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Abstract

It is widely held that the role of diagrams in mathematical arguments is merely
heuristic, or involves a dubious appeal to a postulated faculty of “intuition”. To many
these have seemed to exhaust the available alternatives, and worries about the status
of intuition have in turn motivated the dismissal of diagrams. Thus, on a standard
interpretation, an important goal of 19" Century mathematics was to supersede
appeals to intuition as a ground for knowledge, with Euclid’s geometry—in which
diagrams are ubiquitous—an important target. On this interpretation, Euclid’s
presentation is insufficient to justify belief or confer knowledge in Euclidean
geometry. It was only with the work of Hilbert that a fully rigorous presentation of
Euclidean geometry became possible, and such a presentation makes no non-

redundant use of diagrams.

My thesis challenges these claims. Against the “heuristic” view, it argues that
diagrams can be of genuine epistemic value, and it specifically explores the
epistemology of diagrams in Euclid’s geometry. Against the “intuitive” view, it
claims that this epistemology need make no appeal to a faculty of intuition. It
describes in detail how reasoning with diagrams in Euclid’s geometry can be
sufficient to justify belief and confer knowledge. And it shows how the background
dialectic, by assuming that the “heuristic” or “intuitive” views above are exhaustive,
ignores the availability of this further alternative. By using a detailed case study of
mathematical reasoning, it argues for the importance of the epistemology of diagrams

itself as a fruitful area of philosophical research.
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1: An Old Kind of Reasoning

1.1 Introduction

Can reasoning with diagrams be epistemically valuable? Can it confer justification,
or knowledge? A common view holds that the role of diagrams in mathematical
arguments is merely heuristic. On this view, diagrams serve as illustrations, whose
function is to make an argument given wholly in words or formulas easier for a
reasoner to grasp. The text of the argument alone confers justification, however, and
so the diagram is—whatever its psychological merits—epistemically redundant. On
an older view, diagrams have epistemic value, but this value is understood via an
appeal, now widely considered philosophically dubious, to a postulated special faculty
of “intuition”. Such a faculty is “special” in that it does not merely draw on the
perceptual and ratiocinative faculties required to follow a given presentation of an
argument in words or formulas; it is supposed to be an independent and fundamental
source of mathematical justification. On this view, diagrams can play a non-
redundant role in conferring justification or knowledge, but they do so by utilising a

reasoner’s intuition.

To many these have seemed—within the traditional picture of mathematical
knowledge as a priori—to exhaust the available alternatives, and worries about the
existence or epistemic status of intuition have in turn motivated the dismissal of
diagrams. Thus, on a standard story, one of the goals of 19th Century mathematics
was to supersede appeals to intuition as a ground for knowledge, with Euclid’s
geometry—in which diagrams are ubiquitous—an important target. On this
interpretation, Euclid’s presentation is insufficient to justify belief or confer
knowledge in Euclidean geometry. It was only with the work of Hilbert that the
possibility of a fully rigorous presentation of Euclidean geometry became clear, and
such a presentation makes, it is claimed, no non-redundant use of diagrams. This

claim was made by Hilbert himself in a lecture of 1894:



A system of points, lines and planes is called a diagram or figure [Figur]. The
proof [of the theorem Hilbert is discussing] can indeed be given by calling on
a suitable figure, but this appeal is not at all necessary. [It merely] makes the
interpretation easier [erleichtert die Auffassung], and it is a fruitful means of
discovering new propositions. Nevertheless, care, since it can easily be
misleading. A theorem is only proved when the proof is completely
independent of the diagram.'

1.2 A Fallacy in Euclid’s Geometry?

The denial that reasoning with diagrams can have epistemic value has often been
supported by the claim that diagrams (and other visual representations) are not
reliable, or are actively misleading. A flat map of the world does not preserve correct
information about distances: someone wishing to fly by the shortest route from
London to San Francisco would be ill-advised to follow a straight line on an airline
map, for the shortest route between these cities is not this line, but the shorter of the
two arcs of the great circle on which they lie. And within mathematical research, the
discovery in the last century of counterintuitive results in analysis—such as space-
filling curves and continuous but nowhere differentiable functions—had the effect of

undermining the perceived reliability of diagrams.

Let’s consider a specific case of the apparently unreliable and misleading nature of
diagrams in Euclid’s geometry: a well-known fallacious argument to the effect that
all triangles are isosceles. Ireproduce the argument below, as given by E. A.
Maxwell.> However, for later convenience I have also annotated the various steps of
the argument in square brackets on the right hand side so as to bring out its structure.
The readér may wish to cover over these annotations in following the argument for

the first time here.

! Quoted in Hallett 1994, non-German emphasis added. Note what Hallett calls the “rather abstract
characterisation” of the figure.

? Hahn 1933.

3 Maxwell 1959, Ch. 2. Note that “=” denotes congruence. “SAS” (side-angle-side), “ASA” (angle-
side-angle) and “Rt. £-H-S” (right angle-hypotenuse-side) denote established rules for congruence of
triangles in Euclid. The argument appears to have been invented by Rouse Ball, in Rouse Ball 1905,
pp. 44-45.



To prove that every triangle is isosceles.

Given: A triangle ABC.

Required: To prove that, necessarily, AB = AC.

Construction: Let the internal bisector of the angle A meet the perpendicular bisector
of BC [from D] at O. Draw OD, OQ, OR perpendicular to BC, CA, AB respectively.

B D C
Proof:
(1) DO=DO [self-identity of DO]
(2) DB=DC [bisection of BC]
(3) Z£ODB=2£0DC [OD perp. to BC]
(49) AODB=AODC (SAS) [1,2,3]
(5) OB=0C (4]
Also
(6) AO=AO [self-identity of AO]
(7) Z£ZRAO=ZQAO [bisection of ZBAC]
(8) ZARO=ZAQO [OR perp. to AB, OQ to AC]
(9) AARO=AAQO (ASA) [6, 7, 8]
(10) AR=AQ [9]
(11) OR=0Q [9]



Hence in triangles OBR, OCQ,

(12) ZORB = Z0QC =right angle [OR perp. to AB, OQ to AC]
(13) OB=0C (proved) [5]

(14) OR=0Q (proved) [11]

(15) AORB =A0QC (Rt. £-H-S) [12, 13, 14]

(16) RB=QC [15]

Finally,

(17) AB=AR+RB [by inspection of AB]

(18) AB=AQ+QC (proved) [10, 16, 17]

(19) AB=AC [18; by inspection of AC]

Spelling out the inferential structure of the argument in this way makes explicit that,
with two exceptions, all the lines of the argument are warranted either by already-
established results (e.g. line 13), or by established rules of logic (e.g. line 1, by the
rule that everything is self-identical), or by the text of the construction rubric. As an
example of the latter, the claim that DB = DC (line 2) is warranted, not by the visual
appearance of the diagram, but because the reasoner has already been instructed to
draw OD as the bisector of BC.

The two exceptions are lines 17 and 19. These claims are not warranted by prior
results, by established rules of logic or by the text of the (admittedly over-concise)
construction rubric. Rather, they are supposedly warranted, wholly or partly, by the
reasoner’s reading claims off directly from the diagram. Moreover, for reasons that
will shortly become evident, it is here that the argument goes wrong. So the case that
the diagram is misleading here is clear-cut: it seems quite obvious from the diagram
that AB = AR + RB, for example, but someone who thought she could read this claim

off from the diagram in this way would have gone wrong.

