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Abstract

Computing the stochastic entropy production associated with the evolution of a

stochastic dynamical system is a well-established problem. In a small number

of cases such as the Ornstein–Uhlenbeck process, of which we give a complete

exposition, the distribution of entropy production can be obtained analytically.

For a general potential it is much harder. A recent development in solving the

Fokker–Planck equation, in which the solution is written as a product of pos-

itive functions, addresses any system governed by the condition of detailed

balance, thereby permitting nonlinear potentials. Using examples in one and

higher dimension, we demonstrate how such a framework is very convenient

for the computation of stochastic entropy production in diffusion processes.

Keywords: stochastic entropy production, diffusion, Ornstein–Uhlenbeck

process, Brownian motion

(Some �gures may appear in colour only in the online journal)

1. Introduction

The notion of the production of entropy as physical systems evolve dates from the time of

Boltzmann and Gibbs, and underpins basic ideas of thermodynamics and statistical mechan-

ics, including the celebrated second law of thermodynamics describing the irreversibility of

events on themacroscale [1]. Themodern understanding of the production of entropy, based on

effective stochastic dynamical models of system evolution [2, 3], has to a great extent clari�ed
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some of the puzzles raised by the development of statistical mechanics [4, 5], and has broad-

ened themeaning of the second law, especially at the nanoscale.While the entropy of the world

is expected to increase with time, this is subject to �uctuations, and for certain realisations of

the dynamics of a system, entropy may decrease.

The stochastic entropy production associated with a thermodynamic process is fundamen-

tally a measure of the irreversibility of the dynamics. It is de�ned for a speci�c path, or

trajectory, taken by a system, and represents the ‘arrow of time’ by re�ecting the difference

in likelihood between the trajectory in question and its time-reversed counterpart in suitable

circumstances [6]. It is very naturally de�ned for a system that is subject to environmental

in�uence by way of energy or particle exchanges, and may be divided conveniently into con-

tributions associated with the �ow of these quantities between the system and environment

together with an internal production of entropy within the system. It may also be de�ned for

an isolated system if some procedure of coarse graining is adopted.

The degree to which the traditional second law is ‘broken’ in the modern framework is

quanti�ed, at least to an extent, by �uctuation relations, symmetry requirements satis�ed by

the probability distribution of entropy production [7–9]. Beyond this, a more detailed quan-

ti�cation of the �uctuations, necessary if we are to demonstrate how entropy behaves on dif-

ferent temporal scales and for systems of different size, typically requires extensive numerical

investigation. The central problem is obtaining the solution to a Fokker–Planck equation that

describes the evolving probability density function (pdf) of a system over its phase space, from

which the probability distribution of entropy generated in realisations of the stochastic process

may be derived.

The computation of entropy production relies on assigning the correct probabilities to tra-

jectories between points in system phase space followed over arbitrary time intervals. For

simple models such as the Ornstein–Uhlenbeck model (OU, [10]) the transition probability

between arbitrary points over arbitrary time intervals is known in closed form and, as we show

in section 3.1, the distribution of entropy distribution can be calculated analytically as well. In

cases where the transition probability density is not known, the problem is much harder. The

estimation of a transition density by Monte Carlo simulation requires a very large number of

simulations, and if one instead uses a partial differential equation (PDE) solver then solutions

starting for each initial point will be needed to obtain the transition density to all possible �nal

points, which is a considerable task.

Analytical approximations appear to confer a computational advantage, but they may suffer

from another problem, which stems from the fact that we are after the logarithm of the prob-

ability of a path, and this is particularly dif�cult when the probability is small. Any kind of

approximation that assigns even the slightest negative (or zero) probability to some part of the

transition density is destined to fail. In fact, most analytical approximations for PDEs are based

on orthogonal sum expansions, and as the functions in question are oscillatory, this kind of error

is hard to eradicate. A variety of analytical and numericalmethods have been employed in stud-

ies of the distribution of work performed or heat delivered by a system undergoing a stochastic

process, which are associated with the production of entropy [11–25].

In a recent paper [26], a newmethod of dealingwith Fokker–Planck PDEswas developed, in

which the general thesis is that one does better to write the solution as a product of terms, all of

which are positive. This naturallymodels the logarithmof the phase space density, so it obviates

the dif�culties described above, and is potentially very suitable for dealing with problems that

pertain to entropy production.As the initial condition is a delta-function, it is very hard to make

a sum of terms add up to zero at all points except at the starting-point where an enormous spike

is required: truncation of such a series necessarily produces oscillatory artefacts. However,

a product does not suffer from this disadvantage. One of the terms can, for t→ 0, be zero
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except at the location of the delta-function—a Gaussian of variance∝ time captures this effect

perfectly, and indeed is an immediate consequence of the Fokker–Planck equation—and the

initial condition will be correctly captured regardless of the other terms. Another term can

capture the long-time asymptote, and further terms ‘patch up themiddle’without corrupting the

short- and long-time behaviour. Indeed, a simple approximation containing only two terms (i.e.

without intermediate-time corrections) is often very satisfactory, which is (35) later, and this is

indeed a product formula. The method also extends to higher-dimensional cases via (53) which

is again clearly a product formula. Intuitively, the method consists in expanding around an OU

model, in the sense of �nding the characteristics of a mean-reverting solution as exempli�ed

by the OU case and capturing these characteristics for the general case, while reproducing

the OU case exactly. It thereby provides a stepping-stone from the tractable OU model to the

intractable general case. Potentially, it also gives insight into Fokker–Planck diffusions in other

contexts, and a comment in some very recent work on the related area of mutual information

struck us as highly pertinent: ‘indeed, there is an interesting dichotomy in which we understand

the intricate properties of the Ornstein–Uhlenbeck process since we have an explicit solution,

whereas we know very little about the general Fokker–Planck process’ [27, section 5].

This paper is, then, the �rst application in physics of the newmethod for approximately solv-

ing Fokker–Planck equations, and we apply it to the problem of stochastic entropy production

in a range of different diffusive systems, all corresponding to the spreading of probability den-

sity from an earlier point source, but with different force �elds and hence different stationary

states (see �gure 3). It is organised as follows. After a brief introduction to the nomencla-

ture and methods, section 3 deals with the one-dimensional theory. It begins with a complete

exposition of the OU model, and provides new insights into that case and also into the arith-

metic Brownian motion (drift-diffusion) which is a special case of it. After this it develops

the theory for a general potential in section 3.2, giving a brief account of the leading-order

approximation shown in [26] before showing a variety of examples in section 3.3. Whereas

certain aspects of the problem are generic [28], our results show that speci�c models behave in

their own idiosyncratic ways. Section 4 describes the multidimensional theory, again starting

with the multivariate OU model which is dealt with in some depth, with comparisons drawn to

the one-dimensional case. Then the theory for a general potential is developed, along the same

lines as in [26] and section 3. Our �nal section (section 5) gives our conclusions and suggests

opportunities for further research.

