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Abstract

We introduce the braid groups in their connection to knot theory and investigate several of their 

properties. Based on term  rewriting systems, which we review, we find new solutions to the word 

and conjugacy problems in the braid groups. A similar problem asks for the minimal length word 

for an equivalence class in a given braid group which we prove to be NP-complete (after a review of 

this concept) and present a new algorithm for it. As this algorithm takes an exponentially increasing 

amount of time, we construct an algebraic approximation algorithm which we find to work well. 

We consider several methods of approximating the minimal word via computer simulation of the 

braid strings moving under the infiuence of certain forces. Using the theory of tangles which we 

also review, we construct a new notation for knots which is usable by a computer. Prom this 

notation, we construct an efficient algorithm to find the braid or plat whose closure is ambient 

isotopic to  any given knot. Finally, we apply the computer software developed for these problems 

to  the solar coronal heating problem by simulating magnetic flux tubes. We also present a number 

of incidental results th a t were found along the way of researching these problems.



This is dedicated to all those who, in the face of adversity, 

throw themselves headlong into the battlefields 

and fight until they achieve victory or die trying.

”It is time I focused on my problem. Who does not have a problem? — Everybody has one, 

and indeed several. Each problem has its rank; the main problem moves to the center of one’s 

life, displacing the other problems. It incessantly haunts us like a shadow, casting gloom on our 

minds. It is present even when we awaken a t night; it pounces on us like an animal. ... When I 

stir my morning coflFee and watch the swirling of the streaks, I am observing the law th a t moves 

the universe — in the whirling of the spiral nebulae, in the eddying of the galaxies. ... But what 

does it m atter? W hether the universe whirls or crumbles — the problem remains behind it. ... 

The problem is indivisible; man is alone. Ultimately, one cannot rely on society. Although society 

usually wreaks harm, indeed often havoc, it can also help, although not more than  a good physician 

— up to  the inevitable limit where his skill fails. ... My time is limited; but anyone can spend a 

month retreating into the forest or the desert. There, he can describe — or better: circumscribe 

his problem; it is then defined, though not solved.”

E rnst Jfinger in Aladdin’s Problem.

A l g o r i t h m ic  P r o b le m s  in  t h e  B r a id  G r o u p s
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N otation

The most im portant symbols used throughout the thesis are explained in the table below.

Symbol Meaning

[A,B] A B - B A  = 0

ai generator of braid group, single braid crossing

Bn braid group of n  strings

% equivalence in a group

conjugate in a group 

Markov equivalence in braid group 

L{A) number of Artin generators in braid A; the length of braid A

A  (canonical) closure of braid A

fundamental group of complement of knot K  

p{K)  peripheral group system of complement of knot K

( î,j =  • - aj for i < j  ascending braid word

di,j = aiUi^i • ■ - aj for j  < i  descending braid word

An =  <%i,n-iai,M- 2  • • • fli.i fundamental braid, see

A^ generator of the centre of Bn, see An
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Preface

This thesis considers several problems in the theory of braids. Braid theory is a branch of knot 

theory which is contained within topology. During the discussion of the research, we make use of 

braid, knot, group and tangle theories as well as techniques from term  rewriting systems and NP- 

completeness which come from computer science, and topology. Other than a basic knowledge of 

topology and group theory, no further knowledge of any other branch of mathematics or computer 

science is necessary in order to read this thesis as we review all these fields to the extent necessary 

for our purposes.

We begin in chapter 1 by reviewing braid and knot theory. In section 2 .1 , we use group theory 

and algebra to deduce certain properties of the braid groups. We proceed in section 2.2 to review 

term  rewriting systems and use them in section 2.3 to  solve the word and conjugacy problems in 

the braid groups.

We state the minimum word problem for braids in chapter 3. In section 3.2, we review the 

theory of NP-completeness and use it to show th a t the minimum word problem is NP-complete in 

section 3.3. We find, in section 3.4, an algorithm to solve the problem which runs in exponential 

time.

The minimum word problem may be approached by simulating braids as elastic strings. This 

approach works well in practice. In section 4.2, we discuss how to generate a random braid, embed 

it in space and retrieve a braid word from a set of strings. In sections 4.3 and 4.4, we present 

three forces th a t we will use in the simulation. Section 4.5 presents an efficient algebraic heuristic 

algorithm to  solve the problem. The properties of the forces and d ata  to compare them  in both 

efficacy and efficiency is in section 4.6. The simulation contained in chapter 4 was published in a 

slightly different form in [1 0 ].

We review tangle theory in section 5.1. Section 5.2 presents a new notation for knots and gives 

a few basic properties of it. We solve the problem of turning a knot into a braid or plat in section

5.3 and give translation algorithms between our new notation and existing computer notations in 

section 5.4.

Apart from the crossing number minimizing force in section 4.3, which is the work of Prof. M 

A Berger, and the curvature elastic force in section 4.4.2, which is the work of Dr. R Prandi, the 

contents of the thesis are the author’s work except where explicitly cited in the references. For
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reasons of space we provide the proof of a result only when it or the result is new and refer the 

reader to the literature if the proof exists therein.

In the investigations described in the above chapters, computer assistance was frequently nec­

essary and for this purpose a program called BraidLink was w ritten in C+-f- for Microsoft Win­

dows. Many of the algorithms in this thesis are implemented in BraidLink but the functionality 

of BraidLink goes far beyond them. The program may be obtained from the author, for further 

information and the manual see h ttp :/ /w w w .k n o t- th e o ry .o rg .

For each entry in the bibliography, we provide a list of page numbers on which th a t particular 

work was cited. After the bibliography, we provide an index to the technical terms used in the 

thesis. Page numbers in bold indicate th a t the term  is defined on th a t page whereas a normal page 

number simply means th a t the term  is used in an im portant way on th a t page.

A lg o r i t h m ic  P r o b le m s  in  t h e  B r a i d  G r o u p s
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Chapter 1

Introduction to Braid and Knot 

Theory

1.1 Knot Theory

Everyone has encountered knots. We use knots to  tie our shoelaces, fasten our washing lines and 

secure ourselves from falling during climbing. Knot theory studies the topology of knots such 

as these with the only additional requirement th a t after they are tied, the ends must be glued 

together never again to  be undone. The inherent freedom of topology means th a t we are allowed 

to do anything to the knot - stretch, bend, twist and distort it in any way - except cut or glue the 

string at any point. The modern view of thinking of a knot as a tied piece of string with connected 

ends is much simpler than the original conception:

”By a knot of n  crossings, I understand a reticulation of any number of meshes of two or more 

edges, whose summits, all tessaraces (a/tT?), are each a single crossing, as when you cross your 

forefingers straight or slightly curved, so as not to link them, and such meshes th a t every thread 

is either seen, when the projection of the knot with its n  crossings and no more is drawn in double 

lines, or conceived by the reader of its course when drawn in single line, to pass alternately under 

and over the threads to which it comes at successive crossings.” [93]

The historical roots of knot theory begin in the middle of the nineteenth century when Lord 

Kelvin (at th a t time still William Thompson) had the idea th a t an atomic theory could be created 

on the basis of vortex knots in the (then accepted) luminiferous ether. The fluid-like ether was 

thought to be the all pervading medium in which light travels. Different elements of m atter were 

thought to correspond to topologically distinct knots in this model. Thompson asked his friend 

Peter Guthrie Tait to  study knots and to draw up a list of topologically distinct knots. This was the 

impetus for Tait to  create knot theory. When Kelvin approached Tait about constructing a knot 

table, they envisioned a research programme which was to start by classifying knots (in form of a 

table), mapping this table to the spectrum of observed elements via further experiments and finally
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to produce a theory of everything. The 1887 experiment of Michelson and Morley showed that 

the luminiferous ether does not exist and thus the vortex atom theory was abandoned. However 

knot theory continued as a mathematical discipline. Tait was primarily concerned with creating a 

table of topologically distinct knots in order of increasing complexity. The measure of complexity 

used was the minimum number of crossings over all two dimensional projections of the knot. Tait 

succeeded in creating a remarkably accurate table of prime knots up to and including ten crossings.

Figure 1 .1 : The unknot, Hopf link and the W hitehead link. These knots are oriented as indicated by 

the arrows. Knots do not have to be oriented but every knot is orientable and different orientations 

may not be deformable into each other without cutting or gluing, i.e. they may be topologically 

distinct.

Figure 1 .1  gives three examples of knots. The leftmost knot is called the unknot and was 

originally not regarded as a knot a t all. The unknot is a very special case and arguably the most 

im portant single knot. The other two are the Hopf and W hitehead links respectively which have 

two closed loops of string each. The term  link is usually reserved for a knot with more than one 

component. The arrows on the diagrams supply an orientation to the knot. The orientation is 

im portant because there exist knots for which altering the orientation can change the topology. 

Many times however, no orientation is specified.

The modern definition of a knot K  is an embedding of n  copies of into 5^, the three-sphere 

(thus we use the term  knot as inclusive of links). Whenever a new m athem atical object is defined, 

the question arises how equality is to  be defined. In knot theory this is far from obvious and there 

were several contending views very early on. Tait [142] viewed knots based on string and allowed 

axial twisting of the rope while Kirkman [93] viewed knots based on ribbons and did not allow 

axial twists. This lead to different tables of distinct knot types and created some confusion.

The definition of equivalence is based on the topological concept of ambient isotopy and is 

essentially the same definition th a t Tait used. Two embeddings fci, /c2 : X  —> Y  are ambient 

isotopic, denoted by %, if there is a level preserving isotopy H  such th a t

H  : Y  X I  X I ,H { y , t )  = {ht{y),t) (1 .1 )

where ^2  =  ^ i^ i, ho = idy  and /  =  [0 , 1 ]. H  is called the ambient isotopy. This means th a t if 

we can take one knot and distort into another smoothly without any discontinuities, then they are

P a t r i c k  D . B a n g e r t
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both the same knot. If we must go through some discontinuities, i.e. if we must cut or glue, then 

the two are not the same knot. From this definition, it is clear th a t the unknot and the Hopf link 

in figure 1.1 are not the same knot. The reason is th a t the Hopf link has two components which 

could be reached from the unknot’s single component only by cutting and gluing. This process of 

cutting and gluing is commonly referred to as surgery.

Having defined what it means for a knot to  be equal to another, we ask for a method to discover 

if the equality holds between any two given knots. This is the classification problem for knot theory 

and no satisfactory answer has yet been given.

1.1.1 The K not Classification Problem

Figure 1.2: The Reidemeister moves.

The overriding problem in constructing a knot table is the difficulty of determining whether 

two knot diagrams are topologically distinct or not. It is possible to construct all possible knot 

diagrams up to a given number of crossings using an (essentially) algebraic method [143] but 

distinguishing these is the real problem. This enumeration method has been refined [58] and used 

to tabulate knots based on topological invariants (see below) up to  and including 17 crossings 

[69] (for an excellent review on the history of tabulation and how it is done using a computer 

see [147]). Therefore a practical method for comparing two given knot diagrams would make it 

possible to construct a complete knot table up to  a certain number of crossings, i.e. such a method 

would classify knots. After Tait, Reidemeister [130] showed th a t two knot diagrams are equivalent 

if and only if they can be transformed into each other via a set of four moves which are called 

Reidemeister moves, see figure 1.2. While this turns the problem into a combinatorial one, it is 

often necessary to further complicate a diagram in order to  fully simplify it later. Making this 

transformation is not readily amenable to algorithmic manipulation. Thus Reidemeister’s moves 

do not present a practical method to distinguish knots. They make it easy however, to prove the 

invariance of other properties of knots. If one can show th a t a particular function /  (K)  calculated 

firom a knot K  is invariant under all the Reidemeister moves, then /  (K )  is a topological invariant

A lg o r i t h m ic  P r o b le m s  in  t h e  B r a id  G r o u p s
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of knots. This means th a t if K i  % Kg, then / ( K i )  =  /  (Kg). Many such functions have been 

found but it can be shown th a t for most known functions it does not follow th a t if /  (K i)  =  /  (Kg), 

then K i ~  Kg. In th a t sense, most topological invariants are incomplete. An invariant is called 

complete when K% % Kg if and only if /  (K i)  =  /  (Kg). It is the holy grail of knot theory to find 

a (readily computable) complete invariant. I t is not known whether such an invariant actually 

exists. As we will discuss below, the complement {R^ with the knot removed) of the knot is a 

complete invariant but distinguishing these, while possible, is such a time consuming affair, th a t 

this method of classifying knots is not practical [77].

We can define a knot sum K i# K g  between two knots K \  and Kg by cutting both knots at 

one arbitrary point and splicing the ends together in such a way th a t the orientations, if any, are 

compatible. It can be shown th a t this sum is independent of the choice of the points and thus 

dependent only upon which components of K \  and Kg are cut [39]. It can also be shown th a t 

there is no inverse to this sum, th a t is, in general, there is no knot K ~^  for any knot K  such th a t 

K # K " ^  % U where U is the unknot of as many components as K  has [39]. Therefore, the knot 

isotopy problem does not reduce to recognizing the unknot, which is a fundamental complication 

of the problem. A knot is called prime if it can not be represented as the sum of two non-trivial 

knots, it is called composite otherwise.

1.1.2 Topological Invariants

The topological invariants of knots fall into a number of categories. A trivial invariant is the number 

of components but since there are a large number of obviously distinct knots for each value, this 

is not a very strong invariant even though it is easily computable. Amongst the simplest to state 

are the invariants which are defined as the minimum of quantities over all possible diagrams of a 

knot. Since there are an infinite number of diagrams for each knot, these invariants are difficult 

to determine and for many of them, there exists no general method. Examples of this are the 

minimum crossing number, bridge number and braid index [116]. Another im portant category 

is formed by the polynomial invariants. A number of polynomials have been defined which are 

topological invariants of a knot. The polynomial is generally calculated via a topological form of 

recursion relation, called a ’’skein relation,” which we will not go into [91]. The Jones polynomial 

and its generalization, the Homfly polynomial, are very im portant in several applications of knot 

theory as well as knot theory itself. They are very powerful invariants but there are still an 

infinite number of knots with identical polynomials. The fundamental point to  note is that, while 

polynomial invariants are among the most powerful knot invariants, the amount of computing time 

required to  determine them  increases exponentially with the number of crossings in the diagram 

of the knot. For a review on knot polynomials, see [99].

The fact th a t it is unknown whether there exist non-trivial knots for which the Jones polynomial 

is equal to one (the value for the unknot), shows th a t these invariants are not fully understood at 

present. Recognizing the unknot is a subproblem of the knot classification problem and if the above

P a t r i c k  D . B a n g e r t
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question is negatively resolved, then the Jones polynomial would provide the best known unknot 

detection mechanism (from a computational point of view) [21]. There are two algorithms which 

can distinguish the unknot: One due to Haken [74] [75] which was the precursor to  his classification 

of 3-manifolds and one due to Birman and Hirsch [2 1 ] which makes use of closed braids. While the 

former is clearly exponential in execution time, the later has not been analyzed for complexity but 

appears to be exponential. It has not been analyzed what the complexity of the knot classification 

problem in general is but it would seem to be easier to  distinguish a knot from the unknot than 

to distinguish two arbitrary knots.

1.1.3 The Com plem ent o f the K not

We define a knot K  as an embedding of n  copies of into 5^, the three-sphere. Consider the knot

K  and surround it with a tubular neighborhood V {K ),  then the manifold C {K ) = — V {K )  will

be called the complement of K .  I t can be shown th a t for any knots K \  and K 2 , K \  % K 2 if and 

only if there exists orientation preserving homeomorphism H  : C {Ki)  —> C {K 2 ) [39]. Thus the 

knot complement is a complete invariant of the knot.

P,

Figure 1.3: The standard 3-simplex or tetrahedron.

C {K )  is clearly a 3-manifold and it can thus be distinguished (or otherwise) from other 3- 

manifolds, in particular other knot complements C{K'),  by Haken's classification of 3-manifolds. 

We briefly present the idea of the method but refer the reader to  [77] for a pedagogical treatm ent. 

F irst, a triangulation must be found on R^. A triangulation for a 3-manifold essentially consists of 

filling the manifold with non-overlapping tetrahedra in such a way th a t any point in the manifold 

is in a tetrahedron, see figure 1.3. Any surface in the manifold will now intersect some tetrahedra. 

These intersections will be triangles (2 -simplices) or squares, see figure 1.3. Since the tetrahedra do 

not overlap but fill all of the manifold, the number of intersections of a surface with adjacent sides 

of te trahedra must be equal. This requirement gives a set of equations describing the surface in the 

manifold. Since the triangulation is not unique, neither is the set of equations. Comparing two knot 

complements has been a topological problem but this construction turned it into a combinatorial
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one. If we can compare the set of equations from two surfaces (thickened knot neighborhoods 

of K  and K ') ,  then we can distinguish the knots. This can be done [77] but the time taken is 

exponential in the number of crossings of the knot, so exponential th a t the algorithm can not be 

used to  practically distinguish knots even of small crossing number.

1.1.4 Peripheral Group System

The complement of a knot is uniquely specified (up to  isomorphism) by its peripheral group system 

which consists of the fundamental group and a few subgroups thereof (this is W aldhausen’s theorem 

[153], see [78] for a more accessible proof). This is the only complete invariant which it is practical 

to  actually calculate but since group isomorphism is algorithmically untestable (the Adian-Rabin 

theorem  [2] [3] [129]), this does not provide a practical method to distinguish knots either. It is 

however known th a t the word problem for any fundamental group of any knot is solvable [154]. If 

the knot is alternating, the conjugacy problem is also solvable [5].

Figure 1.4: The thick curve displays the trefoil knot with an orientation. The thin curve which is 

parallel to the trefoil knot is the longitude; the orientation of the longitude is the same as the knot. 

The thin curve encircling both trefoil and longitude at the top left hand corner is the meridian. 

Note th a t the five conditions given in the tex t are fulfilled by these curves.

We define the linking number of two curves a and 6 , denoted by lk{a, b) as the weighted sum 

of the characteristics e of each crossing. The characteristic e is -1  or 1 depending on whether the 

crossing matches respectively with the first or second of the two possible scenarios for a crossing 

shown in figure 1.5. We define a meridian m i  and a longitude U of a knot component K i  by 

requiring the following properties: {!) rui and li are oriented, polygonal, simple and closed curves 

in d V  (Ki),  the boundary of the thickened neighborhood of K i  which we denote by V  (Ki), (2) rUi 

and U intersect in exactly one point, (3) rUi is null homologous (m^ ~  0) in V {KÎ) and U ~  Ki 

in V  (Ki), (4) /i ~  0 in C  (Ki) and (5) l k (m i ,K i)  — 1 and lk ( l i ,K i )  =  0 in S^. The above five 

properties define nrii and U uniquely up to  isotopy on the boundary of V (K )  [39] (see figure 1.4 for 

an illustration). The meridian-longitude system pair A i (K )  for a j-com ponent knot K  is the pair 

of sets ({m i, m 2 , - - - ,m j} , {/i,Z2 , • • • , lj}).

The knot group 'ïï(K )  is the fundamental group of C (K ), Tri{C{K),b) where b denotes a base 

point. The meridians and longitudes of a meridian-longitude system pair A i ( K )  of the knot K
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may be considered to be elements of 7t(K ) by choosing a path pi in C {K )  from the base point b to 

the (unique by definition) point rrii fl k  for each i. Then the subgroup (rriiji) of tv{K), generated 

by rrii and h is independent of the choice of pi up to conjugation. The peripheral group system  of 

a ^-component knot K  is p{K)  =  {'k{K)\M.{K)). By an isomorphism (j) between two peripheral 

group systems p {K) p {K'),  we mean tf {K) % tf {K')  such th a t (f) {rrii) =  and (f> {k) = I'i for 

all i. I t can be shown th a t for any two knots K \  and K 2 , p { K \)  % p (K 2 ) if and only if K \  % K 2 

[92]. If we restrict attention to  prime knots of a single component, we have t t{K i)  % tt (K 2 ) if 

and only if K i ^  K 2 [92]. Thus the problem of knot isotopy can be transformed into the problem 

of peripheral group system isomorphism. Since it is not possible to determine, in general, if two 

groups are isomorphic, this does not solve the knot classification problem.

(1) (2)

Figure 1.5: The two possible forms of double points in the diagram of an oriented knot.

There exists a simple method due to  W irtinger, to  find a presentation of tt{K) from a diagram of 

K .  Suppose there are n arcs in the diagram. We label the arc by Xi. The set for 1 <  i <  n 

generates tt{K). Every crossing in the diagram of K  is of one of the two kinds displayed in figure 

1.5. For each crossing determine its type and add the relation xiXiX'j^^ x~^ w e  or xixJ^x'j^^Xi w e  

to  the group respectively. The resulting group is 7f(K ) defined by its Wirtinger presentation. It 

is a practical observation th a t this presentation can often be simplified considerably in th a t some 

generators are removable [65]. In particular, r {K )  for the torus knot Tp,g, which is a knot th a t 

winds around a torus p  times the short way around (meridionally) and q times the long way around 

(longitudinally), is given by r { K )  =  ({n, 6 } : a^ =  b^) [92].

Even though r {K )  can not be readily used as a practical invariant, it is however a convienient 

starting  point to define many other invariants, for example the Alexander polynomial [148] which 

was the first of the polynomial invariants and (like the Jones polynomial) revolutionized knot 

theory.

1.2 Knot Notations

Knot theory has gained tremendous momentum from proofs th a t certain m athematical objects 

are isotopy invariants of knots such as the peripheral group system discussed above. Such proofs 

and general statements about knots form a large part of knot theory but in applications of knot 

theory, actual computation of these objects is often necessary. Therefore, it is im portant to have 

a practical method of computation for such invariants. Some invariants, such as the unknotting
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number, can not yet be calculated in an algorithmic manner for every knot. Other invariants can 

only be calculated by algorithms whose complexity increases exponentially, thus rendering them 

useless for all but small knots. There exist only a few invariants which may be calculated easily.

Because it is so laborious to  compute many interesting properties of a particular knot, the use 

of computers is essential. However if a computer is to be used, the search for an efficient algorithm 

becomes im portant. The pivot of all algorithms is the form of the input. For many physics 

calculations, for example, the choice of coordinate system often allows far greater simplification 

of the calculations than a change in computational procedure. Therefore, while the algorithm is 

im portant, a good notation for knots is paramount. Currently there are several different systems 

of ’’knotation” (the term  was coined by John Conway in a popular lecture with this title) which 

are widely used, we shall illustrate two of them: Conway’s [50] and Dowker and Thistlethwaite’s 

[58],

Conway’s knotation relies on setting up templates for knots which he calls basic polyhedra. 

One inserts standard knot pieces called tangles into the vertices of the tem plate (tangles are 

introduced in chapter 5). This knotation is quite intuitive since the geometrical aspects of the 

knot projection can be immediately visualized it is however non-trivial to construct the notation 

given a knot projection and the notation is limited to knots with few crossings without making 

necessary extensions.

The Dowker-Thistlethwaite code for a knot is an improvement of T ait’s notation. One chooses 

a point on the knot a t random and follows it in the direction of its orientation. The crossings are 

named ”A” , ”B” , ”C” and so on in the order th a t they are met and one writes down which ones 

one meets in order. It can be shown th a t only every second letter is needed as the others can be 

recovered and so the notation for a knot projection of n  crossings contains n  letters. Implemented 

algorithms to calculate most invariants from this code exist. The main application of this code 

is in the computer-assisted tabulation of knots [147]. In chapter 5, we introduce a new notation 

which will allow us to  transform  a knot into a closed braid (see next section).

1.3 Braid Theory

In 1923, Alexander proved th a t any knot projection can be modified via Reidemeister moves into 

a form with respect to  a special point P  in the plane which has the property th a t for a point A  

which traverses the knot in the direction of its orientation, a plane perpendicular to th a t of the 

projection intersecting both P  and A  rotates around P  in a constant direction (clockwise or anti­

clockwise but never both) [4]. When Artin invented braids [7], it was noticed th a t if one specified 

a point outside the braid to be P  and connected the top and bottom  ends of the braid’s strings 

with each other in such a way th a t the connecting lines circumnavigated P  (this process is called 

closing a braid, illustrated in figure 1 .6 ) and oriented the braid’s strings in a uniform (upwards or 

downwards) direction, one had obtained exactly this form. Thus Alexander had shown th a t every
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Figure 1 .6 : The (canonical) closure of a braid. In the braid group language, the braid is A 3 

0-1(72(71 and the knot is the Hopf link.

Figure 1.7: The plait closure of a braid. Note th a t there is potential conflict between orientations 

of the braid strings in the plait closure; it becomes impossible to plait a braid in which all strings 

are oriented in the same way.

(oriented) knot can be represented by a closed (oriented) braid. In his paper, Artin had found a 

group structure for braids which defined open braid isotopy - th a t is topological equivalence of two 

braids under the restriction th a t the endpoints remain fixed. The m ethod of closing a braid which 

is illustrated in figure 1 .6  is called the canonical closure to  distinguish it from the plait closure. In 

the plait closure, we join neighboring ends together as illustrated in figure 1.7. It is necessary for 

the braid to have an even number of strings for the plait closure.

1.3.1 The Braid Group

The braid group Bn for a braid of n  strings is generated by single crossings. Suppose th a t all 

strings are vertical apart from strings i and i + 1 which cross over each other. If i overcrosses z + 1 , 

we denote this by ct* and the inverse is denoted by ct~^ (see figure 1.8 for an illustration). The set 

{(7 1 ,(7 2 , • • • , (7n-i} generates the group Bn and together with their inverses {(7j“^ , • • • ,
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Bn  satisfies the defining relations

(7iCT̂

(Ji(Tj

Giai^iOi

e

(jjai for \i — j\  > 1

O’i+lO'iO’i+i

(1.2)

(1.3)

(1.4)

where e denotes the identity element. Topologically e is the braid of n  strings without any crossings; 

i.e. n  vertical strings. The generators cr̂  are called Artin generators. The proof th a t the topological 

equivalence relation of braids is identical to the group theoretical equivalence relation defined by the 

equations above under the m ap th a t a crossing in the topological braid is interpreted as a generator 

in the group is given in [8 ] or more accessibly in [39]. We shall use ~  to  denote equivalence under 

a given set of identities and =  to denote exact (letter by letter) equivalence.

1-7

CT.-1

i+ 2  n-1 n

i-1 i+1 i+ 2

Figure 1 .8 : The generator and its inverse  ̂ for the braid group Bn-

n-I n

We will call a word positive if it contains only generators and no inverses; the inverse of a 

positive word is called negative. We shall call two positive braids A  and B  positively equal if there 

exists a sequence of braids Wi ioT 0 < i < q with W q = A, Wg =  B , Wj  and different by a

single application of the braid group’s defining relations and Wi all positive. Garside has shown 

th a t if two positive braids are equal, they are positively equal [64].

The length of braid A  in term s of Artin generators will be denoted by L{A). A general braid 

A  E Bn  may be w ritten in the form

J l ( A)
iL{A) (1.5)

where 1 <  <  n and jk  =  ± 1  for any k : 1 < k < L{A). We define the exponent sum, denoted

exp (A) of A  by

L(A)

exp(A) =  ^  jk  
fc=i

(1.6)

I t can be shown th a t exp (A) is a conjugacy class invariant (and hence equivalence class invariant) 

of A [2 0 ]. If A is as in equation (1.5), then we define the reverse operator R  by

rJl (1.7)
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and call R{A),  the reverse of A.

We define three special braid words: The fundamental braid A„, the ascending braid a i j  and 

the descending braid d i j  by

^i,j ~  ■ ■ ' ^ j  ‘I — j  (18)

di^j — • • ■ <7j j  i (19)

A n =  a ia 2  • • ■ CTn-lCria2 • ' - (Jn-2 ’ ’ ’ (1.10)

~  Ûl,n—l^l^n—2 ■ ■ ■ ®1,2<̂1,1 (1 11)

An is im portant in braid theory because A^ generates the center of the braid group B n  [43]. 

Garside [64] has shown th a t the fundamental braid satisfies

An<7i ~  (Tn—i ^ n  ~  (1 1 2 )

A (An) % An (1.13)

where we have defined Oi =  (Tn-i- We now prove a crucial proposition.

P ro p o s i t io n  1.3.1 For any ct~^, we have <j~̂  % A ” ^ A n -id n -i,i+ id i_ i,i.

P ro o f . Since A„ =  a i ,n - ia i ,n - 2  • • • 0 1 ,2^ 1,1 and iî(A n ) ~  An, we have A„^ ? 

Thus d n - 1,1 ~  1^ 2,1 • • • d n - 2 ,1 - From the definition of d i j ,  we have

 ̂ ~  a i - ia i -2 " - ( ^ id n ^ i  iCrn-iO'n-2---cri+i (1.14)

~  di—l,ld^_-^ldn-l,i+l (1.15)

~  d i _ l , l A “ ^dl,1^2,1 • • • d n - 2 , l d n - l , i + l (1.16)

~  A “ ^ a n - z + l , n - l d l , l d 2 ,l • • • d n - 2 , l d n - l , i + l (1.17)

^  A n  rin—i+ l ,n —1 A n —id n —l , i + l (1.18)

~  A n  A n —id j—i^idn— (1.19)

~  A n  A n —id n — (1.20)

for any i, which proves the proposition. □

Given two words ct,P E Bn, the decision problem of whether o  % is called the word problem. 

The word problem in the braid groups was first solved by A rtin [8] and therefore provided a solution 

to  the problem of braid isotopy. For two words a, (3 E Bn, if there exists a word j  E Bn such th a t 

a  % 7 /3 7 “  ̂ then a  and /? are called conjugate, which is denoted by «c- If 7  ~  e, then a  P 

implies a  ^  P and thus the conjugacy problem, the existence decision of such a 7 , contains the 

word problem as a special case. The conjugacy problem for Bn  was first solved by Garside [64]. 

