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A B S T R A C T

Neurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL
measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurode-
generative diseases. However, there have been limited investigations relating NfL to the concurrent measures of
white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's
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disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor
imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-
carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data.

In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean
diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in
NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial dif-
fusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results de-
monstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are
predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker
of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings
across multiple neurodegenerative diseases.

1. Introduction

Neurodegenerative disease biomarkers have important roles in de-
fining disease presence and severity, predicting progression, and mon-
itoring disease-modifying therapies. For clinical and research settings
such in vivo measures include magnetic resonance imaging (MRI), po-
sitron emission tomography (PET), cerebrospinal fluid (CSF) assays,
and blood-based tests. Blood-based biomarkers (Lewczuk et al., 2018;
Zetterberg and Blennow, 2018) have the advantages of minimal inva-
siveness, subject acceptability, low cost, as well as accessibility in di-
verse clinical settings, including lesser developed countries.

Neurofilaments are a component of the cytoskeleton in the neuronal
axons and are critical for the radial growth and stability of axons (Barry
et al., 2012; Rao et al., 2003). Any pathological process that leads to
axonal damage or neuronal death should release neurofilament proteins
into the surrounding extracellular fluid. Thus, elevations in neurofila-
ment protein biofluid concentrations are not specific to one disease but
are a general indicator of axonal damage. Neurofilaments have one of
three basic structures with light, medium, or heavy molecular weights.
The majority of work in neurodegenerative conditions has focused on
the light subunit (NfL).

CSF and blood-based NfL has been evaluated as a potential fluid
biomarker in a wide range of neurodegenerative disorders (see Bridel
et al., 2019; Gordon, 2020; Khalil et al., 2018) including frontotemporal
dementia (FTD) (Meeter et al., 2016; Rohrer et al., 2016; Skillbäck
et al., 2014), progressive supranuclear palsy (PSP) (Hansson et al.,
2017; Holmberg et al., 1998), amyotrophic lateral sclerosis (ALS)
(Gaiottino et al., 2013; Lu et al., 2015), Parkinson's disease (PD)
(Hansson et al., 2017), multiple sclerosis (MS) (Chitnis et al., 2018;
Disanto et al., 2017; Kuhle et al., 2019), vascular dementia (VAD) (De
Marchis et al., 2018; Skillbäck et al., 2014), dementia with Lewy bodies
(DLB) as well as sporadic and autosomal dominant Alzheimer's disease
(AD) (Gaiottino et al., 2013; Mattsson et al., 2019; Preische et al., 2019;
Weston et al., 2017, 2019).

Despite the growing usage of NfL as a biomarker, only a modest
number of studies have related NfL levels to the markers of white
matter (WM) health to which it should be intimately related and me-
chanistically linked. Results from MS populations have shown that in-
creased levels of NfL in the CSF or blood were related to greater WM
hyperintensity (WMH) volumes and gadolinium enhancing lesions
(Chitnis et al., 2018; Dalla Costa et al., 2019; Disanto et al., 2017; Kuhle
et al., 2019). A similar pattern was found in patients with ischemic
stroke (Tiedt et al., 2018) and cerebral autosomal dominant arterio-
pathy with subcortical infarcts and leukoencephalopathy (CADASIL)
(Gravesteijn et al., 2019). Diffusion tensor imaging (DTI) is a particular
form of diffusion-weighted imaging that characterizes the movement of
water molecules in the brain and provides a way to examine micro-
structural changes of WM integrity. Prior studies found that higher le-
vels of NfL are related to worse WM health as captured by higher levels
of mean diffusivity (MD) and lower fractional anisotropy (FA) (Menke
et al., 2015; Mielke et al., 2019; Moore et al., 2018)although this is not
always the case (Mielke et al., 2019; Racine et al., 2019).

Autosomal dominant AD (ADAD) is a form of AD caused by heri-
table mutations in genes that are involved in the production of beta-
amyloid (Aβ). The young age at onset (30–60 years) of ADAD means
individuals are largely free of age-related comorbidities (i.e. vascular
health) that can contribute to WM disease. The relatively predictable
age of dementia onset in ADAD also means that one can align asymp-
tomatic individuals relative to their estimated disease onset. This makes
it possible to investigate decades' worth of the disease course from large
cross-sectional samples. Such studies of ADAD have shown that CSF and
blood NfL levels are elevated in symptomatic individuals and begin to
increase 10–20 years before symptom onset (Preische et al., 2019;
Sánchez-Valle et al., 2018; Weston et al., 2017), consistent with the
notion that WM damage is an early event in AD. There is an emerging
recognition that frank WM lesions as well as changes observed with DTI
are a core feature of ADAD (Araque Caballero et al., 2018; Lee et al.,
2016). As a result, ADAD can serve as a model to test whether elevated
levels of NfL are related to changes in WM over the course of the dis-
ease. In the current work we test the sensitivity of NfL as a measure of
white matter decline in neurodegenerative disorders. We hypothesize
that serum levels of NfL are associated with WM hyperintensity lesion
volume and diffusion metrics in both cross-sectional and longitudinal
cohorts with ADAD.