If the charge of being misleading is to go through, however, we also need a reason to
believe that the fault is, so to speak, on Euclid’s side. After all, we would not claim
that airline maps were misleading if they came complete with a set of explicit

instructions as to how they were to be properly read; we would say that the person



who read the map wrongly without having followed the instructions had simply made
a mistake of her own, a mistake which could have been avoided had she been
sufficiently careful. The same is true of someone with a tacit mastery of maps, in the
absence of explicit instructions: we would not count an airline map misleading if

such a person, knowing it was an airline map, misread it.

Is the diagram here misleading if we apply this stricter standard? The first thing to
say is that even someone moderately familiar with Euclid will ask whether there is not
more than one case to be considered here. Thus Greenberg’s presentation of the same
argument considers three possible cases: one where point O—the intersection of the
bisector of angle A and the perpendicular bisector of BC—lies inside triangle ABC,
one where it lies on line BC, and one where it lies outside triangle ABC.* The first of

these has already been discussed; the other cases are diagrammed below:

A A

As Greenberg shows, a very similar argument to that given above goes through for the
case represented by the left hand diagram. It also goes through for that represented by
the right hand diagram above, except that the conclusion is reached by subtraction,
not addition, of line segments in lines 17 and 18. At this point the prospect is bleak
for Euclid, since it now looks as though the fallacious argument succeeds by
exhaustion. Merely reading off lines 17 and 19 from the earlier diagram was non-
conclusive; it left open altemative possibilities for the location of the point O, for
which the argument might not work. But the alternatives above have now been closed

off. So now it appears that unless the diagram is misleading the reasoner, Euclid’s

* Greenberg 1993, pp. 24-5.



argument goes through, and the fallacious conclusion that all triangles are isosceles is

established.

There is, however—if we continue to talk of cases—a fourth case to be considered.

This can be represented diagrammatically as follows:

The argument above does not go through for the case represented by this diagram.
For though RB and QC are equal, it does not follow that AB and AC are equal;
although R lies between A and B, Q does not lie between A and C. This is the result
Euclid needs, for here it is true both that the diagram is not misleading and that the
argument is blocked. Moreover, it is a result that, plausibly, someone with only
moderate expertise in Euclid’s geometry ought to be able to reach. In the first place,
it is suggested by the third case already considered above, where it is evident that
closing the gap between D and O a little would have the effect of making R fall
between A and B, with Q still falling outside AC. But secondly, although I have been
following normal practice in talking of different cases here—and although other
arguments in Euclid do require analysis by cases—in fact there are no different cases
to be considered: the situation represented by the diagram above—in which R falls
between AB and Q falls outside AC—is the only correctly drawn one. The other

diagrams above are misdrawn, as careful examination should make clear to the reader.

But now we can say this: this and other fallacious arguments are often advanced as
evidence of the misleading nature of Euclid’s diagrams. But here at least, the

argument only appears to succeed because the correct diagram is never included in the



presentation of the argument. None of Greenberg, Maxwell or Rouse Ball includes it,
for example; rather, each presentation utilises—and relies for its plausibility on—
various incorrectly drawn diagrams. But someone who accepts an incorrectly drawn
diagram provided in a given presentation of an argument has made a mistake; the fault
is not Euclid’s. Indeed, not only is the correct diagram not misleading; it makes it
evident where the error in the argument falls. It can be appropriate to include
misdrawn diagrams as an educational device for students. But it is wrong to infer
from this clear and correctable misrepresentation that diagrams in Euclid are generally
misleading. Although diagrams in Euclid may and do sometimes need careful
handling, this objection in itself offers no reason to think either that they are
misleading to a suitably competent practitioner, or that reasoning with diagrams of the
kind(s) we find in Euclid is generally fallacious. We might—and this brings out the
wider point—make similar remarks about reasoning with quantifiers in a logical
language, for example, or reasoning with expressions for negation in a natural

language.

1.3  Diagrams and Intuition

So what, then, of the other view I mentioned above, that reasoning with diagrams can
have epistemic value? Must someone who holds this view, and who is an apriorist
about mathematical justification, postulate a faculty of intuition in order to explain
why? The philosopher who is perhaps most closely associated with positive claims
for a faculty of intuition is Kant, and the influence of Euclid’s geometry on the
Critique of Pure Reason is well known. In the “B” Preface, Kant describes the main
goal of his work as an “an attempt to transform the accepted procedure of
metaphysics, undertaking an entire revolution according to the example of the
geometers and natural scientists.” In the Transcendental Aesthetic he takes the status
of geometry as a synthetic a priori description of space to be an “apodeictic
certainty”. ‘And in the Doctrine of Method, he gives a worked example of someone
following an argument in Euclid to illustrate his doctrine that intuition of a diagram or

figure is required for geometrical knowledge.’

3 Bxxii; A716/B744; A47/B64fT.



Kant’s belief that Euclid’s geometry is the science of space is, of course, widely held
to be untenable. But many commentators have also been dismissive of his claims
about geometrical reasoning. The discovery of logical gaps in Euclid, many of them
traceable to the lack of axioms giving an explicit theory of order for points in the line,
has served to undermine Euclid’s claim to rigour. And a further worry is that Kant,
while doubtless familiar with the mathematics issuing from Descartes’ Géometrie, did
not foresee the degree to which the later development of analytic geometry would
undermine the view of intuition described above. In analytic geometry, the plane is
defined as the set of ordered pairs of real numbers, and straight lines as subsets of all
pairs <x, y> satisfying equations of the form ax + by + ¢ = 0 (with @ and b not both
equal to 0). This allows geometrical properties to be translated into algebraic
properties of real variables. On a standard modern presentation, the reals are not
understood in spatial terms, however, and so—at least on some views—geometry
ceases to be an independent discipline and becomes a branch of real analysis.’ But
real analysis does not employ diagrams—the thought continues—at least in any
epistemically non-redundant way; and there does not seem to be any place here for
geometrical reasoning of the sort that Kant apparently regarded as exemplary of the
synthetic a priori. So Kant is mistaken in thinking that intuition of a diagram is
required for geometrical knowledge; and we can plausibly attribute the source of his

mistake to his lack of a space-independent understanding of real numbers.

The case against both Kant and Euclid was eloquently made by Bertrand Russell in a
series of writings at the beginning of the 20™ Century. Perhaps under the influence of

his reading of Leibniz, Russell rejects any epistemic role for diagrams in geometry:

Formerly, it was held by philosophers and mathematicians alike that the proofs
in Geometry depended on the figure; nowadays, this is known to be false. In
the best books there are no figures at all. The reasoning proceeds by the strict
rules of formal logic from a set of axioms laid down to begin with. If a figure
is used, all sorts of things seem obviously to follow, which no formal
reasoning can prove from the explicit axioms, and which, as a matter of fact,
are only accepted because they are obvious. By banishing the figure, it
becomes possible to discover all the axioms that are needed; and in this way

6 On the translation of geometry into analysis see, for example, Hartshorne 2000a and 2000b.



all sorts of possibilities, which would otherwise have remained undetected, are
brought to light.’

Kant, again, bears much of the responsibility for this error, according to Russell,
through his lack of logical sophistication and consequent unnecessary and erroneous

emphasis on intuition:

Kant, having observed that the geometers of his day could not prove their
theorems by unaided arguments, but required an appeal to the figure, invented
a theory of mathematical reasoning according to which the inference is never
strictly logical, but always requires the support of what is called intuition.?

Russell does not shrink from drawing the conclusion that, since Euclid’s arguments
employ diagrams, they do not justify; and indeed that perhaps none of the arguments

advanced before at least the nineteenth century was deductively valid.