The best known algorithm for the word problem was formulated by Birman, Ko and Lee [2 2 ] with 

complexity O(nL^), where L  denotes word length, and for the conjugacy problem by Thurston [59] 

and Birman, Ko and Lee [2 2 ] with exponential complexity.
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Construct the set D{A) of all words obtainable from A  by rearranging of generators, this is 

called the Cayley diagram of A.  This set is constructed recursively from A. The first set is 

Do(v4) =  {A} and each set Di{A) is obtained from D i- \{A )  by adding all words which can be 

obtained from the members of D i-i{A )  by a single application of the relations 1.3 and 1.4 and are 

not already members of the sets Dj{A)  for 0 < j  < i. It is a theorem of Garside [64] th a t this 

construction process term inates in a set Dk{A) for finite k and th a t thence the set D{A) which is 

the union of all the Di{A) for 0 <  i < fc is finite and readily constructible. Since we do not allow 

cancelations or introductions of generators by use of the relation 1 .2 , it is an obvious property of 

D{A)  th a t all members are of equal length L{A).

For any two braids A, B  G Bn  we say th a t A  is prime to  B  if and only if D{A) does not contain 

a word in the form A  % A \ B A 2 - Let the number of inverse generators in a braid A  be s(v4), then 

proposition 1.3.1 together with equation (1 .1 2 ) implies th a t any braid A  € Bn  may be w ritten 

in the form Amax — An^^^^^A' where A  is positive; the reason for naming it Amax will become 

apparent later on. We obtain this form by replacing each inverse generator in A  by the form given 

in proposition 1.3.1 and then using equation (1.12) to  bring all the fundamental braids to  the front.

In his celebrated solution to the word and conjugacy problems in B ^  Garside [64] presents an 

algorithm to put A'  into the form A' =  A ^ A "  where A!' is prime to  and another algorithm to 

put A!' into a form minimal in lexicographical order on the set of generators for the ordering Ui <  Uj 

if and only if i <  j ,  which we call A. Garside shows th a t the resulting form A g =  for

the braid A  is unique. We call q — s{A) the Garside exponent and A  the Garside remainder of 

the braid A. Garside’s original algorithms have exponential complexities in n and L{A), however 

Jacquemard constructed an algorithm with complexity 0(n^L(A )^) [83].

In stating the complexities of all algorithms here, we implicitly assume th a t n and L{A) are 

independent. Clearly, we may choose a braid A  G Bn  of any length at all and thus it would 

appear th a t we are justified in this assumption. In the class of non-splittable braids (A braid 

A  G Bn+m is said to be splittable if and only if it may be w ritten in the form A  % aOn{P) where 

a  G Bn, P € Bm and the operator 0 „ is defined by 0 „(oTi) =  [2 0 ]) this is not true as we must

have L{A) >  n — 1 . As in the case of worst-case complexity measurements, we are interested in 

the asymptotic behavior as n  and L{A) —̂ oo, we may continue to  assume th a t n  and L(A)  are 

independent. Should this in some circumstances tu rn  out to be false, the above argument shows 

th a t then n  is of the order of L{A).

If a knot K  is represented by a closed n-braid /?, then the m irror image K*  of K  is represented 

by the closed braid and the reverse (obtained by reversing the orientations) of K  is 

represented by R{P) or by R {P y  [117].

We will henceforth represent a commutation relation A B  = B A  by writing [A, B]. P u t a  =  

û i,n - i and /? =  <Ti, then it can be shown th a t another presentation of the braid group is [51]

B „ =  ({a , 0 ) : a "  =  (a/3)"-' ; [/3, a~^0»^] 2 < j  < ^ )  (1.21)
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where a "  is the generator of the center Z  (B„) [43]. In this formulation we trivially find the 

following helpful simplifications

a  ^ (1 .2 2 )

r ' (1.23)

=  « - ’',9 (0 /))’'- ^  a (1.24)

(1.25)

1.3.2 M arkov’s Theorem

Given a knot, we may produce an equivalent knot by taking any segment and twisting it about 

an axis in the projection plane by tt while keeping the rest of the knot stationary. This procedure 

corresponds to the zeroth Reidemeister move (see figure 1 .2 ) and adds one crossing to the diagram. 

Any crossing of this type is called nugatory. If we represent a knot by a closed braid by virtue of 

Alexander’s theorem, we may also add such nugatory crossings via a combinatorial move, called 

the Markov or stabilization move (see figure 1.9). Stabilizing a braid a  e  Bn  corresponds to the 

operation a  —> cx.(j^  ̂ or its inverse. Clearly stabilization increases or decreases the number of 

strings in the braid and so represents a move in the family of braid groups as opposed to  the 

conjugacy and equivalence moves which are contained in a single braid group.

Figure 1.9: Both conjugacy and stabihzation are displayed here. We begin with braid B.  Con­

jugation surrounds B  w ith A  and A~^ on opposite sides which clearly cancel due to the closure. 

Stabilization introduces a simple loop at the bottom  right of the braid, adds a new string to  the 

braid and thus increases the braid group index by one.

Markov stated in 1935 [105] th a t two closed braids are topologically equivalent if and only if 

they differ by stabihzation and conjugacy moves (recall th a t conjugacy contains equivalence). This 

statem ent became known as Markov’s theorem and was first proven in [20]. In its original form, 

Markov’s theorem assumes th a t the closed braid is embedded in or this can however, be 

generalized to an arb itrary  3-manifold [97]. Markov’s theorem transforms the link isotopy problem
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to  a combinatorial question about braids. If two braids a  E Bn  and j3 G Bm  (with n and m  

possibly different) are related by stabilization and conjugacy, they are called Markov equivalent 

which is denoted by «m - The decision problem of whether a  « m  P is called the Markov problem 

or the algebraic link problem. It is possible to  find a single move of which both stabilization and 

conjugacy are special cases and to formulate, in this way, Markov equivalence in terms of this so 

called L-move [98]. While this L-move is intuitive, it is not obvious whether the problem has been 

simplified by this reformulation.

1.3.3 Stabilization is N on-trivial

The first question which arises is whether there exist non-conjugate Markov equivalent braid words 

in the same braid group, th a t is whether a solution to the conjugacy problem will solve the 

Markov problem. This is negatively resolved by showing th a t the two 4-braids a  =  ctj and 

= aY^a^o-i with m ,n ,p  different, odd and a t least three in absolute value are not conjugate but 

Markov equivalent [118]. It might be thought th a t it should be possible to reduce the number 

of strings in a closed braid equivalent of the unknot to  one. This is true as all equivalent closed 

braids can be reached from each other via Markov’s theorem but the transition involves, in general, 

increasing the number of strings before they may be reduced to  a single string. In other words, a 

greedy reduction of strings does not reach the minimum string number, also known as the braid 

index (not even for the unknot representatives) [114].

It is a practical observation th a t finding a series of moves to dem onstrate the Markov equivalence 

of two closed braids is very difficult. The difficulty of finding such a sequence has lead Birman 

to believe th a t it may be simpler to solve Markov equivalence for two braids representing prime 

knots. While this may be true, it is not, in general, easy to decide whether a braid represents a 

prime knot. Schubert [132] proved th a t the factorization sequence of a composite knot is unique 

and has found an algorithm [133] which finds it. This algorithm, consequently, is able to  decide 

whether a knot is prime. However, the execution of the algorithm rests on Hemion’s algorithm 

since it must identify the prime factors of the knot, thus no longer necessitating a solution of the 

Markov problem since it already solves the fink isotopy problem (albeit impractically so). This 

also shows th a t this m ethod of deciding primality is not practical. Birman conjectures th a t a braid 

represents a prime knot if and only if it is not conjugate to a split braid.

Furthermore, if B irm an’s conjecture is true and we were to find an algorithm to decide whether 

a braid was conjugate to  a split braid, we would have to  solve the Markov problem for this restricted 

class of braids. If this could be done, we would have a solution to the Markov problem since every 

braid could be decomposed into its split components and pair-wise tested for non-split Markov 

equivalence. This would not only resolve isotopy but also give the unique prime knot factorization 

of the knots. B irm an’s conjecture is unproven and there exists no algorithm to test whether a 

braid is conjugate to  a split braid. It is possible, however, to solve the Markov problem for certain 

quotient groups of the braid groups [30].
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1.3.4 Strategies for the Markov Problem

Since the word and conjugacy problems are contained in the Markov problem, solutions for these 

are desirable and have been given numerous times as mentioned before. The stabilization move 

represents the final hurdle before link isotopy is algorithmically decidable and thus it would be 

interesting to know when a braid a  G Bn+i is conjugate to  a braid where 7  contains only the 

generators cr̂  for 1 <  i < n — 1 , for then one could reduce A to 7  using the Markov move. While 

this has been done [107], the algorithm depends on Garside’s conjugacy algorithm [64] which has 

exponential complexity. Moreover, if two braids were reduced in this way to  the minimum string 

number, they are not, in general, conjugate in this final braid group if they are Markov equivalent 

and thus this decision procedure does not solve the Markov problem either.

We have defined the exponent sum exp{a) of a braid a  as the sum of the exponents of the 

Artin generators of a . It is obvious th a t the exponent sum is a conjugacy class invariant but not 

a Markov class invariant because of stabilization. Thus it is possible for two braids to be Markov 

equivalent and have different exponent sums. In getting from one braid to the other, the exponent 

sum must be made equal somewhere in the chain of moves; this can clearly only be accomplished 

using stabilization. Stabilization can increase or decrease the exponent sum depending whether we 

add (Tn or or remove either of these. It also changes the number of strings. We may think th a t 

starting from a positive braid, we should be able to  reach any Markov equivalent positive braid 

by going through a pure positive sequence of braids; th a t is, we may think th a t positive Markov 

equal braids are positively Markov equal. We note th a t this would only be possible if the difference 

in exponent sum between the two braids was precisely their difference in number of strings. We 

conjecture th a t positive Markov equal braids are not positively Markov equal.

Much work was done by Birman and Menasco on various properties of links which could be 

determined from their closed braid representatives (this work was published in the six-paper series 

[23], [24], [25], [26], [27] and [28]). They prove th a t there exists a complete numerical invariant 

for knots but find this invariant only for knots which are closed 3-braids. The invariant for closed

3-braids is described extensively and can be used to  determine the braid index and whether the 

knot is spht, composite, amphicheiral or invertible. They also define a new type of move on braids, 

the exchange move, and prove a Markov-like theorem for it. See [29] for a summary of this work.
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Chapter 2

The Word, Conjugacy and Markov 

Problem s

2.1 Properties of the Center of Bn

By the definition of the fundamental word An, we have th a t

An =  0,1,71—lO'lyn—2 ' ’ ' 2^ 1,1 (2 .1 )

It can be shown [64] th a t R  (An) ~  An. It is clear th a t An+i =  ui,nAn and so we have an recursive

formula for obtaining the fundamental word of a higher braid group in terms of the fundamental 

word of a lower braid group. Chow first showed th a t A^ generates the center of Bn- The center 

plays an im portant role in what is to  follow and we shall have to  develop some properties of it; while 

most are simple to derive, they have nevertheless not been published to  the author’s knowledge.

2.1.1 Algebraic Properties

Since we have a simple recursion relation for An, we first prove a similar relation for A^. 

P ro p o s itio n  2 .1 . 1  I f  Cn = R {ai,n) oi^n, then

A L i  «  CnA^ «  A^Cn (2 .2 )

P ro o f. Recall th a t UjAn % AnOn-i- Consider

^n + l^ l,n  “  ^ n + 1^ 1^^2 ' ' ■ (2.3)

~  (Jn^n—1 ■ ■ ■ ^ l ^ n +1  (2.4)

~  R(ûl,n)An+l (2.5)
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then

Arx-j-101 ,n Ajt,

B  0,1,n ^ n

(2 .6)

(2.7)

(2 .8) 

(2.9)

We also have

A L i A ( A L i )

f i(C n A j)  

R  (^R (û l,n) û l,n A „ )

R { A l ) R { a i , „ ) R { R ( a , , „ ) )

(dl,n) Ol,n

(2.10)

(2 .11)

(2.12)

(2.13)

(2.14)

(2.15)

which proves the proposition. D

C orollary 2 .1 .2  Using proposition 2.Î.1 inductively, it follows that fo r  any integer k

\2k  /-k \  2k ^  \2k/-k
^ n +1  ~  ~ (2.16)

We may also show th a t the Cn commute with each other and their inverses in proposition 2.1.3.

P rop osition  2 .1 .3  7/Cn =  -R (ai,n) ai,n, then ~  for all i , j
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P ro o f . We have

Cn+lCn ~  R  0 ,l,n + lR  {o,l,n) 0,l,n

~  R  (^^l,n+l) CTi • • • (7fi—\(yn(Tix^\(7fi(Tyi—\ • • •

~  R  (® l,n+l) ■ ■ ■ (^n—l^ n + l^ n ^ n + l^ n —1 ' ' '

~  R  <^n+l^l ■ ' ■ ^n— 1 ' ' ' ^l<^n+l®l,n

~  R  ^Ti-\-i^i,nR i,^i,n') ^n+ i^ i,n  by induction.

~  R  (a i,n + l) CTn+1 • • • CT3(Ti(T2CriO’3 • • • <7n+l0<l,n

~  R  (û l,n + l) CTn+1 • • • 0’3a2(7lCr20'3 • • • 0'n+iai,n

~  (C’l , n + l ) (û'l,n4-l) ^1 ®l,n+l<^l,n
_ 1

~  Cn+l • • • CTian+1 • ■ ■ CTlCTi a i,n + lû l,n

_1
~  ^n+l^n*^n+l^n—1 ' ' ' ^l,n+l®l,n

—  1

% o-TiA (a i,n + i) R  {ai,n) (^ i^ a i,n + ia i,n  by induction:

^  -R (^l,n) (^^l,n+l) ®l,n+l<^l,n

~  A  (û l,n )  R  ( o i ,n + l)  CTl • • • <7n+l(Tl • • • CT„

~  -R (ûl,n) R  (a i,n + l) CTlCr2Cri(T3 ■ - ' an+lCr2 • • ■ CTn

~  R  (ûl,n) R  (ttl,n+ l) (T2CriCr2C’’3 ' ' ' (^n+l<^2 ' ' ' (̂ n

% R  (ai,n ) R  (a i,n + i)  (T2 O i,n+i0 -f  ̂ ai,„ by induction:

~  R  (ûl^n) R  (® l,n+l) <^l,n+l®l,n+l

~  R  (ai,n ) CTn+1 • • • CT3(J2C’’iC'i (̂̂ 1(72(73 - - - an+lCll,n+l

~  R  (^l,n) (7^+1 • • • (73<7l<72(7l(73 • • • Cn+lÛl.n+l

% R  (ai,n ) <7i <7„+i • • • £71(73 • • • (7n+iai,n+i by induction:

~  R  (£7l,n) ^IjTiR (^ l,n + l) ^ l,n+ l

~  CnCn+1

(2.17)

(2.18)

(2.19)

(2 .20 ) 

(2 .21) 

(2 .22 )

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

Prom the definition of Cn, we have

Cn+kCn ~  (^n+k^n+k—1 ' ' ' <7'n+2Cn+l<7n+2<7’n+3 ' ' ' ^n+kCn

~  (^n+k^n+k—1 ' ' ' ^n+2Cn+lCn^n+2^Ti+3 ' ' ' (^n+k

~  ^n+k^n+k—1 ' ' ' ^n+2CnCn+l<7n+2<7n+3 ' ' ' (^n+k

~  Cn̂ 7n,-|-fc(7ĵ _j./;_l • • • (77i-[-2Cn+l^n+2^n+3 ' ' ' (^n+k

~  CnCn+k

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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since the highest generator contained in Cn is cr„ and % ajCTi for \i — j\ > 1. Thus we have 

CiCj ~  CjCi for 8'ii h j-  From this it follows th a t Ci ~  CjCiCT^ and CT^Ci ~  CiC7^- Hence all the Ci

commute with themselves and their inverses and the proposition is proven. □

P ro p o sitio n  2 .1 .4  I f  we define Co =  e, then Ci =  Furthermore, we have OiCj ~  Cj( î for

i < j  or i > j  + 1.

P roof. By definition, Ci =  R {oi,i)a i^i and thus Ci — o'iCi-iO'i for all i > 2. If we define Co =  e, 

then Cl =  =  criCoCi and the first claim is proved.

Clearly, cr̂ Cj ~  CjO'i when i >  j  +  1 since CTiCTj ^  ajCi for \i — j\  > 1. For the case i =  j  — 1, we 

have

^iO + i ~  <rjajj^i(TjCj-i(TjCrjj^i

~  aj+io-jCj-icrj+io-jCTj+i 

~  crj+i(7jCj-lcrj<Tj+icrj

~  0 + 1  (Tj

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

And for i <  J — 1,

(TiCj (7iC7jCrj_i • • • (7i+2Ci+l0‘i+20'i+3 ' "  CTj 

CTjUj-i • • • ai+20'iCi+l(ri+20'i+3 "  ’ (Tj 

U jU j - i  ■ • ■ <7^4-2C i+ lO ’i<7i+2CTi+3 - Uj 

UjGj-i ■ • • (7i+2Ci+lO'i+2(7i+3 ' ' ' CTjGi 

CjCTi

This proves the proposition.

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

□

2.1.2 W ord Problem s

As shown above, any braid can be transformed into the form A ~ ^P  where P  is a positive braid and 

k a positive integer. It is trivial to extend this to  the form A “ ^^P', where P ' =  A ^P . Since A^ 

generates the center of Bn, it may be simpler to  solve the word, conjugacy and possibly Markov 

problems for braids in this form. The following proposition lends more weight to this intuitive 

judgment.

P ro p o s i tio n  2 .1 .5  For any group G and any a , P E G we have a  P i f  ond only i f  j a  7 /? 

where 7  G G(G) where G{G) is the center o f G.
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Proof. If a  %c /?, then we may put a  % for some word 77 € G by the definition of conjugacy.

Due to  the definition of the inverse, we have aa~^  ~  e, where e G G is the identity. By replacing 

the inverse a~^ w ith ~  we have ar]P~^r]~^ % e. Concatenate 7  E G(G) to  the front

of both a  and P, i.e. o  —> 7 0  and P 7 /?, we obtain

7077 /?-^7 “ ̂ 77“  ̂ % 7 7 “  ̂ 077/?“ ’■77“  ̂ (2.56)

% 0 7 7 / ) - ( 2 . 5 7 )

% e (2.58)

and thus 7 0  % 777/^77-^  by virtue of the fact th a t any member of center of a group commutes with 

any member of the group. Thus we have proven th a t if a  P, then 7 0  %c 'yP-

To prove the converse, assume th a t 7 0  %c jP  and put a ' =  7 0  and /?' =  7 /). Therefore, 

a ' P' and we may again put o ' =  r]P'r]~^ and therefore restate the identity o 'o '~ ^  % e as 

a'r}P'~^rj~^ % e. Thus,

a'r]P'~^r)~^ % 7 077 / ) -  ̂7 - ( 2 . 5 9 )

% 0 7 7 /)- \-^  (2.60)

% e (2.61)

from the above. We have proven th a t if 7 0  7 /), then o  ~c P- Combining both statem ents, we

have proven the proposition. □

If we are given two words o  =  and P = then by proposition 2.1.5 the word

or conjugacy problem between o  and P may be decided by deciding it between the positive braid 

words P  and  ̂P ' for k' < k. It is natural to ask whether this property extends to  Markov

equivalence. We ask: Is it true th a t for any a , / )  € Bn, we have a  P if and only if A ^ a  « m

Note th a t this is enough. Repeated application of the statem ent would show th a t A^^a « m

A^*/) if and only if a  P for any fc, possibly negative. Note th a t it is not true, for any braids 

CK,/),7 € B n ,  th a t a  « m  P if and only if 7 a  'yP for 7  €  G (B n)-  To see this, recall th a t is 

a subequivalence of and a  /) is only true if and only if 7 a  %c lP  for any 7  G G {Bn).

2.1.3 T he Peripheral Group System

In this section we will investigate the peripheral group system of the closure of the fundamental 

braids. This is interesting in its own right and will illustrate the only known complete invariant of 

knots. The closure of A 3 is the Hopf Link and the closures of the other fundamental braids look 

very similar to  Hopf Links. In fact so similar th a t we can regard the class of knots defined by the 

closure of fundamental braids as a generalization of the Hopf Link. Another generalization of the 

Hopf link has been investigated in the literature [40].
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f»

Figure 2.1: The braid A3 with labels for the Wirtinger representation of the complement of its 

closure.

Consider the braid A 3 =  <7i <J2CTi , see figure 2 .1 . The closure of this braid is the Hopf Link and

we wish to find its peripheral group system. There are six line segments in the diagram and we

label them as in the figure. Closure identifies a number of the segments to give us,

/l,3 =  /3,1 =  / l , l ,  /l,2 =  /2,1 (2.62)

and the three crossings, by Wirtinger’s method described in chapter 1 , give rise to the relations

/ l ,2 = / 1.3 = /iTlVîTlVs,1/ 2,1/ 1.1. / 2,2 = /2TiV3,i/2,1 (2.63)

After some manipulation, we obtain

/l,3 =  f s , l  =  /2,2 =  / l , l

/ l ,2 =  / 2,1

/ l , 1/ 2,1 =  / 2,1/ 1,1

So if we put a  =  / i , i  and b =  f 2,i we get

7Ti (ÂI) =  ({a, 6} : [a, 6])

(2.64)

(2.65)

(2 .66)

(2.67)

We may select any generator from the relevant component as its meridian and any path through 

the component as the longitude, so the meridian-longitude system pair M. (A3) is ({a, 6}, {o, 6}) 

(recall the definition from the discussion of figure 1.4). Due to the fact that the Hopf Link has two 

components, the fundamental group must have at least two generators and so this is a minimal 

presentation. As mentioned above, tti (Â ^  together with M. (Â ^  characterizes the Hopf Link up 

to isotopy.

We note in particular that we needed only a single generator per component in the above 

example. In an effort to see how robust this property is, we compute the peripheral group system 

for a few A„. When the set of meridians and the set of longitudes are both equal to the set 

of generators of the fundamental group of the complement of a knot K ,  we speak of a trivial 

meridian-longitude system pair and denote it by T {K ), we omit the argument when no confusion
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can arise. The labeling in figure 2.1 trivially extends to arbitrary n  and we obtain,

=  (< W > ;T ) (2 .6 8 )

=  ( (W > ;T ) (2.69)

=  (({a ,6} : [a ,6]) ;T ) (2.70)

p (Â I) =  ( ({ a ,6} : ( a 6 )" =  (6o )^ ) ;T ) (2.71)

p (Â I) =  (({0 , 6 , c} : [a, b], [a, c], [b, c]) ; T ) (2.72)

=  (({a, 6 , c} : {acbŸ = {bacŸ =  [cbaŸ) ; T ) (2.73)

p ( Â | ) =  (({a ,6 , c} : [a,&],[a,c],[6 , c ] ) ;T) (2.74)

where we have assigned the fi^i to consecutive letters of the alphabet. Also, due to the definition 

of An, we have A i =  e and A 2 = cr\. Aside from obvious patterns, we have thus shown th a t A 5 

is ambient isotopic to  A 3 (see figure 2 .2 ).

P rop osition  2 .1 .6  Let S  =  {çi} for 1 < i < m , G = gig2 - - - 9 m o.nd be the cyclic 

permutation o fG ,

=  gc+igc+ 2  • • • gmgig2 ■■■gc (2.75)

We have G ~  G^ for all c i f  and only i f  [gi,gj] for all i and j .

Proof. If gi9 j  =  gjgi for all i and j ,  then G % is obvious, so we need to  prove the converse. 

For m =  1 ,2 the result is trivially true. Consider

gcG^gc+i =  G^ ^PcS'c+i =  Pcgc+iG^"*"  ̂ (2.76)

but G  ̂ % G^ for all i and j  by assumption. Hence [gi,G^\ and thus [gi,gj\ for all i and j .  □

The free Abelian group of rank k is given by the direct product of k copies of the infinite 

cychc group on one element. Let Coo be the infinite cyclic group on one element, then Coo = <  {a} > 

[51]. The kf^  direct product

C i = C o o x C o o X . . . x C o o  (2.77)
------------ V------------ ^

k times

has presentation

=  ({5 i}for l < i < k :  [gi,gj] W iJ) (2.78)

Comparing this with the information in equations 2.68 to 2.74 suggests th a t the peripheral group 

system of the closure of fundamental braids is the free Abelian group of rank n  with trivial meridian- 

longitude system for odd n.

In figure 2.2, we dem onstrate how the labeling is to be extended for a product of several A 3 . 

This generalizes in an obvious way to  A%, which we consider now. Through double-labeling some
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/ «

Figure 2.2: The braid A 3 with labels for the W irtinger representation of the complement of its 

closure.

segments, we have

fjn+l,k ~  fjn+ l—k,l

Î O T  1 < j  < p  and 1 <  fc < n  and closure gives

f l ,k  — fpn+l — k,l

The relations due to crossings are

fr,c =  /r ,l  fr+ l,c -lfr ,l

by using (2.81) recursively, we find th a t

c- 2  0

fr,c — J J  fr+k,l n  fr+k,i

(2.79)

(2.80)

(2.81)

(2.82)
k= 0 k=c—l

for 1 <  r  <  pn and l < c < n  — [r — 1 mod n]. We may use relations (2.82) to eliminate all /r,c 

w ith c >  1 in term s of /r,i- For convenience we put pr =  fr,i- Equations (2.79) and (2.80) may be 

w ritten in one and combined with (2.82) to give a compact description of the fundamental group 

of the complement of

‘̂ 1 ^A%^ — /  {^i}l ^  Î ^  P^ ■ 9jn—c — P J  9r+k 9r+k (2.83)
A:=l k=c+l

where r  =  {j mod p)n, 1 < j  < p  and 0  <  c <  n  — 1 .
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2.2 A R eview  of Term Rewriting System s

The following presentation of the theory of term  rewriting systems is intentionally simplified and 

incomplete; only results which are of direct relevance to the new material are presented. A more 

complete treatm ent of the theory may be found in the monograph [9] and the review papers [56],

[95], [84].

We begin with a finite alphabet of constants A  and a finite set of variables %. A term  t is a 

finite ordered sequence of constants and variables t  =  a ia 2 • • • On with n >  0  (i.e. empty terms 

are allowed) and ai Ç. A U  X . A word w is a, finite ordered sequence of constants w =  bib2 - ■ - bm 

with m > 0  and bi E A . A substitution p for a term t is a map which assigns a word to each 

variable in t; the resultant word is denoted by pt. A term rewriting system  (TRS) IZ =  {(Z*, r^)} is 

a set of ordered pairs of terms k  and n . Each ordered pair in TZ is referred to as a rule or rewrite 

rule and is often written in the form k  —> rp, the whole TRS is sometimes denoted by — A 

TRS TZ =  {{h ,r i)}  is applied to a word wq by determining if wq contains the word pli, for some 

substitution p, as a subword. If and only if wq contains pli is pli replaced by pr*. If is a rewrite 

rule, then +— is its inverse, <-> is its symmetric closure (<— U —>) and —>* is its reflexive-transitive 

closure (—> o —> o - - - o —>). Two terms t  and s are said to be joinable if there exists a term r  such 

that t — r <—* s. Any h is called a redex and any is called a reduct (these are abbreviations of 

reducible expression and reduced term).

A word Wo is thus rew ritten into a word w i if and only if TZ may be applied to  w q . We may 

generate a rewrite chain of words wq — w\ —*-ji - in this manner. TZ terminates if and only 

if there exists no rewrite chain of infinite length. TZ is locally confluent if and only if any local 

divergence <— o —> is contained in the joinability relation —>* o <—*, TZ is confluent if and only if 

any divergence <—* o — is contained in the joinabihty relation —>* o 4—*. TZ is complete if it is 

confluent and term inates. If TZ is complete a unique normal form exists for each word [9]; the final 

form obtained by applying TZ to  the word a maximum number of times.

It should be noted th a t the computational power of term  rewriting systems is identical to th a t 

of Turing machines, i.e. one may be simulated by the other [149]. According to the Church- 

Turing thesis [47], this means th a t any function which may reasonably be term ed computable is 

computable using a TRS.

2.2.1 W ord Problem s

Consider a group G with presentation G =  {X ,E )  for some finite set of generators X  =  { fi}  and 

a finite set of equations E . A word in the group is then a sequence of the generators and their 

inverses f f ^ .  It is possible to  construct a large (possibly infinite) number of words in G which 

are all equivalent to the em pty word e under the set of equations E. It was first proposed by 

Dehn [53] th a t the question, known as the word problem, whether w e for any word w E G 

is interesting. Note th a t the question of equality, wi W2 for any two words w i,W 2 E G is
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contained in the word problem as ici W2 if and only if w iw ^^  e. Two related problems, 

also suggested by Dehn, are the conjugacy problem in which one decides if there exists & E G 

such th a t wi wsW2 'w^^ and the isomorphism problem in which one decides if a presentation of 

some group G' = ({ //} ,£ '')  represents the same group as G. All three are, in general, unsolvable.

It was proven by Birkhoff [19] th a t the symmetric-reflexive-transitive closure of a TRS 

TZ =  {{h ,ri)}  is equivalent to the set of equations S = {li = r*}. It is an obvious corollary to 

Birkhoff’s theorem th a t if there exists a complete TRS TZ over the alphabet A  = for which

4-^^ contains exactly the equations {£, f i f~ ^  = e, f~ ^ f i  = e}, then TZ solves the word problem for 

the group G = {{ fi} ,E ) .

Note th a t TZ also solves the word problem for the monoid associated with G, i.e. the monoid 

obtained when the inverses of the generators are added to  the set of generators and the fact th a t the 

generators and inverses are in fact inverses = e) added to the set of equations.

It can be shown th a t the solubility of the word problem does not depend on the presentation in 

the case of a group [1 1 0 ] but does depend on the presentation in the case of a monoid (recall 

th a t a general monoid need not have inverses) [31] [1 2 ]. However there exist groups, and hence 

monoids, for which the word problem is not solvable [121] [32]. This fact is a special case of the 

Higman Embedding Theorem [79] which asserts th a t if a finitely generated group has a recursively 

enumerable set of relations, then it can be embedded in a finitely presented group. It can be 

shown th a t this embedding preserves the solubility of the word problem [45] but not the conjugacy 

problem [49]. This gives an immediate source of groups with solvable word problem and unsolvable 

conjugacy problem.