2. Preliminaries

2.1. Definitions

For a stochastic process Xt, the dimensionless stochastic entropy production, associated with a

transition from an initial to a �nal system coordinate during the interval between times t1 > 0

and t2 > t1, is de�ned as [2]

∆s = ln

(

fX(t1,Xt1)T (Xt1 → Xt2 , t2 − t1)

fX(t2,Xt2)T (Xt2 → Xt1 , t2 − t1)

)

, (1)

where f X(t,X) is the pdf over X at time t and T (x1 → x2,∆t) is the transition probability

density from x1 to x2 in time interval ∆t. The argument of the logarithm is the probability

of transitioning from Xt1 at time t1 to Xt2 at time t2, divided by the probability of a subsequent

reversal, i.e. starting from Xt2 at time t2 and ending up at Xt1 at time t2 − t1 later. If the system

were in a stationary statistical state (thermal equilibrium) then this ratio would be equal to

unity and the stochastic entropy production would vanish for all transitions. In general,∆s is
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nonzero and can take either sign, though it satis�es a second law in possessing a nonnegative

expectation when averaged over all possible paths in [t1, t2]: see [3, 9].

A condition of detailed balance holds in thermal equilibrium, de�ned by

fX(∞,Xt1)T (Xt1 → Xt2 , t2 − t1) = fX(∞,Xt2)T (Xt2 → Xt1 , t2 − t1),

such that we can write

∆s
[

(t1,Xt1)→ (t2,Xt2)
]

= ln

(

gX(t1,Xt1 |X0)

gX(t2,Xt2 |X0)

)

, (2)

with

gX(t, x|X0) =
fX(t, x|X0)

fX(∞, x)
, (3)

and where we explicitly note that we are considering a situation corresponding to evolution

from a de�nite initial coordinate X0 at t = 0. More complicated scenarios can be constructed

from this base case. Our task is to obtain the probability distribution of ∆s for the interval

between t1 and t2. Given these de�nitions, it makes sense to focus on the evolution of gX as a

means of computing the entropy production. Indeed, whenwe come to approximate the density

for analytically intractable models, it is gX that we choose to approximate.

The entropy production is transformation-invariant in the following sense. If Y t = ψ(Xt)
whereψ has an inverseψ−1 and bothψ,ψ−1 are appropriately smooth, then whenever y = ψ(x)
and Y0 = ψ(X0) we must have

fY(t, y|Y0) = fX(t, x|X0)/|ψ′(x)|, gY(t, y|Y0) = gX(t, x|X0)

and so over a particular time period the entropy production ofX and Y is the same. Accordingly,

we can take the general form of a time-independent diffusion,

dXt = µX(Xt)dt + σX(Xt)dWt (4)

withW t a standard Wiener process, and by applying the transformation ψ given by4

ψ′(x) =
dy

dx
=

√
2κ

σX(x)
,

it becomes

dYt = κA(Yt)dt +
√
2κdWt. (5)

By Itô’s lemma5 we have

κA(y) = ψ′(x)µX(x)+
1

2
ψ′′(x)σ2

X(x)

and we call A the force �eld. This transformation simpli�es the model by making the volatil-

ity constant and does not affect the entropy production, so henceforth we work with (5); the

parameter κ has units time−1 and is understood as a rate constant.

4The so-called Lamperti transformation. This works provided σX is bounded away from zero.
5 It can also be derived purely algebraically by substituting gY (t,ψ(x)) = gX (t, x) into the backward equation.
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The density f Y obeys the forward or Fokker–Planck equation, and the function gY obeys

its adjoint, the backward or Feynman–Kac equation:

∂ fY
∂τ

= − ∂

∂y
[A(y) fY]+

∂2 fY
∂y2

, (6)

∂gY
∂τ

= A(y)
∂gY
∂y

+
∂2gY
∂y2

(7)

with f Y(0, y) = δ(y− Y0) and dimensionless time τ = κt. When we later present graphs show-

ing the distribution of entropy production over a given time period, we are talking about κt or,
equivalently, t if we standardise on κ = 1 throughout. The invariant density (stationary state)

is related to A by A(y) = d
dy
ln fY(∞, y). Note also the reciprocity condition

gY(t, Y2|Y1) = gY(t, Y1|Y2). (8)

Viewed as a function of y (and t), the lhs obeys the adjoint forward equation, whereas the rhs

obeys the backward equation. However, those are the same PDE, with the same initial condi-

tion. Alternatively, we can invoke the Kolmogorov criterion, which pertains to the transition

probability around any closed loop being independent of the direction of travel: see e.g. [29,

section 1.5].

One device that we can use for studying the distribution of ∆s is its moment-generating

function (mgf),

M∆s(λ) = E
[

exp(λ∆s)
]

= E

[

(

gY(t1, Yt1 |Y0)
gY(t2, Yt2 |Y0)

)λ
]

, (9)

where the expectation is over all transitions during the interval t1 6 t 6 t2. The mgf relates to

the density p by

M∆s(λ) =

∫ ∞

−∞
p(∆s)eλ∆sd∆s. (10)

It is easily seen thatM∆s(−1) = 1, equivalent to 〈e−∆s〉 = 1, known as the integral �uctuation

relation [2]. De�ne now K∆s as the log of the mgf. Standard results from probability give that

K∆s is convex, andK∆s(0) = 0 andK∆s
′(0) is the mean. The integral �uctuation theorem states

thatK∆s(−1) = 0, so then convexity requires thatK∆s(0) > 0, so the mean entropy production

〈∆s〉 > 0.

2.2. The K-, or variance-gamma,distribution

When the dynamics are Gaussian, as in the OU process, the entropy production is a quadratic

function and in the particular case where the starting-point is the equilibrium level (where the

force �eld vanishes) its density can be found via the mgf using the following result, known

variously as the K-distribution (in the physics literature) and the variance-gamma distribution

(in the quantitative �nance literature). We shall use it more than once:

Lemma 1. The pdf

(b2 − a2)ν+1/2eax|x/2b|2νKν (b|x|)√
πΓ(ν + 1

2
)

(11)
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with Kν denoting the modi�ed Bessel function of the second kind [30], corresponds to the mgf

(

b2 − a2

b2 − (λ+ a)2

)ν+1/2

, |a+ Reλ| < b, (12)

and from this the mean and variance are

(2ν + 1)a

b2 − a2
,

(2ν + 1)(b2 + a2)

(b2 − a2)2
.

Proof. Immediate from the Fourier representation of Kν , e.g. [31, section 8.432.5]. �

When the order ν is a half-integer the functionKν admits a representation using elementary

functions, and when ν = 1
2
the distribution is simply a double-exponential.

2.3. Inversion integrals

When the mgf of the entropy production is known in closed form—the OU model is a case in

point—it is possible to obtain the pdf of the entropy production by inverting (10) via a Fourier

integral:

p(∆s) =
1

2π

∫ ∞

−∞
M∆s(iω)e

−iω∆sdω =
1

2πi

∫

C
M∆s(λ)e

−λ∆sdλ (13)

where the contour C runs up the imaginary axis.

