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Abstract  

We determined the effect of sample size on performance of polygenic hazard 

score (PHS) models in predicting the age at onset of prostate cancer. Age and 

genotypes were obtained for 40,861 men from the PRACTICAL consortium. The 

dataset included 201,590 SNPs per subject, and was split into training and 

testing sets. Established-SNP models considered 65 SNPs that had been 

previously associated with prostate cancer. Discovery-SNP models used 

stepwise selection to identify new SNPs. The performance of each PHS model 

was calculated for random sizes of the training set. The performance of a 

representative Established-SNP model was estimated for random sizes of the 

testing set. Mean HR98/50 (hazard ratio of top 2% to average in test set) of the 

Established-SNP model increased from 1.73[95%CI: 1.69-1.77] to 2.41[2.40-

2.43] when the number of training samples was increased from 1 to 30 thousand. 

Corresponding HR98/50 of the Discovery-SNP model increased from 1.05[0.93-

1.18] to 2.19[2.16-2.23]. HR98/50 of a representative Established-SNP model using 

testing set sample sizes of 0.6 and 6 thousand observations were 1.78[1.70-1.85] 

and 1.73[1.71-1.76], respectively. We estimate that a study population of 20 

thousand men is required to develop Discovery-SNP PHS models while 10 

thousand men should be sufficient for Established-SNP models.  

 

Keywords 
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Introduction 

Polygenic prediction models have been studied extensively for several 

diseases such as prostate cancer1, breast cancer2, type 2 diabetes3, dementia4, 

and atherosclerosis5. Polygenic scores in the context of survival models are a 

more recent advancement in the field, but have been garnering interest in the 

prediction of age at onset of Alzheimer’s disease6 and prostate cancer7. The 

steady increase in genetic testing8,9, both in public and clinical domains, 

suggests that survival models could be applied to new diseases. The largest 

obstacle to the development of these models is the large number of study 

subjects, often in the tens of thousands8, which are required for robust training 

and testing.  

Our aim was to quantify the effect of sample size on the performance of a 

polygenic survival model. This was explored through a specific disease condition 

that is expected to be representative, namely the prediction of age of onset in 

prostate cancer. We investigated two potential model development strategies. 

For the ‘Established-SNP’ model, we selected single-nucleotide polymorphisms 

(SNPs) that had previously been shown to be associated with prostate cancer, 

and simply estimated the coefficients for these SNPs in a Cox proportional 

hazards framework. For the ‘Discovery-SNP’ model, we implemented the SNP 

selection technique described by Seibert et al.7 to identify SNPs in our 

genotyping data for inclusion in the Cox proportional hazards framework. The 

Established-SNP and Discovery-SNP represent two strategies that researchers 

could employ to build a polygenic survival model. In order to simulate samples of 
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different sizes, we randomly sampled our training and testing sets. The results of 

this work will help inform the design of future studies to develop polygenic 

survival models for other diseases.  

 

Materials and Methods 

Training and testing set 

As previously described7, we obtained genotype and age data from 21 

studies included in the Prostate Cancer Association Group to Investigate Cancer 

Associated Alterations in the Genome (PRACTICAL) consortium. We analyzed 

data from 40,861 men consisting of 20,551 individuals with prostate cancer and 

20,310 individuals without. For analysis, the age for each man was recorded as 

either their age at prostate cancer diagnosis (cases) or at interview (controls). 

Genotype data were restricted to SNPs with missing value rates less than 5%, 

resulting in 201,590 SNPs available for analysis. Missing calls were assigned the 

mean value for that SNP7. The genotype data had been assayed using a custom 

iCOGS chip (Illumina, San Diego, CA) the details for which are elaborated 

elsewhere10. The sample was split into training (34,444 men, consisting of 18,962 

cases and 15.482 controls) and testing (6,417 men consisting of 1,589 cases and 

4,828 controls) sets. The testing set was selected using men who were enrolled 

in the Prostate testing for cancer and Treatment (ProtecT11) trial. ProtecT 

(ClinicalTrials.gov: NCT02044172) is a large, multicenter trial within the United 

Kingdom which aims to investigate the effectiveness of treatments for localized 

prostate cancer. The ProtecT study group was chosen for testing as it 
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represented a well-characterized group of individuals that had been used for 

measuring testing performance for our earlier work. The Data Availability 

Statement describing how readers can gain access to the PRACTICAL dataset is 

provided in the Supplementary Information.  