It is perfectly true, for example, that anyone who attempts, without the use of
the figure, to deduce Euclid’s seventh proposition from Euclid’s axioms, will
find the task impossible; and there probably did not exist, in the eighteenth
century, any single logically correct piece of mathematical reasoning, that is to
say, any reasoning which correctly deduced its result from the explicit
premisses laid down by the author. Since the correctness of the result seemed
indubitable, it was natural to suppose that mathematical proof is something
different from logical proof. But the fact is, that the whole difference lay in
the fact that mathematical proofs were simply unsound.’

On Russell’s view, then, “proofs” containing diagrams are to be replaced by proofs
containing only sentences, claims advanced on the basis of intuition are to be replaced
by claims advanced on the basis of logic, and Kant’s authority and doctrines, in this
regard at least, are pernicious. It is a short step to diagnose Kant’s error as lying in
the weakness of the then-available logic, a weakness by which Kant was, unlike

Leibniz, supposedly untroubled.

Similar views have been expressed in extreme form by Alberto Coffa, who identifies
the start of what he considers the modern semantic tradition with “Conceptualism”,

described as follows:

” Russell 1901, p. 93.
8 Russell 1919, p. 145 (cf. the very similar remarks at Russell 1901, p. 96).
® Russell 1903, p. 457.



Conceptualism is defined by an enemy, a goal, and a strategy: the enemy was
Kant, the goal was the elimination of pure intuition from scientific knowledge,
and the strategy was the creation of semantics as an independent discipline...

Bolzano’s problem [i.e. to prove that a continuous real function that takes
values above and below zero, must also take a zero value somewhere in
between] looks like a problem only to someone who [sc. unlike Kant and his
followers] has already understood that intuition is not an indispensable aid to
mathematical knowledge, but rather a cancer that has to be extirpated in order
to make mathematical progress possible. '

That is, for Coffa what Bolzano is rejecting in a pioneering way is the attempt to
argue for this or any mathematical claim by appealing to a figure or diagram, in
relation to which the reasoner is supposed to exercise some kind of faculty of

intuition.

The views expressed by Coffa and Russell have now become fairly orthodox among
philosophers. And they have also been influential among mathematicians.!' But we
should note that the cognate suggestion by Russell that Euclid’s arguments do not
justify is—if we take it strictly and literally—drastically revisionary in principle of a
traditional understanding of Euclid’s geometry and its historical value. On a
traditional view, the value derived from studying Euclid does not lie simply in
detecting where he goes wrong. The implication of Russell’s claim is, however, that
we cannot come to know basic geometrical truths by studying Euclid. The use of the
Elements as a textbook in schools over the centuries may have been justified by
expediency, but it was not by itself a way by which students could genuinely acquire

knowledge of geometry.'?

We should also note that Russell’s reading of Kant is quite problematic. To be sure,
Kant was enormously impressed by the methodology and success of Euclid’s
geometry, and appears to be (perhaps culpably) ignorant of the longstanding doubts
and debates about it. Otherwise, the strategy of the Aesthetic in this regard seems

' Coffa 1982, pp. 679, 686.

' See, e.g. Forder 1927, p. 42.

12 A conclusion Russell himself drew (Russell 1901, p. 94-5). But we should also note that Russell was
himself reacting against the sterility and insularity of the 19" Century Cambridge mathematics
curriculum. In particular, there had long been heavy emphasis on rote learning of Euclid. See Rouse
Ball 1905, p. 1991f.
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inexplicable. Moreover, Kant does not appear to have been an especially deep, and
certainly not a creative, logician.13 But he is no enemy of rigour: the point of taking
Euclid as a model is in part precisely because his arguments are, as Kant sees it,

exemplary of rigour.”' Kant’s appeal to intuition is not intended to be at odds with
the need for rigour in mathematics; on the contrary, it is supposed to be part of the

explanation of that rigour.

From this perspective, Kant’s discussion of one of Euclid’s arguments in the Doctrine
of Method is of great (and perhaps underappreciated) interest, for it represents a case
study in which the reader is invited to consider, analyse and even test the respective
contributions made by concepts and intuitions as Kant understands them. Moreover,
the focus here is not so much on mathematical knowledge as such, as on mathematical
reasoning. He is asking, in effect, the questions with which we started: how, if at all,
can this kind of reasoning with diagrams justify belief? How, if at all, can it convey
knowledge? As I shall describe below, Kant takes himself to be under a
psychological constraint: to respect what the reasoner actually seems to be doing
when she follows such an argument. And it is far from clear that predicate logic, even

if it were available, would suffice to answer our questions in this context.

But this then raises a further worry. For it is part of the dialectic of the story told
above—and reinforced by the logicist dismissal of intuition—that there are only two
alternatives on offer here. Either the diagram is epistemically valuable, and we must
postulate the existence of some special faculty of intuition; or the diagram is merely
heuristic, and only non-diagrammatic or sentential arguments—and specifically
arguments in a logical language—confer justification. Must we accept this choice, or

believe that the reasoning here is empirical?

1 Though we can make too much of Kant’s supposed neglect and complacency as to logic. It is
sometimes suggested that Kant believed that logic did not need, and was not capable of, further

. development. But note that, at least as regards the first Critique, this is not what Kant actually says.
He makes the point that logic (i.e. the logic of the syllogism) had not between his time and that of
Aristotle been materially discredited or overturned, and then remarks that “until now it has not been
able to take a single step forward, and therefore seems fo all appearance to be finished and complete”
(Bviii; emphasis added). Of course, one might think of the logic of the syllogism as being discredited,
in modern eyes, by its expressive limitations. But Kant’s emphasis is, I suggest, on internal
weaknesses or inconsistency. If so, then given that the logic of the syllogism remains little changed to
this day, both the claims above were—and indeed are—surely true.

' Kant’s respect for rigour is underscored by, for example, the terms in which he praises Christian
Wolff in the B Preface, Bxxxvi.

11



1.4  The Unacknowledged Alternative

I shall argue that the answer is No, and that the proffered choice in fact presents a
false antithesis. There is a further and so far unacknowledged alternative: that the
diagram can be epistemically valuable a priori, and yet require no special faculty of
intuition to be so understood. This is the alternative I shall explore. Specifically, I

shall defend the following three claims:

1. The kind of visual thinking we do in following an argument in Euclid can be
epistemically valuable—and specifically, that it can justify belief and yield
knowledge;

2. We can identify in the Critique of Pure Reason an embryonic account of such

thinking that is preferable to its major alternatives; and

3. This account can be developed into a persuasive explanation of the epistemic
value of this type of reasoning; one which is recognisably Kantian, but which

does not appeal to any special faculty of intuition.

I briefly outline the course of the main argument below. But it may be helpful
initially to note some of what is not claimed here. I do not claim that Euclid’s
arguments are proofs. Nor do I seek to defend Kant’s principal claims in regard to
Euclid from the Transcendental Aesthetic: that Euclid’s geometry is, necessarily, the
science of space, or that we can have synthetic a priori knowledge of physical space.

Indeed I hardly discuss Euclid in relation to physical space at all.

Nonetheless, some general objections can already be anticipated to the very

possibility of arguing in this way, at three progressively more inclusive levels:

o A first worry concerns whether and how diagrams can properly be used in the

presentation of arguments at all, and whether they are in fact indispensable to

12



such presentations; whether they cannot be dropped from these presentations

without epistemic loss.

. A second worry accepts that diagrams can be used in the presentation of
arguments, but is concerned with diagrams as spatio-temporal objects. On this
view, reasoning with diagrams is and can only be a matter of gathering
empirical evidence, and so Claim 1 above is committed to an empiricist
epistemology. But this is allegedly implausible on other grounds as an

account of mathematical reasoning.

. A third worry accepts that diagrams can be used in the presentation of a priori
arguments, but claims that reasoning with diagrams in this way is not valid. In
particular, diagrams do not contain instructions as to how they are to be
understood. So reasoning with diagrams is unreliable, at least with respect to

generalisation.

