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A bstract

It is shown th a t a large class of convex bodies satisfy a central limit prop

erty. In particular we show th a t if an isotropic, symmetric, convex body, K ,  

has the property th a t most of its mass concentrates near its average radius, 

then its marginal distribution in direction 0 , (whose density is given by scan

ning across K  with hyperplanes perpendicular to  0), is close to  a Gaussian in 

most directions. This closeness is shown in term s of the distribution function 

and the density function.

We also show how the transportation method for obtaining concentration 

results works for the cube and, more importantly, we find the best constant 

possible using this method. This constant turns out to be better than  those 

obtained by traditional methods and cannot be far from th a t which is best 

possible.
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Introduction

The principal question th a t we ask in this piece of work is whether symmetric, 

convex bodies in R ” exhibit a central lim it property.

Let X  be a symmetric, convex body of volume 1. Then we can regard K  

as a probability space with probability measure the Lebesgue mea^sure, P , in 

K.  For each unit direction we consider the random variable on K

given by Xe : X {x, 6 ). It can be seen th a t the density of Xq  is obtained by 

scanning across K  with hyperplanes perpendicular to if we observe th a t 

the probability th a t Xq is less than a value t is the volume of K  to one side 

of the slice K  ft ((^)‘*' +  t6 ).

P{ { x , e ) <t )  =  j  vol„_i ( i r n  +  ds.

So if we denote the density of the “marginal” density of K  in direction



by we have

ge{s) =  vol„_i (^K D +  s(9^) .

The central limit problem asks whether the random variables Xe  are approx

imately Gaussian in an appropriate sense. It has been widely believed for 

some tim e th a t such marginal densities typically have Gaussian decay. We 

are concerned with whether they are really like Gaussians.

The starting point for this work was a result for a particular class of 

symmetric, convex bodies, namely the Ç balls. Recall th a t the unit Ç ball is 

the set { x eR "  : ^  1}- If we take K  to be an Ç ball, rescaled so as

to have volume 1 , then the variance of can be shown to be the same for 

each direction 6 . Moreover, as n -> oo, this common variance, denoted by 

tends to a fixed number, depending only upon p. Perissinaki shows in 

[15] th a t for a given p, the average of the marginal densities over the sphere 

tends to a Gaussian density with the same variance, p^. In other words as 

n  —> oo

for all t e H .  (We take a to denote the rotation invariant probability measure 

on the sphere, =  { x e R ” : ^  a;? =  1 } ).



The convergence in the above result relies on each Xq having the same 

variance and on this variance, having a fixed bound for all n .  Clearly 

this is not the case for all symmetric convex bodies - the variance of X q is 

certainly not the same for each 9 when JT is a long, thin body, for example.

We restrict our attention to isotropic bodies, i.e. ones for which there is 

some fixed p  such th a t the variance of X q is equal to  p^ for all 9:

f {x ,  9 Ÿ  d x  =  p^ for all 9. 
J kK

(We remark th a t each K  has an affine image which is isotropic). From this 

point forward we refer to the Gaussian r.v. with variance p^ as 7  and denote 

its density by g  so tha t

In the first two chapters of the current work we extend Perissinaki’s result. 

Rather than considering the spherical average of the marginal densities, we 

show th a t in  m o s t  d ire c t io n s  X q is close to the Gaussian, 7 . (It is clear th a t 

qq is not like a Gaussian density for every direction, 0, if we consider the 

example in which R" is a cube and 9  is perpendicular to a facet). The result 

will be shown to hold not only for the Ç balls, but for a large class of bodies 

which we believe includes all symmetric, convex bodies.



The first main result of this work says th a t provided most of K  lies near its 

average radius, (a property stated as the Concentration Hypothesis below), 

then in most directions and for every positive t, the probability f  (|%g| <  t) 

differs from P ( |7 | <  t) by very little:

C o n c e n tra tio n  H y p o th e s is  For a given e < ^ we say that K  satisfies the 

e-concentration hypothesis if:

P
,X| ^

> £p] < e
y/n

T h e o re m  1.1 Under the e-concentration hypothesis, for  J  >  0

^  : I  <  (̂  +  4s +  for all >  1 —4 n e “ ^

A surprising and attractive feature of this result is th a t it does not require a 

bound on p. Strangely, the larger is p, the weaker the concentration hypoth

esis becomes and the value of p mysteriously disappears altogether from the 

final estimate.

The origin and purpose of the concentration hypothesis become clear once 

an outline of the proof of Theorem 1.1 is given. The main issue is to show 

tha t J^^9 9 {s)ds  is the reciprocal of a norm restricted to the unit sphere. 

Once we know this we can estim ate its size to give a Lipschitz estim ate on 

this function and then use a standard concentration of measure result on the

10



sphere to show th a t for a given t, in most directions, 9 9 {s) ds is close to  its 

spherical average. (So far the proof holds for all symmetric, convex bodies).

To show th a t this spherical average, jgn-\ ds d(r{6 )̂  is close to

the integral of we identify in Perissinaki’s argument the property of Ç 

balls which ensures tha t the spherical average of the densities is close to  9 . 

This property is precisely the one stated in the concentration hypothesis. We 

remark th a t although the hypothesis says th a t most of K  concentrates in a 

thin spherical shell of radius y/np^ it does not tell us th a t K  looks like a 

spherical shell. But since our initial aim is to estim ate an avera9 e over the 

sphere, it does not m atter how mass is distributed within the shell.

We discuss the concentration hypothesis in more detail and show th a t it 

holds for a large class of convex bodies in Chapter 1 .

Having obtained a weak-type central limit property it is natural to  ask 

whether the densities are locally close for most 9, i.e. whether for most 0, 

9 e{x) is close to 9 {x) for all x e R . We cannot use the same method as above to 

prove such a result since, unlike its integral, 9 e{x) is not Lipschitz. However 

in Chapter 2 we prove such a local central limit property using Theorem 1.1  

and the fact th a t 90 is log-concave:

11



T h e o re m  2 . 1  There are constants, c, for which, under the e-concentration 

hypothesis, for  6 >  0  and a  = y / ^ p [6 +  ^  +  cê), assuming a  is less than

1
lo;

a \ { 9  \ge{x) — g{x)\ <  c ( o log  — j  for all x  ̂ | >  1 — 6 n e ‘

Unfortunately, in order to obtain an estimate, here it is necessary to  assume 

a bound on the variance,

In Chapter 3 we return to the problem of enlarging the class of bodies 

for which we know the concentration hypothesis to hold. In an a ttem pt to 

find additional bodies, various existing methods of obtaining concentration 

of measure estimates were studied. Recall th a t a normalised K  is said to 

possess a concentration of measure property if the mass in K  concentrates 

around subsets of volume Such a concentration of measure result would 

give the concentration hypothesis since it implies th a t mass concentrates 

near the median radius and th a t this median value of |a;| is close to the mean 

radius, y/np =  \x\^ dx) ^.

One particular method of obtaining concentration of measure results, the 

“Transportation M ethod” , was looked at in detail. However, attem pts to

12



extend the ideas therein to non-product spaces did not work in our situation. 

We show in Chapter 3 how the method works for the cube and, more im

portantly, we find the best constant possible using this method; a constant 

which turns out to  be better than those obtained by traditional methods and 

which cannot be far from tha t which is best possible.

In the first two chapters, for the sake of clarity, we often replace constants 

appearing in expressions by c. Therefore, unless otherwise stated, c will 

vary throughout these chapters to denote the appropriate constant where it 

appears.

13



Chapter 1

A W eak-Type Central Limit 

Property for Convex Bodies

Let A  be a symmetric, convex body of volume 1. We regard A  as a probabil

ity space with probability measure the Lebesgue measure, P , in K .  For each 

unit direction 6 , we define the random variable Xq : x  (æ, ^): so the den

sity of Xg is obtained by scanning across K  with hyperplanes perpendicular 

to 6 . Now suppose th a t K  is isotropic, i.e. th a t for some fixed p

f  {x, 6 Ÿ  dx =  for all 9. 
J k

(We remark th a t each K  has an affine image which is isotropic.) Then each 

of the random variables, Xg, has variance p^.