2. Materials and methods

2.1. Participants

Participants were from the Dominantly Inherited Alzheimer
Network (DIAN) observational study recruited from 14 study sites in
the USA, UK, Germany, and Australia. DIAN participants are from fa-
milies with known mutations in presenilin 1 (PSEN1), presenilin 2
(PSEN2), and amyloid precursor protein (APP) genes and have a 50%
risk of inheriting the mutation from their affected parent at a relatively
similar, and therefore predicable, age at onset within families.
Participants who completed genetic, clinical, neuroimaging, and blood
draw assessments, and whose data passed quality control as part of the
11th DIAN data release were considered for this study. The sample was
restricted to those who had at least one serum NfL measurement, one
DTI scan, and one T2-weighted fluid-attenuated inversion recovery
(FLAIR) scan within 1 year of serum NfL measurement. The average
number of days between blood draw for NfL and DTI scan was
0.92 ± 0.66 (mean ± SE) days. This sample included a subset of
DIAN participants previously described (Preische et al., 2019).

The final cross-sectional sample consisted of data from 117 muta-
tion carriers (MC; 87 PSEN1, 12 PSEN2, and 18 APP) and 84 familial
non-carrier (NC) controls. Of the 117 MC with baseline data, 41 had
two or more visits with serum NfL measurement, DTI scan, and FLAIR
scan available for longitudinal analyses (one had four visits, four had
three visits, and 36 had two visits).

The institutional review board at Washington University in St. Louis
provided supervisory review and human studies approval. Participants
or their caregivers provided written informed consent in accordance
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with their local institutional review board. Participants' relevant
background characteristics are listed in Table 1.

2.2. Clinical

Cognitive and functional status was assessed using the Clinical
Dementia Rating (CDR). ‘Presymptomatic’ was defined as CDR= 0, and
‘symptomatic’ as CDR > 0. For each visit, a participant's estimated
years from expected symptom onset (EYO) was calculated based upon
the participant's current age relative to either the family mutation-
specific expected age at onset of cognitive symptoms or parental age at
first progressive cognitive decline if onset for the mutation was un-
known. EYO was established identically for both MC and NC family
members. The presence or absence of an autosomal dominant AD mu-
tation was determined using PCR-based amplification of the appro-
priate exon followed by Sanger sequencing (Bateman et al., 2012).
Clinical evaluators were blind to the mutation status of participants.

2.3. Imaging

DIAN Imaging data was screened for protocol compliance and ar-
tifacts. All sites used a 3 T scanner, which was qualified for use at study
initiation and was required to pass regular quality control assessments.
Volumetric T1-weighted images (repetition time = 2300 ms, echo
time = 2.95 ms, flip angle = 9°, 1.1 × 1.1 × 1.2 mm3 resolution) were
acquired for all participants and were processed using FreeSurfer 5.3
(http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012) and the Desikan
atlas to produce regional estimates of grey matter for use in PET pro-
cessing.

To characterize diffusion, whole brain DTI data were acquired using
T2*-echo planar imaging with one reference volume (b0,
b = 1000 mm2) and 64 diffusion directions (repetition time = 6000/
7800/11000 ms, echo time = 87/85 ms, flip angle = 90°, b-
value = 1000/s mm2 2.5 mm isotropic voxels). Only DTI data collected
on a Siemens scanner was included in the current study.

2.4. DTI preprocessing

Preprocessing included correction for motion and eddy-current
distortions followed by skull stripping with FMRIB software library
(FSL) 5.0.9. Rigorous motion inspection was applied after eddy-current
correction. As described above, participants' data underwent rigorous
inspection for artifacts, including determination of motion, which was
defined as those who moved>3.5 mm in more than 10% of the dif-
fusion directions. Thirty-five individuals were excluded from the cur-
rent study due to motion artifacts.

The diffusion tensor model was fit using dtifit within the FMRIB's
Diffusion Toolbox included in FSL. Fractional anisotropy (FA) measures
how much water movement is restricted to one primary direction. FA
ranges from zero to one, with zero being complete isotropic diffusion
and one being anisotropic diffusion. Axial diffusivity (DA) and radial
diffusivity (DR) respectively reflect the movement of water parallel and
perpendicular to (axis of) the fiber bundle. Mean diffusivity (MD) re-
flects the total amount of diffusion present in all directions. Generally,
higher FA and lower MD is thought to represent healthier WM integrity.
FA images from all subjects were nonlinearly aligned to the FMRIB58
atlas, which is a diffusion specific template in MNI space, and averaged
to create a mean FA image. A skeletonized atlas was generated from this
mean image using a threshold of 0.2, which excluded any voxels not
overlapping in at least 80% of participants. Each diffusion metric (FA,
DA, DR, and MD) was smoothed with a 2-mm kernel and projected onto
the skeletonized atlas using the nonlinear registration. Voxel-wise
analyses were performed on the skeletonized maps using tract based
spatial statistics (TBSS) in FSL (Smith et al., 2006).

