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Abstract  

Aim Whether metformin reduces cardiovascular or cancer risk is unclear due to concerns 

over immortal time bias and confounding in observational studies. This study evaluated the 

effect of AMP-activated protein kinase (AMPK), the target of metformin, on risk of 

cardiovascular disease and cancer. 

Methods This is a Mendelian randomization design, using AMPK, the pharmacologic target 

of metformin, to infer the AMPK pathway dependent effects of metformin on risk of 

cardiovascular disease and cancer in participants of white British ancestry in the UK 

Biobank.  

Results A total of 391,199 participants were included (mean age 56.9 years; 54.1% women), 

of which 26,690 cases of type 2 diabetes, 38,098 cases of coronary artery disease and 80,941 

cases of overall cancer. Genetically predicted reduction in HbA1c (%) instrumented by AMPK 

variants was associated with a 61% reduction in risk of type 2 diabetes (odds ratio [OR] 0.39, 

95% confidence interval [CI] 0.20 to 0.78, P=7.69×10-3), a 53% decrease in the risk of 

coronary artery disease (OR 0.47, 95% CI 0.26 to 0.84, P=0.01) and a 44% decrease in the 

risk of overall cancer (OR 0.56, 95% CI 0.36 to 0.85, P=7.23×10-3). Results were similar 

using median or quartiles of AMPK score, with dose-response effects (P for trend=4.18×10-3 

for type 2 diabetes, 4.37×10-3 for coronary artery disease and 4.04×10-3 for overall cancer).  

Conclusions This study provides some genetic evidence that AMPK activation by metformin 

may protect against cardiovascular disease and cancer, which needs to be confirmed by 

randomized controlled trials. 

Key words Metformin, AMPK, type 2 diabetes, coronary artery disease, cancer, UK 

Biobank, Mendelian randomization 
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Research in context 

What is already know about this subject? 

Metformin is the first-line pharmacologic treatment to manage hyperglycaemia in people 

with type 2 diabetes. Whether metformin reduces cardiovascular or cancer risk is unclear due 

to concerns over immortal time bias and confounding in observational studies. 

 

What is the key question? 

What is the association between AMP-activated protein kinase (AMPK), the pharmacological 

target of metformin, on lifetime risk of cardiovascular disease and cancer? 

 

What are the new findings? 

In Mendelian randomization analyses involving 391,199 participants of white British 

ancestry in the UK Biobank, reduction in HbA1c instrumented by AMPK were associated 

with lower risk of coronary artery disease, and possibly cancer.  

 

How might this impact on clinical practice in the foreseeable future? 

Based on the genetics of AMPK, metformin use may protect against cardiovascular disease, 

and possibly cancer.
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Introduction 

Metformin is the first-line pharmacologic treatment to manage hyperglycaemia in people 

with type 2 diabetes, and is on the World Health Organization list of essential medicines [1]. 

Increasing evidence suggests that metformin may differ from other classes of anti-diabetic 

medications in having superior safety and lower risk of cardiovascular complications [2]. 

Furthermore, pharmaco-epidemiological studies have suggested metformin may reduce 

cardiovascular disease and cancer [3, 4], suggesting the possibility of its use for these 

diseases. Metformin not only impacts glycaemic traits but also other potentially relevant 

factors, such as growth differentiation factor 15 (GDF-15) and vascular endothelial growth 

factors [5]. However, pharmaco-epidemiological studies may be open to immortal-time bias 

and confounding, which may generate spurious protective effects of metformin, in particular 

for cancer related studies [6, 7]. To date, relevant randomized controlled trials of metformin 

in cardiovascular disease are not large enough to be definitive [8], whilst the impact of 

metformin on cancer has not been evaluated fully in a randomized controlled trial.  