We might also note a fourth line of objection, which attacks not the epistemic value of
diagrams as such, but the claim that there is anything of distinctive epistemological
interest here. It accepts that diagrams can be used in the presentation of a priori
arguments, and that reasoning with diagrams in the relevant way is valid, but claims
that it is so just in virtue of being logical reasoning. That is, though the diagram may
be indispensable to a given argument, the justification conferred by that argument
actually derives from the existence of a sentential proof of the same conclusion. It is
not contested that logical reasoning can confer justification. But on this view, there is

nothing epistemologically distinctive going on here.

Each of these objections, and others, is addressed in the discussion below.

1.5  The Argument of the Thesis

The goal of this thesis is, then, to explore whether and how the unacknowledged

alternative can be positively elaborated, and defended against these objections. In

13



order to do this, the discussion breaks down into three parts. The first part sets up the

problem; the second explores candidate solutions; the third and longest part selects a

preferred solution, refines it, defends it against a range of objections, and then

develops it in what I take to be a plausible way. Specifically:

M

D

(110

Chapter 2 starts with a given argument as presented by Euclid and describes,
in what I hope is an open and neutral manner, what a reasoner seems to be
doing when she follows this argument in a certain way. To make the analysis
and subsequent discussion as specific as possible, the discussion is focused on
a single argument: Prop. 1.32 of the Elements,"” to the effect that all triangles
have internal angles that sum to two right angles: the so-called “angle sum”
property. Chapter 3 sets out a logically exhaustive Framework of
Alternatives, covering different theories that can be advanced to account for
the apparent justification offered by this reasoning. This sorts such theories
into four categories by their responses to two questions: if there is
justification here, is it a priori? Does the diagram contribute, in a defined

sense, to the justification?

Chapters 4-6 describe and appraise three candidate theories that might be
advanced in each of the categories identified by the Framework of
Alternatives. These theories can be plausibly attributed to an interpretation of
Plato by W.D. Ross, to J.S. Mill, and to Leibniz. Each theory holds that
Euclid’s argument confers justification, but they differ as to how it does so.

Each chapter analyses the strengths and weaknesses of a given theory.

Chapter 7 considers a fourth candidate theory, attributed to Kant; it argues that
this account is superior to its alternatives, and defends it against what has
come to be known as the Generality Objection. Kant’s account has, however,
been dismissed by even sympathetic interpreters as obviously mistaken.
Chapter 8 isolates and defends a somewhat different but still recognisably neo-

Kantian view against three main lines of criticism, in a way that highlights

1% Euclid’s arguments are known as Propositions, and broadly follow a standard form described in
Chapter 2 below. This term of art should not be confused with the meaning(s) of the same word in
philosophy.

14



some of its distinctive features and commitments, as well as areas where it
diverges from the Kantian account already considered. However, a
satisfactory explanation should not merely be superior to its alternatives. It
should also satisfy further positive demands of logic and epistemology if it is
to make good on the three claims above. Chapters 9 and 10 discuss these

issues, and Chapter 11 concludes.

1.6 A Case Study

This thesis takes the form, then, of an extended case study of a single argument:

Prop. 1.32 of the Elements. The argument is well-known; indeed, even among
Euclid’s Propositions, Prop. 1.32 had canonical status not merely with specialists
debating the technicalities of geometrical reasoning in what became known as the
Quaestio de Certitudine Mathematicarum in the 16™-18" Centuries, but also
throughout more generalist philosophical debates as to the status of mathematics of
the same period.'® Virtually every major philosopher of the time discusses Euclid’s
geometry—including Descartes, Gassendi, Leibniz, Hobbes, Hume, Locke, Berkeley,
and Kant—and most of them discuss Prop. .32 in particular. By contrast, the general
topic of diagrammatic reasoning has not been much explored in the recent
philosophical literature. There has been an increasing body of work on this and
related topics in cognitive and educational psychology, in the study of computing and
artificial intelligence, and even in logic. However, there has been relatively little
work on diagrammatic reasoning in mathematics, and no book-length treatment of the

epistemology of diagrams as such.'’

Proposition 1.32 is perhaps too well-known for any further treatment to be really fresh

and persuasive. But it is, I suggest, nevertheless a worthwhile choice, for three

'® For details of the Quaestio, see Mancosu 1996, Ch. 1.

' Overall, see e.g. the collections Glasgow et al. 1995, and Blackwell 2001. Greaves 2002 gives a
broad philosophical survey of diagrams in geometry and logic, but does not devote detailed
consideration to the epistemology of reasoning with diagrams as such. For diagrams in computing/Al,
see e.g., Sowa 1999 and Jamnik 2001; in logic, see e.g. the works of Barwise and his collaborators
Etchemendy and Allwein, and Barwise’s students Shin, Shimojima and Hammer listed in the
References; and, for a case study comparing inference using diagrams and sentences in propositional
logic, see Norman 1999. For diagrams in mathematics, see the works of Giaquinto, Manders and
Brown.
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reasons. First, it employs an overall form of argument that is ubiquitous in Euclid’s
geometry, in which a diagram is constructed that represents a given situation, as to
which a succession of logically interrelated claims are then made. So we have reason
to think that conclusions reached here should generalise to other Propositions that use
this form of argument, and perhaps elsewhere. Secondly, Euclid does not here
employ any distinctively questionable techniques such as superposition'® or reductio,
which might raise further questions for the present discussion before the basic
approach has been assessed. On the view taken here, it would be a further step to
argue that the diagram in a reductio, for example—in which there is no consistent set
of claims to be represented by means of a diagram even in principle—can be
epistemically valuable. This is a step I do not take, but the present discussion

prepares the ground for it even so.'’

Thirdly, we can take value from the historical pre-eminence of Prop. .32 itself. Ina

different context Alasdair MacIntyre complains of

the persistently unhistorical treatment of moral philosophy by contemporary
philosophers... We all too often still treat the moral philosophers of the past as
contributors to a single debate with a relatively unvarying subject matter,
treating Plato and Hume and Mill as contemporaries both of themselves and of
each other... Kant ceases to be part of the history of Prussia, Hume is no
longer a Scotsman.”

Focusing on a single argument allows us, I suggest, to avoid this pitfall. Prop. 1.32
has been preserved in more or less the same form since antiquity, and has been
actively discussed in the modern era since the 17" Century. We can with confidence
say that various different views expressed over time as to Euclid’s arguments—and
this argument in particular—address the same subject matter. This is not to say that
the terms, leading concepts or background assumptions of participants have remained
unchanged through the various debates in which Prop. 1.32 has featured, of course.
But it seems we have as good a case here as one could reasonably expect to test the

value of this kind of comparison.

18 A form of argument from the coincidence of lines or angles to their equality, as in Prop. 1.4; widely
regarded as philosophically suspect, even in antiquity. See Heath 1956, p. 225 ff.

% On reasoning via reductio in Euclid, see the helpful discussion in Manders 1995.

2 MaclIntyre 1981, p. 11.
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2: The Euclidean Presentation, Part 1

2.1 Introduction

This chapter examines Euclid’s Proposition 1.32, and the kind(s) of reasoning required
to follow that argument. To follow this argument, a reasoner must be able to do at
least two things: first, she must be able to understand the claims made at each stage,
given appropriate interpretative conventions; and second, she must be sensitive to the
validity of the transitions from premisses to conclusions.?! This chapter discusses

both these aspects of reasoning.