2.5. DTI regions of interest creation

Well-studied, anatomically derived tracts provide an alternative
approach to voxel-wise analyses. For this approach, all DTI metrics
were also analyzed using previously defined regions of interest (ROIs)
(Strain et al., 2018) from a group of younger adults from a separate
cohort (Van Essen et al., 2013). Briefly, deterministic tractography was
performed with the MedINRIA software in native space, and each
participant's tracts were then transformed to MNI space. Tracts were
combined across individuals and limited to only those voxels present in
a majority of individuals. This resulted in the creation of 20 tracts in-
cluding cingulum (left and right), superior and inferior longitudinal
fasciculus (left and right), corticospinal (left and right), frontal aslant
tract (left and right), perforant pathway (left and right), uncinate fas-
ciculus (left and right), fronto-occipital fasciculus (left and right), for-
ceps major, forceps minor, anterior corpus callosum, and posterior
corpus callosum. This atlas includes several WM tracks that are com-
monly evaluated for DTI analyses and was generated from ROI's de-
scribed in a prior study (Wakana et al., 2007). Similar white matter
tracks are described in more common atlases like the JHU atlas (Oishi
et al., 2011).

These WM ROIs were overlaid to the TBSS derived skeletonized
atlas and the averaged WM metrics (FA, MD, DA, and DR) were cal-
culated in each ROI. Laterality differences were not expected so the left
and right side were averaged together, as applicable, resulting in a total
of 12 final ROIs, to decrease the number of comparisons. A relationship
between NfL and DTI in this population was expected but the spatial
topography was unknown. Therefore, we did not limit our analyses to
any particular WM track but instead assessed several WM tracks that
covered different areas of the brain to isolate a spatial relationship
between DTI and NfL.

MD, DA, and DR values were re-scaled by a factor of 1000 before
being entered into our analyses in order to generate more interpretable
regression coefficients.

2.6. WM hyperintensities

WMH were quantified on FLAIR scans (repetition time = 9000 ms,
echo time = 90 ms, TI = 2500 ms, flip angle = 150°,
0.9 × 0.9 × 5.0 mm3 resolution) using maps generated with the open-
source lesion segmentation tool for SPM that includes a lesion growth
algorithm (Schmidt et al., 2012). This algorithm identifies voxels likely
to be WMH. For the current analyses, we used the global volume of
identified WMH. WMH volumes were not normally distributed, thus a
log-transformation was applied.

Table 1
Baseline sample characteristics.

Characteristic Non-carrier
(N = 84)

Mutation-carrier
(N = 117)

p-Value

Age (yrs), mean (SD) 40.5 (10.7) 38.6 (10.8) .230
Sex, female (%) 58.3 50.8 .293
Years of Education, mean

(SD)
14.5 (3.2) 14.1 (3.2) .492

Body Mass Index, mean (SD) 28.8 (6.0) 30.2 (24.2) .601
aHypertension, % 16.7 6.8 .080
aDiabetes, % 2.4 0.0 .230
Serum NfL (pg/mL), mean

(SD)
23.7 (12.5) 33.4 (23.1) .001

EYO (yrs), mean (SD) – -8.5 (11.0) –
MMSE, mean (SD) 29.2 (1.2) 27.2 (4.1) < .001
Clinical Dementia Rating, 0,

0.5, ≥ 1, n (%)
81 (96.4), 3
(3.6), 0 (0)

76 (65.0), 32
(27.4), 9 (7.6)

< .001

NfL = Neurofilament light chain; EYO = estimated years from expected
symptom onset; MMSE = Mini-Mental State Examination.

a Percent of individuals currently receiving active management and/or
medication for disease.
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2.7. Aβ-amyloid PET

Aβ-amyloid (Aβ) PET imaging was performed after a bolus injection
of [11C] Pittsburgh Compound B (PiB). Acquisition consisted of a 70-
min scan starting at injection or a 30-min scan beginning 40 min post-
injection. Data in the 40–70 min post-injection window were converted
to regional standardized uptake value ratios (SUVRs) relative to the
cerebellar grey matter using FreeSurfer-derived ROIs, (Su et al., 2013)
and were partial volume corrected using a regional spread function
technique (Rousset et al., 1998; Su et al., 2015). A global measure of
mean cortical uptake of Aβ burden was derived from cortical regions
previously shown to have elevated signal in AD (Su et al., 2013). Global
Aβ positivity was defined as a mean cortical SUVR≥1.42 (Mishra et al.,
2018; Su et al., 2019; Sutphen et al., 2015; Vlassenko et al., 2016).

2.8. Serum NfL measurements

All available DIAN serum samples through the 11th annual data
release were shipped to the University of Tübingen for analysis. These
processed data were originally published by Preische and colleagues,
and a subset was used in the current study. As previously described
(Preische et al., 2019), fluids were collected in the morning under
fasting conditions. After blood collection, the tubes were left at room
temperature for 30 min to allow clotting, and then centrifuged at
2000 ×g for 15 min. Serum was placed into a single transfer tube
(#60.541, Sarstedt AG&CO.KG, Nümbrecht, Germany) and im-
mediately frozen on dry ice. NfL measurements were performed using a
highly sensitive Single Molecule Array (SIMOA) assay using the capture
monoclonal antibody (mAB) 47:3 and the biotinylated detector anti-
body mAB 2:1 (Uman Diagnostics, Umeå, Sweden). The samples were
measured in duplicate on a Simoa HD-1 platform (Quanterix) using a 2-
step neat assay. All samples were measured blinded. As NfL levels were
non-normally distributed, we applied a log-transformation to this
measure.

