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Abstract

The techniques for the computational simulation of solids have, in recent years, been
developed to the level that they now provide a predictive tool. The increased
understanding of interatomic forces in solids coupled with improvement in numerical
and computational methods allows the study of solid state properties, including
structural, thermodynamic and transport properties. This thesis presents both
development and application studies on two topical classes of materials: first organic
superconductors, and secondly metal oxides and their surfaces.

A detailed computational study of the organic superconducting charge transfer
BEDT-TTF (ET) salts has been undertaken in Part I of this thesis. Molecular mechanics
calculations have been used to investigate the extended lattice, of a perfect crystal, for
various ET salts. The chosen forcefield, ESFF, reproduces known crystal structures
very well, although the complexity of the materials of interest limits the ability to
predict new structure.

As the electronic properties of ET salts depend strongly on the packing of the donor-
radical cations, electronic structure calculations have been performed for various salts at
the molecular and periodic level using Density Functional Theory (DFT). These
calculations have been used to investigate the magnetic ordering effect of the BEDT-
TTFFeBr, salt. By fixing the overall spin-state of the system we compared the relative
energies of the various spin states. The intermolecular spin ordering was found to be
primarily mediated via the covalent sulphur-sulphur interaction on neighbouring BEDT-
TTF cations. We have performed optimisation calculations with periodic boundary
conditions for some of the smaller examples of ET salts.

Part II of the thesis details the parameterisation of the COMPASS forcefield to
include electronic polarisation by implementation of the shell model for metal oxide
systems to allow the study of surface adsorption by interatomic potential methods. The
capabilities of the interatomic potentials are demonstrated by calculations of the
adsorption of various small molecules on surface models.

Finally, an investigation of the nucleation of silicate fragments around sodium

cations, by calculations using DFT, is reported in Appendix L.
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Chapter 1

General Introduction

1.1  General

Solid state computational modelling has seen dramatic growth in the last 20 years.
Computational techniques now provide us with the facility to probe the complex
properties of real models for systems of interest to a huge range of academic and
industrial applications. With the major increases in computational resources coupled
with improvements in computational algorithms, there is now the potential for accurate
predictive calculations of the crystal structures and properties of bulk solids, their
surfaces and their defects or impurities (that can often control important aspects of their
behaviour).

Two general classes of computational techniques can be distinguished: electronic
structure calculations, which attempt, at some level of approximation, to solve the
Schrédinger equation for the system; and simulations, which make use of ‘effective
potentials’ that describe the interatomic forces in the system and which may be used to
predict structural and dynamical properties of the solid using essentially classical
techniques. Interactions between the two approaches are increasingly strong and indeed
many of the most important future areas of application will require concerted use of
both types of method.

The range of systems that can be considered in computational modelling is extremely
broad, from isolated molecules through simple atomic and molecular liquids to
polymers, biological macromolecules, such as proteins and DNA, and solids, for
example molecular crystals and metal oxides. Computational modelling is a rapidly
developing discipline and has benefited from the dramatic improvements in computer

hardware and software of recent years.



The work in this thesis has been performed using a variety of computational
techniques, which fall into the above classification. The choice of method is determined
by the result that is of interest. Large systems, when the geometric structure is of
interest, are prime candidates for investigation with simulations using effective
potentials. When the spin or charge density is required for analysis of properties, such
as orbital overlap or ‘bond’ breaking, use of electronic structure methods is necessary,
with the limit then placed on the size of system that can be considered.

The size of model system is an important consideration for the computational
chemist. The understanding of complex chemical processes at the atomic level can give
useful insight, but often quantitative agreement with experimental results requires a
more complex model. The balance of complexity of model and time required to
perform the more computationally demanding calculation is always a central issue in
computational chemistry.

It is always important when applying theoretical methods to be able to compare
results with observed experimental findings, if possible. Frequently in this thesis
comparison has been made between calculated structure and experimental geometric
structure, also where possible experimentally determined physical measurements, such
as vibrational frequencies, elastic constants or dielectric constants can be calculated by
computational techniques and compared directly to experiment.

The assessment of the applicability of the model using small and simple systems is
desirable to limit the waste of computational and human resources. The computational
management of model size is more important for electronic structure techniques, with
calculations having intense memory and disk space requirements. The use of simulation
methods allows the study of much larger systems than electronic structure techniques,
which often leads to greater use of human resource of file management and data
analysis.

The application of both electronic structure and simulation techniques to problems of
the solid state is the focus of this thesis. A resume of some of the important aspects of
the computational techniques employed is given in Chapter 2. Part I is devoted to the
BEDT-TTF family of novel molecular charge transfer salts that can show a
superconducting transition at liquid helium temperatures. The BEDT-TTF molecular
crystals are introduced in Chapter 3, with an emphasis placed upon the effects of
changing geometric structure and the experimental methods used to characterise their

physical properties. Chapter 4 details molecular mechanics calculations of different

2



BEDT-TTF salts, exploring geometric structure. Molecular and periodic boundary
condition electronic structure methods are reported in Chapter 5. Examples of the
calculations that have been performed include; the ionisation potential of a molecule of
BEDT-TTF and the spin state of ETFeBry, which has been explored using the periodic
model.

Part II explores two other fields that are very applicable to the use of computational
techniques. Metal oxides are investigated in Chapter 6 with new interatomic potentials
being fitted for the COMPASS forcefield, allowing the study of metal oxide surface
interactions with small molecules. Finally, Appendix I reports the binding energies and
structural variations of various small silicate fragments upon introduction of a sodium
cation, to help understand the process of nucleation in zeolitic materials. In all
Chapters, the theoretical model used has been thoroughly validated using small systems
before moving to the more complex problems.

Although each Chapter has a focal technique, there has been an emphasis on
combination of the two fields of classical and quantum mechanics, utilising information
that can be transferred from one problem to another. Examples are the use of partial
atomic charges calculated by electronic structure techniques for potential based
simulations, while use has been made of potential based simulations to gain insight into
the geometric structure before application of the computationally expensive electronic
structure techniques.

The outcome of the thesis is a more detailed understanding of the structural and
electronic properties of the molecular electronic and other complex solid state systems

investigated.



Chapter 2

Computational Techniques

2.1 General

The application of computational techniques to problems of a very diverse nature has
increased greatly in recent years. Today’s chemists have a large collection of
computational tools at their disposal to help solve previously impractical or complex
problems. Two particular improvements are responsible for the increasing number of
calculations performed: first the increase in computational resources due to
technological advances, and secondly the user-friendly aspect of “black-box” programs,
which have improved considerably with the introduction of graphical user interfaces.
Calculations can be performed on systems ranging from small molecules to large
periodic models of a few 1000 atoms or more. The quality of the required results
governs the level of theory used and is critical in determining the size of system that can
be studied. The types of problem that can be addressed include:

1) the geometrical arrangements of nuclei that correspond to stable systems

ii) the relative energies and properties of systems such as the vibrational

frequencies and the NMR coupling constants

1i1) the rate of transformation from one stable system to another

iv) the time dependence of molecular structures and properties

The only systems that can be solved exactly are those composed of one or two
particles, with the latter requiring separation into two pseudo one-particle problems by
establishing a centre-of-mass coordinate system. By making approximations,
computational techniques can providé numerical solutions for many-body systems to an

accuracy that can be precise enough for most practical purposes.



The fundamental aim of all computational techniques used in this thesis, is a method
for the evaluation of the ground state potential energy surface of a set of nuclear
coordinates. Results will be presented for calculations ranging from computationally
‘inexpensive’ molecular mechanics models to very ‘expensive’ electronic structure
methods using periodic boundary conditions. The differing techniques, their

approximations, inherent limitations and strengths will be discussed in this Chapter.

2.2 Background

The picture of a molecule that modern computational practices use is of a number of
electrons surrounding a collection of positively charged nuclei. The interaction that
forms the basis of atoms and molecules is the Coulomb attraction between the electrons

and nuclei, i.e.

9;;
V. =V(.)=—2, 2.1
i = V) : 2.1)

where q; and g; are the charges on the two particles separated by a distance r;;.
We also need to model how the system evolves in time, i.e. its dynamical behaviour.

Newton’s second law of motion is used in classical mechanics:

F =ma,
(2.2)
dv d’r
—_—=m— R
dr d*t?

(F is the force, a is the acceleration, r is the position vector and m is the particle mass).
As electrons are very light and display the characteristics of both waves and particles,
the classical mechanics description is insufficient and therefore electrons must be
described in terms of a wavefunction, y. The quantum mechanical equation
corresponding to Newton’s second law is the time dependent Schrodinger equation,

which is the mathematical description of a molecule including quantum mechanical and



approximate relativistic effects (if desired). The solution of this equation is a
formidable problem and so most systems are studied, whenever possible in the

stationary state, using the time-independent Schrodinger equation:
A Yen (1, R) = Eep e (1, R), (2.3)

where H is the Hamiltonian operator for the system, Y., (r, R) is the wavefunction
containing all information about the system and E., is the energy of the system in the
state described by Y. ,, where e and n label the electronic and nuclear quantum numbers
respectively. The problem is reduced further by use of the Born-Oppenheimer
approximation. The basis for the Born-Oppenheimer approximation is that as nuclei are
much heavier than electrons their velocities are much smaller, and, to a good
approximation, the solution of the wavefunction can be separated into electronic motion
for a fixed nuclear geometry and the nuclear wavefunction, where the electronic energy
acts as a potential energy surface. So the Born-Oppenheimer approximation says that

the electronic wavefunction depends parametrically upon the nuclear coordinates:

Yen (1, R) = We (1, R) Wen (R). 2.4)

After making the approximation, two separate Schrodinger equations can be written.

The first is for the electronic motion:

e Ve (5, R) = Ee (R) Ve (1, R), (2.5)

while the second equation describes the motion of nuclei on the electronic potential

energy surface:

Flose Wen R) = Een Yen (R). (2.6)

The Born-Oppenheimer approximation shows the most error for light atoms and
becomes progressively better for heavier nuclei. Further description of calculations

using the electronic wavefunction to approximate the potential energy surface will



follow in this Chapter as well as methods that use an analytical form to describe the

potential energy surface.

2.3  Approximations to Infinite Systems

The modelling of solid state systems requires methodologies that reproduce the effect
of an extended lattice. Short-range effects may dominate in some cases allowing the
size of model system to be reduced but in the majority of cases long range ordering of
the structure is critical to the systems physical properties.

There are two strategies for modelling infinite systems:

1) one or more representative fragments of the system are selected and treated
explicitly
or
ii) suitable boundary conditions are imposed.

In the case of a set of non-interacting molecules the former model will give a correct
representation, which is also the case if a perfect lattice is examined using the latter
model without further approximation. The correct treatment of boundaries and
boundary effects is crucial to the simulation of extended lattices as it enables
macroscopic properties to be calculated from simulations using relatively small
numbers of particles, in such a way that the particles experience forces as if they were in
the bulk.

Interatomic potential methods are computationally inexpensive in comparison to ab
initio techniques, so the use of large models with periodic boundary conditions is more
wide spread. In contrast, the computational expense of using periodic boundary
conditions for electronic structure studies with localised basis sets is very high, due to
the necessity of calculating the crystal orbitals, as electron-electron integrals have to be
evaluated for the current and all neighbouring unit cells. With the increase in
computational power and the reduced computational cost of Density Functional Theory
methods when compared to other quantum mechanical methods, there has been an
increase in the number of codes employing periodic boundary conditions such as,
Crystal(); CASTEP(2), DMol’/DSOLID3:; 4 and VASP(5-7). The use of periodic
boundary conditions is much more common for semi-classical methods using

interatomic potentials, for example Monte Carlo, energy minimisation and molecular
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dynamics simulations; the electrostatic and van der Waals terms are still
computationally expensive but schemes such as the Ewald summation (see section 2.8)
can be used to solve the complex problem of non-bonding interactions between units.