All mathematical unsolvability results can be traced to the fact th a t there exist recursively 

enumerable sets (there exists an algorithm to list all elements) which are not recursive (there 

exists an algorithm for testing membership) [110]. Since the conjugacy problem includes the word 

problem (put ws = e in the discussion above) a similar result exists for it with the notable exception 

of all groups with a single relation for which there exists an algorithm for the conjugacy and hence 

word problems [8 8 ]. Moreover, the isomorphism problem is, in general, unsolvable also [2] [3] [129]. 

The situation is, in fact, even worse as there exists no algorithm which solves the word problem 

in all groups with solvable word problem (this holds for most of the interesting group properties 

[13]) and the problem of determining whether a group has solvable word problem is E°-complete 

[33] [103] in the Kleene (or Grzegorczyk) arithmetical hierarchy [63] (that is the problem is much 

harder than an NP-complete problem, if P  ^  NP). For a good survey on what is and what is not 

possible see [110] and [109], for background on other methods of combinatorial group theory see 

[102] and [51].

2.2.2 Termination

It is, in general, undecidable whether a TRS terminates or not [82]. Since any Turing machine 

can be modeled using a TRS this is essentially due to  the undecidability of whether a Turing
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machine will stop, the Turing Halting Problem [150]. It is however decidable for a TRS without 

any variables [55]. Thus, in general, a term ination proof is specific to  a particular TRS and must 

be given for it. A common strategy for proving termination is to use a reduction order on the 

symbols involved in the TRS. We define a reduction order <o as a strict order over the alphabet 

and variables of the TRS which satisfies:

1 . co m p a tib ility : For all terms u ,v  for which u <o v, we have xuy  <o xvy  for any terms x  

and y.

2. c losure: For all term s u ,v  for which u <o v and all substitutions cr, we have au <o av.

3. basis: <o is well-founded, i.e. there exists a simplest term  under <o-

If one can show th a t every possible rewriting operation simplifies any term  with respect to such 

an ordering, then the TRS term inates [54]. Furthermore, a TRS TZ term inates if and only if there 

exists a reduction order <o which satisfies <o h for every rule > n  E 7^ [9]. This is true 

because every step of the rewriting process simpfifies the term  and there exists a simplest term. 

Another useful result is th a t a TRS term inates if and only if it term inates for all instances of its 

redexes [57]. Some conditions under which the union of two term inating TRSs is term inating are 

analyzed in [57].

2.2.3 Confluence

Like termination, confluence is, in general, undecidable [9]. However, for term inating systems there 

exists a  mechanizable m ethod for deciding confluence [80] th a t rests on Newman’s Lemma which 

states th a t a term inating TRS is confluent if and only if it is locally confluent [120] (we shall prove 

a generalization of this in lemma 2.3.5). Local confluence can be decided by a systematic method 

which searches for critical pairs in the TRS. The concept of critical pairs is difficult to trace in 

history; for an attem pt a t a historical survey see [38] and for a good technical treatm ent see [80].

Given a TRS TZ = an overlap is a word w =  abc such th a t ab =  pli and be — rjlj for

some words a, b and c, two (possibly equal) integers i and j  and substitutions p and r). Clearly the 

overlap abc may be rew ritten to  both priC and arjrj. An overlap is non-critical if the reducts are 

joinable, pric arjrj and critical otherwise. A critical pair is the (unordered) pair {priC^arjrj) 

which arises from a critical overlap. It is obvious th a t if TZ contains critical pairs, it can not 

be confluent. The fact th a t the non-existence of critical pairs is both a necessary and sufficient 

condition for local confluence is called the Critical Pair Lemma [87]. Later we shall prove lemma 

2.3.6 which contains the Critical Pair Lemma.

2.2.4 Com pleteness

If we can find a reduction order for a TRS TZ, thereby prove term ination and find th a t there are 

no critical pairs, TZ is complete and thus solves the word problem for A general procedure for
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what to do when we can not do this is called Knuth-Bendix completion from their seminal paper

[96]. Again a historical account of this procedure is tangled and [38] is an attem pt to unravel it. 

We shall follow the common practice to  call it Knuth-Bendix completion even though, by their 

own admittion, the initial idea was not theirs.

Suppose we have a set of equations S  on an alphabet A  and a to tal order <_a (this is a reduction 

order) on A. Construct a TRS TZ from S  by creating a rule li ri in TZ from the equation h =  

in S  for all equations in E such th a t the rules are ordered such th a t h  n .  Now is equivalent 

to E and each rule represents a simphhcation in terms of < ^ . Clearly there exists a simplest word, 

the empty word, and so TZ term inates.

If there are no critical pairs, TZ is locally confluent and thus complete. If there are critical 

pairs, order them with respect to  and append them to TZ as new rules. Termination still holds 

and so we continue this process. We may delete duplicate or redundant rules from TZ between 

the steps of this method to obtain a smaller TRS. If this method term inates, we have a complete 

system [96] [81]. If it does not term inate, a complete system may still exist which contains an 

infinite number of rules. It is possible to  collect an infinite number of rules into a finite number 

of rules by introducing variables. The Knuth-Bendix algorithm has been implemented by several 

people and can be used to  determine, in some cases, whether a complete system exists. The CiME 

implementation was used for this thesis [104]. Producing rules with variables and proving the 

non-existence of critical pairs is, a t present, beyond the computer implementations and must be 

done manually.

The process described here is simplified; there are more pitfalls, in general, and the method has 

been considerably extended to  take into account many other features (many relevant references 

are in [38]). The method aa described is enough for our purposes here however and is generally 

enough for a word problem in a finitely presented group.

2.3 Word and Conjugacy in Bn

Having reviewed TR S’s, we are now in a position to find a TRS for the word problem in Bn- The 

braid group is defined formally as

Bn — ( , 0 ’2 j ' ' ■ J ^n —l}  • j
(2.84)

cTjCTj =  aja i for \i — j\ > 1 )

Given a finitely presented group G — (A, E ), we can define an associated monoid M {G) =  

U E  U aa~^ =  l )  for any a E X .  It is clear th a t the equivalence and conjugacy classes of 

the group G and the monoid M {G ) are identical. In order to solve the word problem for Bn, we
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augment the monoid M  ( B n )  with the generator of the center of B n ,  to  form the monoid 

M +  ( B n )  =  =  cr^Aj^;

A - A f  =  a - V r = e ;

for \i -  j\  > 1 ;

I t is obvious from the definition of the monoid M + (P„) th a t a solution of its word and conjugacy 

problems provides a solution for the word and conjugacy problems in the group 5 „ .

2.3.1 The W ord Problem  in Bn

We will use Knuth-Bendix completion upon the oriented rules of M + (B„) under the reduction 

order <b

A l  < b  A “  ̂ < b  (Ti <6 0-2 <6 • • • <6 (^n-l < b  <6 <^2  ̂ <6 ' <6 (^n-1 (2.86)

In practice, this process is laborious and would occupy prodigious space if described in detail. For 

this reason, we will simply state the result and prove it to  be correct.

For what follows, we shall represent a braid of the form A ^ P  as the pair {k ,P ). The reason 

for this is to effectively remove firom the braid, in the process of rewriting, any subbraid which lies 

in the center of the braid group Bn- The reason for this will become apparent when we extend 

our solution to the conjugacy problem. Removing any A"^ firom any part of a braid can be done 

without loss of information because A^^ is the generator of the center of B n  and thus its position is 

irrelevant. By Knuth-Bendix completion and the necessary manual labor, we obtain the following 

rewriting system.

i —1 n —1

W n  =  { ( 1 )  - >  Y l d i , ia i , i - i  J J  [ d j , ia i j ]  &  A: - >  fc -  1;

j = l  j= i+ l

(2) aiŒj a jC i for j  < 2 - 1 ;

(3) a ia i- iP a i  —> a i- ia ia i- iP ;  (2.87)

(4) (Ti(Ti—\Q(Ti—\Rdi^j > 0 ’i—\ 0 ’i0 ’i—\Q di—\^j0 ’iR  for j  <  2,
n —1 n —1

(5) di^iai^iSi & k k - \ - l }
i= l  i= l

The variables P, Q, R  and Si are (possibly empty) words in the generators ak (and not their 

inverses (T^^) subject to  the restriction th a t the highest generator index A: is 2 — 2 , 2 — 2 , 2 — 1 

and 2 respectively and the lowest generator index in R  is j ,  where i and j  refer to the values

of the generator indices of the respective rules. The word R ^  is obtained from R  by increasing

all generator indices in R  by one. Note th a t rules 1 and 5 require two replacements to be made 

simultaneously. A similar, unpublished TRS was also found using Knuth-Bendix completion by 

Yoder [161]. Rules 1 and 5 are simple to  understand; the other rules are illustrated in figure 2.3.
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Rule 2:

Rule 3:

«

Rule 4:

\
I

\ I
I

r o j
I

Figure 2.3: Rules 2, 3 and 4 of TRS Wn illustrated.

T h e o re m  2 .3 .1  Wn is complete and solves the word problem fo r Bn-

P r o o f. (termination) Every application of Wn simplifies the word with respect to  <&. As <{, is 

well-founded, Wn terminates.

(local confluence)  There are 20 overlaps between the rules in Wn and none give rise to  a critical 

pair. For reasons of space, we do not provide all the reduction steps for each overlap but list all 

overlaps, the rules from which they arise and the common reduct of all reduction paths of the 

overlap in table 2.1. The restrictions on the indices and the variables are obvious from the context 

and the definition of Wn- The dedicated reader may easily but laboriously verify th a t the list is 

both complete and correct. There are an additional 16 (four variables and four positive redexes) 

variable overlaps, i.e. overlaps in which a variable completely contains a redex, but these resolve 

trivially and so are not listed in the table.

(equivalence) Rules 2  and 3 imply both braid group relations. Rule 5 represents the definition
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of in term s of the Ui. The second parts of rules 1 and 5 imply th a t and A “  ̂ are inverses. 

Rule 1, after use of the braid group relations, the definition of A^ and A “  ̂ indicates th a t and 

are inverses. All (and only) the relations in the monoid M + {Bn) are thus contained in Wn-

□

The rules of a TRS are to  be applied in a non-deterministic way and a complete TRS always 

reaches the unique normal form no m atter what strategy of rule application is chosen [9]. Since 

Wn is complete and all strategies are equivalent, we will choose the following strategy.

A lg o rith m  2.3 .2  Input: A word w G Bn- Output: A word w' G Bn which is the unique represen­

tative of the equivalence class o fw .

1 . Apply rule 1 of Wn as many times as possible.

2 . Apply rules 2 , 3, 4 and 5 of Wn as many times as possible in order proceeding to  the next 

rule only if the current can no longer be applied.

3. Loop step 2 until no rule may be applied to the word at all. In this case w' has been found.

It is clear th a t algorithm 2.3.2 solves the word problem from the completeness of Wn and the 

fact th a t once rule 1 is applied as many times as possible, it can not be applied again no m atter 

what other rewrite steps follow as there will be no more inverse generators. Prom this algorithm, 

we are able to deduce the computational complexity of this word problem solution.

T h e o re m  2 .3 .3  Wn solves the word problem for any word w G Bn of word length I with complexity 

0( /2n4) .

P ro o f. Suppose th a t w contains exactly m inverse generators. Rule 1 may be applied exactly 

m times, note th a t m  goes as 0 {l). We must search the word for the redexes of rule 1 and then 

replace them. Searching is an 0 {l)  operation but the reducts increase in length as and thus the 

application of rule 1 takes time O {in^) - It is clear th a t rule 1 may never be applied again and the 

word length of w is now L{w) =  I +  m n(n — 1 ) — m =  O (/n^) as m  is of order I. Rule 2  may be 

applied a number of times bounded by L{w)‘̂ as it is a pairwise comparison between all generators 

in the word, a t worst. An application of rules 3 and 4 may give rise to  a further appfication of 

itself or the other rule but strictly later in the word and thus the number of times they may be 

applied is bounded by L{w). While rules 2 , 3 and 4 keep the word length constant, rule 5 reduces 

it by n (n  +  1) and thus rule 5 may be applied a maximum of

times. Thus the to tal worst-case complexity of the algorithm is O {L{w)‘̂ ) — 0 ( l ‘̂n'^). The 

application of rule 2  is responsible for the quadratic behavior; it is the bottleneck of the calculation. 

□
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Table 2.1: Overlaps between rules in Wn- (The ellipses, • • •, indicate line breaks and not pattern  

continuation signs.)

Overlap Final Form

2 (JiO'jCXk

3

3 (7i(Ti—\ (TjP(Ji

3 Cfi(Ti—\P(Ti(Tj

4 O’iO’jO’j — iQo’j — iRdj^k 

4 diCi— —\Rdi ĵ 

4 0’iO ' i - . \Q o ’i —\Rdi^j(7]f
n—1

i = l

3 didi-iPdicri-iP'di

4 (Tidi—\Pdidi—\Qdi—iRdi ĵ 

4 didi- idi-2PcTi-\R'"

• • -d i-2 R '(^ i- iR "d ij

4 d { d i —\ d i —2 P ^ i —l R ^ i —l R d i ^ j  

4 d i d i - i d i - 2 P ( ^ i - l R ( ^ i - 2 R ' d i j  

4 d i d i - i d i ^ 2 P < ^ i - l R d i , j

4 didi- iPdi - iRdi jR'dk
n —1

5 P[ di îcii îSi', Sj =  dj—iPdjSj
i = i

4 d i d i —\ Q d i —\R d j ,^ jQ  d k —\ R  dk r̂i 

4 d i d { —\ d i —2 Q ^ i —2 R d i —1^jQ

4 didi—iQ d i—\Rdi^j
Tl— 1

5 di^id\^iSi
i= l

Sj =  d j—iQ d j—\Rdj^k^j

^ k ̂ j  ̂  i

d j  _ 2 d j  d j  — \ P d i  

d j  d{— \ d i d i —i P  

d i—\ d i d i —\ P  d j

d j ^ \ d j  d j —\ Q d j —i^k^j R~^

^k^i— l^ i^ i— i Q d i— \^jdiR^  

d i— \d i d i — 'lQ(^kdi— l,j(^iR

n  'S'ii Sj =  <JjSj 
i= l
d i—\ d i d i —\ P d i —1F* d̂ i 

d i—\ d i d i —\ P d i —\ Q d i — \ Rdi^j 

di-2^i-l(^i-2(^i(^i-\<^i-2P  ' ' '

• • • Rdi-2,j< yi-lR '^ (^iR"^ 

di-2(^i-l(^i-2(^i(^i-l(^i-2PRdi-2,j(^iR'^  

di-2^ i-l(^ i-2 (^ i(^ i- l(^ i-2P R di-2 ,j (^ i- lR '^  

di-2(^i-\(^i-2(^i<^i-\(^i-2PRdi-2,j 

d i—\d id i—\ P d i —\^jdiR~^R dk

n  S i]S j  =  d j - i P d j S ' j
i=l
d i—\d i d i —\ Q d i—\^ jd iR ^ Q  dk—\ R  dk r̂n

di-2(^i-l(^i-2^i(^i-l(^i-2Q  ' ' '

• • • di-2 ,kdi-l, j+ ldiR '^'^Q''^

d i—id i d i —iQdi^jdiR'^
n—1n &
i= l
S j  =  d j —\ Q d j —\Rdj^kSj
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2.3.2 The General Conjugacy Problem

Recall th a t two words a, 6 € C for any group G are called conjugate (denoted a ~c 6 ) if and only 

if there exists a d € G for which a ~  dbd~^ where % denotes equivalence in G. Note th a t there 

exist finitely-presented groups with solvable word problem but unsolvable conjugacy problem [48] 

and th a t the word problem is subsumed by the conjugacy problem by requiring d =  e, the empty 

word.

C onjugacy in Free G roups

Suppose th a t G = !Fn the free group of rank n. This group is generated by n  elements { fi}  for 

1 < i < n  and no relations [86]. A general word w G takes the form

w  =  f f l  y g  • • ■ / f r , 1 <  <  n  (2 .8 9 )

Since there are no relations in !Fni the word w  is unique over its equivalence class if and only if 

Si ^  Sj+i for all i. This condition is trivially obtained from any word tü G by applying the 

(obviously) complete rewriting system

(Jf„) =  {/."/I VI < s < n} (2.90)

Thus TZw i^n )  solves the word problem in any free group Moreover, it does so in a time

proportional to the length of the word w.

Consider now the conjugacy problem in Tn- We define the cyclic permutation C ‘̂ {w) of a

word w  in the general form of equation (2 .8 9 ) by

c ' ( ^ )  =  - y g r g Æ / g / g  - y ÿ ' (2 .9 1 )

such th a t

P j +  P k = i  (2 .9 2 )
k = j + l

Intuitively, the i*^ cyclic perm utation is obtained by taking the last i generators in the word w and 

moving them to the firont of the word w w ithout changing their relative order. We shall say th a t 

two words w and w ' are cyclicly permutable (denoted «cp) if and only if there exist an i such th a t 

C^(w) ^  w'. It is obvious th a t cyclic permutability forms an equivalence relation for any group G.

P rop osition  2.3 .4  For any group G, the equivalence relation o f cyclic permutability (^cp) is 

identical to that o f conjugacy (^c)-

P roof. Any group G  has a presentation which may be obtained from some free group Fn of rank 

n  by adding relations [51]. Moreover, if the conjugacy problem is solvable in one representation, it 

is solvable in all [1 1 0 ]. Suppose w  %cp then there exists an i for which

w c x u ;)  =  y g . . .  y f : - v g r y g y g  - yl? (2 .9 3 )
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where

P'j+  (2.94)
k=j+l

Let

Then

7  =  (2.95)

y ÿ  ' (2.96)

~  7 “ W /5  • • • Æ 7  (2.97)

~  j-'^w'Y  (2.98)

Thus we have w ^ c w '.  Now suppose w w', then there exists a 7  such th a t

w' % y~^w'y (2.99)

If the word length of 7  is ^ ( 7 ), then we have

% j j~ ^ w  % w  (2 .1 0 0 )

Thus w  %cp w'. □

Figure 2.4: The word w  given in equation (2.89) bent into a circle. While the circularity removes 

the notions of beginning and end of a word, it preserves the directionality of it.

We will refer to  the set of words which contains the word w  and all its cyclic permutations 

as the cyclic word c{w). If L{w) =  m, then this set contains |c(w)| =  m  elements. Given two 

cyclic words c{w) and c{w') we test their equivalence by attem pting to  construct an isomorphism 

L : c{w) c{w') such th a t i{a) = a for all a G c{w). Clearly |c(iü)| =  |c(iü')| is a necessary condition 

for the existence of l. If and only if t exists, the cyclic words are considered equal, c{w) =  c{w'). 

If and only if c{w) =  c{w'), we have w «c w' by proposition 2.3.4. The set c{w) may be visualized 

as the word w ’’made circular” as in figure 2.4.
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The existence of i may be established by testing the members of c{w) for equality with the 

members of c{w') pairwise in the following manner: Select from c{w) an arbitrary member, a say. 

Check a for equivalence with all members of c{w'). Clearly, if and only if there exists a 6 6  c{w') 

such th a t a = b, an L exists. Since every word has length m  and there are m  words in c{w'), this 

comparison will take a time proportional to m?. Thus it is possible to test the equivalence of two 

cyclic words of length m  with complexity O {m^) ■

R ew riting  S ystem s for C yclic W ords

We shall call a TRS cyclicly terminating, cyclicly confluent and cyclicly locally confluent if it is 

respectively terminating, confluent and locally confluent under application to all cyclic words over 

the alphabet of the TRS. It is obvious from the above discussion th a t a cyclicly complete TRS 

solves the conjugacy problem. For this reason it is im portant to develop results about cyclic 

completeness along the lines of the results for linear words in order to obtain a conjugacy solution.

T erm ination in C yclic R ew ritin g  S ystem s

We have seen th a t a TRS TZ term inates if and only if a reduction order exists [9]. In what follows,

we shall assume th a t this reduction order is a to tal order; note th a t this is a stricter requirement

than  th a t of a reduction order. Suppose th a t the alphabet of 7^ is .4 =  { f i }  for 1 < i < p. By 

assumption, p  is finite. Consider the total order < n  defined by f i  < n  /i+ i for all i. This can be 

done without loss of generality as a mapping from A  to  itself can change the order. Recall th a t IZ 

terminates if and only if Vi < n  U for every rule k —* Vi G TZ.

We introduce an integer valued weight metric function g{w) and an integer valued length metric 

function L{w) on the set of words w w ritten on the alphabet A . The metrics satisfy

9 { f a i f a2 ' "  fam) =  P (Ai )  +  P (Az) -̂------  ̂9 { fam)  (2.101)

L  { f a i f a2 "  '  f a r r , )  =  ( /o i ) +  T ( /a j)  H--- (2.102)

L { f i )  =  1 (2.103)

9 { f i )  <  9 { f i + i )  (2.104)

We shall call a rule length reducing if T(n)  <  L{li) and weight reducing if g{ri) < g{li). Any rule 

is a c-obstruction (for commutation-obstruction) if and only if it keeps constant both length and 

weight. T hat is, it is a rule which changes the position of the letters only.

A c-obstruction obstructs cyclic term ination as there exist cyclic words which would give rise to 

an infinite rewriting chain due the changing of relative position of subwords by the c-obstruction. 

An example is the cyclic word c(a/3o:/7) under the TRS TZ =  {a/? —> Pa}. The rewriting chain 

will loop between the two states c(aPaP) and c{PaaP); the period of the loop may, in general, 

be arbitrarily large. Such looping may be dealt with in two ways. Firstly, one may compare each 

new cyclic word with the entirety of the rewrite chain so far enumerated. If equality is found,
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looping has been detected and one may stop. Secondly, one may determine if a subword of the 

current word commutes with the rest of the word. If this can be determined and such a subword is 

found, the subword may be extracted from the word and the two words should then be rewritten 

separately. The first m ethod is computationally expensive and does not produce a unique normal 

form as we would have to  consider the entire loop a t the end of the rewrite chain as the identifying 

set of the word. The second method is not necessarily applicable but if it is, it will term inate in a 

set of subwords which uniquely identify the word. The advantage of the second method over the 

first is th a t the number of elements in the set has an upper bound.

We conjecture th a t a TRS TZ cyclicly term inates if and only if it term inates and contains no 

c-obstructions or contains c-obstructions th a t can be removed in the above way.

C onfluence  in  C yclic  R e w rit in g  S y stem s

Newman’s Lemma [120] extends easily to the cyclic case as we show below.

local
confluence

y Induction

Induction

w

Figure 2.5: The proof of Newman’s Lemma (lemma 2.3.5) in diagrammatic form. We begin a t the 

top with a local divergence which is rectifiable by assumption and thus by induction any global 

divergence is also rectifiable. It is because of this diagrammatic proof th a t Newman’s Lemma is 

also known as the Diamond Lemma.

L em m a 2.3 .5  A cyclicly terminating T R SIZ  is cyclicly confluent i f  and only i f  it is cyclicly locally 

confluent.

P ro o f. This proof is similar to  the one given for the standard Newman Lemma in [80]. The result 

is obvious from figure 2.5.

(if) We want to  show th a t if y <—* x  —>* z, then the final forms of y and z are identical, which 

exist since TZ cyclicly terminates. If x =  y or if rr =  z, the result is obvious. If x —> yi —>* y 

and X —> zi z, then there exists a u such th a t yi —>* u  <—* zi by cyclic local confluence. The 

existence of a u; such th a t y —>* w  <—* z follows by induction over arbitrary length rewriting paths; 

the finiteness of all rewriting paths is attested to by cyclic termination.

(only if)  This it trivial as cyclic local confluence is subsumed by cyclic confluence. □
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The Critical Pair Lemma states th a t a TRS is locally confluent if and only if it has no critical 

pairs. Recall th a t a critical pair arises from an overlap of two redexes in a word which gives rise 

to a local divergence of rewriting paths which do not meet again. Given a TRS TZ =  a

cyclic overlap is a cyclic word c{w) =  c{abcd) such th a t abc = pU and cda — 7]lj for some words 

a, b, c and d, two (possibly equal) integers i and j  and substitutions p and 77. The cyclic overlap 

c{abcd) is rewritten to  both c{pvid) and c{br]rj). A cyclic overlap is nan-critical if the reducts are 

joinable, c{prid) c{brjrj) and critical otherwise. A cyclic critical pair is the (unordered) pair 

of cyclic words {c{prid),c{br]rj)) which arises from a cyclic critical overlap. It is obvious th a t if 

contains cyclic critical pairs, it can not be cyclicly confluent.

For example, consider the rewrite system TZ =  {abxba —> cxc) over the alphabet A  = {a, b, c} 

and some variables x  and y. Clearly TZ contains the cyclic critical overlap abxbabyb which is to be 

rewritten into bxbcyc and cxcbyb. This cyclic critical pair may be resolved by noting th a t if the 

variable contained between the c letters is less than  the other, it is th a t cyclic word which is to 

be prefered under the lexicographic order c < b < a. T hat is, we have to  add a conditional rule 

depending on the relative value of the variables. This global rule must be applied, if applicable, with 

preference over the ordinary local rule. In this way we have extended Knuth-Bendix completion 

to the cyclic case; note th a t all rules added in this procedure are global whereas the usual rules 

of normal TR S’s are local. We shall now prove the extention of the Critical Pair Lemma for the 

cyclic case.

L em m a 2.3 .6  A T R S TZ =  is cyclicly locally confluent i f  and only i f  it contains neither

critical nor cyclicly critical pairs.

P ro o f. We consider all relative positions of two redexes h and Ij in a cyclic word w and analyze 

them in turn. The first four cases occur in the standard Critical Pair Lemma but in the cyclic case 

there are five cases:

1. (disjoint) Suppose c{w) = c{lixljy) for some words x  and y. The existence of the common 

reduct c(rixrjy )  is obvious; see figure 2 .6  (a).

2. (variable overlap) Suppose k  contains a variable which contains Ij as a subterm. If Ij —> re­

does not change the applicabihty of /*, a common reduct is obvious. If it does and the 

divergence does not resolve, we have an instance of a critical pair; see figure 2 .6  (b).

3. (critical overlap) Suppose k  and Ij have a critical overlap. A critical pair exists and obviously 

prevent local confluence; see figure 2 .6  (c).

4. (orthogonal) Suppose h and Ij have a non-critical overlap. By definition the divergence 

resolves; see figure 2 .6  (d).

5. (cyclical critical overlap) Suppose k  and Ij have a cyclic overlap. If it is critical, we have 

an instance of a cyclic critical pair which obviously prevents cyclic local confluence. If it is 

non-critical, a common reduct exists by definition; see figure 2 .6  (e).
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□

It should be emphasized th a t the proof lemma 2.3.6 does not make any assumptions about 

the term ination of TZ. So we have a definite method for attem pting to  find a conjugacy problem 

solution in term s of rewriting. We shall use the braid groups to give an example of this completion 

process.

Y od er’s T heorem

An alternative way to conceive of a conjugacy problem solution given a word problem solution was 

originally reported in M argaret Yoder’s PhD thesis [161] and published in [126]; our presentation 

will deviate from both slightly.

T heorem  2 .3 .7  (Pedersen and Yoder [126]) Let G = he a finitely presented

group, let A  =  {gf ^}  for 1 < j  < i and let A* denote the set of all words constructible on the 

elements o f A . Further, let

C  =  5  U =  e; s g f^ x g f^ f  =  s x f  : x  e  A*} (2.105)

and let T  be a complete TR S for the monoid M c{G ) = (.4 U { s , /} ;  C). Words u and v are 

conjugate in G if  and only i f  s u f  and s v f  have identical final forms under T .

P roof, (if) Suppose th a t s u f  and s v f  have identical final forms under T .  Since u ,v  G A*, they 

do not contain s or f .  Suppose th a t s u f  - 4^  w, then w is equivalent to  s u f  in M c{G ) since T  

is complete. Since no relation in M c{G ) allows the positions of s or /  to  be changed, w is of the 

form w = s w 'f  and by equivalence we have s u f  %Mc s w 'f .  Since s and /  are stationary symbols 

and u  does not contain them, neither does w' and we have u ^ M c  M c{G ), thus u  and w' are 

conjugate in G. Since we have assumed th a t s u f  and s v f  have identical final forms under T , we 

have u  &nd v &nd since conjugacy is an equivalence relation, we have u ^ M c

(only if)  Suppose now that u and v are conjugate in G. Then there exists a word w G G, such 

th a t u wvw~^. Since w G G, we have th a t w G A* and thus the relation sw vw ~ ^f ^'^f is 

contained in M c{G ). Since u « g  v j v w ~ ^ ,  we have th a t s u f  ^ M c  sw vw ~ ^f ^ M c  su /. Since two 

conjugate words in G are equivalent in the monoid M c{G ) and T  is complete, the final forms of 

s u f  and s v f  are identical. □

Note th a t theorem 2.3.7 only asserts the existence of a conjugacy solution if the complete 

rewriting system T  can be found. The new generators s and /  are called markers because they 

mark the s ta rt and finish of a word. They are never contained in the middle of any word and 

no relation ever moves them from their positions. Their function is a notational convenience with 

which we may easily write down a relation which applies to a whole word and not a proper subword. 

The second relation which we have added to  S  is an example of this.
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Table 2.2: Cyclic overlaps between rules in Wn-

Cyclic Overlap Final Forms

2 , 2 n  {di,iai^iSi) n  Si
i= l  i=l

T l —  2
& Sfi—i =  3 ^ fc < TTr ( î,1 ^ 1 , ^n—1,1 1̂,n—l*Ŝ n—l

i=2
3, 3 aid i- iPd ia i - iP '  a i - ia ia i - iPa i - iP '

(Ti—\(Ti(Ti—\ P  (7i—\ P

3, 4 (Ti(Ti—\Q( î— —],P Ĉi—\Q(^i—\R(^i—1 —\ P

k  P  =  di-2,jP' CTi-i(Tiai-iQdi-ijaiR+P'

4, 4 aiai- iQiai-iRiaiai-iQ20'i- iR2 (Ti-iaiai-iQidi-ijaiR^ Q2(7i-iR2

k  Q l — di—2,jQ\] Q 2 — di—2^jQ2 ^ i—\(^i(^i—lQ2di—\^jOiR2Q\(yi—\R\,

A conjugacy problem solution can obtained if Knuth-Bendix completion works for the new 

monoid. For our present situation, this approach does not, in fact, yield a complete TRS. Below 

we shall develop our own method of extending our word problem solution.