2.9. Statistics

2.9.1. Participant characteristics
To compare background characteristics between mutation MC and

NC, we performed t-tests and chi-square tests, as appropriate.

2.9.2. White matter hyperintensities within MC
As done in prior analyses examining NfL and WM (Chitnis et al.,

2018; Dalla Costa et al., 2019; Gravesteijn et al., 2019; Kuhle et al.,
2019), we examined WMH volumes. All linear mixed effect (LME)
models were constructed and evaluated using the lme4 and lmerTest
packages in the R statistical environment. Log transformed WMH vo-
lume was entered as the dependent variable; age, sex, and NfL as fixed
effects; a separate term for family was included as a random intercept.
This family term represents the specific family a participant comes
from. NfL was the predictor of interest. Analyses were performed only
in MC since, due to their young age, NC are unlikely to have any WMH;
whereas WMH have been shown to be a common feature in ADAD (Lee
et al., 2016). We wanted to determine if the relationship between WMH
and NfL levels were simply driven by WM microstructural changes as
measured by DTI. Therefore, we repeated our original analysis after
including a global MD metric as a covariate.

2.9.3. Voxel-wise analyses of DTI
To examine whether the associations between baseline WM metrics

of interest and NfL levels varied by mutation status at the voxel level,
we implemented linear regression models with skeletonized maps of
either MD, FA, DA, or DR as the dependent variable and age at visit, sex,
NfL, mutation status, and a NfL x mutation status interaction as pre-
dictor terms. The initial focus was on the interaction between NfL and
mutation status. Statistical modeling was performed with the

Randomise toolbox in FSL (Winkler et al., 2014), a nonparametric
statistical approach using permutation testing implemented with 5000
permutations. Significant clusters were identified using threshold-free
cluster enhancement (TFCE) with a family-wise error corrected sig-
nificance level of p = .05 (Smith and Nichols, 2009).

Prior work indicates that NfL levels are most informative within MC
(Preische et al., 2019), suggesting a priori that the interaction term will
be highly significant. Therefore, as a follow-up analysis, we examined
the relationship between baseline DTI metrics and NfL within each
mutation status group to better interpret the interaction and to un-
derstand the relationship between NfL and voxel-wise measures of WM
within MC and NC, separately. We restricted these analyses to voxels
that were significant in the interaction analyses described above. We
ran separate models predicting MD, FA, DA, or DR, as a function of age,
sex, and NfL.

2.9.4. ROI analyses of DTI within MC
An alternate approach to voxel-wise analyses is to use ROIs re-

presenting specific WM tracts. To determine if the relationship between
WM integrity and NfL is tract specific, we ran a series of LME models in
each ROI treating age, sex, and NfL as fixed effects and including a
random intercept for family. Dependent variables were the average WM
metrics (FA, MD, DA, and DR) from each ROI. As we primarily expected
the effects to be in MCs (Preische et al., 2019), we restricted the ana-
lyses to this group.

To correct for multiple comparisons, we implemented a Benjamin-
Hochberg procedure with a false discovery rate of 5%. Although ana-
lyses were performed for each tract, we focused on the posterior corpus
callosum, superior longitudinal fasciculus, and corticospinal tracts for
visualization. These regions were selected as exemplar ROIs as: 1)
posterior corpus callosum is a region with early WM disruption in
ADAD and shows the most robust association between NfL and WM
metrics in our primary analyses; 2) superior longitudinal fasciculus is
associated with default mode network and executive functioning; and
3) corticospinal tract, as a control, is relatively spared in AD until very
late stages.

Prior work has shown dramatic changes in Aβ PET, structural MRI,
and WMH (Bateman et al., 2012; Benzinger et al., 2013; Gordon et al.,
2018; Lee et al., 2016; McDade et al., 2018) in the DIAN cohort as the
disease progresses. In a cohort such as DIAN where there are dramatic

Fig. 1. Relationship between serum NfL and total white matter hyperintensity
volume in mutation carriers. Scatterplot showing the relationship between total
WMH volume and serum NfL in MC (n = 117). The shaded area around the
linear fit line represents one standard error of the mean from the LME model.
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changes occurring as the disease progresses there is always a concern
that statistical relationships can be observed due to the parallel timing
of biomarker changes rather than true biological relationships. To rule
out if the association between NfL and DTI was simply driven by other,
more overt changes in the disease we additionally include global Aβ-
amyloid, total WMH load and precuneus cortical thickness measures.
These covariates account for the general disease stage of an individual
(Aβ-amyloid), overt white matter lesions (WMH), or atrophy that could
drive Wallerian degeneration (structural MRI). Of the 117 MC included
in primary analyses, 97 had completed a baseline Aβ PET scan. We
repeated our original ROI models, with particular focus on the posterior
corpus callosum, superior longitudinal fasciculus, and corticospinal
tracts, after adding a global Aβ PET, precuneus cortical thickness, and
total WMH volume measures as covariates to examine whether they
altered the relationship between NfL and DTI metrics. We additionally

provide scatter plots of serum NfL, global Aβ PET, precuneus cortical
thickness, and total WMH volume to DR in posterior corpus callosum
and correlation matrix in the supplemental material to better interpret
the relationship amongst these biomarkers.