The most straightforward approach is to replace the integral with a �nite sum, i.e. use the

discrete Fourier transform, implemented via the fast Fourier transform (FFT) algorithm. There

are a couple of points to be made about this. In going from an inversion integral to a �nite,

discrete approximation two undesirable effects are introduced. The �rst, aliasing, causes the

inverse transform to be periodised, with a period equal to 2π/δω, where δω is the spacing in

ω-space. If δω is too large, features will appear in the wrong place. The second, leakage, occurs

as a result of truncating the range of integration (summation) to [−Ω/2,Ω/2] say, and features
are smeared out, losing resolution. It can be attenuated by multiplying M(iω) by a window

function, that is zero or nearly zero when ω is close to the ends of the interval [−Ω/2,Ω/2],
and unity at the middle. A simple choice is the Hann window, given by cos2(πω/Ω); further
details are in [32, section 13]. As an example of this in action: suppose that in the problem at

hand we think that the entropy production can safely be ignored outside the range [−5, 5], and

that we want a resolution of around 0.01 in entropy space. Then we shall need a 1024-point

FFT and the spacing of the samples in ω-space will need to be δω = 2π/10. As an example of

what aliasing means, suppose we were wrong about the entropy production being essentially

con�ned to the interval [−5, 5], and that there were a pronounced spike at ∆s = 6.3, for the
sake of argument: then this feature would incorrectly appear at ∆s = −3.7. Other techniques
that numerically invert the Fourier integral are orthogonal expansion using Laguerre functions

[33], provided that this is extended to the two-sided case, and numerical integration techniques

discussed by Abate and Whitt [34].

Another, more specialised, approach requires analyticity ofM, and deforms C so that it lies

along a more convenient path. In many cases, including here, the mgf has branch points at

λ = λ± say and is analytic in the complex plane with (−∞,λ−] and [λ+,∞) deleted. If the

integrand is integrably singular at λ±, we can collapse the integral around either branch cut,

depending on the sign of ∆s, and do a real integral (see e.g. [35, section 3.1]). However, this

cannot be done if the integrand also possesses an essential singularity at λ = λ±. In fact both

cases can be seen in the OU model, depending on whether Y0 is zero or not [see (20) later].

6
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This brings us to our �nal point, which is that it may be useful to deform C so that it lies along

the path of steepest descent [36], or at least fairly close to it. That way, the integrand is not too

oscillatory, and is easily approximated by analytical methods or by numerical integration. This

is what gives rise to saddlepoint methods [37].

Interestingly, the problemof �nding the pdf of a quadratically-transformedmultivariate nor-

mal variable—which is fundamental to stochastic entropy generation in the OU model—�nds

application in unrelated areas, notably mathematical �nance. In [38], the authors use the

moment-generating function as we do, and show bymatrix algebra that the variable in question

can be written as a weighted sum of independent gamma-distributed variables. The authors dis-

cuss the use of saddlepoint methods as a way of approximating the pdf, though do not indicate

why it is effective. In fact the gamma distribution is very well approximated by its saddlepoint

approximation, and this is why the technique works well [39].

2.4. Entropy production from transition density by stratified sampling

Much attention has been given in the literature to the derivation of the pdf of entropy production

through ef�cient (semi-)analytical approaches, but in fact it is in principle straightforward to

proceed numerically if the transition density is known exactly or approximately. For given

Y0, t1, t2 we proceed as follows.

Bound the phase space by V so that we disregard the possibility that the process goes outside

this space. Select a set of points {y j}Nj=1 (in our calculations we have used N = 10 000) that

are distributed reasonably uniformly over V . We enlarge on this point presently. Next, divide

entropy space into bins—throughout, we take the interval [−10, 10] and partition it into 2000

bins each of width 0.01—and write 0 in each bin. For each pair ( j, k), calculate the entropy

production using gY , �nd which entropy bin this corresponds to, and add to that bin the quantity

pjk = fY(t1, y j|Y0)T (y j → yk, t2 − t1).

Note that an alternative notation for T (y j → yk, t2 − t1) is f Y (t2 − t1, yk|y j). Write also

∆s jk = ln

(

gY(t1, y j|Y0)
gY(t2, yk|Y0)

)

.

It is understood that the use the exact transition density and gY if these functions are known, or

otherwise approximations to them. Once this has been done for all pairs ( j, k), the probability

of the entropy production lying in some interval J is approximated by

P(∆s ∈ J) ≈
∑

j,k1[∆s jk ∈ J]pjk
∑

j,kpjk
.

The denominator is just the sum over all bins, and this construction obviously ensures that the

total probability mass for the entropy production is exactly unity, i.e.M∆s(0) = 1.

As promisedwe give a brief exposition of sampling techniques. For a one-dimensional phase

space this is easy as we dissect V into N equal intervals. However, if N is not known upfront, in

the sense that onemight want to run a certain number of samples, and then somemore, and then

some more after that, the use of pseudo- or quasi-random procedures is preferred; this is also

the case when the dimension is > 1. We take these in turn. Pseudo-random sequences mimic

the generation of truly random ones, and are typically obtained from whatever inbuilt linear

congruential generator the user has to hand; for a discussion of these see e.g. [32] and [40,

section 7]. However, the random nature will in any one �nite realisation of the random number

generation give rise to nonuniformities, with some areas receiving more samples than others;

7
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the standard error of a Monte Carlo integral decays as O(N−1/2) as N →∞. Quasi-random or

low-discrepancy sequences, which are not at all random, are designed to cover the space more

uniformly by ‘�lling in the gaps as they go’; the error from these decays as S(N)/N, where
S(N)/Nε → 0 for all ε > 0 (often S(N) is roughly a power of lnN, but a deeper discussion of

this would take us too far off track). Two particular classes of low-discrepancy sequence are

worth mentioning. The �rst are called Sobol sequences [32, section 7.7], [40, section 8.3]. The

second uses ideas from Diophantine approximation theory [41]: the construction is

un =
(

{nα1}, . . . , {nαd}
)

∈ [0, 1)d

where {·} denotes the fractional part and α1, . . . ,αd are appropriately-chosen irrational

numbers. Our preference is for this method on account of its simplicity.

We now return to the matter of entropy generation.A �nal, optional, step is to ensure that the

integral �uctuation relation holds exactly in spite of the various approximations (truncation of

the phase space to V , use of approximated transition density, use of �nite sumber of samples).

De�ning

ε = ln





∑

j,k

pjk e
−∆s jk



 ,

which can be computed while the above calculation is being done, and shifting all the entropy

bins by ε, will achieve this.
If we only need the expected entropy production then we do not need to evaluate a double

(nested) integral: instead we just need to compute a pair of single integrals as

E[∆s] = s(t2)− s(t1), (14)

s(t) = −
∫ ∞

−∞
ln gY(t, y|Y0) · fY(t, y|Y0)dy.

The second law s(t2)− s(t1) > 0 follows immediately from the Fokker–Planck equation or

from the integral �uctuation relation6.

2.5. Note on density functions

As will become apparent, the pdf of the entropy production is often singular at one or points,

or more informally it may contain a large spike somewhere. More important than the pdf is the

probability mass function or cumulative distribution function (cdf): one wants to know where

the probability mass lies. It is hard to visually estimate the probabilitymass under a narrow but

in�nitely high spike: such a feature may be visually distracting but yet represent only a very

small probabilitymass, and of course if the spike is caused by a delta-functionof strength c then

it is impossible to assess the value of c from a density plot. Furthermore two distributions can

have very different pdf but quite similar cdf7. Indeed, for comparing two distributions, common

methods such as Kolmogorov–Smirnov use cdf and not the pdf. Finally, in higher-dimensional

cases the granularity of the method described in section 2.4 gives rise to a ‘hairiness’ in the

pdf which is dif�cult to eradicate, as seen for example in �gures 11 and 12. We have therefore

chosen to additionally plot the logit function, commonly encountered in statistics and de�ned

6As noted at the end of section 2.1.
7On the principle that two functions may be close but their derivatives may not be.
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as L(x) = ln F(x)
1−F(x) where F is the cdf. Obviously this is one order of differentiability smoother

than the pdf. The median is immediately apparent as L−1(0), the interquartile range is roughly

[L−1(−1), L−1(1)], and a two-sided 99.5% con�dence interval is roughly [L−1(−6), L−1(6)].