14



Our aim is to  show th a t most of these r.v.s are very close to  a Gaussian 

r.v., 7 , with variance p^. We shall prove this under the following hypothesis 

which states th a t the Euclidean norm concentrates near the value \/n p , as a 

function on K .

C o n c e n tra tio n  H y p o th e s is  For a given £ <  ^ we say that K  satisfies the 

£-concentration hypothesis if:

P > ep]  < e  . (1 .1)

Under the above hypothesis, we shall show th a t if 6 >  0, then except 

for a set of directions of small spherical measure, for every positive t, the 

probability P{\Xe\ < t) differs from P ( |7 | <  t) by a t most

5 P A e -\— y = .  
y/n

More precisely, we prove

T h e o re m  1 . 1  Under the e-Concentration Hypothesis, for  (5 >  0 

cr ( <( 6* : 1  ̂ g0{ s ) d s - J  g{s) ds < 5 + Ae for  a l l t \ ]  >  1 —4n e

We begin with a brief overview of this chapter and then continue to  prove 

Theorem 1.1.

15



At first sight, the concentration hypothesis (1 .1 ) looks, a t once, too strong 

to be true, except in trivial cases, and too weak to  be useful.

On the one hand, an estimate like (1 .1 ), with a small value of e, is con

siderably stronger than the estimate which follows from Borell’s inequality 

[6 ]. On the other hand, although (1 .1 ) states th a t most of K  lies in a thin 

spherical shell, K  will almost always occupy only a miniscule fraction of this 

shell. So the condition cannot automatically guarantee th a t K  “looks like” 

a spherical shell.

We deal with the second point by using standard concentration methods 

on the sphere together with a Lipschitz estimate th a t depends ultim ately 

upon a version of the Brunn-Minkowski inequality.

Concerning the first point, we will describe how (1 .1 ) holds with a small 

£ for two classes of bodies. These classes exclude pathological bodies but 

together include a significant portion of “nice” convex bodies. The first is 

the class of balls for which Perissinaki showed (1.1) to hold with e % 

In Section 1 . 2  we outline her proof which uses the subindependence 

of complements of coordinate slabs in the Ç ball. A concentration result of 

Gromov and Milman can be used to show th a t (1.1) holds for a second class of 

bodies and an argument is detailed in Section 1.3. This class is somewhat ad

16



hoc, consisting of uniformly convex bodies which have the additional property 

of being contained in a Euclidean ball of appropriate radius, the necessary 

radius being dependent upon the modulus of convexity of K .  However, this 

class encompasses all balls for 1 <  p <  oo, so it is fairly broad.

In the ensuing discussion we have chosen, for the sake of clarity, to  sepa

rate the abstract part, which holds for all convex, symmetric bodies under the 

concentration hypothesis (1 .1 ), from the proofs of the hypothesis for specific 

bodies.

We should remark th a t the above results are very much in the same spirit 

as results of Diaconis and Freedman [10], Sudakov [18] and von Weizsacker 

[23]. These show, in a general probabilistic setting, th a t a kind of weak law 

of large numbers implies th a t most marginals are approximately Gaussian 

under conditions which correspond in our setting to  a restriction to isotropic 

bodies with p bounded. We do not assume their moment condition. In

deed p “magically” cancels out in our exposition. However, perhaps more 

importantly, in the case of convex bodies we achieve much finer probability 

estimates than for the general case.

Independent work in this area has been done by Brehm, Vogt and Voigt 

who also recognised th a t the concentration hypothesis is the correct property

17



to consider when aiming for a central lim it theorem. Since the concentration 

property can be derived from bounds on the second and fourth moments, they 

study such inequalities and find them to be persistent under the operations 

of forming isotropic normed cones, cartesian products, joins and p-products 

and hence they prove the concentration hypothesis for a wide class of bodies, 

[22], [7]. They also obtain fine estimates for the central limit theorem for the 

cube and regular simplex in [8 ].

1.1 P roo f o f T heorem  1.1

The proof of Theorem 1.1 is composed of three main steps. We begin by 

considering not the individual X q and ge, but an average of the integral of 

ge over all 9 :

A{t) = f  f  ge{s)dsdo{9)  .
J  S n - l

This averaging enables us to ignore how the volume of K  is distributed within 

the relevant spherical shell. We approximate A{t) by an integral over K ,  of 

an integral of densities of Gaussian random variables with different variances. 

The concentration hypothesis is then used to show th a t most of the Gaussians

18



have about the same variance. This will ensure th a t

M't) -  J  g{s) ds < 4 6 + - ^  .
yjn

The second step does not use the concentration hypothesis a t all. The 

most im portant issue is to show th a t 9 e(s) ds is the reciprocal of a norm 

restricted to the sphere. Once we know this we need only estim ate its size 

to get a Lipschitz estimate on this function. Then applying a standard con

centration of measure result, we get th a t for each t, in most directions, the 

distribution functions, P(|%g| < t), are essentially the same regardless of 

whether the body satisfies hypothesis (1 .1 ):

a ge{s) ds -  A{t)
-t

Combining this with step 1 which told us tha t A(t)  is close to  the integral of

9  gives

a
pt

ge{s) d s -  g{s) ds 
- t  J - t

nŜ
> 0  +  4 e - h - ^ Y j  < 2e~^

for each positive 6 .

Finally, by dividing the real line into intervals of appropriate width and 

using the Lipschitz property of the function

H{t) =
-t

g e { s ) d s -  j  g{s)ds

we obtain a result for every t simultaneously.

19



1.1.1 The spherical average of P{\Xe\ < t)

In this section we estimate the spherical average, A[t), of the probability

P{\^ô\  <  t)- Indeed we show that for any fixed t, A{t)  is close to the integral

of the Gaussian density, g, provided K  satisfies the concentration hypothesis.

The method here is similar to that used by Perissinaki to show th a t for Ç

balls the spherical average of the marginal densities tends to g.

We begin with a simple geometric lemma which approximates the average

A{t) by an integral over K.

L em m a 1 . 1

t y / n

A { t )  I I e ~ ^  d vd x
V ^ J k  Jo

<
\ / n

Proof: If t; is a unit vector in R ” , then 

We then have:

 ̂ge{s)dsda{6) =  J  J  voln-i (^K n (̂ {6}'  ̂+  dsda{6)

l{-t<{x,e)<t}dxda{6)

M i "
( 1.2)

K C ( l - U ^ ) ' ^ d u’0

20



It is not difficult to obtain the following estimates for the denom inator 

in the integrand. (The upper bound is obtained by estim ating the integrand 

by the exponential function and the lower bound by estim ating the square 

of the integral and changing to polar coordinates).

= < y { 1 - u )   ̂ du <
‘l y /  71 — 1 Jq 2y/ Tl — 3

These estimates can then be used first to  show th a t (1.2) differs from 

f  2y/n 9..—  . {l — u ) ^ d u d x  (1.3)

by a t most and then to  show th a t (1.3) differs from the required integral

over K  by at most □

From now on, let

2 r  a 2

Fis)  = —=  /  e " ^  dv
Jo

denote the integral of the Gaussian density with variance s^. To show 

th a t A{t)  is close to J^^g{s)ds, clearly we need to show th a t the average 

F  (;J^ ) dx in Lemma 1.1 is close to F{p). Here we invoke the concentra

tion hypothesis.

We divide K  into two subsets: K i,  where ^  is within ep of p, and its

complement in K ,  K 2 . Since we find F{s)  to be Lipschitz with constant ^

21



near p. F  is within 2e of F{p) in K\.  The volume of K 2 is sufficiently 

small for it not to  m atter how far apart the functions are here.

Let

K 2 = K  C\

|x| 
^/n  
|x| 

'n

<

> ep

Then

<
J k , \ v n

-F(p) dx  + dx.

To estimate the second integral, we need only recall th a t F  and

F{p) are at most one. Therefore, by the concentration hypothesis.

I K # ) - ' ' " " dx < 2 \K2 \ < 2e,

For the first integral we shall use a Lipschitz estim ate for F . The deriva

tive, |F '(s ) |, is bounded by j  so, provided s >  f , we have a bound of order 

p“ L In Ki,  ^  > I  since e < ^ and therefore

Ki
dx <

r  2 Ixl
/ -

J k , P
dx

< / 2e dx
J k ,

<  2s.

