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A bstract

We consider two types of extremal problems for hypergraphs. In chapters 

two, three and four these are problems related to Lagrangians of hypergraphs. 

In the final chapter we examine a problem on intersecting families of sets.

After giving an introduction to extremal problems for hypergraphs and La

grangians in chapter one, we consider a question due to Frankl and Fiiredi. 

They asked how large the Lagrangian of an r-graph with m edges can be. 

We prove the first “interesting” case of their conjecture on this problem, 

namely that the 3-graph with (3 ) edges and largest Lagrangian is We

also prove a result for general r-graphs: for k sufficiently large, the r-graph 

supported on -H 1 vertices with (J) edges and largest Lagrangian is

In the third chapter we consider Erdos’ jumping constant conjecture and give 

a new result on values which are not jumps for hypergraphs. We also discuss 

an unresolved case of this conjecture which is of particular interest.

Our main result in chapter four is a bound for a Turan-type problem related 

to Erdos’ jumping constant conjecture. We also review Turan’s original prob

lem and the use of Lagrangians in this context.

In the final chapter we consider a problem due to Holroyd and Johnson on



intersecting families of separated sets. Our main result here is a new version 

of the Erdos-Ko-Rado theorem for weighted separated sets.
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Chapter 1

Introduction

Extremal problems for hypergraphs are questions of the form how many (or 

few) edges may a particular type of hypergraph contain given that it has a 

certain property? Such questions often place restrictions on which sets may 

occur as edges in the hypergraph, perhaps by insisting that their size is 

fixed. Examples of properties we may consider include the condition that 

all the edges of the hypergraph are disjoint or that a particular forbidden 

subhypergraph does not occur.

Many extremal problems for hypergraphs arise as natural generalizations of 

problems from extremal graph theory. Extremal graph theory is a broad and
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rich area of combinatorics providing answers to questions such as: how many 

edges may a triangle-free graph of order n contain? In sharp contrast to 

the wealth of results for graphs there are many seemingly simple extremal 

problems for hypergraphs which remain unanswered.

We will find the following definitions useful. For a set V  and a positive 

integer r let be the collection of all subsets of V  of size r. An r-uniform 

hypergraph or r-graph G consists of a set V  of vertices and a set F" Ç of 

edges. An edge e =  {ui, 0 2 , . .  •, Ur} will often be denoted by G1 O2  - &r- So 

for example if r  =  3 then 137 will represent the edge {1,3,7}. In the special 

case of r  =  2 we will often refer to G simply as a graph. The order of a 

hypergraph is the cardinality of its vertex set, while its size is the cardinality 

of its edge set.

For an r-graph G — (V, E)  and a subset of vertices IF Ç F  we define the 

subhypergraph induced on IF by G to be G[IF] =  {W,E  fl We may

also denote the set of edges of such an induced subhypergraph by E[IF].

When considering extremal problems for r-graphs it is useful to have a mea

sure of the number of edges present in an r-graph as a proportion of the 

collection of all possible edges, We define the density of an r-graph
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G =  {V, E)  by

A O ) .
O '

A fundamental extremal problem for hypergraphs is to ask: how dense may 

an r-graph be without containing a copy of a forbidden hypergraph from a 

family Ç?

Given a family of r-graphs, G, and an r-graph, H,  we say that H  is G-free 

if no member of ^  is a subhypergraph of H. The maximal size of a ^-free 

r-graph of order n  is denoted by ex{n,G)- A simple averaging result due to 

Katona, Nemetz and Simonovits [17] tells us that the sequence 

is decreasing. Hence the limit of this sequence exists and we may define the 

extremal density of a family of r-graphs G by

ex{n,G)
7 (^) =  lim

(:)

There are some special hypergraphs which we will encounter frequently. We 

will denote the complete r-graph of order t by This is the r-graph of

order t containing all possible edges. For any positive integer n  we will denote 

the set { 1 , 2 , . . . ,  n} by [n], and so in this notation the complete r-graph of 

order n may also be denoted by Finally, for integers /, r  and t we will
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denote the complete l-partite r-graph with vertex class size t by Ki^\ t ) .  This
I

is the r-graph with vertex set |J  Vi, where V\,V2 , . . .  ,Vi are disjoint sets each
i=l

/ . I
of order t. The edges of Ki \t) are all r-sets from (J Vi meeting each Vi in

2 =  1

at most one point.

A very natural and simple function to consider for any r-graph is its La

grangian. For an r-graph G of order n we define the weight polynomial of G 

to be

w{ G, x ) =

e e E  i e e

We will call x =  ( x i , . . . ,  x„) G R ” a legal weighting (for G) if 

(i) Vz e  [n] Xi > 0,

(ii) T, =  1 . 
2 =  1

The Lagrangian of G is then defined by

X{G) =  maxzü(G,x),

where the maximum is taken over all legal weightings for G. (Note that this 

maximum is clearly always attained.) We will call a legal weighting x  optimal 

if in addition to the above the following condition holds
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(iii) w{G,x) = \{G).

Why are Lagrangians interesting? Firstly, the Lagrangian of an r-graph is 

related to its density. In particular we have the following trivial but useful 

bound

Another important property of A(G) is that if is a subhypergraph of G 

then X{H) < \{G).

An interesting probabilistic interpretation of A(G) is the following; select r 

elements of N  independently with the probability that i is selected being z*. 

Denoting the resulting set by F  we have P (F  is an edge in G) = r!w(G,x). 

Hence r!A(G) is the maximum probability, over all distributions, of obtaining 

an edge of G in this way.

Lagrangians were introduced for 2-graphs by Motzkin and Straus in 1965 [23]. 

They determined a simple expression for the Lagrangian of a 2-graph, namely 

that it is given by taking a clique of maximal order and giving each vertex 

within this clique equal weight. (A clique is a subset of the vertices that 

induces a complete graph.) We omit the proof since it will follow immediately 

from Lemma 2.3(b).
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T h eo rem  1 . 1  (Motzkin and Straus [23])

Let G he a 2-graph in which the maximal order of a clique is t. Then

X[G) — X{Kt) -- 2  (̂ 1 - -

This result allowed Motzkin and Straus to give a new simple proof of the 

first major result in extremal graph theory, Turan’s theorem. More precisely 

Motzkin and Straus gave a new proof of the extremal density version of 

Turan’s theorem.

Recall that denotes the complete r-graph of order t,

ex(n, = max{|E| : G = {V, E)  is a r-graph, \ V\ =  n},

and

T heorem  1 . 2  (Turan’s Theorem [28], [23])

The extremal density of the complete 2-graph of order t is

7(A-f>) =  1  -
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Proof: If G is i^^^-free then Theorem 1 . 1  provides an upper bound for the 

Lagrangian of G

Also, as noted earlier, X{G) is bounded below by the value of w{G,x)  given 

by placing weights equal to ^ at each vertex. This yields the upper bound

t - 1

For the other direction of the inequality note that the complete {t — 1)- 

partite 2 -graph of order n formed by taking the vertex classes to be as equal 

as possible in size is K^^^-îiee. □

The problem of determining ex{n,K^^^) and for t > r  > 2, is known

as Turan’s problem. In contrast with the case of r  =  2 very little is known 

concerning Turan’s problem for r  > 3 (see for example Sidorenko [27]). The 

new proof of the 2-graph case using Lagrangians aroused interest in the study 

of Lagrangians for general r-graphs. However, as may be expected given the 

difficulty of Turan’s problem for r  > 3, determining the Lagrangian of a 

general r-graph seems to be non-trivial.

In the next three chapters we will examine three related problems. We will 

first consider a question due to Frankl and Fiiredi [12] as to how large the
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Lagrangian of an r-graph with m edges may be. We prove the first “interest

ing” case of their conjecture. In particular we show that the 3-graph with (J) 

edges and largest Lagrangian is Our other main result in this chapter

is that if k is sufficiently large then the r-graph of size (^) supported on A; 4 - 1  

vertices and with largest Lagrangian is

In chapter three we will consider a conjecture due to Erdos [7] as to which 

values may occur as the extremal densities of r-graphs. We adapt an idea 

due to Frankl and Rodl [13], using a new construction, to show that certain 

limiting densities are not jumps.

Finally in chapter four we will consider some Turàn-type problems. Our 

main result here is a non-trivial upper bound for a particular forbidden sub

hypergraph problem, related to Erdos' jumping constant conjecture.

In the final chapter we will examine a different type of extremal hyper graph 

problem. In 1961 Erdos, Ko and Rado [8 ] answered the following question: 

how many edges may an r-graph of order n contain given that no two edges 

are disjoint? We consider a problem due to Holroyd and Johnson [15] that 

asks the same question of a restricted subhypergraph of [n](^\ the collection 

of separated r-sets.



Chapter 2

The Frankl-Füredi Conjecture

2.1 Introduction

In this chapter we will consider a very natural question due to Frankl and 

Fiiredi [12]. For integers m > r  > 3 they asked how large the Lagrangian of 

an r-graph with m  edges can be. In order to state their conjecture on this 

problem we require the following definition. For A,BÇ:  with A ^  B

we say that A  is less than B  in the colex ordering, and write A < B, if 

max(ylAB) G B.  So for example as 3-sets we have 246 < 156. Note that for 

integers r < k  the r-graph consisting of the first (J) sets in the colex ordering 

of is simply the complete r-graph of order k, [A;]̂ )̂.

16
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C o n jec tu re  2 . 1  (Frankl and Fiiredi [1 2 ])

The r —graph with m  edges formed by taking the first m  sets in the colex 

ordering of has the largest Lagrangian of all r-graphs with m  edges.

In particular the r-graph with (J) edges and largest Lagrangian is

The validity of this conjecture for r  =  2 follows directly from Theorem 1.1. 

However, for r  > 3 very little was previously known (see for example [24]). 

In the next section of this chapter we will prove our main result for 3-graphs 

on this problem (Theorem 2.2). In particular we will show that Conjecture

2 . 1  is true for m = (J).

Following a brief discussion of the remaining cases for 3-graphs we give a 

result for general r-graphs. We show that for k sufficiently large the r-graph 

supported on k 1 vertices with (^) edges and largest Lagrangian is [/c](̂ ).

2.2 An exact result for r  =  3

Our aim now is to prove the following result.

T heo rem  2 . 2  Let m and k be integers satisfying
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Then Conjecture 2.1 is true for r = 3 and this value of m.

In particular Conjecture 2.1 is true for 3-graphs with (J) edges.

We first need to establish the following three easy lemmas concerning simple 

properties of Lagrangians. They provide assumptions that we may make 

about any r-graph G of size m  satisfying X{G) = max{A(iJ) : iL is an r- 

graph of size m}.

The first lemma tells us that we may assume that any such r-graph is cov

ering, in the sense that any two vertices lie in at least one common edge. 

(Note that when r = 2 this single lemma is enough to establish the tru th  of 

Conjecture 2.1 since a covering 2 -graph is simply a complete 2 -graph.) This 

lemma also provides a way of comparing the weights of distinct vertices.

The second lemma tells us that we may assume that G is left compressed. 

This is useful since it allows us to infer the existence of various edges in E  

simply by knowing that a certain special edge belongs to E.

The third lemma implies that we need not compare X{G) directly with the 

Lagrangian of the r-graph formed by taking the first m edges in the colex 

ordering of For the values of m which we are interested in it is suffi- 

cent to check that X{G) < A([/c —1 ]̂ ^̂ ). The proofs of all three lemmas are
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immediate.

For an r-graph G = (V, E) we will denote the (r — l)-neighbourhood of a 

vertex i E V  h j  Ei = {A E : A  U {%} G E}.  Similarly we will

denote the (r — 2 )-neighbourhood of a pair of vertices i , j  G F  by Eij = 

{B  G : B  U { i , j }  G E}.  We will denote the complement of Ei by

E; = {A e  : A u  {i} e  y M \E } . similarly we define = {A e

y (^-2 ) . A u  {iO}  G Note that the vertex i does not belong to any

set in Ei or Ej. Similarly neither i nor j  belong to any set in either Eij or

4 -

We will assume throughout the remainder of this chapter that any optimal 

legal weighting x =  (x i , . . . ,  Xn) satisfies Xi > X2 > • • - > Xn-

Lem m a 2.3 (Frankl and Rodl [13])

Let G — {V,E) be an r-graph and x  =  ( x i , . . .  ,Xn) be an optimal legal 

weighting for G. Let k G [n] be the number of non-zero weights, so Xi > 0 

for i = 1 , . . .  , k  and Xi = 0 for i > k. Further, let us suppose that k is 

minimal, in the sense that any other optimal legal weighting for G uses at 

least k non-zero weights.