This method of plotting is also convenient for examining the shapes of the tails.

3. Theory in one dimension

3.1. Ornstein–Uhlenbeck

The OU model with A(y) = −θy is analytically tractable, and we discuss it in detail as a

foundational step. We have

fY(t, y) =
1

√

2π(1− q)/θ
exp

(

− (y−√
qY0)

2

2(1− q)/θ

)

, (15)

gY(t, y) =
1√
1− q

exp

(

−qy2 − 2
√
qyY0 + qY2

0

2(1− q)/θ

)

, (16)

with q = e−2θτ , τ = κt, and we drop the |Y0 notation for simplicity. The entropy production

∆s is simply a quadratic in the triplet (Y0, Y1, Y2) (where Y1 is short for Yt1 , etc): it is

∆s =
1

2
ln

1− q2

1− q1
− θ

2





Y0
Y1
Y2





†























q1

1− q1
− q2

1− q2

−√
q1

1− q1

√
q2

1− q2

−√
q1

1− q1

q1

1− q1
0

√
q2

1− q2
0

−q2
1− q2





























Y0

Y1

Y2







(17)

with qi = e−2θτi . (Throughout this paper † denotes the transpose.) From this we can see that

the mean entropy production is8

E[∆s] =
1

2
ln

1− q2

1− q1
+
q1 − q2

2
(θY2

0 − 1) > 0. (18)

Analytical results can be derived by appeal to the moment generating functionM∆s: we are to

�nd the double integral

M∆s(λ) =

(

1− q2

1− q1

)λ/2
θ

2π(1− q1)1/2(1− q2/q1)1/2

∫ ∞

−∞

∫ ∞

−∞
e−Q/2dy1dy2,

(19)

8 Positivity, which is anticipated on fundamental grounds, can be seen from the fact that ℓ(x) = lnx − x is an increasing

function for 0 < x 6 1, and so ℓ(1− q1) < ℓ(1− q2).
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whereQ is the quadratic form

Q =





Y0
y1
y2





†



















θ(λ+ 1)q1

1− q1
− θλq2

1− q2
−θ(λ+ 1)

√
q1

1− q1

θλ
√
q2

1− q2

−θ(λ+ 1)
√
q1

1− q1

θλq1 + 1

1− q1
+

θq2
q1 − q2

−θ
√
q1q2

q1 − q2

θλ
√
q2

1− q2
−θ

√
q1q2

q1 − q2
− θλq2
1− q2

+
θq1

q1 − q2























Y0
y1
y2



 .

Write the matrix in the above expression as

Q =







Q00 Q01 Q02

Q10 Q11 Q12

Q20 Q21 Q22






,

and de�ne the following two determinants:

∆Q =

∣

∣

∣

∣

∣

∣

∣

Q00 Q01 Q02

Q10 Q11 Q12

Q20 Q21 Q22

∣

∣

∣

∣

∣

∣

∣

, δQ =

∣

∣

∣

∣

∣

Q11 Q12

Q21 Q22

∣

∣

∣

∣

∣

.

The double-integral of e−Q/2 above evaluates to

2π

δ
1/2
Q

exp

(

−Y2
0∆Q

2δQ

)

,

and so the mgf of the entropy production is

M∆s(λ) =

(

1− q2

1− q1

)λ/2
exp(−Y2

0∆Q/2δQ)

[(1− q1)(1− q2/q1)δ̂Q]1/2
(20)

with δ̂Q = δQ/θ
2. This is understood as follows. By the shifting theorem (of the Laplace

transform) the term on the front represents a shift to the right by an amount

∆s⋆ =
1

2
ln

1− q2

1− q1
> 0. (21)

We now examine the rest of the expression, starting with Y0 = 0.

3.1.1. Case Y0 = 0. When Y0 = 0 the numerator of (20) is unity, and we are left with the

denominator, which is the square root of a quadratic in λ. By evaluating δQ we establish

M∆s(λ) =

(

1− q2

1− q1

)λ/2(

1+ (q1 − q2)λ− q2(q1 − q2)

1− q2
λ2
)−1/2

≡
(

1− q2

1− q1

)λ/2

(1− λ/λ+)
−1/2(1− λ/λ−)

−1/2, (22)

as the quadraticmust have real roots λ± of opposite sign. Indeed, observing that the quadratic is

positive (and in fact equal to (1− q1)/(1− q2)) at the two values λ = −1 and q−1
2 , we deduce

something stronger:

λ− < −1 < 1 < q−1
2 < λ+.

10
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Figure 1. Probability density of entropy production for OU process (A(y) = −y) start-
ing from the origin. (Left) incremental entropy in time intervals [0.0625, 0.125],
[0.125, 0.25] etc, as labelled; (right) entropy production from time 0.0625 to times
0.125, 0.25, 0.5, 1, 2. The density has a very narrow spike up to ∞: on account of the
�nite plotting resolution this is not fully captured, but its location is clear in each case.

Further, as λ+ + λ− = q−1
2 − 1 > 0, the right-hand tail decays more quickly than the left. The

case t2 →∞ is special, as the positive root goes to ∞ and the negative one to −q−1
1 , and the

entropy production is given by

1

2
ln

1

1− q1
− q1Ξ

2
, Ξ ∼ χ2

1,

i.e.Ξ is distributed as χ2 with one degree of freedom. Consequently in this limit the production

of entropy is bounded above but not below. This behaviour is suggested by the right-hand plot

in �gure 1.

Comparison ofM∆s with (12) yields:

Proposition 1. For the OU model with Y0 = 0, the distribution of the entropy production

∆s for the interval [t1, t2] is given by:

p(∆s) = π−1(b2 − a2)1/2 ea(∆s−∆s⋆)K0(b|∆s−∆s⋆|), ∆s ∈ R, 0 6 |a| < b

(23)

with λ± given by (22) and

a = −λ+ + λ−
2

= −1− q2

2q2
,

b =
λ+ − λ−

2
=

(

1− q2

q2(q1 − q2)
+

(

1− q2

2q2

)2
)1/2

,

∆s⋆ =
1

2
ln

1− q2

1− q1
, (24)

and q1 = e−2κθt1, q2 = e−2κθt2 . The mean is

E[∆s] =
1

2

(

ln
1− q2

1− q1
+ (q2 − q1)

)

> 0

11
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and the variance is

V[∆s] =
(q1 − q2)(q1 + q2 − q1q2 + q22)

2(1− q2)
.

The density has a logarithmic singularity (spike) at∆s⋆ the origin; the probability of being to

the right (resp. left) of this is

P(∆s ≷ ∆s⋆) =
arccos(∓a/b)

π
,

and the mean conditional on being positive (resp. negative) is

E[∆s|∆s ≷ ∆s⋆] =
a

b2 − a2
±

√
b2 − a2

b2 arccos(∓a/b) .