2.9.5. White matter integrity markers and NfL across the course of the
disease

ADAD has a long preclinical phase evolving over decades (Bateman
et al., 2012). To evaluate the relationship of NfL and DTI metrics as a
function of disease progression, our MC sample was categorized by
baseline CDR score into presymptomatic (CDR = 0, n = 76) and
symptomatic (CDR > 0, n = 28) groups. The presymptomatic group
was further subdivided by Aβ positivity into early (summary Aβ
SUVR<1.42; Aβ-, n = 35) and late (summary Aβ SUVR ≥1.22; Aβ+,
n = 34) groups. These analyses were restricted to the investigation of

Fig. 2. Main Effect of serum NfL on DTI metrics in MC. p-Value map (red-yellow) of statistically significant voxel-wise associations of higher NfL and (A) lower
fractional anisotropy, (B) higher mean diffusivity, (C) higher axial diffusivity, and (D) higher radial diffusivity superimposed on the white matter skeleton (blue),
within mutation carriers (n = 117). Familywise error-corrected at p = .05. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

S.A. Schultz, et al. Neurobiology of Disease 142 (2020) 104960

5



FA and MD DTI metrics as these are the most common DTI metrics
presented in the literature. We predicted FA and MD values in the
posterior corpus callosum using LME models that included sex, NfL,
group (presymptomatic Aβ-, presymptomatic Aβ+, and symptomatic),
and a NfL x group interaction as the fixed effects and family as the
random effect. If a significant interaction was present, we compared the
relationship between NfL and the corresponding diffusion metric be-
tween each group.

2.9.6. Longitudinal relationship between white matter integrity markers and
NfL

Longitudinal data were analyzed using LME models as these models
can account for covariance introduced by serial measurements within
the model and are more ideally suited for dealing with variability in
timing or an unbalanced number of data points. The rate of change in
NfL (ΔNfL) for each individual was modeled using an LME with fixed
effects of time from baseline in years, and a random intercept for fa-
mily, as well as random slope and intercept terms for each participant.
The ΔNfL for each individual was extracted from the model estimates
for subsequent analyses. The ΔNfL was then used for a second LME
model where the dependent term for each model was a WM measure of
interest (MD, FA, DA, and DR DTI measures in posterior corpus cal-
losum ROI and WMH volume) with fixed effect terms for baseline age,
sex, time from baseline, extracted ΔNfL, and a time from baseline x
ΔNfL interaction. Models contained random slope and intercept terms
for participants and random intercepts for family. The primary term of
interest was the interaction between the ΔNfL and the time from
baseline term. Models were fitted using lme4 in R. For plotting pur-
poses, LMEs were also used to generate individual rates of change for
WM integrity markers (ROI MD, FA, DA, and DR measures and WMH
volume).

3. Results

3.1. Participant characteristics

Demographics are presented in Table 1.

3.2. Relationship between NfL and WMH in MCs

Within the MC cohort there was an association between NfL and
total WMH volume (B[SE] = 2.54 [0.56], p = 1.44e-05). Fig. 1. When
evaluating whether the relationship between NfL and WMH remained
after accounting for a global DTI MD measure (as a proxy for overall
WM changes measured with DTI) we found the relationship between

WMH and NfL was reduced to a trend (B[SE] = 1.15 [0.58], p = .05).
This suggests that at least a proportion of the association between NfL
and WMH is captured by DTI metrics.

4. Voxel-wise relationship between NfL and baseline DTI metrics

There were interactions between NfL and mutation status on all four
DTI metrics (FA, MD, axial diffusivity [DA], and radial diffusivity [DR];
see Supplemental Fig. S1). As there was a significant interaction be-
tween NfL and mutation status, we next looked within each mutation
status group for a main effect of NfL on DTI metrics. Within MCs, a
strong association between higher NfL levels and low FA was observed
throughout the skeletonized atlas (Fig. 2a). Similarly, there was a
strong association between higher NfL levels and higher MD, DA and
DR levels across all WM tracts (Fig. 2b–d, respectively). The threshold
free cluster enhancement (TFCE) method (see Methods) within our
voxel-wise analyses resulted in an inclusive cluster of much of the WM
voxels, emphasizing a robust and widespread association between NfL
and WM metrics. To better understand subtle tract-specific variations,
we subsequently generated a mask containing all significant voxels
surviving multiple comparisons correction and applied this mask to our
voxel-wise uncorrected statistical map (Supplemental Fig. S2). Within
NCs there was no association between NfL levels and FA, MD, DA, or DR
across the entire cortex (data not shown).

4.1. Regional association between NfL and baseline DTI metrics in MC

As an alternative to voxel-wise analyses we utilized 12 ROIs that
summarized important white matter tracts. There were significant as-
sociations between higher NfL levels and lower FA levels across all 12
ROIs examined. There were consistent associations between higher NfL
and higher MD, DA, and DR levels in all tracts examined, with the
exception of the corticospinal tract. Regression coefficients and p-values
from statistical models are presented in Table 2. Representative plots
are shown depicting the relationship between NfL and FA, MD, DA, and
DR in the posterior corpus callosum (Fig. 3a, d, g, and j), superior
longitudinal fasciculus (Fig. 3b, e, h, and k), and corticospinal (Fig. 3c,
f, i, and l) tracts. For exploratory purposes, to better understand whe-
ther there were unique relationships within specific mutation types (i.e.,
PSEN1, PSEN2, and APP), we evaluated the association between NfL
and a singular region and DTI metric of RD in the posterior corpus
callosum within each mutation type. (Supplemental Fig. S3).