Then for every pair { i , j }  G [k]̂ '̂ '̂
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(a) w{Ei,x) = w{Ej,x) ,

(b) there is an edge in E  containing both i and j .

Proof: Suppose, for a contradiction, that there exist vertices { i , j }  G 

with w{Ei^ x) > w{Ej, x). We define a new legal weighting y for G as follows. 

Let 0 < and define yi = xi for I ^  i , j ,  Vi = Xi + ô and yj =  Xj — 5.

Then y is clearly a legal weighting for G and

w(G,y) -  w(G,x) =  5 [ w [ E i , y ) - w { E j , y ) )  -  ô‘̂w{Eij,yi) (2 .1 ) 

>  0 ,

for 5 sufficiently small and positive, contradicting w(G,x) =  A(G). Hence 

part (a) holds.

For part (b) suppose that there exist {%, j}  G such that no edge in 

E  contains both i and j .  Let y be defined as above with Ô = xj. Since 

Eij = 0, part (a) and (2 .1 ) imply that w{G,y) = w(G,x) = A(G). However 

\{i : yi > 0}\ = k — 1, contradicting the minimality of k. Hence part (b) also 

holds. □



CHAPTER 2. THE FRANKL-FUREDI CONJECTURE  21

For the next lemma we require the following definition. Let E  C e Ç: E  

and 2 , j  G N  with i < j .  Then define

( {e\{j})  U {z} if 2 ^ e and j  e  e 

e otherwise

and

Cij{E) =  {Lij{e) : e G E}  U {e : e, Lij{e) G F7}.

We say that E  is left compressed if Cij{E) = E  for every 1 < i < j .

Lem m a 2.4 Let G = (V, E) he an r-graph of order n, i , j  G [n] with i < j  

and X = (a:i,. . . ,  Xn) be an optimal legal weighting for G. Then

w{G,x) < w{Gij,x),

where Gij = {V,Cij{E)).

Proof: Consider the difference

w{Gij,x) -  w{G,x) = ^  u ;(e \{ j} ,x )(a ; i  -  xj).
cEE, Lij{e)^E 

i^e, jee

This is non-negative since i < j  implies that X{ > Xj. □

We will denote the r-graph with m edges formed by taking the first m  ele

ments in the colex ordering of by Cr,m-
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L em m a 2.5 For any integers m, k and r satisfying 

we have

Proof: First we note that X{Cr,m) > A([A: — since [A; — Ç Cr,m-

Let K = {x i , . . .  ,Xk) he an optimal legal weighting for Cr,m using I < k non

zero weights. So Xj > 0  for 1  < i < / and Xi =  0 for z =  / -f 1 , . . .  A:. Further, 

let us suppose that I is minimal, in the sense that any other optimal legal 

weighting for Cr,m uses at least I non-zero weights.

As the pair of vertices A: — 1  and k do not appear in a common edge of Cr,m, 

Lemma 2.3(b) implies that Xk = 0. Hence / < A: — 1 and

KCr,m) = w(C,,m,x) =  <  A([fc- 1]*’'*).

So A ( C , . J  =  A([A:-1]M). □

We require one final definition. Let

=  max{A(G) : G is an r-graph with m edges}.

We will now give an outline of the proof of Theorem 2.2. Let G = (V, E) be 

a 3-graph satisfying A(G) =  A^ for m =  |E |. The basic argument involves a



CHAPTER 2. THE FRANKL-FUREDI CONJECTURE  23

type of “compression” on the edges of G. We remove certain edges from E  

and insert others. We then need to check two things. Firstly, that the total 

weight of the 3-graph (with a slightly modified weighting) has not decreased 

and secondly that the number of edges we have added does not exceed the 

number previously removed.

Going into a little more detail, let us suppose that an optimal legal weighting 

for G uses k strictly positive weights, Xi , . . . ,  xjfc and that k is minimal. Our 

aim is to show that most of the edges in are contained in E. We show 

that if too many edges in [A;— are missing from E  then we can remove the 

weight from the lightest vertex, k, and place it at vertex k — 1. This reduces 

the weight of G but also reduces the number of edges in E  (since any edge 

containing the vertex k now has zero weight and so may be discarded). We 

may then insert new edges into E  (using some of the edges in [A; — 

and hence produce a new 3-graph G' with the same number of edges as G 

but with a larger Lagrangian, clearly contradicting the maximality of A(G). 

The same type of argument is then repeated but this time the weight from 

vertex A; — 1  is removed and added to vertex k. We can again construct 

a new 3-graph with a larger Lagrangian than G if the number of edges in 

([A; — X { k } ) \E  is too large. Combining these two results tells us that
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must be small. Hence, if m  is in the range given in the statement 

of Theorem 2 . 2  then any optimal legal weighting for G can only use at most 

A: — 1  strictly positive weights. So A(G) < A([A; —1 ]̂ ^̂ ), which as Lemma 2.5 

tells us is enough to prove the result.

Proof of Theorem 2.2:

Let G be a 3-graph with m edges satisfying \ (G)  =  A^. Suppose that 

X =  (Ti , . . .  ,Xn) is an optimal legal weighting for G satisfying X\ > X2 >

• ■ > Xk > Xk+i = ' ‘ = Xn = 0. We may suppose that k is minimal in the 

sense that any other optimal legal weighting for G uses at least k non-zero 

weights.

We will show that the number of edges in G must satisfy 

1̂1

So if

then the Lagrangian of G is achieved on A: — 1 vertices. Hence we have 

A(G) < A([A:— So, by Lemma 2.5, Conjecture 2 . 1  is true for such values 

of m.



CHAPTER 2. THE FRANKL-EUREDI CONJECTURE  25

We aim to show that if |^ | is small compared to k, i.e. if (2.2) does not hold, 

then we can find another 3-graph, O', with the same number of edges as G 

satisfying A(G') > A(G), contradicting the maximality of A(G).

We know, by Lemma 2.3(b), that the vertices k — 1 and k appear in some 

common edge e E E.  Also, by Lemma 2.4, we may suppose that E  is left 

compressed and hence Ik —Ik  G E. (Recall that Ik —Ik  denotes the edge 

{ 1 , — 1 ,/c}.) Define b = max{z ; ik — lk  G E}.  Then, since E  is left 

compressed, we have Ei = {uv : iuv G =  {1, . . . ,  z — 1, z +  1 , . . . ,  k}^‘̂ \  for 

1 <  z < 6 . Hence, by Lemma 2.3(a), we have xi = X2 = • ' - = Note that 

b < k — 2.

The following three lemmas will provide the lower bound on \E\, proving 

(2.2). In particular Lemma 2.6 implies that E  contains most of the the first 

(^3 )̂ edges in the colex ordering of while Lemma 2.8 implies that E  

also contains most of the next (^“ )̂ edges.

Lemma 2.6

& - ( 6 -b 2 )|[A :-lp )\£ ;| < b h  + 

Lemma 2.7

< 6.

k - 3
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Lemma 2.8

Once these lemmas are verified we obtain, using Lemma 2.6 and Lemma 2.8,

\E\ — |[A: —1]̂ ^̂  n  +  |[A: — 2]̂ ^̂  n  E'fcl +  lE'jfc-ifcl

k —  2> — 6 +  6 .

So

6 1 +
k — ( 6  +  2 ) 

k — 3

It is then easy to check that | ^ 6   ̂ < k — 2 and so (2.2) holds

and the theorem is proved. □

We must now prove the three lemmas.

Proof of Lemma 2.6: We define a new legal weighting for G, y, as follows. 

Let yi = Xi for i ^  k — l ,k ,  yk-i = Xk-\ +  Xk and yk =  0. (We think of 

this new weighting as being given by moving the weight from vertex k and 

placing it at vertex A: - 1.) Clearly y =  (t/i, . . . ,  î/a:) is a legal weighting.

By Lemma 2.3(a) w[Ek-\^'x.) = w{Ek^'x), so

b
' (G,y) -  w(G,x) =  Xk{w{Ek-i,:x.) -  w{Ek,K}) -  x l ' ^ X iw\

2= 1
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=  -bx ix l -  (2.3)

Since yk = 0 we can remove all edges containing k from E  to give a new 

3-graph G = {V,E) with w{G,y) = w{G,y)  and \E\ =  |E | — \Ek\. We will

show that if Lemma 2.6 fails, then there exists a set of edges F  C [A:—

satisfying

w { F ,y ) > b x i x l  (2.4)

and

| f |  < \Ek\- (2.5)

Then, using (2.3), (2.4) and (2.5), the 3-graph G' =  {V,E'), where E'  =  

E \J  F  ̂ satisfies \E'\ < \E\ and

w[G',y) = w { G ,y ) A w { F ,y )

> w{G,y) + bxixl  

= w(G,x)

=  A(G).

Hence X{G') > A(G), contradicting the maximality of A(G). Our next task 

is to construct the set of edges F.
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Consider the equality given by Lemma 2.3(a), w{Ei,x)  = w{Ek- i,x) .  Since 

E  is left compressed we know that if ab G Ek~i and a, 6  /  1 then ab E: Ei. 

Cancelling such pairs we obtain

xiw{Elk-1, :x) = Xk-iw{Eik-i ,x)  +  w{Ei n  E^_i,x).

Hence we have

w{Eik-i,x.)

Multiplying by bxl and considering those pairs of the form ak E E i H  El_-^ 

separately we obtain

k - 2

E  Xi . 2 / n  \

E  E
i = 2 , i j ^ k —l  i —2 , i ^ k —l

where C = [k — 2]^^^\Ek-i. Then, since xi > X2 > ' ’ ' > Xk,

2 / l  2  A  , A; -  ( 6  +  2 ) \  bxkw{C,x)

Define a —

b x i x ^  <  b x k - i x j ^  I 1 +  — —  I +  — ^  2  • ( 2 . 6 )

h\C\
k - 2 and ^  =  1̂6 • Let the set Fi Ç [A; —

consist of the a  heaviest edges in [A; — containing the vertex A; —1 .

Recalling that yk-i = Xk~\ +  Xk we have

w (Fi,y) > +axk- ix l .
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So using (2.6)

w{Fi,y) -  bxixl > -Xk- ix l{P  -  a). (2.7)

We now distinguish two cases.

Case 1 a  >  ^

In this case w{Fi,y) — bxixl  > 0 so defining F  = Fi satisfies (2.4). We need

k - 2to check that (2.5) holds, i.e. that |F | < \Ek\. We have \F\ = a  = 

and since |£')t| is an integer it is sufficient to prove that

g  < i a i .  (2 .8 )

Since bk—lk  G E  and E  is left compressed we know that [6 ]̂ ^̂  U {1, . . . ,  6 } x 

1, . . .  ,/u — 1} Ç E}~. Hence

\E,\ > +  (2.9)

Also, since C  C [k — 2]̂ ‘̂ \  we have

| C I < ( ‘ ; ^ )  < ( * ; ■ ) .  (2 ..«)

So using (2.9) and (2.10) we obtain
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Hence (2.8) holds and so both (2.4) and (2.5) are satisfied. Thus we may 

construct the new 3-graph G' = {V,E') as described above with \E'\ < \E\ 

and A(G') > A(G), contradicting the maximality of X{G).

Case 2 a  <  /3

Suppose that Lemma 2.6 fails. So |[A; — > /?  +  !. Let F2 consist of

any -t- 1 — a  edges in [A: — 1](^)\(E' U Fi) and define F  = F iU  F2 . Then, 

using (2.7),

w{F,y) -  bxixl = w{Fi,y)  -  bxixl + w{F2 ,y)

>  0 .

So F  satisfies (2.4) and we again need to check that |F | < \Ek\.

k — ( 6  4 - 2 )
|F | =  |F i| +  IF2 I =  ^  +  1  =

k — 3 +  1.

Since \Ek\ is an integer it is sufficient to prove that

k — ( 6  -|- 2 )
k - 3

Using (2.9) it is sufficient to show that

+  1  ^  \Ek\-

^ j 2 A; -  ( 6  +  5)^ ^  ̂  f  2k -  (bFS)
k — 3 ~
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This is easily seen to be true for /c >  5. Note that if A: =  3 then there is 

nothing to prove and if A: =  4 then |[3](^)\E| < 1  trivially implies that Lemma 

2 . 6  holds.