22



So we have

<  4s.

Combining this with Lemma 1 .1  we get

A{t) -  J  g{s)ds
Cl

< 4c H— -= □ 
\ f n

1.1.2 The Lipschitz property of P{\Xg\  <  t)

The problem is now to pass from an estimate for the average, A{t),  to  an 

estimate for specific directions. We show th a t in most directions ge{s)ds is 

close to  A{t)  regardless of whether K  satisfies the concentration hypothesis. 

Then we combine this with the result of the previous section to get th a t 

under the concentration hypothesis, for each positive t and

"  y g{s)di

Central to the proof is a standard concentration of measure result of 

the type developed by Milman and others, based upon Levy's isoperimetric 

inequality on the sphere. A simple exposition of this kind of result can be 

found in [2 ].

Lemma 1.2 I f  f  : 5"“  ̂ —> R  is 1-Lipschitz and M  is its median, then

a  ({^ : 1/(6») -  M \ >  (̂ }) <

>(5 +  4e +  ^ A  < 2 e“ ”̂

23



The above tells us th a t the median is close to the mean, m, by the following 

simple argument:

\m — M\ =

<

f{9) d a { e ) - M
S n - l

[  \ f { e ) - M\ da( e )
Js"-'

roo
/ a { { e : \ f { e ) - M \ > t } )

Jo
oo 2

< 2 I e ~ " ^ d t  =

Hence we obtain a similar result for the mean:

C o ro lla ry  1 . 1  I f  f  : —)■ R  Z5 1-Lipschitz and m  is its mean, then

a  T e  : | / (e)  -  m| >(5 +  ^

Obviously we shall take p_^gQ{s)ds to be our Lipschitz function of 9 and 

so our m will be A{t), which we already know from section 1 .1 .1 to  be close 

to  the required J^^g{s)ds.  To obtain the Lipschitz estimate we shall show 

th a t j[^gQ{s)ds is the reciprocal of a norm (restricted to 5 ”“ ^). To do this, 

we apply the following Theorem of Busemann to a certain convex body in 

constructed from K.

T h e o re m  1 . 2  (B u se m a n n ’s T h e o re m ) Let C be a symmetric convex body 

in R ” , and for each unit vector u let r{u) be the volume of the slice of C by

24



the subspace orthogonal to u. Then the body whose radius in each direction 

u is is itself convex.

Lemma 1.3 below is closely related to the so-called “convexity of the floating 

body” which was proved simultaneously by Meyer and Reisner [14] and by 

Ball. As in the la tte r’s argument we apply Busemann’s theorem to AT x [—1 , 1] 

but the difference here is th a t the earlier proofs involved slabs of fixed volume, 

whereas here we fix the slab width.

L em m a  1.3 For all positive t,

ib ii =  1̂ 1
! l t 9 ^ { s ) d s

defines a norm on R ” .

. We will denoteProof: Let us first recall th a t = K  H -h

the volume of the slab of K  perpendicular to x  and of width 2t,

v{x, t )  =  J  g^{ s ) ds .

Our aim is thus to prove the following triangle inequality for all x , y  e R ” :

1  { k l  I I z / I  \  >  1 4 ^ 1
2 \ v ( x , t )  v { y , t ) J  v ( ^ , t )

Notice th a t the result is obvious when the angle between x  and y is zero or

7T.

25



We consider the convex body

K '  = K x [ - l , l ]  C

shown in Figure 1.1. Busemann’s Theorem tells us that, since K '  is a sym

metric, convex body in then defines a norm on R ”+F Hence

1̂ 1 + >
K '  n ( ^ ) JL2 V |i^ 'n^-L | \K'D(j)^\ ' -

for all 9,(f) e

Given x  e R ” and t = where r  >  0 , if we choose u e as

(1.4)

u
\x\

then the projection of K '  n  onto the first n  coordinates is precisely the 

slab of K  perpendicular to x  and of width 2t. The ratio of v{x,t )  to  the

volume \K'  nw-^| is then just y /l  — r^. (Observe th a t r  determines the angle 

between u-*- and R ”).

Now take 0 = \x\u  so th a t \K'  fl u-*-| =  \K' D 6-̂ \ and |^| =  |a;|. Then 

inequality (1.4) simplifies to

kl \v\
2 \ v { x , t )  v [ y , t ) j  y j l  -  r 2

>
0 + 4>

2

K 'n  ( ^ )

where we have repeated the above for y e R ” with (f).

26



e

yjl  — r

K ' n u ^  = K ' n

Now

Figure 1.1: K '  = K  x  [—1,1]

9 -{-(j) (  [x + y)
= r (k l +  b l)

Hence the projection of K '  D ( ^ )  is a slab perpendicular to whose 

width now depends on r, and In fact the width is 2 s where

\x + y\

27



and we get

v { ^ , s )  a/1 -  ( | i |  +  13/1)

A 'Tl ( ^ ) - ^

Inequality (1.4) thus simplifies further to

o I d+<f>
I 2

kl I \v\ \  ^ 1 (|j| + 13/1)
2 \ v { x , t )  v { y , t ) J  2 v { ^ , s )

Now we need only notice th a t for any a > 1 and x e v{x ,a t)  < av{x , t )  

since g ^ ( a s )  < g ^ i s )  for all s. So ̂lr| '' / -- = ^

1 M ± M  >  14^1 n 
2  4 4 " ,  4

Since J^^g0{s)ds  is the reciprocal of a norm, we can get a Lipschitz 

estim ate for this function, ju st by estim ating its size. This we do in the 

following lemmas. The first follows from the fact th a t ge is a log-concave 

function, (a well-known consequence of the Brunn-Minkowski inequality). A 

proof of Lemma 1.4 can be found, for example, in [3].

L e m m a  1.4 For all positive t,

/OO 1

28



L e m m a  1.5 For each t there are constants a and b so that «/ ||x || =  -r—" " Lt9 ^{s )ds ’
\x\ 

then

al^l < ||x || < b\x\

where ^ <  5 and ^ < 1 .

Proof: We shall use the two following well-known facts about log-concave, 

even functions which are decreasing on [0 , oo) to  relate the value (̂?(0 ) to  the

variance, p^:

and

poo /  poof i ^ f  J  dx < 2 l j  f{x) dx

/(O )^y^ x'^f{x)dx^ > provided J  f {x )dx  = l.

Substituting ge for / ,  it quickly follows tha t

 ̂ < s«(0) < ^
\ / v l p  y /^ p

Using the right hand estimate and the fact th a t an even, log-concave 

function has its maximum at zero we get

[  ge{s) ds < min {2 tpg(0 ), 1 } <  min i 1
-t
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and using the left hand estim ate alongside Lemma 1.4 we have

/ t poo
ge{s) ds = 1 -  2 y ge{s) ds

> 2 _  g -2p«((0)t

Therefore, taking

>  1 — e

.  . ( t 1
>  mm < — ,

3p’ 3v/2 J ■

a =

b =

mm f . i }

mm

we obtain the required bounds, whatever the value of K (This is desirable 

as it stops t and p from entering our estimate a t this stage). □

We are now ready to obtain the estimate for specific directions. As was 

explained earlier, we need to  determine a Lipschitz estim ate for J^^ge{s) ds,

i.e. to find a constant d such th a t

 ̂ g e { s ) d s -  f  g^{s) ds 
- t  J - t

Now, with the norm notation used above,

J  g g { s ) d s - J  g,p{s)ds

9 -  (f)\ for 6 ,(f) e

1 1

ll^ll IWI

7n—1
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<
l l ^ l i  l l ^ l l

<  5 |g - ÿ |

by Lemma 1.5.

Coupled with this Lipschitz estimate, Corollary 1.1 immediately gives

a U O : ge{s) ds -  A{t)
-t

> 5 + - ^
V n

< 2 exp

Combining this with the result of section 1 .1 .1 , which estimates A{t), we get

^  "  y 9{s)di > +  4:6 + C3
\ /n

< 2  exp

as required. □

1.1.3 A result for every t simultaneously

To finish this section, we pass to a statem ent which holds for every t simul

taneously. This then tells us th a t most X q are close to a Gaussian r.v. with 

variance p~.

