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Summary:  

Rice (Oryza sativa) is one of the world’s most important food crops, comprised 

largely of japonica and indica subspecies. We reconstruct the history of rice dispersal in Asia 

using whole-genome sequences of >1,400 landraces, coupled with geographic, 

environmental, archaeobotanical and paleoclimate data. Originating ~9,000 years ago in the 

Yangtze Valley, rice diversified into temperate and tropical japonica rice during a global 

cooling event ~4,200 years ago. Soon after, tropical japonica rice reached Southeast Asia, 

where it rapidly diversified starting ~2,500 yBP. The history of indica rice dispersal appears 

more complicated, moving into China ~2,000 yBP. We also identify extrinsic factors that 

impact genome diversity, with temperature a leading abiotic factor. Reconstructing the 

dispersal history of rice and its climatic correlates may help identify genetic adaptation 

associated with the spread of a key domesticated species.  
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Main Text:  

The domestication of crop species marks a major transition in human/plant 

interaction, and has been responsible for the shift of humans from a hunter/gatherer to an 

agricultural species. There are about 24 areas in the world where crop species originated, and 

attention has focused on the dynamics of the domestication process, and the evolutionary 

genetics of crop origins and divergence1. In contrast, relatively little attention has been 

focused on the dispersal and diversification of crops from their center(s) of origin, and the 

accompanying evolution of adaptive traits that allow these domesticated species to establish 

themselves in different environmental and cultural contexts2. Reconstructing the patterns and 

timing of the spread of domesticated species can help us understand the climatic and other 

environmental factors that govern the expansion of their species range, as well as the 

relationship between crop dispersal and human migration and history. 

Rice (Oryza sativa L.) is a major staple crop, providing > 20% of calories for more 

than half of the human population. Domesticated rice encompasses genetically distinct 

populations grown in sympatry, including major subgroups japonica and indica (sometimes 

recognized as subspecies), as well as geographically more restricted circum-aus, and circum-

basmati rices3,4. It is mainly cultivated in monsoon Asia, but rice is distributed across a wide 

latitudinal range, spanning tropical and temperate zones of Asia, likely requiring local water, 

temperature and photoperiod adaptation. Rice is grown in lowland ecosystems under paddy, 

deep-water, or seasonal flood conditions, as well as in upland rainfed areas5. 

Archaeological evidence6–8 indicates that cultivation of japonica rice began ~9,000 

years before present (yBP) in the lower Yangtze Valley, while proto-indica rice cultivation 

started >5,000 yBP in the lower Ganges valley9. Archaeological10 and most population 

genetic analyses11–13 suggest that important domestication alleles have a single origin in 

japonica rice in East Asia. The spread of japonica to South Asia ~4,000 years ago led to 
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introgression of domestication alleles into proto-indica or local O. nivara populations and the 

emergence of indica rice11–13.  

While the origins of rice have been the focus of intensive study, less attention has 

been paid to its spread after domestication. From the Yangtze and Ganges Valleys, 

respectively, japonica and indica dispersed across much of Asia over the last 5 millennia, 

providing sustenance for emerging Neolithic communities in East, Southeast and South 

Asia14. Archaeological data shows the general directionality of rice dispersal9,15; the details of 

dispersal routes, times, and the environmental forces that shaped dispersal patterns, however, 

remain unknown. Here, we undertake population genomic analyses to examine environmental 

factors associated with the geographic distribution of rice diversity, and reconstruct the 

ancient dispersal of rice in Asia. Together with archaeobotanical, paleoclimatic and historical 

data, genomic data allows a robust reconstruction of the dispersal history of Oryza sativa. 

 

Results 

Structure of rice genomic diversity. To investigate the pattern and timing of dispersal of 

rice, we obtained whole genome re-sequencing data from rice landraces/traditional varieties 

across a wide geographical distribution in Asia. Landraces, unlike elite cultivars, are 

associated with sustained cultivation in specific geographic localities and cultural contexts, 

usually exhibiting local adaptations. Our sample set includes 1,265 samples from the Rice 3K 

Genome Project3,16 and additional 178 landraces sequenced for this study (Supplementary 

Table 1); the panel consists of 833 indica, 372 japonica, 165 circum-aus, 42 circum-basmati, 

and 31 unclassified samples. We identified ~9.78 million single nucleotide polymorphisms 

(SNPs) with 9.63x mean coverage (s.d. = 5.03), which we used in subsequent analyses 

(Supplementary Fig. 1). 
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Analysis of molecular variance (AMOVA) indicated that subspecies affiliation 

explained >36% of the total variation (AMOVA, permutation P < 0.001)17, congruent with 

results from multidimensional scaling (MDS) of genomic distances (Supplementary Fig. 2a). 

Only japonica and indica have wide geographic distributions (Fig. 1 a and b; Supplementary 

Fig. 3), and AMOVA of these two subspecies (n=1,205) revealed that genomic variance is 

explained by subspecies (r2 = 0.32, permutation P < 0.001), country of origin (r2 = 0.11, P < 

0.001) and their interaction (r2 = 0.06, P < 0.001). Landraces with mixed ancestry (n=154) 

were excluded using silhouette scores18 (Supplementary Fig. 2b); henceforth, we analysed 

these two subspecies independently. 

We find support for isolation-by-distance (IBD) in japonica (r2 = 0.294, P < 0.001) 

and indica (r2 = 0.265, P < 0.001) [Supplementary Fig. 4]. Geographic distance explains 

genetic distance much less in the Malay Archipelago (i.e. islands SE Asia) compared to 

mainland Asia, suggesting a stronger effect of local migration barriers on archipelago IBD 

(Supplementary Fig. 5). Effective migration surfaces19 identified geographic barriers for 

dispersal over the Himalayan and Hengduan Mountains which separate China from South and 

Southeast Asia respectively (with the caveat of sparse sampling north of Himalayas), and the 

South China Sea which reduces movement between Borneo/Philippines and mainland 

Southeast Asia (Fig. 1a and b; Supplementary Fig. 6). 

To improve on the IBD model, we decided to take into account actual travel times 

between locations rather than simple geographic distances; for human-dispersed species such 

as crops, genetic distances may correlate better with travel resistance, meant to capture cost in 

time and effort for human migration. Indeed, some migration barriers for rice coincide with 

those for humans20. An isolation-by-resistance (IBR) model, using estimated human-

associated land and marine travel times21, is a better explanation than the IBD model for 

japonica landrace genetic distances based on Akaike Information Criterion (archipelago 
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ΔAIC = -34, mainland ΔAIC = -17), but not for indica (archipelago ΔAIC = +51, mainland 

ΔAIC = +611)[Supplementary Fig. 5)].  