Hence |F | < \Ek\ and so (2.5) holds in this case as well. Since (2.4) and (2.5) 

both hold we can again construct the new 3-graph O' as described above, 

contradicting the maximality of A(G). This completes the proof of Lemma 

2.6 . □

Proof of Lemma 2.7: This proceeds in a very similar way to the previous

proof and we assume some of the notation from there.

If Lemma 2.7 fails, then \C\ =  [[A: — 2]^^\Ek~i\ > b p l .  We again construct 

a new set of edges F  Ç [A; — and need to check that F  satisfies (2.4) 

and (2.5). Let F  consist of all edges in [A:— containing the vertex A:—1 

{so F  = C X  {&--!}). Then, since yk-i = Xk-i +  Xk,

w{F,y) = {xk-i +Xk)w{C,x) > 2xkw{C,x).

Using (2.6) we obtain

w{F, y) -  bxixl > -b x k - i x l  ( l +  +  ^kw{C, x) f  2 -
A:-3 J  *  ̂ k - 2 )  '

In order to show that (2.4) holds it is sufficient to prove that

|C |( 2 - A )  +  +
k — 2 / V k — 3
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This follows simply from \C \> b - \ -1. To show that (2.5) holds we note that 

by Lemma 2.6 we have |F | < |[A; — < /?. So we simply need to check 

that /? <  \Ek\. However, in the proof of Lemma 2.6 we have already shown 

that ^  +  1 < \Ek\. Hence F  satisfies (2.5). So as in the proof of the previous 

lemma we may construct a new 3-graph G' with the same number of edges 

as G but with a larger Lagrangian. This contradiction completes the proof 

of Lemma 2.7. □

Proof of Lemma 2.8: This proof is again almost identical to that of Lemma 

2.6, the main difference being that this time the new legal weighting for G is 

given by moving weight from vertex & —I t o  vertex k.

Consider a new legal weighting for G, z =  ( z i , . . . ,  z*), given by z% =  Xi for 

i 7  ̂ k — l , k ,  Zk-i = 0 and z* =  Xk-i +  T&. (We think of this weighting as 

being given by taking the weight from vertex k — 1 and placing it at vertex 

k.) By Lemma 2.3(a) w(E^_i,x) =  w{Ek,K), so

b
w{G,z) - w { G , x )  = Xk-i{w{Ek,x)  -  w{Ek-i,x))  -

i = l

= —bxixl_^. (2 .1 1 )

Since Zk~i =  0 we may remove all edges containing k — 1 from E  to give a 

new 3-graph G* — {V,E*) with w{G*,z) =  w{G,z)  and |E*| =  \E\ — \Ek-i\.
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By Lemma 2.7 we know that

|-£'A:-i1 — n  E'fc-il +  6

'A:- 2 '
^  2

We will show that if Lemma 2.8 fails, then there exists a set of edges H  Ç 

{ ! , . . .  , k  — 2, k}^^^\E satisfying

w{H,z)  > bxixl_i  (2.12)

and

M <  ( ^ 2 ^ ) .  (2.13)

Then using (2.11), (2.12) and (2.13) the graph G" = (V,E"), where E ” = 

E*UH,  satisfies \E"\ < \E\ and X{G") > w{G",z) > X{G), contradicting the 

maximality of X{G). We must now construct the set of edges H.

Consider the equality given by Lemma 2.3(a), w{Ei,x)  = w{Ek,x).  Since E  

is left compressed this implies that

w ( E , n E l , x )

Hence

b x ^ x U  =  b x U x ,  +

i —2 i —2
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where D = [k — 2]̂ ‘̂ ^\Ek. Then, since xi > X2 > ’ ” > Xk,

+  ^  b . , . M D , . )  ^2.14)

Let H  consist of those edges in k —2, kY^^\E  containing the vertex k.

Then

w{H,z) = {xk-i Xk)w{D,x).

Suppose now that Lemma 2.8 fails. So |D| > 6 + 1 . Using (2.14) and the 

fact that w{D,x)  > we obtain

bxl_i(k — ( 6  +  2 ))
k - 3

Then, since \D\ (l -  , we have w{H,z) > bxixl_-^  ̂ and so

(2.12) holds. Finally, D C [k—2]̂ ‘̂"> implies that \H\ = \D\ < (^J^) and hence

(2.13) holds. Therefore we may construct the 3-graph G" as described above, 

contradicting the maximality of X{G). This completes the proof of Lemma 

2.8. □

2.3 The remaining cases for r  = 3

Despite the fact that Theorem 2.2 deals with the very natural case of m =  (g), 

the remaining values of m for which Theorem 2.2 does not apply include what



CHAPTER 2. THE FRANKL-EUREDI CONJECTURE  35

we feel are perhaps the most interesting cases of the problem.

If m  satisfies

it is easy to construct examples of 3-graphs with m edges whose Lagrangians 

are strictly larger than A([A; —1 ]̂ ^̂ ). Indeed if Conjecture 2 . 1  is true for all 

values of m  then jumps at each m  in the range given above.

In fact Conjecture 2 . 1  is true in two cases which are jumps for A^ namely:

m =  — 1  and m = — 2 .

This follows from the proof of Theorem 2 .2 , by noting that m < (J) implies 

E  Ç and then recalling that we may suppose that E  is left compressed.

For the remaining values of m we have the following approximate result. This 

tells us that any counterexample to Conjecture 2.1 for r  =  3 cannot differ 

greatly from

T h eo rem  2.9 Let m, k and a be integers satisfying 

and —{k — 2) ^  u ^  {k — 5).
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Suppose G = (V, E) is a S-graph with m  edges satisfying A(G) =  and that 

\V\ is minimal in the sense that any other 3-graph H  satisfying X{H) = 

has at least |F | vertices.

I f  Conjecture 2.1 fails to hold for r = 3 and this value of m  then G and Cz^m 

differ in at most 2{k — a — 2) edges, i.e. \E A E{Cs^rn)\ <  2(A: — a — 2).

This follows simply from noting that the proof of Theorem 2.2 implies that 

E  C

2.4 Results for general r

We have also considered Conjecture 2.1 for r > 3. For such values of r, 

indeed for simply the next case of r  =  4, it seems very difficult to generalize 

the ideas used in the proof of Theorem 2.2.

The main argument used to prove Theorem 2 . 2  requires two conditions to be 

satisfied. Firstly there must exist edges, not already present in the r-graph, 

which are “reasonably heavy” . Secondly the number of these edges we need 

to insert must not exceed the number of edges previously removed. The proof 

of Theorem 2.2 can be adapted for r  > 4 so that the former condition holds.
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However, the later condition has so far escaped our attempts at verification, 

although there is no obvious reason why it should fail.

Frankl and Fiiredi [1 2 ] originally asked how large the Lagrangian of an r- 

graph of order k and size m  can be, where m < (J). Define

X(k,  r, m) = max{A(G) : G = (V, E)  is an r-graph, |y | =  k, \E\ =  m}.

If Conjecture 2.1 is true for a given value of r  and m  then clearly \ { k , r ,m )  = 

A(f, r, m) whenever k and I satisfy m < (^) < Q .  (In other words it does 

not m atter how many vertices we are allowed to use, the r-graph with m  

edges and largest Lagrangian uses the smallest number of vertices possible.)

Given that we have been unable to verify Conjecture 2 . 1  for any values of m

with r  > 4 the following weaker result may be of interest.

T h eo rem  2.10 For any r  > 4 there exist constants jr o,nd ko{r) such that 

if m  satisfies

with k > ko{r), then \ { k , r ,m )  = X{Cr,m)-

In particular if k > ko{r) then the r-graph of order k -\-l with (^) edges and 

largest Lagrangian is [/c](̂ ).
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A proof of this result follows along similar lines to the proof of Theorem 2 . 2  

although the details are rather more involved. The parts of the earlier proof 

checking that when we insert edges F  Ç [/: — we have \F\ < \Ek\ are 

now redundant.

Proof of Theorem 2.10: We will take 7 -̂ =  2̂ ^̂ . This is not a best possible 

constant, simply a convenient value.

Suppose m  satisfies

' ; ' ) < « <  7 ' ) ( 2 . 1 5 )

Let G be an r-graph of order k and size m  satisfying A(G) =  \ {k ,r ,m ) .  

Choose X =  {x i , . . .  ,Xk), an optimal legal weighting for G using a minimal 

number of non-zero weights. If x/t =  0 then A(G) < A([A:—1 ]̂ ^̂ ), so by Lemma

2.5 there is nothing to prove. Therefore we may suppose, for a contradiction, 

that Xk > 0.

We know, by Lemma 2.3(b), that the vertices k — 1 and k appear in some 

common edge e e  E.  Also, by Lemma 2.4, we may suppose that E  is left 

compressed and hence 12..  .r  — 2k—lk  G E. Recall that Eij = {A Ç. :

A  U {i , j }  G E}.  Let b =  \Ek-ik\^ So 1 <  6 <

Our aim is to show that G must contain more than m edges, a contradiction.
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In order to achieve this we need to generalize Lemmas 2.6 and 2.8. First we 

require two rather technical lemmas.

L em m a 2 . 1 1  Let Dk-i =  D El_^, for i G [A: — !]; and Dk =

[A; — n El. Then for any j  < k — i

w{Dk-i,K)

and

Proof: We will prove the first part of this lemma, the second part follows 

identically. Suppose i G [k — 1] and j  < k — i, then by Lemma 2.3(a) we 

know that w{Ej.,x) = w{Ek~i^x). Since E  is left compressed, we have

Xj — X]z—i H“
w{Ejk-i,y)
k
E 3:,w(%n£'Eii.x)

, /=fc—i+ 1  i) x)
<  X k - i  -I----------------------------- \ --------------------1------------- rw[Ejk-i,'x) w(Ejk-i ,X)

w(D&_i,x)
*1 “

l = k —iw{Ejk-i,yi) ^

The first inequality follows from expanding w{Ej fl El_^,x).  The second 

inequality follows from w{EjinEl_^i,x) < w{Ejk-i ,x)  for A; —z +  1  < I < k.n
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Note that whenever the lower limit of a sum or product is greater than the

upper limit we take this to be the empty sum or product. These are defined

to be equal to zero and one respectively.

L em m a 2 . 1 2  For 0 < t < r — S and i < j < k  — d t < ” - < k  — d \ < k  —2 

we have

r —2 t

^  Xk-iXk Xi^W^Xk-d^<Xjw{Eij,:id). (2.16)
m = t + 2  p = l

*t+i <3

Proof: Let A = {zi, . . . ,  2 -̂2 } E Ek-ik with it+i < j .  For each such set A  

we need to find a set B G Eij, uniquely determined by A, such that the 

contribution of A  to the left hand side of (2.16) is less than or equal to the 

contribution of B  to the right hand side. The contribution of A  is always
r - 2  t

^k—l^k r i  ^im n  ^k-dp-
m = t + 2  p = \

If A c  {i , j }  = 0 then A  G Eij so let B  = A. Then the contribution of B
r —2 t  i+ 1

to (2.16) is Xj n  ^im since Xk-iXk H  ^k-dp <  Xj Xi^ these terms
m = l  p = l  m = l

satisfy (2.16).

l i  i Ç: A  but j  ^  A  then there exists 1  < s < r  — 2  such that i = ig. Let 

B  = { A c  {A:})\{%} then B  G Eij and k e B  but k — 1 0  B.  This time
T  —  2

the contribution of B  to (2.16) is XjXk f l  ^im- We have two cases: if
m —l,  m ^ s
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t 4+1
s <  t+ 1  then Xk-i f l  ^k-dp < 0  ^im so (2.16) is satisfied. Otherwise

p = l  m —l ,  m:^s
t t

we have s > t + 2 so Xi  ̂ < Xi^̂  ̂ and Xk-i H  ^k-dp < H  ^im- Hence (2.16)
p = l  m = l

is satisfied.

1Î j  G A  but i ^  A  then there exists t +  2 < s < r  — 2  such that j  = is- Let 

B  — (^  U {/c—l} )\{ j}  then B  G Eij and k —1 G B  but k ^  B.  This time the
r - 2  t

contribution of B  to (2.16) is XjXk-i  0  ^im- Then, since Xk Xk-dp <
m = l ,  m ^ s  p —\

t
Xj n  ^im Xi  ̂ < (2.16) is satisfied.

m = l

Finally, if z,ji G A then there exist l < s < v < r  — 2 such that i =  is and 

j  =  iy. Let B = { A c  {/c —1 ,/c})\{î, j}  then B  G Eij and k — l ^k G B.  This
T  —  2

time the contribution of B  to (2.16) is XjXk-\Xk f l  ^im- We know that
m = l ,  m ^ s , v

V >  t  2 but we must distinguish two cases depending on the value of s.

t  4+1

First suppose that 5  < t +  1 then Xi  ̂ H  ^k-dp < H  ^im implies that
p = l  m = l ,  m ^ s

4 4+1

(2.16) holds. Now suppose s > t +  2 then Xi^Xi  ̂ H  ^k-dp < Xj so
P = \  771=1

(2.16) holds in this case also.

