in a 

non-question-begging way; and if this is true, then we should not think of scenario 

content as importing special assumptions to which another competing account would 

not ultimately also be committed. So we can say this: that there is a component of 

the neo-Kantian account that corresponds to what Kant takes to be a contribution of 

intuition to geometrical cognition; and that this spatial component is captured here by 

Peacocke’s notion of scenario content.

The neo-Kantian view now has what it needs: an explanation in principle of how a 

reasoner can entertain geometrical thoughts in virtue of the possession of certain 

concepts, without explanatory recourse to any postulated faculty of intuition.
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10.4 Validity

I turn now to the second question raised above: Is the reasoning required to follow 

Euclid’s argument valid reasoning?

We saw in Chapter 6 that there is no good reason to think that diagrams as such are 

out of place in proofs; and I argued that the same is true a fortiori of arguments more 

generally. Whether an inference is diagrammatic or sentential has, in and of itself, no 

bearing on its validity. But now the neo-Kantian view might be thought to face a 

serious difficulty. Recall again the inference to line 7 of Euclid’s argument, which I 

discussed in Section 6.6:

E

CB D

(7) ZACD = ZECD + ZACE 

I reconstructed this inference in Chapter 2 as follows:

(7a) CE divides ZACD into two parts, ZECD and ZACE, without remainder 

[from the diagram]

(7b) The whole of an angle is equal in size to the sum of the sizes of any parts into 

which it is divided without remainder [background assumption]

(7c) ZACD = ZECD + ZACE [7a, 7b: by substitution]
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In Section 6.6 I argued that, thus reconstructed, this is a logically valid inference: 

lines 7a and 7b together entail line 7c (= line 7). But I pointed out that in making this 

inference the reasoner does not entertain the general thought in line 7b above, and she 

does not seem to do any substitutional reasoning to reach line 7. This implies that the 

reasoning used in making the diagrammatic inference is not logical reasoning: there 

is no logically valid inference from line 7a to line 7c. So the question is how the neo- 

Kantian can claim that the diagrammatic inference is nevertheless a valid one.

I suggest that the correct response is simply this: the neo-Kantian view can 

distinguish between inferences that are logically valid, and those that are subject- 

matter valid. We can think of an inference from P to Q as subject-matter valid if and 

only if there is some known truth X of the given subject such that {?, X} together 

logically entail Q. Since X is a known truth of the subject in question, there can be no 

question of the inference rule not being truth-preserving. But the rule is not topic- 

neutral. Its validity depends on the identity of X: it is only because X is a known 

truth of the subject matter in question that the inference goes through.

With this in mind, we can understand the inference to line 7 above as subject-matter 

valid, and specifically geometrically valid, thus: though line 7a does not logically 

entail line 7c, line 7a and the background belief in line 7b geometrically entail it, 

provided that line 7b is a known truth of geometry. Do we have any reason to doubt 

that line 7b—the claim that the whole of an angle is equal in size to the sum of the 

sizes of any parts into which it is divided without remainder—is a known truth of 

geometry? It is not enunciated in Euclid, as far as I am aware. But surely, we have 

no reason to doubt it at all.

We can make very similar remarks about other diagrammatic inferences required to 

follow Euclid’s argument—such as the inferences to line 9 and to line 11—as I argued 

in Section 6.7. For all of these we can say that where an inference is prompted by a 

reasoner’s antecedent geometrical knowledge, we are not required to understand it as 

logically valid, if valid at all; rather, it may be logically invalid, and yet geometrically 

valid. As this suggests, restoring the missing premisses is sufficient to give a 

logically valid reconstruction of the inference, but this comes at the cost of failing to 

capture what is distinctive of the original thinking.
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We can now return to the original question whether the reasoning required to follow 

Euclid’s argument is valid reasoning. Let us review the results of the discussion so 

far. Chapter 2 identified various types of inference required to follow Euclid’s 

argument at different points. Some of the inferences are clearly logical inferences, 

and so valid. Others are not logical inferences, but distinctively geometrical 

inferences, in the sense identified above. In all the cases surveyed, the diagrammatic 

inferences have obviously valid sentential counterparts. We have seen no reason not 

to regard these diagrammatic inferences as truth-preserving. To sum up: we need to 

acknowledge the distinction between logical and subject-matter validity. If we do so, 

we should conclude that such inferences are valid, in the latter sense. Overall, then, 

the reasoning required to follow Euclid’s argument is valid reasoning.