 

Factors associated with spatial genomic structure. We used redundancy analysis (RDA) to 

partition genomic variance22 associated with 22 different variables that include climatic and 

edaphic conditions, as well as interactions with humans and wild relatives (Supplementary 

Table 1). We assume that while environments in localities fluctuate over time, current 

genome diversity may be determined both by current environment as well as long-term 

evolutionary history. SNP variation is better explained by our predictors for japonica 

(adjusted r2 = 0.363; Fig. 1c) than indica (adjusted r2 = 0.164; Fig. 1d). Associations between 

predictor sets and SNPs are substantially collinear with each other. For japonica and indica, 

travel time and geographic distance, respectively, explain most SNP variation (adjusted r2 = 

0.326 and r2 = 0.146), followed by abiotic conditions, language groups (as proxy for 

unconscious cultural preferences arisen from language barriers), grain stickiness (as proxy for 

conscious cultural preferences), and genetic composition of proximal wild rice populations 

(Figs. 1c and d; Supplementary Fig. 7). Among abiotic variables for japonica, temperature 

explains the greatest portion of SNP variation (adjusted r2 = 0.180), followed by moisture (r2 

= 0.086) and soil characteristics (r2 = 0.081). Similarly, temperature explains the most SNP 

variation in indica (r2 = 0.064), followed by soil characteristics (r2 = 0.038) and moisture (r2 = 

0.036) (Supplementary Fig. 7), although these factors have weaker explanatory power in 

indica compared to japonica. 

The first two RDA axes of environment-associated SNP variation23,24 separated 

japonica landraces consistent with geography (Fig. 1e), recapitulating results using total SNP 

variation (Supplementary Fig. 8a). Temperate japonica landraces from northern latitudes are 

most strongly identified by alleles associated with high coefficient of inter-annual variation in 
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growing degree days (IAG), and low minimum temperatures early in the growing season 

(ESM; Fig. 1e; Supplementary Fig. 9a). Temperate landraces from upland rainfed ecosystems 

are further characterized by alleles associated with inter-annual variation in precipitation 

(IAP; Fig. 1e). 

For indica, the first two axes also grouped individuals by their geographic origins 

(Fig. 1f; Supplementary Fig. 8b). Similar to japonica, indica Malay Archipelago landraces 

contain alleles associated with high precipitation prior to the growing season (PSP). Mainland 

Southeast Asian genotypes are characterized by alleles associated with warm minimum 

growing season temperatures (WSM) and presence of nearby freshwater sources (DMF Fig. 

1f; Supplementary Fig. 9b). The latter contrasts with indica from China and most of India, 

where irrigation is common and there is less reliance on natural water sources25 

(Supplementary Table 1). Finally, genotypes in South India are identified by alleles 

associated with inter-annual variation in precipitation (IAP). 

 

Discrete subpopulations within japonica and indica. To model rice dispersal patterns, we 

first had to identify distinct geographical populations of O. sativa. To accomplish this, we 

clustered landraces based on genomic distances by partitioning-around-medoids (PAM)26, 

identifying the number of subpopulations (k) and subsequently applied silhouette-based 

procedure (see Methods) to identify number of discrete subpopulations (kd). This 

discretization procedure removed genetic gradients between subpopulations (Fig. 2a and 2b; 

Supplementary Figs. 10 and 11). We compared PAM clusters to those from the 

ADMIXTURE algorithm27. Silhouette filtering removed individuals with spurious 

subpopulation assignments (Supplementary Figs. 12 and 13). In general, the clustering fit 

using silhouette scores is greater for japonica than indica (Supplementary Fig. 14). We find 

consistently higher FST values among japonica subpopulations (Supplementary Fig. 15), 
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suggesting fewer past migrations compared to indica, and/or older establishment of its 

population structure. Finally, subpopulations of both subspecies clearly correspond with 

geography (Fig. 2c and 2d; Supplementary Figs. 10 and 11), suggesting that contemporary 

rice landraces retain genomic signals of past dispersal across Asia. 

 

Relationships between japonica subpopulations. To examine the pattern of rice dispersal, 

we modelled subpopulation relationships using the admixture graph framework28. We used 

discrete subpopulations to reconstruct graphs representing ancient relationships between 

subpopulations that are not affected by allele frequency shifts from more recent migrations 

and admixtures, and we analyzed japonica and indica separately. 

We reconstructed relationships between japonica subpopulations at kd = 2 to 9 

considering graphs with population f-statistic z-scores <3. Throughout all kd levels, we find 

two similar and consistent graph topologies (Fig. 2e; Supplementary Fig. 16), which we used 

to infer dispersal routes of japonica. As expected3,4, at kd = 2 we observe divergence between 

lowland temperate varieties in Northeast Asia (Korea, Japan, China and Taiwan) and tropical 

varieties from the Malay Archipelago (Malaysia, Philippines and Indonesia). At kd = 3, we 

find a major lineage of tropical upland japonica in mainland Southeast Asia as sister group to 

Malay Archipelago landraces or from admixture with an ancestral temperate lineage 

(Supplementary Figs. 10 and 16). At higher k, these mainland Southeast Asian upland 

landraces always incorporate admixture from an ancestral temperate japonica population (see 

below). 

At kd = 4 we observe separation of primarily Indonesian from Philippine and Bornean 

landraces. Subsequently, at kd = 5, upland temperate japonica in Northeast Asia emerges as 

an admixture between lowland temperate and upland tropical varieties. Further increase of kd 

allows separation of distinct Malay Archipelago subpopulations: a small subpopulation 



8 
 

associated with the Philippines splits first, followed by a subpopulation in the Indonesian 

island of Java. Subsequent divisions among Malay Archipelago subpopulations are not fully 

resolved (Supplementary Fig. 16). Nevertheless, at kd = 8, we identify a Bhutanese 

subpopulation closely related to upland Laotian landraces, and may represent a relict 

descendant population of the first early split in tropical japonica.  

 

The rise of temperate japonica. Combining genomic, geographic, archaeological and 

paleoenvironmental data, we reconstructed routes and timing of the ancient dispersal of rice 

in Asia. Japonica represents the first domesticated O. sativa11–13, and its tropical form was 

cultivated in eastern China between the Yangtze and the Huang He (Yellow) river valleys15. 

This occurred during the Holocene Climate Optimum (HCO), a period of increased monsoon 

activity and warmer temperatures between ~9,000 and 4,000 yBP29,30; this coincides with the 

rise in frequency of non-shattering rice from ~20% just after 8,000 yBP to fixation at ~5,000 

yBP7,8.  