Including Aβ PET, cortical thickness, and WMH as additional cov-
ariates in ROI models for posterior corpus callosum, superior long-
itudinal fasciculus, and corticospinal tracts in a subset of 97 individuals

Table 2
Main effect of serum NfL on DTI metrics in MC.

WM tract Fractional anisotropy Mean diffusivity Axial diffusivity Radial diffusivity

B (SE) p B (SE) p B (SE) p B (SE) p

Inferior Longitudinal Fasciculus −0.062 (0.01) 1.41E-06 0.090 (0.02) 1.61E-05 0.065 (0.02) .0077 0.102 (0.02) 1.50E-06
Superior Longitudinal Fasciculus −0.048 (0.01) .00020 0.091 (0.02) 1.34E-06 0.090 (0.02) 2.71E-05 0.094 (0.02) 4.46E-06
Frontal Occipital Fasciculus −0.071 (0.01) 1.54E-09 0.108 (0.02) 8.03E-09 0.084 (0.02) 2.32E-05 0.124 (0.02) 6.52E-10
Perforant Pathway −0.106 (0.02) 5.28E-07 0.150 (0.02) 6.78E-08 0.084 (0.04) .0193 0.162 (0.03) 6.40E-09
Uncinate Fasciculus −0.047 (0.01) 4.73E-05 0.060 (0.02) .00019 0.037 (0.02) .0398 0.071 (0.02) 3.34E-05
Cingulum −0.088 (0.02) 7.80E-08 0.133 (0.02) 3.69E-09 0.091 (0.03) .00123 0.153 (0.02) 1.93E-10
Frontal Aslant −0.060 (0.01) 9.83E-08 0.089 (0.02) 4.51E-05 0.088 (0.03) .00197 0.101 (0.02) 6.29E-06
Corticospinal −0.027 (0.01) .012 0.032 (0.02) .0689 0.007 (0.03) .785 0.042 (0.02) .00826
Anterior Corpus Callosum −0.119 (0.02) 3.10E-06 0.284 (0.04) 4.31E-10 0.301 (0.06) 4.52E-07 0.279 (0.04) 7.20E-09
Posterior Corpus Callosum −0.155 (0.02) 4.26E-10 0.321 (0.04) 1.83E-12 0.276 (0.06) 3.76E-06 0.344 (0.04) 8.09E-12
Forceps Minor −0.074 (0.01) 1.10E-08 0.099 (0.02) 1.60E-07 0.086 (0.02) .000364 0.114 (0.02) 1.24E-08
Forceps Major −0.087 (0.01) 4.77E-09 0.122 (0.02) 2.24E-08 0.082 (0.02) .000109 0.146 (0.02) 3.14E-09

Unstandardized regression coefficient B and adjusted p-values for serum NfL from a series of linear mixed effect models in each ROI, which included random
intercepts for family, and fixed effects for age, sex, and NfL. Dependent variables were the average WM metrics (FA, MD, DA, and DR) from each ROI. N = 117.
WM = White matter; NfL = Neurofilament light chain; ROI = region of interest; SE = standard error.
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Fig. 3. Tract-specific white matter measures are associated with serum NfL in MC. Scatterplots depicting the relationship between serum NfL and DTI metrics from
FA, MD, DA, and DR within three representative ROIs (PCC, SLF, and CST) in MC (n = 117). The shaded area around each linear fit line represents one SE from LME
models. FA = fractional anisotropy; MD = mean diffusivity; DA = axial diffusivity; DR = radial diffusivity; PCC = posterior corpus callosum; SLF = superior
longitudinal fasciculus; CST = corticospinal tract; NfL = neurofilament light chain; DTI = diffusion tensor imaging; ROIs = regions of interest; MC = mutation
carriers; SE = standard error.
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with Aβ PET available, the relationship between NfL and DTI metrics
persisted (p values = 5.78e-04, 4.21e-04, 0.020, 4.68e-04 for FA, MD,
DA, and DR in posterior corpus callosum, and p's = 0.029, 0.002,
0.038, 0.003 for FA, MD, DA, and DR in superior longitudinal fasci-
culus). The relationship between FA, MD and DR in corticospinal tract
and NfL remained significant (p's = 0.028, 0.046, 0.015, respectively)
and relationship between DA in the corticospinal tract and NfL re-
mained nonsignificant in the revised models with Aβ PET and WMH as
additional covariates. (Full models in Supplemental Table S6). These
results suggest that the association between NfL and FA or MD is not
driven solely by Aβ pathology, thinning grey matter, or WMH load.

4.2. White matter integrity markers and NfL across the course of the disease

We stratified MC into Symptomatic individuals and Presymptomatic
Late (Aβ +), and Early (Aβ-) groups. There was a group x NfL effect on
MD (F = 4.3, p = .017), DA (F = 4.49, p = .014), and a trend for DR
(F = 2.52, p = .087), but not for FA (F = 0.89, p = .415) in the
posterior corpus callosum.