For a given 9, let

H{t) =
't r t

g9{ s ) d s -  /  g(s)ds  
- t  J - i
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be the error at position t.

We saw in the proof of Lemma 1.5 th a t is bounded above by

_ .2
and we recall th a t g[s) is the Gaussian density ^ . Hence

p  p y / ^

So H  is Lipschitz with a constant like K

By pinning H  down at appropriate points we can use the Lipschitz prop

erty to pin it down elsewhere as long as we allow an additional error. We 

need only consider points in [0, 2plogn] since we see, with the aid of Lemma 

1.4, th a t H  is sufficiently small for all t beyond this interval. Dividing this 

interval into 2 > /nlogn smaller intervals of length gives an additional error 

of {^y/2 -I- which is absorbed by the earlier error terms. We thus give

up a factor of 2 ^ /n \ogn  in the probability:

Let us denote the points at which we pin H  down by U. So H{ti) < ô - \ -4e+ ^ ,  

ti < 2plogn and (tj+i ~ U) = ^  for all i. Since H  is Lipschitz, for any 

t 6 ,

=  J  g e ( s ) d s - J  g { s ) d s g e { s ) d s  -  j  ge{s)ds^ g[s)ds -  j  g{s)ds^

< ( ------1-----{U+l — U) 6 ^  4s -{— y=
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=  I V 2 + 4 = ) ^  + S + 4 s+

Therefore

a { ^9  : H{t) <  (5 +  4e H— ^  for all t

> cr <  (5 +  4e +  -^= for all i

= 1 — (7 : H(ti) > (5 +  4& T " -̂= for some i

>  1 -  (1̂  •

> 1 — (number of intervals) 2 e ^

=  1 — 4^/n\ogne nil
50

Clearly the aim here was to choose interval widths to  shrink the upper bound 

on H(t)  whilst keeping the number of intervals small. So 

Under the concentration hypothesis (1-1), for 5 > ^ we have,

a : i / ( t )  <  (5 +  4e + - ^  for all f >  1 —4 ^ /n lo g n e '

>  1 — 4 n e 50

1.2 T he concentration  property for Ç balls

In this section we show that Ç balls satisfy the concentration hypothesis 

(1 .1 ) with 6  The proof here is a sketch of th a t given by Perissinaki in
n3
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[15],

The precise statem ent is the following, in which p\  is the variance for the 

appropriate ball.

T h e o re m  1.3 I f  P  is the Lebesgue measure on the normalized Ç hall, K ,  

then for all positive numbers r,

> r  <
nr"

The estim ate depends upon a subindependence property for the comple

ments of coordinate slabs in the Ç ball proved by Ball and Perissinaki in 

[5]. Here we offer a more succinct proof which was alluded to in the afore

mentioned article. However, as with the earlier proof, the argument depends 

on the property of the Ç ball th a t each slice perpendicular to  a coordinate 

direction is also an Ip ball of dimension n  — 1 .

L em m a  1 . 6  (S u b in d e p e n d e n c e  o f c o m p le m en ts  o f c o o rd in a te  s lab s)

I f  P  is the Lebesgue measure on the normalised Ç ball, K ,  then for any se

quence t i , . .. ,tn of positive numbers,

p  ( ^  ) <  n ^ ( { i ^ d  > ti})\i^l J i=l
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Proof: Plainly it is enough to prove th a t

We first rewrite the above with S  = 0 ^=2{I >  <%}:

\ K n S n { \ x , \ > t , } \  \ K n { M > t i } \ \ K n S \
\K\  -  \K\  \K\  '

Now we use the obvious fact tha t if /  : [0,1] —> R  is increasing and satisfies

f  fdj^ = afi[0 ,l]
Jo

for some positive measure fi and constant a  >  0 , then

[  f d f i < a ^ [ 0 , s ]  for all s e [0,1] . (1.5)
J o

We take

| j fnsn{|xi |  = i - 4 l

which is clearly increasing since each slice TiT D {|rci| =  1 — u} is an ball,

and let

'  \K\

be the density of our measure ii. Then

r  r  | i rn5n{ |x . |^ i - t . } | | ;rn{ |x , |  = i - ^ } |
7o Jo |/fn{|xi| = l - t , } |  \ K \

\ K n S \
\K\
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and

Taking a  =  and s =  1 — ti in (1.5) completes the proof. □

The corollary below follows directly from the subindependence result, 

Lemma 1 .6 , if we notice th a t

/ ^ 1^2  can be expressed as 4 / uvP{xi  > u , X 2 > v)dudv  .
J  Kn{xi>o,x2>o] J n l
C o ro lla ry  1 . 2

J K  J k  J K
xl

' K  J K  J K

The proof of Theorem 1.3 relies on the fact th a t \x\^ can be written in 

terms of a :/ and Ik The second term  is dealt with using

subindependence via Corollary 1.2. For the first we use a cruder estim ate 

derived from standard results concerning log-concave functions:

The crudity doesn’t m atter since there are so few contributions to this term. 

Proof of Theorem 1.3: We first prove th a t ^  |%|  ̂ is close to namely

that,
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The first inequality is obvious by Cauchy-Schwarz. 

For the second one we have:

n

Jk  Jk  J k

< S6 np^ +  n (n  -  l)p^

35

From this we can conclude tha t the integral is small and

therefore th a t in general ^  is close to p^. Indeed,

0 <
' K

\X\

n pI n

nh i
2̂ 1̂ ~  - P n '^ P n  +  Pn

<

^  JK
35

P n

n pi-

So by Chebychev’s inequality we have:

P
n pI > r ] r = P Pi

n n ] —> 1
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\x 12 \  2

-  A l " - '

By factorising the difference of two squares, we can estimate the deviation

2

of instead ofy/n n

C o ro lla ry  1.3 For all positive numbers u,

W nP
x\

— pny/n
>  If <

nu^

By taking u to be of the order of -V we obtain ^-concentration with
n3

e  %
n5

R e m a rk : It can be easily seen using the coordinate symmetry of balls 

th a t for fixed n  and p, each random variable X q on the normalised has the 

same variance, p^. To see tha t pn tends to a value bounded in p as n  ^  oo, 

we notice th a t since we can express x \  as the integral of the volumes of 

lp~^ balls, we have

P n ^ C p  y  e p dy .
Jo

Now Op is a constant which using Stirling’s formula can be seen to  be bounded 

in p, a fact th a t is also true of the integral.
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1.3 T he concentration  property  for uniform ly  

convex bodies contained in sm all E uclidean  

balls

K  is said to be uniformly convex if for every 7  >  0,

inf | l  -  — : ||a:||, II2/II <  1 , ||T -  y || >  7 |  =  <^(t) >  0

where ||. || is the norm whose unit ball is K .  We shall consider bodies for

which there is a constant, c, such th a t

(̂ (7 ) >  C7  ̂ for some 2 < q < 0 0  (1 .6 )

and assume tha t

K c R V ^ B ^  . (1.7)

Then we shall show tha t

T h e o re m  1.4 For K  satisfying (1.6) and (1.7), there is a constant, C, such 

that

P
x\ 
n

^  C 7 ^ \/lo g n \ ^  4

719 n

and hence we have concentration as long as fi = is small. Notice
n‘1

tha t in order for fi to be small for a body with a good modulus of convexity
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(i.e. with q small in (1.6)), the Euclidean ball containing it may be quite 

large. As K  becomes less uniformly convex, it needs to be contained in a 

smaller ball.

Conditions (1.6) and (1.7) are satisfied in an appropriate way by all 

balls, for 1 < p < oo, see for example [4]. For 1 <  p <  2, ^(7 ) >  ^ ^ ^ 7 .̂ 

Here the bodies exhibit good uniform convexity since the power of 7  remains

2. This compensates for the fact th a t R  % On the other hand, for

2 <  p <  0 0 , the uniform convexity deteriorates rapidly since here, 6 (7 ) % 7 ^. 