The chapter is divided into three parts. In Part 1 (Sections 2.1-2.5), I introduce some
relevant terminology, and briefly describe the general way in which arguments in
Euclid are presented. I then set out Prop. 1.32, and discuss the phenomenology, or
introspective feel, of a given reasoner’s experience as she works through the
argument. In Part 2 (Section 2.6), I examine the relevant conventions and
assumptions lying in the background of Euclid’s argument. In Part 3 (Sections 2.7-
2.9), I set out a detailed analysis of the argument, and discuss the role of the diagram

in information representation and inference.

In this kind of analysis, it would be a mistake to assume from the outset that there is
only one kind of reasoning to be explored. We need to leave open the possibility that
two or more different types of reasoning can still constitute following a given
presentation of an argument. We can then ask the question which, if any, of the
inference types involved is compatible with the relevant phenomenology. However,
the goal of this chapter is not just to situate Euclid’s argument and the type(s) of
reasoning involved in following it. It is also to bring out, in quite specific terms, the
key questions with which subsequent chapters will be more generally concerned. For
in order to assess various theories that purport to explain this reasoning, we need to be

clearer as to what is to be explained. On only some of the possible candidate

2! The notion of validity for inferences involving diagrams is discussed further in Chapter 10.
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explanations will it be the case—even in principle—that the diagram has epistemic

value.

As an introductory matter, it will be helpful to establish some relevant terminology.
Following Harman, we can draw a distinction between implication and inference.
Implication is a logical relation between, canonically, propositions, while inference is
a type of mental act, whose outcome is a possible change in belief.** Specifically, I
will take it that an inference is a transition between two (personal-level) mental states.
More generally, I take reasoning to be a personal-level psychological process,
consisting of inferences. In geometrical reasoning, we are reasoning about
geometrical objects of a defined type (squares, triangles etc.).”? These geometrical
objects can have certain kinds of property, including shape properties (e.g. being
right-angled). Such properties are described mathematically in Euclid in idealised
terms that refer, for example, to perfectly straight lines without breadth. Geometrical
objects can be represented by diagrams or figures. However, I will reserve the term
diagram for physical inscriptions; when we visualise a geometrical object in
imagination, I will call this a figure.?* The visual properties of a diagram may
represent geometrical properties, but they are not themselves geometrical properties,
strictly speaking; a line on a diagram will never be perfectly straight, for example.
This does not rule out a reasoner’s judging of a diagram that “that is square”, but this
judgement will be an observational (or, as it is sometimes more specifically called,
perceptual-demonstrative) judgement, not a geometrical one; for the diagram will not

be, as defined here, geometrically square.

Two further points. First, though some people refer to Euclid’s arguments as proofs,
it has been widely doubted whether they are in fact proofs; I shall simply refer to them
as arguments, so leaving the further claim open. Secondly, the discussion of
reasoning will be concerned solely with the kind(s) of reasoning involved in following

Euclid’s argument, not with that involved in creating an argument or discovering a

22 Harman 1986, Harman 1999 Ch. 1.

3 The word “object” here is just intended to denote the target of representation, and so should not be
taken here in any metaphysically loaded way. Sometimes I shall refer generally to what is represented
by a diagram as a “situation”.

%% This has the advantage of avoiding a possible ambiguity in relation to the word “figure”, as between
a diagram and an object or objects represented by a diagram. Note that, so as not to weary the reader
by repeated reference to diagrams and figures, I will normally restrict discussion to diagrams.
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geometrical truth using Euclid’s methods.> It has sometimes been suggested that
thinking with diagrams can have epistemic value in regard to these processes. But

this is not our topic.

2.2 Presentation and Argument

In logic and mathematics, it is often convenient to distinguish between different
presentations of a given argument or subject matter. In geometry, one highly
influential presentation of Euclidean geometry was given in Hilbert’s book
Foundations of Geometry.®® But the most historically influential presentation of
Euclidean geometry has, not surprisingly, been that of the Elements of Euclid himself,
as we have it in Heiberg’s text of 1883-8. This is a different presentation from that of
Hilbert, in many respects: for example, it uses fewer and different axioms, and it has
a quite different style of argument-presentation. One of the most striking differences
is this: that presentations of arguments in the Elements use constructions of

geometrical diagrams, and presentations of arguments in Hilbert do not.

We can, then, distinguish between Euclidean geometry (EG) and Euclid’s geometry.
I shall refer to the latter as the “Euclidean Presentation” of Euclidean geometry, and
where there is no risk of ambiguity I shall refer to Prop. 1.32 itself as “the Euclidean

Presentation” (EP) or as “Buclid’s argument”, for the sake of variation.”’

The importance of the “argument/presentation of argument” distinction lies in this,

that when a reasoner is invited to follow a given argument, it is always a presentation

% «“The reasoning involved in following” is a cumbersome locution, but it is preferable to short-cuts
such as reasoning “about” the relevant argument (which need not involve following the argument at all)
or dubiously grammatical alternatives such as reasoning “through” or “with” the argument.

% Hilbert 1899.

27 And note that the Elements does not in fact include all of what might now be considered Euclid’s
geometry. For example, the very striking “9-point circle” claim (that in any triangle, the midpoints of
the three sides, the feet of the three altitudes, and the midpoints of the segments joining the three
vertices to the orthocentre, all lie in a circle) does not appear in the Elements, and was only proven by
Brianchon and Poncelet in 1820. Yet it can be derived using only the pure geometric methods of
Books I-IV (see, e.g., Hartshorne 1997). There are many other results that are commonly considered
results in Euclid’s geometry, but that do not in fact occur in the Elements.
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of the argumeﬁt that she follows.”® But, unless the individuation of arguments is
abnormally strict, presentations of a given argument can significantly differ from each
other, and can differ in the types of reasoning required to follow them correctly. So,
if our target is an understanding of the type(s) of reasoning involved in following one
particular presentation of a given argument, we cannot assume that this type of
reasoning is the same as that involved in following a different presentation of the

same argument.

2.3 The Euclidean Presentation

One could mean a variety of slightly different things by the term “Euclidean
Presentation”, and there has been much debate over what is properly part of the
Elements. Rather than engage in the relevant historical and exegetical questions, for
the sake of convenience I will simply treat the standard English language text, Heath
1956, as canonical. We need only consider Book I. Later books include further
definitions in Euclid’s geometry, and indeed Euclid’s arithmetic, but these are

irrelevant for present purposes.

On this view, then, the Euclidean Presentation consists of, on the one hand, an initial
set of definitions, common notions and postulates; and on the other, a set of 48
numbered Propositions.”” Each Proposition contains an argument to one or more
conclusions. Euclid uses several different broad forms of argument, including
argument by superposition, such as in Prop. 1.4, which argues from the coincidence of
two triangles to one case of the side-angle-side claim for triangles;*® argument by
reductio; and argument by exhaustion. An example of the latter two can be found in
Prop. 1.19, which argues that in any triangle the greater side is subtended by the
greater angle, from exhaustion of the alternatives; and as this brings out, a given
Proposition can employ several forms of argument. The most common form of
argument is by construction, however. Arguments by construction first give

instructions for constructing a given diagram, and then make claims about the

% This is not to say that such a presentation must always take the form of a physical inscription, like an
argument presented in a textbook; it may be accessed via memory, for example.

% Recall (from Section 1.6, fn.) that “Proposition” here is a term of art in discussions of Euclid.

** Heath 1956, 306.
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situation represented by the diagram.? Prop. 1.32 contains an argument by

construction, and it is on this form of argument that I will focus.