By analysis of the singularities of the mgf the asymptotes of the density are9

p(∆s) ∼ const× |∆s|−1/2 exp(−λ±∆s), ∆s→±∞. (25)

The distribution arises as the weighted difference of two independent central χ2
1 random

variables (with positive weights). �

Figure 1 shows some examples of this analytical computation (with θ = 1).

3.1.2. Case Y0 6= 0. The effect of starting at Y0 6= 0 is found by convolving the previous result

(23) with the function whose mgf is exp(−Y2
0∆Q/2δQ), so to make further deductions we must

examine this expression in detail. Now∆Q is a cubic in λ that vanishes at λ = 0,−1, because

M∆s(0) = M∆s(−1) = 1 for all Y0; also, the coef�cient of λ3 vanishes. (Write the entropy

production as a quadratic form in (Y0, Y1, Y2): as it can be written as a sum of only two squares,

its determinant vanishes.) So ∆Q must be of the form λ(λ+ 1) multiplied by a constant, and

in fact

∆Q =
−q1θ3
1− q1

λ(λ+ 1). (26)

This can be seen directly by from elementary row and column operations on the matrix:











1
√
q1

√
q2

0 1 0

0 0 1











Q







1 0
√
q2

0 1
√

q2/q1

0 0 1






= θ















0 −λ√q1 0

−(λ+ 1)
√
q1

1− q1

λq1 + 1

1− q1
+

q2

q1 − q2
0

λ
√
q2

1− q2

−√
q1q2

q1 − q2
1















.

(27)

Returning to (20), we can now conclude that the term in the exponential is simply the ratio of

two quadratics in λ:

−Y2
0∆Q

2δQ
=

(q1 − q2)λ(λ+ 1)θY2
0/2

1+ (q1 − q2)λ− q2(q1−q2)
1−q2 λ2

. (28)

9Recall λ− < 0 < λ+.
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To �nd what pdf corresponds to the mgf that is the exponential of the ratio of two quadratics,

we recall the compound Poisson distribution. Let P follow a Poisson distribution of mean µ,
and let (Z j) be iid (independent and identically distributed) random variables, independent also

of P, with mgfMZ . Form the random variable10

P ◦ Z =

P
∑

j=1

Z j

and note that its mgf can be obtained by conditioning on P and then integrating out:

MP◦Z(λ) = exp (µMZ(λ)− µ) .

Consider now the distribution formed of two exponentials as follows: with probability π+ it is

exponential with mean λ+, and with probability π− it is−1× an exponential variable of mean

−λ−, where λ− < 0 < λ+. Thus the density of Z is

fZ(x) = π+λ+ e−λ+x
1x>0 − π−λ− e−λ−x1x<0, (29)

and its mgf is

MZ(λ) =
π+

1− λ/λ+
+

π−
1− λ/λ−

, λ− < Re λ < λ+, λ− < Re λ < λ+.

(30)

This will do what we want, because the ratio of two quadratics can be written as a constant

plus an expression of the above form, by partial fractions. Accordingly, we have synthesised a

function whose mgf is the exponential of the ratio of two quadratics, and have proven:

Proposition 2. For the OU model, if Y0 6= 0 the distribution of the entropy production is

obtained by convolving the Y0 = 0 result (23) with the compound Poisson distribution P ◦ Z,
where P has a Poisson distribution of mean µ and Z has a double-exponential distribution (29),
parametrised thus:

π+ =
λ+ + 1

λ+ − λ−
, π− = − λ− + 1

λ+ − λ−
, µ =

1− q2

q2

θY2
0

2
, (31)

and λ± as earlier. �

(Recall that λ− < −1, so π± are both positive.)

While this result is unhelpful in writing down a closed-form expression for the density, it

provides very clear intuition about what it looks like, as follows. If we start the OU process near

its equilibrium point and/or observe entropy production over a short time, then µ is small, so

the main contribution to P ◦ Z is a delta-function at the origin of strength e−µ, with exponential
wings on either side. The effect of convolving with such a density is to move probability mass

to the right without displacing the spike. On the other hand if we start a long way from the

origin and/or observe the entropy production over a longer time, then µ is larger, and P is more

likely to be high: so P ◦ Z is approximated as a multiple convolution of iid double-exponential

10There is no standard notation for this. Our choice is motivated by the idea that if we take the sum of P copies of Z

then we have a sort of product of Z by P; note also that if K denotes the log of the mgf then we have KP◦Z = KP ◦ KZ ,

i.e. the composite of the two functions.

13



J. Phys. A: Math. Theor. 53 (2020) 255001 R J Martin and I J Ford

Figure 2. Probability density of entropy production for OU process (A(y) = −y), start-
ing at various points (Y0 = 0, 1, 2). Time intervals: (left) [0.125, 0.25]; (right) [0.5, 1].

distributions, which by the central limit theorem must be somewhat Gaussian in shape. So the

distribution becomes more bulbous in the middle.

The extra mean entropy production that arises from starting at Y0 6= 0 is (q1 − q2)θY
2
0/2,

which is positive. The form of this is unsurprising, because it increases with (t2 − t1) but only

if one has not waited a long time since inception, as otherwise reversion will have occurred

and the starting-place become irrelevant: hence the form (q1 − q2). It is a simple matter to

verify this expression, as it pertains to the O(λ) term in the Maclaurin expansion of the

mgf.

Aminor but nonetheless interesting point is that the effect of starting away from equilibrium

is neither to simply shift the whole distribution to the right (because the spike in the pdf does

not move11); nor does it alter the exponential decay-rates in the tails which, referring to (23),

remain as λ±.
The distribution of entropy production can be calculated in two ways. The �rst is to invert

the mgf (Fourier integral) numerically using the FFT as discussed in section 2.3. The second

is to employ the strati�ed sampling method discussed earlier (section 2.4), which needs only

the transition density and not the mgf. As a check, both methods were used. Results are shown

in �gure 2 for a few cases.

3.1.3. Limit of zero mean reversion. When θ ≪ 1 we have

M∆s(λ) ∼
(

t2

t1

)λ/2
(

1− (1− t1/t2)λ
2
)−1/2

exp

(

λ(λ+ 1)θ2Y2
0κ(t2 − t1)

1− (1− t1/t2)λ2

)

.

To interpret this result, let us write σ =
√
2κ for the volatility and also shift the process so that

it starts from zero and has reversion level y∞. Then

dYt = −(θσ2/2)(Yt − y∞)dt + σdWt

for which the mgf of the entropy production is

M∆s(λ) ∼
(

t2

t1

)λ/2
(

1− (1− t1/t2)λ
2
)−1/2

exp

(

λ(λ+ 1)(σ2θ2y2∞/2)(t2 − t1)

1− (1− t1/t2)λ2

)

.

11As can be seen from letting λ→ i∞: to shift the spike over by an amount c would require the mgf to oscillate as

eiλc in that limit, but this has been ruled out as the exp(·) term simply tends to a constant.
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Now set θy∞ = 2µ/σ2, with µ �xed (and representing the drift), and let θ→ 0 with y∞ →±∞
according as µ is positive or negative. Then we end up with the familiar arithmetic Brownian

motion,

dYt = µdt + σdWt, (32)

for which the mgf of the entropy production is (cf [20, section 3.1])

M∆s(λ) ∼
(

t2

t1

)λ/2
(

1− (1− t1/t2)λ
2
)−1/2

exp

(

λ(λ+ 1)(2µ2/σ2)(t2 − t1)

1− (1− t1/t2)λ2

)

. (33)

The mean entropy production is

1

2
ln (t2/t1)+ (2µ2/σ2)(t2 − t1). (34)

The �rst term represents, as usual, the broadening-out of the pdf. In the second, 2µ2/σ2 is

identi�ed as the rate of accretion of entropy resulting from the drift. This is analogous to the

dissipation of work as heat of a particle being moved through a viscous medium by the in�u-

ence of a conservative �eld: for example, a charged particle, in an oil bath, by an electric

�eld.