Between-group comparisons revealed that the relationship between
NfL and MD in the posterior corpus callosum in the Symptomatic group
was stronger than that of the Presymptomatic Early group (B
[SE] = 0.285 [0.10], p = .004), and similar to that of the
Presymptomatic Late group (B [SE] = 0.169 [0.10], p = .095)
(Supplemental Fig. S4). Similarly, the relationship between NfL and DA
or DR in the posterior corpus callosum in the Symptomatic group was
stronger than that of the Presymptomatic Early group (B [SE] = 0.448
[0.15], p = .004 and B [SE] = 0.239 [0.11], p = .029, respectively),
and not different from that of the Presymptomatic Late group on DA (B
[SE] = 0.288 [0.16], p = .068) or DR (B [SE] = 0.164 [0.14],
p = .143) (Supplemental Fig. S4c, d). There were no differences be-
tween Presymptomatic Early and Presymptomatic Late groups across
any of the DTI metrics examined (p's > 0.278). Along with prior work
showing NfL changes in the symptomatic period (Preische et al., 2019),
these results suggest that the relationship between NfL and WM is most
robust in those with cognitive symptoms but may begin in cognitively
normal MCs with significant Aβ pathology and continue or even in-
tensify with the onset of cognitive symptoms.

4.3. Longitudinal relationship between white matter integrity markers and
NfL

Rate of change in NfL (ΔNfL) was associated with rate of change in
FA, MD, and DR in posterior corpus callosum (B[SE] = −0.238 [0.05],
p = 1.74e-05; B[SE] = 0.0004 [9.0e-05], p = 3.02e-04; and B
[SE] = 0.0005 [8.64e-05], p = 1.42e-06, respectively), but not with
rate of change in DA (B[SE] = 0.0002[1.58e-04], p = .287) or rate of
change in WMH (B[SE] = 1.04[0.65], p = .121) (Figs. 4 and 5a–d)
consistent with the view that changes in NfL reflect increasing white
matter changes in this cohort as measured with DTI.

5. Discussion

NfL is a promising fluid biomarker to study neurodegeneration
across multiple neurological diseases. Although NfL is thought to reflect
damage to large myelinated axons there is a paucity of work system-
atically examining how NfL levels relate to established markers of
macrostructural and microstructural WM damage. In the current work
we examined whether levels of serum NfL are a reflection of WM lesion
volumes and DTI metrics of WM integrity. Across all measures in MC,
we found that elevated levels of serum NfL were significantly associated
with increased levels of WM pathology. This indicates that a blood-
based measure of NfL does indeed track WM damage in the brain.

Due to its predictable age of dementia onset and low comorbidities,
ADAD serves as a useful model to understand the evolution of AD pa-
thology (Bateman et al., 2012; Moulder et al., 2013). Prior work es-
tablished increases in WMH volumes (Lee et al., 2016) as well as al-
terations in DTI metrics (Araque Caballero et al., 2018) as core features
of ADAD. Across multiple neurological conditions, increased NfL levels
in CSF and blood have been tied to greater WMH volumes (Chitnis
et al., 2018; Dalla Costa et al., 2019; Gravesteijn et al., 2019; Kuhle
et al., 2013, 2019). Consistent with this work, we found that in MC,
higher serum NfL levels at baseline are associated with greater WMH
lesion volumes. However, when we included a global MD DTI measure
for microstructural WM integrity as a covariate, the relationship be-
tween NfL and WMH was no longer present. This suggests that at least
some of the information contained by global WMH volumes is also
reflected in DTI metrics. For exploratory purposes, a correlation matrix
depicting the relationship between biomarkers examined is presented in
supplementary material. In the subset with longitudinal data, there was
a trend that a greater increase in serum NfL was related to increases in
WMH volume, but this did not approach significance (B
[SE] = 1.04[0.65], p = .121).

WMH represent macrostructural WM insults in the brain. In addi-
tion to such overt damage, microstructural changes in WM can be as-
sayed using DTI. There have been inconsistent results establishing
whether CSF and blood levels of NfL are sensitive to such micro-
structural changes in WM detectable using DTI (Menke et al., 2015;
Mielke et al., 2019; Moore et al., 2018; Racine et al., 2019; Tiedt et al.,
2018). When examining baseline DTI data using voxel-wise- and ROI-
based approaches in MC we found that higher levels of serum NfL were
negatively associated with FA, and positively associated with MD, RD,
and DA throughout the entire cortex, although effects were strongest in
posterior regions (Table 2 and Supplemental Fig. 2). Lower FA and
higher MD, RD, and DA are indicative of a less constrained flow of
water molecules and are generally viewed as markers of WM damage.
This widespread pattern of WM decline is consistent with prior work in
ADAD (Araque Caballero et al., 2018). The strong observed relationship
suggests that NfL is a robust marker of active microstructural WM da-
mage beyond overt lesions.