 

Mendelian randomization studies, which make use of the random allocation of genetic 

variants at conception, are less susceptible to confounding and time related biases than other 

observational studies, and are now increasingly used to infer health effects of medications, 

such as the use 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) variants to 

mimic the health effects of statins [9]. Previous Mendelian randomization studies have 

attempted to use genetics to infer health effects of metformin, but they were potentially 

underpowered and included non-specific instruments [10], or only evaluated health effects of 

metformin biomarkers instead of metformin itself [11]. To provide more definitive and direct 

evidence concerning the effect of metformin on cardiovascular disease and cancer risk, we 

conducted a Mendelian randomization study using AMP-activated protein kinase (AMPK), 
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the target of metformin, as a proxy of metformin use, in one of the largest prospective cohort 

studies globally. 

  

Method 

Study design 

This is a Mendelian randomization design, using AMPK, the pharmacologic target of 

metformin, to infer the AMPK pathway dependent effects of metformin. The study design is 

depicted in Fig 1 [12].   

 

Study population 

The UK Biobank recruited ~500,000 participants intended to be aged 39-73 years between 

2006 and 2010 from 22 recruitment centres across Scotland, Wales and England in the United 

Kingdom. Participants provided biological samples, completed questionnaires, including self-

reported diseases and regular prescription medications, underwent assessments and had 

nurse-led interviews. A blood sample for standard haematological tests was collected by 

venepuncture in ethylenediaminetetraacetic acid tubes, and tested at the central processing 

laboratory in Stockport, within 24 hours of blood collection. HbA1c was measured by high 

performance liquid chromatography on Bio-Rad Variant II Turbo analysers. Longitudinal 

follow-up via record linkage to all health service encounters and death is ongoing. Hospital 

inpatient data and cancer registries used International Classification of Diseases (ICD)-9 and 

ICD-10 codes and death registries used ICD-10 codes. Genotyping was undertaken with two 

similar arrays, the UK BiLEVE (Biobank Lung Exome Variant Evaluation) Axiom array 

(49,979 participants) and UK Biobank Axiom array (438,398 participants). Genotype 

imputation was based on the reference panel combining the UK10K haplotype and the 

Haplotype Reference Consortium reference panels. To reduce confounding by latent 



7 

 

population structure [13], we restricted the analysis to genetically verified white British 

participants and further excluded participants with 1) withdrawn consent, 2) sex-mismatch 

(genetic sex differs from reported sex), 3) putative sex chromosomes aneuploidy, 4) poor-

quality genotyping (outliers in heterozygosity and missing rate > 1.5%), or 5) excessive 

relatedness (more than ten putative third-degree relatives), as per our previous study [14]. We 

used genotype and phenotype data from the UK Biobank provided in February 2020. 

 

AMPK genetic score  

We created a weighted AMPK genetic score to mimic the effects of AMPK activation by 

metformin use based on the strength of the association of genetic variants in the relevant gene 

regions with HbA1c in MAGIC (Meta-Analyses of Glucose and Insulin-related traits 

Consortium), a genome wide association study (GWAS) of HbA1c, with validation in the UK 

Biobank. Specifically, we selected genetic variants within 1-Megabase pairs downstream and 

upstream of each of the PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG1, PRKAG2 and 

PRKAG3 genes that encodes AMPK subunits [15]. We selected low linkage disequilibrium 

(r2 < 0.3) variants associated with HbA1c at a nominal level of statistical significance (P ≤ 

0.05) in MAGIC, restricted to people of European ancestry to minimize population 

stratification (n=123,665) [16]. We then validated the associations in the UK Biobank (using 

multivariable linear regression, adjusted for age, sex, age at recruitment, genotyping array 

and the first 20 principal components of genetic ancestry) and only retained variants also 

reaching statistical significance (P ≤ 0.05) in the UK Biobank, which were used to construct 

the AMPK score. ESM Table 1 and ESM Fig. 1 show the details regarding the 44 variants 

used to construct the AMPK score. A weighted AMPK score was calculated for each 

participant by summing the number of HbA1c-lowering alleles that a participant inherited at 

each variant included in the AMPK score, weighted by the effect of that variant on HbA1c 
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measured in percentage (as estimated in MAGIC) [16]. This score was then considered as 

above and below the median to mimic metformin use and non-use. We also considered 

AMPK score in quartiles to assess whether our finding was robust to the way we consider 

AMPK scores.  

