AN ANALYSIS OF THE ROLE OF T-BOX GENES
IN DEVELOPMENT OF THE MAMMALIAN
RETINA

James Keith Langford Holt

A thesis submitted for a degree of Doctor of Philosophy (Ph.D.)
to the University of London, 2003

Institute of Child Health
30 Guilford Street

London
WCIN 1EH



ProQuest Number: U643297

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest U643297
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Abstract

Exploring how the eye develops is of great value in the understanding and
ultimately the treating of human eye disease. Genetic eye disease is a
significant cause of congenital blindness and retinal degeneration in man.
Studying the molecular basis of eye development also teaches us about basic
mechanisms of neural development and patterning. One flourishing area of
research in eye development is that of retinal patterning. Patterns/gradients of
gene expression across the retina confer positional identity to retinal cells,
essential for eye morphogenesis and the guidance of retinal ganglion cell
axons into the brain. | have studied patterning of the retina along its dorso-
ventral axis, in particular the putative role of T-box transcription factor genes
in this process. T-box (Tbx) genes are known to be involved in many
developmental events such as heart patterning and the provision of forelimb
identity, yet their roles in eye development are not clear. omb-related Thx
gene expression was restricted to the dorsal retina during early mouse and
human development and showed lamina-specific patterns at later stages.
Embryonic expression of Tbx2 and Tbx5 was disrupted in Pax6-null mice, as
was expression of ventral homeobox gene Vax2. Tbx2 and Tbx5 expression
was induced by the implantation of BMP4-soaked beads and whole mouse
embryo culture. Transgenic mice were generated to investigate the effect of
retinal misexpression of Tbx5 in dorso-ventral patterning, eye morphogenesis
and retinal stratification. These data provide insight into T-box gene regulation
and function in the eye and more generally into the interactions of
transcription factors and signalling molecules in the patterning of neural

structures.
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THE BEGINNING

In the beginning, from the molecular soup in the waters of primeval Earth, a rather
special molecule was born. This molecule, iiber-ancestor of modern nucleic acids and
probably most analogous to contemporary ribonucleic acid (RNA), was special in that
it encouraged its own construction. Nucleic acids soon came to be dominant among
many unique but short-lived peers and those better at self-replication naturally
became more dominant. They became longer and able to encode and build protein
molecules. Further down the road came the evolution of the cell — the self-replicating
molecules found themselves better able to do so when enclosed by a bubble of fat.
From here it was but a few skips (relatively speaking) to the creation of multi-cellular
organisms that could exist for longer and duplicate more efficiently than ever before.
Nervous systems developed to organise and allow multi-cellular creatures to function
as a single organism. Parts of these primitive nervous systems evolved into
specialised sensory organs enabling perception of and interaction with the

environment. Such are the roots of the eyes you use to read this page.

Our eyes allow us to receive visual information from the environment and transform it
into neural impulses that are directed into the brain for interpretation. Light passes
through the pupil and is focused, by the lens, onto the retina at the back of the eye
(Fig. 1.1). The light passes through the retina and activates photoreceptors at the back
before being absorbed by the retinal pigmented epithelium (RPE). Photoreceptor
activity, which is strongest in the central (macula) part of the retina, is translated into
retinal ganglion cell (RGC) activity via a modulating layer of interneurons. RGCs
project their axons into the brain through the optic nerve. The information is
processed in the visual centres of the brain and conscious image perception is

generated.

The study of how eyes evolved, how they develop and how they function, as well as
being interesting, is of great practical value. Understanding what happens when they
develop normally and function properly enables us to understand what happens when
they don’t. Genetic eye disease is hugely debilitating and is an important cause of
congenital blindness. 1.5 million children worldwide are blind, in the UK 1-2 children

per 1000 are visually impaired. Many genes involved in eye development have been

16



Figure 1.1

Schematic diagram demonstrating the basic anatomy of the mammalian eye. Light is
shown entering the eye to be refracted by the lens (pink) onto the retina (green).
Photoreceptors (blue) at the back of the retina are activated by light. Activated
photoreceptors stimulate retinal ganglion cells (orange). Retinal ganglion cell axons
connect to central brain areas via the optic nerve. Retinal signals can then be

processed to generate an internal representation of the outside environment.
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implicated in human eye disease. For example, mutations in the PAX6 gene (which
encodes a paired-box homeodomain transcription factor with pivotal roles in early eye
development) are now known to cause aniridia and other anterior segment
malformations, such as Peters’ anomaly, in humans (Hanson and Van Heyningen,
1995). Genetic defects are also responsible for some adult-onset eye disorders, for
example some retinal degenerative disorders (retinal dystophies or RD) present late in
life and are caused or contributed to by genetic mutations. More than sixty genes,
many encoding transcription factors, are known to cause human RD, which are
thought to affect over 15 million people worldwide (Bessant et al., 2001; Stone et al.,
2001; Chader, 2002). As well identifying key genes, developmental biology has
contributed to the understanding of morphogenetic processes and tissue interactions
during eye development. Moreover, study of the developing visual system teaches us
much about the general mechanisms governing cellular transitions towards final
differentiation (Livesey and Cepko, 2001). It teaches us about control of the cell cycle
and apoptosis, which has relevance for the study of degenerative disease and
tumourigenesis as well for developmental biology (Dyer and Cepko, 2001). The
developing retina is a functional sub-unit of the central nervous system (CNS) that is
anatomically distinct and therefore highly amenable to investigation and
experimentation. This makes development of the retina a favoured model for the study

of neural development and differentiation.

In this thesis the roles of T-box transcription factors in retinal development and dorso-
ventral patterning of the retina are explored. I introduce this work by giving an
extensive review of background relevant literature in the next section. I outline our
current understanding of how the vertebrate eye forms during embryonic
development. Some of the putative molecular players involved in the provision of
positional identity to cells across the dorso-ventral axis of the retina are discussed. At
the end of this chapter I state the aims of this thesis and how I set about achieving

them.
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