The treatment of defects, where the translational symmetry of the system is lost,

using crystal orbitals/periodic boundary conditions is limited. The most applicable
model for a defective crystal is of a random arrangement of defects. Use of periodic
boundary conditions for the study of imperfect systems leads to periodic repetition,
which leads to the formation of a defect superlattice. The opposite scenario is a single
defect infinitely diluted in the crystalline lattice. Possibly the best approximation is to
use large supercells allowing an area of perfect crystal around the defect to relax and
still including defect-defect interactions between supercells. The problem with this
approach is that the system size will increase and therefore the number of crystal
orbitals requiring calculation increases.

There are three methods for attempting to model extended systems, which essentially

rely on boundary conditions:

1) The molecular cluster model is the simplest representation, therefore meaning
the lowest computational cost and has received wide ranging use particularly
in the study of solid state systems such as zeolites where asymmetric unit
cells are very large(8-12). Even though there have been rapid computational
advances the method is still very prominent. The disadvantages are the lack
of a representation of the Madelung field on the cluster so long-range
electrostatic interactions are ignored. The short-range effects are only
consistent with an extended lattice at the centre of the cluster, as at the
boundary of the cluster there is marked difference in the environment
surrounding each atomic centre. The only method to avoid this problem is to
increase the size of the cluster so that the region of importance is not at the
boundary of the cluster. A further problem with the molecular cluster model
is seen when a section of an extended lattice is removed. The bonds that are
broken in removing the cluster must be saturated, often by hydrogens,
otherwise the cluster will be non-stoichiometric.

ii) Embedding techniques have seen major advances in recent years as the strive
for high quality calculations (e.g. of defects or important regions of chemical

reactivity such as active sites) that include a representation of the crystal



environment has meant that the molecular cluster model has been insufficient.
The way the central region, the remainder of the crystal and their interaction
are represented by this model determines its quality and place in the
classification of embedding techniques. The interaction of the cluster and
outer regions of the embedding matrix is of major importance. Each region
generates a physical potential, which acts on the other. The general
formulation of embedding schemes involves the use of perturbation theory:
the zero iteration is started with an ideal crystal; and the first iteration
involves the calculation of the cluster in the field of the ideal crystal. The
next iteration will then include the passing of the cluster forces and therefore
polarisation to the outer region. The procedure is continued until
convergence is reached. Presently the most widely used embedding schemes
are hybrid methods. Electronic structure techniques are used for the central
region and semi-classical methods are employed to provide the long-range
Coulombic forces of the embedding matrix, for example the code
ICECAP(13), Problems that arise using the hybrid methods are similar to
those encountered with the molecular cluster approximation and are due to
problems encountered at the boundaries. The loss of electrons from the
boundary anions in the central quantum mechanical region requires the use of
a shielding region.

iii)  The periodic model is applied to crystals using a supercell model, which takes
advantage of the natural translational symmetry of the crystalline system. If
defects are being studied, the supercell constitutes the smallest part of the
periodically repeated fragment, containing the region under study. If the unit
cell of the system is large then the supercell can comprise a single
crystallographic unit. For periodic electronic structure calculations the choice
of the number of 4-points from the Brillouin zone is also dependent on the
size of conventional unit cell. For large supercells of insulators (typically 50-

100 ions) it is reasonable to perform calculations solely at the I" point (k=0).

(See the work of Kohn (14) for an example of the ‘short-sightedness’ theorem
of electronic properties of insulators.)
Of the methods discussed above fully ab initio periodic calculations are the most

computationally expensive. The use of molecular cluster models to test methods and



preliminary investigation of simple systems is important to reduce computational
expense. Work will be reported in Chapter 5, describing molecular cluster DFT
calculations of BEDT-TTF in different electronic states and Appendix I shows use of
silicate fragments with sodium cations to represent nucleation of zeolites. Periodic
calculations of BEDT-TTF crystals will be described in Chapters 4 and 5, the former
using molecular mechanics, and the latter are DFT calculations.

The remainder of this Chapter is devoted to a brief description of the key aspects of
the theory of molecular mechanics and electronic structure methods. Although DFT has
been the method used in the majority of the first principles calculations a description of
other wavefunction methods, concentrating upon Hartree Fock theory, has been

included to help introduce generic concepts.

Molecular Mechanics

Molecular mechanics has been at the forefront of molecular modelling as the size of
system that can be studied is vastly larger than can be considered by quantum
mechanical techniques. Quantum mechanical calculations describe electrons in a
system whereas molecular mechanics (or forcefield) methods ignore the electronic
motion and calculate the potential energy of a system as a function of the nuclear
positions only using specified interatomic potentials. This means that the dynamics of
the atoms is treated by classical mechanics i.e. Newton’s second law, allowing the study
of the geometries of stable molecules or different conformations. The energy minima
(or first order saddle points) are found on the potential energy surface mapped by the

interatomic potentials.

2.4 A Simple Forcefield

The foundation of forcefield methods is the assumption of transferability of
potentials, which is supported by the observation that molecules tend to be composed of
units, which are structurally similar in different molecules. The picture of molecules

being composed of structural units, ‘functional groups,” which behave similarly in
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The derivatives are evaluated at R=R; and the E(0) term is normally set to zero ( as it is
the zero point for the energy scale.) The second term is also zero as the expansion is

around the equilibrium value. Therefore the stretch energy can be considered as:
Esn. (RAB _ R(J)\B) — kAB (RAB _ ROAB )2 — kAB (ARAB )2 , (2.8)

14k"P being the force constant for the A-B bond. The functional form for calculating
Eqr, at the most basic level of approximation, is therefore, a harmonic oscillator with the
potential being quadratic in the displacement from the minima.

The harmonic approximation is the simplest possible functional form and works well
for most equilibrium properties but in certain systems, often strained or crowded, the
harmonic approximation leads to significant differences from the experimental values.
The simplest improvement is to include more terms in the Taylor expansion, but as
mentioned earlier an increase in parameters means greater computational effort is
required. Another drawback of further polynomial expansion is that including higher
terms leads to incorrect or artificial behaviour. This is not a problem if the starting
point is close to the equilibrium bond length, but if a poor starting geometry is used an
incorrect result can be obtained.

The correct limiting behaviour for a bond stretching to infinity is asymptotic, where
the energy converges towards the dissociation energy. A simple function that
reproduces the correct description of the potential, over a wide range of distances, is the

Morse potential.

Emorse A (R)=D (1-¢"*¥%)? (2.9)

D 1s the dissociation energy and « is related to the force constant, k, (ot = 1}%D) .
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Figure 2.2. Comparison of functions used to describe the bond stretch of CH,.

A comparison of the simple functional forms available to describe the potential
energy of the AB bond with respect to bond stretch is shown in Figure 2.2. Close to the
‘natural’ bond length the harmonic approximation (P2) can be seen to reproduce the
exact energy (taken to be the energy obtained from high quality quantum mechanical
calculations using the [8-8]-CASSCF/6-311++G(2df,2pd) level of theory.) At larger
distances from the natural bond length, the Morse term can be seen to be a significant

improvement over both the harmonic and quartic approximations (P4).(15)

2.5 Advanced Forcefield Methods

The five terms shown in Figure 2.1 are all essential for molecular mechanics to
provide a correct description of most systems, but for more complex problems the use
of only these five terms provide an insufficient number of degrees of freedom to obtain
the correct result. If, for example, a bond angle decreases there is a compensatory
increase in the adjacent bonds. In our present description of the forcefield there is no
mechanism for coupling between internal coordinates. Cross terms are introduced to

provide this coupling between the five ‘fundamental’ or ‘diagonal’ terms. In principle
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to identify the m-bond order, the length and force constant of the bond by calculating the

m-molecular orbitals.

2.7  The Partial Charge Model

The simplest description of the electrostatics of a molecule is provided by charges
being restricted to their nuclear centres often referred to as partial atomic charges or net
atomic charges. Electronegative atoms attract electrons more than less electronegative
atoms giving rise to an unequal distribution of charge in a molecule. Partial charges are
assigned at the nuclear centres to reproduce the charge distortion and the electrostatic
properties correctly. The electrostatic interaction between two molecules (or different
parts of the same molecule) is then calculated as the sum of interactions between

different pairs of point charges, using Coulomb’s law:

vy (2.10)
i

For simple species, the atomic charges required to reproduce the electric moments
can be calculated exactly if the geometry is known. The experimentally determined
dipole moment of HF molecules can be reproduced by using equal but opposite partial
charges of 0.413e on the two atomic centres when there is a bond length 0of 0.917 A.(16)

As the electrostatic properties of a molecule are a consequence of the distribution of
the electrons and the nuclei, information for fitting partial atomic charges can be
obtained by electronic structure methods. As the partial atomic charge is not obtainable
directly from the wavefunction there have been many suggestions as to the best method
of utilising the electronic information derived from electronic structure calculations. In
sections 2.13 and 5.4 methods of calculating the partial atomic charges from
wavefunction methods using population analysis methods, such as the Mulliken
partitioning scheme, will be introduced. They are generally inappropriate for describing
the interaction between molecules, as théy are dependent upon the constituents of the
molecule rather than being designed to reproduce how the molecules interact with each

other. One electronic property that is observable and important to long range
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intermolecular interactions is the electrostatic potential. There are many examples of
forcefields with partial atomic charges parameterised to reproduce the electrostatic
potential derived by electronic structure methods.(17-20) In section 6.15 the electrostatic
potential is used to fit charges for metal oxide systems.

The electrostatic potential can be derived from the wavefunction using the charge

density, p:

dr'p(r)

'~

00 = 0 0+ 000 = 0 £ ol @.11)

As the electrostatic potential is a continuous property it is not easily represented by
an analytical function so a grid of discrete points are used. The partial atomic charges
are fitted, (see section 6.15), to reproduce the electrostatic potential at the series of
points with the constraint that the sum of partial charges should equal the net molecular
charge.

It is not possible to use electronic structure methods to calculate the electrostatic
potential for large systems, which are often of interest for study using molecular
mechanics methods, as ab initio methods are too computationally expensive. Many
systems can be deconstructed into fragments that represent the electronic properties of
the immediate local environment, which are of a suitable size for electronic structure
methods. Other methods rely on information solely dependent upon the atoms and their
connectivity within the molecule derived from ab initio data or can be obtained directly
from experiment. One such forcefield, ESFF, which will be introduced in section 4.2,
uses DFT calculations to provide the hardness and electronegativity of atoms.

The description of the electrostatics provided by partial atomic charges is widely
used but for some systems, such as those containing lone pairs or mt-aromatic rings, the
description is insufficient, since the partial atomic charge model constrains the charge
density to be spherically symmetric, whereas valence electrons are often far from
symmetric in distribution. Improvements therefore involve distributing charges,
dipoles, quadrupoles and other higher multipoles at points about the molecule not just at

atomic sites(ZD),
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2.8 Non-bond Cut-Offs

The evaluation of the non-bonded energy is by far the most time-consuming part of a
molecular mechanics calculation. When large molecules are considered, the
computational time for calculating the forcefield energy grows approximately as the
square of the number of atoms. The majority of atom pair interactions are at large
distances and therefore only contribute a small amount to the total non-bond energy.
The implementation of a cut-off scheme is often used to reduce the computational cost,
a cut-off being the distance beyond which the energy contribution is ignored.