Regardless of the form of argument employed, Propositions in Euclid have a
standardised and rather formulaic structure, which requires a brief discussion. There
are, normally, six divisions of a Proposition. Proclus describes these briefly as

follows:

Every problem and every theorem that is furnished with all its parts should
contain the following elements: an enunciation (protasis), a setting-out
(ekthesis), a specification (diorismos), a construction (kataskeue), a
demonstration (apodeixis), a conclusion (sumperasma). Of these the
enunciation states what is given and what is being sought from it ... the
setting-out marks off what is given, by itself, and adapts it beforehand for use
in the investigation. The specification states separately the thing that is
sought, and makes clear precisely what it is. The construction adds what is
lacking in the given for finding what is sought. The demonstration draws the
proposed inference by reasoning scientifically from the propositions that have
been admitted. The conclusion reverts to the enunciation, confirming what
has been demonstrated. >

The notion of construction in Euclid has a relatively specific meaning. Construction
is a process consisting of the application of Postulates 1-3. Postulates 1-3 contain
instructions to the effect that, respectively, a straight line may be drawn from any
point to any point; a finite straight line may be continuously produced (i.e. extended)
in a straight line; and a circle with any centre and distance may be drawn (about a
given point). Given a marker, these three operations can be executed on a flat surface
by use of a straightedge and (collapsible) compass. A construction procedure is any
finite sequence of these instructions, in any order. A constructed diagram is any

diagram that results from execution of a construction procedure.

It is, in effect, a necessary and sufficient condition on a diagram in the Euclidean
Presentation that it be constructible. Several important types of diagram are given
separate definitions, such as triangles and squares, but they can also all be

characterised in terms of different finite orderings of construction procedures, and

*! Note that in some of Euclid’s Propositions there are different cases to be considered, and each of
these normally requires its own diagram. But Prop. 1.32 is not one of these Propositions, and I will not
discuss cases or case-branching here.

32 Proclus, p. 203; I have slightly amended the translation.
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Euclid does not generally use diagrams without giving previous constructions of
them, or without its being obvious how they may be constructed.>> In mentioning a
specific type of diagram in the Setting-out of a Proposition, then, Euclid is using a
kind of shorthand: no new information is being provided, over and above the

construction procedure for that diagram.>* **

Thus the construction procedure for an argument in Euclid is specified by a set of
instructions indicating which postulate is to be applied, and in what order. It should
be evident that this sense of “construction” is not the same as that in which we
sometimes talk of constructing an argument, for in the latter usage the contrast is with
following an argument, and following Euclid’s arguments often involves the reasoner
in constructing a diagram. So I will reserve the term “construction” for the sense

described above, and where necessary use “creating” an argument for the other sense.

2.4  Proposition 1.32

With this in mind, we can turn to the argument of Prop. 1.32, reproduced below. The
square brackets are Heath’s annotations; I have, however, labelled the various
components of the proposition, and numbered the steps of the demonstration, for

future reference.

Enunciation: In any triangle, if one of the sides be produced, the exterior angle
is equal to the two interior and opposite angles, and the three interior angles of
the triangle are equal to two right angles.

Setting-out (Construction): Let ABC be a triangle, and let one side of it BC be
produced to D;

33 Note that the same figure may in many cases properly be constructed using the same procedures
executed in a different order. E.g. for an equilateral triangle constructed according to Prop. I.1, the
order in which the sides are constructed will be irrelevant.

3 Proclus, p. 204 claims that construction is often irrelevant on the grounds that “in most theorems
there is no construction because the setting-out suffices without any addition for proving the required
property from the data.” But since the setting-out functions in these cases by mentioning a figure, and
a fortiori a construction, these cases utilise constructions, only without naming them as such.

3> The definitions are, thus, verbal or “nominal”; they do not go to the question of the existence or no of
the object, which is apparently determined in Euclid by its constructibility. In determining what is to
count as a construction, it seems the postulates are supposed to underwrite the existence assumptions of
Euclid’s geometry. But this is not necessarily to commit Euclid to what would now be considered a
constructivist philosophy of mathematics. See Heath 1956, p. 143ff, and Mueller 1981, p. 15.
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Specification: I say that the exterior angle ACD is equal to the two interior and
opposite angles BAC, ABC, and the three interior angles of the triangle ABC,
ACB,*® BAC are equal to two right angles.

Construction: For let CE be drawn through the point C parallel to the straight
line AB. [1.31]

Demonstration:

(I) Then, since AB is parallel to CE, and AC has fallen upon them, the
alternate angles BAC, ACE are equal to one another. [1.29]

(II) Again, since AB is parallel to CE, and the straight line BD has fallen upon
them, the exterior angle ECD is equal to the interior and opposite angle
ABC. [L29]

(IIT) But the angle ACE was also proved equal to the angle BAC; therefore the
whole angle ACD is equal to the two interior and opposite angles BAC,
ABC.

(IV) Let the angle ACB be added to each; therefore, the angles ACD, ACB are
equal to the three angles ABC, ACB, BAC.

(V) But the angles ACD, ACB are equal to two right angles; [1.13] therefore
the angles ABC, ACB, BAC are also equal to two right angles.

Conclusion: Therefore the exterior angle ACD is equal to the two interior and
opposite angles CAB, ABC, and the three interior angles of the triangle ABC,
ACB, CAB are equal to two right angles. QED.

36 Note that Heath has BCA here and below. BCA picks out the same angle as ACB, however, and
ACB also appears in Heath’s version. This variance is common in Euclid. However, since it is not
clear what the purpose if any of this variance is, and since it may be confusing at first sight, I have used
ACB for BCA throughout. Similarly, I have rendered CAB as BAC throughout.
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2.5  Phenomenology

Let us take as standard the case in which a competent reasoner follows Euclid’s
argument carefully. In the course of this she does several different things: she is
asked to draw a diagram, according to certain instructions given in the text or rubric;
she reads sentences in the Demonstration, which express claims, some of which she is
expected to understand, and assess the truth of, in relation to the situation represented
by the diagram; and she is expected to be able to assess the validity of certain

transitions in thought between these claims.

In the course of doing these things, the reasoner typically has a certain kind of
experience. When one has a conscious experience, there is, at least normally, some
felt quality to that experience. This is sometimes called the experience’s
phenomenology. Experiences A and B will be said to share the same (or similar)
phenomenology when what it feels like for one to have A is the same as (or similar to)
what it feels like for one to have B. On one conception of experience, certain
perceptual experiences can have a phenomenology; and the same is true of conscious
thoughts (i.e., occurrent, dated, episodes of thinking; including imaginative thinking).
Importantly, we do not have to regard these thoughts as linguistically mediated (as

having linguistic concepts as constituents, or as the result of operations using

language).

The notion of phenomenology gives us a broad means to type different episodes of
reasoning, at least on a prima facie basis. Two episodes of reasoning that have the
same (or similar) phenomenology will be considered prima facie to be tokens of the
same (or similar) type of reasoning. This typing is defeasible; there may be further
grounds to differentiate between various types, and such grounds could be strong
enough to cause us to doubt, and even to alter, an earlier classification. And typing by
phenomenology is quite vague, though it may be hard to make more precise. But it
supplies a useful pre-analytic means to identify different types of reasoning as such.
As a result, considerations of phenomenology can impose a strong though defeasible
constraint on possible explanations of the reasoning involved in following Euclid’s

argument. We will want to require of a candidate explanation that it be
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psychologically realistic; that is, faithful to the distinctive character of this reasoning,

insofar as that can be assessed.