The present study used only de-identified data from the PRACTICAL 

consortium. All studies contributing data have the relevant Institutional Review 

Board approval in each country in accordance with the Declaration of Helsinki12. 

The details of each study set, including the consent and accrual process are 

previously published 12.  

 

Established-SNP model  

 A list of 65 SNPs13 was chosen to represent those on the iCOGS array 

that had been published as associated with prostate cancer. The coefficients of 

the SNPs within the Established-SNP model were then estimated using the 

“coxphfit” function in MATLAB (Mathworks, Natwick, MA). It should be noted that 

the 65 SNPs used were discovered, in large part, using the data presently 

defined as the test set. The effect allele for all 65 SNPs was defined as “A” to 

simplify analysis. 

 

Discovery-SNP model  

 For every SNP, a trend test was used to check for associations between 

SNP count and the binary classification of individuals with or without prostate 

cancer. The SNP selection pool was then reduced to those whose trend test p-
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value was less 1x10-6. In order of increasing p-value, each SNP was tested in a 

multiple logistic regression model for association with the binary classification of 

men as with or without prostate cancer, after adjusting for age, six principal 

components based upon genetic ancestry, and previously selected SNPs. If the 

p-value of the coefficient of the tested SNP was less than 1x10-6, it was selected 

for the final Cox proportional hazard model estimation. The coefficients of the 

selected SNP pool within the Discovery-SNP model were estimated as previously 

described7. 

 

Polygenic Hazard Score (PHS) 

 The polygenic hazard score (PHS) for each of the Established-SNP and 

Discovery-SNP models was calculated as the linear product of the coefficients of 

the SNPs used in the model and the corresponding patient genotype counts6,7.  

 

PHS performance metrics 

 Several performance metrics for PHS models were investigated, and are 

described in Table 1. In each case, the PHS for each test subject was calculated 

as the dot product of SNP coefficients, either Established or Discovery, and SNP 

counts. A Cox proportional hazards model was then fit using PHS as the sole 

predictor of age in the test set. The z-score and beta of this Cox proportional 

hazards model relate to how well PHS was associated with age within the test 

set. The hazard ratios were calculated as the exponential of the differences in 

predicted log-relative hazards of different groups within the test set. The groups 
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were defined using centile cut-points for those controls within the training set 

whose age was less than 70 years. This list of performance metrics expands on 

those (z-score and HR98/50) that were used in our earlier work7.  In addition, 

sample-weight performance metrics were estimated using a weighted Cox 

proportional hazard model7,14,15 with PHS as the sole predictor of age in the test 

set. The weighting factor for the cases and controls were estimated using 

published prevalence data from the ProtecT randomized phase 3 trial11.  

 

Random sampling of training set 

 Random sampling of the training set was performed with replacement 

while ensuring equal proportions of men with and without prostate cancer. The 

training set was randomly sampled to include 1, 5, 10, 15, 20, 25, and 30 

thousand total observations. Performance of the Established and Discovery-SNP 

models using random samples of the training data was measured in the entire 

test set.  

 A sub-analysis investigating the effect of the percentage of cases in the 

training set was conducted using the Established-SNP model with 5,000 and 

25,000 random samples of the training set. The results are presented in 

Supplementary Figure 5.  

 

Random sampling of the testing set 

 Random sampling of the testing set was performed with replacement while 

ensuring equal proportion of men with and without prostate cancer. The testing 
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set was randomly sampled to include 0.5, 1, 2, 3, 4, 5 and 6 thousand total 

observations. Performance in the randomly sampled testing sets was performed 

using a representative Established-SNP model. The representative model was 

chosen as that whose parameters were estimated using a training sample size of 

30 thousand total observations, and whose performance metrics were the 

shortest Euclidean distance to the average performance across all Established-

SNP models using a training sample size of 30 thousand.  