 

Sensitivity analysis 

As a sensitivity analysis, we used a stringent variant selection criteria by only using variants 

associated with HbA1c at genome wide significance (P ≤ 5×10-8) in both MAGIC and UK 

Biobank and not in linkage disequilibrium with the other variants (r2 < 0.01), which gave 

rs2732480, ESM Table 1. Rs2732480 was associated with lower HbA1c in both MAGIC (P = 

2×10-9) and UK Biobank (P = 1.07×10-142). The effect allele was associated with lower 

HbA1c % (beta -0.012, 95% confidence interval [CI] -0.016 to -0.008). 

 

Study outcomes 

The primary outcomes were coronary artery disease and overall cancer. The secondary 

outcomes were stroke and three main cancers, i.e. breast cancer, colorectal cancer and 

prostate cancer. Each disease outcome was defined based on self-report medical conditions at 

baseline, or subsequent primary and secondary diagnoses of hospital episodes (ICD-9 and 

ICD-10), or cancer register (ICD-9 and ICD-10), or underlying and contributing causes of 

death (ICD-10).  

 

Positive control outcomes 

We included type 2 diabetes and HbA1c as positive control outcomes given these are the 

expected effects of metformin use. Type 2 diabetes was ascertained using a validated 

algorithm [17]. Specifically, the criteria included 1) self-reported type 2 diabetes at baseline, 
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2) indication of type 2 diabetes based on diagnostic codes (ICD-9 250 and ICD-10 E11), 3) 

diabetes medications (metformin, sodium-glucose cotransporter 2 inhibitors, glucagon-like 

peptide 1 receptor agonists, dipeptidyl peptidase 4 inhibitors, sulfonylureas and 

thiazolidinediones), and 4) hyperglycaemic blood result (either HbA1c ≥ 6.5% or 48 

mmol/mol, or random glucose ≥ 11.1 mmol/L). The algorithmic definitions are described in 

ESM Table 2. HbA1c was measured in mmol/mol, (IFCC unit, International Federation of 

Clinical Chemistry), and was converted to percentage (NGSP unit, National 

Glycohemoglobin Standardization Program) using the equation: NGSP = 

(0.09148×IFCC)+2.152 [18]. 

 

External validation 

To validate our findings from the UK Biobank, we conducted an external validation study for 

the outcomes using summary statistics for type 2 diabetes, (12,171 cases and 56,862 controls) 

from the DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) consortium [19], 

coronary artery disease, (60,801 cases and 123,504 controls) from the 

CARDIoGRAMplusC4D (Coronary ARtery DIsease Genome wide Replication and Meta-

analysis plus The Coronary Artery Disease Genetics) consortium [20], stroke (40,585 cases 

of stroke and 406,111 controls) from the MEGASTROKE consortium [21]; breast cancer 

(122,977 cases and 105,974 controls) from the BCAC (Breast Cancer Association 

Consortium) [22]; and prostate cancer (79,148 cases and 61,106 controls) from the 

PRACTICAL (Prostate Cancer Association Group to Investigate Cancer Associated 

Alterations in the Genome) consortium [23]. All participants were of predominantly 

European ancestry and non-overlapping with the participants in the UK Biobank to avoid bias 

due to population structure and any potential bias due to participant overlap for a weak 

instrument [24].  
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Statistical analysis 

To assess the assumption of independence of the genetic instruments (AMPK groups) from 

potential confounders, we assessed the association of AMPK groups with confounders (age at 

recruitment, body mass index [BMI], smoking status, alcohol drinking status, education level, 

Townsend deprivation index,) using chi-square tests or analysis of variance. To demonstrate 

AMPK had the expected effect on HbA1c, we assessed the differences in HbA1c and random 

glucose between each group using analysis of variance. We assessed the association of 

AMPK categories with HbA1c using multivariable linear regression. We assessed the 

association of AMPK categories with risk of T2D, cardiovascular diseases and cancers using 

multivariable logistic regression. All regression analyses were adjusted for sex (if relevant), 

age at recruitment, genotyping array and the first 20 principal components of genetic 

ancestry. As per previous studies, we also assessed the impact of genetically predicted 

reduction in HbA1c (%) instrumented by AMPK variants on risk of T2D, CAD and overall 

cancer [25]. 