2.3.3 The C onjugacy Problem  in Br

Consider the TRS Wn of equation 2.87. We have already shown th a t Wn is complete and solves 

the word problem for We shall find th a t it is neither cyclicly term inating nor cyclicly locally 

confluent. By a  Knuth-Bendix-like completion process, we are able to  obtain a system which is 

cyclicly locally confluent. This system will be cyclicly terminating if all c-obstructions are removed, 

which is possible. The result will be a cyclicly complete system which thus solves the conjugacy 

problem in Bn-

In table 2.2, we list all four cyclic overlaps between the rules of Wn and the two final forms 

per overlap depending on the chosen rewrite path. Note th a t all overlaps are critical and th a t the 

cyclic overlap refers to  the entire cyclic word.

Consider the TRS Qn below which is understood to contain only global rules for cyclic words,

i.e. the entire word has to be matched to  redexes in Qn- The restrictions on the variables are 

identical to those of Wn- The ordering <s is the standard shortlex ordering, i.e. words are sorted
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lengthwise first and then lexicographically using <&.

n —1 n —1

=  { (1 ) Y1  n
i= l  i=l

(2 ) a iC T i- iP a iŒ i - iP '  a i - i U i G i ^ i P a i - i P '  if P  < b  P '

or (7 i - i ( 7 i (7 i - iP ' (T i - iP  if P '  < b  P-,
(2.106)

(3) (Ti(Ji—\Q(Ti—\R(7i(Ti—\ P   ̂ (Ti—\Q(Ti—\R(Ti—\(Ti<Ti—\ P ,

(4) a ia i-iQ ia i-iR ia iŒ i-iQ 2cri-iR 2  —> 

a i - i a i a i - i Q i d i - i j Œ i R f  Q'2 c r i - i R 2 ii  R i  <s R 2

or 0’i—\(7i0’i—\Q2di—\^j(7iR2 Q\(^i—lR l  if R 2 —s R l  }

As described in the solution to the word problem, we will regard a cyclic word c{w) as a pair 

c{w) = {k,c{ws)). The first entry is an even integer counting the number of copies of in c{w). 

The second entry is the rest of the word w ritten in the (jj. We shall now present an algorithm for 

the conjugacy problem in terms of Wn and Qn- We prove, in a set of lemmas, th a t this algorithm 

solves the conjugacy problem in Bn-

A lg o rith m  2 .3 .8  Input: A cyclic braid word c{w). Output: A set o f cyclic braid words which 

collectively are a unique representative o f the conjugacy class o fw .

1. Apply rule 1 of Wn as many times as possible.

2 . Test if w  is splittable, i.e. if it is in the form w = W\W2 where w\ commutes with W2 - If it is, 

separate w\ and W2 and treat them separately from now on. If not, do nothing. Note th a t 

we are testing the linear word w and not c{w).

3. If applicable, apply any rule in Gn and proceed with step 5. If not continue with the next 

step.

4. Apply any of rules 2  to  4, in th a t order of priority, of Wn exactly once to each of the separated 

cyclic braid words, if possible.

5. Go back to step 2 of the algorithm and continue until there is not braid word which may be 

split further and no braid word to which any of the rules in Wn and Gn are applicable.

6 . The number k and the set of spht braid words are now collectively the unique representative 

required.

We note th a t because of the restrictions on the variable S 'n-i, rule 5 of Wn and rule 1 of Gn 

are identical. It is obvious from the algorithm th a t if it cyclicly term inates and Wn U Gn is cyclicly 

confluent, then the conjugacy problem in B n  is solved by it.

L em m a 2 .3 .9  Algorithm 2.3.8 cyclicly terminates in a time O where I is the initial word

length.
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P ro o f . Suppose initially th a t the word length of w E Bn is I and w contains exactly m  inverse 

generators. Step 1 of the algorithm applies rule 1 of Wn as many times as possible, which is clearly 

m times. After such replacement, the word length of w is now

L{w) = I + m n{n — 1) — m  (2.107)

Since all inverse generators are now gone and no rule creates further inverse generators, rule 1 

can never be applied again. Note also th a t no other rule increases the length of the braid word. 

Such replacements may be made in O {In^) • Steps 2 to  4 of the algorithm are looped now. Since 

the to tal length of the braid words is bounded by equation 2.107, a split may occur only a finite 

number of times.

We test if the word w is splittable. There are exactly L{w) words wi and W2 such th a t wiW 2 =  w 

and we m ust test if wiW 2 ~  W2 W1 which is a word problem which can be solved in 0 (L(tü)^n^) 

according to theorem 2.3.3. In fact there is a solution by Birman [22] with complexity 0{L{w )^n) 

which is the complexity we shall assume holds here. Thus testing splittability may be done in at 

worst O (L{w)^n).

Rule 1 of Gn reduces the total length while no rule increases it and thus it may be applied only 

a finite number of times. By the same analysis as for the word case, it is bounded by O (/). Rule 2 

of Wn is the commutation relation, the possibihty of the infinite application of which is explicitly

removed in step 2 of the algorithm. It is a t worst a comparison between every generator and so

bounded by O Taken independently, the other rules also term inate as rule 3 of Wn and

rules 2  and 3 of Gn decrease total generator index count and rule 4 of Wn and rule 4 of Gn increase 

it. Since to ta l generator index count is bounded from below by L{w) and above by (n — l)L (w )  

the application of these rules must term inate independently. We must show th a t there can be no 

interference between the rules which would give rise to infinite rewriting. Rules 2 , 3 and 4 of Gn 

require th a t the entire word contains exactly two cr̂ . If rule 4 can be applied, this number may 

increase or stay equal to two. If it increases, the only way to decrease it is to use rule 3 of Wn- 

It is obvious from the rules th a t this process will never lead to the original cyclic word again even 

though the number of <7* may again reach two.

If rule 4 of Wn is used to  raise the number of ai, it may be lowered by using rule 3 of Wn or 

rules 2 or 3 of ^n- This process can also never again reach the original word as a local ordering 

in the form a i- ia ia i- i  is formed and never undone. The number of applications of all these rules 

is clearly bounded by O {L{w)). As the number of times the loop is to  be performed is of order 

L{w Ÿ  and the worst-case step inside the loop is of order L{w)^n, the whole algorithm runs in 

0 {L {w )^n )  = 0 ( / ^ n “ ). □

L em m a  2 .3 .10  Algorithm 2.3.8 is cyclicly confluent.

P ro o f. By theorem 2.3.1, Wn is confluent and thus contains no critical pairs. Algorithm 2.3.8 

uses Gn as well as Wn- By construction, Gn resolves all the cyclic critical pairs of Wn but, as may
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be easily verified, introduces no further critical pairs or cyclic critical pairs. By lemma 2.3.6 this 

is a necessary and sufficient condition for cyclic local confluence. By lemma 2.3.9, the algorithm 

cyclicly term inates and so, by lemma 2.3.5, the algorithm is confluent. □

As the algorithm terminates and is confluent, it solves the conjugacy problem in Bn with 

computational complexity O
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z z

cyclic
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Figure 2 .6 : The proof of lemma 2.3.6 in its four cases: (a) the disjoint case, (b) the variable overlap 

case, (c) the critical overlap case, (d) the orthogonal case, (e) the circular critical overlap case.
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Chapter 3

The M inim um  Word Problem

A well-known problem of combinatorial braid theory is the minimization problem: Given a braid 

A  e  Bn find a braid Am  such th a t A  % Am  and L{Am) < L{A*) for any braid A* ^  A  where L{A) 

denotes the word length of the braid A. In this chapter, we prove th a t this problem is NP-Complete 

and we find an algorithm for it.

3.1 Introduction

In the Artin representation of Bn, the number of generators required to write down a braid word, 

its length, is equal to  the crossing number of the topological braid. In practice, we find th a t 

by moving a few of the strings of the topological braid, its crossing number may be reduced, 

making the braid simpler. It would be especially useful to  possess a general method to compute 

an equivalent braid of minimum crossing number. Apart from many applications, this problem is 

well-known in combinatorial braid theory and is of independent mathem atical interest.

Given a braid A  € Bn  in the Artin generators, the question whether there exists an equivalent 

braid A ' G Bn  of shorter length has been shown to be NP-Complete by Paterson and Razborov 

[125]. Not only does this mean th a t this question is computationally equivalent to all other NP- 

Complete problems, it also means th a t (unless P =  NP, the meaning of which will become apparent 

in our review of NP-Completeness) any algorithm which answers the question would execute in 

exponential-time in n. Since Paterson and Razborov’s result refers to the minimization problem 

for general n, we ask whether it is also an NP-complete question for particular n. This question 

is explicitly asked as open question 9.5.6 on page 209 of [59] and it seems to  have been negatively 

answered in an unpublished preprint by Tatsuoka five years earher but we were unable to obtain 

it [146].

In proving the NP-Completeness of the problem, Paterson and Razborov showed th a t the 

problem can be reduced to  a known NP-Complete problem. This does not however provide a 

usable algorithm. For 3-braids, a linear complexity algorithm has been found [17] but no general
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algorithm for n > 3 exists. A minimization algorithm in the band-generator presentation of the 

braids groups has been found for n  =  3,4 but the length of the braid in this presentation is not 

equal to the crossing number [159] [89]. It is untypical of a group for which the word problem is 

solvable that no unique normal form of minimal length in some naturally arising presentation exists 

for the braid groups. A unique normal form of minimal length in certain natural presentations of 

free groups, HNN-extensions and free products exists, for example.

After a little experimentation, it is clear th a t a braid must, in general, be increased in length 

before it may be reduced to minimum length algebraically. An example of such a braid is given 

in [17]. We show th a t a certain readily obtained braid provides an upper bound for this necessary 

increase in length and prove several properties of this braid. We explicitly construct a set of words 

which must be searched for a certain property in order to obtain a minimal length representative 

of any braid. This constitutes an algorithm to solve the minimization problem. Since the set of 

words which must be searched is, in the worst case, exponential in size, the algorithm takes an 

exponential amount of time to  complete.

3.2 N P-C om pleteness

First, we review the basic ideas and results of the theory of NP-Completeness and then we shall 

prove th a t a particular problem, known as SORTING DOES NOT MINIMALLY PARTITION, is 

NP-Complete.

3.2.1 A R eview  of N P -C om pleteness

In this section, we shall provide a very concise review of the main results of the theory of NP- 

Completeness (NPC) and complexity in general. For reasons of space, this review will be informal. 

The full details and all the proofs for the statem ents we make herein are in [63].

When concerned with practically solving combinatorial problems, we often wish to  use mechan­

ical aid and the question of resources arises. It is, in general, straightforward to  give a natural 

measure of the input size of a problem II (any graph problem input is usually measured by the 

number of edges and vertices in the input graph, for example) and we analyze an algorithm which 

solves our combinatorial problem in order to  obtain a function f{ S )  which gives the maximum  

amount of computing time required to  solve a problem of size S  (thus f { S )  is a worst-case measure 

of time). By the (worst-case) complexity C(II) of the problem II we mean the asymptotic behavior 

of f{ S )  as «S —> DC. An algorithm is linear when f{ S )  —> S  and quadratic when f{ S )  —> as 

5  —> oo. We consider an algorithm to be efficient if and only if C(II) is bounded from above by a 

polynomial function of S  and inefficient or intractable otherwise. A part from desiring as quick an 

algorithm as possible for II, we wish to know in general whether an efficient algorithm exists.

It is customary to  refer to  the totality  of information necessary to  be specified for a particular 

problem II before it can be solved as an instance of II. A decision problem II (intuitively a question
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with " yes" or ”no” answers) consists of two sets Du  of possible instances and I n  Q D u  of yes- 

instances. The problem consists of deciding whether the particular instance specified lies in Yn- 

The theory of NPC deals primarily with decision problems but may be extended to more general 

types of problems.

Computation may be modeled in a variety of ways all of which can be simulated in term s of 

each other; the most frequently used model is the Turing machine, which we shall use here. A 

deterministic Turing machine (DTM) is a machine which possess a finite-state control, a read-write 

control and an infinite length of tape (there exist models with more than  one tape but we shall 

not need them). The finite-state control will tell the machine w hat to read or write using the 

read-write head on the infinite tape on which it does all its work. A program for a DTM consists 

of an alphabet of symbols to  be used for reading and writing (and specifying the input), a finite 

set of states for the DTM to  be in and a transition function. The states include two distinguished 

states Ty and 7^ and the program will halt if and only if either of these is reached; Ty will be the 

"yes" and 7^ the "no" state  which provide the answer to the problem II. The transition function 

prescribes a new state for each present state as a function of the possible input. Thus a DTM 

supplied with a program and some input will traverse its states in accordance with the transition 

function and its input and will, in some cases, reach either Ty or Tn. The question whether it 

will ever reach either 7^ or 7^ is known as Turing’s Halting Problem and can not, in general, be 

answered for all inputs.

The number of symbols on the tape which describes the input will be our abstract meeisure 

of input size S  and the number of evaluations of the transition function, to leading order, as a 

function of S  will constitute the complexity C(H) of the program. If C(H) is bounded from above by 

a polynomial function of «S, then the H is said to have polynomial-time complexity. The complexity 

class P  is defined as the set of all problems for which a DTM program with polynomial-time 

complexity exists.

It has been observed th a t verifying th a t a suggested solution is true is, in many cases, easier 

than  finding the solution. This idea gives rise to  the concept of a Non-deterministic Turing Machine 

(NDTM) which consists of a DTM plus a guessing control. The guessing control guesses a solution 

and the DTM checks it. A NDTM program is polynomial-time if the checking stage has polynomial 

complexity in S . The complexity class NP is defined as the class of all problems for which a 

polynomial-time NDTM program exists. Clearly P  Ç NP. W hether or not this inclusion is strict 

has been the topic of considerable discussion. It is beheved by most in the area th a t P  C NP, 

however no proof of this has been found and a convincing though informal argument based on 

empirical evidence can be made for both positions.

We define a problem H to be polynomially transformable into a problem H' (denoted H oc H') if 

and only if there exists a function /  which takes instances 7 of H and returns instances / ( / )  of H' 

such that: (i) / ( / )  G Tn' If and only if 7 G Yn and (ii) there exists a polynomial-time DTM for / .  

Note th a t H oc H' does not necessarily imply H' oc H. In fact, the relation oc defines a partial order
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on the elements of NP. Using this, we may define the class NPC to be the set of problems II such 

that: (i) II € NP and (ii) for all other problems II' G NP, we have II' oc II. Thus the NPC problems 

are the hardest in NP with respect to  the partial order defined by polynomial transformability. By 

construction of the class NPC, all NPC problems are polynomially transformable to all other NPC 

problems. T hat means th a t a polynomial-time algorithm for one NPC problem would immediately 

result in polynomial-time algorithms for all NPC problems and by extention all NP problems. 

T hat is, it would prove th a t NP =  P.

It is not immediately obvious th a t there are any NPC problems but Cook proved th a t a problem 

known as satisfiability (SAT) is in NPC. This result is im portant as we note th a t this means th a t 

we can prove th a t a problem II G NPC if and only if II G NP and some known NPC (such as SAT) 

problem transforms to II. This is a favorite method to prove th a t a problem is NPC.

3.2.2 Practicality o f the Theory of N P-C om pleteness

There has been considerable controversy over the practical implications of the statem ent ’’problem 

n  is NPC.” While many firm believers in P NP insist th a t this means II is intractable and 

should be regarded as practically unsolvable, many disagree with this view. If we are actually 

concerned about solving II in practice, we wish to know how long the solution will take in terms of 

real time. In many situations we are concerned with only a few special cases or statistical results 

(i.e. the average case) and so worst-case complexity or general statem ents about intractability are 

not specific enough to tell us whether we can solve a particular instance of II. The original NPC 

problem of satisfiability for example can be solved with an algorithm of exponential worst-case 

complexity which however runs very quickly for the average case. This seems to be true for many 

NPC problems and bounds on what “average” means and how quickly the algorithms should run 

can probably be obtained using the methods described for the traveling salesman problem in [73]. 

It should be noted th a t it is, in general, impossible to tell a priori whether a given instance is 

sufficiently average to be solved quickly.

In this vein, the theories of approximation and random algorithms have arisen. If the exact 

solution to our specific instance does in fact take too long, then we are perhaps satisfied with an 

answer which is almost a solution (an approximation algorithm) or with an answer which is likely 

to be a solution with a probability very close to one (a random algorithm). Furthermore, a proof 

th a t n  is NPC does not, in general, provide a usable algorithm for II. So if we wish to  actually 

solve n  we must look beyond the proof of its NP-Completeness and make use of problem-specific 

features.

We prove th a t II is NPC by reduction from a known NPC problem II'. Even though, we may 

have good approximation algorithms and knowledge of the average case for II', this does not trans­

late to n , in general. Which instances are average appears to be problem specific; approximations 

and random methods appear to  have to make use of special features of the specific problem. More­

over, even if the algorithm has exponential complexity, as long as the actual time taken is relatively
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small, we may still be able to use such an algorithm for relatively small instances without practical 

difficulties. All this hints th a t the theory of NP-Completeness may not provide a very useful guide 

for the practical solution of an NPC problem other than giving a convincing argument (as long as 

P ^  NP is not proven or disproven) th a t the worst-case necessarily has exponential complexity.

Many problems of practical significance are in NPC. While most people assume th a t NP /  P, 

if a counterexample were ever found, the practical importance of th a t example would be great. 

It would, however not lead to an immediate revolution of practical computation because the tree 

of polynomial transformations between the NPC problems is so complex and frequently inefiicient 

th a t this one example would not provide a practical polynomial-time algorithm to solve other NPC 

problems without considerable extra work. Prom a practical point of view, an algorithm which 

goes as may not be any better than one which goes as 2 ” , it all depends on the problem and 

the actual resources required and available.

3.2.3 Sorting D oes N ot M inim ally Partition

Suppose we have a set Nr- =  {1,2, • • • , r ) ,  then the set is the set of all words on the letters 

Nr of length m  and N* =  We define the number of inversions inv{q,7r) of a word

Q = QiQ2 ' • 'Qm € with respect to a permutation tt on Nr to  be the number of adjacent letter 

interchanges necessary to  sort the letters of the word q w ith respect to  tt. For example, suppose 

r  =  4, TT =  [2,1,4,3] and q =  432413, then we want to sort q into q' = 214433 which requires 

inv{q,7r) = 6  adjacent letter interchanges. Note th a t whatever tt, inv{q,7r) < m{m — l ) /2 .  The 

identity permutation is denoted by l.

SO R T IN G  D O E S N O T  M IN IM A L LY  PA R T IT IO N  (S N M P )  

IN ST A N C E : g € iV;.

Q U E ST IO N : Is there a perm utation tt of Nr such th a t inv{q,Tr) < inv{q, t)?

SNMP was first shown to be NPC by Paterson and Razborov [125] but we give a different proof 

here. As mentioned above, the book [63] is considered the standard reference on the theory of 

NPC. Amongst a solid review of the field, it contains a list of several hundred NPC problems. We 

shall consider the problems in th a t list well-known and will not give proof th a t they are NPC. The 

problem GROUPING BY SWAPPING (GBS) (problem SR21 in [63], p. 231) is one of these and we 

shall prove SNMP to be NPC by restricting GBS. (GBS is proved to  be NPC by a transformation 

from FEEDBACK EDGE SET (GT 8 , p .l92) VERTEX COVER (G T l, p. 190) ^  3SAT (L02, 

p. 259) —> SAT (LOI, p. 259) which is the original NPC problem. The references in parenthesis are 

to  [63].) To be as clear as possible, we quote GBS exactly as it appears in [63], modulo notation.

G R O U P IN G  B Y  SW A P P IN G  (G B S)

IN ST A N C E : Finite alphabet Nr, string q G N*, and a positive integer K .

Q U E ST IO N : Is there a sequence of K  or fewer adjacent symbol interchanges th a t converts q
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into a string s in which all occurences of each symbol a E Nr are in a single block, i.e. s has no 

subsequences of the form aba for a, b E Nr and a ^ b l

T h e o re m  3 .2 .1  SN M P is in NPC.

P ro o f . Note th a t the string s which has no subsequences of the form aba for a,b E Nr such th a t 

a /  6 is sorted with respect to  some permutation t t  on Nr- Thus there exists a sequence of K  or 

fewer adjacent symbol interchanges if and only if there exists a permutation tt on Nr such th a t 

inv{q,n) < K . If we put K  — inv{q,i) — 1, an instance of GBS becomes an instance of SNMP. 

This is known as a proof by restriction (see [63]) as we have shown th a t a specific type of instance 

of GBS is an instance of SNMP; it clearly follows th a t SNMP is in NPC since GBS is. □

3.3 Non-M inim al Braids is N P-C om plete

In this section, we state  formally the problem NGN-MINIMAL BRAIDS (NMB) and show th a t it 

is NP-Complete. Paterson and Razborov first proved this result by a reduction of a subproblem of 

NMB to SNMP. We shall follow their basic ideas but will present a substantially different proof. 

We do not assume th a t the reader is familiar with their proof and our discussion is completely 

independent.

3.3.1 Statem ent o f th e  Problem

N O N -M IN IM A L  B R A ID S  (N M B )

IN S T A N C E : A braid group Bn and a word A  E Bn.

Q U E S T IO N : Is there a word A ' E Bn such th a t A ' ^  A  and L{A ') < L{A)1

Clearly NMB can be answered by an algorithm which finds a minimum length representative 

Am  of the equivalence class of A  by comparing L{Am) and L{A). We define this problem formally,

M IN IM A L  E Q U IV A L E N T  B R A ID  (M E B )

IN S T A N C E : A braid group Bn and a word A  E Bn-

S E A R C H : Find a word Am  ~  A  such th a t L{Am) <  L(A ') for any A ' E Bn such th a t A ' «  A.

The class of problems of which MEB is a member is th a t of search problems. Search problems 

n  differ from decision problems mainly in th a t they consist of a set Djj of possible instances and 

a set 5n  of solutions. For each instance I  E D u, an algorithm which solves II returns either “no” 

if 5n =  0 or some solution s E Su- The notion of NP-Completeness can be extended to search 

problems (see [63], p. 110) and by this extension it is clear th a t the search problem MEB is in 

NPC if and only if the decision problem NMB is in NPC.
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We shall show that for a certain class of braids, NMB is in NPC. First, we construct this class, 

then we prove some of its properties and finally show that the question NMB for a member of 

this class can be reduced to SNMP. This shows that NMB is in NPC because it is in NP and a 

subproblem is in NPC.

3.3.2 The W eft Braids

Consider the identity braid (no crossings) in the braid group Bcm+i where we have partitioned the 

cm +  1 strings into m +  1 categories. The first category is constituted only by the braid on the 

far left and each other category is made up of exactly the next c strings to the right of the last 

category. Choose an integer r < cm +  1 and assign a label to  the m  categories with c strings from 

the set Nr — {1,2, •• • ,r} . This labeling induces a string V  on N^'^. We denote the number of 

times label i occurs within V  by # (F , i). We shall refer to the string on the far left as the weft (the 

weft is the string which weaves between the threads stretched lengthwise in a loom while making 

fabric), the categories bearing label i as i-cables and the strings in a particular z-cable as i-wires. 

In what follows the cables will act as units; th a t is, there will be no crossings between wires making 

up a particular cable. Choose a permutation tt on Nr and construct the braid 14- from V  and tt by 

bringing all the 7r(l)-cables to the left of all the other cables except the weft. Then do the same 

for the 7r(2)-cables and so on, so th a t the final braid will have its cable labels sorted according to 

7T. The cable currently brought to the front shall under-cross any cable in its path if and only if its 

label is lower than th a t cable. This defines the braid exactly. Given a labeling V, the number 

of Artin braids 14 this can generate is equal to  the number of permutations on r  symbols, r\. If 

c =  1 , m  =  5 and r  =  3, the labeling V  = 21312 can generate 6  A rtin braids, two of which are 

% =  (T2cr4cr3cr5 and V[2 ,i,3] =  Note th a t the word length L (I4 ) of the Artin braid 14

is L(V4) =  inv{V,7r)(P.

In addition to the choices made above, choose two further integer parameters t, s. A weft 

braid &4 E W n {r,t,s ,c )  on n  strings with parameters r , t , s ,c  induced by a permutation tt on Nr 

is constructed by first constructing 14 for some labeling V  as described above. Then the weft 

over-crosses all cables until it is just to the right of all the 7r(r)-cables, it then passes underneath 

all the 7r(r)-cables (which are now in a block) and finally passes over all of them and under all of 

them a further t — 1 times (the weft has encircled the 7r(r) block of cables t times). The weft then 

continues to the 7r{r — l)-cables and so on to do the same under-crossing cables if it is going to the 

left and over-crossing otherwise. The entire process of the weft encircling the blocks is repeated s 

times and L4 terminates in V~^.  We refer to braids in the above form as being in weft form.

Next, we prove three lemmas which will be used to show that finding minimal weft braids is in 

NPC. The first lemma was assumed by Paterson and Razborov as obvious, we shall prove it here. 

The other two lemmas are proven differently here than they were by Paterson and Razborov [125].

L em m a 3.3.1 C4 % for any two weft braids t 4 , t 4 '  G B 4 (r, £, s,c) defined by the same
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labeling V .

P r o o f .  G iven the set o f weft braids W „(r, t, s, c), choose a word V  G where m  =  (n  — l ) / c  and 

two perm utations vr and tt' on Nr. Construct the tw o weft braids in weft form U-ĵ  and 1/-,̂ ' defined  

by the labeling V  and the perm utations tt and tt' respectively. We wish to  show th a t ~  Û '̂- 

N ote th a t we m ay set tt' =  l w ithout loss o f generality.

Consider and focus attention upon the (adjacent) collections of i and (z +  l)-cables a t the 

beginning of the center braid, i.e. just after %. Suppose we were to  interchange their positions by 

pulling the z-cables under the (z +  l)-cables while keeping the rest of the braid stationary. This 

generates a number of new crossings of the form W W ~ ^. Move the second half of these crossings, 

to  the end of the center braid in order to  conform with the definition of the weft form then 

the whole braid will be V^W C W ~^V~^ where C  is the center braid. This motion will clearly alter 

the braid into exactly that form in which it would have been if the perm utation had not been 

L =  [1 ,2 ,3 , • • • , r] but [1,2, • • • , z — 1 , z +  1, z, z +  2, • • • , r]. In the same way, we may switch the 

order of any two adjacent pairs of labels in the permutation. Since any permutation tt on Nr can 

be generated by a finite number of adjacent symbol interchanges in the identity perm utation l on 

Nr, we can generate all the weft braids in weft form (defined on the same initial labeling V ) (7̂ - 

firom Ut, by braid group motions which proves the lemma. □

A s I/tt is independent of tt, we shall om it the perm utation tt when no confusion can arise.

L e m m a  3 .3 .2  (Paterson and Razborov [125]) The length of a weft braid in weft form  U„ G 

W n{r,t, s, c) with rz =  1 +  cm defined by the labeling V  satisfies

2inv{V, tt)c  ̂ +  2tmcs < L{Ut̂ ) <  2inv{V, tt)c  ̂ +  (r +  1 +  2t)mcs (3.1)

and in particular L{U() = 2inv{V, l)c  ̂ +  2tmcs.

P r o o f .  B y  construction  L(%r) =  L{V~^) =  inv{V,7r)c^. A  single coil around the strings o f label 

z has 2cf^{V, z) crossings. If ?r =  z, then the weft over-crosses all cables first using cm  crossings. 

It then under-crosses c#{V ,r)  tim es and coils t — 1 tim es using 2c(t — l )f f {V, r)  crossings. T he  

(r — l)-ca b les  are ju st beside the r-cables and so no further crossings are needed, we under-cross 

them  and coil again t — 1 tim es. So in the case th a t tt =  t, we use exactly

L{Uf) =  2inv{V, l)(? +  2tmcs (3.2)

crossings. For the case tt =  z, the non-coiling crossings o f the weft w ith  the wires can be viewed as 

exactly  one m ore coiling w ith  each of the blocks o f wires since this would give exactly  the rem aining  

number o f crossings and geom etrically looks like it. B y  construction o f the general case, we require 

at least 2tmcs crossings for the center part o f the braid for any other perm utation tt, th is gives us 

the lower lim it.

For TT 7  ̂ z we require these t  coils plus a number o f crossings o f the weft and the wires in order 

to  sort them  in the order prescribed in the construction above. There are r  different blocks of
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cables and m  cables in total. Thus the maximum number of crossings of the weft with a cable in 

one stage of the construction is clearly (r +  l)m  but there are c wires per cable and s identical 

construction stages and so the to tal number is (r +  l)m cs. This must be added to  the minimum 

number of required crossings and gives us the upper limit in the lemma. □

L em m a  3 .3 .3  (Paterson and Razborov [125]) I f  U e  W n { r , t , s , c )  obeys L{U) < L{U ') for any 

U' e  Wn(r, t, s,c) such that U % U ', then

L{U) > 2inv{V,7r)c^ +  2tmcs (3.3)

for some permutation t t .

P ro o f. Construct the weft braid Ut̂  for some perm utation t t . It has 2inv{V, t t ) ( P  crossings between 

wires of different labels. Wires of the same label never cross. Half of these crossings Kr are the 

inverses of the other half V~^ but they are separated by the center braid in which the weft coils 

around all the cables of equal label. Obviously, a crossing between two particular strings in a braid 

can be removed if and only if these two strings cross in the opposite manner somewhere else in the 

braid and these two crossings can be moved adjacent to each other.

Clearly the crossings on either side of the center braid can not be moved to the other side 

because the coiling of the weft prevents them from being unraveled in this way. Since the cables do 

not cross each other in the center braid, any weft braid has a t least 2 m u(V ,7r)c^ crossings between 

the wires for some perm utation t t .