Note that in each case the set B  is uniquely determined by A. (We can see 

this by considering whether or not k — 1 and k belong to B  in each case.) 

This completes the proof of the lemma. □
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Let Ct and dt be defined as follows for t > 0,

Ct

Co == 1, Ct+I = ^ 2   ̂+  1) ,
i = l

do — 1 , = Cf T  df.

We have the following generalizations of Lemmas 2.6 and 2.8.

L em m a 2.13

|[A: — {dr-2 +  ^  Cr-2\Ek-lk\~

L em m a 2.14

I [A: — {dr-2 +  1 ) ]^ ’" ^  C r - 2 \ E k - l k \ -

Once these lemmas are verified we may complete the proof of Theorem 2.10 

as follows. Since \Ek-ik\ < (^Zg) Lemma 2.13 implies that

\ En[ k -  + 1 ) ] « |  >  ( ^  -  Ç  :  g , (2.17)

Since E  is left compressed, if i satisfies k — dr- 2  <  % < A; then

\Ei n  [A; — {dr- 2  +  1)]̂ ’* ^̂1 ^  \Ek n  [A: — {dr- 2  +  1)]̂  ̂ ^̂ |- 

Hence Lemma 2.14 implies that

\E, n  [fc -  ( 4 - 2 + I >  ( ^  “  f : \ + -  C. - 2  :  2 )  (2.18)
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for i satisfying k — dr- 2  < i < k. So using (2.17) and (2.18) we have the 

following lower bound for \E\

\E\ >  ( * “ '* ^ 7  ^  ' ) )  +  ( * _ .  +  1) '^ )  -  ( 4 - 2  +  2 )c ._ , (^  :  2

Since dr < 2cr_i and Cr < 2 *̂̂, a tedious but straightforward calculation 

yields

k — l \  t  k — 2

for k sufficiently large. This contradicts our assumption that \E\ lies in the 

range given by (2.15) and so completes the proof of Theorem 2.10. □

Proof of Lemma 2.13: As in Lemma 2 . 1 1  let D^-i = [k — {i +  1 )](^"^) D El_^, 

for i e [k — 1], and Dk = [k — fl El- We claim that the following

inequality holds for every 0 < t < r — 2,

dt
Xk-iXkw{Ek-ik,^) < y^^Xk-jw{Dk-i,:x.) +

i = 2
r —2 t

^   ̂ 2 i. J[ ^k—dp- (2,19)
i i - . . i r - 2 & E k - i k  m = i-f-l p = l

We prove this by induction on t. Since Cq =  1 and do = 1 (2.19) holds for 

t =  0  with a simple equality.

Now let us suppose (2.19) holds for some 0 < t <  r  — 3. We will show that 

(2.19) also holds for t +  1 . Let I satisfy d*+  1  < / < dt+i. Consider it+i G [/c].
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If A: — / < it+i < k then < Xk-i- Otherwise it+\ < A: — so Lemma 2 . 1 1  

implies that

x) A

Hence

r - 2  r - 2

E  n   ̂ E  n  +
i i - - - i r - 2 ^ E k - i k  m = t + l  i i . . . i r - 2 € E k - i k  m = t + 2

— I

So

r —2 r —2

H  < Y  ( ^ + 1 )% -' n  +
n...V-2G-E?A:-iA: r n = t + l  h  ■^•ir~2^Ek-lk m = t + 2

T  —  2

w{Dk-uy)  n  ^ i m

.....
i t + i < k —l

Also, by Lemma 2 .1 2 , we have

r - 2  t

^k—l^k r i  n  ^k-dp

i t + \ < . k —l

Using (2.20) and (2.21) we obtain
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r —2 t

^  X k - iX k  X i ^ Y l ^ k - d p  <  0 C k - i w { D k - i , x )  +
i i . . . ir- 2 £Ek-ik m—t+1 p—1

r —2 t

^   ̂ T  l)Xk-.iXk—lXk 2  J[ ^im J[ ̂  ^k—dp' (2 .2 2 )
ZI...Z7* — 2 -̂̂ Jfc — lAî —i”f“ 2  p—1

This last inequality holds for each I satisfying dt +  1 < / < dt+i-

Ct

Finally, since dt+i = CtA dt, Q+i =  ^ ( d t  +  2  +  1) and Xk-i < Xk-dt+i, we can
Ct

I
i = l

use (2 .2 2 ) repeatedly to obtain

r - 2  t  d t + 1

^  CtXk-iXk %% X i ^ Y l ^ k - d p <  ^  Xk- i w{ Dk- i , : x )  +
i i . . . i r - 2 ^ i E k - i k  m = t + l  p = l  l = d t + l

r - 2  2+1

^   ̂ ^ i m  2  ^k—dp ’
i i . . . i r - 2 ^ E k - i k  m = t + 2  p —1

Hence (2.19) holds for t +  1  and the induction is complete.

Setting t = r — 2 in (2.19) we obtain

d r - 2  r —2

Xk-iXkw(Ek-ik,:x.) < 'Y^Xk-iw(Dk-i,:x.) Cr-2Xk-iXk\Ek-ik\Y[^k-dp-
i = 2  p = l

(2.23)

Now suppose that Lemma 2.13 fails. Then we may proceed as in the proof 

of Lemma 2.6 to give a new weighting, y, for our r-graph G by moving 

the weight from vertex k to vertex k — 1. Let yt = Xi, f or i  /  k — l , k,  

yk-i = Xk-i +  Xk and yk = 0 . Clearly y is a legal weighting for G. Let G' 

be formed from G by removing all of the edges in G containing k. Then
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A(G') > w{G', y) =  w{G, y) =  w{G, x) -  xlw{Ek-ik,  x). Let G* = [ k -  !]("'). 

Note that G* cannot contain more edges than G.

Since we are assuming that Lemma 2.13 fails we have

d r - 2  r

w { G \ y )  >  w { G \ y )  +  ^ X k - i w { D k - i , y )  +  C r - 2 \ E k - i k \ ' \ \ x k - d r - 2- j -
i = 2  j = l

Hence by (2.23) w{G*,y) > w{G,x).  This contradicts the assumption that 

\{k ,  r, m) =  X{G) = w{G, x) and completes the proof of Lemma 2.13. □

Proof of Lemma 2.1J: This is easy given the work we have already done. We 

proceed as in the proof of Lemma 2 . 8  to give a new weighting, z, for G by 

moving the weight from vertex A; — 1 to vertex k. So z* =  for z A; — 1 , A;, 

Zk-i = 0 and Zk =  Xk-i +  Xk. Then z is clearly a legal weighting for G. Now 

let G' be formed from G by removing all of the edges in G containing k — 1. 

Then A(G') > w{G',z)  =  w{G,z)  =  w{G,x) — xl_iw{Ek-ik,^)-  By Lemma 

2 . 1 1  we have

w{Ek-ik,y^)

So w{G',z) > w{G,x) — Xk-iw{Dk,x) — Xk-iXkw{Ek-ik,^)- Now let G* =  

{1 , . . . ,  k —2, k Y ^ \  As before G* cannot contain more edges than G. Suppose, 

for a contradiction, that Lemma 2.14 fails, then we have

dr —2

w { G \z )  > w{G\  z) +  Xk-iw{Dk, x) +  Xk-jw{Dk-i, x) +
i = 2
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r - l

Cr—2 \ H k —\ k \ ^ k  J[ ^ k —d r - 2 —j ’

So again using (2.23) we obtain w{G*,z) > w{G,x).  This contradicts our 

assumption that X{k, r,m)  = X{G) = u;(G, x) and completes the proof of 

Lemma 2.14. □

2.5 Further remarks

It would obviously be nice to settle Frankl and Fiiredi’s conjecture in general. 

However, as we mentioned at the beginning of the previous section, there are 

problems which we have been unable to overcome in generalizing the methods 

used in the proof of Theorem 2.2. We can perhaps claim the main result of the 

last section (Theorem 2.10) as intuitive evidence of the tru th  of the conjecture 

for r-graphs with (J) edges. This is because it says essentially that if there 

exists a counterexample to the conjecture then it must use at least k + 2 

positively weighted vertices and so there is no r-graph whose set of edges is 

“similar” to [k]̂ ^̂  with a larger Lagrangian. Hence a counterexample, should 

one exist, would contain lots of “gaps” - this seems a little implausible.



Chapter 3

Erdos’ jum ping constant 

conjecture

3.1 Introduction

Recall that for an r-graph G =  {V, E)  of order n the density of G is the 

proportion of all possible edges G contains,

d{G) =  y .

For an r-graph H  the extremal density of H  is the limit, as the number of 

vertices tends to infinity, of the maximum density of an r-graph of order n

48
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not containing a copy of H\

( u \  — r  : G = [V, E)  is an H-fiee r-graph of order n}
'

As before K \^ \ t )  denotes the complete /-partite r-graph with t vertices in 

each vertex class.

The Erdos-Stone theorem is a fundamental result of extremal graph theory. 

Turan’s theorem told us that if a graph of order n  has more than (l — y) (”) 

edges then it contains a copy of The Erdos-Stone theorem says that

for any integer t and e > 0  there exists no(/, t, e) such that any graph of order 

n > no, with more than (l — y) Q) +  en^ edges contains a copy of 

We state the extremal density version of this result.

T h eo rem  3.1 (Erdos and Stone [10]) For I > 2 and t > 2

=  1  -

This result allows us to determine the extremal density of any given 2-graph 

using the following simple corollary.

C o ro lla ry  3.2 (Erdos and Simonovits [9]) For a 2-graph G, with chromatic 

number x{G),
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Recall that for a family of r-graphs Ç the maximal size of a ^-free r-graph 

of order n is denoted by ex{n,G)’ The extremal density of such a family is 

denoted by

If we define 7  ̂ =  {j iQ) ' Q is a family of r-graphs} then

72 =  {0 , i

For 2-graphs we have a complete characterisation of 7 2  which is in sharp 

contrast to the situation for r  > 3. Erdos’ jumping constant conjecture 

concerns the structure of the set 7  ̂ for r  > 2 .

Given r  > 2 and a  G [0 ,1], we say that a  is a jump for r  if there exists a 

constant c(r, a) > 0  such that for every e > 0  and every integer m  > r there 

exists no(r, a , e, m) such that every r-graph of order n > Uq and density 

at least a  + e contains a subhypergraph of order m with density at least 

a + c(r, a). Note that if a  is a jump for r  then 7  ̂ fl (a, o; 7 - c(r, a)) =  0.

For r = 2 every a  G [0 ,1] is a jump. Clearly the set 7  ̂ is well-ordered iff 

every a  is a jump for r.
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C o n jec tu re  3.3 (Erdos [7])

7 r is well-ordered for every r >2 .

In 1984 Frankl and Rodl [13] showed that this conjecture is false with the 

following result.

T h eo rem  3.4 (Frankl and Rodl [13])

For r  > 3 and I > 2r the value 1 — 7̂ ^  is not a jump for r.

However, this result still leaves us with very little information about the 

structure of the set 7  ̂ for r  >  3.

For example is ^  a jump for all r  > 2? This was of particular interest to 

Erdos since the next result tells us that [0, n  7  ̂ =  {0}, for r  >  2 . Also, 

it is easy to see that ^  G 7 r for all r  > 2. Consider the family of r-graphs
00

Ç = [j Gt, where Gt consists of those r-graphs of order rt  with more edges
t = l

than K i l \ t ) .  Then, for each  ̂ > 1, K^f^\t) is a ^-free r-graph of order rt 

and maximal size. Hence

r!

as t -> 00.
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T h eo rem  3.5 (Erdos [6 ])

For r > 2  and t > 3

7(i^«(<)) =  0 .