As the van der Waals energy varies as R the use of a cut-off distance is reasonable,
as the contributions that are ignored are small. In contrast the electrostatic energy
shows a much longer range of effect, with it varying as R". Methods that sum the
electrostatic energy to infinity are therefore required.

There are different ways of implementing the cut-off approximation. The simplest is
to neglect all contributions if the distance is larger than the cut-off. In practise this
method leads to problems with optimisation techniques, as the potential energy surface
becomes discontinuous. When simulating large molecular systems a common technique
is to use the group-based cut-off method. The large molecules are divided into groups,
each of which contains a relatively small number of connected atoms; the energy of
interaction is then calculated from the interaction of the groups.

If solvent molecules are being considered, then the use of cut-offs leads to hot and
cold spots being formed. Methods have been developed to solve the electrostatic
energy exactly (to within a numerical threshold), but without having to perform a N°
summation over all atoms. The Ewald summation(22) was first designed to study the
energetics of ionic crystals. The non-bonded interaction is split into a near and far field
contribution. The near field is calculated directly, while the far field is calculated in
reciprocal space reducing the scaling of the computational cost from N? to N*2. In
section 4.5 the improvement in a comparison of experimental and calculated geometries
when using the Ewald summation is reported and it has been shown to be necessary to
use this method of energy cut-off for calculations, particularly where the unit cell

parameters are subject to no constraint. (For further information see Appendix III.)
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The direction of the first derivative of the energy, the gradient, indicates where the
minimum lies and the magnitude of the gradient indicates the steepness of the local
slope. Second derivatives indicate the curvature of the function, which can be used to
predict where the function will pass through a minimum or some other stationary point.

Three common minimisation methods will now be examined. They vary in their
convergence criteria and their subtlety. The steepest descent and conjugate gradient
methods are first derivative methods and the Newfon-Raphson uses second derivatives.
A typical minimisation will start with the crudest, the slow but robust steepest descent
method using a line search with a large precision value, to reduce the number of costly
evaluations required. The steepest descent method moves parallel to the net force so
each line search direction is defined along the direction of the local downhill gradient.
The problem with steepest descent is that although each line search produces a new
direction that is perpendicular to the previous gradient, the directions oscillate along the
way to the minimum especially on energy surfaces having narrow valleys. As steepest
descent relies totally on gradients, it means a slow convergence near the minimum but
allows minimisation regardless of the function used or starting point of the process. It is
typically used for the first ten to hundred iterations, depending on the size of the system,
before switching to the conjugate gradient method.

The conjugate gradient method produces a set of directions, which does not show the
oscillatory behaviour of the steepest descents in narrow valleys. In conjugate gradients,
the gradients at each point are orthogonal but the directions are conjugate. This means
that the problem of steepest descent where each segment of the path tends to reverse
progress made in an earlier iteration is overcome. When using steepest descent
methods, successive line searches correct for the deviation but this is not performed
efficiently, due to the requirement of orthogonality. This means the path oscillates and
continually over corrects for poor choices of directions in earlier steps. The conjugate
gradient method increases the efficiency of line searches by controlling the choice of
new directions, which requires the use of an algorithm that produces a complete basis
set of mutually conjugate directions so that each successive step continually improves
the direction towards the minimum. The conjugate gradient method moves in a
direction Vi from point Xy calculated from the gradient at the point and the previous

direction vector Vi_i:

Vi =-gt+ % Vi, (2.12)
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where 7 is a scalar constant, which depends on the conjugate gradient method that is

used. Yk is given by the Polak and Ribiere algorithm:

(8k — 8k—1) %8k
= . (2.13)
Y 8i-1 X 8k-1

The new direction is then used and a new line search is conducted, which means the
next gradient, g, is still orthogonal to all previous gradients but all directions are
conjugate. The advantage of conjugate gradient over steepest descent is that there is far
better convergence to the minimum although more complete line searches must be
performed. The conjugate gradient method only requires storage of the previous 3N
values of the gradient and direction whereas second derivative methods store a Hessian
matrix.

The second derivative methods use both the first derivative, the gradient and the
second derivative which provides information on the curvature of the function, to
predict where the function passes through a minimum along that direction. As the exact
Hessian matrix defines the curvature in all independent directions, the inverse of the
matrix can be multiplied by the gradient to obtain a vector that translates directly to the
nearest minimum. There are a few disadvantages with the pure Newton-Raphson
algorithm. The major drawback is the evaluation of the inverse Hessian matrix, which
is a (3N)* problem. Another problem is that, when the structure is far from a minimum,
the minimisation can become unstable due to the algorithm computing a large step that
may lead to a point further from the minimum than the starting point. The storage
requirement of the Hessian for a large system can prove to be a problem, as the matrix
scales as (3N?) for N atoms. Pure Newton-Raphson methods are used for rapid
convergence to extremely precise minima such as required for vibrational frequency
calculations. In practice for large systems, other variants on the Newton-Raphson
method, such as the quasi Newton-Raphson method, require only first derivatives and
gradually construct the inverse Hessian matrix in successive iterations. The
fundamental idea of quasi Newton-Raphson methods is the same as for the conjugate
gradient method, as the gradient of the previous iteration is used to direct the

minimisation along a more efficient pathway, but as the matrix approximating the
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inverse of the Hessian is constructed from the gradient using one of a number of
updating methods it is known as a quasi Newton-Raphson method. The approximate
matrix has two important properties: first, that within the limit of convergence it is equal
to the Hessian and the other is that it is always positive definite, meaning that all its
eigenvalues are positive and symmetric so that successive steps always decrease the
energy.

The updating scheme used in the present study is the Broyden, Fletcher, Goldfarb
and Shano (BFGS). The approximate matrix is defined by:

t t t t
Bk=1=Bk=(1+Y BkyJBS _ [8yBk+Bk78]’ 2.14)

3ty 3y 3'y

where & and v are the changes in co-ordinates and gradients for successive iterations.
The advantage of using the quasi Newton-Raphson scheme, over conjugate gradient
methods is that it has been shown to be quadratically convergent for inexact line
searches. Although it does not require the storage of a Hessian it does require storage
proportional to N* where N is the number of degrees of freedom. ‘

While static energy minimisation techniques, (considered so far in this Chapter),
compute the forces on the atoms and change their positions to minimise the interaction
energies, dynamical methods compute the forces and move the atoms in response to the
forces, thereby introducing kinetic energy into the system.

By integrating Newton's equations of motion, it is possible to explore the constant-
energy surface of a system. However, most natural phenomena occur under conditions
where a system is exposed to external pressure and/or exchanges heat with the
environment. Molecular dynamics (MD) allows control of temperature and pressure, by
use of statistical ensembles, while investigating the motion of atomic centres.

Under the influence of a continuous potential the motions of all the particles are
coupled together, giving rise to a many-body problem that cannot be solved
analytically. Under such circumstances, the finite difference method is applied, where
the essential concept is that the integration is broken down into many small stages each
separated by a fixed time, & The total force on each particle in the configuration at a
time ¢ is calculated as the vector sum of its interactions with other particles. From the

force, the acceleration on the particles can be determined, which are then combined with

22



the positions and velocities at a time ¢z + & The Verlet algorithm is one of the most
widely used methods for integrating the equations of motion in a MD simulation,

where;

r (t+8t) = 2r (t) — r (t-0t) + t’a (t). (2.15)

The time step is a key parameter in the integration algorithm; if too small a time step
is applied the trajectory will only cover a limited proportion of phase space. However,
too large a time step causes instability and inaccuracy in the integration process.

The Maxwell-Boltzmann distribution is used for generating initial atomic velocities
at an initial temperature. After initialisation, the thermodynamic properties of the
system are treated in accordance with an appropriate statistical mechanical ensemble.
The constant-energy, constant-volume ensemble (NVE), also known as the
microcanonical ensemble, is obtained by solving the standard Newton equation without
any temperature and pressure control; after equilibration. Energy is conserved when
this (adiabatic) ensemble is generated. The constant-temperature, constant-volume
ensemble (NVT), also referred to as the canonical ensemble, is obtained by controlling
the thermodynamic temperature.

The constant-temperature, constant-pressure ensemble (NPT) allows control over
both the temperature and pressure. The unit cell vectors are allowed to change, and the
pressure is adjusted by adjusting the volume (i.e., the size and also, in some programs,
the shape of the unit cell).

The majority of the interatomic potential based studies in this thesis are energy
minimisation calculations. Some demonstration molecular dynamics calculations are
applied to the surface interaction of small molecules with the MgO (001) surface in
Chapter 6. For further information on molecular dynamics techniques see Allen and

Tildesley(23) or Leach(16),

Electronic Structure Methods

There are a wide range of quantum mechanical approaches depending on the extent

of parameterisation employed. If solutions are generated without reference to
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experiment they are often called ab initio, whereas semi-empirical, tight binding and
Extended Hiickel theories require parameters such as the ionisation potential of the
constituent atoms. Density Functional theory (DFT), which was primarily used in this
thesis (see Chapter 5 and Appendix I), is an alternative approach which has at its basis
the proof by Hohenberg and Kohn that the ground state energy is a unique functional of
the electron density. Not all these techniques have been used in this thesis so discussion
will focus on Density Functional theory, although a brief account of Hartree Fock
theory is also given.

Molecular Orbital theory, is the most frequently used of a number of quantum
theories for treating a system of atoms, in which one electron functions (molecular

orbitals, ¢) are used to construct an approximate many electron wavefunction, e.g.:

V=01 ¢z ds..n. On (2.16)

The molecular orbitals are products of a spatial orbital and a spin function. The
wavefunction must be antisymmetric with respect to the interchange of any two
electrons coordinates, as electrons are fermions and have a spin of a %2, (i.e. the Pauli
principle). The antisymmetry of the wavefunction is incorporated by using a Slater
determinant. The columns of a Slater determinant are single electron wavefunctions,
orbitals ¢, while the rows contain the electron coordinates. Exchanging any two rows of
a determinant, a process corresponding to the exchange of two electrons, changes the
sign of the determinant and therefore leads directly to the antisymmetry property. A
normalised single Slater determinant is the simplest representation of the form of an

orbital wavefunction obeying the Pauli principle:

0,(D ¢, (1) oo on (D

o, - L[6@ 0.0 .. el o1

TN e e

1 . ) )
The factor —— ensures the normalisation of the wavefunction. For the evaluation of

v N!
the energy of a single Slater determinant it is convenient to write the sum of

permutations over the diagonal of the determinant:
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D=A[0 (1) $(2) ......00n N)], (2.18)

where A is the antisymmetry operator:

N

%Z -1)’P, (2.19)

where P is the permutation operator, which changes the coordinates of the electrons (1,
2, .....N) according to any of the N! possible permutations.

The Hamiltonian operator:
He =Te+ Vpe + Vee + Vi, (2.20)

only contains one term that depends on two electron coordinates, the electron-electron
repulsion. The nuclear-nuclear repulsion is a constant for a given geometry as it does
not depend on electron coordinates; the nuclear-electron attraction is the sum of terms,
each depending only on one electron coordinate which is also true for the electron
kinetic energy. The requirement of antisymmetry of the wavefunction changes the
classical picture of independent electron-electron repulsion. The non-classical, quantum
mechanical correction to the coulomb interaction of electrons of the same spin is
described as exchange. The corresponding correction for the electrons of opposite spin

and including remaining many-body effects gives rise to the correlation energy.