The center braid consists of crossings between the weft and the wires and the weft crosses 

nothing outside of the center. Thus the crossings in the center braid may only be removed if they 

can be canceled within the center braid.

By construction of the center braid in s levels, it is clear th a t no crossings may be removed

between levels. It is also clear th a t no crossings may be removed within a particular coil. Thus the

only way to reduce the number of crossings of the center braid is to  change the order in which the 

coils in each level are made. Since we have s levels of t  coils for each collection of i) i-cables 

of c wires each, this takes a t least 2tmcs crossings (since there are a to tal of m  cables) and the 

lemma is proved. □

3.3.3 M inimal W eft Braids

We ask under which conditions a weft braid U G W„(r, t, s,c) is minimal in length over its equiv­

alence class in W „(r, t, s,c). The theorem which gives the condition was proved by Paterson and 

Razborov but we shall give a different proof here.

T h e o re m  3 .3 .4  (Paterson and Razborov [125]) A weft braid U G Wn{r^t, s,c) in weft form  sat­

isfies L{U) < L{U') for all U' G W n(r,t, s,c) such that U' ^  U i f  and only i f  there exists no 

permutation tt  ^  l such that inv{V,TT) < inviV , l).
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P roof, (only if)  Suppose there exists a perm utation tt ^  l such th a t inv{V, tt) < inv{V, l). Choose

the number of wires per cable c =  rm s. Because of lemma 3.3.1, we have and due to

lemma 3.3.2 we have

L{Ut̂ ) < 2inv{V, 'k)c?  +  (r +  1 +  2t)m cs < 2inv{V, l)(? +  2tmcs — L{Uf) (3.4)

and C/i is not of minimal length.

(if) Suppose th a t U is minimal and th a t L{U) < L{Uf). Then by lemma 3.3.3, we have

2inv{y,'K)(? +  2tmcs < L{U) < L{Uf) =  2inv{V, l)(? +  2tmcs (3.5)

and so inv{V, t t )  < inv(V, l) for some perm utation tt. □

Now we show th a t NMB G NPC using theorem 3.3.4.

T heorem  3 .3 .5  NM B is in NPC.

Proof. NMB is in NP because the word problem in Bn  may be solved in polynomial-time [22]. 

That is, given a braid, it may be checked in polynomial-time whether it is equivalent to the input 

braid and if it is of shorter length.

An instance of NMB is specified by a braid group Bn  and a word A  E Bn- Suppose now th a t 

A  G W n(r, t, s, c). A subproblem of NMB asks whether there exists a weft braid A ' G W n (r, t, s, c) 

such th a t A' ~  A and L{A ') < L{A). Theorem 3.3.4 establishes th a t this is true if and only if 

there exists a permutation n ^  l such th a t inv{V,7r) < inv{V,L) where V  is the labeling which 

defines A in weft form. The question, given V  G AC*, whether such a perm utation exists is the 

known NPC problem SNMP. Thus NMB contains SNMP as a subproblem. Since NMP G NP and 

a subproblem of NMB is in NPC, we have th a t NMB G NPC. □

Even though NMB is an NPC problem, we shall look for an algorithm for it.

3.4 Minimal Length Words

Denote by Am  any braid which satisfies Am  ~  A and L{Am) < T(A*) for all braids A* % A. We 

now prove a basic lemma which connects Amax and Am- Recall th a t Amax =  where

s(A) is the number of inverse generators in A and A ' is positive.

3.4.1 M inimal Braids W ithout Increasing Length

T heorem  3.4.1 For any braid A , it is possible to obtain Am from Amax by operations which 

monotonically decrease or keep constant the length of the braid.

Proof. By construction Am  ~  Amax ~  A and Amax and A are a t least as long Am- Exponent 

sum is an equivalence class invariant so th a t s{Am) <  s(A). Replace each inverse generator in Am
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with the braid given in proposition 1.3.1 and then use equation (1.12) to bring all the fundamental

braids to the front to  obtain the braid

(3.6)

% (3.7)

% (3.8)

B ut Amax = A ' and since the braid groups are left-cancelative [64], we have th a t

«  A' (3.9)

with both words positive. Since positive words are positively equal [64], there exists a sequence of 

braids for 0 <  % < g with Bo =  A', Bq — A '^, B j and Bj+i different by a single

application of the braid group’s defining relations and Bi positive for all i. Since exponent sum is 

an equivalence class invariant, L{Bi) = L{A') for all i.

From Amax we may thus reach the form of A^^„^ in equation (3.8) keeping the length of the 

braid constant. Prom this form, we may reach Am  by operations which monotonically decrease or 

keep constant the length of the braid. Thus there exists a sequence of braids Wi for 1 < i < p 

with Wo =  Amax, Wp =  Am, W j and Wj+i different by a single application of the braid group’s 

defining relations and L(W j+i) <  L{ Wj ) ,  which proves the lemma. □

Lemma 3.4.1 basically establishes th a t we may reach a minimum length representative from 

Amax by rearranging and canceling generators only; it thus, in principle, removes the difficulty we 

pointed out in the introduction of occasionally having to increase the length before being able to 

decrease it to an absolute minimum.

3.4.2 The Diagram  of a Braid

Gar side introduced the notion of a diagram of a positive braid in his seminal paper on the braid 

groups [64]. We present an extension to his construction which draws the diagram of any braid 

word. The diagram is a list of all those braid words which may be obtained from the given word 

by rearranging only.

A lg o rith m  3 .4 .2  Input: A braid word A. Output: A list D{A) of all braid words B  which may 

be obtained from A  by rearranging o f generators only.

1. Define the diagram of zeroth order as the set Do (A) =  {A}.

2 . The set Di{A) is obtained from the set D j_i(A ) by the following procedure:

(a) Fix attention on a particular member a  of D^_i(A). We read a  from left to right and 

decide at each position whether we may apply any of the moves in equations (3.10) to
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(3.13).

> 1 (3.10)

(3.11)

(3.12)

(3.13)

(b) If we may, we apply it and store the resultant braid word j3 in Di {A) if and only if j3 is 

not already contained in D j{A) for 0 < j  < i.

(c) We continue to read across a  until we have considered all braid words which may be 

reached from a  by a single application of the moves in equations (3.10) to (3.13).

(d) Apply steps (a) through (c) for every braid in D i-i{A ). If Di{A) =  0, then the algorithm 

is done.

3. The diagram D{A) of A  is the union of all the Di{A),

D (A ) = Do{A) U Oi(A ) U • ■ ■ U (3.14)

We show the correctness and term ination of this algorithm.

L em m a 3 .4 .3  Algorithm 3.4-2 terminates for every A  and succeeds in listing all braid words B  

which may he obtained from A  by rearranging of generators only, that is using the braid group 

relations without introducing or removing any generators.

P ro o f. D q{A) is, by definition, finite. It is obvious th a t for any braid word of finite length, the 

moves in equations (3.10) to (3.13) may be applied a finite number of times. Thus, by induction, 

every Di{A) is finite. The number of distinct braid words of a given finite length is finite and since 

the Di{A) are, by construction, non-overlapping, their union must be finite. Thus there exists an 

m such th a t Dm+k{A) =  0 for every A; >  0. Thus the algorithm term inates for every A.

The moves listed in equations (3.10) to  (3.13) exhaust all possibilities allowed in the braid 

group under the stipulation th a t no generators must be removed from or introduced into the word. 

Thus each word which may be reached from A  by rearrangement of generators will eventually be

reached by algorithm 3.4.2 and so the algorithm succeeds in fisting all the required braid words.

□

Lemma 3.4.1 gives the following corollary.

C o ro lla ry  3 .4 .4  D{Amax) contains a braid o f the form  EAm  for E  ^  e, the identity in Bn-

P ro o f. By construction D{Amax) contains all braid words equivalent to Amax by rearranging only. 

By lemma 3.4.1, Am  can be obtained by a sequence of operations which keeps the length constant

P a t r i c k  D . B a n g e r t



3.4  M inim al L ength  W ords 69

or decreases it. Each operation which decreases the length does so by eliminating a subword like

Since for all i e* % e, the identity in Bn, we have

6ia f^  % a f^e i,  % Sjei (3.15)

for any i and j .

Let us now agree to construct the aforementioned sequence of words without eliminating the 

subwords e* but using equation (3.15) to bring them all to  the left of the word. At the end, we 

will obtain a word of the form A* =  EAm  where E  % e is a braid consisting of all these subwords 

e*. The most general form of E  is

E  =  e r 4 =  - (3.16)

with Qi > 0 for all i. So if we could extract E  from Amax, we would, in the process, obtain 

Am- Since the form EAm  is obtained by rearrangements only, L{E) < L{A*) — L{Amax)- This 

indicates th a t <  L{Amax)- □

Given a braid A, we thus find Am  by constructing the diagram D{Amax) and selecting the word 

with the largest number of cancelation pairs such as CTia~ .̂ Clearly there will be more than one 

braid word for the same number of cancelation pairs. We may agree to  choose the least braid word 

lexicographically for definiteness. It is obvious from the construction th a t this will be a unique 

form of minimal length for the braid A. We thus have an algorithm to find Am  for any A, it is 

regrettable th a t the diagram D{Amax) is, by construction, very large. Two questions are left to 

ask: Can we make the result stronger and how large is a typical diagram? These questions will be 

tackled in the next two sections.

3.4.3 Counterexam ples

In theorem 3.4.1 we achieved an upper bound for the necessary increase in length of a braid before 

it may be reduced to  a minimum length. One would like to  simplify the result somewhat but we 

shall show in this section that the two straightforward attem pts to simplify or strengthen theorem 

3.4.1 are doomed to  failure. F irst we show th a t we may not, in general, shorten Amax to  the 

C ar side normal form.

L em m a 3.4.5 It is not, in general, possible to obtain Am from G{A), the Garside normal form  

of A, by operations which monotonically decrease or keep constant the length o f the braid.

P ro o f. Consider the braid a  = A 3 The C ar side normal form of a  is G{a) =  AJ^CTj

and the shortest braid which can be obtained from G{a) by rearranging and canceling only is 

a ' = a f^ a 2 ^crf. The original form of a. is the same as otmax and we make the following moves on
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it

a  =

~  (J2 ^ ^ 2  ^ ^ 2  ^ 0 '2 (^2 ^ 3(^1

-  O-^^Ag V^^(72A3C7i

(72 Ĉ7i

(3.17)

(3.18)

(3.19)

(3.20)

which is shorter than  a ' and is in fact the minimal length of this 3-braid. This provides an 

example for which the minimal length is not obtainable from the Garside normal form of the braid 

by rearranging and canceling only and thus proves the lemma. □

One may think th a t it would be sufficient to list the diagram of the negative and positive 

subbraids of Amax and search for a maximal length subbraid which is common to the end of the 

first and the beginning of the second diagram but this is not true as the following lemma shows.

L em m a  3 .4 .6  There does not exist an Am in the form  A 1 A 2 with A i negative and A 2 positive 

for every A.

P ro o f. Consider the braid A  =  C7j^̂ (72(7 ]“ ,̂ the Garside normal form of which is G{A) =  

A 3 ĉ72(7 ic7 i(7 i(7 2 . In fact, A  is already minimal as can be seen by Berger’s algorithm [17] or 

by using the above procedures. We wish to  show th a t there does not exist another braid equivalent 

to  A  of length three in the form Aiv42  with A \  negative and A 2 positive. Since exponent sum is 

a conjugacy class invariant, we need only check eight cases. Below we list the eight 3-braids of 

length three and exponent sum -1 in the required form and their Garside normal forms.

(Tl

(T2

(Tl

(T2

(Tl

(T2

(Tl

A 3 Vi(72 

A 3 ^ (T 2 (T l(7 i(7 2 (7 2  

A 3 ^(7l(7l

A 3 Vi£72

A^^ (72(71

A 3 ^(72(72

A 3 (̂7i(72(72(7i(7i 

- 1O2 (72 —> A 3 (72(7i

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Since the Garside normal form solves the word problem and none of the above Garside normal 

forms are identical to  G{A), the braid A  does not possess a minimal length representative in the 

required form. □
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Table 3.1: The Size of Diagrams of Fundamental Words

n P max. i

3 1 2 1

3 2 8 2

3 3 38 5

3 4 196 8

3 5 1062 13

3 6 5948 18

3 7 34120 25

4 1 16 7

4 2 1654 15

5 1 768 25

3.5 The Size of Diagrams

Let a be a n-braid of length L  with diagram D{a). Consider the braid a' =  aaia~^ for some 

1 <  i < n. We are concerned with the size of D{a') in terms of the size of D{a). For each member 

of D{a), the cancelation pair may appear in any place in both possible orders and

a~^ai), so in 2{L + 1 ) positions. There may be further moves possible by use of the braid group 

relations but the number of these are clearly bounded by a function linear in L. So the diagram 

of a word will increase in size by a factor linear in its length for each possible cancelation pair. 

Given a random positive n-braid a of length L, how many members will D{a) have, on average? 

We conjecture that

C o n je c tu re  3.5.1 For any braid a G Bn o f length L, we have that |D (a)| <  \D{A^)\ with p = 

[2 L / ( n ( n -  1 ))].

Conjecture 3.5.1 would provide an upper bound for the size of the diagram of any word in terms 

of the diagrams of the diagrams of which topogically are a series of p  half-twists of the braid 

strings about the vertical axis. In extensive computer simulations, the conjecture was checked and 

seems to hold. W hat it seems to  indicate is th a t the half-twist has the most topological freedom 

for its length and number of strings under the constraint th a t the crossing number must be kept 

constant. This is quite intuitive, yet the conjecture seems to be difficult to prove.

We have investigated the diagrams of several for their size and for the distribution of braids 

over the subdiagrams at each stage of the construction in algorithm 3.4.2. In table 3.1 we list the 

size of the diagram and maximal subdiagram index for p half-twists on n  strings.

We conclude th a t the diagram of a typical braid word grows exponentially with its length 

and braid index and thus our method of finding the minimal length braid word equivalent to a
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given braid has exponential complexity. This is not surprising as we showed th a t the problem is 

NP-Complete. We shall give a heuristic algorithm and other methods in the next chapter. The 

properties of the braid groups th a t made the above solution possible are: (i) It is possible to write 

all inverse generators as products of the generator of the center and a positive word, (ii) the defining 

relations relate positive words only and (iii) the braid groups are right and left-cancellative. It is 

likely th a t any group which has these properties, has an analog of the Garside normal form and 

has a solution to the minimum word problem similar to the one above.
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Chapter 4

M inim al Words via Elastic 

R elaxation

In this chapter, we investigate several diflFerent approaches to obtain minimal configurations: we 

employ three different relaxation techniques and compare these with each other and with an al­

gebraic heuristic algorithm, in term s of minimization (of energy and crossing number) and time 

efficiency. By energy we mean to tal string length of the braid. It is found th a t more than half 

of the crossings of a sufficiently large braid (in terms of crossing number and number of strings) 

are redundant. We analyze the different methods and say in what circumstances which method is 

to  be favored and conclude th a t minimum braid energy and minimum braid crossing number are 

substantially different measures of topological complexity for braids.

The main purpose of this chapter is to propose an efficient tool for finding minimal braid 

configurations. W ith this in mind, we first demonstrate how to  generate random braids both 

algebraically and geometrically and how to convert between them  in §2 . In §3 and §4, we introduce 

the forces which will minimize the crossing number and the elastic energy respectively. An algebraic 

heuristic minimization is given in §5 and the results of computational experiments of all approaches 

are discussed in § 6  together with theoretical comparisons. We conclude in §7.

4.1 Introduction

Topological constraints appear in many complex systems. In biology the amount of twisting and 

knotting of DNA molecules can affect molecular interactions and dynamics [90]. In polymer physics 

the degree of entanglement of the polymer filaments helps to determine the elastic properties of 

the polymer [6 j. In astrophysics, applications involve the behavior of magnetic fields (such as those 

found in stars and accretion disks) with complex topologies [123, 16, 17, 36, 124]. In dynamical 

systems theory, the time history of the system can be represented by a set of braided particle 

orbits; the topology of the braid reflects qualitative aspects of the dynamics [46, 34, 108, 113].
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In turbulence theory the degree of entanglement of the vortex lines provides a statistical measure 

of flow properties; this measure is distinguished from most others used in turbulence by being 

based on the flow in real space ra ther than  on the spectral transform of the flow in Fourier space. 

In statistical mechanics, braid and knot theory has significantly contributed to exactly solvable 

models via knot polynomials, for example [152]. Random knotting, as opposed to the random 

braiding discussed here, has also been investigated [134].

All these applications involve a set of curves (e.g. long molecules, magnetic or vortex lines) 

which are knotted, linked, or braided. Knot theorists have devoted great effort to classifying such 

objects. One im portant part of this eflFort concerns finding measures of complexity. This idea goes 

back a t least as far as Tait, who first set out tables of different knot types [143]. Tait organized 

the knot tables according to a simple complexity measure, the minimum crossing number Cmin- 

This number gives the minimum number of crossings of a knot as seen in any two dimensional 

projection.

There are two types of topological invariants. The first, sometimes called isotopic invariants, 

involve quantities th a t remain constant if we deform the set of curves. Examples include the Gauss 

linking integral, helicity integrals, and knot polynomials. The second type involves quantities which 

do change when the curves deform, but have a lower bound. This second type of invariant can be 

regarded as a measure of topological complexity [136] of which both crossing number and energy 

are examples.

This chapter investigates the crossing number and energy for random  braids. Braids consist of 

a set of curves stretching between two parallel planes. The endpoints of the curves are fixed but, 

between the two planes, the curves are free to  move so long as they do not cross through each 

other. Braids are im portant in knot theory because (unlike knots) they can be readily classified 

using group theory [2 2 ]. They are also im portant in solar physics, as the field lines within a 

coronal magnetic loop are braided. (In fact, a coronal loop forms an arch with both ends in the 

photosphere. But a simple geometrical transformation straightens out the arch into a cylinder with 

ends on two parallel planes.)

Energy, of course, has the most immediate physical significance. For example, a solar mag­

netic loop usually stays close to  the energy minimum (equilibrium) state  consistent with the field 

topology. Sometimes this equilibrium becomes unstable; a rapid reconnection event changes the 

topology and energy is released in a flare. Crossing number, on the other hand, relates more 

directly to  the geometry of the field hnes. The state of minimum crossing number may not be 

exactly the minimum energy state, but one may conjecture th a t they will be close. We can, in 

fact, find strict lower bounds for the energy of a magnetic field given its crossing number. This 

has been done for fields in a spherical geometry with closed field lines [62] and in a cylindrical 

geometry with braided field lines [16].

We can also consider continuous fields rather than knotted or finked curves, e.g. knotted 

fluid flows and magnetic configurations [111, 1 1 2 , 62, 44, 16]. Crossing number can be defined
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for a continuous field by averaging the crossing number of all pairs of field lines [62, 16]. This 

average crossing number will have some positive minimum amongst all fields with the same field 

line topology. Minimum crossing number and minimum field energy will then both measure the 

topological complexity of the field. For example, a closed, knotted tube of magnetic flux will have 

a magnetic energy which generally increases with the Cmin of the knot (and with internal twist of 

field lines inside the tube).

There has recently been a m ajor effort to find the ideal shapes of knots. While the definition 

of ’’ideal” varies, the ideal shape is mostly obtained by minimizing some form of knot energy. 

Various energy functionals have been suggested for knotted curves [62, 90, 137]. These energy 

functionals have a positive minimum depending on the knot type analogous to minimum crossing 

number. Some theoretical questions arise from this work. For example, are the energy minima 

found using these approaches local or global minima? One would like an energy such th a t the 

minimum is global for any initial configuration. This does not seem to be possible, however [52]. 

Another im portant question is whether an energy minimum corresponds to the minimum of a more 

traditional measure of complexity, for example the crossing number. As mentioned above, it has 

been implicitly assumed in the literature th a t this is true, however we argue here on the basis of 

statistical results th a t this is not true. As mentioned above, energy can be defined in many ways 

and different energies behave differently. We consider energy to  be the length of the strings in the 

braid.

4.2 Obtaining and Embedding Random Braids

For the results of our comparison of minimization strategies to be useful we discuss our approach of 

generating random braids in a way such th a t we obtain a representative selection of braids. First, 

we discuss how to  obtain a random algebraic braid, then how to  convert it into a geometrical braid 

and finally how to reverse this conversion.

4.2.1 Random ly G enerating Algebraic Braids

An algebraic n-braid is a word over the generators of the braid group Bn, th a t is the set for

1 <  i <  n. Given a number of strings n  and a number of crossings c, there are clearly (2(n — 1 ))^ 

algebraic braids possible. Not all of these braids are necessarily topologically distinct however. 

Two words in Bn  represent the same braid if and only if one can be transformed into the other 

using the following relations

~  6 , (4.1)

ŒiŒj = GjUi \ i - j \  > 1, (4.2)

(4.3)
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where e is the identity in Bn (topologically e is the braid of no crossings; it consists of n  vertical 

strings). The problem of determining whether two words are equivalent or not is known as the 

word problem, the most efficient algorithm for which was found by Birman, Ko and Lee [22] and 

runs with complexity O(nc^).

We may select a word at random from the (2(n — 1))^ possibilities by choosing each of the c 

generators a t random from the set for 1 <  i < n. The number of words in the set of the

(2 (n — l))c possibilities corresponding to a particular braid will not, on average, depend on this 

braid; th a t is, the intersections of the equivalence classes of the represented braids and our set are, 

on average, of equal size. Thus the uniformly random word corresponds to a uniformly random 

braid.

4.2.2 Em bedding Algebraic Braids

We describe how to determine the geometric braid which an algebraic braid represents in this 

section. If we select a random braid in the above algebraic manner, we must embed it in three- 

dimensional Euclidean space in order to use an energy minimizing algorithm on it.

An n-braid consists of n  strings embedded in and thus we may describe the braid by giving 

n vector functions Xi{z, t )  parametrized by the vertical z  coordinate and time t. We construct 

these functions such th a t

Xi{z,  t) =  (xi(z,  t ) , y i ( z ,  t ) , z ) .  (4.4)

The vertical component of the functions is assumed independent of time. This is needed only 

for efficient computer implementation of the model since it ensures th a t the points by which the 

functions would have to be approximated do not collect near the ends of the strings during the 

simulation, as they would without this constraint. We shall take the braid to lie between z  =  0 

and 2 =  1 and, in keeping with the definition of braid isotopy, the points Xi(0, t )  =  Xi(0) and 

Xi ( l , t )  =  2^(1) will be independent of time.

We will generate b  points per crossing and string in order to  represent the braid; thus there will 

be b e  points per string in the braid. The position vector of the point on string i  is X i { j / b c , t ) ,  

which must be specified a t time t  =  0. If we are given a braid word in the generators (7*, we set

Ti(0,0) =  ( 4 ( 2 - 1 ) ,  0 ,0) (4.5)

where 4  is a given parameter. The subsequent points will have a z  coordinate between 0 and 1 . 

We then read the first generator in the braid word and add b  points to all strings not involved in

the crossing which are vertically above the last set point. For the strings involved in the crossing,

the X  and z coordinates are simply straight lines exchanging the two strings over a vertical region 

of size 1 /c. The y  coordinate is constructed from the Gaussian distribution

ÿ ,ü /6 c ,0  =  ± | e x p ( - 1 2 0 M ^ M M l ! ]  (4.6)
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where =  5  ̂+  1/c^ and k runs from zero to  b as j  increases. The positive y coordinate is chosen 

for the overcrossing string and the negative y coordinate for the undercrossing string. See figure

4.2 for two examples.

It has been found in practice th a t this yields an esthetically pleasing embedding of the braid. 

Physically, the Gaussian distribution is also intuitive because we assume the string to be elastic 

later. Numerically, it may be seen th a t the initial and final points of the Gaussian are always close 

enough to the straight segments of the braid th a t this does give a good distribution of points over 

the braid.

4.2.3 Extracting G eom etric Braids

In this section we describe how to reverse the process described in the last section. In our model, 

each point will move on a horizontal plane, the original vertical spacing between beads is preserved. 

Thus we can slice the final braid into be — 1 slices, which are the segments of the braid strings 

between two points. Given a position of the observer, it is then easy to extract the left-to-right 

order of the braid strings for each slice. At the start we label each string with a number increasing 

from 1 for the leftmost string to  n  for the rightmost string. The initial order is thus the identity 

permutation on n elements and each slice will have an associated permutation.

In this way we build up a list of permutations from the sta rt to  the end of the braid. If the 

permutation is the same as the one before it, no further generators need to be inserted into the 

braid word. If it is different, then we must insert a generator into the braid word. Suppose th a t 

strings i and j  are switched in one transition between permutations. We must establish which 

string is closer to the observer on the current vertical level, which we can readily do. We must also 

determine which of i and j  appears first in the permutation structure from the left and in which 

position it occurs. Suppose th a t i is found first in position k in the perm utation and th a t i passes 

over j ,  then we must add the generator ak to  the Artin word. If i passes under j ,  then we must 

add (7^^.

If there is at most one transposition of elements in the perm utation a t every step, the translation 

is simple. If there are more than  one, we must be careful to  assess which string crossed with which 

other string. This however may be done simply by checking which string was closest to a given 

string a t the current vertical level. This leaves us with the remote possibility of a triple point, 

th a t is three strings crossing a t once. This sort of crossing may be removed by a slight shift 

in the observer’s position. However, a repulsive force which we will introduce later and keeps 

braids from overlapping effectively negates the possibility of triple points and so the only case of 

complex transitions left is several exchanges, which could be determined from the string positions 

themselves.

In practice, this recognition algorithm has worked well. For a given embedding of a topological 

braid, the crossing number depends upon the observer’s position, in general. To take this into 

account, we rotate the observer around the braid and compute the braid word for many observation

A lg o r i t h m ic  P r o b le m s  in  t h e  B r a id  G r o u p s



M inim al W ords v ia  E lastic R elaxation  78

angles and choose the shortest braid word.

4.3 A Crossing Num ber M inimizing Force

Here, we will obtain a force which directly minimizes the crossing number of a braid for later 

comparison with the energy minimizing forces and the algebraic approach.

4.3.1 Expressions for crossing number

Recall th a t a braid is represented by a set of n  curves t), t), z ) , i =  1 , . . .  n, 0 <  2: <  1 . By

projecting the curves onto a vertical plane we can detect a number of crossings. Let the projection 

angle be 0, with direction vector p(^) =  (cos çi», sin 0 ,0). Thus for 0 =  0 the projection plane 

will be the x-z  plane. The crossing number C(0) will then be a function of 0. If we distort the 

braid, C(0) will change. For fixed 0 we can use group theory to  minimize C'(0) over all possible 

deformations of the braid [17]. For n  < 3 an algorithm linear in the number of initial crossings 

is known [17] but no efficient algorithm for n >  3 is known (see §5 for more details). Thus, it is 

worth it to pursue numerical relaxation methods similar to  energy relaxation but specifically based 

on crossing number minimization.

The crossing number dependence on projection angle 0  can be removed by choosing the mini­

mum all projection angles:

Cmin =  minC'(0 ). (4.7)

The crossing number is a sum over pairs:

C = 'Y ^C ij = ' ^  Q j  (4.8)
ij i=l j=i+l

where Cij just counts crossings between strings i and j .

In addition to  decomposing C  into contributions from each i j  pair, we can look at how C  

increases with z. Thus we will let Q j(zo) measure the crossings of strings i and j  between z =  0

and z =  zq. In this notation Cij =  Q j( l ) .  Let Xj(z) =  (z^(z),i/i(z), z) and define relative position

vectors and angles

rij{z) = X j{ z ) -X i{ z ) \  (4.9)

"..I" ■ “ -'(Spli)-
We will let a prime denote differentiation by z, for example

where is the Levi-Ci vita tensor and r'^ =  dr^/dz.
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If strings i and j  wind around each other near some height z then \Olj{z)\ > 0. Also, there will 

be some projection angles (f) where the strings will be seen to cross (in fact, a crossing will be seen 

at height z if p{(f)) = fij{z)). It can be shown [16] th a t

M  =  (4.12)

We now have

C = i Ç y  |9 'y (z)|d z . (4.13)
ij ®

4.3.2 D erivation of the crossing number force

Suppose we employ C  as a potential energy term  in a Lagrangian for n  strings. Varying the 

Lagrangian will give an equation of motion with a force corresponding to C. Adding a strong 

damping force will then give us dynamics which can be followed numerically to relax the strings 

to an ‘equilibrium’ state, i.e. a state which is a t least a local minimum of C. Let p  be mass per 

unit length and consider a time interval T . The Lagrangian action should then be

S  = [  { K - X C ) d t  (4.14)
Jo

dz (4.15)

where

ay
dt

is the kinetic energy term  and A is a constant. The K  variation (at height z) gives the usual 

acceleration term  /j,d?x/dt^.

However, the variation of C  will not work without modification. There are two problems. First, 

there is the presence of the absolute value in equation 4.13; derivatives will be ill defined a t singular 

points where \9 'ij{z)\ =  0. In between these singular points we could replace the absolute value by 

a factor ± 1 . However, if we do so an even nastier problem arises: :£d9ij{z)/dz is a to tal differential. 

B ut the variation of a to tal differential vanishes apart from boundary terms.

Fortunately, there is a simple way out of these difficulties: replace with

X ij  =  y  {9'ij)'^ +  e2. (4.16)

Later we can let e ^  0 . Let Fij be the force on string i due to string j  associated with the potential 

XXij. A variation in Sxi and d{Sxi)/dz leads to

4  =  - A ( v , Z y - ^ V < Z « ) ;  A .  (4.17)

It simplifies the calculation to note that

9'ij = x'i • Vi9ij +  x'j ■ V j9 i j . (4.18)
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so, evaluated at the point z)

Thus, suppressing the i, j  labels.