For / > r  >  2 we define the limiting density of the complete Z-partite r-graph 

to be

So for r  =  2  we have

72 =  {(̂ 2 ,1 , <̂2 ,2 j d2,3, •. • }•

Sarkar [24] noted that the method employed by Frankl and Rodl to prove 

Theorem 3.4 cannot be used directly to show that the value dr̂ i is not a 

jump for any I > r >3.  This is because their construction is based on the r- 

graph with I vertex classes each of order t and all possible edges except those 

contained entirely within a single class. Their proof relies on the fact that we 

may insert new edges into such an r-graph without affecting its Lagrangian 

too much.

The obvious r-graph to consider if we are to attem pt to show that is not 

a jump using Frankl and Rodl’s method is Kl^\ t ) .  However, adding just a
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single edge to increases its Lagrangian by at least and so this

approach fails.

In the next section we will examine the role of Lagrangians in relation to 

Conjecture 3.3. Our main result, Theorem 3.7, adapts Frankl and Rodl’s 

method to give an example of a limiting density which is not a jump: dg g. 

The proof relies on the use of a different hypergraph as the starting point for 

the construction. We also describe a 5-graph that can be used in a similar 

way to show that dŝ io is not a jump for r  =  5.

In the final section of this chapter we will briefly consider the question of 

whether ^  is a jump for all r  > 2 .

3.2 Limiting densities which are not jum ps

We say that a  G [0,1] is threshold for a family of r-graphs JF if for every 

e > 0 there exists rio{e,a,J^) such that any r-graph G of order at least no 

and with density d{G) > a  + e contains some F  G P  as a. subhypergraph.

T h eo rem  3.6 (Frankl and Rodl [13]) For r  > 2 and a  G [0,1] the following 

are equivalent:
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{ij a  is a jump for r.

(ii) a  is threshold for some finite family T  of r-graphs satisfying X{F) > 

for all F  Ç: T .

This result allows us to reduce the problem of deciding whether a given 

a  e  [0,1] is a jump for some value of r  to a problem concerning Lagrangians.

Our next theorem gives a new value (that is the limiting density of 

KQ^\t)) which is not a jump for r  =  3. The proof follows Frankl and Rodl’s 

method [13] but the original 3-graph we consider and the final calculation 

are new.

T h eo rem  3.7 (3 ) ^  =  § w not a jump for r = 3.

Proof: Let Vi, V2 and V3  be disjoint sets of vertices each of order t. Write
3

G{t) for the 3-graph with vertex set y  =  [j Vi and edges consisting of all
i —l

triples from V  with either one vertex from each Vi or one vertex from Vi and 

two vertices from V̂ +i for i =  1,2 or 3, where V4  =  14 (see Figure 3.1). It 

is not difficult to see that the Lagrangian of G{t) is achieved by taking each 

vertex to be equally weighted and so

3 1 5 3
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Figure 3.1; The 3-graph G{t)

Suppose, for a contradiction, that |  is a jump for r  =  3. Then by Theorem

3.6 there exists a finite family of 3-graphs such that |  is threshold for T  

and X{F) > Let k = m ax{|F(F)| \ F  e  F } .  We require the

following lemma.

L em m a 3.8 (Frankl and Rodl [13]) I f  k and c are fixed then there exists 

to(&, c) such that for all t > to there is a 3-graph H  satisfying:

(n) \E{H)\ =
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(Hi) if  Vo C V{H) with 3 < |Vb| < k then \E{H) n  < |Vb| -  2.

Proof of Lemma: (See [13] for details). Consider a random 3-graph Ho of 

order t in which edges are inserted independently with probability The 

expected number of edges in Ho is at least Further, the expected number 

of subsets Vo C y  {Ho) which do not satisfy condition {Hi) is less than for 

t sufficiently large. Hence, the probability that Ho contains a subhypergraph 

H  with the required properties is strictly positive. □

In order to obtain a contradiction we need to show that for some e > 0 there 

exist .F-free 3-graphs with arbitrarily many vertices satisfying d{G) > |  -f e.

Let H  be the 3-graph on t > to(A:,c) vertices given by the previous lemma, 

with k as defined above and c =  1 . Define G*{t) to be the 3-graph formed 

from G{t) by inserting the edges of H  into each vertex class. Then let G*{t, n) 

be the n-blow-up of G*{t). That is the 3-graph formed from G*{t) by replacing 

each vertex by a collection of n  new vertices Wy and taking the edges in 

G*{t,n) to be E{G*{t,n)) = {abc : a G Wi,b e W j , c  e W k,ijk  e E{G*{t))}.

L em m a 3.9 IfG*{t,n) is defined as above then
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Proof of Lemma: Counting edges in G '(t,n )  we obtain

t V  +  3 tn^(‘) + 3 t V

( t )

-

□

Since we are assuming that |  is threshold for T^ Lemma 3.9 implies that for n 

sufficently large G*{t, n) contains some F  E T .  So for large enough n, G*{t, n) 

should contain a subhypergraph P  of order k with A(P) > minpgjp A(F) > 

The next lemma will provide the desired contradiction.

Lem m a 3.10 Regardless of the value of n, any subhypergraph P  ofG*{t,n) 

of order k satisfies

m  <

Proof of Lemma: Let P  C G*{t,n) be a subhypergraph of order k then 

Lemma 2.3(b) implies that when evaluating A(P) we may suppose that P  C 

G*{t). For i =  1,2,3 let Pi = V{P)  fl Vi. Then, by adding vertices if needed, 

we may suppose that \Pi\ = k for each i =  1,2,3. Let P[Vi] denote the 

subhypergraph of P  induced by P .̂ Note that each P[Vi\ is a subhypergraph 

of the 3-graph H  given by Lemma 3.8. For fixed i let x  be a legal weighting
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for P[Vi\ with Xi > X2 > ■ ' ‘ > Xk̂  We will show that we may replace P[Vi\ 

by a new 3-graph P*.

Let P* be the 3-graph of order k with edges E{P*) = {12j  : j  = 3 , . . .  ,k}. 

We would like to show that

w{P[Vi\,x) < w ( P \x ) .

Suppose P[Vi\ has s edges listed in order of decreasing weight.

Since P[Vi] is a subhypergraph of H  of order k Lemma 3.8(iii) implies that
I

s < k —2. We claim that | (J | > / -f- 2  for / =  1 , 2 , . . . ,  s. If this is not true,
j=i

I
say I U ^   ̂+  1, then there exists Vq C P[Vi] C H  with |Vo| < / +  1  and

j=i
\E{H) n  > I > |Vo| — 2 contradicting property (iii) of H  as given by

I
Lemma 3.8. Hence there must exist a vertex m E [j ej with m  > 1 + 2 and so

j=i
w{e, x) < XiX2 Xi^ 2  for some e =  ej with j  < I. Therefore w{ei, x) < X1 X2 X1+2

( s \  s+ 2

U 6 j ,x  < '^ X \X 2 Xj < w{P*,x). So we may

j=i J
suppose that for each z =  1,2,3 we have P[Vi\ = P*.

We must now calculate the Lagrangian of P  directly. We will take the k 

vertices of Pi to be Let y  be an optimal legal weighting for P,

so w(P,y) = A(P). Lemma 2.3(a) tells us that for any two vertices v and w 

we have w{Ey, y) =  w{Ew, y). So if vertex Vj has weight z/] then it is easy to



CHAPTER 3. ERDOS’ JUMPING CONSTANT CONJECTURE  59 

see that we may take

V l  ~  1/2 ~  Vz  ~  ~  Vk ~

for 2  =  1 , 2 ,3.

Since w{Ey,y)  is constant over all vertices of P  then for any vertex v

^  =  . ( f , y )  =  A(P). (3.1)
weP

Now consider three vertices, u, v and w, one from each Vi receiving weights 

bi, 6 2  and 6 3  respectively. We know by (3.1) that

wjEu, y) -\-w{Ey,y)-\- y) ^

So in order to obtain A(F) < ^  it is sufficent to show that

5
w{Ey,y) w{Ey,y) P w{Eyy,y) < - .

Let Wi = Vv- So w i+  W2 + = 1. Then
vePi

w{Ey, y) =  al + W1W3 -  biws +  W2 W3  +  ^  yiyj

w { E y ,  y) =  al + W1W2 -  b2 Wi +  W1W3 +  ^  y^yj

w{Eyj, y) =  al + W2 W3 -  6 3 W2  + W1 W2 + ^  yiyj.
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Hence

w{Eu, y )  y )  <  ^
/=i

I  \
of  +  Wi ( l  -  Wi) +  ^  yi y j

We now wish to show that for / =  1,2,3 we have

w?
^  (3.2)

Assuming this we obtain

3  2wf
f^iEu^y)  +  w { E y , y ) - i - w { E w j y )  <  +  w i { l  — wi)

,=i 2

^  ^ _  (Wi +  +  Wg)
2

-

as required.

So we simply need to show that (3.2) holds. We have wi = 2 ai {k — 2 ) 6 / so 

bi = Hence

of +  ^  yiyj = 2 a] +  2 {k — 2 )a/6 / +  ^  ̂ ^b]

<  2a]  +  2ai(wi  — 2u/) +
(w/ — 2 fl/)^

2
w?

This completes the proof of Lemma 3.10 and hence of Theorem 3.7. □
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Having shown that one value dr,i is not a jump our next objective is to 

generalize this to other values of r and 1. To date we can only give one other 

example which is not a jump: dŝ io- This can be proved in a similar way to 

Theorem 3.7. However we first need to find a suitable 5-graph on which to 

base our construction.

In general, if we wish to adapt Frankl and Rodl’s method to show that some 

value a  is not a jump for a given r  > 3, then we need to find a sequence of 

r-graphs, {G n}^i, with the following properties:

(i) On has order at least n,

(ii) X{Gn) = w {Gn, , ^)) =

(iii) X{Gji) is not attained on any proper subhypergraph,

(iv) X{Gn)  t  ^  as n -)> oo.

In the case of d̂ îo the following 5-graphs have the required properties. Let 

Gn be the 5-graph of order 5n given by taking five disjoint vertex classes each 

of order n: Vi, V2 , V3 , V4 , V5 . Define the edges in Gn by specifying an ordered 

partition of five such as (2 , 1 , 1 , 1 , 0 ) and taking as edges those subsets of 

size five formed by taking two vertices from Vi and one vertex from each of
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Vi+i, Vi+ 2  and for i =  1 ,2 . . . ,  5, where Vj =  Vj-^ for j  > 6 . The ordered 

partitions we use are: (1 ,1 ,1 ,1 ,1), (2 ,1 ,1 ,1 ,0), (2 ,0 ,1 ,1 ,1), (3 ,1 ,1 ,0 ,0), 

(3 ,0 ,0 ,1 ,1) and (1,4,0,0,0). Figure 3.2 gives an idea of what this 5-graph 

looks like.

Figure 3.2: The 5-graph used to show that d̂ îo is not a jump for r  =  5
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We cannot give any other examples of limiting densities which are not jumps. 

This is because it becomes increasingly difficult to find suitable r-graphs on 

which to base our construction. It seems likely that for each r  >  3 there 

exists some value which is not a jump for r. Indeed it would perhaps be 

more surprising to find a value dr̂ i with I > r > 3 which is a jump for r. The 

case o i l  = r will be examined in the next section.

3.3 Is ^  a jump?

As we mentioned earlier Erdos was particularly interested in the question of 

whether or not ^  is a jump for every r  > 2. We cannot at present resolve 

this problem but we have a few observations.

Firstly we note that Frankl and Rodl’s method cannot be extended to show 

that ^  is not a jump. This is because we would require a sequence of r-graphs 

satisfying X{Gn)  t  However, since A(A'r^ )̂ =  this is impossible.

We also have a result due to Sarkar.
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T h e o rem  3.11 (Sarkar [24]) Suppose ^  is not a jump for some r. Then 

there is a sequence of r-graphs Gi, G 2 , . . .  of orders t\ < t 2 < . . .  such that

K G n )  i  —

and, for all n,

^
for any proper subhypergraph G'  ̂ of Gn .

This seems to provide evidence that ^  is indeed a jump for all r since the 

existence of such r-graphs would be surprising. For large n, Gn must in 

some sense be symmetric since X{Gn) is achieved only by giving each vertex 

a strictly positive weight. However, all their proper subhypergraphs achieve 

their Lagrangians on a single edge.

If ^  is a jump for some r  > 3 then by Theorem 3.6 there exists a finite family 

of r-graphs, !F*, for which ^  is threshold satisfying min{A(F) : F  e  > 

T ,  We have examined the 3-graph case of this problem in detail.

Looking only at small 3-graphs the following three appear to be obvious
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candidates to belong to the family

Gi = {123,124,134} A(Gi) = ^  = 0.0493827,

G 2 = {123,124,125,345} MGi) =  =  0.0385954,

G 3  =  {123,124,235,145,345} MGs) = ^  = 0.04.