10.5 Generality

Finally, we can now consider the third question raised above: How can the reasoner 

who follows Euclid’s argument be justified in believing that the angle sum claim 

holds for all (plane) triangles?

Recall that the central problem here is simply that different triangles may have 

different geometrical properties. In the words of Tennant quoted in Section 6.2:

One is cautioned, and corrected, about... the mistake of assuming as given 
information that is true only of the triangle that one has happened to draw, but 
which could well be false of other triangles that one might equally well have 
drawn in its stead.

Tennant’s claim elides the distinction between the diagram and the triangle(s) 

depicted by the diagram: one cannot (normally) draw a geometrical triangle, strictly 

speaking—though one can draw a diagram that is similar in shape to such a triangle— 

and I have argued that the claims in Euclid’s argument are not to be taken as claims 

about the diagram, but about the triangles depicted by the diagram. But his point is 

clear: even if the soundness of an argument as to the depicted triangles could be 

established, this would be insufficient to establish the truth of the general claim.
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We can contrast the position here with a parallel one in the geometry of circles. If we 

can be justified in believing some claim in (plane) circle geometry on the basis of 

following a diagrammatic argument for some depicted circle(s), this is sufficient— 

given that all circles have the same geometrical properties—for us to infer the general 

claim for all circles. But the crucial “given” here does not hold for triangles. Since 

not all triangles have the same geometrical properties, the reasoner needs a 

justification for generalising a given valid argument that holds for certain depicted 

triangles—triangles to which she takes the diagram to be visually similar in 

appearance—to a claim about all triangles.

I argued in the previous section that the reasoning required to follow Euclid’s 

argument is valid reasoning. So we can at least say this: that Euclid’s argument holds 

for the triangle(s) depicted. That is to say, using the “arbitrary name” reading adopted 

in Chapter 9 for illustrative purposes, the reasoner is justified in making the following 

inference:

Fa

Ga

FaiGa

The present question is, using the same reading, how she can make the inference to 

the overall conclusion:

Fa;Ga

Ax(Fx;Gx)

Note again that, as I argued in Chapter 7, Postscript 2, it is not open to us to 

understand this generalisation as employing an infinite (or indefinitely long) process 

of iteration; the reasoner does not follow an infinite rule here. But there is a way of 

putting the question of generality that can seem to make this kind of response 

obligatory—unattractive though it is—on pain of the question’s being otherwise
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impossible to answer at all. This is to say something like the following: “How can 

the reasoner know that however she draws the diagram, the argument still holds for 

the triangles depicted?” The reasoner faced with this question might well conclude 

that this knowledge is impossible in the absence of an infinite rule: for, even if she 

knows that the argument holds for some number n drawings of the diagram, how is 

she to know that it holds for the n̂  ̂+ 1 drawing?

However, I suggest we can do better if we approach the question slightly differently, 

in terms of its converse. The argument will generalise if the reasoner can be justified 

in believing that no step depends on any property of the triangles depicted that is not a 

property of all triangles. Can she do this? Let us distinguish between generic and 

non-generic properties. Generic properties are properties of all triangles (for example, 

having three sides or having three angles) while non-generic properties (for example, 

having all three sides equal) are properties only of some subset of all triangles. Then 

the question is whether the reasoner can be justified in believing that the argument 

does not depend on any non-generic properties.

At this point we need to recall the construction procedure for Prop. 1.32, reconstructed 

as follows:

Setting-Out:

Let ABC be a triangle [by Definition 19]

Construction:

Let BC be produced to D [by Postulate 2]

Let CE be drawn through C parallel to AB, E to lie on the same side of BCD as A [by 

Prop. 1.31]

Each of these claims is warranted by a definition, a Postulate or a previous 

Proposition. The claim in the Setting-Out clearly does not require or presuppose that 

the entities represented by the diagram have any particular property and a fortiori, it 

does not presuppose that they have non-generic properties: they must just be 

triangles. Moreover, it is clear, I suggest, that neither of the two latter claims requires 

that the triangles represented have any non-generic property. Not only do they not
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mention any such property explicitly; they are evidently compatible with the 

diagram’s having maximal representational scope. Contrast, for example, a 

construction procedure that required that the triangles in question be isosceles, or that 

a given angle should be greater or less than a right-angle. So there is no 

presupposition in the construction phase of Euclid’s argument to the effect that the 

triangles represented have any non-generic property.