= (4.19)

-  Y  +  e 'v e '  -  ^ 7 ^ ^  (4.21)

% \  ,

The first term  here cancels the V X  term  in 4.17. 4.17 becomes

=  (4.24)

We let A =  e  ̂ and let e 0. Summing over all strings j  gives the crossing force on string i,

i/y _

4.3.3 Simulation Considerations

For numerical purposes it may be wise to retain a small e as a softening parameter, i.e. replace 

\0'ij\~^ by This will prevent the force blowing up near 9 'ij = 0. Being as explicit as possible, 

the force on the point Xi{z) of the braid is

Fdz)  = -Ae^ E  (4.25)
j^ i  • z  X f)^ 4-

where r  =  f^j(z), r =  %/r • r, r' = {f' - f^ / r  and z  is the unit vector in the z direction.

W hat we observe in practice is th a t this force causes the strings of the braids to move apart from 

each other and prevents equilibrium from being reached. Thus we apply the additional constraint 

th a t

^ X i ( z )  • Xi{z) < R  (4.26)

where A is a parameter of the model. After imposing this we can agree to  have reached equilibrium 

if and only if the maximum distance moved by a point on the braid a t any time step is less than  

another parameter r). We discuss the consequences of the choices for these two parameters in §6 .

4.4 Energy relaxation

Two energy minimizing approaches were tested with respect to minimizing crossing number. Both 

minimize elastic energy but they differ essentially in the way the elastic force is implemented: a 

nearest neighbor approximation (the constrained elastic force) versus a tension force depending on
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the curvature (the c u r v a t u r e  elastic force). As these forces trea t the strings as elastic, they pull the 

strings closer together and would cause them to intersect and thereby change topology. In order 

to prevent this, we shall introduce a repulsive force F ^ ^ \z , t )  to  the elastic force to make

up the total force which we use to simulate the braids,

F i{z,t) = F } ^ \z ,t )  + P t \ z , t ) .  (4.27)

For the purposes of the repulsive force, we imagine the strings to be of circular cross-section with 

diameter d .  We define this repulsive force by

p i r )  _   ̂ i o T  \ X i - X k \ > d

Otherwise.

Since the repulsive force is non-zero in only a limited number of cases, computing it is relatively 

fast as opposed to  using a potential function.

4.4.1 The Constrained Elastic Force

If we imagine the points of the geometric braid to be beads of mass m  connected by springs of 

spring constant k and zero natural length, the elastic force on the bead due to the two springs 

attached to it is (considering only nearest neighbor interactions)

(é’‘) { f f )  ~

This is the constrained elastic force. As given in equation 4.29 the constrained elastic force is a 

finite difference scheme for the differential equation

Once the to ta l force is known, we apply it to  the beads

Xi (z, t  + 5t) = Xi (z, t) -  • (4.31)

We have neglected the fact th a t beads should acquire a velocity after the force is first applied. 

Ignoring this velocity serves to heavily damp the system, which is desirable for the simulation. A 

proof th a t this is acceptable on a fundamental level is given in [11] and references therein. The 

force is applied for a duration of St after which the beads will have moved a certain distance. 

The maximum distance moved by any bead in the whole braid during any step r{t) decreases 

monotonically to  zero since the system is heavily damped due to  the neglection of the velocity 

and th a t fact th a t the springs have natural length zero. If no bead moves more than a minimum 

distance of 77, we may term inate the simulation because in all subsequent steps of the simulation 

no bead will move further than 77. Thus the end of the simulation is reached when r(t) <  77.

A given braid will determine n  and c but we have endowed the model with a number of 

parameters: The string diameter d, the number of beads per crossing b ,  the mass of a bead m ,  the
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spring constant k, the separation of the strings 5x, the duration of the force 5t and the equilibrium 

distance 77. Based on computer experiments we make choices for some of these

5^ = 2m, 77 =  ^ ,  (4.32)

0.1 < A: <  0.5, 1 0  <  6 <  50, (4.33)

These values have been found to  give good results. W ith increasing fc, fewer steps are required to 

reach equilibrium but A; <  0.5 must be observed because otherwise the repulsive force will not be 

very successful. Accuracy increases with b but so does the computation time. Setting 6 < 1 0  will 

fail because the distances between beads are large enough for the repulsive force not to  guarantee 

isotopy, however 6 >  50 is unnecessarily expensive in terms of time.

4.4.2 The Curvature Elastic Energy

The other way of dealing with elastic relaxation is to  trea t each string in the braid as a bungee 

cord, subject to  a tension force which aims to  reduce any curvature and bring back the string to  a 

straight configuration (given the constraint on the end points). Indeed, as already remarked above, 

a repulsive force among the strings is needed to counteract the tension in order to maintain the 

topology unchanged.

An expression for the elastic force can be readily obtained by using a variational approach 

similarly to what has been done in §3. In fact, since this force tends to minimize the length of 

the bungee cord, we can employ the total length of the strings as a potential energy term  in the 

Lagrangian action S  describing the braid (4.14)

S  = r { K  -  XL)dt (4.34)
Jo

where

is the kinetic energy term, A is a constant,

L = ds , (4.36)

and ds is the infinitesimal arclength along each string (ds^ =  dx^ -\-dy^ + dz^). The variation of the 

action (4.34) provides an equation of motion which is the well-known equation for the vibrating 

cord. Any perturbation from the equilibrium position is opposed by a restoring force proportional 

to

F  a  g  (4.37)

and always directed along the radius of curvature. However, we are not allowed to perform any dis­

placement along the z direction because the braid is represented by a set of curves (x* (2 , t) ,y i{z , t ) , z)  , i
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1 , . . .  n, 0  <  z <  1 . Thus, instead of (4.37), we use the horizontal force

This is the curvature elastic force. This force moves the curve as the full curvature force would; the 

second term  gives an extra horizontal displacement to the string which compensates for the effect 

of the missing vertical force. Once its value is known in each point of the braid and cumulated with 

the repulsive term , advancing in time is achieved according to  the same scheme as above (4.31).

The actual evaluation of the curvature elastic force involves the computation of second and 

first order spatial derivatives. In this case, then, we found it convenient to use a grid of N  evenly 

spaced points along the z axis and ordinary centered difference. Stopping criteria for the numerical 

simulation of energy relaxation were defined as explained in the previous section. We kept N  =  200 

in all the cases presented in the following, while the choice of the other param eters was

d = Sx, S ^ =  2m, (4.39)

105’^ — ins ' ~  20 • (4.40)

4.5 Algebraic M inimization

Recall th a t the braid group Bn is defined by

Bn =  ( {cTi} : 1 <  i <  n; (4.41)

(TiCj =  O'jO'i |i J I ^  1, =  G . (4.42)

An n-braid A of c crossings is a word in Bn of word-length c, so the general form of A  is

A =  ■■•all €k = ±1, 1 < ak < n, 'ik  : 1 < k < c. (4.43)

Consider an n-braid A of the form given in equation 4.43. Suppose we wish to find the n-braid 

Am equivalent to  A such th a t the length L{Am) of Am  is minimal over the equivalence class of 

A. It has been shown [125] th a t this question is NP-complete and hence computationally difficult 

(if P  ^  NP, it is intractable). The following presents a heuristic algorithm for getting close to 

Am- We begin with the leftmost generator of A and attem pt to  move it to  the right using both 

braid group operations. If we can cancel it along the way, we do and if we can not, we move it 

back to where it started. In this way, we proceed to  move all the generators as far to the right as 

possible. Then we begin at the end and move each generator as far to the left as possible in the 

same manner. This algorithm will always produce an equivalent braid A' such th a t L{A ') < L{A). 

We consider L{A) generators and move them  0(L (A )) moves to the right and left. Thus this 

algorithm takes O (T(A)^) time and constant memory. In fact we move a particular generator at 

most L{A)  generators and this is only for the case when all the other generators commute with it, 

thus the average case complexity is likely to be close to linear in L{A).
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This algorithm will not produce a minimum length representative in all cases because it can 

not unravel complex crossings. To get to the minimum length would require more subtle trans­

formations than just movements to the right or left, which topologically correspond to pulling the 

strings apart from underneath the crossing. However, as computer experiments show, it does do 

quite well.

Let us calculate an upper bound to the reduction ratio obtained by this method as a function 

of n  and c. To calculate these, consider the likelihood th a t a particular generator will be followed 

by its inverse, which is just Qq — — 1). The probability Qj th a t a generator and its inverse

are separated by j  generators through which either can be moved is the corresponding probability 

for j  = 1 to  the power j .  We require the number of braids of length 1 which may be generated so 

as not to contain the generator interfering with the movement of generator cr̂ . If i =  1 or n — 1, 

this is 2(n — 3) and 2(n — 4) otherwise. Thus

3

Qo (4.44)Q j  = 2(n — 1)

— 5n  -I- 5
( n - l ) 2  J (4.45)

The final factor of Qo  is present because the generator after the sequence of j  generators is required 

to be inverse of the original generator, an event with probability Qo- To get the to tal probability 

Q of being able to  cancel a generator with its inverse by simple exchange movements over the 

length j  =  0 , 1 , - -, we must sum these probabilities in order weighted by the probability th a t their 

predecessors did not happen. Thus

J—1
Q =  Qo +  (1 — Qo)Qi +  • • • +  ~  Q k ) Q j  +  - - - (4.46)

k=0

Note th a t since the exchange move is not allowed for n =  3, Q =  Qo for n =  3. The reduction 

ratio R  which occurs as a consequence of this probabiHty is R  =  1 — 2Q since each time th a t the 

event happens two generators may be canceled. Note th a t in this calculation we have considered 

the probability th a t a generator can be moved next to  its inverse in the word using only the far 

commutation relation th a t aiUj = GjOi for \i — >  1 in a long braid. The heuristic algorithm

however uses both braid group moves to attem pt to  move generators next to their inverses. Thus R  

is an upper bound for the reduction ratio achieved by the heuristic algorithm as the braid becomes 

long.

In §6  we present the results of the algebraic reduction of a large number of braids but a few 

comments about the efficiency of the algorithm are in order. The only exact algorithm to minimize 

braid is valid only for n <  3 [17] and by comparing this heuristic to  this exact algorithm, we find 

th a t the heuristic finds a braid the length of which is within five percent of the length found by 

the exact algorithm and th a t it reaches the actual minimum in 0.005 of all cases. This shows that 

the heuristic is quite effective for n  =  3 (note th a t reduction for n  =  1,2 is trivial since R i ,R 2 are 

free groups).
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4.6 Some numerical results

Extensive numerical calculations were made in order to compare the above methods of finding 

the minimum crossing number of a braid. A large selection of random braids were generated as 

discussed in §2  and then simulated using all four different methods described above. In §6 .1 , the 

comparison is made in terms of the ratio a  of final crossing number to  initial crossing number 

as a function of number of strings and number of initial crossings. When braids were reduced 

using forces, we chose the final braid by using the translation algorithm described in §2.3 for many 

angles around the vertical axis of the braid and isolated the braid with minimum crossing number. 

The reason for this is th a t the position of the observer affects the crossing number seen from 

th a t perspective. In §6.2, we compare the efficiency of our methods, giving an estimate of the 

algorithmic complexity in terms of the number of strings n  and the other free parameters. Finally 

in §6.3, we focus on the effect of the three forces on the energy (defined by to tal length) of the 

braids, by comparing the final equilibrium state with the initial configuration.

4.6.1 Efficacy Analysis

Table 4.1 lists the results of our experiments in computing a  = Cmin/C(0). It has been found th a t 

a  decreases with increasing the initial number of crossings C'(O) but quickly approaches a limiting 

value. In §5, we have calculated an upper bound for a  using the algebraic method of reduction 

as the initial crossing number C(0) gets large. Further investigation shows th a t if C(0) =  lOn the 

resultant a  is virtually at the limiting value, so th a t it is this initial length th a t was chosen for this 

simulation since computation time is a very real issue here. Given a value for n  and a minimizing 

method, we generated a statistical ensemble of 1 0 0 0  braids, with the same number of crossings 

C (0 ) and number of strings n  but otherwise randomly embedded, and we evolved them  in time 

as long as the equilibrium constraint, described in the previous sections, was satisfied. We then 

computed a distribution of reduction ratios a , which turned out to be a Gaussian distribution. In 

Table 4.1 are reported the mean values obtained from this analysis, with an error of one standard 

deviation.

Except for the 3-braid, the average values in Table 4.1 suggest th a t the crossing number force 

is by far the best, among the methods analyzed, in reducing the crossing number. This result was 

somewhat expected because of the way this force was derived. However, it is still worth noticing 

th a t it produces reduction ratios at least 15% smaller than the other methods and even 30% smaller 

than  the curvature elastic force. It is interesting th a t the heuristic algebraic method lies roughly 

between the two elastic approaches with the constrained elastic being the clear winner.

In Fig. 4.1, for a better comparison, we show the average reduction ratios a  as a function of 

the number of string n. On the left, the results obtained by the heuristic algebraic algorithm are 

plotted with their correspondent bounds (column 2 and 3 in Table 4.1). On the right, ratios from 

constrained and curvature elastic relaxation are displayed with ratios from crossing number force
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Table 4.1: Reduction ratios a  = Cmin/C{0) as a function of the number of strings n.

Heuristic Constrained Curvature Crossing

n  Heuristic Bound Elastic Elastic Force

3 0.328 0.500 0.412 ± 0.028 0.516 ± 0.007 0.426 ± 0.006

4 0.525 0.632 0.483 ± 0 .0 2 1 0.611 ± 0.006 0.430 0.005

5 0.579 0.652 0.529 ± 0.016 0.658 ± 0.005 0.447 0.004

6 0.609 0.662 0.555 0 .0 1 2 0.676 ± 0.005 0.455 ± 0.004

7 0.627 0 .6 6 8 0.574 ± 0 .0 1 0 0.692 ± 0.005 0.469 0.004

8 0.640 0.673 0.590 ± 0.008 0.694 ± 0.005 0.471 0.004

9 0.650 0.677 0.600 0.007 0.697 ± 0.005 0.476 ± 0.004

1 0 0.658 0.681 0.617 ± 0.006 0.693 ± 0.004 0.481 0.004

relaxation (column 4, 5 and 6  in Table 4.1), all with error bars. All the curves exhibit a steep 

growth followed by a slowly increasing phase, thus suggesting an overall logarithmic behavior. 

In one case, namely the curvature elastic relaxation (diamond in the right panel of Fig. 4.1), we 

observe a saturation of the reduction ratio to a limiting value «c ~  0-69, even if we cannot conclude 

this is an asymptotic value due to the relatively small maximum number of strings (n =  1 0 ) we 

have achieved in this simulation.

4.6.2 Efficiency Analysis

Having compared by how much we may shorten an average braid A, we ask how long this will take 

for the various methods. We will answer this by giving the complexities of all the methods and 

comparing them by this and their actual relative running times. The algebraic method, as stated 

before, has complexity O (L(A)^) independent of n. For each of the forces, we must compute and 

apply the force for each point on the braid. For the repulsive force we need only compute it for 

the points on the same level for all other strings. If we use b points per crossing and string for 

the simulation {nbL{A) points in total), the complexity per time step is clearly O {n^bL{A)). The 

number of time steps required depends upon our equilibrium condition. As described above we 

compute the maximum distance moved by any point on the braid and we term inate the simulation 

if this is less than the equilibrium param eter r] (for practical purposes a maximum number of time 

steps must, in general, also be imposed for certain awkward cases). I t would seem intuitive th a t if 

T] is chosen optimally, the number of steps required would be of order n. Thus giving the optimal 

model a complexity of O {n^bL{A)).

In spite of this, there seems to be no general method to  estimate an optimal rj and so we are not 

able to  obtain the optimal complexity in practice. The constrained elastic force and the repulsive 

force vary linearly in the coordinates of the points and the difference a t any time step between the
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Figure 4.1: Reduction ratios a  =  CminlC{0) as a function of the number of strings n. On the left, 

we display ratios obtained by using the algebraic algorithm (•) and their correspondent bounds (A); 

on the right, ratios are from numerical experiments with curvature elastic force (o), constrained 

elastic force (+) and crossing number force (x) .  For the data, refer to  Table 4.1.

coordinates is exactly the force (see our choices of parameters in equations 4.32 and 4.33). Thus 

the number of time steps increases linearly with 1 /ry giving it a complexity of O (n^bL{A)r]~^).

In the case of the curvature elastic relaxation, the force acting on any point of a certain string 

depends on all the points belonging to the same string. For what concerns the stopping param eter 

77, dimensional analysis suggests a dependence as before, namely on 77"^. Thus, the complexity for 

the global elastic force is O (nb‘̂ L{A)^r]~^). Since this force is always implemented together with 

the repulsive force, whose complexity scales with 7%̂, the to tal complexity is identical to th a t of 

the constrained elastic energy.

The crossing force is calculated as a sum over all other strings, th a t is th a t the complexity of 

each time step is O (n^6^L(A)^). The crossing force has two additional param eters to 77, namely e, 

the infinitesimal parameter introduced in 4.16 to avoid singularities, and R ,  the maximum square 

distance th a t the sum of the points on any horizontal plane are allowed to have. From the form 

of the force in equation 4.25 we see th a t it is of order The results presented in this

paper have been found by using A ~  and e =  0.05. Clearly e too close to  zero is not acceptable 

because of the force blowup at e =  0. Too large e is also unacceptable since the force becomes too 

strong and the points move too far a t each time step to preserve continuity of the braid string; 

this transition seems to occur when e becomes greater than 0.5. As far as we have investigated the 

choice of free parameters, these values for A and e can be assumed as optimal values. Therefore, 

acceptable final states are reachable in ~  77“ time steps giving the algorithm a to tal time
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complexity of O {n^b‘̂ L{A)^e~^r]~^). The complexity seems to be independent of R.

We note in passing that both for the curvature elastic force and the crossing number force we 

actually used a grid of W — 2 0 0  evenly spaced points along each string: in this case, the factor 

bL{A) simply must be read as N  in the complexity estimate.

I t ’s worth stressing th a t the actual amount of computation time required for the minimum 

crossing force is the largest. The algebraic algorithm is much faster than  the elastic energy simula­

tions in practice even though the param eter b can essentially be regarded as constant. The reason 

for this seems to be th a t the average case complexity for the heuristic is very close to linear.

4.6.3 Energy Analysis

As a final step in our comparison, we present results concerning the energy of the final braid. We 

limit ourselves to  the three relaxing methods, since any energy estim ate depends on the actual 

configuration of the braid in the embedding space. In fact, we took the to tal length of the braid 

to be its energy. This choice, besides being the simplest and most natural, has the advantage 

to give us a qualitative idea of the physical configuration of the final braid. Consider the braid 

(7 icr2cr]̂ ĉr2crj”^cri(7^^. In Fig. 4.2, we display the initial embedding and the final configuration of 

this braid after it has been relaxed by our forces. We note great similarity between the elastic 

energy approaches and a marked difference between the elastic and crossing number forces. The 

crossing number force, while driving the strings outward (to greater to tal braid energy) achieves 

a more balanced braid. There is a curious feature in the final configuration of a braid relaxed 

under the crossing number force which can be seen in the figure. The parts of the braid which 

are close (vertically) to a crossing are closer to the vertical center of the braid than  the rest of the 

string. The elastic forces, by construction, draw the braid in on itself and thus create a braid of 

lower energy which sometimes results in trapping crossings; this is the main reason why the elastic 

approach will not, in general, actually reach the minimal length of the braid. Fig. 4.2 displays the 

same four pictures for the braid (7 icr^^cr]"^crJ^cri also in order to  make more apparent the features 

of the forces.

Table 4.2 gives the mean values of the final energy for the constrained and curvature elastic 

force as well as the minimum crossing force, obtained from the same set of data  above. For the 

sake of comparison, the mean initial energy of each ensemble of randomly generated braids is given 

in the second column. Since the to tal length depends upon the number of strings, we have divided 

the final energy by the number of strings. Note th a t we have defined a geometrical braid to  lie 

between the planes z = 0 and z =  1 so th a t this is already normalized. Thus the minimum possibly 

energy of any n-braid is 1 .

As expected, the energy is systematically increased by the crossing number force (see in Fig.

4.3 crosses versus bullets). Besides, the fact th a t we confine the physical braid in a cylinder in order 

to prevent the occurrence of singularities, imposes a limit on the final energy, which more or less 

oscillates about a fixed value. On the contrary, the constrained and curvature elastic forces reduce
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Figure 4.2: This figure gives the initial embedding and the final configuration after the con­

strained elastic, curvature elastic and crossing number forces have been applied for the two braids 

(7 i(72crj"̂ c72crj"^cri(j^^ and cricr^^crf V i respectively. We see great similarity between the elastic 

approaches but substantial differences between them and the crossing number force. Note that the 

diagrams for the crossing number force have been rotated by 7t/4 to make more apparent the curi­

ous deformations of the strings. (The images were generated using BraidLink, a software program 

written by the author.)

Table 4.2: Total length per string.

Initial

Energy

Constrained

Elastic

Curvature

Elastic

Crossing

Force

3 1.796 ± 0.001 1.793 ± 0.003 1.323 ± 0.010 2.42 ± 0.03

4 1.858 ± 0.001 1.690 ± 0.002 1.333 ± 0.006 2.28 ± 0.02

5 1.911 ± 0.001 1.660 ± 0.001 1.314 ± 0.004 2.31 ± 0.02

6 1.960 ± 0.001 1.608 ± 0.001 1.298 ± 0.004 2.38 ± 0.02

7 2.000 ± 0.001 1.550 ± 0.001 1.292 ± 0.003 2.41 ± 0.02

8 2.032 ± 0.001 1.501 0.001 1.288 ± 0.003 2.35 ± 0.02

9 2.054 ± 0.001 1.448 ± 0.001 1.282 ± 0.003 2.36 ± 0.02

10 2.076 ± 0.001 1.411 ± 0.001 1.279 ± 0.003 2.41 ± 0.02
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Figure 4.3; The to tal length per string is displayed here as a function of the number of strings for 

the curvature (o) and constrained (+ ) elastic energies and the crossing number force (x ) as well 

as the initial energy before relaxation (•).

the energetic content of the braid. While the curvature force reduces the energy more effectively 

than  the local, the descent of energy as a function of n  is steeper for the local energy (see Fig. 

4.3) and so we may expect an intersection of these methods a t about n  =  13. Note th a t the mean 

initial energy shows a slight dependence on n, due to the embedding procedure we use.

Once a minimal configuration has been reached, one may wish to  know whether it is a local 

or a global minimum. This is a very difficult question to  answer and we have not endeavored to 

do so. However, because of the constraint th a t the endpoints of the braid may not move, we may 

safely say th a t the number of distinct local minima is finite and low.

4.7 Conclusions

We have investigated, by means of computer simulation, different methods to  reduce the crossing 

number of a braid over its equivalence class. As a group theoretical question, this problem is 

difficult (if the minimum is to  be found [125]) but can be profitably approached using a heuristic 

algorithm presented above. A braid can also be regarded as a topological object divested of this 

algebraic approach. Here the strings may move (except the endpoints) in the embedding manifold 

without crossing each other. For algorithmic purposes a systematic way to move the strings must be 

found based on certain principles. Two of our approaches center on a physical model of the strings 

as elastic strings made of fiexible material. Elasticity may be modeled using a nearest neighbor 

or curvature approach, both of which were investigated. Another way to  systematically move the 

strings is to construct a force not based on a physical idea but by using the crossing number (as an 

integral) as a potential in a Lagrangian. This last approach has proved to be the most successful
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in term s of finding the shortest braid, on average. It is however the most time consuming method. 

The algebraic approach, while only th ird  (out of the four methods) in reduction efficacy, is the 

fastest by far.

In many applications, the braid is already an embedded topological object and not an element 

of the braid group. Here the two energy methods find their application as they are the only 

physically relevant methods. In solar physics, for example, the magnetic field lines may be modeled 

as braids. These seem to behave as elastic configurations over time. It must be mentioned th a t 

the endpoints of these braids do move but in a random fashion. Research about this added 

complication is in progress. In physical applications, we are most concerned about the energy 

of a braided configuration and the elastic model seems to  be the most realistic for a variety of 

apphcations. While the constrained approach is more successful in term s of crossing number, the 

curvature fares better in an energetic sense.

W hat has clearly emerged from the discussion above is th a t minimum energy and minimum 

crossing number for braids are different things. While reducing energy does also reduce crossing 

number, reducing crossing number does not necessarily reduce energy and crossing number may 

be reduced much further after the minimum energy configuration has been reached. Thus, it is 

clear th a t the elastic approaches term inate in a local minimum as far as the equivalence class of 

the initial braid is concerned. From the point of view of ideal knot theory, this result is significant 

because it has often been suggested th a t by reducing some form of knot energy, one may find a 

knot which is particularly simple over its equivalence class. W hether this measure of simplicity 

coincides with minimum crossing number over all possible projections (the traditional measure of 

simplicity used by knot tabulators such as Tait) has given rise to some debate for which our result 

provides additional fuel.

We conclude our investigation by saying th a t the algebraic method provides a useful minimiza­

tion approach for purely group theoretical work, the crossing force is the best approach when one 

wishes to find an especially short braid (and is not bound to a purely group theoretical framework) 

and the curvature elastic energy is the best scheme to minimize elastic braid energy, i.e. total 

string length.
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Chapter 5

K notation and Braiding a Knot

We consider the notion of a tangle and analyze the operations which are possible on it. We 

use tangles in constructing a new notation for knots based on Conway’s knot notation. This new 

notation has several advantages over existing notations. All the basic properties of the notation and 

algorithms to retrieve simple knot information are discussed. Procedures for putting a knot into 

our notation are also given. Finally, polynomial-time algorithms, which do not rely on topological 

deformation, are described which produce a plait and a closed braid which are isotopic to any knot 

given in our notation.

First, we review the notion of tangles and investigate their classification. We shall then intro­

duce the new notation, prove th a t all knots may be represented by it, give an algorithm to place a 

given knot into this notation and present a traversal algorithm which will calculate certain features 

of the knot. An algorithm is then given to  obtain a plait and a braid, the closures of which are a 

given knot in the new notation.

5.1 Tangles

5.1.1 Definition and Partition

Consider the 3-ball and choose 2n points on its surface, which is the 2-sphere 5^, and call 

the set of these points P. A ttach n polygonal curves to the 2n points such that: (i) each curve 

intersects 5^ in exactly 2 points in P , which are its endpoints, (ii) exactly one curve may begin 

or end at any one point in P  and (iii) no curve may intersect another. If the set of these curves 

is T, then we will call the set an n-tangle. In particular, we will focus on 2-tangles and

so whenever we skip the n, it will be understood th a t we mean n  =  2. Note th a t our requirement 

th a t the curves be polygonal excludes any wild tangles, where wild is to  be understood in the usual 

knot theory sense. Two tangles are called equal if they are isotopic without moving the points in 

P.

A tangle can be visualized readily by choosing the four points (named according to the cardinal
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Figure 5.1: The 3-ball and the four points on its surface which form the endpoints of the two 

polygonal curves necessary to define a tangle.

points of the compass)

W = ( 0 , - i  ^ (5.1)

(5.2)

on the unit sphere, which will be our canonical see figure 5.1. Even though tangles are, by 

definition, three dimensional objects, we will work with their projection onto the two dimensional 

plane as if the projection is the tangle. The fact th a t a projection in which there are a t worst 

double points always exists for a tangle follows from the corresponding theorem about knots.

Figure 5.2: The elementary tangles.

We shall find it convenient to  partition the set of all possible tangles into a few categories: 

elementary, integral, fractional, rational and irrational. The simplest are the elementary tangles, 

of which there are four. These are best introduced by displaying them  in figure 5.2. Note th a t we 

have not drawn B^, it should however be understood to be present. The reason for naming them 

as they have been will become apparent later on. Note th a t the literature disagrees on which of 

the two tangles ±1 is to have the minus sign, this is a m atter of convention and has no serious 

consequences (we follow the convention introduced by Conway).

The other types of tangles can be most readily defined in term s of combining the elementary 

ones in some way. To do this, we shall define two ways of adding tangles. Following Conway, we 

denote a general tangle by an ”L” shaped symbol within the 3-ball and we also sketch the ends 

of the two curves by which tangles may be attached to one another. In this way, we define the 

horizontal sum -f and the vertical sum © in figure 5.3.

In what follows, we shall use a superscript to denote of which type a particular tangle t  is; for
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B B

Figure 5.3: Tangle addition.

example an elementary tangle t would be denoted by An integral tangle and a fractional 

tangle t^^^ will be defined in term s of the elementary tangles ±1 by

=  1 +  1 +  . . .  +  1 (5.3)

t  factors
t(/) =  1 0  1 0  . . .  0  1 (5.4)

'-------- V-------- '
t  factors

The negative versions are, of course, the sums of —1 tangles instead of 1 tangles. A rational tangle 

can then be defined in term s of a sum of integral and fir actional tangles. The definition of 

the sum differs if the number of tangles j  in the sum is even or odd, this is because the definition 

requires an alternate sum between integral and fractional (and the two methods of addition) which 

always ends in an integral tangle being added. This is because the set of rational tangles may 

be classified if this restriction is imposed; the classification scheme is outlined in the next section.

The integral tangles, including the last, may be zero and the fractional tangles may be infinite.

If any component tangles are 0 or oo though, they may be removed from the sum and the terms 

immediately preceding and following the removed term  may be added together to shorten the sum, 

while preserving isotopy.

f W =  +  c(') © +  . . .  +  (5.5)^ ^  /
j  odd

tW  =  n ( ^ ) + 6 M © c ( ^ ) + d W © . . .  +  %(') (5.6)V---------------------- -̂--------------------- /
j  even

Note th a t the set of elementary tangles is a subset of both the integral and fractional tangle 

sets which are subsets of the rational tangle set. We shall call any tangle which is not rational, 

irrational.

5.1.2 Classification o f Tangles

We may denote a rational tangle by giving its integral and fractional factors in order. Thus a 

sequence of integers =  {a i,a 2 , . Ui) defines any rational tangle. Note again th a t the identity 

of the tangle factors is decided by requiring the last in the sequence to  be integral. Given a rational 

tangle =  (ai, û2 , • • • , «i), we may associate with it an extended rational number E{t^'^^) =  a / (3, 

where a  and (3 are integers including zero. We say an extended rational number because this allows 

for 1/0 =  oo, the inclusion of which extends the rational numbers. We calculate E  (((^)) by the
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continued fraction (the +  signs are arithmetic additions and not tangle additions)

E  («(’■)) =  aj + -------------------   (5.7)
O ^ i-1  H-----------------

ai-2 • • • -----Oi

Conway [50] was able to  deduce th a t two rational tangles are equal if and only if the associated 

extended rational numbers were equal, this is called Conway’s Basic Theorem. The first published 

proof may be found in [39] bu t a more intuitive proof was given by Goldman and Kauffman [71]. 