However, in this case R  is a t most a constant.

Theorem 1.4 is a simple corollary of the following result of Gromov and 

Milman [11] which guarantees tha t uniformly convex bodies exhibit concen

tration with respect to the distance given by the norm. (A short new proof 

of this was recently found by Arias de Reyna, Ball and Villa [1] and arose 

from a sequence of ideas of Talagrand [19], Maurey [13] and Schmuckenslager 

[17].) We use hypothesis (1.7) to transfer the estimate in Theorem 1.5 to  the 

Euclidean distance.

T h e o re m  1.5 (G ro m o v -M ilm an ) I f  A  C K  has positive measure, and 

d[x,A) is the distance from x to A (measured in the norm whose unit ball is
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K ), then for any e > 0

P{d{x ,A )  > e) <
ç-2n5{e)

P(.A)

Proof of  Theorem 1.4; Let A be the median of ^  on i f  and A  =  <  A^

Then by Theorem 1.5

and

>  or) <

Now i ï y e A  and d{x,y) < 7  then \x — y\ < Ry/ri'y since K  C Ry/nB^ .  

Hence

P  (I |a;| -  A\Æ| >

This implies th a t for some constant c', the mean, p, differs from the median, 

A, by a t most c 'Rn~^ . Hence

> R j  + c ' R n - ^ j  <  

and letting 7  be of the order  ̂ we get the theorem. □
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Chapter 2

A Local Central Limit Property

In this section we use the main result of Chapter 1 and a property of the 

marginal density, ge, to show that, except on a set of directions of small 

spherical measure, for all x e R , ge{x) differs from the Gaussian density a t x  

by very little.

To recap, in Chapter 1 we used a standard concentration of measure result 

on the sphere and the Lipschitz property of ge{x) dx on the sphere to show 

th a t, for most directions, the integrals of the marginal densities are roughly 

the same. It was then shown that this common integral is approximately th a t 

of a Gaussian. So Theorem 1.1 says th a t under the concentration hypothesis, 

for (̂  >  0 , the integrals of the densities differ by at most Ô 4e ^  in most
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directions.

Unfortunately, a similar method cannot be used to  show th a t the densi

ties, ge and g, are locally close for most 6  since ge{x) is not Lipschitz on the 

sphere for all x. (Consider, for example, the case when 9 is near a coordinate 

direction and K  is the cube.).

We can, however, derive the local central limit property from Theorem 

1.1. The idea is th a t in addition to knowing tha t most ge have integrals close 

to Gaussian, we also know tha t each ge is rather smooth. To be precise, ge 

is log-concave. So in our argument we consider the convex function — log ge 

and, for each spherical direction in Theorem 1.1, aim to show th a t if this 

is far from — log^ at any point, then the integrals of the densities on an 

appropriate interval are far apart. The only drawback to  this m ethod is 

tha t, unlike in the weak-type result of Chapter 1 , here we need to  assume a 

bound on the variance, p^. It is not entirely clear why such control is required 

when moving from a result for integrals to a local estimate.

Before stating the main result of this section, we remark th a t in order 

to simplify calculations we enforce some extra control a t zero and further 

restrict the spherical directions we are considering to those for which ^g(O) 

is very close to ^ (0 ).
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The main result of this section is the following:

T h e o re m  2 . 1  There are constants, c, for which, under the e-concentration 

hypothesis, for  6 >  0 and a  = y / ^ p {6 +  ^  +  cs), assuming ot is less than

1
10^

a \ {B  \ge{x) -  g{x)\ < c j o  log ^  j  for all x \ j  > 1  — 6 n e

2.1 M eth od

For the spherical directions in Theorem 1.1 we wish to show th a t if a t any 

point — log go is far from — log g then the integrals of the densities on some 

interval are far apart, giving a contradiction. A brief outline of the argument 

is as follows.

We know th a t — logp(a:) is equal to lo g ( v ^ p )  +  ^  and we assume 

th a t at a particular point, z, — log^g and — logp are a given distance apart. 

If the logarithms are close at zero, then , since — log pg is convex, we can 

estim ate from below the distance between the two functions, on some interval, 

by comparing — log pg with a linear function. The distance between the 

functions at z then ensures tha t the integral of this calculated estim ate on 

the aforementioned interval is sufficiently large.
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It is our first task, therefore, to  estimate the distance between the log

arithm s at zero. We can get bounds on ^0(0 ) directly from results on log- 

concave functions, as in Lemma 1.5:

 ̂ <  fle(O) <  - 4 - '  (2-1)

However this method does not give very good bounds. We could also use 

Theorem 1.1 to show th a t the functions are close a t zero by noticing th a t 

if this were not the case, the integrals of the densities on an interval close 

to zero would be large. However, we choose a simpler argument which gives 

th a t for most 9, |^0(O) — g{0)\ is small. This is described before we give the 

main part of the proof of Theorem 2 .1 .

L e m m a  2 . 1  Under the e-concentration hypothesis, for  5 >  0,

: 1̂ 0 (0 ) -  g{0 )\ < 5 + ^  + >  1 -  2 e ~ ^

Proof: The proof here is very similar to, although somewhat simpler than, 

the first two steps in the proof of Theorem 1.1 so we simply highlight the 

main issues involved. The argument splits into two parts, namely showing 

th a t ^0 (0 ) differs from i t ’s mean over the sphere in very few directions and 

showing th a t this mean is close to g{0 ).
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For the first part, as we are dealing with central slices, we apply Buse- 

m ann's theorem directly to show th a t pg(0 ) is the reciprocal of a norm re

stricted to the unit sphere and hence, using (2 .1 ), Lipschitz with constant 

— . Applying the concentration of measure result. Corollary 1 .1 , we get:

a U e 9 e { 0 ) -  [  g9{0)da{9) (2 .2)
»5n-]

For the second part we estimate the mean over the sphere by an integral 

over K  of Gaussian densities at zero with different variances:

[  gg{0 ) d a ( e ) -  f
J k  Fl V 27T

< c /■ 

J kn J k  \/0Jk |a;|

and, as before, we invoke the concentration hypothesis to show th a t most of 

these Gaussians have about the same variance, namely p^. We remark th a t, 

unlike in the proof of Theorem 1.1, where integrating the densities made 

things nicer, here we must divide K  into four sections to deal with the case 

when |x| is small:

As before we denote by K i  the region iL D |  j — p <  g p j and use a Lip

schitz property, this time of the function to show th a t ^  is close to  J in 

this region. To get th a t ^  is like zero elsewhere we divide the rest of K  into 

the subsets given by

K,,,  = K n | — < —
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{T \x\
—j= < < p — ep

\x\

where r is chosen so th a t r^Vn\/n = 1 . i^2,2 and i^2,3 are dealt with quickly 

using the concentration hypothesis which tells us th a t their volumes are small 

enough for it not to  m atter how big ^  is there. For i^2,i (where |a:| is small) 

we notice tha t

f
J k 2,1 pI

=  riy/nvn
Jo u

du,

where B "(r) is the n-dimensional Euclidean ball of radius r and Vn is the 

volume of J5” (l).

So, from the second step we get

ge[Q)) da(9) -  g{^)I <  —pz +  C£ 
y/n

and combining this with (2 .2 ) we obtain the result. □

2.2 P ro o f o f Theorem  2.1

Assume th a t ge is such th a t its integral is close to th a t of g for all t C R :

•i r t
J  9e{x) dT - y g{x)  dx < 6 + As

y/n
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Assume also the bound on ^g(O) given by Lemma 2 .1  so th a t 

where

a  — V ^ p  ( (5 4- +  C6 I .
\  /

The idea is to show th a t ge{x) is close to g{x) for all x  by examining 

the difference between the convex functions —log ge{x) and — log g{x) — 

lo g (V ^ p ) +  f p .