But this is all the reasoner needs to believe in order to make the generalisation with 

justification. Recall that, by the rule of Universal Generalisation, if a claim about a 

given but arbitrary object rests on no prior assumption about the object in question, 

then it may be generalised into a claim about all such objects. The geometrical 

analogue of this claim here would be that if a claim about one or more given but 

arbitrary triangles rests on no prior assumption about the triangles in question, then it 

may be generalised into a claim about all such triangles. The antecedent of this 

conditional is satisfied here. No assumption has been made as to the triangles 

represented by the diagram, and the reasoner who assumes that the diagram is merely 

depictive has made a mistake. The argument is valid, as we have seen. So the 

reasoner can make the general claim with justification. Moreover, it is by the 

distinctively Kantian move of taking the scope of the diagram to be established by the 

construction procedure, and then exploring the presuppositions of that procedure, that 

we reach this conclusion.

This is, in effect, the generalisation of what I have termed the expert reasoner. But we 

should note that the same conclusion goes through for the naïve reasoner. In order to 

be justified in making the generalisation, the naïve reasoner must come to recognise 

on reflection that, though she takes the diagram to be purely depictive, to understand 

the claims in Euclid’s argument as true only of the triangles depicted constitutes a 

further and unwarranted assumption. By rereading the construction procedure in the 

light of this recognition, she can be justified in making the concluding generalisation.

We can now, finally, diagnose the source of the error in the Rouse Ball fallacy 

described in Section 1.2. This is that the reasoner mistakenly inferred the faulty 

claims in lines 17 and 19 from non-generic properties of the objects represented by
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the diagram. And as described, the source of the error is both clear and correctable by 

the reasoner.

10.6 Apriority

By following Euclid’s argument, then, a reasoner can come to believe the angle sum 

claim for all triangles with justification. Our principal concern has been with the 

justification of belief states, as offered by the kinds of reasoning involved here, and in 

particular by the reasoning with the diagram. So I will not pause to consider the 

question whether this reasoning is sufficient for knowledge; let me simply note that 

we have seen no reason so far to doubt that it is.

We can now consider the fourth question raised above: Is this justification a priori! 

In particular, in making the transition from belief states that draw on visual concepts 

such as TRIANGLEv to those that draw on the geometrical concepts TRIANGLEeg 

or TRIANGLEp, do we not form the latter in reliance on the former? The answer to 

this is No. There is no reason here to think that the reasoner comes to believe 

Euclid’s angle sum claim by treating her experience of the diagram as evidence and 

then (mis)generalising; this is home out by detailed examination of the various 

inferences. This is so even on the broad conception of experience described in 

Chapter 2, which includes not only perception of the external world and the subject’s 

bodily states, but also the subject’s awareness of conscious events and states of 

thinking, imagining and desiring. None of these states is taken here to furnish 

evidence for the reasoner’s belief state. And this belief state can be justified even if 

she simultaneously holds that her visual experience is not, and could never be, the 

experience of seeing a geometrical triangle.

Moreover, there are strong general reasons—discussed in Chapters 4 and 5—not to 

regard the belief-state justification here as a posteriori. On the account given here, 

there can be a causal relationship between the possession of a visual concept and the 

acquisition of a geometrical concept, but there need be no justificatory relationship 

between belief states whose contents have these concepts as constituents.

173



10.7 Is Prop. 1.32 a Proof?

The discussion so far naturally raises the question whether Euclid’s argument is a 

proof. Again, I suggest the answer to this is No. Recall that we should ignore the red 

herring that proofs must be sentential, for reasons discussed in detail in Chapter 6.

We can say that an argument is a proof if it satisfies three criteria: it must be 

surveyable, convincing and rigorous. Euclid’s argument in Prop. 1.32 is surveyable.

It is valid, and I have argued that it is, when correctly understood, convincing. But it 

is not fully rigorous. It can be given a degree of formalisation in a logical language, 

though not in a way that preserves the distinctive inferences made by the reasoner. 