The first major population divergence in japonica separates temperate from tropical 

landraces (Supplementary Figs. 10 and 16). Using sequentially Markovian coalescent 

(SMC++), we estimated a cross-coalescence split time between temperate and tropical 

japonica at ~5,000 to 1,500 years ago, with 90% of estimates between ~4,100 to 2,500 years 

ago (Fig. 3a; Supplementary Fig. 17). Using dated archaeobotanical rice remains15, we note 

that rice agriculture spread north- and eastward along the Huang He river31 and westward into 

the Chengdu Plains and the Southwest China Highlands between ~5,000 to 4,000 yBP32–34 

(Fig. 3b; Supplementary Fig. 18). During a minor climatic cooling event at ~5,000 yBP, rice 

appears maladapted in parts of eastern China35. In the Shandong Peninsula, rice disappeared 

by 5,000 yBP and briefly re-emerged 4,500 yBP as a short-grained variety similar to 

contemporary temperate japonicas36. A global temperature decrease that followed the HCO at 
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~4,200 years ago, the ‘4.2k event’29,30, resulted in waning rice agriculture in East China and 

strong pressure for japonica to adapt to a temperate environment36. Congruent with this, we 

observe that the highest density of estimated temperate japonica split times starts at ~4,100 

years ago (Fig. 3a; Supplementary Fig. 17). 

Temperate adaptation created opportunity for northeastern dispersal of japonica in 

Asia. From our demographic analysis of temperate japonica we note a ~5-10-fold Ne 

reduction between ~3,500 to 3,000 yBP (Fig. 3c; Supplementary Fig. 19), which we interpret 

as a founder bottleneck during expansion to its new temperate niche. Indeed, this is consistent 

with archaeological dates for the introduction of rice agriculture to Korea37,38 and Japan 

following decrease in rice remains in Eastern China (Supplementary Fig. 18). 

 

The southward spread of japonica. Throughout the HCO, tropical japonica was cultivated 

in eastern China; its contemporary descendants however, are grown predominantly in 

Southeast Asia3, and we indeed find that Southeast Asian subpopulations descend from the 

tropical lineage. Demography reconstruction at kd = 2-4 shows that tropical japonica lineage 

experienced a ~50-100-fold population (Ne) contraction between ~4,500 to 4,000 yBP, and 

partial Ne recovery starting ~2,500 yBP (Fig. 3d, Supplementary Fig. 19). The population 

contraction in tropical japonica is contemporaneous with the 4.2k event, raising the 

possibility that cooling explains the collapse of tropical rice cultivation in East Asia and its 

southern relocation. This coincides with the arrival of rice in the far south of China ~4,500 

yBP and a shift to rainfed, upland cultivation39. 

Gradients of heat accumulation are highly associated with geographic distribution of 

japonica genomic diversity (Fig. 1e). Based on reconstruction of Holocene temperatures40 we 

show that despite substantial temperatures changes, the spatial heat accumulation gradients, 

measured as growing degree days (GDD), remained stable in the last 5,500 years 
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(Supplementary Fig. 20) suggesting that environment-associated genomic variation in 

japonica was influenced by spatial gradients in the past. To elucidate if tropical japonica 

could be successfully cultivated during the post-HCO period, we constructed a thermal niche 

model41, which estimates the probability of tropical rice cultivation in different areas during 

the post-HCO period (Fig. 3e; Supplementary Fig. 21). Survival probabilities of tropical 

japonica between ~4,400 and 3,500 yBP dropped dramatically in eastern China and high-

altitude South China (survival probability < 50%) compared to Southeast Asia [survival 

probability > 90%](Fig. 3e; Supplementary Video 1). Indeed, after the cooling period we 

observe high densities of archaeological rice remains in Southeast Asia (Fig. 3b; 

Supplementary Fig. 18). 

After the HCO, rice dispersed from China to Southeast Asia into Laos and Bhutan, 

and through maritime routes to the Philippines, Malaysia and Indonesia15. In our admixture 

graph analysis, we find an early split in the tropical lineage that separates Bhutan and Laos 

upland rice from rice in the Malay Archipelago (Fig. 2e). From coalescence analyses we 

observe a ~50-100-fold population contraction in the remote upland (Bhutan) rice population 

between ~4,000 and 3,000 yBP (Fig. 4; Supplementary Fig. 19), which may arise from a 

bottleneck associated with population movements into these new areas. Emergence of upland 

rice in Laos and Bhutan coincides in time and space with widespread establishment of rainfed 

rice agriculture in mainland Southeast Asia, ~4,000 yBP14,42 and dispersal of metallurgy 

traditions from Bronze Age Yunnan, ~3,500 yBP southwards to Thailand by ~3,000 yBP43,44. 

Subsequent agricultural intensification of rice production took place from ~2,500 to 1,500 

yBP and included evolution of irrigation systems in present-day Thailand45. Consistent with 

these, ancient human DNA studies in Southeast Asia report two farmer-associated migration 

events from East Asia, one at least 4,000 years ago and a second before 2,000 yBP46,47. 
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Our analysis also shows an ~5-10-fold Ne decrease in the Malay archipelago between 

~3,000 and 2,500 yBP, and based on cross-coalescence analyses, divergence between 

mainland and Malay Archipelago rice occurred between ~3,000 to 1,500 years ago (90% of 

estimates in ~2,500 to 1,600 yBP) [Fig. 4; Supplementary Fig. 17]. Distinct island 

populations in the Malay Archipelago diverged at around a similar timeframe, in an interval 

from ~3,000 to 1,000 years ago (90% estimates fall between ~2,500 and 1,500 yBP). This 

period coincides with dispersal of Dong Son drums in the Malay Archipelago (~2,400 years 

ago)44,48, and suggests maritime dispersal of rice from a North Vietnam hub within the 

Austronesian Trading Sphere, which stretched between Taiwan and the Malay Peninsula49,50. 

Ancient DNA studies also suggest a wave of Austronesian human expansion into island 

Southeast Asia ~2,000 years ago46, which agrees with our estimates of japonica movement 

into the area. Interestingly, upland temperate japonica in Japan appears to be an admixed 

population of local lowland temperate rice and upland tropical rice from the Malay 

Archipelago which may have moved northwards through Taiwan and perhaps the Ryukyu 

Islands ~1,200 yBP51. 

 

Relationships and dispersal of indica subpopulations. We reconstructed relationships 

between indica subpopulations with kd = 2 to 6. Divergence between Sino-Indian and 

Southeast Asian indica is present in all graph topologies beginning at kd = 2. At kd = 3 we 

observe separation of mainland and archipelago Southeast Asian subpopulations, while at kd 

= 4 we observe separation of Indian from Chinese landraces (Supplementary Fig. 22). With 

kd = 5 and kd = 6 we note differentiation of mainland Southeast Asian landraces into 

subpopulations associated with Laos, Thailand and Cambodia (Fig. 2f). Interestingly, a 

subpopulation associated primarily with Cambodia, and another in Indonesia, share ancestry 

with the main Laos/Thailand Southeast Asian lineage as well as an early ancestral indica 



12 
 

population. Further increase of kd also increases the number of admixture events in the model 

to four, which renders further exhaustive graph topology searches unfeasible. 