I suggested above that a competent reasoner who follows the Euclidean Presentation
carefully has a certain typical kind of experience. To say this is to presuppose a rather
broad notion of experience, not restricted to experience of the external world, on
which conscious thinkings and imaginings can count as experiences. But such a
broad notion is surely quite intelligible, even commonsensical.’’” Can we describe the
phenomenology of the reasoner’s experience here?*® I have already mentioned two
aspects: it includes a visual experience of (or as of) a diagram; and it includes the
experience of taking certain claims made in the text to be true of what the diagram

represents. But I suggest that we can also identify three other distinctive aspects.

o First, a feeling of accessibility: the reasoner seems to understand each inference,
and the argument as a whole, very readily. The argument is short, and the line of
thought is evident. There is little or no jargon or appeal to specialist knowledge
here. There is little felt need to scrutinise details of the diagram, which might
obstruct the flow of thought: the reasoner does not measure the angles of the

diagram, she does not measure the lengths or assess the straightness of the sides.”

e Second, a feeling of certainty: the reasoner seems to feel a strong conviction at
the end in the truth of the general conclusion. This conviction might grow slightly
with a little further reflection, but it does not grow thereafter. It is not diminished
by any concomitant recognition that the diagram may not be perfectly drawn, or

may only be roughly similar to a geometrical triangle.

371 will discuss this and narrower conceptions in more detail below, especially in Chapter 3.

38 Again, I restrict attention to someone who follows the argument in relation to a diagram, rather than
an imagined figure. But note that a further way to follow Euclid’s argument can be via visual memory.
That is, one can recall seeing, for example, the page of a textbook containing the argument, and then
follow the argument by recalling reading the text and reasoning with the figure accordingly.

** Note that the feeling of accessibility I have in mind here is not the same as the feeling of immediacy
that one can sometimes have on perceiving a diagram. For example, experience of a Gestalt “switch”
in some visual illusions using diagrams can give a feeling of sudden recognition or insight on the
viewer’s part, and it may be that this involves no mediating inference. However, distinguishing
between accessibility and immediacy does not rule out that a reasoner following Euclid’s argument can
nevertheless experience a rush of understanding or insight as a result, or that certain types of inference
may employ such “switching”.
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e Third, a feeling of clarity: the reasoner has gained not merely belief or knowledge
of a general truth, but a feeling of understanding: not merely that the conclusion
must be so, but of why it must be so. By coming to understand the general
relationship between the angles formed by the auxiliary line CE and the opposite
angles of the triangle (£LABC, ZBAC), she grasps that the angles of any such

triangle must equal the angles on a straight line, without exception.

The historical record suggests that this phenomenology should be taken as a datum.
Many people have had this experience, and some of these features have been noted by
other writers on geometrical thinking.*® It is clear that, like other arguments in
Euclid, Prop. 1.32 has long been regarded as extremely accessible, convincing and

clear by many reasoners.

Now the description above is clearly consistent with more than one way in which a
reasoner might follow Euclid’s argument. Consider someone relatively new to
geometry who, familiar with the definitions, common notions and postulates of
Euclid, approaches Prop. 1.32. It seems that she might follow the argument thus: she
could initially take the sentences in the demonstration to be about a triangle or class of
triangles that the diagram depicts, i.e., to which she takes it to be relevantly similar in
visual appearance.*’ When she reaches the end of the argument, she could form the
belief that the argument succeeds for the class of triangles depicted. If she then
reflected that no step in the argument depended on any property of the triangles
depicted that was not a property of all triangles, she could form the general belief that
the argument succeeded for all triangles.

Call this the naive approach. We can contrast it with the expert approach; for it
seems that a more expert reasoner might take the diagram from the outset to relate to
triangles generally (as determined by the text), including those triangles to which the
diagram bears no visual resemblance. Unlike that of the novice, the expert’s final

generalising inference is not reflective; the conclusion she reaches after following the

“E.g. Giaquinto 1992 (in relation to similar processes used in discovery by visualisation), which has
influenced this discussion; cf. Brown 1999, Ch. 3.
*! What this might amount to is discussed further below, and in Chapter 9.
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argument in relation to the triangles represented by the diagram will already be a

general one.

The novice’s and the expert’s reasoning have slightly different phenomenologies. For
the expert, there is no feeling that the diagram depicts any particular type(s) of
triangle, and there is no conscious experience of any final generalising inference. For
the novice, by contrast, the phenomenology of the experience may be this: that she is
“seeing what happens” to a diagram of a triangle or class of triangles, and tracking it

through a sequence of changes, before a final generalising inference.

For the sake of specificity I will focus on the expert approach; and it will be
convenient to refer to this in places below as “the” reasoning involved in following
Euclid’s argument. But, to reiterate, this should not be taken to imply that there is
only one way to follow Euclid’s argument. Quite the contrary; I suggest that the
naive approach is also available, and indeed—as I discuss in Chapter 9—there may
also be other approaches. The contrast between the naive and the expert approaches
is a useful one, however, and it will be further developed below as part of an attempt
to explain the nature of the cognitive achievement that constitutes mastery of Euclid’s

argument.
Following Euclid’s argument, however, requires a reasoner to grasp various tacit or

explicit background assumptions and conventions, in particular as relates to the

construction of, and claims made as to, the diagram. To these I now turn.
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2: The Euclidean Presentation, Part 2

2.6  Prop.1.32: Background Conventions and Assumptions*

The construction of the diagram in Prop. 1.32 takes place in two stages, as we have
seen: in the Setting-out, and in the Construction.”> To carry out the construction
properly, the reasoner must be able to draw a triangle and label it; to extend line BC to
D, and label D; and to draw auxiliary line CE and label E. That is, she must
understand (1) how the diagram is to be drawn, and (2) how it is labelled. If she is
then to follow the demonstration successfully in relation to the constructed diagram,
she must understand (3) the representational scope of the diagram, and (4) any other
relevant properties or features of the object(s) represented. All four aspects are
controlled by various background conventions and assumptions, and I will discuss

these in turn.
Drawing the Diagram

Prop. 1.32 leaves unspecified exactly how the diagram is to be drawn: the initial
instruction is simply “Let ABC be a triangle.” This can be done in various different
ways in Euclid. At its simplest, a diagram of a scalene triangle may be constructed by
drawing a line segment BC (according to Postulate 1), drawing circles that cross at
some point A not on BC or its extensions (using Postulate 3), then drawing further
lines AB and AC (using Postulate 1 again). Alternatively, it may be equilateral
(constructed as per Prop. I.1; I give the procedure below) or isosceles (a simple
variant construction). Having constructed the initial diagram, the reasoner can then
amend it as instructed. To produce line BC to D, she must be aware of Postulate 2;

and to draw the parallel line CE, of the construction procedufe in Prop. 1.31.

21 owe several of the leading ideas in this section to conversations with and work by Marcus
Giaquinto.

 Euclid brings part of the construction process into the Setting-out because the construction of
exterior angle ACD is required to make his claim in the Specification about it intelligible. CE is an
auxiliary line because, unlike the extended portion of BCD, it is not required to make the claim to be
argued intelligible, and it does not appear in that claim, and so not in the conclusion.
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Constructing the diagram, then, relies on a range of background assumptions: for
example, that the reasoner has the relevant concepts of “point”, “line” and of “straight
line””; that she understands the Postulates; that the straightedge and compass are used
as instructed (e.g. that the reasoner can insert the compass into each end-point of BC);

that the relevant points B and C exist between which line BC can be drawn.

It might seem as though awareness of these assumptions would be enough to allow
the reasoner to construct the diagram appropriately. In fact, however, this is not the
case, as the reader can check. For the following three incorrect diagrams are all
permissibly constructible from the instructions given in Prop. 1.32, supplemented by

these assumptions:
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Why is this so? There is a further implicit assumption behind the construction
procedure here (and elsewhere in Euclid): it is not stated in which direction BC is to
be extended to D, nor CE drawn relative to BC. These together create four
alternatives, of which only one is intended. Euclid’s argument cannot proceed in
relation to the other diagrams, but he does not explicitly supply the relevant

conventions required to rule them out.