Moreover, it is noticeable that proofs of Euclid’s conclusions can be rigorously given 

in a formal diagrammatic system that is intended to be broadly modelled on Euclid’s 

presentation. But the weakness of Euclid’s presentation lies in the lack of clarity 

over the background conventions and assumptions, and over the definitions, as 

described in Chapter 2. For example: the relevant convention as to the 

representational scope of the diagram needs to be stated; a suitable continuity 

assumption must be made explicit; and the status of “line”, “point” etc. as, in effect, 

primitive terms needs to be made clear.

What about a similar argument that stated these assumptions, and corrected the 

definitions so as to be rigorous by modem standards? I suggest this would have a 

reasonable claim to be considered a proof. But we need not take Euclid’s argument to 

be a proof to regard it as able to justify, or indeed to yield knowledge.

10.8 Summary

I noted at the outset of this chapter that three critical questions remained unanswered 

fi*om the discussion so far. These asked how the neo-Kantian view can avoid 

postulating a faculty of intuition; whether the reasoning required to follow Euclid’s 

argument is valid reasoning; and how the reasoner who follows Euclid’s argument can

165 Miller 2001.
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be justified in believing a priori that the angle sum claim holds for all triangles. In 

response, I argued, first, that we can specify different visual and geometrical concepts 

of a triangle that a reasoner must possess if she is to follow Euclid’s argument; and 

that the reasoner does not require the concept of a triangle given by grasping Euclid’s 

definition in order to follow the argument—she can form a visual geometrical concept 

from a visual but non-geometrical concept by a process drawing on her visual 

imagination. These are all spatial concepts, but they do not require us to postulate a 

faculty of intuition on the reasoner’s part. Secondly, I used a reconsideration of 

certain inferences in the light of the discussion so far to argue that the reasoning 

required to follow Euclid’s argument is valid reasoning. Thirdly, by examining the 

construction procedure involved, I argued that Prop. 1.32 met the standard required for 

inference by Universal Generalisation, so that the reasoner could be justified in 

believing the angle sum claim generally; and that this justification is a priori. Finally, 

I suggested that though Euclid’s argument is not a proof, a similar argument might 

well be a proof; in any case, the target reasoning was of significant epistemic value.

10.9 Postscript: Analytic Concepts

The reader will recall from Chapter 7 the strong contrast that Kant draws between the 

fertility of mathematical (here: geometrical) reasoning, and the sterility of 

philosophical reasoning. I suggest we can use the analysis of concepts in Sections 

10.2 and 10.3 above to elucidate Kant’s idea here briefly.

In Euclid’s argument, I have argued that the diagram can be taken to represent one or 

more instantiations of the concept TRIANGLEeg, which the reasoner possesses in 

view of her understanding of the definition in Euclid of a triangle as a rectilinear 

trilateral (plane) figure. Kant’s point about the sterility of philosophical reasoning is 

then surely this, that merely analysing Euclid’s definition into its component concepts 

cannot of itself supply any spatial content; it cannot give a reasoner any of the 

concepts TRIANGLEv, TRIANGLEeg or TRIANGLEp. Rather, what makes these 

concepts spatial—and in particular what allows a reasoner to understand what it is for 

something to be a figure—is derived extra-conceptually. Moreover, it is only when a 

reasoner has the relevant spatial concepts—TRIANGLEv, or similar, plus one of the
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other two geometrical concepts—that she is epistemically in a position to follow 

Euclid’s argument at all. But, as their possession conditions make clear, it is written 

into the possession conditions for such a concept that the thinker be perceptually or 

imaginatively aware of the features of her (actual or imagined) environment. Of 

course, this is hardly sufficient to establish Kant’s general claim. But it is 

nevertheless striking that what confers on a thinker the conceptual capacity to reason 

by following Euclid’s argument is the addition of extra-conceptual spatial content to 

the concepts that compose Euclid’s definition.
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Chapter 11: Conclusions

A young would-be composer wrote to Mozart, asking 
advice as to how to compose a symphony. Mozart 
responded that a symphony was a complex and demanding 
musical form and that it would be better to start with 
something simpler.

The young man protested, "But Herr Mozart, you wrote 
symphonies when you were younger than I  am now. ”

166And Mozart replied, "Yes; but I  never asked how. ”

Mozart’s reply reminds us that, even in a relatively formal and self-conscious human 

activity such as musical composition, achievements are often more familiar to us than 

their explanations. As in music, so—I would suggest—in mathematics. Even the 

best-known cases of mathematical reasoning can long elude satisfactory explanation. 