Indeed any 3-graph with at most twelve edges and Lagrangian larger than 

T  contains Gi, G2 or G 3 .

If ^  is a jump for r  =  3 then it is possible that there are no 3-graphs whose 

Lagrangian lies in the interval ( ^ ,  A(G2 )), although this is pure speculation 

based only on our rather limited knowledge of the values occurring as the 

Lagrangians of small 3-graphs.

However, given Theorem 3.11 and the fact that Frankl and Rodl’s method 

for showing that values are not jumps cannot possibly be extended to work 

for the case it seems quite plausible that ^  is a jump.

We will return to the family T  =  {Gi, G 2 , Gg} when we consider the related 

Turan-type problem in the next chapter.



Chapter 4

Turân-type problems

4.1 Introduction

The new proof of Turan’s theorem given by Motzkin and Straus, using a 

characterization of the Lagrangians of all 2-graphs (Theorem 1 .1 ), was the 

original catalyst for the study of Lagrangians of hypergraphs. In this chapter 

we will briefly examine Turan’s original conjectures and discuss the possible 

applications of Lagrangians to these problems. However our main result, 

given in the flnal section of this chapter, is a bound for a different Turan- 

type problem related to Erdos’ jumping constant conjecture.

66
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Recall that denotes the complete r-graph of order

ex(n, = max{|E| : G = {V, E) is a -free r-graph, \V\ = n}

and

T u ra n ’s p ro b lem

For t > r > S determine ex{n, and

There are two old conjectures due to Turan for the 3-graph case of this 

problem [28], [29].

C o n jec tu re  4.1 Consider the S-graph of order n given by dividing the ver

tices into three almost equal classes: Vi, V2 and V3 . Take as edges in G all 

triples consisting either of one vertex from each Vi or one vertex from % and 

two vertices from Vi+i for i = 1 , 2 , 3, where V  ̂ — Vi (see Figure 4H). Then 

ex{n,K[^^) = \E\ and hence = | .

C o n jec tu re  4.2 Consider the S-graph of order n given by dividing the ver

tices into two almost equal classes: Vi and V2 . Take as edges in G all 

triples not contained entirely in one vertex class (see Figure 4-^)- Then 

ex{n,K^^^) = \E\ and hence
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Figure 4.1: Turan’s i^^^-free example

Figure 4.2: Turan’s jPT̂ ^̂ -free example

Currently Conjecture 4.1 remains unsolved and no larger example of a 

free 3-graph has been found. However, if this conjecture is true the optimal 

i^ 4 ^^-free 3-graph is not unique. Kostochka [19] has described 2 ”̂ “  ̂ non

isomorphic 3-graphs of order 3m which are A^^^ -̂free and have the same
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number of edges as Turan’s example.

The best known upper bound for ex{n,K^^)  is due to Chung and Lu [4]. 

They showed that

ex(n, ^  3 +  y i ?

(:) -

This implies that = 0.593592..., while Turan’s example

gives > I =  0.5555 —

Turan’s conjecture for (Conjecture 4.2) has been shown to be false by

Kostochka and Sidorenko [20]. They give examples for all odd n > 9 of 

free 3-graphs with more edges than Turan’s example. However, for n = 2 m + l 

they contain at most Ç extra edges and so the second part of Conjecture 4.2, 

= | ,  is still unresolved. The best known upper bound for 

is due to de Caen [2]. He showed that < | ,  while Turan’s example

gives >  I-

4.2 Lagrangians and Turan’s problem

For a 2 -graph G the value of \{G) is determined solely by the order of the

largest clique in G. For general r-graphs, with r  > 3, this is no longer the
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case. There are many examples of r-graphs for which % G and yet 

\{G) > For instance the example given in Conjecture 4.1 satisfies

g  G and A (G) > A(Æg^ )̂. The simple reason for this is that the La

grangian of a general r-graph need not be attained on a small subhypergraph. 

Indeed for many r-graphs A(G) is only attained on the entire vertex set.

One observation we have concerning Conjecture 4.1 and Lagrangians is that 

the asymptotic version of this conjecture is equivalent to the statement that 

every K^^-îree 3-graph G satisfies A(G) < It is easy to show that

this is true for Turan’s Æ^^^-free example directly (that is not simply by 

counting edges). However, we have been unsuccessful in finding a direct 

proof of this fact for Kostochka’s examples of j^^^^-free 3-graphs.

Although Lagrangians have not provided any real insights into Turan’s prob

lem for hypergraphs they have proved very useful when considering other 

Turan-type problems. For example consider the following problem due to 

Katona.

Problem

Determine the maximal number of edges in an r-graph of order n with the 

property that the symmetric difference of any two edges is not contained in a
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third.

This problem was first answered for 3-graphs by Bollobas [1]. He showed that 

the unique extremal 3-graph of order n with this property is the tripartite 

3-graph whose three vertex classes are as equal as possible in size and whose 

edges are all triples meeting each vertex class exactly once.

Later Sidorenko [26] showed how useful Lagrangians could be in this context. 

He provided a new proof of the asymptotic version of Bollobas’ result, and 

gave a similar result for 4-graphs. His proof uses the fact that if G is a 

3-graph or 4-graph satisfying the conditions of Katona’s problem then the 

Lagrangian of G is given by weighting a single edge. Hence

for such an r-graph (where r  =  3 or 4).

4.3 A bound for a Turân-type problem

While considering the question of whether ^  is a jump for r  =  3 in the 

previous chapter we saw that the family of 3-graphs T  = {Gi, G 2 , Gg} was 

of particular interest, where
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Gi = {123,124,134}, Gg =  {123,124,125,345}

and

Gg =  {123,124,235,145,345}.

This was because we have no examples of 3-graphs whose Lagrangian is 

strictly larger than T  not containing a copy of some member of T .  For this 

reason it is interesting to consider the related Turan-type problem. That is, 

how dense may an .F-free 3-graph be?

We would really like to show that there is a finite family T* {G \ A(G) > 

^ }  satisfying =  | .  This would imply (by Theorem 3.6) that |  is

a jump for r = 3. However, for any such family we may suppose that 

T  Ç. T* and so any upper bound for ^{T)  is equally an upper bound for

Before considering this problem we note the following bounds for 7 (Gi) due 

to Frankl and Ffiredi [11] and de Caen [2] respectively

ÿ < 7 ( ^ 1 ) < ÿ

Since G\ ^  T  and 7 (Gi) < |  we would like, at the very least, to show that 

7 M  <
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We will make use of the following averaging lemma due to Katona, Nemetz 

and Simonovits [17].

Lem m a 4.3 (Katona, Nemetz and Simonovits [17])

I f  Ç is a family of r-graphs then for any integer n >  r

ex{n-\- l,G) ^  ex{n,Q)

i T )  ~  ~ G T '

Our main result is the following.

T h eo rem  4.4 I f  is the family of 3-graphs given above then

7 M  <0.3103 - < i  

where 0.3K)3 . . .  is the real root of 5x(l +  3a; )̂ — 2 =  0.

The proof of this result involves an averaging argument over the subgraphs 

of order six of an JF-free 3-graph. We first need to examine .F-free 3-graphs 

of small order and we have a series of lemmas.

L em m a 4.5 There are three maximal T-free 3-graphs of order 5, Hi =  

{123,124,125}, H 2 = {123,134,125,145}, and H 3 =  {123,234,125,145}.
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Figure 4.3: The 2 -graph representation of G2 = {123,124,125,345}

e

Figure 4.4: The three maximal .F-free 3-graphs of order 5.

Proof: We note that any 3-graph of order 5 may be represented by a 2-graph 

of order 5 where edges are given by complements. (See Figure 4.3 for such 

a representation of G 2 O So if 77 is a maximal 7^-free 3-graph of order 5 and 

V e V  {H) we can define d{v) to be the degree of the corresponding vertex in 

the 2-graph representing H.

Since Gi g  77 we have d(v) < 2  for every v G V{H). Hence 77 contains 

at most 5 edges with equality iff 77 is a pentagon (as a 2-graph). But this
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is G3 . Hence H  contains at most 4 edges. Further, since H  is G 2 -free, if it 

contains a triangle then it contains no other edges. Hence H  is one of the 

three 3-graphs Hi, H 2 or H 3 (see Figure 4.4). □

For an r-graph G = {V, E) we say that U Ç y  is an independent set if 

E\U\ — 0. Our next lemma is interesting in its own right since it implies 

that if H  is an .F-free 3-graph then it contains a large independent set of 

vertices.

Lem m a 4.6 Let t > 5 be an integer. I f  H  is an T-free 3-graph and {123, 

124,125, . . . ,  12t} C E{H) then

E{H)  n  =  {123,124,125,..,, 1 2 1 }

and hence

^ [{ 3 ,. . .  ,t}] =  0 .

Proof: Suppose there is an edge l i j  G E  with i , j  G {3,4 , . . . ,  t} then 

{lij ,  12%, 12j} = Gi C H. Similarly there can be no edge of the form 2ij.

Also if there is an edge i jk  G E  with i , j , k  G {3,4 , . . . ,  then we have 

{1 2 %, I 2 j, \ 2 k, i jk }  = G2 C H .  □
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C oro lla ry  4.7 I f  H  is an T-free 3-graph with density 7  then there exists an 

independent set of vertices U of order \'y{n — 2 )].

Proof: The identity

31^1= E  1% ! '

implies that there exist vertices i , j  e V  with \Eij\ > =  7 ( 7 1  — 2). By the

previous lemma Eij is an independent set in H. □

Our next two lemmas are slightly more technical. Lemma 4.8 provides useful 

information concerning the number of edges in .F-free 3-graphs of order 6 , 

while Lemma 4.9 enables us to count special subhypergraphs of order 6  in a 

general F-free 3-graph.

L em m a 4.8 I f  H  = {V, E) is an T-free 3-graph of order 6  and Go is the 

3-graph {123,124,125} then

\B\ < 8 — I {Go : Go C H}\.

Proof: Note that by Lemma 4.5 we have ex(3 ,T)  =  4 so Lemma 4.3 implies 

that

6 T(6 ,F )  ^ 4 2  
(:) - © “ 5-
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Hence iî H  = {V,E) is an ^-free 3-graph of order 6  then |E | < 8 .

If there exist vertices i and j  for which \Eij\ = 4 then {123,124,125,126} Ç 

H. So, by Lemma 4.6, H  contains no other edges and hence \E{H)\ =  4 =  

8  — I {G o : G o C  iL}|, as required.

For the remainder of this proof we may suppose that |E | < 8  and \Eij\ < 3 

for all {iO }  G We may also assume that there is at least one copy of 

Go contained in H  (otherwise |E | <  8  implies the result).

If there is exactly one copy of Go contained in H  we may suppose (by re

labelling if necessary) that it is {123,124,125}. Lemma 4.6 implies that 

E [{1 ,2 ,3 ,4 ,5}] =  {123,124,125}. Also, since ea;(5,^) =  4, any other 5-set 

in H  contains at most four edges so summing over all 5-sets in H  we obtain

3|£'| =  ^ 2  < 3 -f 5 ' 4 =  23.
5ev(5)

Hence \E\ < 7. So the result holds when |{Go : Go C  i7}| =  1.

Now suppose there are at least two copies of Go contained in H. W ithout 

loss of generality one of them is {123,124,125}. If the other copy of Go is 

{abc, abd, abe} then by Lemma 4.6 and symmetry we may take b = 6  and 

either a =  1 or a =  3. Using the fact that \Eij\ < 3 for all {z, j}  G and 

remembering that H  is ^-free we have two cases to consider.
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Either H  contains a copy of {123,124,125,136,146,156} or H  contains a 

copy of {123,124,125,136,346,356}. It is easy to check that these are both 

maximal JF-free 3-graphs. (In both cases any new edge we try to insert must 

contain 2 and 6 , but adding any such edge would mean that H  is no longer 

.F-free.) Hence we see that H  cannot contain exactly three copies of Gq and 

if it contains exactly two copies of Gq then |F | < 6  =  8  — |{G q  : Gq C H}\ 

as required. □

We require one final lemma before proving Theorem 4.4.

L em m a 4.9 I f  G = (V, E) is a 3-graph of order n and size m  then

' E ( ' tv  E ("I
where Eij = {k : i jk  E E } and E^j = {k : i jk  e  [n]^^^\F}.