In the driftless case we have the simple result

p(∆s) = π−1bK0(b|∆s−∆s⋆|)

with

∆s⋆ =
1

2
ln (t2/t1); b = (1− t1/t2)

−1/2.

The distribution is symmetrical about∆s⋆, themean, and the variance is 1− t1/t2. As expected,
for zero drift the result depends only on t1/t2.

All of the above can be derived directly from (1) and (32) using essentially the same

techniques as used here. Indeed, writing Zt = Xt − µt we have

∆s =
1

2
ln

t2

t1
+

2µ2(t2 − t1)

σ2
+

Z2
t2

2σ2t2
− Z2

t1

2σ2t1
+

2µ(Zt2 − Zt1)

σ2

and the joint density of (Zt1 , Zt2), conditionally on starting from the origin at time zero (which

we may assume without loss of generality), is

exp
(

−Z2
t1
/2σ2t1 − (Zt2 − Zt1 )

2/2σ2(t2 − t1)
)

2πσ2
√
t1(t2 − t1)

.

The mgf of the entropy production is then obtained by completing the square and doing

a bivariate Gaussian integral. It is worth noting, though, that the question of entropy pro-

duction for the arithmetic Brownian motion is not materially simpler than for the OU

model12.

12But, as an aside (and a sort of ‘health warning’!), the same is not true of matters pertaining to �rst-passage times.

The introduction of mean reversion makes things very much more dif�cult [35].
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3.2. General potential

When the transition density is not known—which is the general case—it has to be approxi-

mated, and the approach in [26], developed initially in [42], provides a framework for this. In

the interest of stating the main result upfront, the approximated transition density from Y0 at

time zero to y at time t is given by

fY(t, y|Y0) ∼
(θ/2π)

√
q

1+
√
q

√
1− q

exp

(− 1
2
θ
√
q(y− Y0)

2

1− q

)

fY(∞, y)
1

1+
√
q fY(∞, Y0)

−√
q

1+
√
q (35)

and also

gY(t, y|Y0) ∼
1√
1− q

exp

(− 1
2
θ
√
q(y− Y0)

2

1− q

)(

θ/2π

fY(∞, y) fY(∞, Y0)

)

√
q

1+
√
q

(36)

where as before

q = e−2θτ

and θ > 0 is now a constant that controls the average strength of mean reversion, as will be

explained presently. The �rst part of the expression (prefactor and Gaussian term) deal with the

short-time behaviour, and the rest ensures that the long-time asymptote is correct. Furthermore,

the result is exact for the OU model A(y) = θ(y∞ − y) regardless of the reversion level y∞.

We now give some further details. The reader who wishes only to use (35) and (36) may do

so without reading the rest of this section, except for noting the de�nition of θ in (40).
As we are concerned with a product representation of the transition pdf, and as entropy

relates directly to the logarithm of the probability density, it makes sense to deal not with f Y
directly but instead with its logarithmic derivative. Recall that τ = κt. Then, writing

hY = −(∂/∂y) ln gY ,

we have

∂hY
∂τ

=
∂

∂y

{

A(y)hY +
∂hY
∂y

− h2Y

}

. (37)

Now this equation appears to be harder than (6) because it is nonlinear and also has a singular

initial condition, in the sense that hY ∼ (y− Y0)/2τ as τ → 0, which can be seen by dominant

balance in (37). However, it turns out that hY is easier to approximate than f Y .

Consider the class of OU models A(y) = θ(y∞ − y), with the proportionality constant

θ controlling the strength of mean reversion and the constant y∞ denoting the long-term

mean—alternatively the stationary state is normal with mean y∞ and variance 1/θ. For this,
we have exactly

(GeneralOU) hY(τ , y) =
θ
√
q(y− Y0)

1− q
+
θ
√
q(y∞ − y)

1+
√
q

(38)

as is easily veri�ed by substituting it into (37), or writing it down directly from the known

OU solution. Clearly hY is just a linear function of y. The �rst term is singular as τ → 0, and

captures the initial Gaussian behaviour as the process spreads out from its point source. The
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second term refers to mean reversion, for it vanishes when the process is at its equilibrium level

(y = y∞). Note also that hY → 0 as τ →∞, as it must, because we require gY → 1.

This inspires the approximation for the general case:

hY(τ , y) =
θ
√
q(y− Y0)

1− q
+

√
q

1+
√
q
A(y)+

√
qo(1)q→1, (39)

where now θ is understood as an arbitrary parameter. However, we must now explain what θ
corresponds to in this general case.

When (39) is inserted into (37), and a Laurent expansion performed around τ = 0, the lhs

and rhs agree at O(τ−2) and O(τ−1), explaining why we are writing the error term in (39) as

o(1) in the short-time limit. In so doing, we �nd

hY(τ , y) =
y− Y0

2τ
+
A(y)

2
+ o(1), τ → 0,

and we observe that θ is absent from both the �rst two terms. So all θ’s are equally good from
this point of view and we cannot say anything about θ simply by looking at the �rst two terms

in the short-time expansion. As θ does not affect the long-time asymptote, it must therefore

control the intermediate-time behaviour.

It turns out that the next-order term (i.e. expanding the o(1) term in (39) in powers of 1− q)

is a rather complicated expression involving d
dy
(A(y)+ θy), which is unsurprising as if that

quantity vanished identically then we would be back to the OU model, for which (39) is exact.

Given that we are going to truncate the series before this term, it makes sense to minimise it,

and so we want to choose θ so as to make A′(y)+ θ as close as possible to zero ‘on average’.

This motivates the choice

θ = 〈−A′〉∞ = 〈A2〉∞ (40)

where 〈·〉∞ denotes an average over the stationary distribution f Y (∞, ·); this relates to the force
�eld via A(y) = d

dy
ln fY(∞, y). As is apparent from the rhs of this expression (which follows

from integration by parts), this choice of θ is positive, which is necessary for (35) and (36) to

be valid13. In [26] it is pointed out that (40) relates directly to the Fisher information for the

estimation of the long-term mean of a mean-reverting process14.

Now that we have approximated hY , we simply integrate w.r.t. y and identify the implied

constant of integration from the fact that the initial condition is a delta-function of unit strength.

The derivation can be simpli�ed by recalling the reciprocity condition, namely that gY must be

symmetric in y and Y0. This gives (36) and thence (35); full details can be found in [26].

3.3. Examples

In this section we present a variety of results for models differing from the OU process: see

�gure 3. These models were considered in [26] and the approximate transition density was

found to correspond well with the exact (as calculated numerically where necessary). For the

reader’s convenience, the diagrams are assembled at the end of this section.