 

For the external validation, we performed a standard Mendelian randomization analysis. We 

obtained the summary statistics of each variant included in the AMPK score on risk of T2D, 

coronary artery disease, stroke, breast cancer and prostate cancer as reported by each 

consortium. We obtained the Wald ratio for each variant (the ratio of the genetic association 

with outcome to the genetic association of exposure), and then combined them using 

weighted generalized linear regression in an inverse-variance weighted manner and 

accounted for the correlation between variants [26]. The correlations between variants were 

obtained in 503 participants of European ancestry from the 1000 Genomes Project (Phase 3). 

Since variants are from multiple gene regions that may have different mechanisms of effect, a 
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random-effects model was used [26]. We aligned the effect allele of each variant to the 

HbA1c decreasing allele. We used the Cochran's Q statistic to assess heterogeneity of the 

Wald ratios [27] where high heterogeneity may indicate the presence of invalid genetic 

variants [28]. 

 

Exploring the association of HbA1c  with cardiovascular disease and cancer risk using 

Mendelian randomization 

To preclude the possibility that the observed effects of AMPK activation, a target of  

metformin, are due to lowering HbA1c, we also assessed the association of genetically 

predicted lower HbA1c on cardiovascular disease and cancer risk. As previously, we obtained 

38 independent genetic variants strongly related to HbA1c (P ≤  5×10-8) from the MAGIC 

(ESM Table 3), and applied them to the relevant outcomes in the UK Biobank using inverse 

variance weighting, MR-Egger and weighted median method [14].  

 

The AMPK score was generated using PLINK 2.0. Mendelian randomization analyses were 

performed with MendelianRandomisation package and all analyses were performed using R 

software, version 3.5.1 (R Foundation for Statistical Computing). A two-tailed P value less 

than 0.05 was considered statistically significant.  

 

Results 

Participant characteristics 

A total of 391,199 participants were included in the main analysis (mean age, 56.9 years; 

54.1% women). For T2D, there were 26,690 cases. For cardiovascular disease, there were 

38,098 cases of coronary artery disease and 11,358 cases of stroke. For cancer, there were 

80,941 cases of overall cancer, 9,251 cases of breast cancer, 5,861 cases of colorectal cancer, 
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and 8,970 cases of prostate cancer. In Table 1, HbA1c, glucose, insulin therapy users and 

metformin therapy users were significantly lower in the high AMPK group than in the low 

group. No other significant differences in baseline characteristics between the two groups 

were found.  

 

Association of AMPK score with glycaemic traits and T2D 

Compared with participants with a low AMPK score (below median favouring higher 

HbA1c), participants with a high AMPK score (above median) had 0.032 % lower HbA1c, 

95% CI, 0.028 to 0.035, P=2.34×10-64, and 0.013 lower random blood glucose mmol/L (95% 

CI, 0.005 to 0.022; P=1.09×10-3). High AMPK score (above median) was also associated 

with a decreased risk of T2D (odds ratio (OR) 0.96, 95% CI 0.94 to 0.99; P=4.16×10-3), as 

shown in Fig. 2a. AMPK quartiles were associated with a stepwise decrease in HbA1c 

(quartile 2, 0.011%, 95% CI 0.006 to 0.016, P=2.70×10-5; quartile 3, 0.028%, 95% CI 0.022 

to 0.033, P=2.02×10-25 and quartile 4, 0.047%, 95% CI 0.042 to 0.052, P=4.67×10-70), and a 

corresponding stepwise decrease in the risk of T2D (P for trend=4.18×10-3, Fig. 2a). 