To simplify the calculations, we rescale ge by the amount required to  

make it equal to g a t zero and call this rescaled function hg,

Notice th a t provided a  is not too big, we have only scaled ge a little. So if 

we restrict to a  <

To show th a t ge is close to g it then suffices to  show th a t he is close to 

g. Since the integral of ge is less than one and is close to the integral of g, 

it is clear th a t the integrals of g and the new function he are also close. So 

since p  cannot be too small, (we know th a t p^ is larger than the variance of
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the normalised Euclidean ball, there is a constant, c', for which

hg{x) -  g[x) dx
-t

< ^(0 ) -  1
s«(0 )

+ 5 + Ae-\— -j= < d  a  for any t. (2.3) 
y/n

(This constant, c', will reappear throughout the argument). So the idea is 

to show th a t if a t some point — log Hq differs significantly from — log g then 

the difference in their integrals over an appropriate interval will be big. In 

other words we will show th a t if for some z e H , — loghe{z) and — logp(z) 

differ significantly then

hg{x) — g{x) dx
s

for some interval [s,^], so tha t

>  c 'a .

hg(x) — g{x) dx
-t

+ J  hg(x) -  g{x) dx

>1 
-  2

J  hg{x) -  g{x) dx -  J  h e { x ) - g ( x ) d x

■t
hg(x) -  g{x) dx 

> c'a ,  contradicting (2.3)

We first remark tha t we do not need to worry about the case when the

two functions are far apart for x  > p ^ l o g  as long as they are close for 

smaller x. This is because g[x) is small for large x  and ge{x) is decreasing 

so the functions are automatically sufficiently close.
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We consider two cases: when — log^(a;) is assumed to be significantly 

larger than — \oghe{x) at some point and, vice versa.

Case 1 .- — log^(z) significantly bigger than — log/i^(z).

We shall show th a t the logarithms differ by no more than 7 , where

   ̂ 1
1 ( 16c'y/2fiv

7  =  0;4
l o g s

We consider separately the case when z is close to zero and otherwise.

,- lo g  he{x)

Figure 2 .1 : — logp(z) bigger than -  log (z small).

If z is small, — logp(z) cannot be too much bigger than — log he{z) simply 

because — log Ag is symmetric about zero and so is bigger than — log^(O),
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see Figure 2 .1 . So we automatically have

- \ o g g { z ) ^ \ o g h e { z )  < -  log g(z) + log g (0 )

z^
2 p2

for all z. Therefore for z <

3
-  logg{z) + loghe{z) <  - 7 . (2.4)

Suppose then th a t — log g is significantly bigger than  — log he a t some

point z > Y^p^7:

-  log g{z) +  log he{z) > 7 . (2.5)

We wish to show th a t this implies th a t the integral oï he — g is bigger than  

cf a  on some interval to give a contradiction to (2.3).

By the convexity of — log/10, we see using Figure 2.2 th a t for all T <  z

- lo g i^ (x )+ lo g / i0 (o:) > - l o g g { x )  -  Li{x)

= - l o g g { x )  -  ( - l o g 6/(0 ) +  ^ ( - lo g p ( z )  - 7  +  log^(0 )))
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z

Figure 2 .2 : — log^(z) significantly bigger than — \oghe{z), (z big).

It is not difficult to  check that

so taking exponentials in (2.6) and integrating over a region where (2.7) 

holds, we get

I
he{x)dx > 

y Jy
g [ x ) e ^  ^   ̂ dx

> / g{x)e^ dx.
Jy

Now taking the integral of g{x) from each side and estim ating from below in 

the natural way we have tha t the integrals of he and g differ by a t least a

52



certain value:

/ he{x) -  g{x) d x >  g{x) f e 2 — 1 j  dx 
Jy Jy

> L \  -  l )
82 s / ï i p  \  )

> 1 g- ^ 2
-  82 2 '

To see th a t this value is big we recall tha t we are only interested in z <  

p ^ \ o g  K  Therefore e ^  > y/a  and

f he(x) -  g(x) dx > —
Jy 1 6 V ^

=  c 'a ,

substituting in the value of 7 . So we have a contradiction to (2.3).

We conclude then that for z >

-  logg{z) log he{z) < 7  ( 2 .8)

and, combining this with the result for small z, we have th a t (2 .8 ) holds for

all z e R . So for all z e R

he{z) -  g{z) < - j —  e ^  (e'*' — 1). (2.9)
v27rp

Now we need only notice th a t since 7  is less than some constant, we can find 

a c such th a t (e”̂ — 1 ) < 0 7  to give

he{z) -  g{z) < c^. (2 .1 0 )
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Case 2 ; — \oghe{z) significantly bigger than — \ogg{z).

The argument for Case 2 is very similar to th a t for the previous case 

except in th a t here we do not need to consider small and large z separately. 

Nevertheless we include the proof for completeness.

We will show th a t the logarithms differ by no more than

z

Figure 2.3: —\oghe{z) significantly bigger than  — \ogg{z).

Suppose th a t the log functions at some point, z, are far apart:

- lo g / i 0 (z) +  logp(z) > /3. (2 .1 1 )

Then we can observe from Figure 2.3 th a t by the convexity of — log fig, for
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all X > z:

- l o g h 0 {x) -\-\ogg{x) > l 2 {x)-^ \ogg{x)

X
= -  \ogg{0) +  -  ( -  logg{z)  +  0̂ +  logp(O)) +  logp(x)

z

As before, we wish to simplify this bound and find th a t

provided x <  z +  ( To show this we notice th a t the left hand side is less

than or equal to one provided x < z + and, since we are only interested 

in T >  z, we use th a t for 0 <  t <  0̂, e“* < 1 — t). The above estim ate

can be simplified if we restrict x  further to x <  z +  ^  by noticing th a t, for 

such X, the quadratic on the right hand side is greater than or equal to So 

taking exponentials in (2 .1 2 ), applying the above estimates and rearranging 

we get

g{x) -  he{x) >  (1  -

for z <  X < z +

At this stage in Case 1 (large z) we simply integrated over the region 

where the estimates were shown to hold. However, here we have not restricted 

ourselves to large z and so if z is small the region over which we would be
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'Z+min<

integrating would be large. So we choose instead z +  min jcp , as the 

upper lim it of integration, where c is chosen so th a t the minimum is always 

greater than Once again, we bound the integral from below in the

natural way and observe tha t we are only interested in z <  pyjlog K

>  min (cp ,I 22 J 2 Æ p 

2 \ / l o g i  2 % /^

It is clear th a t since a  is bounded above by a constant (and hence also 

/3) th a t ^(1 — e~^)e~2  can be bounded below by a constant times /3 .̂ So the

right hand side is greater than or equal to

- s i  / -ce  2 y/a

which is equal to o' a.

So again we have a contradiction to (2.3) and

-lo g h g (z )  +  logp(z) <  13

for all z e R . Hence after reversing the above inequality and using the fact 

tha t e~^ >  1 — /? we have

g(z) -  heiz) < < c/3.
V 2 ttp
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So combining the above with (2.10) gives a local estimate for |hg —p| . □
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Chapter 3

A Concentration Estim ate for

the Cube

In this chapter we prove a deviation inequality for the cube using a m ethod 

developed by Marton to show similar results for Markov chains. Talagrand 

named this method the transportation method when simplifying M arton’s 

arguments for certain product spaces.

Let us consider the cube, [0,1]"' C R ” , and denote by P  the n-dimensional 

Lebesgue measure on it. If B  is any measurable subset of the cube, let Bt  be 

its expansion,

Bt = {x e [0,1]" : d(x, B) < t},
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where d(x, B)  denotes the Euclidean distance from x  to  B.  We shall prove a 

deviation inequality of the form

(3.1)

provided B  does not have too small probability, where d  is a constant de

pendent on P{B).

Concentration results of this form have been known for the cube for some 

time. Indeed, it was pointed out by Tsirel’son in [21] and independently 

by Pisier (see e.g. [13]) th a t inequality (3.1), with bound can be

obtained directly from concentration in Gauss space via a measure preserving 

Lipschitz map. Here our objective is to point out th a t the transportation 

method works directly for the cube and, more importantly, to ascertain the 

best constant th a t can be found using this method. This constant is better 

than those obtained by traditional methods and cannot be far from best 

possible. Finding this constant gives rise to a “text-book example” of a 

variational problem which has a surprisingly neat solution.