2.10 Hartree Fock Theory

Hartree Fock theory is concerned with finding the ‘best’ wavefunction (2.16-17),
which according to the variational theorem is the wavefunction with the lowest energy.
The theorem states that the energy calculated from an approximation to the true

wavefunction will always be greater than the true energy:

.21

exact *

E= IW*HII’dTZE
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The fundamental problem then becomes one of minimising the energy, with the
constraint of the orthonormality of the molecular orbitals, by varying the expression for
the energy of the Hartree Fock equations. Lagrange multipliers are used to solve this
type of constrained minimisation problem. The variational derivative of the function to
be minimised is added to the derivatives of the constraints multiplied by a constant,

which is called the Lagrange multiplier, €. The sum of this expression is set to zero:

SE+8) Y¢S, =0, (2.22)
i

where S;; is the overlap integral between two orbitals i and j.

To account for the interaction of electrons Coulomb and exchange integrals are
required. They allow for inclusion of electronic motion; for example the change in spin
orbital for one electron will influence the behaviour of an electron in another spin
orbital as there is coupling of the electronic motion. If a single electron is considered,

in a spin orbital, ¢; in the field of the nuclei and the other electrons in their fixed spin

orbitals, ¢; three terms contribute to the energy: core, Coulomb and exchange.

Zsijq)j =h;¢, +ZJj¢i _Zqu),-- (2.23)

j# ji

Three operators are introduced to represent the contributions to the energy of the spin
orbital, ¢, in the model system. If there were no interelectronic interactions there would
only be a diagonal core Hamiltonian operator which describes a single electron moving

in the field of bare nuclei:

lg, ©Z,
h, =——-V; ‘Z_ . (2.24)
2 el o
The Coulomb operator is:
1
T;0: =[Idfz¢,-r—¢,-]¢,-, (2.25)
12
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giving the average potential due to an electron in the molecular orbital ¢;. The

Exchange operator:
1
K0, =[ fdfz¢i -r-—¢j]¢j, (2.26)
12

has no classical analogy. The Coulomb ‘self-interaction’ J;; is exactly cancelled by the
corresponding exchange element Kj;.

Equation 2.23 can therefore be simplified to:

(h; +Z(Jj -K)lo; = Zeijq)j’ (2.27)

=

which is standardised by use of the Fock operator, f:

f,0, = Zsijq)j , (2.28)
where:

f, =hi+i(lj-K,~)- (2.29)

=

A unitary transformation is applied to make the matrix of Lagrange multipliers
diagonal, i.e. &; — 0 and &;; = €. This produces a special set of orbitals called canonical

molecular orbitals, ¢;", which can be found by solving:
fioi" =& o' (2.30)

The Fock operator depends on all molecular orbitals, which means a specific Fock
orbital can only be solved if all the other Fock orbitals are known. An iterative process,
self-consistent field (SCF) is used to determine the orbitals, shown schematically in
Figure 2.7. The total energy is not simply a sum of the molecular orbital energies

because the particles interact.
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Figure 2.7. Schematic of the SCF iterative method.

For small symmetric systems (atoms and small diatomic molecules) it is possible to
solve the Hartree Fock equations by mapping the orbitals on a set of grid points. The
majority of calculations use basis set expansion as an approximate for the best
molecular orbitals. The basis functions can be Slater, Gaussian, atomic centred,

exponential, polynomial and plane waves, as discussed below.

2.11 Basis Sets

The problem of producing molecular orbitals to solve the approximated Schrodinger
equation is further restricted by use of the linear combination of atomic orbitals (LCAQO)
theory. This requires each molecular orbitals to be broken down as linear combinations
of a finite number of atomic orbital functions known as basis functions, ¢. An

individual molecular orbital, y;, is defined as:

V=Dl 2.31)
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where cy; are the molecular orbital expansion coefficients. They allow the orbital
description some flexibility but not total freedom unless ¢y, defines a complete set. Each

of the basis functions has the form,
¢ = constant * (function of r) * (spherical harmonic function in terms of 8 and ). (2.32)

The problem of finding the orbitals, is therefore reduced from finding a complete
description of the three dimensional function j; to finding only a finite set of linear
coefficients for each orbital. From the equation above, as there are N basis functions it
would be expected to produce N molecular orbitals although not all of these may be
occupied by electrons. The smallest number of basis functions for a molecular system
will be that which can just accommodate all the electrons in the molecule, which is
known as a minimal basis set.

To provide a basis set that is well defined for any nuclear configuration it is useful to
define a particular set of basis functions associated with each nucleus depending only on
the charge on that nucleus. Two types of atomic basis functions are widely used: first,

Slater type orbitals (STOs) which have exponential radial parts, and are of the form:
0, =Ce™¥Y,,, (2.33)

where C is a normalising constant, Y,y is the angular part of the function and § is the
orbital exponent, a constant determining the size of the orbitals. The problem with
STOs is that some of the multi-centre integrals cannot be evaluated analytically,
particularly when the atomic orbitals are centred on different nuclei.

The second type of basis uses Gaussians, which have the less appropriate form, exp
(-or®), and the basis functions comprise integral powers of x, y and z multiplied by exp
(-ou”):

x® y° z° exp (-o), (2.34)

where o determines the radial extent of a Gaussian function. The order of the Gaussian
type functions is determined by the powers of the Cartesian variables. There is one zero
order function, three first order functions and six second order functions. The six

second order functions can be combined to represent a set of five d orbitals.
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Gaussian type functions do not have a cusp at their origins and decay towards zero
more rapidly, unlike STOs, so are a less satisfactory representation of atomic orbitals.
The advantage of Gaussians is that, integrals can be evaluated analytically with no need
for numerical integration. Each atomic orbital is represented as a linear combination of

Gaussian functions, of the following form:

L
0, =2,y 0,(cty,), (2.35)
i=1

where di, is the coefficient of the primitive Gaussian function ¢, which has the
exponent oj,. Basis functions of this type are called contracted Gaussians. In a
contracted function the contraction coefficients and exponents are pre-determined and
remain constant during the calculation.

The size of basis set has a major effect on the quality of the results. Use of a minimal
basis set, such as STO-3G (one contraction of three Gaussian primitives to represent a
STO), is particularly inadequate for atoms at the end of the periods. These atoms are
described with the same number of functions as atoms at the beginning of the period,
despite the fact that they have more electrons. The combination of one contraction per
atomic orbital and the fact that the radial exponents are not allowed to vary during the
calculation means that the functions cannot contract or expand their size in response to
changes in molecular environment effects. The second problem is that the non-
spherical aspects of the electronic distribution can not be described, as the system does
not have enough variational freedom.

The number of functions used to describe each orbital can be increased to reduce
these problems. A double zeta basis set doubles the number of functions of the minimal
basis set. A linear combination of a contracted and a diffuse function gives an overall
result that is intermediate. The basis set coefficients of the two functions are
automatically calculated by the SCF method.

Since valence orbitals of atoms are more affected by forming a bond than inner
orbitals more basis functions should be assigned to describe these orbitals, which is
achieved using split valence sets where more contractions are used to describe the
valence orbitals compared to inner core orbitals. Although more basis functions are

assigned to valence orbitals it does not mean that the valence orbitals incorporate more
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component is how a determinantal wavefunction may be constructed from M.Os. The
calculation of the M.O is made possible by use of the variation theorem, indeed Hartree-
Fock (HF) theory is based on the variational method, and the best single determinant
wavefunction is found by minimising the calculated energy, E’, with respect to the

coefficients Cp;.

oE
=0. 2.36
aCui (236)

The value of E” will then be as close to the true energy, E, as allowed by the restrictions
of the method used, namely, the use of a single determinant wavefunction and the
particular basis set employed. The variational condition leads to a set of algebraic
equations for C;. The derivation of the closed shell HF wavefunction by Roothan and
independently by Hall lead to the Roothan-Hall equations for closed shell systems.
Roothan-Hall changed the HF equation from an intergo differential form to matrix form,
which can be solved and applied to systems of any geometry. To solve the Roothan-
Hall equations an iterative process is required. The method used is self-consistent field
(SCF) theory with the resulting M.Os being derived from their own effective potential.
The SCF method gradually refines the electronic solutions to lower total energies until
the point is reached at which the results for all electrons are unchanged, when they are
said to be self consistent. The requirement of the SCF procedure is due to it not being
possible to calculate M.Os using all electrons, so iterations are made using a single
electron in a mean field.

For open shell systems the Roothan-Hall equations need some modification, due to
the electrons in the system not being completely assigned to orbitals in pairs, the
method is called spin unrestricted HF (UHF) theory, for further information see (16) or
(15),

As already mentioned, the accuracy of the calculated energy depends on the level of
theory which relates directly to the cost. The problem with the use of the single
determinant HF wavefunction is that electron correlation effects are not accounted for,
since, in the SCF method, the electrons are assumed to be moving in an average
potential of the other electrons and so the instantaneous position of an electron is not

influenced by the presence of a neighbouring electron, but in reality the motion of

32



electrons are correlated. Electrons of opposite spins are particularly badly modelled by
HF methods. Exclusion of electron correlation leads to a lower energy than can be
found by a single determinant HF wavefunction. There are a number of ways of
including these effects but as many modelling studies are only concerned with relative
energies the use of single determinant HF wavefunctions is still widespread, particularly
as the extra cost of correlated wavefunctions can be unmanageable especially for large

systems.

2.13 Population Analysis

Electronic structure calculations yield information on the charge distribution within
the system. There are many methods for assigning charges to each atomic centre within
the system. These can be based on M.Os, the charge density or by fitting the
electrostatic potential. The most widely available method is the Mulliken population
analysis. Population analysis is a method of partitioning the electron density between
the nuclet, so that each nucleus has some fractional allocation of electrons, which can
then be used to give a quantitative description of the electron withdrawing or donating
ability of the ions.

The electron charge function, p(r)dr is the probability of finding an electron in a
small volume element, dr, at some point in space, r. Use is made of the basis functions
that are used to represent the wavefunction. It is a trivial calculation to perform, once a
self-consistent field has been established and the elements of the density matrix have
been determined. In the Mulliken population analysis all the electron density (Py,), the
diagonal components of the density matrix, in an orbital is allocated to the atom on
which ¢, is located. The remaining electron density, Sy P,y and Sy,Py,, the off diagonal
components, is associated with the overlap population ¢,¢y. For each element of ¢udy
of the density matrix, half the density is assigned to the atom on which ¢, is located and
half to the atom on which ¢, is located; both orbitals could be on the same atom. The
net charge on an atom is then calculated by subtracting the number of electrons, n, from

the nuclear charge, Z4:
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Ar=Zy -2 P -2 D P.S,. (2.37)
Ha

Ba VVZER

Mulliken populations provide information regarding electron distribution in
molecules, but they do have serious shortcomings. The method of charge partitioning
into individual orbitals is arbitrary and takes no account of electronegativity. The other
problem is that the analysis is not basis set independent. If the size of basis set on
atomic centre, L, is increased by adding polarisation functions, the distance from the
nucleus of ¢, will increase and therefore it’s share of the charge density will increase,
but the charge density is still split equally between ¢, and ¢,. Indeed the functions
representing the p, d and f orbitals are spread quite far from the nucleus with which they
are associated and so maybe closer to another atom, yet the charge will be assigned to
that nucleus. The problem would be particularly noticeable for hydrogen atoms when a
basis set is used with a large number of polarisation functions. For example, isobutene
has a Mulliken charge for the central carbon of +0.1 for the 6-31G" basis set and +1.2
for the 6-311++G " basis set.(24)

The use of Mulliken charges is still useful, as they are computationally cheap to
calculate and can be used to relate one calculation to another using the same basis set.
The use of balanced basis sets that have equal numbers of functions on each atom
improve the Mulliken description. The simplest population analysis has been
introduced in this section. In Chapter 5 (section 5.4) examples and description of more

complex methods of assigning charge to atomic centres will be shown.