Thus Conway’s Basic Theorem classifies rational tangles in a simple algorithmic manner.

In particular, the fractions associated with the elementary tangles are their numerical names: 

0, ±1 and oo. The fraction for an integral tangle is and for a fractional tangle is 

It is clear now why these tangles were named as they were. This concludes our review of previous 

work on tangles and the rest of the chapter is new work.

By equation 5.7 is easy to  calculate the fraction associated with a given rational tangle. Given 

a fraction, it is also possible to  decompose it into appropriate factors, thereby constructing the 

rational tangle associated with it. Euclid’s algorithm will accomplish this.

5.2 Knot N otation

Tangles were invented in an effort classify knots (they may be used to  classify two-bridge knots via 

the correspondence with the extended rational numbers [116]) and so we must have a method to 

combine tangles into knots. Conway [50] showed th a t any knot may be obtained by substituting 

several rational tangles into the vertices of basic polyhedra. A polyhedron, in the sense of Conway, 

is an edge-connected 4-valent planar map and it is basic if, in addition, no region (including the 

infinite region) has just two vertices. Conway constructs the 8 different basic polyhedra necessary 

to denote all prime knots up to and including 11 crossings. The beauty of using the basic polyhedra 

is th a t small knots may be named quite efficiently, th a t is one gives the basic polyhedron and the 

tangle fractions to  be substituted. However it can be quite a chore to construct the Conway name 

of a large knot. The next section will introduce our new knot notation.

5.2.1 The Universal Polyhedron

Consider the basic polyhedron P { i,j )  shown in figure 5.4; we will call it the universal polyhedron. 

It is a prototype for a knot projection. The circles will be called vertices and the lines connecting 

them edges. The vertices are arranged into i rows of j  vertices each. Each vertex can thus be 

labeled by its row and column index. While P { i,j )  denotes the whole polyhedron and specifies 

the number of rows and columns, pki specifies a particular vertex in row k and column I. In 

what follows, we will substitute rational tangles into the vertices to  yield a knot projection. Since 

a rational tangle may be specified by a single extended rational number, pki takes an extended 

rational number value. By substituting rational tangles into all vertices of a given polyhedron, we
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•  • •

•  • •

•  • •

Figure 5.4; The universal polyhedron

obtain a knot projection of some tam e knot. This can be completely specified by giving all pki a 

value, which may be arranged into a m atrix form,

P i i  P u  

P 2 l  P22

P l j

P 2 j
(5.8)

\  Pil  Pi 2  • • • Pij  J

Giving a m atrix with extended rational number valued entries completely specifies a knot 

projection (the parameters i and j  of the polyhedron are just the number of rows and columns, 

respectively, of this matrix). Since this is true for rational tangles, it is true for any subset of the 

rational tangles, in particular the elementary tangles. Thus if all pki take a value from the set 

£ = {0, —1, + 1 ,0 0 }, the result is also a knot projection.

We wish to  find this m atrix notation for a given knot projection. Since this is an algorithmic 

question, we must ask in what fashion the knot is already given. Generally a knot is given by one 

of its projections onto the plane. A knot projection is characterized by n  double points and 2n 

arcs connecting them. The information we must encode into our notation is which type of double 

point each of the n  points are and which other points they are connected to.

A lg o rith m  5.2.1 Input: A knot projection with n  crossings. Output: A knot projection given in 

our matrix notation.

1. Gircle each double point in the knot projection and name them  by letters in the alphabet 

A ,B , - ■ ■. The naming may start at any point on the knot but the order should be in the order 

the crossings are encountered when traversing the knot in the direction of its orientation.
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2. For each double point, number the intersections of the knot with the circle drawn in step 

1 from one to four in clockwise order starting a t an arbitrary point. There are 4” such 

numberings.

3. The connections may now be w ritten down from the knot projection, for example ” —> B2.”

For n  crossings, there will be 2n such connection rules.

4. Insert double point A  into vertex (1,1) such th a t point A1 is a t the top left of the vertex.

5. Insert the other double points into the polyhedron in order making all the necessary con­

nections, as enumerated in step 3, between the current point and all the previously inserted 

points. The connections are to  be made by using the intrinsic connections of the polyhe­

dron and the 0 and oo tangles. Increase the number of rows and columns in the polyhedron 

dynamically as this becomes necessary.

6. When the final point is added and all connections have been made, the algorithm is complete.

B

Figure 5.5: Naming and labeling the points in a projection of the trefoil knot.

To illustrate this algorithm, we shall find the knotation for the trefoil knot. We have drawn 

the standard projection of the trefoil knot in figure 5.5 and have circled the double points, named 

them and numbered the four intersections between the ±1 tangles which are the double points and 

the circles. This completes steps one and two of the algorithm. In step three, we must write down 

how the points are to  be connected.

A1 B2 A4 ~^CA (5.9)

A2 ^ B 1 B3 C3 (5.10)

A3 ^ C 1 BA C2 (5.11)

Inserting double point A  into vertex (1,1) in step four requires us to  insert a —1 tangle into the

(1,1) position in the matrix. We must now add double point B . Note th a t we have numbered B  in 

such a way th a t A2 ^  B1 which is an intrinsic connection in the polyhedron if we put B  in vertex
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Figure 5.6: The trefoil knot in P (2 ,2)

(1,2). Since we also have A1 —> B2, we would like the final polyhedron to  have only two columns 

since then this connection too is intrinsic to the polyhedron. Since these are the only connections 

between A  and B , we now have to add C. Note th a t we have numbered C  in such a way th a t 

v43 C l  which lets us place C  underneath A. Since we also have P 4  —> C2, we accommodate both 

rules by the intrinsic polyhedron connections by putting C  into vertex (2,1). The last two rules 

A4 —> (74 and P 3  —> (73 can be incorporated by placing an oo tangle in vertex (2,2) and requiring 

the polyhedron to  have two rows. This completes the insertion of all double points, completes all 

the connections and fixes the rows and columns of the polyhedron. All vertices are filled and thus 

the algorithm is complete. The polyhedron with the inserted tangles is shown in figure 5.6 and the 

result is

trefoil =  (5.12)

An advantage of the above algorithm is th a t the number of rows and columns is only increased 

when necessary. The disadvantage is th a t it is not possible to say, a priori how many rows and 

columns a knot of n  crossings will need. The most crucial step in the algorithm is step two. If the 

intersection points are numbered with foresight, then most connections can be made by making use 

of the intrinsic connections in the polyhedron and will not require the addition of 0 or oo tangles. 

Arguing like this, one might be lead to believe th a t it should in general be possible to  knotate an 

n crossing knot in a polyhedron P { i,j )  where i = j  = \y/n \, i.e. the least integer greater than  y/n, 

we can not prove this however. Having presented an algorithm and an example, we give a proof 

th a t any knot can be represented in some P { i,j )  using only elementary tangles.

T h eo rem  5.2.2 Every regular projection of any knot may be represented by the universal polyhe­

dron P { i,j)  for some i and j  all the vertices of which contain elementary tangles.

P ro o f. A regular projection of a knot is characterized by a finite number n  of double points and 

2n arcs which connect the double points in a specific manner. For sufficiently large i and j ,  the
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polyhedron P { i,j)  can accommodate all double points in the form of ±1 tangles and can achieve 

the desired connection of these by placement of 0 and oo tangles into it. This is obvious because 

the 0 and oo tangles represent horizontal and vertical connectors in the polyhedron. Because this 

connection may be achieved without ±1 tangles, it is clear th a t no further components, with the 

possible exception of unknots, are created. Thus what remains to  be shown is th a t no unwanted 

unknots will be created.

There are i j  vertices and 2ij edges connecting them  in the empty polyhedron P { i,j ) .  Elimi­

nating one vertex by a 0 or oo tangle, eliminates two edges. Apart from the ±1 tangles of which 

there are n, the final polyhedron will contain i j  — n  tangles of type 0 and oo which will have 

eliminated 2{ij — n) edges from the original polyhedron, leaving exactly 2n edges which are needed 

to connect the double points. Thus there is no extra edge left over which could possibly form an 

extra component. Therefore any knot may be represented using the basic polyhedron P { i,j )  and 

elementary tangles. □

In the section 5.4, we give a set of equations relating our notation to Conway’s so th a t a knot 

given in either notation can be immediately translated to  the other. We also present an algorithm 

with which a knot given in our notation using non-elementary integral tangles may be transformed 

into a knot using only elementary tangles.

We have been discussing unoriented knots but the orientation must also be encoded in the 

notation if required. Each elementary tangle is composed of two strings which may have two 

orientations each. Therefore each elementary tangle has four different possible orientations. It 

follows firom theorem 5.2.2 th a t any oriented knot may be represented by the polyhedron P { i,j)  

in which the oriented elementary tangles are inserted into the vertices. While every m atrix with 

elementary tangles in all its entries denotes a valid knot, not all matrices with oriented elementary 

tangles denotes a valid oriented knot because we have to require the orientations of the tangles to 

be compatible. W hether a given m atrix does represent a valid knot may be decided by the knot 

traversal algorithm presented in the next section.

5.2.2 Basic properties

We will now assume th a t the knot of interest is given in our m atrix notation with pki E €. A 

few basic properties of the notation need to be enumerated before the notation becomes useful in 

dealing with knots. These properties include the behavior under knot addition, calculating the 

number of components in a knot and calculating the number of regions in the projection.

Two knots may be combined into a single knot by addition. In adding, each knot is cut at a 

single point and the ends are spliced together. We find th a t given two knots A  in P { i,j )  and B  in
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P { i ', j ')  such th a t j '  > j ,  the sum C  =  is given by

C =

oo 0 oo

a i l Ui2 Û13 0 - l i 6 i i b \ 2 b i 3 bii>

U21 Û22 (̂ 23 • 0>2i 621 622 623 &2i'

Uji a j 2 tt j3  • CLji 6.1 b j 2 b j 3 bji>

0 0 0 • • 0 1 b j + i  2 b j + 1 3  • • b j j ^ i i

0 0 0 • • 0 bj>i b j ' 2 b j >3 bj>i>

0 oo 0 •

(5.13)

h

(a)

Figure 5.7; Addition of two knots in our notation.

This addition formula is the straightforward consequence of the geometrical procedure of splic­

ing two polyhedra together and then making them  both fit into another larger one. We illustrate 

this procedure for two P (2 ,2) polyhedra in figure 5.7. As can be seen in figure 5.7, this method 

chooses a particular cutting point for each polyhedron. It can be shown th a t the operation of knot 

addition ^  is independent of the cutting point. This is true only within a component of a knot. 

If a knot has more than  one component, the method of adding described by equation 5.13 is not 

general but makes a specific choice. Because such additions rely on the particular structure of the 

specific knots to be added, such a formulation can not be made in general.

This new notation can be readily used in calculating some invariants of the knot. For example, 

to calculate a polynomial invariant for which we have a state model, we simply replace each ±1 

tangle by the 0 or oo tangles in all possible ways to yield all possible states of the knot. If a knot 

has n  double points, this means 2” states. We associate an algebraic factor with the way in which 

this replacement is made and then multiply it by an algebraic factor depending on the number of 

unknots left (since there are no double points left, this is equivalent to  the number of regions in 

the resultant projection). All these contributions are added and yield a polynomial invariant of 

the knot. The key is to be able to  calculate the number of regions and components of a knot given
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its matrix.

The number of regions into which the knot projection partitions the plane is im portant in a 

few applications such as the calculation of polynomial invariants, as stated above, and also in 

the braiding algorithm which follows. Each vertex has exactly one region lying to its right in the 

polyhedron and thus we may label all these regions by the row and column indices of the associated 

vertex. Only two regions are not indexed by this method, these are the two regions with j  vertices 

directly on the top and bottom  of the m atrix construction. These will be labeled by the pairs (0,1) 

and (jf +  1,1). Thus the regions may also be represented by a matrix. If the entries rki are made 

to take integer values we may count the number of regions by the following algorithm.

A lg o rith m  5 .2 .3  Input: A matrix describing a knot in our notation. Output: A matrix describing 

the regions o f the knot. Each element of the matrix receives a label from 1 to R , the number of 

regions. This gives complete information about which regions o f the polyhedron are connected and 

how many there are.

1. Begin a t the top left of vertex (1,1) and follow the boundary downwards, as for counting 

regions, the orientation of the knot does not m atter. Mark the region (0,1) with a 1, the 

current marker, in the region matrix.

2. In following the boundary, one will come to  vertex (1,1); we assess its value and continue. 

If we stay in the same region of the polyhedron we continue, if we enter a new region of the 

polyhedron, then this new region of the polyhedron belongs to  the same region of the knot 

as the previous one and thus we mark it with the current marker in the region m atrix. The 

whole issue a t hand is th a t the regions of the polyhedron are known while we wish to gain 

knowledge of the regions of the knot.

3. We continue to follow the boundary until we reach the point of origin.

4. We search the m atrix for an unmarked region. If there exist unmarked regions, we increment 

our current marker and choose one of the regions as our new starting region and choose a 

point upon its boundary as our new starting point. Then, we repeat the algorithm from step 

1, marking the region with the current marker.

5. Once no unmarked region of the polyhedron exists, the algorithm is finished. The largest 

marker used in the m atrix which we have obtained is clearly the number of regions of the 

knot. Furthermore, since all connected regions are labeled with the same marker, we have 

a complete knowledge of which regions of the polyhedron belong to  the same region of the 

knot.

The algorithm considers each vertex exactly twice and moves and marks accordingly. Therefore 

the complexity is 0 (n ). An algorithm to find the number of components in a knot is similar but 

differs in a few details.

A lg o r i t h m ic  P r o b le m s  in  t h e  B r a id  G r o u p s



K notation  and B raid ing a K not 102

A lg o rith m  5 .2 .4  Input: A matrix describing a knot in our notation. Output: The number of 

components in this knot.

1. Each vertex has four points in which the two polygonal curves intersect B^. These are shown 

in figure 5.1. S tart at point N W  of the vertex (1,1) and follow the orientation of the knot.

2. We follow the orientation and not the boundary, as in algorithm 5.2.3, marking each point 

as we pass it.

3. When we reach the point of origin again, we increment the component counter and look for 

an unmarked point.

4. If there is an unmarked point, we begin with step 1, if there is not, we are finished.

This method calculates the number of components considering each point on each vertex once, 

therefore the complexity is also 0 (n ) . Note th a t a m atrix of only 0 tangles contains i + 1 unknots 

and a m atrix composed of only oo tangles contains j  unknots.

Clearly smaller polyhedra P { i,j)  may be embedded in larger ones by filling in the rest with 

0 and oo tangles. Conversely, if the configuration of the tangles is right, we may delete rows and 

columns accordingly. For example, we may create an extra row at the bottom  or top of the m atrix 

containing

(0 0 . . .  0 oo) (5.14)

and we may add an extra column at the left or right of the m atrix containing only 0 tangles. 

Likewise, such columns or rows may be removed without changing the knot type. Thus if a given 

knot can be expressed in the polyhedron P { i,j )  it can also be expressed in any polyhedron P { i ', j ')  

for which i' > i  and j '  > j .  An internal row of 0 tangles splits the polyhedron into two parts each 

described by the m atrix above and below the row of zeros. Thus if two knots should be described 

in a single diagram without touching, this is a way in which this may be done.

5.3 Braiding a Knot

Having constructed a new notation for knots, we wish to solve the problem of how to extract a 

closed braid from the m atrix which is isotopic to  the knot described by the matrix. A few algorithms 

have been constructed in the past, which convert a knot into a closed braid but they are difficult to 

implement because they depend upon topological deformation of the knot projection [97] [22]. The 

best known algorithms have been implemented [151] [162] and have complexity O(n^). We shall 

present an algorithm which achieves the conversion with complexity 0 (n ) , increases the number 

of crossings only in a few cases (and then only by a few crossings) and uses a linearly bounded 

number of strings. There exists no algorithm to calculate the number of strings which are a t least 

necessary to  describe a specific knot — the braid index of the knot. Because of this, it is not
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possible to  say how close to the minimum the number of strings used by our algorithm is. The 

number of crossings is sometimes increased because it has been found th a t there are knots for 

which any closed braid representative has more crossings than  the minimal knot diagram; the knot

5.1 in the standard tables is the simplest example of this [131]. Our algorithm is valid both for 

oriented and unoriented knots.

5.3.1 A n Exam ple

Alexander’s theorem was proven by showing th a t every knot can be deformed into a form where 

the knot loops around an axis a finite number of times without local maxima or minima with 

respect to th a t axis. If we cut the string along the axis in one place, we obtain a braid. The gluing 

back of the cut constitutes the canonical closure. Thus as far as the canonical closure is concerned, 

the finding of an appropriate axis is the key. Having obtained a canonically closed braid which is 

equivalent to a knot, we may obtain a plait from it by considering the closure curves part of the 

braid diagram and moving them into the middle of the braid diagram. The next section gives an 

example of this.

Figure 5.8: The trefoil knot with an axis for braiding it.

For the rest of this section, we are going to work through an example of our method. Consider 

the trefoil knot in figure 5.8. We have drawn an axis through it by the following method: (1) We 

drew a line through the projection of the trefoil which intersects every region of the plane at least 

once, (2) begins and ends in the infinite region and then (3) assigned the under and overpasses of 

the knot under and over the axis by traversing the knot from a random starting point (point A  

in the figure) while (4) assigning the passes alternately as we met the crossings of axis and knot. 

Next we perform a coordinate transform ation from the knot reference frame (figure 5.8) to the axis 

reference frame in figure 5.9 by pulling the axis straight.

We can easily observe from figure 5.9 th a t the axis is valid; i.e. if we traverse the knot starting 

at A  we will travel around the axis w ithout local maxima or minima permanently in a clockwise 

direction. If we now cut the knot at those points at which it overcrosses the axis and lay out
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Figure 5.9: The trefoil knot as it appears after the axis has been straightened from figure 5.8. For 

reference the point A  has been labeled here again.

the ends carefully to either side, we shall obtain the braid erf shown in figure 5.10

(a). To get back to the trefoil firom this, we perform the canonical closure which is identical to 

sealing the cuts made above. This is shown in figure 5.10 (b). This knot has four crossings and 

is ambient isotopic to  the trefoil thus there is some inefficiency in our braid representation (note 

however th a t there exist knots for which the most efficient braid representation contains more 

crossings than  their most efficient knot projection [131]). We note th a t we may lift the arc labeled 

in figure 5.10 (b) to  remove one crossing. This move also removes a string and so we obtain the 

braid of figure 5.10 (c). This braid has two strings and three crossings, it is thus the most efficient 

representation of the trefoil as the trefoil must have a t least this many strings and crossings. We 

conclude th a t the closure of the braid erf  ̂ is ambient isotopic to  the trefoil knot. Note th a t

we may tu rn  the entire figure 5.10 (c) about a vertical axis through its center and thus obtain the 

result th a t the braid cticticti is ambient isotopic to  the trefoil also; this, finally, is the well-known 

braid representation of the trefoil knot. This is the prototype for a general m ethod which we shall 

develop below.

5.3.2 P lattin g  a K not

The diagram of a knot which is expressed as a closed braid may be naturally divided into two 

parts: the braid and the closure. The most im portant feature of the braid part, for our purpose, 

is the requirement th a t all strings be monotonie increasing in the vertical coordinate, th a t is they 

may only go side to side and never double back on themselves. In this light, consider turning the 

polyhedron P{i , j )  clockwise by tt/2 . If the polyhedron does not contain any oo tangles, this is 

already a canonically closed braid. However, in general, the polyhedron will contain oo tangles.
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(a)

Lift

(c)(b)

Figure 5.10: The braid which is extracted from figure 5.9 by cutting the trefoil knot at its over­

crossings over the axis and laying out the ends is displayed in part (a). The closure of this braid 

is part (b). If we lift the arc labeled in part (b) we obtain the braid in part (c). See discussion in 

the text.

Note th a t the rotation will make the oo tangles look like 0 tangles. In an effort to  rid ourselves of 

the oo tangles, we take the top string in the oo tangle and move it all the way to the bottom  of 

the knot diagram and move the bottom  string all the way to the top. In this way, we have created 

two extra strings in the braid which are closed in the plait manner. If we do this for all oo tangles, 

we will have a valid braid in the center of the diagram but the closure mechanism will be a hybrid 

between the canonical and plait methods. In order to  rectify the situation, we move the strings 

which are closed in a canonical manner into the center of the braid diagram, thereby creating more 

strings and more crossings. Once this has been done, we have a fully valid braid closed in the plait 

manner which is ambient isotopic to  the knot we started with. Figure 5.11 shows the process of 

converting the unknot

U = (5.15)

into the braid (72(7  ̂̂ o'3 (T4 (T̂  ̂ e r g " ^ ^ c l o s e d  in the plait manner. This procedure is valid 

generally and clearly represents a readily implementable algorithm for transforming a knot given in 

our notation into a plait. If the original knot is given in the polyhedron P{ i , j )  and has k tangles of 

type oo, then the number of strings required in the plait is 2(i -f A:-l-1) but the number of crossings 

depends upon the exact configuration.

5.3.3 Laying the Axis

As mentioned before, the transformation of a knot projection into a canonically closed braid centers 

around finding an appropriate axis for the string to  wind around. This was the central point of 

Alexander’s theorem which proves th a t such an axis may always be found. A ready method for
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Figure 5.11: The conversion of a knot into a plait, 

finding an axis is given in the following algorithm.

A lg o rith m  5.3.1 Input: A knot projection. Output: A knot projection with an axis around which 

the knot winds without local maxima or minima.

1. Begin with enumerating the regions into which the knot projection divides the plane, suppose 

there are R  of these.

2. Choose two arbitrary points in the infinite region and call them  A  and B.

3. Draw a line L  connecting A  and B  in such a way th a t the fine intersects every region a t least 

once.

4. Choose a random point on each of the knot’s components and traverse the knot in the 

direction of the orientation once for each component starting a t the chosen point. While 

traversing label each intersection of L  with the knot alternatingly with a +  or — sign starting 

with +.

5. Interpret each +  crossing as an over crossing of L  over the knot and each — crossing as an 

under crossing of L  under the knot. The line L  oriented from A to jB is then a valid axis.

This algorithm may clearly be applied to our polyhedron P{i , j ) .  However we have the problem 

of the regions which depends upon the exact configuration of the knot. This can be solved by forcing

P a t r i c k  D . B a n g e r t



5.3 B raid ing a K not 107

Figure 5.12: The axis of the braid through the polyhedron P{i^j) .

the line L  to intersect every region in the polyhedron and therefore intersecting some regions of 

the knot more than once. This is unfortunate but unavoidable if we are seeking a general solution 

of the problem. The manner in which this may be done most economically is illustrated in figure 

5.12. The line L  is the dotted line beginning at point A  and finishing a t point B . If the polyhedron 

has an odd number of columns (as the one in figure 5.12), then the line L  is best described by the 

dotted line in figure 5.12. If however, the polyhedron has an even number of columns, then the 

line L  is best described by the dotted line in figure 5.12 from point A  to  point C  and then the 

dashed line from point C  to point B . If algorithm 5.3.1 is correct then a line drawn in a general 

polyhedron P{i , j )  according to this example is a valid braiding axis.

We may find an axis which passes through every region exactly once, if possible, by the following 

algorithm.

A lg o rith m  5.3.2 Input: A knot projection given in our notation. Output: A n axis which passes 

through every region exactly once, i f  this is possible. I f  not the output is an axis which passes 

through each region at least once.

1. Get the region information as prescribed in algorithm 5.2.3.

2. Construct a graph in which each region is symbolized by a node and two nodes are connected 

by an unweighted edge if they are adjacent in the plane.

3. A Hamiltonian circuit is then a path  which passes through each region, th a t is node, exactly 

once starting in the infinite region and returning there. If a Hamiltonian circuit exists, so 

does an optimal axis. If no Hamiltonian circuit exists, we find an axis using algorithm 5.3.1 

which gives an axis which passes through every region at least once.

The advantage is th a t we will generate a braid with less strings but the Hamiltonian circuit 

problem is NP-complete and so the execution of algorithm 5.3.2 is exponential (unless we use an 

approximation algorithm or it is shown th a t P  =  NP). This fact lends further weight towards
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the usefulness of algorithm 5.3.1. The prim ary usefulness of this algorithm originates in the fact 

th a t the laying of the axis does not depend upon the exact knot configuration, only the labeling 

does. Before we continue, we prove th a t algorithm 5.3.1 always yields a valid axis, this essentially 

amounts to proving Alexander’s theorem.

T h e o re m  5.3.3 Given any knot projection, algorithm 5.3.1 will find an axis about which the knot 

is without local maxima or minima.

P ro o f. Alexander’s theorem [4] states given a knot projection, it is possible to deform it with 

respect to  a point P  in the projection plane th a t after the deformation a point A  which travels 

along the knot in the direction of its orientation will travel around the axis defined by P  (the axis 

is a line perpendicular to the projection plane intersecting it a t P ) in a constant fashion, either 

clockwise or counterclockwise, for the entire circumnavigation of the knot. We wish to do the 

opposite, namely to deform the axis around the knot projection to  achieve the same ends. We 

can imagine the process of laying the axis as akin to sewing in which we move the needle up from 

and down onto the plane. Morton [115] has constructed a similar method to  ours which he calls 

’’threading.”

The knot divides the plane into several regions. If the axis does not intersect a particular 

region, the point A  will change course during traversing the knot and so the axis must intersect 

each region. It is however clearly only necessary for the axis to intersect the region once. Choose 

a line in the plane which intersects the axis. W ith respect to  this line we can define an angular 

coordinate 9 going around the axis. As point A  must travel around the axis in a constant fashion 

it must, after it passes 9 = 0, reach 9 = tv before it once again reaches 9 = 0. This shows th a t 

the axis, in the projection plane, must over and undercross the knot alternately with respect to 

A. This fulfills the requirements of an axis and these are assured by algorithm 5.3.1 and thus the 

theorem is proven. □

5.3.4 G etting the Braid

Having obtained the axis, we must now simply put together all the pieces and construct the braid.

This will be done via the following algorithm.

A lg o rith m  5.3.4 Input: A n axis L  in a knot projection given in P{ i , j )  using our notation.

Output: A braid the canonical closure o f which is ambient isotopic to the given knot.

1. Consider an empty polyhedron P{i , j )  and label each edge by the row and column index of 

the vertex out of which it is emerging on the right side giving it the further label a if it is 

the top edge and b if it is the bottom  edge. T hat is the top right hand edge coming out of 

the vertex (1,1) would be (1,1)^.
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2. All edges which intersect the axis L a t a positive crossing are to be numbered in order starting 

at point A] suppose there are k of these.

3. Starting at the numbered edges, use the traversal algorithm to follow each edge around the 

knot until another positive crossing with the axis L. All edges encountered are to be labeled 

with the same number as the original edge.

4. When all edges are numbered, we have identified the individual strings of the braid and 

numbered them in order. Assign a distance value of 1 to each edge in the polyhedron.

5. Traverse the knot again as in step 3 but this time stopping a t each double point and extracting 

which labeled string passes over which other labeled string and at which distance value this 

occurs.

6. When the whole has been traversed, we have a list of crossings specifying which strings are 

involved, which string crosses over the other and at w hat distance from the bottom  of the 

braid the crossing occurs. This information may be used readily to  construct a colored braid, 

which may be converted easily into an Artin braid word.

7. We assess the string labels around the knot and calculate the perm utation associated with 

the braid which winds around our axis. If this perm utation is different from the permutation 

of the braid which we obtained in step 6, the residual perm utation must be added to  this 

braid in the form of extra crossings.

The number of crossings is increased in some circumstances by a small amount in step 7 of 

the algorithm. It is a fact th a t there exist knots of minimal crossing number n  which have closed 

braid representatives all of which have crossing numbers greater than  n  [131]. Hence, step 7 is not 

a deficiency of the algorithm 5.3.4 but a fundamental necessity.

It is clear from Alexander’s theorem [4] th a t this algorithm works. The number of strings used 

is the number of positive crossings of the axis with the knot which is equal to  half the number of 

crossings. The number of crossings of the axis with the knot is

^  J  4 i+ (2 i  + 2 ) L ¥ J  iodd

[ 2i + {2i + 2 ) { ^ ) + 2  ;  even

where [æj is the greatest integer less than x.  An analysis of the possibilities in oddness and evenness

of i and j  reveals th a t Nc is always even which is good since we must have an equal number of

positive and negative crossings.

Algorithm 5.3.4 therefore finds a braid with a number of strings which scales linearly in the 

number of rows and columns necessary to represent the knot. It is conceivable th a t a more eco­

nomical way of laying an axis may be found using algorithm 5.3.2 but this has an exponential 

complexity. The number of strings may be reduced after the braid has been found using Markov’s 

theorem.
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The determination of the regions, the laying of the axis, the labeling of the axis crossings, the 

labeling of the edges and the extraction of the double point information all take a time proportional 

to  the number of vertices in the polyhedron i j.  The building of the braid from the crossing 

information takes time proportional to ij .  Therefore the entire algorithm to proceed from a knot 

projection to a canonically closed braid has complexity 0{i j ) .  This algorithm succeeds in being 

readily implementable and in constructing a braid which is reasonably small.

5.4 Translation from Conway’s K notation

If the knot is given in Conway’s notation [50], we may make the translation by fitting the appro­

priate basic polyhedron into P{i , j )  with a specific choice for i and j .  Since Conway uses integral 

tangles for his notation, this method will yield a m atrix with integer number entries. In the equa­

tions below we write Conway’s notation and ours in correspondence, the letters imply integral 

tangles and the operator M  is to  be understood as the mirror operator from above. The equations 

may be verified readily by drawing the diagrams, they have been om itted here for reasons of space.