We observed high diversity of graph topologies in indica, likely due to weak 

population structure and elevated gene flow (Supplementary Figs. 14 and 15), which also 

explains low silhouette scores and low associations with local environments. These 

characteristics of indica subpopulations are likely the reason behind difficulties with indica 

dispersal routes reconstruction. Given the complexity in multiple reconstructed admixture 

graph topologies, we can only confidently date separation of Chinese and Indian indica, 

which is unaffected by admixture. Our analysis estimates this divergence at ~2,500 and 1,100 

yBP (90% of estimates between ~2,000 and 1,400 yBP)[Fig. 5; Supplementary Fig. 17]. 

Possible routes for indica dispersal from India to China could be the Silk Road or more direct 

passage to Southwest China across the Hengduan mountains. The timing agrees with written 

reports of the introduction of Buddhism from India to China at ~1,950 yBP52, but is later than 

the earliest putative finds of indica rice in China53. The close relationship between Indian and 

Chinese subpopulations is mirrored by higher proportions of irrigated varieties in both 

regions; in contrast, Southeast Asian varieties are more often rainfed25. 

Indica dispersal to Southeast Asia (e.g., Thailand and Cambodia) were either from 

India or China (Fig. 5; Supplementary Fig. 23). From archaeobotanical studies, indica arrived 

in Central Thailand at ~1,800 years ago45, at a time when Asian trade routes were well 

established14. Late adoption of indica in Southeast Asia is hypothesized to be due to early 

availability of japonica in this region14. There is no earlier archaeological evidence for indica 

cultivation in Southeast Asia, and hence it comes as a surprise that indica mainland 

subpopulations suffered dramatic population size reduction between ~5,000 and 3,500 yBP 

(Supplementary Fig. 24). It is even more puzzling that a bottleneck in indica subpopulation in 

Indonesia occurred between ~6,000 and 5,000 yBP, suggesting complex origins, perhaps 
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through post-domestication introgression with local wild ancestors or managed pre-

domesticated varieties (Supplementary Fig. 23). 

 

Discussion  

Rice domestication in the Yangtze Valley had an enormous impact on the peoples of 

East, Southeast and South Asia. In the first ~4,000 years of its history, Japonica rice 

cultivation was largely confined to China, and its dispersal and diversification did not occur 

until the global 4.2k cooling event. This abrupt climate change event was characterized by a 

global reduction in humidity and temperature, for example average northern hemisphere 

temperatures moved from anomalies which were 0.4 degrees Celsius above present day, to 

0.2 degrees cooler than present40. 

This change had widespread consequences: it is believed to have caused the 

breakdown of rice agriculture in East Asia29,36, turnover of cattle ancestry in the Near East54, 

and the collapse of civilizations from Mesopotamia55 to China56. We find from our genomic 

and paleoclimate modelling that the 4.2 k event coincides with the rise of temperate japonica 

and the dispersal of rice agriculture14,15,42 and farmer communities46,47 southwards into 

Southeast Asia. Correlation between changing climate and rice distribution raises the 

possibility for a causal relationship, and indeed we find temperature is a key environmental 

factor patterning contemporary rice genomic diversity. 

The movement of japonica rice to island Southeast Asia took place later, after about 

2,500 years BP, as rice populations established themselves in Indonesia, Borneo and the 

Philippines. The islands of Southeast Asia were connected to each other and to the mainland 

at this time by extensive trade networks that are associated with the movement of goods and 

peoples in the region49,50. Our study suggests that these trading networks may have facilitated 
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the establishment of rice agriculture in the Malay Archipelago, consistent with archaeological 

studies that suggest a late arrival of rice to the islands15. 

Indica rice began to be domesticated in South Asia at around the time of the 4.2k 

event, and spread later into China and Southeast Asia. The spread of indica rice occurred 

much later than japonica rice, and extensive gene flows between geographic populations 

appears to have occurred, resulting in weaker between-population differentiation. Despite its 

current importance as the dominant rice subspecies grown in Asia, the details of the dispersal 

of indica remains obscure and will need further investigation. 

The ability to infer dispersal patterns of rice arises from the availability of extensive 

landrace populations, whole genome sequences representing global diversity16 and population 

genomic approaches, as well as environmental, archaeobotanical and paleoclimate data. 

Reconstructing the history of domesticated species provides insight into the evolutionary 

process, nature of human/plant co-evolutionary dynamics, and extrinsic landscape, 

environmental, and cultural factors that drive crop dispersal. Armed with knowledge of the 

pattern of rice dispersal and environmental features that influenced this migration, it may be 

possible to examine the evolutionary adaptations of rice as it spread to new environments, 