13Though as we have already seen we can take A(y) = θ(y∞ − y) and allow θ→ 0 with θy∞ = µ �xed to obtain

the arithmetic Brownian motion. The invariant density is formally A(y) ∝ eµy which is non-normalisable, but (35)

nevertheless gives the correct transition density. One cannot, however, permit θ < 0.
14Although in principle we could average −A′ over some other distribution—perhaps varying over time and/or

space—this can present its own dif�culties, as it is essential that θ be positive, and it also needs to be symmetric

in y and Y0 so as to preserve the reciprocity condition (8).
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Figure 3. Stationary probability densities for the various models considered in this paper
(see text for explanation): dry friction, sech2, Student t3, double well.

3.3.1. Dry-friction. In the dry-friction model,

A(y) = −sgn y, fY(∞, y) =
e−|y|

2
, 〈−A′〉∞ = 1.

Conveniently, the transition density can be obtained in closed form [43], e.g. by the usual route

of Laplace transforming the Fokker–Planck equation:

fY(t, y|Y0) =
e−(y−Y0)2/4τ
√
4πτ

e−τ/4 e(|Y0|−|y|)/2
+

e−|y|

2
Φ

(

τ − |y| − |Y0|√
2τ

)

(41)

with Φ denoting the cdf of the standard normal distribution. The entropy distribution still

has to be obtained numerically, as per section 2.4, but we can compare the results using

the exact transition density with those using the density (35). These are shown in �gures 4

and 5, for different time periods and starting-points; �gure 6 shows the comparison of the

cumulatives.

3.3.2. Stationary state sech-power. One way of moving away from the linear force �eld

(quadratic potential well) of the OU model is to make the force �eld grow less rapidly away

from equilibrium by setting

A(y) = − δ̂

γ̂
tanh γ̂y.
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Figure 4. Dry friction model. (a), (c) and (e) pdf of entropy production over various
time periods, starting from Y0 = 0, 1, 2. Exact transition density (41) used. (b), (d) and
(f) As (a), (c) and (e) but on logit scale.

(Incidentally this can be obtained from the local volatility model

dXt = −κXtdt + σ
√

1+ γ2X2
t dWt

in which volatility increases away from equilibrium, and changing variable by γX = sinh γ̂Y.)
The stationary state is a sech-power: more precisely,

fY(∞, y) =
γ̂(cosh γ̂y)−δ̂/γ̂

2

B
(

δ̂
2γ̂2

, 1
2

) , 〈−A′〉∞ =
δ̂2

δ̂ + γ̂2

with B denoting the beta function. In the limit γ̂ → 0 we recover the OU model, so γ̂ mea-

sures the deviation from OU-ness. Also in the limit δ̂ = γ̂ →∞ we arrive at the dry-friction

case considered above. We have used γ̂ = 1, δ̂ = 2, which gives θ = 4
3
, making the stationary

distribution 1
2
sech2 y. See �gure 7.
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Figure 5. As �gure 4 but using approximated transition density (35) and (36).

Qualitatively the results are similar to those of the OU model. However, there is a minor

difference: whereas in the OU model, starting further from equilibrium does not affect the the

position of the spike in the density, in this model it is shifted to the right.

3.3.3. Stationary state Student t. We can also write down a model that has Student tν as its

steady state:

A(y) = −
ν+1
ν
y

1+ y2/ν
, fY(∞, y) =

(1+ y2/ν)−(ν+1)/2

√
νB
(

ν
2
, 1
2

) , 〈−A′〉∞ =
ν + 1

ν + 3
.

This model gives rise to fatter tails than the sech-power example, because the force �eld decays

to zero as |y| →∞. We have used ν = 3 (the de�nition of ν was different in [42] and [26,

�gure 3], but this should not cause confusion). See �gure 8.
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Figure 6. Dry friction: difference between cumulatives Fapprox(∆s)− Fexact(∆s), using
the same parameters as the previous two �gures (time intervals indicated on the plots;
Y0 = 0, 1, 2 respectively).
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Figure 7. sech2 example. (a), (c) and (e) Approximate pdf of entropy production over
various time periods, starting from Y0 = 0, 1, 2. (b), (d) and (f) As (a), (c) and (e) but on
logit scale.

3.3.4. Double-well potential. A useful general form for the stationary state for a double-well

potential is

fY(∞, y) = K e−y
2/2 y2 + γ2
(

(y− α1)2 + β2
1

) (

(y− α2)2 + β2
2

)

from which the force �eld is

A(y) = −y+ 2y

y2 + γ2
− 2(y− α1)

(y− α1)2 + β2
1

− 2(y− α2)

(y− α2)2 + β2
2

.

The parameters act as follows: γ→ 0 makes the two wells disjoint; α1,2 control the location;

letting β1,2 → 0makes them deeper. In principle the implied coef�cient of normalisationK, and

the quantity 〈−A′〉∞, can be calculated directly using Dawson’s integral, but the computational

effort does not seemworthwhile, as a simple numerical calculation of the integrals is suf�cient.
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Figure 8. Student t3 example. (a), (c) and (e) Approximate pdf of entropy production
over various time periods, starting from Y0 = 0, 1, 2. (b), (d) and (f) As (a), (c) and (e)
but on logit scale.

We consider, as in [26], the case α1 = α2 = 2, β1 = β2 = 1, γ = 1√
2
, for which 〈−A′〉∞ ≈

1.557. Unsurprisingly, starting from Y0 = 0, the point of unstable equilibrium, generatesmore

entropy than starting in either of the wells. Referring to �gure 9, more entropy is generated in

case (a) than in case (c), for any particular time period.

3.4. Remarks

We shall reserve our general conclusions for the end of the paper, but it is noticeable that

the probability densities of entropy production, over various time intervals, have a number of

features in common across different models. Most obvious is that there is a shift in probability

mass to the right as time advances, which is expected from the integral �uctuation theorem.

The cases where the particle motion involves relaxation towards a unimodal pdf over position

have reasonably similar pdfs over entropy production, as might be expected.

23



J. Phys. A: Math. Theor. 53 (2020) 255001 R J Martin and I J Ford

Figure 9. Double-well example. (a), (c) and (e) Approximate pdf of entropy production
over various time periods, starting from Y0 = 0, 1.5, 3. (b), (d) and (f) As (a), (c) and (e)
but on logit scale.

4. Theory in higher dimension

We start with the multidimensional OU model.

4.1. Ornstein–Uhlenbeck

This is similar in terms of tractability to the one-dimensional theory. Let the process be written

as

dYt = −κaYtdt +
√
2κdWt (42)

where italic bold letters are square matrices and W t is a d-dimensional standard Brownian

motion, i.e. different coordinates are independent and so E[dWtdW
†
t ] = Idt. The normal form
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(42) can be obtained from the more general form

dXt = −aXXtdt + bXdWt

by writing

Y =
√
2κb−1

X X, κa = b−1
X aXbX .

Then Y t is multivariate normal conditional on Y0, with mean

E[Yt|Y0] = e−aτY0

and covariance matrix15

V[Yt, Yt|Y0] = Σ(t) =

∫ τ

0

e−as e−a
†sds

(recall that τ = κt). Accordingly the pdf of Y t given Y0 is

fY(t, y|Y0) =
1

(2π)d/2|Σ(t)|1/2 exp

(

−1

2

(

y− e−aτY0
)†
Σ(t)−1

(

y− e−aτY0
)

)

,

and in the same notation as before

gY(t, y|Y0) =
|Σ(∞)|1/2
|Σ(t)|1/2 exp

(

−1

2

(

y− e−aτY0
)†
Σ(t)−1

(

y− e−aτY0
)

+
1

2
y†Σ(∞)−1y

)

.