The history of Euclid’s argument is a case in point.

But it need not be so. In this thesis I have argued for three claims, as identified in 

Section 1.4:

1. The kind of visual thinking we do in following Euclid’s argument can be 

epistemically valuable—specifically, it can justify belief and confer 

knowledge.

In Chapter 2 ,1 described various ways in which a reasoner can follow Euclid’s 

argument, apparently with justification. At certain stages in the argument, there 

seemed to be two or more different types of inference available. Some used 

substitution or addition on sentences; others used visual thinking with the diagram, 

such as a form of “seeing as”, visual translation and visual addition. In Chapter 6 ,1 

argued in detail that while it was correct to understand some of the inferences required

Solman 2002.

177



to follow Euclid’s argument as sentential, others should be understood as 

diagrammatic. In the latter cases, though there might be a counterpart sentential 

inference, it misdescribed the relevant thinking to construe it in sentential terms.

Following a discussion of the Generality Objection in Chapter 7, Chapter 9 then 

turned from the nature of the intermediate inferences to the nature of the concluding 

generalisation. It discussed what were earlier termed the naïve and expert approaches 

to Euclid’s argument, the difference between these approaches lying in how the 

reasoner understands the representational scope of the diagram. I analysed the overall 

structure of the argument, and argued that, from a range of standard alternative 

presentations in a quantified language, we could best understand the naïve and expert 

thinking overall by reading them in terms of arbitrary names and open sentences, with 

binary quantifiers, respectively.

Chapter 10 drew a contrast between subject matter (specifically: geometrical) validity 

and logical validity. It then argued directly for the key epistemic claims: that the 

reasoning used to follow Euclid’s argument was (geometrically) valid reasoning; that 

reasoner could make the crucial concluding generalisation with justification; and that 

this reasoning was a priori. This is not logical reasoning, nor is it sentential 

reasoning. But it is valid, it is epistemically valuable, and we can use it to come to 

believe with justification, and I suggest to know, previously unjustified or unknown 

truths of geometry. In this sense, contrary to Russell’s claim in Chapter 1, we can 

learn geometry from Euclid.

2. We can identify in Kant an embryonic explanation of such thinking that is 

preferable to its major alternatives.

Chapter 3 set up a logically exhaustive Framework of Alternatives, which allowed us 

to classify candidate explanations of our target reasoning. I argued in Chapters 4 and 

5 that we should reject empirical views, on which the experience of the diagram is 

taken as inductive evidence for the general claim, or on which the reasoning as a 

whole is taken as deductive but based on inductively established axioms. The 

Leibnizian View—on which the justification is a priori and the reasoning is purely 

sentential—remains the present orthodoxy amongst philosophers of mathematics. I
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suggested that a strong version was mistaken in claiming that diagrams were 

intrinsically out of place in proofs; but that, even without this claim, though it was 

correct to understand some parts of the thinking required to follow Euclid’s argument 

as using sentential inferences, other parts use diagrammatic inferences. Someone who 

follows Euclid’s argument in the way described in Chapter 2 makes both sentential 

and diagrammatic inferences. And in the latter, the diagram contributes to 

justification.

The Kantian View, however, avoided these drawbacks: it did not construe the 

reasoning as empirical, and it acknowledged the epistemic indispensability of the 

diagram. So, of the logical alternatives presented in Chapter 3, we should prefer the 

Kantian View.

There are various attitudes that commentators may in principle strike in relation to the 

views of a given philosopher, from outright hostility and rejection on one side, to 

unquestioning endorsement on another. The interpretation advanced here has not 

been uncritical of Kant: for example, it has ignored discredited Kantian doctrines for 

Euclid’s geometry as the science of space, it does not follow Kant in postulating a 

special faculty of intuition, and it has argued in detail that Kant’s account of 

construction in pure intuition, and his notion of a schema, are at best unclear.