which could allow us to identify traits and genes to help future breeding efforts.  
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Figure 1: Factors underlying geographic distribution of genomic diversity in japonica 
and indica. Maps of collection sites for (a) japonica and (b) indica landraces used in this 
study. Colors represent regions of origin. In insets are effective migration surfaces 
representing migration barriers (orange) and channels (cyan). (c) Japonica and (d) indica 
genomic diversity is best explained by a combination of four factors represented in Euler 
plots: travel time (migration resistance) or geographic distance, abiotic variables 
(temperature, moisture and soil characteristics), linguistic group, and culinary properties 
(stickiness). Fields of squares represent total genomic variation, while elliptic shapes 
represent genomic variation explained by particular group of variables calculated using 
variance partitioning with redundancy analysis ordination. (e) Japonica and (f) indica 
genotypes projected on the first two canonical axes of redundancy analysis. Arrows represent 
environmental predictors (acronyms explained in the legend) that strongly correlate with a 
maximal proportion of linear combinations of SNPs.  
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Figure 2: Japonica and indica rice subpopulations. (a) All japonica and (b) indica 
landraces projected onto first two dimensions after multidimensional scaling of genomic 
distances. (a) japonica genotypes were clustered using k-medoids (k = 9 subpopulations) and 
filtered using silhouette parameters, which resulted in kd = 8 discrete subpopulations (colored 
labels). Asterisk denotes subpopulation cultivated in irrigated lowland conditions. (b) indica 
genotypes were clustered using k-medoids (k = 7 subpopulations) and filtered resulting in kd 
= 6 discrete subpopulations (colored labels). Pie charts representing the geographical 
composition of each discrete subpopulation of (c) japonica and (d) indica subgroups. Chart 
diameter is proportional to the number of individuals in each subpopulation. (e) Admixture 
graph for k = 9, kd = 8 japonica subpopulations, rooted with Oryza barthii as an outgroup. 
This graph represents topology consistent between models for all lower k’s. (f) Best 
admixture graph for k = 7, kd = 6 indica subpopulations, rooted with O. barthii as an 
outgroup. Although this represents the best model, it is not consistent with other topologies at 
lower k’s, likely due to complex history of indica. (e and f) Solid lines with arrowheads 
represent uniform ancestries (attached numbers show scaled drift parameter f2), while dashed 
lines represent mixed ancestries (% values indicate estimated proportion of ancestry).  
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Figure 3: Demographic, paleoenvironmental and archaeological context of temperate 
japonica rice emergence. (a) The distribution of temperate-tropical split times estimated 
from cross-coalescence analysis carried out for 50 pairs of temperate and tropical individuals; 
bar represents mean, bands represent 90% interquartile range. (b) Maps indicating geographic 
locations and densities of archaeological sites with rice macro-remains. To the left: 
cumulative archaeobotanical evidence from 9,000-4,400 years BP, to the right: cumulative 
archaeobotanical evidence from 3,500-1,000 years BP. Effective population sizes over time 
in (c) tropical and (d) temperate japonica subpopulations. Thin lines represent demographic 
histories for 50 randomly sampled individuals, while bold lines represent joint models. (e) 
Probability of tropical rice being in the thermal niche (assuming requirement of 2900 
growing degree days, at 10°C base) over time. The mean (thick black line) and the 
interquartile range, 25% to 75% (gray shaded area) of probability of being in the thermal 
niche. The thin black lines are the mean probabilities of being in the thermal niche across the 
study area when modeled using the 1σ uncertainty intervals as provided by the northern 
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hemisphere temperature reconstruction. The two inset maps show the geographic distribution 
of niche probabilities; to the left: before climate cooling (4,400 years BP), to the right: after 
climate cooling (3,500 years BP).   
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Figure 4: Proposed dispersal map of japonica rice in Asia. Map generated for japonica, kd 
= 8 discrete subpopulations. The geographic distributions of subpopulations were represented 
as colored, two-dimensional Kernel density fields. Bold circles represent leaves in the 
admixture graphs and are mapped close to the centers of subpopulation distributions. Dashed 
circles represent hypothetical ancestral subpopulations inferred from splits in best-matching 
admixture graphs; their precise geographic placement is uncertain. The distribution of split 
times between non-admixed subpopulations was created from cross-coalescence estimates 
summarized over all kd levels and presented as violin plots; bar represents mean, bands 
represent 90% interquartile range. Arrows indicate hypothetical routes of dispersal.  
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Figure 5: Proposed dispersal map of indica rice in Asia. Map generated for indica, kd = 6 
discrete subpopulations. The geographic distributions of subpopulations were represented as 
colored, two-dimensional Kernel density fields. Bold circles represent leaves in the admixture 
graphs and are mapped close to the centers of subpopulation distributions. Dashed circle 
represents consistent split; its geographic position is uncertain. The distribution of split times 
between non-admixed subpopulations was created from cross-coalescence estimates 
summarized over all kd levels and presented as violin plots; bar represents mean, bands 
represent 90% interquartile range. Solid arrows indicate hypothetical routes of dispersal, 
while dotted arrows indicate possible routes that remain unresolved from admixture graphs. 
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Online methods 

Landrace status. We considered 2,466 domesticated Asian rice (Oryza sativa L.) accessions 

from the International Rice Genebank Collection (IRGC) at the International Rice Research 

Institute (IRRI) that were included in the 3K-RG project3,16, as well as an additional 178 

accessions that were re-sequenced at New York University (Supplementary Table 1). 

The definitions of landrace are very complex57,58 and hard to apply in practice during 

material collections. In our work we relied on the fact that landraces contain the signal of 

association with local geographic, environmental and cultural context. To that end we used 

the following criteria: 1) Pre-selected ‘candidate’ landraces from available annotation, and 2) 

filtered them based on their joint genetic and geographic clustering. 

Accession passport data were obtained from the International Rice Information 

System (http://iris.irri.org/)59. We considered sample status of each accession and removed 

‘improved variety’, ‘wild’ and ‘weedy’ accessions, while keeping ‘traditional 

variety/landrace’ accessions. We also kept ‘breeding/inbred line’ accessions if these were 

pure lines directly derived from ‘traditional varieties/landraces’ or were classic breeding lines 

from before the Green Revolution in the 1960s. From that set we removed any genetic 

clusters that were represented by individuals collected in in countries that do not share 

contiguous borders.  

Geolocations and cultivation systems. Landrace geo-references were obtained Genesys 

(https://www.genesys-pgr.org/welcome). For some landraces, instead of precise geo-

coordinates, country- or region-level centroids were given (Supplementary Table 1). This 

problem was particularly relevant for landraces from China and Japan. Data on agro-

ecosystems in which accessions are cultivated were obtained from IRIS59. Based on their 



22 
 

agro-ecosystem of origin, accessions are divided into six cultivation types: ‘irrigated’, 

‘rainfed lowland’, ‘deepwater’, ‘upland’, ‘tidal wetland’, and ‘swamp’60.  

 Accession growing season(s) in its local environment were estimated through 

considering information on cultivation type with prevalent rice growing season months at the 

collection location. The latter information was obtained from the Rice Almanac61, and Rice 

Atlas62. An accession from ‘irrigated’ agro-ecosystem was assumed to be grown in all 

growing seasons if there were multiple seasons in its location of origin, since sufficient 

irrigation can presumably be provided in ‘off’ or ‘dry’ seasons. Accession from other agro-

ecosystems were assumed grown only in the ‘main’ or ‘wet’ growing season as indicated in 

the Rice Almanac61, and the Rice Atlas62. An accession’s growing season months were 

further specified if additional metadata on growing season was available from the IRIS 

database59. 

 

Biotic variables. It has been suggested that wild relatives of rice, particularly Oryza 

rufipogon and O. nivara hybridized with cultivated rice in the past11–13 altering the genomic 

composition of local subpopulations. We therefore considered the wild gene pool available to 

each candidate landrace. To that end we used published ancestry composition data for rice 

wild relatives63. For each of our candidate landraces we took the ten geographically closest 

wild individuals and calculated means for six ancestry probabilities from fastStructure 

analysis at k = 663. Resulting ancestry probabilities do not represent any biological 

individuals, but rather a most likely hypothetical wild relative in the area of rice cultivation. 

We also considered rice-human relationships not covered by geographic 

distance/resistance dispersal. One important rice grain property in a culinary cultural context 

is stickiness, which is determined by the waxy gene64. As a proxy for conscious cultural 

preferences, we genotyped waxy alleles from genome-wide data. We also considered effects 
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of unconscious cultural preferences on distribution of rice genomic diversity by accounting 

for the language family of nearby human populations. This aimed at modeling the general 

ability of people to talk to each other and trade seeds. To this end we downloaded the 

linguistic map from the Glottolog database65 and for each candidate landrace we queried the 

geographically closest spoken language. 