Using integral tangles in our m atrix notation makes the notation more compact in th a t fewer 

rows and columns are needed to denote a knot but it also makes it more complex since each m atrix 

element may take many values. We must have a method for separating out the integral tangles 

introduced into the notation via equations 5.17 - 5.25.

A lg o rith m  5.4.1 Input: A matrix describing a knot in our notation in which one or more ele­

ments are integral tangles. Output: A matrix describing the same knot in which all elements are 

elementary tangles.

1. Focus attention on the first integral tangle which is not elementary, suppose this has value 

sk  where s =  ±1 is the sign and & i s a  positive integer greater than  one.

2. Create k — 1 columns immediately after the column containing the current integral tangle 

and fill each new vertex with a 0 tangle.

3. Suppose the current integral tangle is pmn =  sk. Then set Pmq = s f o i n < q < n  + k — 1.

4. Finally exchange the values of elements Pm +i  n and P m +i  n + k - i -

It is easy to  convince oneself, by drawing a few diagrams, th a t algorithm 5.4.1 will accomplish 

the decomposition. While the number of rows stays constant, the number of columns may explode 

if there are numerous integral tangles of high values in the m atrix. However this algorithm will 

give us a ready means, together with equations 5.17 - 5.25, to  convert any knot given in Conway’s 

notation into our notation.
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l*a  =  

6*a.b.c.d.e.f =

6**x.a.b.c.d.y =

S*a.b.c.d.e.f.g.h — 

9*a.b.c.d.e.f.g.h.i =

10*a.b.c.d.e.f.g.h.i.j =

10**a.b.c.d.e.f.g.h.i.j =

(o)

M(6) M{d) M{ f )

oo a X ^

oo M{b) oo

oo c oo

 ̂ M{y)  M{d)  oo y

a c e g

M{b) M{d) M{ f )  M{h)

a d g ^

M{b)  M (e) M{h)  

c f  i

10***x.a.b.c.d.e.f.g.h.y =

oo 0 a x  

oo M (e) M{b)  oo

oo f  c oo

oo M{g) M{d)  0 0

 ̂ 1/ h 0 oo

(

ll*a .b .c.d .e.f.g .h .i.j.k —

a c e g I

M{b) M{d) M{ f )  M{h)  M{ j )

a c e 0 0

M(6) M (d) M ( /)  M{h)  M{ j )

0 0 g i 0

\

oo

oo

oo

a c e 9 I

M{b) M{d) M (/) M{h) M U )

0 0 oo 0 oo

0 oo M{k) 0 oo

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)
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Chapter 6

The Solar H eating Problem

The sun is like an onion in that it has many layers. The core of the sun has a temperature of about 

16 million degrees Celsius and the photosphere (the part that we actually see) only 6000 degrees. 

From this information, one would think that the temperature drops as one moves further from the 

core of the sun. This is false, however, as the corona, which is outside of the photosphere, has more 

than one million degrees. The temperature increases from a few thousand to a few million degrees 

in the space of about 500 kilometers. As no nuclear reactions take place in either the photosphere 

nor the corona, some other mechanism(s) must be responsible. Ever since the temperature of the 

corona was measured [68] in 1939, the solution to this problem is unknown. Many partial solutions 

are known, a plethora of models has been created and much effort spent. In this chapter we present 

a preliminary investigation of one mechanism.

6.1 Introduction

The corona is that layer of the sun in which the solar wind originates; it is the atmosphere of the 

sun and extends for about one million kilometers from the surface of the sun. We usually see the 

photosphere and can only see the corona during an eclipse when the moon covers the photosphere 

or with a specially built telescope. The huge temperatures in the corona require constant input of 

heat for without this input, the plasma would cool down in about one hour. It is a mystery from 

whence this heat comes. The corona’s mass is an ionized plasma which acts like a fluid according 

to many forces: gravity and heat convection, for example. For recent observational data about the 

corona, see for example [61] and [155]. Figure 6.1 is an illustration of the structure of the corona.

The most likely source for the heat is what has recently been called the magnetic carpet. 

The corona houses large magnetic fields in constant state of change. This carpet will be our 

focus. As we are deahng with a magnetic field inside a moving fluid like substance, we call this 

magnetohydrodynamics. A field of any kind may be mathematically treated in a variety of ways. 

We could consider it a distribution of vectors over space or we could draw lines through space
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—3.

(a) (b)

Figure 6.1: Two schematic diagrams of the solar corona. Image (a) shows the evolution of a 

’’typical” region in the corona through the stages: enhancement (A), streamer (B) to helmet 

streamer (C and D). Image (b) illustrates the structure of the corona on 19 June 1936 with various 

structures. It is shown clearly that some field lines are closed upon the solar surface while others 

appear to go to infinity. These images were taken from [119] and [35] respectively.

which represent the integral curves of the field. It is these “field lines” that we shall consider. The 

topology of the held is dehned as the topology of this collection of held lines. Strictly speaking, 

magnetic held lines may not have endpoints as this would give rise to a magnetic monopole (we 

shall not go into this heated discussion here but shall assume non-existence of magnetic monopoles 

until experimentally falsihed). From observations, however, the lines appear to have endpoints as 

the lines go deep into the photosphere where we can no longer see them. Because we see only part 

of the held lines, we do not know how they connect underneath the surface of the photosphere. As 

we can not see the connections of the hlaments beneath the photosphere, we are going to assume 

that they are not there. This is not to say that what we can not see can not affect the things we 

can see but we shall ignore them anyway. What we obtain therefore, are a collection of arches with 

footpoints on the photosphere. The surface on which the footpoints dance is covered by convection 

zones. These look like huge bubbles of the sort one gets when boiling pudding. The material is 

carried from the center of these zones to their boundary. Thus a footpoint is far more likely to 

be near or on a boundary of a zone than inside the zone itself. To make matters even worse, the 

zones rearrange themselves approximately every ten minutes.

It is, of course, not obvious at all that we should be able to see field lines at all; they are, after 

all, a human intellectual construction. Indeed, we do not see the lines of the field as such but we 

see what are called filaments, which are thin and long local collections of plasma at a different 

temperature than the surroundings. It is because the temperature in the filament is cooler than 

in its surroundings that we can observe them and because of their thin and elongated structure, 

they look like lines (see figure 6.2). Conveniently, they are also parallel to the local magnetic field 

lines and so they provide a tracer for them. A good guide to what we can see and how to do it is
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Figure 6.2: The left image shows the solar corona against the disk in one of the hydrogen line 

spectra and the right image shows a closeup of a collection of flux tubes where the field lines are 

clearly visible.

given in [14].

Figure 6.3: As an example of a solar loop prominence this photograph shows clearly where the 

field lines are and what the whole configuration looks like. From the dark arch at the bottom of 

the loop which is the solar surface, one can see how large the prominence is. Most observations 

are against the disk of the sun and then we can only see the arches from the top. This image was 

taken by Victor J. Lopez on 10 March 1981.

The filaments are approximately parabolic and typically 70 Megameters long (in contrast to the 

sun’s circumference of about 4400 Megameters). They are subject to gravity pulling the material 

towards the center of the sun. Pressure builds up driving the material toward the outside. Pressure 

p{z)  at distance z above the convection zone surface is given by

p{z)  =  Poe (6 .1 )

where po is the pressure at the surface, g =  1.92 x 10^^ms“  ̂ the acceleration due to gravity, 

A: =  1.38 X Boltzmann’s constant and T  the temperature which we will set at one

million degrees Kelvin. This defines an outwardly force which gets gradually weaker as the material
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is ejected.

The filaments themselves act as strings which relax elastically according to the models described 

in chapter 4. The filaments may also reconnect with one another and break into several pieces, 

effectively duplicating themselves. It is precisely this reconnection that is thought to generate 

the heat. During the evolution of a complex field topology a lot of energy is input and during 

reconnection most of that energy is rapidly dissipated into heat.

The filaments are thick tubes which contain hot plasma. The plasma moves along the axis of 

the filament from one footpoint to the other. The mass flow along the axis of the tube occurs 

at about 0.6 ms~^  near the footpoints on the photosphere [67] and between 1 and 2 ms~^  in 

regions 100 km higher [135]. Most models give rise to significant variation of the cross-sectional 

area of a filament (thickest at its highest point). This is however not observed. The observed 

filaments have thickness profiles which are sometimes thicker in the middle, sometimes thicker at 

the footpoints and sometimes of constant thickness, there are even filaments with a constantly 

increasing thickness from one footpoint to another [156]. The results of two distinct experiments 

(Yohkoh and TRACE) have given rise to these observations with the essential point that the 

difference between the thinnest and thickest point along a filament is, on average, only 15 percent 

of the thickness of the thinnest part [156] [94]. It is also observed that the density of the plasma 

inside a loop is constant over the cross-section [94].

The magnetic field inside a flux tube filament is about 0.2 Tesla (The solar physics community 

insists on using non-SI units, so that 1 Gauss =  0.0001 Tesla) which can be measured by a clever 

manipulation of the Zeeman effect [139]. The diameter of a flux tube has been measured to lie 

between 100 and 300 km [138]. All of these measurements come with large errors and are open to 

debate but they give us the order of magnitude region in which the parameter lie.

So called force-firee magnetic fields are important in the corona [127] [163]. From the conception 

of force-free fields [101], invariants were found [157] and these lead to close investigation of the 

properties of these fields [42]. The structure of some such fields was investigated in [60] and it was 

found that they behave chaotically and are very unstable. This is particularly important as it is 

thought that force-free fields represent steady state minima of the magnetic field in the corona. A 

recent investigation of the force-free fields above the sun has lead to new solutions to the force-free 

field equations which could be promising [160]. In a simulation there are privileged field lines, 

namely those of zero field. This magnetic separator is important as it represents the borderline 

between regions of different connectivity. The topological evolution of these is considered in [37].

The filaments store and release energy, accelerate groups of electrons (heat the corona), eject 

mass (as flares and coronal mass ejections), emit radiation in the X-ray, EUV, UV, visible and 

radio bands and cause mass flow along the axis. These are the major features of a filament and 

must be explained by a model as required and reviewed in [140]. Many of the physical processes 

of flux tube filaments and model are covered in [122] and a good review of the solar dynamo is 

given in [66]. The filaments differ in size and there are more small filaments than large ones and

A lg o r i t h m ic  P r o b le m s  in  t h e  B r a id  G r o u p s



The Solar H eating Problem  116

Figure 6.4: This schematic shows two filaments with similar axial twist but opposite flow direction. 

The diagram is taken from [140] and illustrates the Gold-Hoyle model [70] according to which these 

two filaments should reconnect thereby releasing energy and giving rise to a solar flare.

consequently there are more small flares than large ones. One might think that the sum total of 

the small events causes the bulk of the heating. This is a controversial point with evidence for 

both sides [1]. This suggests that present efforts into simulating and explaining the large events 

are well spent.

Reconnecting field lines can be indirectly observed through magnetograms and are thought to 

produce regions of canceling magnetic fields; reconnection can also be a mechanism for the observed 

mass flow along filaments [100]. A good review on the process of reconnection is given in [128].

This creates the background for the problem which we shall attempt to simulate. As this is a 

preliminary study, we shall consider the effects of the simulation on a particular configuration of 

arches, namely those of figure 6.2.

6.2 The Temperate Photosphere

One wonders though why the photosphere is so cool when it is next to a blazing furnace. What 

does it mean for a gas to have a high temperature? Temperature is a measure of the average kinetic 

energy of the gas atoms, that is, a measure of how fast they move. A high temperature gas has 

atoms with a larger average velocity than a low temperature gas of the same composition. We thus 

infer that the atoms in the corona are moving much more rapidly than those in the photosphere.

For the corona to heat the photosphere, the coronal gas must cause the photospheric atoms 

to move faster. It could do so by colliding and mixing with the cooler gas and thus transferring 

some of its kinetic energy. At a temperature of a million degrees, the gas in the corona is highly 

ionized, which means that neutral atoms no longer exist but rather freely moving electrons and 

atomic nuclei. Because electrons are much lighter than protons the hot electrons have very high 

speeds and could travel into the photospheric gas to collide with the atoms there, increasing their 

velocities. These two heating mechanisms are called convection and conduction, respectively. A
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gas at a few million degrees radiates energy; much of it is emitted in the form of very high-energy 

x-ray photons. X-ray photons impinging on the photosphere could also transfer energy to the gas 

atoms there. This heating mechanism is radiation.

Yet the three traditional methods of heating do not raise the photospheric temperature for a 

simple reason. Suppose we had a thermometer that could measure temperatures of millions of 

degrees and put it in the corona. In order to make a temperature measurement, the thermometer 

must be heated up by the coronal atoms, electrons or x-ray photons impinging upon it. The 

corona, however, has such a low density that the thermometer will almost never be hit. So while 

the thermometer is technically sitting in a gas that is at a few million degrees it does not know 

it. There are just not enough atoms to heat our hypothetical thermometer or the underlying 

photosphere.

6.3 Generating Arches from Footpoints

For ease of use, the simulation will take a set of two dimensional coordinates as the locations for 

the footpoints and will generate the arches automatically. Clearly every arch has two footpoints. 

Consider a plane which intersects the two footpoints of a particular arch and is perpendicular to 

the surface; this specifies the plane exactly. The arch is to be drawn in this plane. We may choose, 

for simplicity, to take the distance between the two footpoints and to generate a semicircle with 

that diameter. Alternatively and more realistically, we may generate a parabola. To maintain 

maximum control over how high the arches are in relation to each other, we generate the parabolas 

from the semicircles by scaling such that the highest point of the semicircle is pulled upwards until 

it reaches some given parameter; the rest of the arch follows this scaling. This allows us to set 

certain profiles or to set the relative heights manually.

It is observed that the footpoints of most fiux tube networks are very close to neutral lines in 

the magnetic field. For unknown reasons, these neutral lines look very much fike integral signs and 

could thus be easily simulated using a Bezier line with two control points. We could thus envision 

generating footpoints automatically upon input of control points for the shape of a neutral line. 

This would require more input from observations however to discover just what the positional 

relationship between footpoints and neutral line is.

6.4 The Simulation

Having got the arches, we simulate them. The forces we shall consider for the moment are the 

pressure force, elastic force and repulsive force. The pressure force, as given in equation 6.1, is a 

height dependent force which tends to increase the size of a filament. The elastic and repulsive 

forces, as described in chapter 4, tend to reduce the size of a filament while preventing topology 

changes. The forces have to be balanced such that a filament will eventually reach a steady state.
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Clearly if one force dominated, the filament would continue to grow or shrink and this is not what 

is observed. When reconnection is to be simulated, the repulsive force would have to be switched 

off.

m

Figure 6.5: This figure displays the filaments which we created on the computer using footpoint 

data derived from observations. The line data was generated using the author’s BraidLink and the 

raytracing was done using PovRay.

We begin with an observation (for example figure 6.2). From this we extract the footpoints 

and draw the arches to obtain a computer model of that situation, see figure 6.5. The observation 

which lead to the model in figure 6.2 was made in [106] and the model was originally realized using 

wire.

6.5 M utual and Self Helicity

A field line has a positive and a negative footpoint. If n is a unit normal to the surface of the 

sun 5, then a positive footpoint is a footpoint for which B n|g > 0  and negative if the inequality 

is reversed. We have a null point when B n|g = 0 .  For a pair of flux tubes, we can have the 

two situations displayed in figure 6.6. If the tubes do not cross, then knowledge of the footpoint 

coordinates is sufficient; if they do, then we also need to know which tube overcrosses the other. 

The mutual helicity between two tubes is given by [15]

Hij = Hji =  +  P) (6 .2 )

where is the magnetic flux in tube k and the angles a  and P are defined in figure 6.6 (note that 

the top tube is labeled 1 in figure 6.6).

It is also possible for a flux tube to be twisted in itself. This can be clearly seen in figure 6.7. 

This internal twist is called self-helicity [158]. If a field line encircles the axis of the tube T) 

times, then we define its self-helicity as

Hu  = (6.3)
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2 1

Figure 6.6: The angles which must be known to compute the mutual helicity (see equation 6.2) 

of two flux tubes are defined here for the two situations possible: crossing tubes and non-crossing 

tubes. If the tubes cross, we assume that the top one is labeled 1.

A collection of N  flux tubes then has a total helicity which is the sum of the pairwise mutual 

helicities and the individual self-helicities,

N  N  N

«  = E  (64)
1 = 1 i=l

The matrix with entries Hij  is symmetric about the diagonal and can be conviniently used to 

summarize the helicities of a large flux tube network as the sum of its entries is the total helicity 

of the network. So if a super-network is made up of networks, we can represent the helicity of the 

super-network in terms of the helicities of the networks in such a matrix. Consider our current 

situation in figure 6.5. The flux tubes can be loosely divided into three groups: small, medium 

and large tubes. If we label each group by A, B  and C  respectively, then the helicity matrix of 

the whole super-network is

H  =

^ H a a  H a b  H a c  ^ 

H b a  H b b  H b c  

y  H c a  H c b  H c c  y

(6.5)

Figure 6.7: This filament shows clearly the presence of axial twist. (This TRACE image 

of AR9077 shortly after the flare erupted is available as Astronomy Picture of the Day from 

http://antwrp.gsfc.nasa.gOv/apod/ap000720.html.)
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Observationally, it is difficult to decide which flux tube overcrosses the other and also a mea­

surement of flux is not accurate. For our model, we shall assume that all tubes have identical 

flux. If a pair of flux tubes has mutual helicity Hij and we were to switch which tube is on top of 

the other without changing the position of the footpoints, then the mutual helicity would become 

Hij  — ^ i ^ j .  The reason is that the tube labeled 1 in figure 6.6 is the top tube. If this switches, 

the angles a  and /3 go to the two unnamed angles in the figure, a '  and (3 \ say. Clearly, we have 

a  (3 — [a ' -\- (3') =  27t and so

=  +  (6.6)

=  ^ ( o  +  /3-2^r) (6.7)

=  Hij — ^i^j  (6 .8)

The most important point to note about helicity is that it is conserved throughout the evolution of 

field lines. In observational terms, the change of helicity in the sun occurs at such long timescales 

compared to the lifetime of flux tubes that it is, for all practical purposes, conserved indeed.

6.6 The M oving Footpoints

Moving footpoints are thought to be a driving force of magnetohydrodynamic turbulence for the 

filaments. Some recent models and results are presented in [72] and references therein. The simplest 

way to move the footpoints is to choose an unbiased random walk. The footpoints move on the 

two dimensional surface of the photosphere which we regard as a plane. We choose four random 

numbers per tube within the range [—<5, where 5 is a parameter of the model and add these 

numbers to the two coordinates of the footpoints to generate new footpoints. According to a well

known result by Polya, such a random walk in one or two dimensions will eventually return to the

original point; the probability for that to happen in three dimensions is roughly one-third.

An unbiased random walk is not really realistic as the footpoints are usually forced to approach 

and then remain on the boundary of the convection granules and as such we require a more complex 

random walk. Such random walks are discussed in [41] and will be used in the future to study this 

model.

6.7 Conclusions

We have simulated a model of filaments derived observational footpoint data. Our model was very 

simplistic but a steady state was achieved and helicity conserved throughout. The balancing of the 

forces essentially defines a plane z  = a ioi some constant a which depends on the surface pressure 

po and the strength of the elastic force to which the highest points of the filaments tend. The 

simulation is encouraging but more realistic elements are needed.
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Firstly the footpoint motion must become more like footpoint motion on a restricted domain 

with a preferred direction. The other environmental forces must be taken into account. There are 

many of these but the most crucial is the background magnetic field in which the lines sit which 

could be simulated by stationary field lines. There must also be more interaction between the field 

lines as the only interaction a t present is the repulsive force which is purely artificial in any case. 

Reconnection should also be taken into account as should the division of tubes into several tubes. 

Computational provision for some of these features has been made already. A more substantial 

collaboration with observational astrophysicists is needed in the future to make the simulation 

realistic and thus useful.
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2-simplex, 19

3-ball, 92 

3-manifold, 19

classification, 19, 28 

3-satisfiability, 61 

3-simplex, 19

Adian-Rabin theorem, 20 

Alexander polynomial, 21 

Alexander’s theorem, 22, 27, 103, 105, 108, 

109

algebraic algorithm, 85-88, 91

algebraic link problem, see Markov problem

algebraic minimization, 83

algorithm

approximation, 60 

efficient, 58 

inefficient, 58 

intractable, 58 

linear, 58

polynomial-time, 59 

quadratic, 58 

random, 60 

ambient isotopy, 16 

atomic theory, 15

basic polyhedron, 22 

Berger’s algorithm, 70, 84 

Birkhoff’s theorem, 39 

Birm an’s conjecture, 28 

braid, 76, 92, see random braid 

(Ti, 23, 24 

a ~ \  23, 24

algebraic, 73, 75, 75, 76 

Artin generators, 24 

ascending, 25

band-generator presentation, 58 

cable, 64, 65 

cables, 63, 63 

closed, 92, 102-105, 110 

closure, 22, 23, 35, 37 

conjugate, 25, 28, 29 

descending, 25 

exponent sum, 24, 29, 67 

from knot, 108 

fundamental, 26, 67 

fundamental word, 25, 30 

geometric, 73, 76, 77 

group, 23, 24, 75, 83 

center, 30, 72 

center (other pres.), 27 

center generator, 25 

conjugacy problem, 25 

generators, 23 

left-cancelative, 67 

left-cancellative, 72 

other presentation, 26 

quotients, 28 

relations, 24 

right-cancellative, 72 

word problem, 25 

identity, 63 

isotopy, 25 

labeling, 35-37 

length, 47, 57, 63
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minimum 

elastic, 73 

heuristic, 73 

negative, 24 

oriented, 22 

positive, 24, 33, 72 

prime, 26 

reverse, 25 

reverse operator, 24 

split, 26 

weft, 63, 64

weft braid, 63, 63, 64-66 

weft form, 63, 64, 66 

wire, 64 

wires, 63, 65 

braid index, 18 

bridge number, 18

Cayley diagram, 26, 67, 68, 71 

Church-Turing thesis, 38 

combinatorial problem, 58 

instance, 58 

intractable, 60

polynomially transformable, 59 

complexity, 44, 76 

average-case, 60 

class NP, 59, 66 

class NFC, 60 

class P, 59 

polynomial-time, 59 

worst-case, 58, 60 

conjugacy move, 27

conjugacy problem, 20, 26, 29, 33, 34, 39, 39, 

41, 42, 46, 48, 51-53, 55 

Garside algorithm, 29 

continued fraction, 95 

Conway’s basic theorem, 95 

critical pair lemma, 40, 50

cyclic, 50, 56 

crossing number, 78, 90 

minimum, 16, 18, 91 

cyclic permutable, 46, 46 

cyclic perm utation, 36, 46, 47 

cyclic word, 47, 47, 48

decision problem, 58

Diamond lemma, see Newman’s lemma

DNA, 73

elastic

energy, 73 

forces, 73 

relaxation, 73 

embedding, 16, 19 

energy, 75, 88, 88, see knot energy 

functionals, 75 

minimum, 91 

equilibrium, 74 

equivalence move, 27 

exchange move, 29

far commutation, 84 

feedback edge set, 61 

fluid

knotted, 74 

force

constrained, 80, 81, 85-88, 90 

crossing number, 85, 87, 88, 90, 91 

feature, 88 

crossing number minimizing, 80 

curvature, 81, 82, 83, 85, 87, 88, 90, 91 

elastic, 80 

repulsive, 81, 86 

fundamental group, 20

Garside

exponent, 26 

normal form, 69, 70, 72
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remainder, 26 

group, 38

center, 33

combinatorial theory, 39 

conjugacy class, 41, 53 

conjugate, 34, 46, 46, 51 

equivalence class, 41 

free, 46, 58 

free products, 58 

HNN-extensions, 58 

infinite cyclic, 36 

isomorphism, 20, 21 

presentation, 38 

grouping by swapping, 61, 61 

Grzegorczyk arithmetical hierarchy, see Kleene 

arithmetical hierarchy

Haken, 19

Hamiltonian circuit, 107 

Hemion’s algorithm, see 3-manifold classifi­

cation 

heuristic algorithm, 83 

Higman Embedding Theorem, 39 

homeomorphism, 19 

Homfly polynomial, 18 

Hopf link, 16, 23, 34, 35

ideal knot, see knot 

invariant, 17, 18, see energy 

bounded, 74 

complete, 18, 20, 29 

component number, 18 

Gauss linking integral, 74 

helicity integral, 74 

incomplete, 18 

isotopy, 74 

minimum, 18

minimum crossing number, 74 

polynomial, 18

polynomials, 74 

invariants

minimum crossing number, 78 

inversion, 61, 61, 63-66 

inversions, 62 

isomorphism, 20 

isomorphism problem, 39, 39

Jones polynomial, 18, 19, 21

Kleene arithmetical hierarchy, 39 

knot, 16, 19, 110, see random knot 

2-bridge, 95 

amphicheiral, 29 

classification, 15, 17, 18, 21, 28 

complement, 18, 19, 19, 20, 35, 37 

component, 20, 35, 100, 101 

composite, 18, 28, 29 

diagram, 18 

energy, 75

fundamental group, 35, 37 

group, 20

W irtinger presentation, 21 

W irtinger representation, 35, 37 

ideal, 75, 91 

invertible, 29 

isotopy, 21 

isotopy problem, 18 

longitude, 20, 20, 35 

m atrix form, 96 

meridian, 20, 20, 35 

meridian-longitude system, 20, 35 

trivial, 35 

nugatory crossing, 27 

oriented, 99

peripheral group system, 34 

prime, 16, 18, 28 

factorization, 28 

split, 29
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sum, 18, 100 

table, 16, 17, 22, 74 

type, 74 

knot notation, see knotation 

knotation, 22, 95, 97

Conway, 22, 92, 99, 110 

Dowker & Thistlethwaite, 22 

Knuth-Bendix completion, 41, 42, 52

L-move, 28

Lagrangian, 79, 82, 90 

lexicographie order, 26, 53 

link, see knot 

linking number, 20

magnetic field, 73

accretion disk, 73 

continuous, 74 

coronal loop, 74 

lines, 91

reconnection, 74 

star, 73 

Markov, 27

Markov equivalence, 28, 28, 29, 34 

Markov move, 27, 28, 29 

Markov problem, 28, 28, 29, 33 

Markov’s theorem, 27, 27, 29, 109 

Michelson and Morley, 16 

minimal equivalent braid, 62 

minimization problem, 57  

minimum

global, 75, 90 

local, 75, 90, 91 

minimum crossing number, see crossing num­

ber, see invariant 

minimum string number, 29 

minimum word problem, 72 

monoid, 39, 51

Newman’s lemma, 40, 49, 49

non-minimal braids, 62, 66 

NP-complete, 39, 57, 83, 107 

NP-completeness, 58, 60, 60, 62, 66 

reduction, 60 

restriction, 61, 62

peripheral group system, 20, 21 

perm utation, 61, 63-66 

identity, 61 

plait, 92, 104 

closed, 105 

from knot, 106 

polyhedron, 95, 98, 104, 107, 108 

axis, 105, 107 

basic, 95, 110 

m atrix, 96, 98, 110 

edge, 95 

vertex, 95 

region, 100, 101 

universal, 95 

polymer, 73 

polynomials, 74 

program, 59

random braid, 73-76, 85, 91 

random knot, 74 

recursive set, 39 

recursively enumerable set, 39 

reduction ratio, 84, 85, 87 

Reidemeister, 17

moves, 17, 22, 27 

relaxation, 78, 80

satisfiability, 60, 61 

search problem, 62 

shortlex ordering, 52 

simulation

efiicacy, 85 

efficiency, 86
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skein relation, 18 

solar flare, 74 

solar physics, 74, 91

sorting does not minimally partition, 61, 62, 

66

stabilization, see Markov move 

statistical mechanics

exactly solvable model, 74 

surgery, 17

Tait, 15, 74 

tangle, 22, 92, 92

classiflcation, 94, 95 

elementary, 93, 93, 94, 95, 110 

equality, 92

fractional, 93, 94, 94, 95, 95 

integral, 93, 94, 94, 95, 110 

irrational, 93, 94 

rational, 93, 94, 94, 95 

sum, 94 

tangles, 95

elementary, 98 

term  rewriting systems, see trs 

tetrahedron, 19 

topological complexity 

measure of, 73, 74 

topology

change, 81 

torus knot, 21 

trefoil, 97, 98, 98 

triangulation, 19 

trs, 38, 38, 48

c-obstruction, 48, 49, 52 

complete, 38, 40, 43, 51 

confluence, 38, 40, 48, 50, 54 

undecidability, 40 

constants, 38

critical pair, 40, 40, 43, 50, 54

cyclic completeness, 48, 52 

cyclic confluence, 48, 49, 50, 53, 54 

cyclic critical pair, 50, 50, 54 

cyclic local confluence, 48, 49, 50, 52 

cyclic overlap, 50, 52 

critical, 50 

non-critical, 50 

cyclic termination, 48, 48, 49, 52, 53 

cyclic word, 48, 50, 52, 53 

equivalence, 43 

final form, 51 

joinabihty, 38 

length metric, 48 

length reducing, 48 

local confluence, 38, 43 

normal form, 38 

overlap, 40, 43, 45, 50 

critical, 40 

non-critical, 40 

redex, 38, 50 

reduct, 38, 43, 50 

reduction order, 40, 40, 42, 48 

basis, 40 

closure, 40 

compatibility, 40 

rewrite chain, 38 

rule, 38

substitution, 38 

term , 38

termination, 38, 39, 40, 43, 48, 49, 51 

undecidability, 39 

to tal order, 48 

weight metric, 48 

weight reducing, 48 

word, 38 

Turing Halting Problem, 40, 59 

Turing machine, 38, 39, 59 

deterministic, 59
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non-deterministic, 59

unknot, 16, 18, 105 

récognition, 18 

unknotting number, 22

vertex cover, 61 

vortex lines, 74

W aldhausen’s theorem, 20 

W hitehead link, 16

word problem, 20, 26, 29, 33, 34, 38, 39-44,

51, 53, 76

Yoder’s theorem, 51, 51
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