As the mutations in ADAD lead to such a dramatic disease pheno-
type, there is always a concern that significant relationships between
biomarkers may be due simply to a common time course rather than
measures being truly interrelated. Even when including Aβ PET and
cortical thickness as a markers of general disease progression and WMH

Fig. 4. Longitudinal relationship between serum NfL and WMH in MC.
Scatterplot showing the relationship between the estimated annual rate of
change in total WMH volume and the estimated annual rate of change in NfL in
MC (n = 41). The shaded area around the linear fit line represents one SE from
the LME model. NfL = neurofilament light chain; WMH = white matter hy-
perintensity; ROIs = regions of interest; MC = mutation carriers;
SE = standard error.
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volume to account for macrostructural WM damage, we still found
highly significant associations between serum NfL levels and DTI me-
trics. The relationship between NfL and DTI was present not only at
baseline but was consistent over time. In the subsample of MC with
longitudinal data, a greater rate of serum NfL change was associated
with greater WM declines in FA, and increases in MD, and RD.
Establishing such a longitudinal relationship is critical to be able to use
CSF and blood-based measures of NfL to monitor disease progression
and to potentially use NfL as a marker of response to disease inter-
vention in clinical trials for AD as well as other neurodegenerative
disorders.

The heritability in the onset of dementia in ADAD families provides
the unique ability to stage individuals relative to their expected time of
cognitive decline. Stratifying by CDR and Aβ positivity status, we were
able to examine the relationship between NfL and WM integrity across
the course of the disease. In asymptomatic MC without advanced dis-
ease progression (Aβ-), levels of NfL were low and WM, assessed with

DTI, was healthy. As the disease progressed (Aβ+), levels of NfL in-
creased and WM health declined in individuals who were still classified
as asymptomatic but Aβ+. Finally, there were even further increases in
NfL and declines in DTI metrics in symptomatic individuals. The dis-
tribution of the groups overlapped and within the entire group of mu-
tation carriers NfL and DTI measures were tightly coupled. This sug-
gests that continuous levels of the biomarkers add to the assessment of
the health of the brain over and above Aβ positivity status and staging
by CDR alone.

The current work is a critical step towards establishing NfL as a
marker of neurodegeneration that reflects likely WM damage and de-
cline. Still, there are limitations to the current analyses. ADAD is a
continually progressive neurodegenerative condition with relatively
stereotyped phenotypes and rates of progression, and manifests during
a younger age range, during which, secondary comorbidities are un-
common. These features make ADAD a very useful model of AD pa-
thobiology and a model to test the relationship between NfL and WM

Fig. 5. Longitudinal relationship between NfL and DTI metrics in PCC. Scatterplot showing the relationship between the estimated annual rate of change in serum
NfL and the estimated annual rate of change in (A) FA in PCC, (B) MD in PCC, (C) DA in PCC, and (D) DR in PCC in MC (n = 41). The shaded area around each linear
fit line represents one SE from LME models. FA = fractional anisotropy; MD = mean diffusivity; DA = axial diffusivity; DR = radial diffusivity; PCC = posterior
corpus callosum; NfL = neurofilament light chain; DTI = diffusion tensor imaging; SE = standard error.
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damage. However, these features may affect the generalizability of the
current findings to late onset AD. For example the degree of AD pa-
thology seen in ADAD is higher than that seen in late onset AD (Gordon
et al., 2019), which may make it easier to detect associations. Stroke
and ischemia have been shown to increase NfL levels (Moseby-Knappe
et al., 2018; Pujol-Calderón et al., 2019), but it is unclear how chronic
comorbidities such as obesity, hypertension, and diabetes influence the
protein. While such age-related comorbidities are low in ADAD, in
sporadic AD they may represent stronger influences on both white
matter and NfL levels than primary AD proteinopathies. Given the
previous mixed findings examining Nfl and white matter in older adult
cohorts (Mielke et al., 2019; Moore et al., 2018; Racine et al., 2019),
there may be a lower utility of NfL in sporadic AD.

Although longitudinal relationships between NfL and WM are rarely
examined, our longitudinal sample is modest. CSF and blood-based
biomarkers reflect properties of the brain and body at the time of col-
lection. Prior work suggested that CSF biomarkers of neuronal injury
decline at symptomatic stages of AD (Llibre-Guerra et al., 2019;
Sutphen et al., 2018), which could lead to a mismatch between biofluid
and imaging markers in later stages of disease. Further work is needed
to test whether the relationship between imaging and NfL measures
changes at more advanced stages of neurodegenerative conditions.

Finally, further examinations relating neuroimaging and biofluid
measures across multiple neurological disorders are needed. In ADAD
we showed that neuroimaging and biofluid measure are highly related.
Although elevated in most neurodegenerative conditions (Bridel et al.,
2019; Gordon, 2020), the degree that NfL becomes abnormal varies
widely between disorders. In other diseases the strength of the re-
lationship between neuroimaging and biofluid measures may be more
or less robust.

Biomarkers provide the ability to measure the health of the central
nervous system in vivo to aid disease diagnosis and prognosis. Blood-
based markers are minimally invasive and relatively low cost but few
have been validated against neuroimaging biomarkers (Lewczuk et al.,
2018). NfL in the blood is highly correlated with measures in the CSF
and is becoming widely adopted in diagnosing and monitoring multiple
diseases. Our current work supports the view that blood levels of NfL
reflect WM damage in the brain at least as measured with neuroima-
ging. This is a critical result in improving the interpretability of NfL as a
marker of brain integrity, and for validating this novel biomarker for
future use in clinical and research settings.
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