 

Abiotic variables. We collated data for a suite of climate-related variables at the geo-location 

of each landrace using the EXTRACT function of the R package RASTER66 v.2.8-19. Six 

temperature variables (average coldest temperature throughout growing season(s), average 

coldest temperature in first two months of growing season(s), mean temperature over 

growing season(s), average high temperature for last two months of growing season(s), 

growing degree days [GDD] in growing season(s), and inter-annual coefficient of variation of 

GDD) and three precipitation variables (accumulated precipitation in two months before the 

growing season(s), mean precipitation throughout growing season(s), and inter-annual 

coefficient of variation of precipitation) were derived from CHELSA climatological data 

(v1.2), which provides monthly and mean annual precipitation and temperature data at 30 

arc-second resolution for the time period 1979 to 201367. For calculations of GDD, we used 

monthly means as proxies of average daily air temperatures for months in the growing season 

with a mean above a base temperature of 10°C. 

We included two variables that reflect evapotranspiration processes during the 

growing season(s): potential evapotranspiration [PET] and ratio of PET to mean precipitation. 

PET variables were based on monthly values from the CGIAR-CSI Global-PET Database 

(http://www.cgiar-csi.org)68,69. 
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 We also included distance from the geo-location of each landrace to the nearest lake 

or river based on a previous global analysis of human population distance to freshwater70. 

Elevation above sea level was obtained from WorldClim71. 

 Among edaphic variables, we included: soil salinity (measured as electric 

conductivity), pH, and sodicity (exchangeable sodium percentage) from the Harmonized 

World Soil Database v1.2 (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-

database/HTML/index.html?sb=1). Information on soil total nitrogen density was extracted 

from the Global Gridded Surfaces of Selected Soil Characteristics dataset72. To capture the 

soil moisture potentially available for plant growth, we used plant extractable water capacity 

of soil73 and depth to water table74.  

 

Sequencing data. Sequencing data for individuals that were marked as candidate landraces 

(see section 1) from the 3K-RG project were downloaded in fastq format from the Short Read 

Archive (SRA) using FASTQ-DUMP tool with option to split reads into forward, reverse and 

trimmed. 

We generated sequencing data for additional 178 landraces. Leaf samples were 

ground using mortar and pestle in liquid nitrogen. DNA was extracted using the Qiagen 

DNeasy Plant Mini Kit following the manufacturer’s protocol (QIAGEN, Hilden, Germany). 

Yields ranged between 3 ng/ul and 102 ng/ul. Extracted DNA from each sample was 

prepared for Illumina genome sequencing using the Illumina Nextera DNA Library 

Preparation Kit. Sequencing was done on the Illumina HiSeq 2500 – HighOutput Mode v3 

with 2×100 bp read configuration, at the New York University Genomics Core Facility. 

Sequencing data these accessions are available from the SRA under Bioproject accession 

numbers PRJNA422249 and PRJNA557122. 
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Alignment and genotyping. We used Nextflow75 to build a pipeline for calling SNPs in our 

dataset (https://github.com/grafau/NextGatkSNPs). All steps necessary to obtain our SNP set 

are described below. Sequencing data in fastq format for each run of candidate landraces 

were mapped against the reference genome of indica variety Shuhui498 v.1.076 using the 

global aligner BWA v.0.7.15 in ‘mem’ mode77 and sorted using PICARD v.2.15.0. 

Sequences for the same sample, but from different runs, were merged and amplification 

duplicates were removed using PICARD. The resultant sam format files were validated and 

indexed producing bam format files. 

   Bam files were used to call haplotypes in GATK v.3.878 with the 

HAPLOTYPECALLER function in ‘discovery’ mode and set to produce gvcf format files. 

Subsequently, gvcf files were validated and combined into eight batches with GATK, each 

batch containing approximately 200 landraces. These combined gvcf files were compressed 

and indexed using BGZIP and TABIX, respectively79. Contents of combined gvcf files were 

divided into 12 chromosomes and each chromosome file was genotyped for all eight batches 

together using GATK’s GENOTYPEGVCFS function to produce the raw set of SNPs 

segregating among rice landraces. 

 

SNP filtering. The raw set of SNPs was subject to a series of filtering steps. First, we only 

kept biallelic SNPs. Subsequently, we applied five filtering criteria: qualities normalized by 

depth (QD), mapping quality (MQ and MQRankSum), read position bias from Wilcoxon’s 

test (ReadPosRankSum), and strand bias from Fisher’s test (FS). Filtering thresholds for these 

criteria were trained dynamically using GATK’s VARIANTRECALIBRATOR function 

referencing a true-positive set of SNPs that were discovered independently in the 3K-RG 

project3, and in the rice diversity panel (RDP) that was genotyped with a high-density SNP 
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array80. We applied the dynamic filter to our raw set of SNPs using GATK’s 

APPLYRECALIBRATION function conservatively set to recover 90% of true positives.  

 To obtain an estimate for expected heterozygosity in rice populations we calculated 

inbreeding coefficients in all landraces of circum-aus, indica, and japonica groups. 

Coefficients were calculated as medians of ratios, where each ratio equals observed 

heterozygosity divided by expected heterozygosity for each SNP with >5% minor allele 

frequency (only ratios smaller than 1 were taken into account). We then compared observed 

heterozygosity to expected heterozygosity for each SNP, given the inbreeding coefficient, 

and carried out a chi-square test to filter out SNPs with excess heterozygosity. We performed 

this step for all landraces and for each subgroup separately. We interpret excessively 

heterozygous sites as mis-mapped reads in chromosomal regions with structural variants that 

are present in the re-sequencing data but absent in the reference genome. 

 Next, we transformed vcf files into bed format files using PLINK v.1.90b481,82, and 

kept only candidate landraces that were collected in Asia. From this set, we filtered out any 

SNP that had a lower than 80% genotyping rate with PLINK. This step was carried out 

independently for all landraces, and for indica and japonica subgroups separately. For some 

analyses (Supplementary Fig. 1) SNP sets were subject to additional two-step linkage 

disequilibrium pruning. The first step was carried out with the ‘INDEP-PAIRWISE’ function 

in windows of 10 kb with variant shift = 1 and r2 = 0.8. The second step was carried out with 

the same function in windows of 50 variants. 

 

Landrace subsetting. We used metadata retrieved from the online platform Genesys (for 

details see section 1) to annotate each candidate landrace with country of origin and subgroup 

designation (indica, japonica, circum-aus, circum-basmati) provided by the 3K-RG and 

RDP1,75 projects. We then carried out factorial analysis of molecular variance in R v.3.4.183 
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using the ADONIS function from the VEGAN package84. Subsequently, we split the dataset 

into four subsets corresponding to four subgroups (each SNP set was subject to 

heterozygosity and genotyping rate filtering, see section 2). We used pairwise genomic 

distances among all landraces to calculate silhouette scores18 for each landrace given its 

subgroup affiliation. We then filtered out landraces with silhouette scores below 0.2, as this 

might indicate admixture between subgroups or mislabeling. All analyses described in this 

section were carried out after phasing imputation on the SNP sets with BEAGLE v.5.085. 