But on several points I have argued that Kant’s position has resources that his critics 

underestimate; and on the main point, as to the value and nature of the reasoning 

involved in following Euclid’s argument, I argued both that Kant correctly recognises 

that the very existence of this kind of reasoning is an important explanandum for the 

epistemology of mathematics, and that he has a highly promising but so far 

underexplored explanation of it to offer. Moreover, this explanation is importantly at 

odds with the highly influential present “logical” tradition of Kant interpretation, 

which it is tempting to see as structured by what one might term a deep Leibnizianism 

as to the nature and sources of mathematical justification. In contrast to other 

sympathetic critics of Kant, then, the strategy here has been one of direct defence, and 

not of exculpation or apologia: the claim is not that Kant is elegantly, interestingly or 

excusably wrong, but that—in these respects at least—he is importantly right.
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3. This account can be developed into a persuasive explanation of the epistemic 

value of this type of reasoning; one which is recognisably Kantian, but which 

does not appeal to any special faculty of intuition.

I have not defended Kant’s account as such in any detail here. But I have argued that 

a development of the Kantian View—what I called the neo-Kantian view—is a 

persuasive explanation of the epistemological value of our target reasoning. Such an 

approach faces strong objections, even once it has been separated out from some 

controversial and specifically Kantian doctrines. But I argued in Chapter 8 that the 

main lines of objection could be answered, and later chapters have further developed 

the argument along the lines briefly summarised above. Though the details are quite 

different, the resulting view of diagrams—on which they are both psychologically and 

epistemically valuable—bears notable affinities with that of many ancient Greek 

writers; perhaps this should not be surprising.

It is a feature of the neo-Kantian view that it makes no explanatory appeal to a special 

faculty of intuition as such; it does not invoke “intuition” as an independent source of 

mathematical justification. Rather, justification is conferred in virtue of capacities of 

the reasoner in whose existence we independently have reason to believe, and 

which—to some extent at least—we independently understand. Fundamental is the 

reasoner’s capacity to acquire and possess certain visual and spatial concepts, such as 

those specified in Chapter 10, and to entertain thoughts constituted by those concepts. 

But we should also note the further capacities made possible by possession of these 

and related concepts: to take a diagram to represent an object or objects; to follow a 

set of instructions; to draw or imagine the visual appearance of something; and to 

understand a sentence as a claim about a state of affairs represented by a diagram.

In by-passing any appeal to a faculty of intuition, has the neo-Kantian given up what 

makes Kant’s account of value? A convincing argument for the existence of such a 

faculty would be, I take it, a very significant philosophical achievement. But we need 

not see its absence here as impoverishing: it is simply a different, and more modest, 

philosophical project to seek to explain the relevant phenomena in terms of capacities

Ancient Greek views on diagrams are summarised and discussed in Knorr 1975, p. 69fF.
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in whose existence we already have independent reason to believe. Such a project 

would fall under a somewhat different tradition in the epistemology of mathematics, 

which takes as its targets the nature and value of mathematical belief and 

understanding—and the different ratiocinative processes that warrant mathematical 

belief and understanding—considered worthy of explanation as naturally occurring 

phenomena in their own right. This area deserves further investigation. After all, 

merely to consider the angle sum claim, there appear to be at least five other different 

diagrammatic routes alone to justified belief.

But the overall point remains: in the right circumstances, there can be a genuine a 

priori epistemology of diagrams in mathematics. And this is, I suggest, a valuable 

result.

These are: the “Pythagorean” argument (cf. Heath 1956, p. 320); Thibaut's argument by rotation 
(ibid., p. 321); an argument by visualisation of a triangle as half of two right-angled rectangles (ibid., p. 
319); an argument by “paper-folding” (Roe 1993, p. 1); and Prop. 1.32 in Byrne's reconstruction, which 
involves coloured angle segments (Byrne 1847, p. 33).
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Appendix: A Proof in Alpha EG

This Appendix summarises the syntax, semantics and rules of inference of Peirce’s 

Alpha Existential Graphs. I then give a short sample proof in EG.

Syntax

There are three primitive types of symbol in the alpha graphs: (1) The blank area on 

which the graphs are to be drawn. This is known as the “sheet of assertion”, or SA.

A graph may be written anywhere on it. (2) Propositional letters (e.g. “P”, “Q”, “R”). 

(3) A continuous, closed and non self-intersecting line, known as a “cut”. This can be 

of any shape, but is normally drawn as a circle or oval. Graphs can then be defined as 

follows: (i) Any part of the blank SA is a graph. A propositional letter is a graph, (ii) 

If r  and A are graphs, then the juxtaposition of F and A is a graph, (iii) If F is a 

graph, then the enclosure consisting of a single cut with F alone inscribed within it is 

a graph.