Density Functional Theory

The concept of Density Functional Theory (DFT) originates from the proof of
Hohenberg and Kohn(25) that the ground state electronic energy and therefore all ground
state properties of a system are functionals of the electronic density, p. The introduction
by Kohn and Sham(26) of the concept of non-interacting electron orbitals in a one body
potential has lead to DFT becoming a powerful tool for chemists.

From the Hohenberg and Kohn theorem the total electronic energy can be written as:
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E=E[p], (2.38)

which can be split into its different contributions

E [p] =Eke[p] + Ec[p] + Eu[p] + Exc[p], (2.39)

where Egg[p] is the kinetic energy, Ec[p] is the electron-nuclear interaction term, Ey[p]
is the electron-electron Coulomb energy and Exc[p] includes the exchange and
correlation contributions. The important difference between HF theory and DFT is that
the correlation energy from electron-electron interactions is contained in the Exc[p]
term. In early DFT methods the calculation of the kinetic energy was poorly
represented. Kohn and Sham showed that by splitting the kinetic energy into two parts,
one of which could be solved precisely and one, a small correction term, it was possible
to obtain accurate representations of the electron density.

The variational principle is again used, as an inaccurate charge density gives an
energy above the true ground state energy. The energy is then minimised with respect

to the variations in the density:

E[p'] 2 E[p], (2.40)

where p’ is an approximate density.
As the exact density matrix is not known, the (approximate) density is written in

terms of a set of auxiliary one-electron functions, orbitals, as:

p(r) = |0, @) . 2.41)

i=1

Use can be made of a Slater determinant of molecular orbitals, which as a result are
orthonormal, therefore obeying the Pauli principle. In this case, the mechanics of the
method are very similar to those described for Hartree Fock theory. Lagrange
multipliers are used to enforce the antisymmetry, which gives rise to a set of equations
involving an effective one-electron operator, Vis, which is similar to the Fock operator,
(2.28).
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N
Vis®; = Zeijq)j
Vis = —%Vz + Vi (2.42)

Ve () =V, () + j|—‘r’i_"7’,l Ve ).

A set of canonical Kohn Sham orbitals is obtained by using Lagrange multipliers and a
unitary transformation, which makes the matrix of Lagrange multipliers diagonal, is

performed. The resulting eigenvalue equations are known as Kohn Sham equations:

Viks ¢ = & ¢;. (2.43)

As the Coulomb and Exc terms depend on the total charge density the optimal Kohn
Sham orbitals are found by an SCF iterative process, see Figure 2.7. The unknown KS

orbitals are expanded in a set of basis functions.

2.14 Functionals

Although DFT is very similar in approach to HF theory there are important
differences. The fundamental feature of DFT is that if the exchange and correlation can
be represented exactly by the Exc functional the exact ground state energy can be
calculated. The search for an exact functional has been well documented. The use of
any method requires finding the correct balance between the generation of solutions of
sufficient accuracy and the computational effort required. The solution of the exact
energy may require a functional of such detail, as it must include all information of
importance to the Schrodinger equation, that the computational effort required to solve
it would be as much as for a solution of the Schrédinger equation obtained using high
quality wavefunction methods; such as configuration interaction or many body
perturbation theory. (See reference (15) for description of wavefunction methods.) It is
possible to prove that a unique functional exists for the exchange-correlation potential
which is valid for all systems. This as yet, elusive exact functional means that many

different choices of functional are available, ranging from the local density
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approximation (LDA), generalised gradient approximation (GGA), to hybrid functionals
and meta-GGA functionals. Functionals are fitted to known experimental data or are
designed to obey limiting behaviour such as the uniform electron gas limit. The results
of calculations with different functionals can be compared to high-quality wavefunction

methods or experimental values.

2.15 Local Density Approximation

The simplest functionals are based on the local density approximation (LDA)(26) in
which it is assumed that the local density can be treated as a uniform electron gas with
the density equal to their local atomic or molecular values, although in a uniform
electron gas the electron density is constant over the whole of space. The LDA assumes
that the charge density varies slowly throughout a molecule so that the approximation is
acceptable. In cases where the electrons of different spins, o and B, contribute unequal

densities, the local spin density approximation (LSDA) is used.
B2 = [exc[pa (0py (1)’ . (2.44)

Quantum Monte Carlo simulations have been performed to determine parameters for
a uniform electron gas at varying densities(27). The Vosko, Wilk and Nusair functional
is a popular example of the parameterisation of exc within the LDA limit.

It is important to note that the exchange energy dominates the Exc term, for example
the Neon atom has an exchange energy of —12.11au while the correlation energy is —
0.39au. It has been found that LSDA functionals underestimate the exchange energy by
approximately 10%, which can easily be greater than the whole of the correlation -
energy(15). The LSDA functionals typically give good geometries, vibrational
frequencies and single particle properties for a wide range of systems but bond energies

are seriously overestimated.

37



2.16 Generalised Gradient Approximation

An improvement to the LSDA is to incorporate the gradient of the spin densities as

well as the actual spin densities.
ESe = [exclPa (1P 1)V, (1)Vpg(0)]1d’r . (2.45)

These methods that consider a non-uniform electron gas are known as gradient
corrected or generalised gradient approximation methods. The functional depends only

on the density and derivatives at a given set of coordinates, so is still a local method.

The terms E$®* and EJ°* are generally separated. There are many reported
functionals for both parts of ESo* e.g. the Becke(28. 29), B88 and B96 potentials for

exchange and the correlation potentials of Perdew and Wang(30-32), PW86, PW91, or
Lee, Yang and Parr(33), LYP.

The addition of the gradient corrections improves many aspects of the results,
including, the bond energies, barriers to chemical reactions and a description of
hydrogen bond geometries. The incorporation of parameters can often mean that the
functionals violate fundamental restrictions, for example, the exchange energy fails to

cancel the Coulomb self-interaction energy term.

2.17 Hybrid Functionals

The use of GGA functionals can produce poor results for certain types of systems,
e.g. charge transfer systems, calculation of dispersion forces (vdW-hydrogen bonds),
multiply bonded systems and hypervalent compounds.(34-37)

With wavefunction methods it is possible to make systematic improvements to the
level of theory used i.e. HF, MP2, MP4, CI etc. but this is not the case with DFT. The
search for improved functionals, however, continues. The latest contributions to the
field have been the implementation of hybrid methods. The ‘adiabatic connection
formula’ results from the exact relationship between the exchange and correlation

energy and the corresponding potential, which connects the non-interacting reference

38



and the actual system. At the limit that the electron-electron interaction is zero there is
no correlation energy. This means that the solution of a single Slater determinant
composed of KS orbitals gives the exact wavefunction. From HF theory this exact
wavefunction will give the exact exchange energy. For the case where electron-electron

interaction occurs, the LDA is used, giving, for example, the ‘half-and-half’ method:

EXl = %E;"“‘ +%(E§SDA +ES). (2.46)

Incorporation of the GGA formula improves the hybrid functionals, as in, for

example the Becke 3 hybrid functional:
E2 =(1-2)EY +aEJ +bAER® + EF°* +cAES™. (2.47)

By fitting to experimental data, the parameters a, b and ¢ are determined, which
improves results considerably over the ‘half-and-half method’. Hybrid methods have
been shown to improve results compared to GGA functionals. Parameter sets could be
enlarged to include more information such as the Laplacian of the spin density, Vzpa,g,
i.e. its second derivative, related to orbital kinetic energy densities, but this will be at the

expense of computational effort.

2.18 Numerical Basis Sets

In contrast to HF and post HF methods, the exchange and correlation functional and
potential are based on the irrational functions of electron density. Consequently, any
approach relying on the representation of electron density in terms of superposition of
electron and/or ion contributions necessitates the numerical integration over a grid in
real space. As this inherent feature of the Kohn-Sham scheme is required, the
introduction of the grid lends itself to the use of sophisticated numerical basis sets,
rather than the usual Gaussian or Slater functions. In contrast to Gaussian or Slater
functions (see section 2.11), the basis set model of Delley(38) contains functions, which

exhibit the correct asymptotic behaviour for atoms at both zero and infinite radii. This
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is because the basis functions are found by the exact solution of the DFT equations for
relevant atomic and ionic systems.

The basis functions 7, are given numerically as values on an atomic centred
spherical polar mesh. Another advantage over the analytical Gaussian functions is that
the angular part is Yin(0, ¢ ), a spherical harmonic. The radial variable is obtained by
solving the Kohn Sham equation for atomic orbitals numerically. A range of radial
points extends from the nucleus to an outer distance, usually 10 Bohrs. The number of

radial points, Ng, within the distance scales with increasing atomic number, as:

N =14(Z + 2, (2.48)

for nucleus of charge Z. Angular integration points are generated at each radial point so
creating a series of shells around each nucleus.

The use of exact DFT spherical atomic orbitals means a molecule can easily be
disassociated exactly to its constituent atoms. The use of two basis functions per
occupied atomic valence orbital (a double numeric set) allows the necessary variational
flexibility required to model the electronic response to external fields. The electron
density is redistributed in an external field. The use of a double numeric basis set
means the electronic density can be rearranged on the same centre and not only by using

basis functions on other atoms.

2.19 Summary

The work in this thesis has used the two broad approaches available to the
computational chemist: electronic structure calculations and simulations that make use
of ‘effective potentials’. Part I applies both methods to the study of ET charge transfer
salts. Chapter 4 is devoted to molecular mechanics calculations, while electronic
structure, both HF and DFT calculations are described in Chapter 5. Part II is divided
between, the derivation of new interatomic potential sets for the study of metal oxides
systems, for the study of surface interactions with small molecules, while Appendix II

details molecular cluster DFT calculations of silicate fragments.
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Although each Chapter has a focal technique the interplay of methods has been

important in all Chapters. The interatomic potential simulations described in Chapters 4

and 6 have required electronic structure calculations to derive partial atomic charges,

while starting geometries have been calculated by interatomic potential techniques, in

Chapters 5 and Appendix I, to reduce the computational cost of energy minimisation by

electronic structure techniques.
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Part 1

A Computational Study of BEDT-
TTF Salts
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Chapter 3

Molecular Charge Transfer Salts

3.1 General

The construction of lattices created from molecular building blocks has been the
focus of considerable synthetic as well as theoretical endeavour over the last 25-30
years. The potential for the incorporation of unusual electrical, magnetic, optical and
structural properties in materials that can display very different features when processed
compared to conventional continuous lattices has driven this effort. One area that has
provided many examples of materials with varying physical properties are organic
charge transfer (CT) salts. They exhibit the electrical properties of metals even though
they often contain no metals in the electrical conducting framework.