Genetically predicted reduction in HbA1c (%) instrumented by AMPK variants was associated 

with a 61% decrease in the risk of T2D (OR 0.39 per % reduction, 95% CI 0.20 to 0.78, 

P=7.69×10-3) (Fig. 3). 

 

Association of AMPK with cardiovascular diseases 

High AMPK score (above median) was associated with a 3% lower risk of coronary artery 

disease (OR 0.97, 95% CI 0.95 to 0.99; P=5.69×10-3, Fig. 2b), but not stroke (ESM Fig. 2a). 

AMPK quartile was associated with a stepwise decrease in the risk of coronary artery disease 

(P for trend=4.37×10-3, Fig. 2b). Genetically predicted reduction in HbA1c (%) instrumented 
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by AMPK variants was associated with a 53% decrease in the risk of coronary artery disease 

(OR 0.47 per % reduction, 95% CI 0.26 to 0.84, P=0.01) (Fig. 3). 

 

 Association of AMPK with cancer 

High AMPK score (above median) was associated with lower risk of overall cancer (OR 

0.98, 95% CI 0.96 to 1.00, P=0.01 and P for trend=4.04×10-3, Fig. 2c), but not with prostate 

cancer, breast cancer or colorectal cancer (ESM Fig. 2b to d). AMPK quartile was associated 

with prostate cancer (Quartile 2, OR 0.91, 95% CI 0.85 to 0.96, P=1.61×10-3, Quartile 3, OR 

0.93, 95% CI 0.88 to 0.99, P=0.02) although the dose response was unclear (ESM Fig. 2b). 

Genetically predicted reduction in HbA1c (%) instrumented by AMPK variants was associated 

with a 44% decrease in the risk of overall cancer (OR 0.56 per % reduction, 95% CI 0.36 to 

0.85, P=7.23×10-3) (Fig. 3). 

 

Sensitivity analysis by using a more stringent variant selection criteria 

One % reduction in HbA1c instrumented by rs2732480 was associated with a decreased risk 

of T2D (OR 0.11, 95% CI 0.02 to 0.50, P=4.08×10-3), coronary artery disease (OR 0.22, 95% 

CI 0.06 to 0.81, P=0.02). The direction with overall cancer was consistent with the main 

analysis but with wider CI (OR 0.45, 95% CI 0.17 to 1.14, P=0.09), ESM Table 4.  

 

External validation 

In external replication analyses, genetically predicted lower HbA1c instrumented by AMPK 

variants was associated with decreased risk of T2D (OR 0.11 per % reduction, 95% CI 0.04 

to 0.35; P=1.78×10-4) and coronary artery disease (OR 0.48 per % reduction, 95 CI 0.33 to 

0.72; P=2.89×10-4), but not with stroke, breast cancer or prostate cancer (ESM Table 5 and 



14 

 

ESM Fig. 3a to e). The Q statistic suggested possible heterogeneity for the association with 

T2D, coronary artery disease, stroke and breast cancer. 

 

Association of HbA1c with cardiovascular disease and cancer risk in the UK Biobank using 

Mendelian randomization 

ESM Table 6 shows that genetically predicted higher HbA1c was associated with higher risk 

of coronary artery disease (OR 1.41, 95% CI 1.03 to 1.93, P=0.03), and possibly with lower 

risk of overall cancer (OR 0.84, 95% CI 0.70 to 1.01, P=0.07), but not for stroke, or any 

cancer subtype.  

 

Discussion 

To the best of our knowledge, this is one of the first Mendelian randomization studies to 

ascertain the effects of metformin, based on AMPK variants, on cardiovascular diseases and 

cancer. Using a design more robust to immortal time biases and confounding, our study is 

consistent with previous pharmaco-epidemiological studies suggesting that metformin use 

may reduce coronary artery disease and overall cancer risk. We added some genetic evidence 

that the putative cancer-protective effect of metformin via AMPK pathways is unlikely by 

glycaemic control. 