In Heath’s edition, the relevant information is provided by showing the correct
intended diagram. Strictly speaking, however, further explicit conventions are
required, to rule the deviant diagrams out. The latter two diagrams can be ruled out
by noting the implicit convention in Euclid that the ordering of letters in lines
determines their direction: these would be instances of line CB, not line BC, being
produced to D. What about the first diagram? We might rule this out in one of two
ways: either by defining a general convention governing the drawing of parallel lines,
or by giving a specific instruction here—not supplied by Euclid—in the text of the
construction procedure. The first route looks unattractive; why should it not be
convenient to draw CE down as in the first diagram, for other arguments? So what

we need here is a specific instruction: that E is to lie on the same side of BCD as A.

What this brings out is that the modern tendency to start with a drawn diagram, and
consider only that plus the demonstration as Euclid’s argument proper, is just a short-
cut to an outcome that should, strictly speaking, be reached via the appropriate
construction procedure, given background conventions including that (or similar)

above.
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Labelling the Diagram

Secondly, there are background labelling conventions and assumptions. We do not
know whether Euclid in fact labelled the diagrams in the Elements, though some
ancient manuscripts have labels; but some method is needed to identify and track
vertices, lines and angles in the diagrams constructed, and labels serve this purpose, as
in Heath 1956. Here are some of the labelling conventions at work in Prop. 1.32. A
large Roman letter “X”, “Y”, “Z”... next to a vertex is a label for that vertex. A letter
repeated in the text refers to the vertex labelled by that letter; the letters “XY” in the
text refer to the line lying between the vertices of the diagram labelled “X” and “Y”;
“angle XYZ” refers to the angle between the lines labelled “XY” and “YZ” at the
vertex labelled “Y”, etc. Repeated labels always refer to the same vertex, line or

angle.

Representational and Depictive Scope

The above conventions govern the drawing and labelling of the diagram, and the
relation between the diagram labelled and the text of Euclid’s argument. However, a
drawn and labelled diagram is merely a collection of marks, of letters and lines. What
makes the diagram a diagram of something is its representational content, and this is

constrained by a further set of representational conventions and assumptions.

We need to distinguish here between depictive scope and representational scope. We

can think of depictive scope as governed by the following convention:

(C1) The reasoner is to take a diagram to depict all those geometrical objects that it

appears to her visually to resemble.
Thus drawn lines are to be taken to depict geometric lines, points to depict

geometrical points, shapes to depict geometrical shapes. Note that a further

convention can be given in the other direction, in relation to construction:
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(C1*) The reasoner is to take an instruction to construct a geometrical object of a
certain kind as an instruction to construct a (saliently sized and clearly drawn)

diagram that appears to her visually to resemble an instance of that kind.

On the other hand, we can think of representational scope as governed by the

following convention:

(C2) The reasoner is to take a diagram to represent all those geometrical objects
that can in principle be generated by execution of the construction procedure

specified in the text.

It is an error to take the diagram to represent only those objects that fall within its
depictive scope at the conclusion of Euclid’s argument: the conclusion is supposed to
be true of all triangles, not merely of those that the diagram visually resembles. But
note that this does not prevent a reasoner from using (C1*) to draw the diagram.
There is nothing in (C1*) that requires a reasoner to treat a given diagram as having

merely depictive scope.

As this brings out, it is the text of Euclid’s argument—and specifically the relevant
construction procedure—that controls the representational scope of the diagram, and
the text may require the diagram to be understood as representing classes of
geometrical objects that it may not appear to the reasoner to depict. A diagram can in
principle be taken to represent anything. It does not carry with it its own instructions;

rather, these must be supplied from elsewhere.

These conventions, and the controlling influence of the text of the argument, can be
seen at work in Prop. 1.32. The reasoner may, in constructing the diagram, construct a
diagram of an equilateral triangle. However, the instructions in the argument (“let
ABC be a triangle”) do not require that an equilateral triangle be drawn: she might in
principle have obeyed them in constructing an isosceles or scalene triangle. Hence,
for her to treat the diagram as restricted to equilateral triangles is to make an

additional assumption, and one that has no warrant in the text.** Similarly, the colour

* I discuss questions of construction in more detail below, especially in Chapters 7 and 10.
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of the diagram is left open; it may be any colour, and so which colour it in fact is, is
irrelevant. Similar remarks apply to the size of the diagram; it may in principle be
any size, and so what size it in fact is, is irrelevant.* Here the modern tendency to
omit the construction and treat the argument as beginning from an already completed
figure renders Euclid’s argument unintelligible, unless further and equivalent scope

conventions are also supplied.

Distinguishing between representational scope and depictive scope allows us to
unpack the difference between the naive and expert approaches described above. The
naive reasoner takes the representational scope of the diagram to be determined solely
by its depictive scope. But later, in reflecting that no step in the argument depends on
the specific properties of the depicted triangles, she does not take the conclusion to be
limited merely to those triangles that lie within the depictive scope of the diagram. It
is then a further movement of thought for her to recognise that the representational
scope of the diagram can be entirely general, as does the expert. Until then, it is
natural, and not mistaken, to take the diagram to be depictive, and it is in this sense

that she can be said to be “seeing what happens” to it, and to the object(s) it depicts.
The Target of Representation

Finally, there are assumptions governing the geometrical objects represented by the
diagram. It is appropriate to distinguish these assumptions from those relating to the
representational content of the diagram, because some intended properties of the
geometrical objects represented may not be detectable from a visual examination of
the diagram, and yet affect the cogency of Euclid’s argument. We can illustrate this
by briefly examining a well-known objection to the construction of an equilateral

triangle in Prop. 1.1, as below:

“ It is sometimes objected that size is in fact relevant; even if space is (as perceived) locally Euclidean,
since the physical universe appears to be non-Euclidean, very large diagrams will, if they follow the
shape of space, violate the parallel postulate. But this worry is irrelevant here, for what is in question is
how objects represented by the diagram would be if the relevant space were Euclidean. We can and do
follow arguments in Euclid’s geometry containing diagrams that are not themselves perfectly
Euclidean, even when we know in advance that they are not.
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The construction procedure given in Prop. 1.1 is as follows:

Setting-Out [Construction]: Let AB be the given finite straight line.

Construction: With centre A and distance AB let the circle BCD be described,
again, with centre B and distance BA let the circle ACE be described; and
from the point C, in which the circles cut one another, to the points A, B let
the straight lines CA, CB be joined.

It is often pointed out that Euclid is not entitled to assume the existence of the
intersection point C between the two circles D and E. It appears that Euclid has a
notion of continuity, perhaps given in visual perception by the apparently unbroken
motion of a stylus or pen that is taken to represent a mathematical point, on which it is
obvious to him that such a point C exists. However, we can provide models of
Euclid’s axioms in discontinuous geometries in which point C does not exist; it has
been argued that what is required to fill this gap is a further assumption, akin to a
postulate, to the effect that the relevant concept of continuity is, or is a derivative of,

Dedekind continuity.*®

Now, there is something correct about this view: there is nothing as such about the
visual features of a drawn line that instructs a reasoner to take it as representing a

continuous (or non-continuous) geometrical line. A drawn line is, by itself,

% A line is Dedekind-continuous if it satisfies the following condition (Dedekind 1963, p. 11): “Ifall
points of a straight line fall into two classes such that every point of the first class lies to the left of
every point of the second class, then there exists one and only one point which produces this division of
all the points into two classes, this severing of the straight line into two portions.” See also the
discussion in Heath 1956, p. 234ff.
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