Proof: Let us denote the left hand side of (4.1) by S  and \Eij\ and by 

eij and ëij respectively. Then ëÿ- =  n — 2 — so

65 =  ^2 ~  l)(^û “  (%  — 3 T  eij).
{zj}ev(2 )

~  “  !)(%  — 2)(n — 5).
{zj}ev(2 )

Now e i j  <  n  —  2  s o
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Hence

We now require Holder’s inequality which says that for p,q > 0 satisfying 

 ̂ i  =  1  and sequences at, bt of non-negative real numbers

t= l  \ ( = 1  /  \ t = l  J

Applying this with p = 3, q = ^, k = ( 2 ), Of =  ê - and bt =  —V  we have
( 2 )^

J2 bj = I so
t=i

E
^  \{W}GV(2 ) ^

-  ~ / n \ 2  
{7,j}GV(2)

27rrP

G)

Combining (4.2) and (4.3) we obtain

2 ■ (4.3)

which is (4.1) as required. □

We are now ready to prove Theorem 4.4. Let G = (V, E) be an .F-free 3-graph 

of order n. We will give an upper bound for |E | =  m by carefully counting
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the number of edges present in subsets of V  of order 6  in two different ways. 

Firstly we have the simple identity

E  =  (4.4)

We now want to count the number of edges in those induced subhypergraphs 

of order 6  containing a copy of Gq = {123,124,125}. We claim that the 

following inequality holds

4 E CtV E Ct')i4i< E (8-M4I).
{ij}ev(2)  ̂  ̂  ̂ ^ AeV(^),GoÇE[A]

(4.5)

To see this consider A  G with Gq C E[A]. We saw in the proof of Lemma 

4.8 that A  can contain either 1,2 or 4 copies of Gq. Lemma 4.8 also implies 

that in each case 8  — |F^[^]| > |{Go : Go Ç E'[yl]}|. So we need to check that 

the left hand side of (4.5) counts those A  G containing 1 , 2  or 4 copies of 

Gq at most once, twice or four times respectively. We must also check that 

any A  G that is Go-free is never counted in the left hand side of (4.5).

Suppose A  G contains exactly one copy of Go. Then \Eab H =  3 for

some (a, b} G and \Eij n  A\ < 2  for all other choices of { i , j }  from A^^K

So the first term in (4.5) does not count A  and the second term counts it 

exactly once (when {i , j }  = {^, &})•
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Now suppose A  G contains exactly two copies of Go- Then \ E i j C \ A \  = 3 

for two choices of { i j j}  G A^^  ̂ and for all other choices of {z,j} € A^“̂̂ we 

have \ E i j C \ A \  <  2 . So the first term in (4.5) does not count A  and the second 

term counts it exactly twice.

If A G contains four copies of Go then from the proof of Lemma 4.8 we 

know that E[A] = {123,124,125,126} and so A  is counted four times by the 

first term in (4.5) and never by the second term.

Finally, if A G does not contain a copy of Gq then \Eij n  v4| < 2 for all 

{ i , j }  G and so A  is not counted in the left hand side of (4.5). Hence 

inequality (4.5) holds.

Since ex{6 , J^) = 8  we can combine (4.4) and (4.5) to obtain

'j  <  8  ^  r  'j -  I { A  G : G q Ç  ^

\  ^ AeV<^^),GoÇE[A]

Applying Lemma 4.9 we have 

Dividing by we obtain

d{G) < -  -  3{d{G)Ÿ +  O (-) .
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Then letting n  tend to infinity we see that 7 (^ )  satisfies

This completes the proof of Theorem 4.4. □



Chapter 5

Intersecting Families of 

Separated Sets

5.1 Introduction

We say that a family of sets is intersecting if the intersection of any two sets 

from the family is non-empty. How large can an intersecting family of sets 

from be? If n < 2r this is easy to answer since is intersecting. 

However, for n > 2 r  this question is more difficult. It was answered by Erdos, 

Ko and Rado in 1961 [8 ].

83
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T h eo rem  5.1 (Erdos, Ko and Rado [8 ]) 

Let n > 2 r, X E [n] and A  C  be intersecting. Then | .4 | < \Ax\, where 

A x  =  { A e  : X E A}. I f  n > 2 r then \A\ =  \Ax\ iff A  Ax-

For completeness, and for later reference, we will give two elegant proofs of 

this theorem. The first is due to Katona [16] and the second is due to Daykin 

[5].

Proof 1  of Theorem 5.1 (Katona [16])

Let A  be an intersecting family in [n]̂ ’’b Consider the bipartite graph G 

whose two vertex classes are the collection C of all cyclic orderings of [n] and 

[n]('"\ For an r-set B  and a cyclic ordering C  we say that B  is an interval 

in C if B appears as r  consecutive elements in C. The edges of G join an 

r-set B  to any cyclic ordering G containing B  as an interval. Every r-set is 

adjacent to r!(n —r)! cyclic orderings. So the number of edges from ^  to C is 

\A\r\{n — r)\. Given a particular cyclic ordering G we know that G contains 

at most r  sets from A  as intervals since if it contained more then at least two 

would be disjoint. Hence the number of edges from C to .4. is at most r\C\. 

Then, as the total number of cyclic orderings of [n] is (n — 1)! we have
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The case of equality is easy to deduce. □

Given a family of r-sets A  Ç the lower shadow of A  is defined to be

=  { B  G B  C for som e A  G A } .

Recall the definition of the colex ordering of from page 16. For the 

second proof of Theorem 5.1 we will require the following result.

T h eo rem  5.2 (Kruskal and Katona [21])

Let r > \  and A  Ç Then the lower shadow of A  is at least as large as

the lower shadow of the first \A \  r-sets in the colex order. I f  |.A| =  for 

some m > r, then equality holds ^ . 4

Proof 2 of Theorem 5.1 (Daykin [5])

First suppose that n = 2r. Then, as the complement of an r-set is also an 

r-set, an intersecting family A  may contain at most a half of the sets from 

[n](^\ This is the required result for n = 2r.

For the remainder of this proof we will assume that n >  2r.

Let denote the operation of taking the lower shadow t times. Given an 

intersecting family of r-sets. A ,  let B = {[n]\A : A  G A } .  If 4  G .4 and 

B e B  then A ( f iB .  So {d^~^^B) n A  = d}.
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As Ax  is a maximal intersecting family we may suppose that |^ | =  \Ax\ then 

it is sufficient to prove that A  ~  Ax- So suppose |^ |  =  \J3\ = Applying

Theorem 5.2 we have | ^ |  > . . . ,  >  ( - ' ) .

Then A  U Ç and, as noted above, this is a union of disjoint

families of sets. Hence we have Theorem 5.2 then implies

that 5  ^  [u — and so ^  ~  .4x- O

Many questions concerning families of sets from can be framed in the 

language of graphs. Consider the graph the Kneser graph, Kn,r-> with vertex 

set and edges between any two vertices corresponding to disjoint r-sets. 

The Erdos-Ko-Rado theorem (Theorem 5.1) can be restated as: the largest 

independent set of vertices in Kn^r has order (”Zj) •

One of the most fundamental properties of a graph is its chromatic number. 

For the Kneser graph it is clear that this must be at least since any 

monochromatic set of vertices corresponds to an intersecting family of sets 

and so by Theorem 5.1 has order at most ("Zj) - In the other direction, the 

Kneser graph cannot have chromatic number larger than n — 2r + 2 since we 

may colour it with n — 2r 4 - 2 colours as follows. For i G [n] let Si denote 

those sets in whose smallest element is i. Colour those sets in Si with

colour 2  for 2  =  1 , . . . ,  72 — 2r -I- 1. Then the remaining sets which have not
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been coloured form an intersecting family (since they are a collection of r-sets 

from a set of size 2 r — 1 ). Hence they form an independent set in the Kneser 

graph and so may all be coloured with colour n — 2 r -f 2 .

A longstanding conjecture due to Kneser [18] was that the chromatic number 

of Kn,r is n — 2r 4 - 2. This was answered in the affirmative by Lovasz in 1977

[2 2 ]. Later Schrijver [25] identified a vertex-critical subgraph of ATn.r, in 

other words a minimal subgraph of Kn^r with chromatic number n — 2 r  +  2 . 

In order to describe this subgraph we require the following definition. We 

say that a set A G [n]̂ ^̂  is separated if, when considered as a subset of [n] 

arranged around a circle in the usual ordering, A  does not contain any two 

adjacent points. Schrijver’s vertex-critical subgraph of the Kneser graph is 

the subgraph induced by those vertices corresponding to the collection of all 

separated sets in [n]̂ ^̂ .

Let us denote the collection of all separated sets in [n]( )̂ by [n]l^^ Then 

the corresponding subgraph of the Kneser graph has (by Schrijver’s result) 

chromatic number n — 2r +  2. However, the independence number of this 

subgraph is not known. This is a rather strange situation in that generally 

determining the independence number of a graph is “easier” than determining 

its chromatic number. For the remainder of this chapter we will consider a
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well-known conjecture of Holroyd and Johnson on this problem, namely that 

an analogue of the Erdos-Ko-Rado theorem holds for intersecting families 

of separated sets. In fact their conjecture is more general. They define the 

collection of k-separated r-sets in to be those r-sets A = {&i,. . . ,  Or} 

satisfying ai^i — ai > k lor i = 1 , . . . ,  r , where a^+i = a i -\-n. We will denote 

this family by Note that a 1-separated set is simply a separated set.

Conjecture 5.3 (Holroyd and Johnson [15])

Letn, k andr be positive integers satisfying n > (A;-fl)r. Suppose x  G [n] and 

A  C is intersecting. Then \A\ < \Al\, where A l  = {A e ; x  G A}.

Our main results are Theorems 5.5, 5.6 and 5.7. Theorem 5.5 shows that 

when n =  2 r  -|- 2  and k = 1  (the first non-trivial case) Conjecture 5.3 is true. 

Theorem 5.6 gives a version of the Erdos-Ko-Rado theorem for weighted k- 

separated sets. Finally, Theorem 5.7 gives an extension of Theorem 5.6 along 

the same lines as the Hilton-Milner theorem (Theorem 5.4). These last two 

results allow us to give non-trivial bounds on the size of intersecting families 

of /^-separated sets.

Except in the final section of this chapter we will only consider separated 

sets, that is the case k = 1 oi Conjecture 5.3.
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Let us first note, following Holroyd and Johnson [15], that Conjecture 5.3 

is true when n is large compared to r and k. This follows trivially from a 

result of Hilton and Milner [14] on intersecting families of r-sets which are 

not fixed by single element (that is families A  for which there does not exist 

X G [n] such that every A e  A  contains x).

T h eo rem  5.4 (Hilton and Milner [14]) 7 /.4  is an intersecting family of r- 

sets from [n]̂ ’’) not fixed by a single element then |.4| < |^ |  where A  is formed 

by taking all r-sets containing both the element r  -I- 1  and at least one of the 

elements 1 , 2 , . . . ,  r  together with the set {1 , 2 , . . . ,  r}.

We note that the family À  has size (”l j )  — + 1 - A simple calculation

then implies that Conjecture 5.3 is true for n > 2 kr'^.

5.2 Some negative results

In this section we will explore the first “obvious” ideas for a proof of Conjec

ture 5.3. We will consider ways of adapting the two proofs of the Erdos-Ko- 

Rado theorem given in the previous section and show that there are simple 

reasons why neither proof is easily modified to give a proof of this new prob

lem.
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5.2.1 Cyclic orderings

Recall the first proof of Theorem 5.1. When considering separated r-sets we 

need a corresponding idea of a “separated” cyclic ordering. We will call a 

cyclic ordering of [n] an r-legal cyclic ordering if every interval of length r  

forms a separated r-set. So for example 1352746 is a 2-legal cyclic ordering 

of [7] but it is not a 3-legal cyclic ordering of [7] since 352 is not a separated 

3-set.

If all separated r-sets were contained as intervals in the same number of r- 

legal cyclic orderings of [n] then we could adapt the first proof of Theorem

5.1 as follows.

Suppose each separated r-set belonged to exactly a  r-legal cyclic orderings. 

Let C* denote the collection of all r-legal cyclic orderings of [n]. Then given 

an intersecting family of separated r-sets, A, we could form a bipartite graph 

with vertex classes C* and and edges joining an r-set to any cyclic or

dering in which it appeared as an interval. As before, since A  is intersecting, 

any C G C* would be adjacent to at most r  sets in A.  Hence by counting the 

number of edges between A  and C* we would obtain a\A\ < r|C*|. Counting 

the total number of edges in this graph we would also have =  n\C^\
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and hence

m  < ^  =  «  =  K i .