 

Migration barriers. We estimated effective migration surfaces using the EEMS tool19. We 

chose map outline coordinates that stretch from Pakistan to Japan and Papua New Guinea 

using an online tool (http://www.birdtheme.org/useful/v3tool.html) and specified a triangular 

grid with 200 demes for Voronoi tessellation. The best-fitting model was acquired from 

converging three independent runs of 5 million Monte-Carlo Markov Chain iterations of 

which the first 2 million burn-in runs were discarded. Surfaces were plotted in R v.3.4.183 

using the EEMS.PLOT function from the REEMSPLOTS package19 and mapped with 

Mercator projection.  

 Fastest travel time between each pair of geo-referenced accessions was estimated 

using least-cost paths analysis in R v3.5.1 with the package GDISTANCEv1.186. Traveling 

speed over land given the slope between adjacent grid cells was calculated according to 

Tobler’s Hiking Function87, based on elevation data at 30 arc second resolution from 

WorldClim v1.4. For travel over sea, we assumed a constant speed of 3 knots under 

sail21,88,89. GPS coordinates for each landrace accession were rounded to the nearest 0.1 

degree to reduce computation time needed. Pairwise resistance distance matrices were 

populated separately for indica and japonica accessions. 
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Spatial correlations. We tested whether genetic distance between landraces could be 

explained better by geographic distance or estimated travel time between geo-locations of 

origin. We first filtered out landraces in China, because they all were annotated with low 

resolution geo-coordinates that mapped to country and regional centroids. We employed 

linear mixed model with maximum likelihood estimation of Clarke et al.90 and used Akaike 

Information Criterion (AIC)91 to select between geographic distance versus travel time 

models. This linear mixed model includes spatial random effects to account for non-

independence among nearby samples. The use of AIC with such a mixed model has been 

shown to offer the greatest accuracy in identifying the true isolation model under a wide 

range of scenarios92. We implemented our mixed model and AIC calculations with 

RESISTANCEGA package93,94 in ‘R’ v.3.6.083. Proportions of variance explained (r2) were 

calculated with the LM function and p-values were calculated using Mantel tests and 

permutations implemented in VEGAN84. 

 Processes driving gene flow may have been very different in mainland Asia versus the 

Malay Archipelago. Additionally, the travel time model we developed was new, and 

therefore had an uncertain ability to capture different travel mechanisms. Thus, we stratified 

analyses into two main groups each for both japonica and indica: a group of ‘mainland’ and a 

group of ‘archipelago’ landraces. Mainland landraces were defined to include those north of 

9.7ºN latitude and west of 110ºE longitude, thus excluding the relatively small number of 

isolated mainland landraces to the east (e.g. eastern China). Archipelago landraces included 

those from the Malay Archipelago and the Malay Peninsula, but not from the islands to the 

north (i.e., Taiwan or Japan).  

 

Redundancy analyses. Redundancy analyses (RDA) are eigenanalyses for multivariate 

responses and multivariate predictors that maximize the proportion of variation explained in 



29 
 

the responses. We used RDA to identify sets of variables important for explaining SNP 

variation in landraces and for identifying specific (a)biotic variables explaining the most 

genome-wide SNP variation. To incorporate pairwise geographic distance or travel time into 

our RDA, we converted distance matrices into spatial weighting matrices and then a reduced-

dimension set of orthogonal variables (Moran’s, eigenvector maps, MEMs)95. MEMs are 

eigenvectors of the pairwise spatial weighting matrix among samples. We optimized both 

geographic distance and travel time matrices using a subset of 10,000 randomly chosen SNPs 

for response variables in RDA, optimizing separately for japonica and indica.  

 Weighting matrices among unique landrace collection locations (Chinese accessions 

were all filtered out) were generated using ADESPATIAL package96 in R. We used two 

algorithms, Gabriel graph and distance-based graph, to generate three candidate connectivity 

matrices. The Gabriel graph results primarily in connections among neighboring sites. A 

distance-based graph connects sites closer than a given threshold, for which we used two 

values: minimum distance required to connect all points (i.e., the largest distance of a 

minimum spanning tree) and infinity (resulting in a fully connected graph95). With each of 

these three connectivity matrices we generated two spatial weighting matrices using two 

distance decay functions: linear (weight between two sites = 1 - D/Dmax where D is distance 

between sites and Dmax is maximum distance among all sites) or concave up (weight between 

two sites = D-0.01). These connectivity and weighting algorithms resulted in six diverse MEM 

sets, differing largely in levels of spatial autocorrelation and structure among MEM 

eigenvectors. We used the Bauman et al.95 forward-selection of MEM eigenvectors algorithm 

to optimize number of eigenvectors (restricted to those with positive eigenvalues) included in 

RDA for each MEM set. Optimization is based on adjusted r2 (which are penalized/adjusted 

for number of explanatory values), and the MEM set with greatest adjusted r2 is defined as 

the optimal set. In the RDA presented in the main text we used weighting matrices based on 
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geographic distance for indica and travel time for japonica, because model selection favored 

these distance measures. For indica and geographic distance, optimization selected 25 MEM 

eigenvectors from the connectivity matrix based on connecting all sites within the threshold 

distance required to connect all points in a single graph and using weighting that was a linear 

function of distance. For japonica and travel time, optimization selected the same 

connectivity matrix and distance weighting algorithms, with 33 eigenvectors. These 

eigenvectors were included in the RDA described below on japonica and indica whole SNP 

dataset. 

We then conducted RDA with variance partitioning22 to quantify proportion of 

genome-wide SNP variation explained by each of four categories of covariates: abiotic 

variables, geographic isolation MEMs, waxy allelic status, and language family. Variance 

partitioning estimates proportion of SNP variance explained by variables in each category 

and by collinearity among variables. To identify specific abiotic variables associated with 

genome-wide divergence among landraces, we also conducted RDA using only abiotic 

gradients for indica and japonica. For visualization, specific abiotic variables highlighted in 

Fig. 1 in the main text indicate those loading most strongly in each direction along each RDA 

canonical axis as well as those loading most strongly in each diagonal (identified by 

multiplying the loadings on the first two canonical axes). All RDA (including variance 

partitioning) were conducted using VEGAN84. 

 

Clustering and discretization. Clustering was visualized using multidimensional scaling 

methods. Genetic distances among and within each rice subgroup were calculated between all 

pairs of candidate landraces using PLINK v.1.981,82 with formulation: 1 - IBS, where IBS is 

identity-by-state. After importing the distance matrix into R v.3.4.183 the CMDSCALE 

function was used to calculate eigenvectors97, which were plotted in three dimensions. The 
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variance explained by each dimension was calculated as the dimension’s eigenvalue divided 

by sum of all positive eigenvalues. 