 

 

Results 

Established- vs. Discovery-SNP model performance 

 Histogram comparisons of performance metrics of Established (EST) and 

Discovery (DIS) SNP models are illustrated in Figure 1. The performance metrics 

are shown for 50 random samplings of the training set using a sample size of 30 

thousand total observations. Qualitatively, there appears to be more variability in 

performance metrics associated with the Discovery process.  

 

Coefficients of Established-SNP model 

 The mean coefficients for the 65 SNPs used in the Established-SNP 

model are plotted in Supplementary Figure 1.  

 

Effect of training set sample size on performance 
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 Box plots of the performance metrics of the Established-SNP and 

Discovery-SNP models for random samples of the training set are shown in 

Figure 2 and Figure 3, respectively. The mean values of HR98/50, HR20/50, HR98/20, 

HR80/20, z-score, and beta using a random training sample of 1 thousand total 

observations in the Established-SNP model were 1.73 [95% CI: 1.69-1.76], 0.71 

[0.71-0.73], 2.42 [2.35-2.50], 1.96 [1.92-2.01], 9.92 [9.57-10.28], and 0.45 [0.43-

0.47] respectively. The corresponding values using a random training sample of 

30 thousand total observations were 2.41 [95% CI: 2.40-2.43], 0.60 [0.60-0.60], 

4.04 [4.02-4.07], 2.86 [2.84-2.87], 15.1 [15.04-15.16], and 1.18 [1.17-1.18] 

respectively.  

The mean values of HR98/50, HR20/50, HR98/20, HR80/20, z-score, and beta 

using a random training sample of 1 thousand total observations in the 

Discovery-SNP model were 1.05 [0.93-1.18], 0.98 [0.89-1.07], 1.07 [0.91-1.24], 

1.08 [0.91-1.24], 1.06 [-1.20-3.31], and 0.17 [-0.23-0.65] respectively. The 

corresponding performance values using a training sample size of 30 thousand 

observations were 2.20 [2.16-2.23], 1.60 [1.59-1.62], 3.47 [3.39-3.56], 2.53 [2.49-

2.58], 13.19 [12.96-13.41], and 0.87 [0.85-0.89] respectively.  

Box plots of the sample-weight corrected performance metrics for the 

Established-SNP and Discovery-SNP model are shown in Supplementary 

Figures 2 and 3, respectively. The trends observed in the sample-weight 

corrected performance metrics are identical to those observed in the raw, 

uncorrected metrics.  
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Effect of testing set sample size on performance 

 Box plots of the performance metrics of the representative Established-

SNP model for random samples of the testing set are shown in Figure 4. Box 

plots of the corresponding sample-weight corrected performance metrics are 

presented in Supplementary Figure 4. The mean values of HR98/50, HR20/50, 

HR98/20, HR80/20, z-score, and beta using a random testing sample of 0.5 

thousand total observations in the representative Established-SNP model were 

1.78 [1.71-1.85], 0.73 [0.71-0.74], 2.50 [2.33-2.66], 1.99 [1.89-2.09], 3.82 [3.57-

4.08], and 0.76 [0.70-0.82] respectively. The corresponding values using a 

testing sample of 6 thousand observations were: 1.73 [1.72-1.76], 0.73 [0.72-

0.73], 2.39 [2.34-2.44], 1.93 [1.90-1.96], 13.07 [12.80-13.32], and 0.74 [0.72-

0.76] respectively.  

 

Discussion  

 We identified several trends in the effect of training and testing sample 

size on the performance of PHS models in predicting the age of onset of prostate 

cancer using SNP genetic variants. When using SNPs that had already been 

associated with prostate cancer risk, our analysis suggests that very little 

improvement in performance can be achieved once the training sets becomes 

larger than 10 to 15 thousand observations. When attempting to discover SNPs, 

a similar plateau in performance was observed from training sets larger than 20 

to 25 thousand observations. Apart from z-scores, the performance metrics of the 

chosen Cox proportional hazards model did not vary with testing sample size. 
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However, we did observe that the distribution of performance metrics narrows 

until a testing sample size of 3 to 4 thousand observations, after which the 

distribution remains relatively stable.  