 

A protective effect of metformin on cardiovascular health was observed in small randomized 

controlled trials using surrogate outcomes [29], the UK Prospective Diabetes Study post trial 

analysis [30], and a recent meta-analysis [8], which were consistent with our findings. 

Although a genetically predicted reduction in HbA1c is protective against coronary artery 

disease [14], it is apparent that metformin’s protective effect is not solely due to its 

improvement in glycaemic profile given these benefits are not clearly observed for all other 
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classes of anti-diabetic medications [8], such as sulfonylureas and insulin [2, 31]. Metformin 

increases in GDF-15, a stress responsive cytokine which suppresses appetite and promoting 

weight loss [32], and hence provides a potential mechanistic pathway by which metformin 

reduces cardiovascular disease risk. However, changes in GDF-15 were not clearly associated 

with coronary artery disease risk based on our previous Mendelian randomization study [11]. 

On the contrary, sulfonylureas and insulin may lead to cardiotoxicity via weight gain, 

hypoglycaemia [31], or alteration of hormone levels [33].  

 

The relation of metformin use with cancer risk is more controversial given the concern over 

immortal time bias [6]. Our study, where the start of “exposure” is at birth, effectively 

removes this bias. As such, our study adds by showing that immortal time bias alone may not 

have explained the inverse relation of metformin use with cancer risk. Given previous studies 

generally have ruled out the causal role of glycaemic traits in cancer risk [10, 34], possible 

mechanisms underlying the anti-cancer property of metformin is likely via pre-cursors of 

glycaemic traits or of glycaemic-independent pathways [35]. People without growth hormone 

appear to be protected against both diabetes and cancer [36]. This may suggest a possible 

pathway via growth hormone or the closely related insulin like growth factor-1 [37]. 

Glycaemic-independent pathways may include inhibition of tumour-mesothelial cell 

interaction by suppressing hypoxia-inducible factor 1 and transforming growth factor TGF-

 signalling [38], immune-mediated via metabolic reprogramming of tumour-specific T cells 

[39], and GDF-15 overexpressing fibroblasts promote the growth of tumour xenografts [40]. 

The examination of these potential mechanisms can be explored in further studies. Big data 

approaches, such as metabolomics, may also be warranted to better understand the full 

spectrum of effects of metformin, and hence help identify the main pathways in which 

metformin confers the additional benefits on cardiovascular disease and cancer [41].   
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Although our study is more robust to confounding and immortal time bias than previous 

observational studies, there are limitations. First, whilst our study suggested AMPK 

activation by metformin may protect against coronary artery disease, and possibly cancer, the 

estimates from this study cannot be used directly to infer the health impact of metformin 

given the differences in exposure time where randomized controlled trials often consider 

short-term pharmacologic treatment in contrast to the effect of lifelong exposures estimated 

by Mendelian randomization [12]. Moreover, our study using AMPK variants may only 

predict the effect of metformin which acts on the AMPK activation pathways, and metformin 

may also have AMPK-independent pathways and could be explored in additional studies to 

fully capture the overall effect of metformin on cardiovascular disease and cancer [42]. 

Second, we used a lower threshold than genome-wide statistical significance to select AMPK 

variants as proxy of metformin use to maximize total prediction of AMPK function by the 

genetic score. We reduced the possibility of false positives by cross checking the variants’ 

association with HbA1c in two independent studies. We also repeated the analysis with 

stringent variant selection criteria which gave a consistent conclusion. However, this may 

compromise the generalizability of the genetic score in other studies [43]. Third, we cannot 

rule out selection bias resulting from the recruitment of generally healthier participants and 

survivors in the UK Biobank, which may bias the estimate towards null. We also cannot rule 

out selection bias from competing risk before recruitment for diseases which share risk 

factors with other diseases that typically occur at younger ages, which could have biased 

estimates for stroke and prostate cancer to the null. Forth, the Q statistic suggested possible 