Formal clustering of landraces within japonica and indica was carried out based on 

pairwise genetic matrices with the partitioning around medoids (PAM) method98 

implemented as the PAM function in CLUSTER package for R v.3.4.183. Subsequently, 

clusters were filtered with our DISCRETIZE algorithm implemented in R. The algorithm first 

removes individuals with negative silhouette scores. Second, for each cluster it designates a 

pairing partner, which is another cluster with the least-distant medoid. DISCRETIZE 

simulates individuals that are admixed between the two paired clusters with requested 

ancestry proportions by computing weighted-mean distance between paired medoids and all 

other individuals (here we simulated individuals with 0.5-0.5, 0.4-0.6, and 0.6-0.4 admixture 

proportions). For all simulated individuals, our algorithm computes silhouette scores and 

keeps the highest value as threshold for filtering. Individuals are clustered with PAM and 

filtered based on each cluster’s silhouette threshold. This process is repeated iteratively until 

no more individuals are filtered out. A script written in ‘R’ that can perform these analyses is 

publicly available (https://github.com/grafau/discretize). 

Clustering and discretization was carried out independently for a number of clusters, 

k, that varied from 2 to 12. Discrete clusters are considered subpopulations and their 

members are considered landraces conditional on a co-localized geographic distribution 

within each discrete cluster. We investigated composition of clusters with regard to region of 

origin to see if each fulfilled our latter criterion for landrace status. One indica cluster 

exhibited poor geographic co-localization and was therefore removed from all analyses (see 

section 1). In order to visualize the geographic provenance of each discrete cluster, we plotted 

the two-dimensional distribution (for latitude and longitude) of landraces using the 
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GEOM_DENSITY2D and STAT_DENSITY2D functions from the GGPLOT package99 onto 

a map of Asia in R v.3.4.183. 

 

Admixture graph reconstruction. We reconstructed admixture graphs for japonica and 

indica subpopulations defined by the DISCRETIZE algorithm. Individual lists are available 

in Supplementary Table 1. Reconstruction attempts were carried out independently for 

varying numbers of subpopulations, with kd ranging from 2 to 9, using 19 accessions of 

Oryza barthii as outgroup. We aimed to show that our conclusions are supported 

independently of the chosen number of populations (kd). The CONVERTF function from 

ADMIXTOOLS was used to produce eigenstrat data files, and QPGRAPH function was used 

to evaluate whether models fit the data. Models were taken from ADMIXTUREGRAPH 

package100 in R v.3.4.183 and transcribed into the format accepted by ADMIXTOOLS28.  

 From kd = 2 to kd = 5 (3 to 6 subpopulations including outgroup) we explored the 

entire space of possible models with 0, 1, and 2 migrations and reported all models with f4-

statistic z-scores < 3.0 (Supplementary Fig. 16 and 22). For kd = 7 to 9 we first explored all 

possible models with 6 subpopulations and 0, 1, and 2 migrations, keeping only those with f4-

statistic z-scores < 3.0. For each model we kept, we attached an additional subpopulation in 

all possible nodes using ADMIXTUREGRAPH and tested the resulting models in 

ADMIXTOOLS, again keeping only models with f4-statistic z-scores < 3.0. We progressively 

added subpopulations until no more were present or until no models with f4-statistic z-scores 

< 3.0 were found. In the latter case, we kept all models with f4-statistic z-scores lower than 

10.0. We then added an additional admixture event in all possible nodes using 

ADMIXTUREGRAPH and tested resultant models in ADMIXTOOLS, keeping only models 

with f4-statistic z-scores < 3.0. The number of possible models fulfilling this criterion was 

large, so we summarized their topologies in three different ‘topology groups’ and showed 
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representative models characterized by the best z-scores together with total number of models 

in these topology groups (Supplementary Fig. 16 and 22). 

 

Demography and split time reconstruction. To better understand past demographics of 

rice, we attempted to reconstruct past effective population sizes using the Sequential Markov 

Coalescent method (SMC++)101. Reconstructions were carried out independently for a 

varying number of subpopulations, with kd ranging from 2 to 8. We aimed to show that our 

conclusions are supported independently of the chosen number of populations (kd). We 

selected a variety of ‘distinguished pairs’ for each subpopulation through sampling 50 

individuals without replacement and pairing them with 50 individuals sampled with 

replacement. We kept this number close to the mean number of individuals per 

subpopulations. In subpopulations with fewer than 50 individuals assigned, we sampled all of 

them and paired each with individuals sampled with replacement. We then partitioned vcf 

files into smc haploblock files for each distinguished pair, further partitioned for each 

chromosome, and masked the homozygous pericentromeric regions102. Subsequently, we 

used a polarization error of 0.5 and mutation rate103 of 6.5 x 10-9 in the ESTIMATE function 

of SMC++ to estimate past effective population sizes. Results were scaled in time using an 

estimate of 1 year as generation time and plotted on a linear timescale. We also used these 

demographies in calculating split times between subpopulations in a cross-coalescent 

framework of SMC++. The distinguished pairs were determined as described above, with the 

difference that each individual of the pair belonged to a different subpopulation. 

 

Archaeological and paleoenvironmental context. Using a comprehensive database of rice 

archaeological records15 in 1,000-year intervals, we plotted two-dimensional distributions 
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(for latitude and longitude) using GEOM_DENSITY2D and STAT_DENSITY2D functions 

from GGPLOT99 onto a map of Asia in R v.3.4.183. 

 In order to predict how changing temperatures might have impacted distribution of 

different types of rice (indica, and temperate and tropical varieties of japonica) we used a 

global record of Holocene temperatures40 to reconstruct growing degree-days (GDDs) 

following the methods of d’Alpoim and Bocinsky41. We derived daily modern temperatures 

from Global Historical Climatology Network weather stations across East, South, and Central 

Asia104. To account for spatial heterogeneity in how stations at different altitudes respond to 

climatic change, we used variance matching and modulated maximum and minimum mean 

weather station climatology by SDs derived from Marcott et al.40. This was carried out for 

each year in the Marcott record. The niche of different types of landraces was established by 

thresholding annual GDDs, a measure of accumulated units of heat required by plants to 

complete their life cycle. We then used indicator kriging to spatially interpolate these niches 

across the ETOPO5 5 arc min (c. 10 km) resolution elevation model105. The full research 

compendium that contains all the code and data necessary to reproduce this analysis is 

available at: https://github.com/bocinsky/gutaker2019. 

 

Data availability: Raw FASTQ reads for 178 accessions whose genomes were re-sequenced 

for this study have been deposited in the Sequence Read Archive under SRA Bioproject 

accession numbers PRJNA422249 and PRJNA557122. Sources for all downloaded data are 

referred to in the supplementary materials.  

Code availability: Code repositories are referred to in the supplementary materials. 
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