M arton’s original method uses an inequality bounding the so-called d- 

distance by informational divergence to prove a concentration of measure 

result for certain Markov chains (see [12] for definitions and a detailed ac
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count). The im portant thing in her method is th a t her one-dimensional in

equality can be inducted on dimension and quickly implies a concentration of 

measure result. M arton’s method certainly works for product spaces. How

ever, Talagrand simplified it and strengthened the result for certain product 

spaces in [2 0 ], by considering /2 , rather than /%, distance in the inequality. 

More precisely, Talagrand’s inequality bounds the so-called transportation 

cost, w ith the square of the /2-distance as the cost function. The definition 

of transportation cost is as follows.

Suppose we have two probability measures fii and 112 on measurable 

spaces Qi and ÇI2 respectively. The basic idea is to look at all bijections 

h -.0.1 0.2 which transport ii\ to fi2 , i.e. for which

/j.i{A) =  ii2{i>(A)) whenever A C

For a given function C \ Oi x (I2 —̂ U {0 0 }, where C{x^y)  measures the 

cost of moving a unit mass from x  to y, we seek to minimise

f C(x,b(x))  djLii(x).
JQi

If or /i2 has atoms then there may be no such function b. So, formally, 

the transportation cost is defined in terms of an integral over the product 

space X ^2  with respect to a probability measure with marginals jui and
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fi2 - However, in our case ^̂ 1 = ^ 2  =  [0,1]” and our measures will be the 

Lebesgue measure on the cube itself and a weighted Lebesgue measure on 

one of its subsets, so we can work with a transport function, b.

As already mentioned, we shall use the square of the Euclidean distance 

as our '‘cost function” , C, just as Talagrand did for Gaussian measure. So 

now we can define the transportation cost, r( /z i,/ /2), to be the minimum, 

over all functions b as above, of

\x -  b{x)\2  dfii{x).

The main result of this chapter is the following:

T h e o re m  3.1 (Bound on Transportation Cost) I f  A  is a subset of  [0,1]” 

and n is the normalised restriction of  the Lebesgue measure, P,  to A  (i.e. 

has density 1a /P {A )  with respect to P) ,  then

r[p ,P )  <  -%log ^
TT̂ P{A)

From this it is easy to get a concentration estim ate using the following short 

argument. Let B  C [0,1]"\ The cost of transporting [0,1]” to  the complement 

of the expanded B,  jBf, is clearly greater than th a t of transporting B  (a subset
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of [0, Ij") to jBf. The Theorem gives an upper bound on the former and the 

latter is greater than So

Rearranging this we have

F (B ')  <

However, this bound can be improved by applying the Theorem to  B  as 

well as to B^ as in [1 2 ] and [20]. This gives the slightly better estimate

P{Bt)  < exp < - T  A -  ^7t2 °  P{B )

As already mentioned, we will see, in the proof of Theorem 3.1, th a t ^  

is the best constant th a t we can find using this method. Before we begin the 

proof, however, we observe th a t our constant is not far from best possible.

The following tells us th a t c' in (3.1) cannot be greater than 6 . Let K  be 

the cube of volume 1, now centered at zero. We regard AT as a probability 

space and define on it the random variable Xq : x  (%, ^), where 6  =  

- th a t the density of Xq is obtained by scanning across K
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with hyperplanes perpendicular to 9. Since

i = i

where X i  : a: e 2 ] are random variables with zero mean and variance

=  ^ .  the Central Limit Theorem tells us th a t as n 0 0

1 /*°° _ j d i
Prob { X q >  t )  —> - j = -  /  e ^  d y

-  ((12i)2 + l )®

Now we need only notice th a t the left hand side is precisely P{H^)  for H  C

[0,1]" given by the intersection of the cube with the halfspace through zero

perpendicular to 9\

H  = {x  e [0,1]” : {x, 9) <  0}. □

3.1 P roo f o f T heorem  3.1, (B ound  on Trans

portation  C ost)

We wish to show by induction that

r{li, f )  <  ^  log for A  c  [0,1]",
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where the left hand side is the minimum cost of transporting A  to  [0, Ij” . 

We shall begin by showing in section 3.1.1 th a t a result of the form

r(/z ,P ) <  c l o g - ^ ^  for A C [0,1]” , (3.2)

can be obtained from the following one-dimensional inequality for absolutely 

continuous /  : [0,1] -4 [0,1],

[  i f { t ) - t Ÿ  f i t )  di < c [  f  (t) log f ' ( t )  dt, (3.3)
Jo Jo

where c is the same constant in both inequalities.

We continue in the ensuing sections to use the Calculus of Variations to 

show th a t (3.3) holds for all appropriate /  if (and only if) c >  ̂ .  More pre

cisely we show th a t there is an optimising function satisfying an appropriate

Euler-Lagrange equation and then we analyse the solutions of this equation.

3.1.1 The inductive step

Let us choose one of the n coordinate directions, 6% say. We denote by g{t) 

the [n — l)-dimensional volume of A  intersected with the “slice of the cube 

at i e [0,1]” :

{x e [0,1)" : (x,ei )  = t}.
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The idea is th a t we first spread out A  in the Ci direction. We do so via an 

increasing, absolutely continuous function, / ,  which transports the (n — 1)- 

dimensional slices in the ci direction so th a t the proportion of A  between 

the slices at t  and t -hô  is equal to the proportion of [0,1]” between f { t )  and 

f { t  + S):

'p^ '^  =  /  (  ̂+  <̂) -  /W - (3-4)

The weighted cost of transporting in this way in one dimension is clearly

^  ( /W  -  i f  dt. (3.5)

We then use the inductive hypothesis, (3.2), to transport in each ( n — 1)- 

dimensional slice. The to tal of the transportation costs in all of the slices is 

at most

After substituting s = f{ t) ,  this is

‘1
c f  {t) log g (t) dt. (3.6)

'0

We see from (3.4) th a t f '{ t)  = -p ^ -  So to complete the inductive step 

we combine (3.5) and (3.6) and ask whether

^  f '{ t)  d t - c f ' { t ) ^ o g [ f { t ) P { A ) ]  dt < c l o g - p ^ .
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When rearranged, this is

^  ( f ( i )  - i ?  f { t )  d t - c f ' { t ) \ o g f { t ) d t  < [ l - f { t ) ) d t ,

which simplifies to

[  i f { t ) - t f f { t ) d t < c [  f  (t) log f  {t) dt, (3.7)
Jo Jo

since /(O) =  0 and / ( I )  =  1.

The same inequality handles the one-dimensional case because we can 

transport in exactly the same way in dimension one, where g{t) = ly^(t) and 

where clearly we will not be required to transport further within (n — 1)- 

dimensional sheets. So the transportation cost is a t most (3.5). Further, 

since f '{ t)  = we have

C log =  c ̂  f ' ( t )  log f ' { t)  dt. D

It is not difficult to find some c for which (3.7) holds (and hence such 

th a t (3.2),

t {/j, ,P)  < c \og
P ( A Y

is true). For example, if we rewrite the left hand side of (3.7) as below, we see 

th a t (3.7) holds with c =  2 by using the Csiszar-Kullback-Pinsker inequality. 

However we wish to  find the smallest c.
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We begin by rewriting (3.7). Notice th a t

[ if{t) ~  -  1) =  0, since /(O) — 0 and / ( I )  =  1.
Jo

So we can rewrite the left hand side of (3.7) as

f if{i) - tf
Jo

If we consider instead the deviation of /  from t, h{t) = f {t )  — t, then (3.7) 

becomes

f  h^{t) dt < c f  (1 +  h'{t)) log(l +  h'{t)) dt. (3.8)
Jo  Jo

Our problem is to find the smallest constant, c, such th a t the functional 

in (3.8),

^c{h) = f [c(l +  h'{t)) log(l +  h'{t)) -  h'^{t)] dt, (3.9)
Jo

is non-negative for all h in the admissible class of functions given by 

C = {h  absolutely continuous : h{0) = h{l)  =  0, h' > —1} .

This variational problem is the subject of the following sections.