Molecular materials containing electrons delocalised over the long range include low
dimensional molecular charge transfer salts of planar organic molecules and quasi
organic molecules, 3-D intercalate salts of fullerene molecules and 2-D organometallic
intercalates of layered metal chalcogenides. The superconducting state has proved to be
among the most elusive of all ground states observed in crystalline systems, often
dependent upon a wide range of subtle conditions. The discovery of superconductivity

in molecular lattices has opened new windows for exploring these complexities.
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the phenomenon of superconductivity was discovered by Bechgaard e al.(8) in 1979
when TCNQ was replaced with inorganic monovalent anions and the donor molecule
TMTSF (tetramethyltetraselenafulvalene), in which the four sulphur atoms in the
organic backbone of TTF replaced by four selenium atoms, was used. A series of salts,
now known as the Bechgaard salts were synthesised, for example (TMTSF),X where
X= PF¢, AsF¢ and ReO4. They were found to be superconductors with T.’s between
1-2K but only under applied pressure (~5-10kbar). In 1981 (TMTSF),ClO4 (®) was
found to be the first ambient pressure organic superconductor with a T, of 1.4K.
Continued effort to improve the electron donor molecule to give an enhanced
interstack interaction which could lead to the formation of truly two-dimensional
materials, lead to the synthesis of BEDT-TTF or ET, [bis (ethylenedithio)
tetrathiafulvalene], by Mizuno et al.(10). ET contains eight sulphur atoms as shown in
Figure 3.2; the increased number of heteroatoms per molecule in comparison to TTF
means increased delocalisation and reduced on-site Coulombic repulsion. ET is the
electron donor which forms the largest group of molecular superconductors and a wide
range of other physical properties are also found. The highest T ET superconductors
are found in the series x~(ET),Cu[N(CN),]X, with X = Br being the highest ambient
pressure superconductor at 11.6K(11) and X = Cl having a T, of 12.8K at 0.3kbar(12),

[S . SE NC C ___cN
S S NC o N

TTF TCNQ
Tetrathiafulvalene 7,7,8,8-tetracyano-p-quinodimethane
:[S:e :Se:( (SISZ ZSISj
Se Se S S S S
TMTSF BEDT-TTF (ET)
Tetramethyltetraselenafulvalene Bis(ethylenedithio)tetrathiafulvalene
[Oj:s SIOj [SISC Se:[s:'
BEDO-TTF (BEDO) BEDT-TSF (BETS)
Bis(ethylenedioxo)tetrathiafulvalene Bis(ethylenedithio)tetraselenafulvalene

Figure 3.2. Examples of organic donor molecules.
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3.3  Synthesis

Electrocrystallisation techniques are used to grow crystals of ET salts where by the
organic electron donor molecules are oxidised in situ in the presence of a suitable anion.
The solution containing the anion also acts as the electrolyte during this slow process.
The reaction usually takes place in H-shaped cells with Pt electrodes in each arm and a
frit', to prevent contamination by reduction products, between the anode and cathode.
A small amount of ET is placed at the base of the anode arm and the remainder of the
cell is filled with the anion solution. The source of the anion is chosen for solubility in
the desired solvent in which ET should be slightly soluble. A small constant current
between 0.05 to 1.5uA/cm? is applied across the cell to promote nucleation and crystal
growth. As the ET dissolves it migrates to the anode where it is oxidised and reacts
with the anion. The crystals are collected from the anode after the ET concentration is
depleted, when there is a voltage drop or if there is a colour change. Large single
crystals may be grown over several weeks by adjusting the current, temperature,
concentration, solvent and anion source in the experiments. The products tend to be
highly pure and suitable for single crystal X-ray diffraction studies and other physical
measurements. However, it is possible to obtain several different crystalline phases in
the same cell if they are thermodynamically stable and to obtain non-crystalline
materials depending on the cell conditions, which indicates that the mechanism of

growth is complex.

3.4  Structural Properties of ET Salts

The electronic properties of ET salts can depend both on the anion present in the
material and on the existence of multiple phases leading to vastly differing physical
properties. In pure materials the prime cause for different properties is the packing of
the donor cation within differing crystal motifs. The spatial arrangement of cations is as
important as the intermolecular distances in determining the electronic structure, since

interactions between cations that are face to face are very different from those that are

! frit = porous fritted glass is used to separate the anode and cathode cell, which is used to minimise
the influence of unwanted side reactions of reduced species generated at the cathode.

47



side to side. Typically ET salts consist of stacks of positively charged ET molecules
built into layers by lateral interactions between sulphur atoms, interleaved by layers of
counterions. The large size of the sulphur atoms and their position on the periphery of
the molecule are responsible for their domination of the intermolecular electronic
interaction. Different phases are classified as &, £, x efc by the comparison of the
spatial arrangement of ET cations.

As has been mentioned above, acceptor anions are incorporated in ET salts; they can
be single atoms, octahedral, tetrahedral, linear, planar or polymeric by nature. Their
size and shape are crucial as the counterion acts as both an electron acceptor and as a
spacer between organic layers and stacks, modifying the strength of interactions
between the organic components. The size of the anion can often determine the amount
of multiphasic growth behaviour, for example, with monovalent tetrahedral anions
phases with stoichiometries 3:2, 2:1 and 2:1:0.5 (ET:anion) can be obtained, which is
controlled to some extent by the choice of anion size. Large anions such as GaCly or
Inly” only form 2:1 salts whereas the smaller anions, for example FSO;™ or ClO4 can be
found as 3:2 or 2:1:0.5 salts(1). Space filling or molecular packing considerations are
responsible for larger anions being associated with more donor molecules leading to
donor molecules having fractional formal charges.

The structure of the ET molecules themselves are affected by the degree of
ionisation. Kobayashi et al. reported the crystal structure of neutral ET in 1986(13). It
contains four molecules in the unit cell, bent from planarity. However, an ionised ET
molecule, from, for example, ETFeBry, shows a very planar geometry. The centre TTF
core of the molecule is delocalised leading to a planar structure. The terminal ethylene
groups result in different possible conformations of the organic molecule, with the outer
six membered rings having either the twist or the boat conformation. The increased
dimensionality of the molecular packing of ET compared to TTF is partly due to the

steric constraint of these non-planar ethylene groups.

3.5 Intermolecular Interactions

The conduction mechanism in molecular charge transfer salts arises from the

formation of electronic bands as a consequence of charged organic molecules in stacks
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or layers interspersed by counterions. The formation of narrow low dimensional bands
is then due to the intermolecular overlap of orbitals. In comparison with elemental
metals, conductivities are low, indicating that the mobility of conduction electrons is
much lower. To increase intermolecular overlap (specifically the transfer integrals) in
one or two dimensions the design of donor molecules has focused on incorporating
planar regions. The structure and mode of packing of the cations determine the
directional dependence of the transfer integrals, which imposes the degree of
dimensionality on the system. As mentioned above, the intermolecular interaction of
the diffuse sulphur orbitals is the most important, as it is these weak van der Waals
interactions that lead to narrow electronic bands. Groups of salts with similar structures
have been studied to compare the relationship between physical properties and the
controlled structural changes; and there are clear indications that crystallographic
disorder can introduce random potentials that disrupt the formation of Cooper pairs and
suppress superconductivity. It may simply be steric considerations as in the
isostructural series x<(ET),Cu[N(CN),]X (where X" = CI', Br" and I'), where only the I'
system is not a superconductor, due to conformational disorder of one ethylene group
on the ET molecule(14). Another example of structural disorder leading to variations in
T, is found in the S-(ET),l; salt which shows three distinct structural phases. At room
temperature and pressure, one of the two ethylene groups shows disorder, so the
terminal ethylene groups are either staggered or eclipsed(15). When the salt is cooled
below 175K, there is a second structural phase, designated £, which upon further
cooling becomes a superconductor at 1.4K(16). On application of pressure, there is a
drop in T, to ~1K between ~0.5 to lkbar at which point it jumps to 8K due to the
formation of a third phase(17- 18). This third phase (# -(ET),l3), which has been fully
characterised by both X-ray (19) and neutron diffraction(20), shows a completely ordered
ET molecule in the staggered ethylene group conformation.

The phonon frequencies, vital for BCS superconductivity are in the region of 8kyT,
(ks being the Boltzmann constant)@l. 22). These low frequency vibrations are
associated with translational and librational modes, which for organic salts indicate that
the phonons are intermolecular vibrations. The geometry of intermolecular contacts
between anion and cations determines the strength of intermolecular phonons. The

ethylene groups in the outer six membered ring control this interaction due to their
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The second series, S~(ET),X (X =13, Auly, Ausz'), shows the same dependence on
intermolecular interactions and therefore lattice softness. As mentioned previously
there is a rearrangement, leading to longer intermolecular interactions, when pressure is
applied to S~(ET),I;. The values of T, of the other systems in the series have been
studied as a function of the applied pressure. There are no phase changes upon
application of pressure for the other two salts(24, 25). Each anion is surrounded by 12
ET donor molecules with the terminal halogen atoms being surrounded by six ethylene
groups, which leads to a crystal structure that includes C-H to donor and C-H to anion
distances that are shorter than would be expected from the sums of the van der Waals
radii. Again, the increase in the intermolecular distances mirrors the trend shown by the
T. where f-(ET)l; > S-(ET)Aul, > S(ET)AuBr, and the S(ET),l; phase is not

superconducting and also has the lowest C-H to donor and C-H to anion distances(26).

3.7 Isotopic Substitution

The effect of the isotopic substitution of deuterium for hydrogen has been studied
without any conclusive assumptions being made due to the delicate balance between the
reduction of vibrational frequencies and the increase in lattice softness. When the H
atoms are replaced with deuterium, the resulting dg-ET has a higher mass, which
according to the BCS theory of superconductivity should lead to a fall in T; due to
lower vibrational frequencies leading to a decrease in the Debye temperature 0, if there
is no effect on A on account of the substitution. In opposition is the effect of the
decrease in vibrational frequencies especially the stretching frequencies and the smaller
displacement from equilibrium during a stretching vibration resulting in an effective
shorter C-D distance; C-D to donor and C- D to anion distances are therefore increased
leading to a softer lattice and a larger A distance. x~(ET),Cu(NCS), shows an increase
in T, from 10.4 to 10.8K; S -(ET),l; also has a T, increase from 1.15K to 1.43K
implying the dominance of the A term; while ﬁ -(ET),I5 shows a decrease in T, due to
the increase in the 6 term. The isostructural salts x&~(ET),Cu[N(CN),]X (X = CI, Br)
show the delicacy of this balance, with the X" = CI  salt showing an increase in T, while

the T, of the X = Br" salt decreases upon deuteration(14),

51



3.8 Electronic Structure from Band Structure Calculations

The dimensionality of the Fermi surface of ET salts has lead to many calculations of
the band structure. Due to the large unit cell size and complexity of ET salts, prior to
the work reported in this thesis, these calculations have been limited almost exclusively
to work using extended Hiickel theory (EHT) and the tight binding approximation.

In these organic salts, the intermolecular interactions are weak in comparison with
the chemical bonding of the constituent molecules. The ethylene groups of ET lead to
an increase in the dimensionality of the band structure. The steric effects of the
ethylene groups impair the stacking shown by some organic donor molecules. Salts
such as those of TMTSF have a quasi one-dimensional band due to the domination of
the intermolecular n-m interactions in the stacking direction. The effect of the ethylene
groups in ET is to reduce the m-m interactions due to the face-to-face contact in
comparison to the side-to side interactions, which leads to many ET salts having two-
dimensional band structures.