However, the problem with this argument is that it is simply not true in 

general that every separated r-set is contained as an interval in the same 

number of r-legal cyclic orderings. For example if we consider [7]?  ̂ the 2-set 

13 belongs to fewer 2 -legal cyclic orderings of [7] than the 2-set 14. Hence 

the most simple attem pt to modify the first proof of Theorem 5.1 fails.

We have considered trying to overcome this problem by giving weights to the 

cyclic orderings but have found no consistent way of doing this.

5.2.2 Ordering of separated sets

Given an r-set A  and a family of r-sets B we say that A  is disjoint from B 

if there exists B  G B  such that A n  B  = il).

For A  Ç define

D (^ ) =  \{B e  : B  is disjoint from ^ } |.

The second proof of Theorem 5.1 used a special case of the Kruskal-Katona 

theorem. Essentially it made use of the following result.
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If ^  C then D{A) > D{C), where C is the family of r-sets from of 

size 1 ^ 1  formed by taking the complements of the first |^ | sets in the colex 

ordering of

In order to adapt this argument to give a proof of Conjecture 5.3 we would 

require an ordering of with the property that any collection of separated 

r-sets of size m should be disjoint from at least as many other separated r-sets 

as the first m  elements in our ordering of

Figure 5.1: The three types of set in [9]1 \̂

Unfortunately such an ordering does not (in general) exist. We give the 

following example. In [9]!̂  ̂ there are three basic types of sets. We will call 

these types A, B  and C. Typical sets of these three types are 135,146 and 

147 respectively (see Figure 5.1). A set of type A  is disjoint from 1 0  other 

sets in [9]1^\ a set of type B  is disjoint from 9 other sets in [9]?  ̂ and a 

set of type C is disjoint from 8  other sets in Hence, if an ordering
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as described above existed for [9]?  ̂ its first set would be of type C. Now 

consider which pair of sets in [9]!̂  ̂ are disjoint from the smallest number of 

other sets in [9]i^\ It is easy to see that if we take the two sets of type B, 137 

and 157, then they are disjoint from 1 1  other sets in [9]?\ So if an ordering 

as described above exists we must be able to find a pair of sets, at least one 

of which is of type C, that are disjoint from at most 1 1  other sets in [9]1 \̂ 

However, any such pair of sets is disjoint from at least 13 other sets in [9]!̂  ̂

so no such ordering can exist.

5.3 Result for n = 2r + 2

The first non-trivial case of Conjecture 5.3 that we can prove is the case 

n = 2 r P 2. (Note that for n = 2r there are only two separated r-sets and 

these are disjoint. For n = 2r + 1 there are n  separated r-sets all of which 

are rotations of each other. So clearly in both cases Conjecture 5.3 is true.)

Theorem  5.5 I f  A  C [2r -I- 2]!̂  ̂ is intersecting then \A\ < and hence 

Conjecture 5.3 is true for n = 2 r P 2  and k =

Proof: We prove this from first principles by examining in detail the sub

graph, G, of the Kneser graph K 2r+2 ,r induced by the collection of all sepa-
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rated r-sets. G has vertex set and edges between any two sets which 

are disjoint. We need to show that the largest independent set in G has order 

1̂ *1 =  \Ye will assume that r is odd, say r = 2d+ 1.  The case when

r is even may be proved in a similar fashion.

We partition into classes of size r+ 1  as follows. Let Ao ( ^ )  be the class 

of all separated r-sets consisting of only odd (even) numbers. All other sets 

in contain two gaps of size 2 and r — 2 gaps of size 1. We partition these 

into r  — 1  classes each containing r  -f- 1  sets by defining for i =  0 , . . . ,  d — 1  

B{i,o) to be the class of all r-sets in which the two gaps of size 2

are separated by i gaps of size 1  and the numbers outside this part of the set 

are all odd (even).

Having partitioned we note that Ao U Ae induces a complete bipartite 

graph of order n in G . This is because every r-set containing only odd 

numbers is obviously disjoint from every r-set containing only even numbers. 

Also there exist matchings between Ao and 5(0, e) and between Ae and 

5(0, o) (see Figure 5.2).

If we wish to choose an independent set in G we may assume without loss 

of generality that we choose sets in Ao rather than in A q. The complete 

bipartite graph induced by Ao U Ae implies that we cannot choose any sets
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Figure 5.2: Part of the Kneser graph K'2 r+2 ,r

from Ae- Further, the matching between Ao and 5(0, e) means that we can 

choose in total at most r  +  1  sets from A qU A qU 5(0, e).

There also exist matchings between B{i, o) and 5(% +  l, e) for i =  0 , . . . ,  d —2. 

Hence we may choose at most a half of the r-sets from 5(z,o) U 5 (i +  l ,e) 

for i =  0 , 1, . . . ,  d — 2 .

This leaves only 5(d  — 1, o) which we can spilt into two equal halves. There 

is a matching between these two halves and so we may choose at most a half 

of the r-sets in this class.

Hence we have at most (r +  1) +  (d — l ) ( r  +  1) +  =  r { r + i )  ^ _ g g ^ g

independent set as required. □
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Theorem 5.5 says nothing about the uniqueness of intersecting families of 

maximal size. In general there is not a unique family. For example if n =  8  

and r  =  3 then Theorem 5.5 tells us that any intersecting family has size 

at most 6 . Obviously this is attained by A l = {135,136,137,146,147,157}. 

However, another non-isomorphic family of maximal size is {A  G [8 ]?^ : 

\A n  {1 ,3 ,5}| > 2 } =  {135,136,137,157,357,358}.

5.4 Results for weighted sets

For A  =  {a i , . . . ,  Or} € [ra]j we define the weight of A  to be

'(>1 ) = n
O'i+l — CLi — 1

i = l  ^

where = a i+ n .  So the weight of a /c-separated set A  G is simply 

the number of different ways A  may be extended to form a set B G 

by inserting exactly k new elements into each gap in A. We then define the 

weight of a family of sets A  C to be

w[A) = ^ 2
AeA

The following result says that an analogue of the Erdos-Ko-Rado theorem 

holds for weighted A:-separated sets.
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T h eo rem  5.6 Let n > 2{k l)r. Suppose x  € [n] and A  C [nf^^ is inter

secting. Then w{A) < w{Al), where A* = {A e  : x e  A}.

Proof: Consider the bipartite graph G = {V U W ,E )  with vertex classes 

V  = and W  = We define E  as follows: let A G V be

adjacent to S  G W if we can construct B  from A  by inserting exactly k 

elements into each gap in A.

Let A  C be intersecting then

r ( ^ )  = { B e  : {A, B) G E, for some A e  A }

is also intersecting. Since F(.4) is an intersecting family of {k +  1 )r-sets from 

[ ]̂((fc+i)r) ^  > 2 {k -t- l ) r  Theorem 5.1 implies that

n — 1

For distinct A \ ,A 2 G .4 we have F(Ai) n  F(4 2 ) =  0. To see this, sup

pose we had B  G F (4 i) D F(4 2 ) with B  = {6 i , . . . ,  5 (^+1 )^}. Without 

loss of generality we may suppose that Ai = {bi,bk+2 , ■ ■ ■ ,b(^k+i)r-k} and 

A 2 = {bi, bk+i+i, . . . ,  6 (A;+i)(r-i)+z}, for some 2 < i  < k-\-l. Hence A i n Â 2 = 0. 

This contradicts the fact that A  is intersecting.
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Then, since \L{A) \ = w{A), we have

«'(-4) = E  “'( )̂ = E , = irM)l < (̂ 1̂̂ + i)r - 1)

□

In fact we can prove a stronger result by using the Hilton-Milner theorem 

(Theorem 5.4).

T h eo rem  5.7 Let n > 2{k -f l ) r .  Suppose x  G [n] and A  C is inter

secting. Then at least one of the following holds:

(ii) ixi < |yi:i,

(5.1)

Proof: Consider P(M) as defined in the proof of the previous theorem. Either 

r ( ^ )  is fixed by a single element, so there exists y G [n] such that T (^) Ç
9

By — {B  G : y G B}, or Theorem 5.4 implies that

So either (i) holds or their exists y G [n] such that F (^ ) Ç By.
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Suppose that F (^ ) Ç 3 y. Since every B  G L{A) contains y we see from the 

construction of F {A) that for every A E A  either y E A  or there exists i E [&] 

such that {y — i ,y  — i P k 1 } C A.

Suppose {y — i ,y  — i + k 1} C A E A  foi some i E [A:]. If we rotate A  

clockwise by i positions then we obtain a disjoint set A' '̂  ̂ E containing 

y. This new set is uniquely determined by A. (If two distinct sets Ai, A 2 E A  

gave rise to the same set then it is easy to see that Ai D A 2 = 0.) Further, 

0 A  since A~̂  ̂C\ A = iÙ. So for every set A E A,  either y E A ot there 

exists a unique set A' '̂  ̂ containing y which does not belong to A. Hence 

\A\ <\A*y\ = \Al\, which is (ii). □

Both of the previous two theorems enable us to give bounds on the size 

of intersecting families in for given values of r, k and n, using simple

information about the weights of these sets. Of course such bounds are not as 

good as the conjectured exact result but they are a significant improvement 

on the obvious trivial bounds. We will give an example to illustrate how we 

may do this.

If ^  C is intersecting then what upper bounds can we give for \A\? 

Consider a set A G ^  and its rotation clockwise by i positions, for some i  E 

[/c]. These sets are disjoint and so A  contains at most ^  of all sets in
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Another upper bound for |^ | is given by the Hilton-Milner theorem: either 

A  is fixed by a single element, so |^ |  < \Al\, or |X| < +  1-

Combining these two observations we obtain the following upper bound,

1 ^ 1  < ™  -  ( " ; - ■ ) , ,

For our example we will take A: =  1 , n =  22 and r = 5. Then |[22]1̂ |̂ =  8008. 

If ̂  C [22]!̂  ̂ is intersecting then the best trivial bound is |v4| < 4004. We will 

use Theorem 5.7 to show that |^ |  < 2651. We partition [2 2 ] into classes 

according to weight. There are 41 different weights which occur, ranging 

from 13 upto 432. Since a set and its rotation by one are disjoint A  contains 

at most a half of all sets of a given weight. Assuming that |A| is larger than 

the conjectured bound. Theorem 5.7 tells us that w{A) < (^ ) — (^) +  1 . 

Hence, a simple calculation shows that even if we always pick the “lightest” 

possible sets we must have \A\ < 2651.

We note that this is a significant improvement on the trivial upper bound of 

4004 but still far from the conjectured upper bound of 1820.

In fact we could have used Theorem 5.6 to give the same bound. In order 

to see that Theorem 5.7 can provide improved bounds we need to look at 

larger examples. If ^  C [40]?^ is intersecting then the difference between the
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bounds on w{A) given by Theorems 5.6 and 5.7 is (Jg) — 1 . Then, since the 

heaviest set in [ 4 0 ] has weight 4^, we see that the bound on |^ |  given by 

Theorem 5.7 would improve the bound given by Theorem 5.6 by at least 7. 

In practice the improvement would probably be a lot more.

We conclude this chapter with the following easy corollary to Theorem 5.6. 

This corollary tells us that if an intersecting family of sets A  C “looks 

like” a random family of sets, in the sense that the average weight of a set in 

A  is equal to the average weight of a set in [n]^\ then A  satisfies the claim 

of Conjecture 5.3.

C oro lla ry  5.8 Let n > 2{k +  l)r .  Suppose x  G [n] and A  C [n]^^ is inter

secting. I f  the average weight of a set in A  is at least as large as the average 

weight of a set in [n]^^ then |^ |  < \A*J\.

In particular, if the average weight of a set in A  is equal to the average weight 

of a set in [n]^^ then \A\ < A*\.

Proof: Consider the graph G used in the proof of Theorem 5.6. If A  e  V  then 

|r(A)| =  w{A). Hence \E\ = u;([n]^^). Also, if B  e W  then \P{B)\ =  A: +  1 . 

Hence |E | = {k and so

average weight of a set in =  (A: +  l) |[n ]--------1
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Suppose A  C is intersecting. Theorem 5.6 implies that

{k +
1̂ 1 (average weight of a set in A) = w{A) <

n

Hence, if the average weight of a set in A  is at least as large as the average 

weight of a set in then

1̂1 <  =  1̂ :1

as required. □
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