3.1.2 The variational problem

Recall th a t our aim is to find the smallest c such th a t the functional is

non-negative for all functions in C. First we will show th a t for all c > 0, a
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minimiser of Te exists and satisfies the Euler-Lagrange equation:

(1 H- h!{ï)) h(t) 4- ^ h"{t) = 0. (3.10)

Then we will find th a t if c > the only solution of (3.10) which satisfies the 

boundary conditions of C, is the trivial one, h = 0. Hence T c > 0  for such c. 

To show th a t c =  ^  is the smallest constant for which T^  is non-negative, 

we will consider specific functions in our admissible class.

A classical theorem of Tonelli on the existence of minimisers of a one

dimensional variational integral.

T{v)  = J  F {x ,v ,v ' )  dx,

can be found, for example, in [9]. The standard conditions are th a t the 

derivative of the Lagrangian with respect to p, F{x,  v,p)p, and the Lagrangian 

itself are continuous in {x,v,p)  and th a t F {x ,v ,p )  is convex in p  and has

superlinear growth in p at oo (i.e. is such th a t there exists a function ${p)

such tha t

F ( x ,v ,p )  > 6 {p) for all (x, u ,p) e /  X R  X R

and -4 oo as |p| oo).

68



The superlinearity condition clearly does not hold for our Lagrangian,

Fc{x, u, p) = c(l +  p) log(l +  p) -

because the “u” term  could make Fc very small. However, it is not hard to  see 

th a t the standard arguments can be adapted to  demonstrate the existence 

of minimisers in our case. In fact, our Lagrangian has certain invariance 

properties which, if anything, make our problem easier than the general one. 

We include here a very rough explanation.

We wish to show that there exists a function u e C such th a t

Fc{u) = inf{7^(u) : v e C}.

Call this infimum A, say. From the boundary conditions on C, we have th a t 

|u| <  1 for u e C, so is bounded below. Hence we can find a minimising 

sequence, C C, such th a t Tc{u\^ -4- A.

The following properties of our Lagrangian allow us to  take the functions 

in this minimising sequence to be positive and concave. Since Fc comprises 

only the square of the function, v, and its derivatives, rotating a negative 

section of the function by 180° leaves the functional unaltered. Further, if we 

approximate any positive function in the minimising sequence by a piecewise 

linear function and make this concave in steps, it is clear th a t in doing so
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the functional, Tc, decreases. This follows since v increases and since

(1 H- p) log(l +  p) is convex for p >  —1.

We can use the Ascoli-Arzela Theorem to  show th a t a subsequence of 

{uk} converges uniformly to  a continuous function u, say. Equiboundedness 

is clear. To prove equicontinuity, we need to show th a t cannot get too 

large on [0,1]. But since we restricted Uk to being positive and concave, we 

need only show th a t u'ĵ  is not too large near zero.

Notice th a t since ut(0) =  Uk{l) = 0, we can write Tc{x,Uk^u'f^) as

[  c[(l +  ujt) log[l +  u'k] -  u y  -  ul dx.
Jo

So if, for 6 > 0, Uk{s) = Ls,  it is not hard to see, using the restriction \uk\ < 1 

and th a t (1 +  p) log[l +  p] — p >  0 for p >  —1, th a t

Tr{x,  Uk, u'iç) >  £c[{l +  L) log[l L] — L] — 1 .

This in turn  gives us an upper bound on Le which tends to zero as 6 0.

Finally, the concavity of the functions in the minimising sequence ensures 

th a t u[ u' a.e.. Then Tc{uk) —> JFc{u) dominatedly. □

T hat any minimiser satisfies the Euler-Lagrange equation (3.10) is stan

dard, see e.g. [9]. The only possible issue in our case is tha t the functional

70



must be defined for all functions in a neighbourhood of the minimiser, u. 

But this does not pose a problem since our Lagrangian forces u' > —1. This 

is because (1 4- p) log(l +  p) has an infinite derivative at p =  —1 and so a 

minimiser will not have a derivative equal to —1, except possibly a t 1.

3.1.3 Periodicity analysis

It remains to show tha t for c > the only solution of the Euler-Lagrange 

equation is the trivial one (hence ^  >  0 for such c) and th a t conversely

there are functions in our admissible class for which < 0 if c <

Recall tha t the Euler-Lagrange equation is given by

(1 +  h'(t)) h(t) +  I  A"(() =  0. (3.11)

If we rearrange and multiply both sides by h'{t)^ (3.11) becomes

and this integrates to

=  c [h'{t) — log(l -I- h'{t))], where M  = sup \h\. (3.12)

If we define the function Ü : (—1, oo) —>• [0, oo) to be

f^(^) = s — log(I T s),
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then (3.12) can be written in terms of as

-i -h?- + M^)  =  Q{h'). (3.13)

Figure 3.1: The function 0 , (left), and a solution, h, of (3.12), (right).

It is not difficult to see tha t a solution of (3.12) which starts off positive, 

either increases to M  or is periodic. Since we have the restriction th a t any 

function in our admissible class is zero a t 1, we need only consider periodic 

solutions. So if for c >  ^  every non-trivial solution has period greater than  

2, then we know th a t there is no non-trivial solution in our admissible class 

for such c. Hence we will have .7  ̂ >  0 for c >

Let 2T denote the period of a solution, h, of (3.12). Suppose th a t h 

attains its maximum at the point t e (0 ,T ). Then we can express t  as an 

integral over h between 0 and M:

1
t =  d s =  — dh. 

Jo  J o  h'
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Similarly, for the second section of the semiperiod, on which h' < 0 we have

nO 2
T  — t = I — dh. (3.15)

J  M  ^

So if we denote the two branches of and using (3.13), we

can express h' in term s of the inverses and depending on the sign 

of h'.

Hence from (3.14) and (3.15), we know the semiperiod of a periodic so

lution of (3.12) to be

r M  1  p M  1

T  = /  dh -  /  dh. (3.16)
'o J ,  -  h?))

We shall see below tha t

f2+ (̂a;) f^_^(a;) y/x

Applying this to (3.16) we have

1 Vo
> —p  for T >  0. (3.17)

T >  [  -V  d h = ^ y / Z .  
Jo  v 2

Hence for c >  ^  the return time, T, is strictly greater than  1 and we are 

done.

To prove (3.17) we fix x e [0,oo) and define >  0 by

 ̂ and r2l^(x) =  —s .
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Then

X = t -  log(l + t) = - s  — log(l -  5) (3.18)

and we need to show tha t

7  +  7 - ^ ’

i.e

2 ' s  r  -  ^

By the A M jG M  inequality, the left hand side is a t least so it suffices 

to  show th a t under (3.18),

st < 2 x.

By (3.18) this will follow if we show th a t for any >  0, 

st t  — log(l +  )̂ — 5 — log(l — s),

i.e.

log(l +  t) +  log(l — s) t — 8 — st.

But the left hand side is

log((l +  ^)(1 -  s)) =  \ o g { l 1 -  s -  st)

< t — s — st. □
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Finally, to show th a t ^  is the best constant, we find th a t there are specific 

admissible functions for which the inequality, (3.8),

f h^{t) dt < c f (1 +  h'{t)) log(l +  h'{t)) dt,
J o  Jo

does not hold, if c <

Let j  {t) = 6 sin nt  where, among other things, 6 is sufficiently small to

ensure th a t j  e C. Substituting this function into (3.8) we have

f  6  ̂{ s imrty  dt < c f  {1 + Stt cos 7r t ) \ o g { l d i r  cos nt) dt. (3.19)
Jo  Jo

For small 6, the right hand side is

c A , C O S dt + 0 ( 6 %
Jo  2

So we can rewrite (3.19) as

r 5^(sin7rt)2 d ( < c +  0(6").

Dividing both sides by 6  ̂ and letting 6 -4- 0, we get

/•I tj-2 1*1
J  {sinirt)^ dt < c—  j  (cosTrt)^ dt

which does not hold if c < &. □
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After the work in this chapter had already been completed, M. Ledoux 

communicated an alternative method of finding the same constant, c, in

(3.2). His argument depends upon methods developed by himself and others 

which relate spectral methods to the log-Sobolev inequality. The log-Sobolev 

constant obtained can be transferred to a transportation constant using the 

m ethods of O tto and Villani [16].
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