To characterise fully the electronic structure of a salt, the calculations must take into
consideration the three-dimensional periodicity of the crystal. The size and complexity
of the organic molecules and the complicated crystal structures have meant that, in the
past, methods have been used that require many approximations to be made. EHT only
considers the effect of conduction band electrons and is not accurate enough to perform
geometry optimisations; moreover, only qualitative agreement can be expected for
energetics, but in most cases this is sufficient to provide a good model of the Fermi
surface. The advantages of EHT are that the only data required are atomic ionisation
potentials and that the method is easily parameterised for the whole periodic table.
Recently, more advanced ab initio calculations have been conducted to provide more
information on the electronic structure and to produce quantitative results, as will be
discussed later.

Mori et al.27) used EHT in 1984 to calculate the Fermi surface of ET;[ClO4]
(CoH3Cl3)o5, (TMTTF),X and S-(ET),Is. The size of the molecule restricted the level of
theory used to EHT for the calculation of the molecular orbitals of a single molecule of
ET. The overlap of HOMOs are used to estimate the overlap integral (S) and from S it
is possible to deduce the transfer energy, (t). Using the standard, tight binding

approximation, it is possible to obtain the band structure of the conduction band and the
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shape of the Fermi surface. However, by using a single molecule of ET to approximate
the molecular orbitals, there is no consideration of the polarisation that occurs when the
two molecules interact, which can be avoided by approximating the molecular orbitals
for a dimer instead of only using a single molecule. In the study of Mori et al.(27) the
intermolecular overlaps between adjacent molecules are analysed by varying ¢ (Figure
3.3). The relative rotation of the individual molecules are neglected by keeping their
positions fixed. The shortest distance between sulphurs is fixed at 3.8A then by fixing
the position of one molecule, while the other is rotated, starting in the side-to-side
configuration and finishing with the face-to-face configuration, the overlap integral can

be calculated.

Figure 3.3. Alignment of a molecular dimer as a function of ¢ ¢= 0°, side-by-side arrangement; ¢=
90°, face-to-face arrangement.(27)

The band structure and Fermi surface of S(ET),I; are shown in Figure 3.4(28), The
effect of removing two electrons from a unit cell containing four ET molecules is a half
filled conduction band consisting of the HOMOs of ET; the material is expected to be
metallic. The isotropic nature of the ab-plane interactions leads to a Fermi surface that
is closed within the first Brillouin zone, which agrees with the system showing two-

dimensional properties.

NN
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Figure 3.4. The energy-band structure and Fermi surface of S(ET),l;. The shaded region indicates
the hole-like part.(28)
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For a salt such as S-(ET),PFg, the side-to-side interaction dominates and quasi one-
dimensional behaviour is seen which is reproduced by calculations(29) showing that the
Fermi surface is not closed. Comparisons have been made between the § and x phase
salts which show that both phases generally have closed Fermi surfaces and two-
dimensional properties. The [ phase salts have one partially filled band whereas the x
salts have two partially filled bands. The overall widths of the partially filled bands are
approximately the same showing that the density of states, n(ey), for the s salts is about
twice that of the f salts.

The extended-Hiickel-tight-binding formalism remains an important tool for
understanding the electronic structure of low-dimensional systems and has been useful
in the interpretation of some important experimental observations. It can be used to
give guidance on, for example, the influence of pressure on a material, but as mentioned
earlier it can only be used as a qualitative guide. With improvements in computational
resources and scalability of modern software more advanced electronic structure
calculations have now been reported.

A calculation of the electronic structure and optical properties of the &
(ET),Cu(NCS), salt were made using density functional theory by Xu et a/(30). The
orthogonalised linear combination of atomic orbitals (OLCAO) method was applied self
consistently using the published crystal structure as their starting point. The shape of
the Fermi surface predicted was in agreement with EHT results but there were critical
differences found for other parameters, in particular the band width was found to be
only half that reported from EHT work and the positions of other bands are shown to be
incorrectly reproduced within the EHT.

3.9 Experimental Methods of Physical Property Characterisation

Many experimental methods are used to interpret the behaviour of organic charge
transfer salts. In this section several techniques will be introduced that probe important
aspects of the wide ranging properties. Owing to the slow crystal growth, it is often not
feasible to employ methods requiring a large amount of sample.

Calculations of the Fermi surface of ET salts described above are not the only source

of information as experimental observations can also be made from magneto-quantum
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oscillation measurements. The most useful physical measurements relate to the
electronic properties of salts such as electron spin resonance (ESR), SQUID
magnetometry, transport measurements, infra-red reflectivity and Raman spectroscopy.
There are few examples, due to serious technical difficulties, in obtaining deuterated
single crystals of a size appropriate for single crystal studies, which has inhibited the
collectioﬁ of high quality diffraction data.

Electron spin resonance spectroscopy (ESR) allows the study of the multiphase
crystals of ET salts, moreover, it is a highly sensitive technique requiring small
quantities of material (crystals, powders or solutions). The ESR spectrum of a single
crystal of an organic metal is typically a single absorption line, which can lead to the
swamping of any hyperfine interactions. The peak-to-peak linewidth, which can be a
useful method for the identification of different phases, can be collected at varying
temperatures to study any structural phase changes. The spin susceptibility and the line
shape can also be obtained from ESR measurements to provide further information on
the magnetic and conducting properties. The conduction properties of organic charge
transfer salts can be inferred from the temperature dependence of the spin susceptibility.
In particular superconducting materials show a characteristic microwave absorption at
zero field known as the low field signal (LFS) and the conduction electrons tend to give
Dysonian line shapes.(1)

In the study of molecular charge transfer salts, the electrical conductivity is one of
the most informative and easily measured temperature dependent qualities. Many
techniques are available for the measurements of electronic conductivity, the choice
being determined by the sample size, shape and properties, and the quality of electrical
contact that can be made with the sample. In most cases single crystals are used with
liquid nitrogen or liquid helium as coolant. The transport properties of a material are
defined by the temperature and field dependence of the magnetic susceptibility.
Materials with ordering moments such as electron Cooper pairs in superconductors,
localised electron spins in ferro and ferri magnetic materials depend on the sample
history of applied field and temperature.

Two principle physical effects facilitate the direct measurement of a materials
magnetic response. The first is the physical attraction or repulsion of a material from
regions of magnetic field. The Guoy and Faraday balances are typical examples of

apparatus, which measure the change in effective weight of a sample.
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The second effect is the change in magnetic flux in a solenoid when a material is
introduced. The changes may be measured in the presence of a static and/or oscillating
magnetic field by direct current, alternating current or induction methods. Experimental
apparatus used include the vibrating sample magnetometer, a.c susceptometer and
superconducting quantum interference device (SQUID) magnetometer.

Another technique, which has played an important part in the characterisation of
organic superconducting salts, is vibrational spectroscopy. The method allows the
determination of the extent of charge transfer that has occurred in the complex,
assignment of vibrations in the donor and acceptor molecules and in their salts. As with
ESR studies vibrational spectroscopy allows the determination of the various phases.
From infra-red spectra, the optical anisotropy, plasma frequencies, the optical band gap,
optical conductivity, electron-phonon coupling constants and more information of the
electronic structure and its dimensionality can be inferred. Raman spectroscopy is also
useful in relating the central C=C stretching frequency to the donor charge.

The vast majority of experimental studies have focused on the synthesis of new salts
or the contrasting physical properties of these systems. In recent years there has been
interest in varying the structure by alterations in pressure/temperature or chemical
ingredients, for example, solvent or anion metal centre. Due to limitations in
computational resources and available software, calculations have also been focused on
the band structure.

In the next two Chapters we present both energy minimisation techniques and
electronic structure calculations of the ET charge transfer salts and their molecular
components. The ability of energy minimisation techniques to study the geometric
structure has been explored, while, Density Functional Theory calculations have been
performed to gain insight into the electronic and geometric structure of these large

complex crystals.
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Chapter 4

Application of Molecular Mechanics to the ET
Charge Transfer Salts

4.1 General

There are many examples of the simulation of extended lattices using energy
minimisation methods, but more commonly ionic or semi-ionic systems (zeolites) have
been considered. In this Chapter the applicability of molecular mechanics methods to
the study of charge transfer systems will be examined.

The first important issue to confront is the selection of a forcefield that will satisfy
our requirements. There are many forcefields available to the computational chemist,
but the majority are parameterised for application to specific systems, for example the
forcefield of Sauer et al.(1-3), which was parameterised to allow invest‘igation of silicate.
fragments and silicate extended frameworks. Our interest is in molecular crystals
containing many different types of anions and solvents. Therefore, a forcefield is
required that will allow the study of an extended system which includes different types
of interatomic potentials for transition metals and heavy elements. We have found that
the most appropriate forcefield is ESFF (extended systematic forcefield)(4) which offers
a broad coverage of the periodic table and uses periodic boundary conditions to simulate
an extended lattice. The ability of the forcefield to reproduce crystal structures will be
investigated for the simplest crystals of the ET family.

As mentioned in Chapter 1.1, the size of model system can be decisive in
determining whether a correct result or interpretation will be obtained. The size of
system, the type of constituent atoms and the importance of the intermolecular

interactions make the ET salts an excellent test for a general forcefield.
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4.2 The ESFF Forcefield

ESFF was designed for modelling organic, inorganic and organometallic systems. In
order to cover this broad range of atom types ESFF was developed in an Extensible and
Systematic manner. To prevent the number of required potentials being too large the
forcefield employs semi-empirical rules to translate atomic based parameters to
parameters typically associated with a covalent forcefield.

It is a diagonal valence forcefield where valence bond, angle, torsion and out of
plane angle energies are used to describe the internal interactions and van der Waals and
electrostatic energies represent the non-bonded interactions (see Figure 2.1)

As a wide range of systems can be considered, large deviations in bond lengths and
angles from equilibrium structures can be observed. A Morse function is used for
bonding interactions and a truncated cosine series for angles.

The atom type parameters of the ESFF forcefield are classified according to the types
of interactions: bond, angle, torsion, out-of-plane, electrostatic and van der Waals. The
ESFF forcefield makes use of two methods to generate the atom type parameters;
firstly, ab initio calculations and secondly, fitting to experimentally determined crystal
structures. The basic ab initio parameters: electronegativity, hardness and ionisation
potential are calculated for the elements of the first three rows of the periodic table, with
information supplied about orbital hybridisation and the distribution of valence
electrons in the hybridised orbitals. The atomic van der Waals parameters and field
factors (required for the electronegativity equalisation method used to calculate atomic
charges, described below) are determined by fitting the lattice cell vectors of the crystal
structure while the internal coordinates are constrained. ESFF then employs semi-
empirical rules to translate the atomic based parameters to parameters typically
associated with a covalent forcefield. There are other examples of rule based
forcefields, for example, the universal forcefield (UFF), which has atomic parameters
for the whole of the periodic table.(5-9) Although UFF is similar in design to ESFF, it
has more general rules and therefore less accuracy. ESFF combines rules in series
rather than using a single rule, to cope with the complexity of the underlying physics.
Also more information is included as to the internal type classification to capture
detailed behaviour associated with particular internal interactions. The focus for the

development of rule based forcefields is to derive rules based on the underlying physics,
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leading to physically meaningful parameters and thus reduce the number of parameters
and improve parameter transferability. As an example, combining the London formula
for dispersion energy with a harmonic oscillator model for polarisability allows the
derivation of the van der Waals radii and well depths, required for the parameterisation
of the van der Waals interaction. The expressions represent such a good correlation that
more than a thousand van der Waals parameters are generated, to cover all atom types,
from as few as approximately 30 atomic parameters.(10)

An atomic point charge model is used in ESFF. The atomic partial charges are
calculated from ab initio computed atomic parameters, electronegativities () and
hardness (1), by using the rules of group and local electronegativity equalisation. The
partial charges are determined by minimising the electrostatic energy with respect to the
charges under the constraint that the sum of the charges is equal to the net charge on the
molecule.