heterogeneity in some analyses. These heterogeneity may imply multiple gene regions 

encoding subunits of AMPK may have different mechanisms of influencing the outcomes and 

should be explored in future studies [28]. Fifth, given the pleiotropic effects of metformin and 
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its association with multiple non-glycemic makers [5], it would be difficult to identify a 

suitable negative control outcome. Nevertheless, we also assessed the impact of HbA1c on 

these outcomes and found that HbA1c unlikely explained all the observed associations related 

to AMPK. Lastly, we could not exclude the possibility that metformin may reduce sub-types 

of cancer as the number of cases was not large enough for adequate statistical power although 

the direction of effect for some cancer subtypes are similar to the overall cancer. Few AMPK 

genetic variants were available for prostate cancer and breast cancer in those consortia and 

we were unable to create an overall genetic score in the associated analyses to increase 

statistical power. Together with possible selection biases embedded in these GWAS [44], 

these might explain the discrepancy between the estimates from the UK Biobank and external 

consortia. Further investigations in large consortia on specific cancers may help verify the 

potential anti-cancer property of metformin.   

 

Conclusion 

This Mendelian randomization study provides some genetic evidence that AMPK activation 

by metformin may reduce coronary artery disease risk, and possibly overall cancer risk. 

Whether metformin can be repurposed for coronary artery disease and cancer should be 

explored in large randomized controlled trials.
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Table 1: Baseline characteristics of the participants in the UK Biobank  

Baseline characteristics  
AMPK score < median 

(n = 194634) 

AMPK score ≥ median 

(n = 196565)  
P value 

Age at recruitment (yr) 56.9±8.0 56.9±8.0 0.85 

Female, No. (%) 105048 (26.9) 106632 (27.3) 0.08 

Current smoker, No. (%) 19869 (5.1) 19689 (5.0) 0.09 

Current alcohol drinker, No. (%) 181839 (46.5) 183332 (46.9) 0.22 

Blood pressure (mmHg)    

Systolic 138.3±18.7 138.3±18.6 0.73 

Diastolic 82.3±10.1 82.3±10.1 0.34 

Body mass index (kg/m2) 27.4±4.8 27.4±4.8 0.61 

Education level 

     Degree, No. (%) 
88727 (22.7) 89717 (22.9) 0.94 

Townsend deprivation index -1.55±2.94 -1.56±2.93 0.21 

HbA1c (mmol/mol) 36.14±6.49 35.8±6.33 <0.001 

HbA1c (%) 5.46±0.59 5.43±0.58 <0.001 

Random glucose (mmol/L) 5.13±1.23 5.11±1.20 <0.001 

Current treatment, No. (%)    

   Antihypertensive therapy 43400 (11.1) 43564 (11.1) 0.31 

   Insulin therapy 2197 (0.6) 2077 (0.5) 0.03 

   Metformin therapy 5465 (1.4) 5224 (1.3) 0.004 

Values are means ± standard deviations. To convert values for HbA1c (mmol/mol, IFCC unit) to 

percentage (NGSP unit), with master equation NGSP = (0.09148 * IFCC) + 2.152; To convert glucose 

from mmol/L to mg/dL, multiply by 18. 
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Fig 1. Study design of this Mendelian randomization study and its comparison to randomized 

controlled trial. 
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Fig 2. Association of AMP-activated protein kinase score with risk of type 2 diabetes, 

coronary heart disease and overall cancer in the UK Biobank 

 

a) Type 2 diabetes 

 
b) Coronary artery disease  

 
c) Overall cancer 

 
Boxes represent odds ratios (OR) and lines represent 95% confidence intervals (CI). 
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Fig 3. The impact of genetically predicted reduction in HbA1c (%) instrumented by AMPK 

variants on risk of type 2 diabetes, coronary artery disease and overall cancer in the UK 

Biobank 

 
Boxes represent odds ratio (OR) and lines represent 95% confidence intervals (CI).
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