Our results may be used to inform researchers on the approximate number of 

subjects needed to develop PHS models to predict the age of onset of diseases 

using SNP counts. A dataset of 20 thousand observations may be the minimum 

needed to accurately estimate the PHS coefficients of SNPs that have been 

previously discovered in the setting of a logistic model. Such a dataset would 

allow for the accurate estimation of SNP coefficients as well as the testing of 

model performance in an independent holdout set. Based on our results, this 

number would have to be increased to roughly 30 thousand observations if the 

researchers intend on discovering the SNPs from scratch using the approach 

described here.  

 The PHS model developed by Desikan et al.6  to predict age-associated 

risk of Alzheimer’s disease used a training set with roughly 55,000 individuals. A 

similarly structured model developed by Seibert et al.7 to guide screening for 

aggressive prostate cancer was developed with roughly 31,000 men. Studies 

such as these require large investments in time, money, and resources in order 

to acquire the genetic data needed for the analysis. The results of our analysis 

help elucidate that the minimum sample size needed to translate this technology 

to other diseases and processes may be lower than what has been used so far in 

previous studies. This seems to be particularly true if the researchers use SNPs 
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that have already been discovered and validated as associated with the process 

of interest.  

 The results of this study must be considered in the context of its 

limitations. The list of Established-SNPs was previously selected from a larger 

dataset that included the sample patients used in the test set in the present 

study. As such, there is leakage of information from the test set to the 

development of the Established-SNP model. Therefore, the performance metrics 

of the Established-SNP model should not be directly compared to those of the 

Discovery-SNP model, as the values of the former may be inflated.  

In addition, we have chosen to focus on only two of countless possible 

model development schemes. The role of sample size in other development 

strategies—such as regularized Cox proportional models, parametric survival 

functions, or random survival forests—is yet to be explored. Finally, the analysis 

is limited to prostate cancer and to the SNPs available on the iCOGS array. 

Future studies to investigate the influence of additional SNPs, such as those on 

HapMap 3 or 1000 Genomes, on the performance of PHS models are underway 

at our institution.  

In conclusion, we have studied the effect of sample size on the 

performance of PHS models to study the association between SNPs and the age 

at onset of prostate cancer. We have determined that models require roughly 20 

to 30 thousand samples before their performance would not be improved greatly 

by expansion of the training set. Using SNPs that have already been established 
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in the literature may help reduce the number of training samples required to 

reach this performance plateau by almost 10 thousand samples.  
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Figure Legends 

Figure 1. Comparison of performance metrics between Established (EST) and 

Discovery (DIS) SNP models using 50 random samples of the training set using 

a sample size of 30 thousand. There is more variability with the Discovery 

process. Established SNPs, though, were discovered using the data in the 

training set; this circularity is not accounted for in the present study, which 

focuses on sample size effects. 

Figure 2. Performance metrics of Established SNP model. Box plots of 

performance metrics are shown for random samples of the training set using 

sample sizes of 1, 5, 10, 15, 20, 25, and 30 thousand total observations. Within 

each box plot, the horizontal line represents the median and the box extends 

from the 25th to 75th percentile.  

Figure 3. Performance metrics of the Discovery SNP model. Box plots of 

performance metrics are shown for random samples of the training set using 

sample sizes of 1, 5, 10, 15, 20, 25, and 30 thousand total observations. Within 

each box plot, the horizontal line represents the median and the box extends 

from the 25th to 75th percentile. 

Figure 4. Performance as a function of testing sample size. Box plots of 

performance metrics of the representative Established SNP model in random 

samples of the testing set from 0.5 to 6 thousand total observations.  
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Supporting Information Legends 

Supplementary Figure 1. Coefficients of 65 SNPs used in the Established SNP 

model. Data points represent mean values across 50 iterations of a random 

sample of the training set using a sample size of 30 thousand total observations. 

Error bars represent 95% confidence intervals. 

Appendix A1. Data Availability Statement details how readers can obtain the 

data from the PRACTICAL (Prostate Cancer Association Group to Investigate 

Cancer Associated Alterations in the Genome) consortium.  

Appendix A2. Funding sources for the PRACTICAL consortium.  

Appendix A3. Membership of the Australian Prostate Cancer Bioresource.  

Appendix A4. Membership of the PRACTICAL consortium.  