Semantics

The normal semantics for the alpha graphs is as follows: to write a graph on SA is to 

assert it to be true; propositional letters stand for propositions; and to enclose a graph 

in a cut is to negate it. Thus there are, in effect, two logical operations in EG: 

negation (enclosing a graph in a cut), and conjunction (simultaneous juxtaposition of 

two or more graphs on SA). As the analogy with a two functor sentential logical 

language (hereafter 2SL) suggests, EG is expressively adequate; that is, it can express 

any truth-function whatever using just these two operators. I give graphs for the five 

standard truth functors in a five-functor language (5SL) in Section 6.3 above.

Graphs can be translated into formulas of SL by working from the outside inwards 

(“endoporeutically”, in Peirce’s terminology), representing cuts by the negation sign 

and the areas between two or more propositional letters, or between a propositional 

letter and a cut, by the conjunction sign. There is no need in EG, however, for
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symbolism or rules to govern grouping (that is, bracketing or rebracketing) of 

expressions, as in the 2SL formulas above. Rather, the cut symbol precisely defines 

the scope of the negation by what it encloses. Thus, in the case of the graph for 

material implication

the subgraphs

“P” and “

—“P” and “cut-Q” in English—fall within the scope of the cut, as they fall within the 

brackets governed by the negation sign in the 2SL translation sentence. Peirce calls 

this feature, of one cut enclosing another, the “nesting” of cuts. There is no limit in 

principle to the amount of nesting which can take place in a graph.

A graph of anything other than a simple assertion or negation will feature more than 

one cut, and therefore a degree of nesting. In EG this degree is formalised by the idea 

of levels within a graph. The SA is taken to be an even level, and, moving inwards, 

every cut signifies a change of level, alternating between even and odd. An area is 

said to be “oddly enclosed” if it is surrounded by an odd number of cuts, and “evenly 

enclosed” if it is surrounded by an even number of cuts, or by no cuts at all.

Thus in the graph above—which could be translated in 5SL as S a  --((P a  Q) a  --R) or 

S A ((P A Q) -> R)—“S” is on an even level, “P” and “Q” are on an odd level, and 

“R” is on an even level.

Rules o f  Inference

The inference rules for EG are then:
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RI. Erasure (ER): Any evenly enclosed graph may be erased. Thus from

&  Cs)
it is permissible to infer, given that SA is an even level

This is equivalent to the principle in SL that (using Greek letters to denote schematic 

form) (p A \|/1- (p.

R2. Insertion (IN): Any graph may be written on any oddly-enclosed level. Thus 

from

P I Q

it is permissible to infer

P R ( Q

This is equivalent to the principle in SL that (p -> vj/1- (cp a  x) vp- Further 

propositional letters are merely being added to the antecedent of a conditional 

proposition. It is clear that this cannot affect the truth value of the whole proposition.

R3. Iteration (IT): Any graph which occurs in a given area A may be inserted in the 

same area, or in an area nested in A. Thus from

P ( Q

it is permissible to infer, for example.

P I P Q

or
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This is analogous to the principles in SL that 9  -> ij/1- (p -> (9  a  v|/) and 

9  9  |- (9  A 9 ) ->  9 . Iterating the antecedent of a conditional, or adding the

antecedent to the consequent, cannot affect the truth value of the whole proposition,

R4. Deiteration (DE): Any graph which might have been derived by iteration may 

be erased. If graph G is identical to another graph within area A (but not within any 

cut in A), or within an area in which A is nested, G may be erased. Thus the 

examples in R3 above may be reversed.

R5. Double Cut (DC): Two cuts together with nothing between them may be 

removed from or added to any graph at any level. This is similar to the rules of 

double negation in SL.

Proofs in EG: An Example

I now give a proof in EG, of one of the laws of distribution. The proof is 

accomplished when the premiss (on the left) has been transformed into the conclusion 

(on the right) by applying the rules of inference. The rule invoked at each stage is 

stated in the right-hand column, together with the line of the graph being transformed.

(LD) P V  (Q A R) I- (P V  Q) A  (P V  R).

In EG this becomes the graph below, and the proof follows.

To prove:
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1.

2 .

3.

4.

Premiss

1, IT of whole graph

2, ER of first R

3, ER of second Q
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