The equation for the electrostatic energy is made up of two terms: the first is a Taylor
series expansion of the energy of each atom as a function of charge and the second is
the Coulomb interaction law between charges. Minimisation of the energy with respect

to the charges gives:

— A=A
; ,

Qi (4.1)

for the charge on atom i, (q;), where A is the Lagrange multiplier used as a constraint on
the total charge.

A severe approximation results from using a totally delocalised picture for the
description of sigma systems. Metals, their immediate ligands and delocalised systems
are correctly described as their formal charges are summed to get a net fragment charge,
but for sigma bonds some modification is needed to the method. Use is made of a
localised approach in which the charge of an atom depends only on its neighbours. The
other non- bonding term, the van der Waals interaction uses a 6-9 potential.

As molecular crystals are being studied, it is vital to include the crystal field effect,
which is achieved using Periodic Boundary Conditions (f’BC), see section 2.3 for detail.
For the calculation of non-bond energies it has been found to be essential to use the

Ewald summation, as introduced in section 2.8.
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Methods are required for the comparison of calculated and experimental crystal
structures. Bond lengths, and, for relevant calculations, energetics and lattice
parameters, are to be examined. Root mean square deviations have been used as a

representation of the topology of the systems.

4.3 Root Mean Square Deviation

Root mean square deviations will often be reported as a comparison of the

experimental crystal structure and the resulting crystal structure after minimisation.

RMS = [i (x; — xi')2 +(y; ;IYi')z +(z; — Zi')2 ]% 4.2)

Superimposition is used to align N atoms in the two conformers of the same
molecule or crystal. It is important that at least one atomic centre per system is exactly
superimposed. Use of a method that weights heavy atoms to a greater degree means

that the anions are generally the superimposed centres in ET salts.

4.4 Comparison of Forcefields Available in the Insightll Modelling

Environment

The ability of ESFF to model the neutral ET crystal has been compared with three of
the popular organic forcefields, which are available in the InsightlI interface(!1), namely
CVFF, CFF91 and PCFF. The neutral ET salt contains four ET molecules in a
conventional unit cell, with a single molecule per asymmetric unit. The ESFF is unable
to use symmetry to reduce the computational cost, so a P1 unit cell must be employed.
The atom types available in ESFF have been compared, as there are three choices for
carbon atoms, which have multiple bonds or form delocalised rings. The structure of
neutral ET is unlike other ET salts, as no charge transfer occurs the molecules are
warped, with one of the terminal ethylene groups having the boat conformation, rather

than the two possible twist conformations, (which have been shown to be of lower
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energy when molecular density functional theory (DFT) calculations are applied, see
section 5.8.) There are two crystal structures of neutral ET available in the literature.
The more recent structure of Guionneau (12) has been used in this work, as the structure
of Kobayshi et al.(13) showed larger isotropic thermal parameters. The reduced
electrostatic contributions of the ET neutral salt, as there is no charge transfer, will
provide a stringent test of the ability of the interatomic potentials to model the organic
component of the family of charge transfer salts. Constant-volume geometry
minimisation calculations have been applied and the RMS values are reported in Table
4.1. The results show that the ESFF is a good choice of forcefield for the modelling of
the ET charge transfer molecular crystals. The RMS values are only an indication of the
quality of the representation of the system, but it is important and significant that the
correct topology of the molecule is reproduced.

As mentioned above there is a boat conformation for one of the terminal ethylene
groups which is not a characteristic feature of the salts where partial ionisation of the
ET molecule occurs leading to the twist conformations being adopted by both terminal
ethylenes of the outer six membered rings. For the neutral ET salt, none of the
forcefields tested reproduce this subtle feature of the structure but they do reproduce the
structure of the rest of the ET molecule extremely well. The thermal isotropic disorder
parameters of the sp° carbon atoms of the outer six membered rings are always higher
than the ring carbons and sulphurs. There are many cases where libration is obviously
playing a part in lack of structural order or strained molecules being predicted by
experiment. In this case it seems more likely that as the Madelung potential within the
crystal will be minimal, due to the nature of the molecular species present, the lower
electrostatic contribution means a lower barrier to rotation, therefore allowing the

unfavoured boat conformation.
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As there are no stacks or sheets of cations in the material there is no conduction
pathway and the material is experimentally classified as an insulator.(14) (See section
5.10 for electronic structure calculations, which analyse the band gap of ETFeBry.)

The three different carbon potentials and two different iron potentials have been
compared for ETFeBr4 as the more planar cation, particularly for the five membered
ring, will be a good test of the ability of the carbon potentials to represent ET. The
descriptions of the three carbon potentials are:

e cp:a sp2 aromatic carbon with partial double bond

e cs:asp’ aromatic carbon in a five membered ring next to sulphur

e c=: ageneric sp’ carbon

The atom type equivalence tables(#) show that the potentials have identical
parameters for the equilibrium bond length, ry and the g values and only differ in partial
charges.

The same is true for the iron parameter sets, with both potentials being parameterised
for tetrahedral iron centres with the formal charges being two (Fe024) and three
(Fe034), which leads to a difference in the partial charges. The cp and Fe024
combination of parameter sets, which both have the lowest partial charges, have proved
to provide the best description for ETFeBr, with a RMS value of 0.45A. Closer
inspection shows that the intramolecular bond lengths are very similar, particularly
when the two iron potentials are compared. As the charge assignment method in the
Discover3 code, when using ESFF, uses the net fragment method to calculate partial
charges the larger partial charge for Fe024 means larger partial charges on the Br
centres. As there is a change in the electrostatics of the system, the intermolecular
distances and topology of the molecular components improve slightly leading to a
subtle improvement in the RMS value. '

A comparison of the experimental crystal and calculated structure is shown in Figure

4.2 and bond lengths are compared in Figure 4.3.
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outer six membered rings is not reproduced as well as the rest of the system but
experimental crystal diffraction data shows large R values for these atomic sites.

The results of these tests prove that the model being used, namely the atom types
used in the potential set in combination with the ESFF functional form, are able to
reproduce the crystal structure of neutral ET and ETFeBr, successfully.

It was found that the only method of applying the non-bond terms (electrostatic and
van der Waals), that produced satisfactory results, was the Ewald summation. The other
methods, (atom, group or cell based) available in the Discover3 engine for the
calculation of the non-bond terms lead to poor reproduction of the crystal structure of
ETFeBrs. When a very strict convergence criteria was applied to the Ewald summation,
the RMS value could be reduced to 0.284, but with a large increase in computational

expense.

4.6 Constant Pressure Calculations of ETFeBr,

When modelling molecular crystals using forcefield methods the intermolecular
electrostatics are far more important than in metal oxide or zeolite systems as these
materials have much simpler structural motifs. It is the intermolecular terms which
maintain the correct topology of the molecules and the correct intermolecular distances.
If no constraints are placed on the lattice parameters (i.e. a constant pressure calculation
is performed), the calculation of crystal structure can be a challenging task, due to the
cell volume being strongly dependent upon all the intermolecular interactions. It is
often difficult to obtain a correct representation for the van der Waals terms.

By first minimising the molecular components and keeping the lattice parameters
fixed (i.e. a constant volume calculation) and then performing a full minimisation
including relaxation of the lattice parameters, a reasonable cell volume is reproduced.
As mentioned in the previous section the result can be improved by increasing the

convergence criterion of the Ewald summation.
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within the Discover3 code was not capable of calculating the electrostatic term, the
atomic point charges (‘partial charges’), as it requires an integer formal charge. For the
ETFeBry, salt the formal charge of the ET cation was +1, which meant that the partial
charges could be calculated at the start of the calculation. As ab initio calculations were
being performed simultaneously we attempted to use Mulliken charges but the charge
assigning sub-routine used by the code overrode any partial charges entered manually.
At the time this was an insurmountable problem so we turned our attention to the other
forcefields available within the InsightIl modelling suite.

After the good preliminary results (shown in Table 4.1) for the CFF91 forcefield,
when applied to the neutral ET system, we decided to investigate methods for producing
or mimicking interatomic potentials able to cope with heavy elements and transition
metals, as found in the anions. The advantage of CFF91 is that it allows complete
control of partial charges (formal charges play no part in the calculation of the
electrostatics.)

A crude method was used to reproduce the structure of the anions. If an interatomic
potential may be thought of as a spring between atoms, we have replaced the spring
with a solid bar, therefore, treating the anion as a rigid unit. The bond lengths and
angles are taken from crystallographic data and large force constants are applied to hold
the bonds rigid. The use of this method has allowed the investigation of the ET
molecules intramolecular structure, as well as the evaluation of intermolecular forces.

Two examples of ET salts have been studied, ETFeBrs and ET>I;.

4.8 ETFeBr, with the CFF91 Forcefield

We have used ETFeBry as a control, we know that ESFF gives a good description of
the charge transfer salt, but as it is the smallest salt it allows the simplest test of the
method.

Molecular DFT calculations have been performed to obtain partial charges. The
bond lengths and bond angles have been fixed for the tetrahedral anion using massive
force constants. The description of the intermolecular forces seems good as the
reproduction of structure, shown in Figure 4.4, is as good as for ESFF, with a RMS
deviation of 0.312, which is lower than for ESFF; but there are less degrees of freedom

due to the constraints applied to the FeBr,4 anion.
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An acceptable level of accuracy is shown using rigid bodies to simulate the anion for
the ETFeBr, salt, but the ET,I; salt shows poor agreement. The disadvantage of this
method is that it is not transferable to larger systems, as they require more complex
interactions such as torsional and out of plane terms for the correct description.
However, it has allowed the evaluation of the partial charges obtained using molecular
DFT techniques.

After discussion with MSI, an alteration to the Discover3 core code allowed the
implementation of a new charge assignment routine that allowed the manual
manipulation of the partial charges. This meant the partial charges obtained for use
with the CFF91 forcefield could be utilised by ESFF, with no necessity to fix anion
bonds and angles. The Discover3 code released with Cerius*(16) also allows the study
of bonds that cross the unit cell. Continuous networks are still beyond the capability of
the method, but now without the need to move the unit cell to encompass all molecular
components.

In the following sections use will be made of ESFF to model large molecular charge
transfer salts. The forcefield will also be applied to the question of the rotational barrier
of the NHj3 groups in the complex salt, ET,[Cr(NCS)4(NH3),].

410 ET,[FeCly]

As an example of a system with a fractional formal charge of +%2 on each ET cation
ET,[FeCl4](14) has been selected. The asymmetric unit of the triclinic ET,[FeCly]
crystal contains two ET cations and one FeCls anion. The lattice of ET,[FeCls] consists
of dimerised stacks of ET molecules separated by a sheet of anions, which are situated
in the cavity formed by the ethylene groups of ET. There are 114 atoms in the unit cell,
four ET cations and two anions. The formal charge of each ET molecule is +2. By
performing electronic structure calculations on ET’ and ET"' and averaging the
Mulliken charges the partial charges can be obtained, (see section 5.4 for more
explanation of electronic structure techniques.) The comparison of experimental and
calculated structure, shown in Figure 4.6, clearly displays that this method works

extremely well.
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