This allows the mgf of the entropy production to be written as

( |Σ(t2)|
|Σ(t1)|

)λ/2
1

(2π)d|Σ(t1)|1/2|Σ(t2 − t1)|1/2
∫

Rd

∫

Rd

e−Q/2d[Yt1]d[Yt2]

where d[Y] denotes a volume element in Y-space and, as previously,Q is a quadratic form.

We con�ne ourselves to the case in which a is symmetric, corresponding to the gradient of

a quadratic potential, and assume its eigenvalues to be positive: these are the necessary and

suf�cient conditions for detailed balance (see also [44]). In that case

Σ(t1) =
I − q1
a

, Σ(t2) =
I − q2
a

; q1 = e−2aτ1 , q2 = e−2aκτ2

and I the d-dimensional identity matrix16. There are two ways of proceeding. The �rst is to

redo the analysis of section 3.1 in a multidimensional setting, which we do next; the second

idea will become apparent presently.

15NB: we cannot simply write, in the expression for the covariance, e−a
†s e−as = e−(a†+a)s, as a, a† cannot be assumed

to commute.
16The reader might look askance at notation of the form a/(I − q1), which looks like an attempt to divide matrices.

However, as I, q1, q2 all lie in the commutative matrix ring R[a], it is legitimate to write a fraction in this form. In

other words a/(I − q1) is identical to the more ‘usual’ expressions a(I − q1)
−1 or (I − q1)

−1a. The only proviso is that

the denominator of such a fraction be nonsingular. There is also no ambiguity in writing
√
q1 or similar.
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Analogously to before,

Q =





Y0
y1
y2





†





















(λ+ 1)aq1
I − q1

− λaq2
I − q2

− (λ+ 1)a
√
q1

I − q1

λa
√
q2

I − q2

− (λ+ 1)a
√
q1

I − q1

λaq1
I − q1

+
aq2

q1 − q2
−a

√
q1q2

q1 − q2

λa
√
q2

I − q2
−a

√
q1q2

q1 − q2
− λaq2
I − q2

+
aq1

q1 − q2

























Y0
y1
y2





(43)

and if we write the matrix entries asQ00 etc as before (only now these are d × d matrices rather

than scalars) then this can also be written

Q =





1

y1
y2





†






Y
†
0Q00Y0 Y

†
0Q01 Y

†
0Q02

Q10Y0 Q11 Q12

Q20Y0 Q21 Q22











1

y1
y2





in which the top left-hand entry is a scalar but the other elements on the leading diagonal are

d × d matrices, and so on.

De�ning (much as before) the determinants

∆Q(Y0) =

∣

∣

∣

∣

∣

∣

∣

Y
†
0Q00Y0 Y

†
0Q01 Y

†
0Q02

Q10Y0 Q11 Q12

Q20Y0 Q21 Q22

∣

∣

∣

∣

∣

∣

∣

, δQ =

∣

∣

∣

∣

∣

Q11 Q12

Q21 Q22

∣

∣

∣

∣

∣

,

we have that the double-integral of e−Q/2 above evaluates to

(2π)d

δ
1/2
Q

exp

(

−∆Q(Y0)

2δQ

)

and so the mgf of the entropy production is

M∆s(λ) =

( |I − q2|
|I − q1|

)λ/2
exp

(

−∆Q(Y0)/2δQ
)

|I − q1|1/2|I − q1/q2|1/2δ̂
1/2
Q

(44)

with δ̂Q = δQ/|a|2.
We have obtained, as desired, a multidimensional version of the work in section 3.1. At

this juncture it is convenient to mention an alternative approach. Had we diagonalised a at the

outset, thereby rotating the coordinate axes so that they aligned with the eigenvectors of the

covariance ellipsoid Σ(∞), and effectively decoupling the dynamics into d independent one-

dimensional systems, we could have expressed the d-dimensional result as the convolution of

d (in general not identically distributed) one-dimensional results, i.e. pdfs of the form given

in proposition 2. This is because the transition density is simply a product of d component

densities in the principal directions. As the entropy production relates to the logarithm of the

density, it is given by the sum of the entropies produced in each of the principal directions,

which are independent, and so the pdf of the entropy production is the convolution of one-

dimensional pdfs. Alternatively, the mgf of the entropy production will be a product of one-

dimensional mgfs of the form (20). With this in mind, we complete the analysis by performing
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the necessary algebraic manipulations on the determinants in (44) to make this factorisation

apparent. We de�ne the eigenvalues of a to be (ǫr)
d
r=1, and write q

(r)
i = exp(−2ǫrτi), i = 1, 2.

Analysing as before, the term on the front of (44) represents a shift by an amount

∆s⋆ =
1

2
ln

|I − q2|
|I − q1|

=
1

2

d
∑

r=1

ln
1− q

(r)
2

1− q
(r)
1

,

which is clearly the sum of shifts in the principal directions.

Next consider Y0 = 0. In that case the only thing to analyse is the determinant δQ. Under
an orthogonal change of basis a is diagonalised and then all of the matrices Q11, Q12, Q21, Q22

are brought to diagonal form. It is convenient to de�ne

Q♯
=

[

Q11 Q12

Q21 Q22

]

so that |Q♯| = δQ. Now permute the rows and columns ofQ♯ by taking them in the order 1, d +

1, 2, d+ 2, . . .. Then the matrix consists of 2× 2 blocks along the leading diagonal and zeros

elsewhere, and the determinant, which is unaffected by this operation, is given by

δQ
|a|2 =

d
∏

r=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λq(r)1 + 1

1− q
(r)
1

+
q
(r)
2

q
(r)
1 − q

(r)
2

−

√

q
(r)
1 q

(r)
2

q
(r)
1 − q

(r)
2

−

√

q
(r)
1 q

(r)
2

q
(r)
1 − q

(r)
2

− λq(r)2
1− q

(r)
2

+
q
(r)
1

q
(r)
1 − q

(r)
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

which is the product of d results of the form (22).

When Y0 6= 0 we need to analyse∆Q and note that, by elementary row operations,







1 Y
†
0

√
q1 Y

†
0

√
q2

0 I 0

0 0 I













Y
†
0Q00Y0 Y

†
0Q01 Y

†
0Q02

Q10Y0 Q11 Q12

Q20Y0 Q21 Q22






=







0 −λY†
0

√
q1 λY†

0

√
q2

Q10Y0 Q11 Q12

Q20Y0 Q21 Q22






.

By the block-determinant lemma [45],

∣

∣

∣

∣

∣

A B

C D

∣

∣

∣

∣

∣

= |D||A− BD−1C| (D square)

applied with A = 0, D = Q♯, we deduce

−∆Q(Y0)

2δQ
=
λY†

0

2δQ
a
[

−√
q1

√
q2
]

adj(Q♯)

[

Q10

Q20

]

Y0

where adj denotes the adjugate (transpose of the matrix of cofactors; [45]). By applying the

same permutation trick to write Q♯ as an array of 2× 2 blocks, we can calculate the adjugate

directly and then multiply the matrices out to obtain

−∆Q(Y0)

2δQ
=
λ(λ+ 1)

2

d
∑

r=1

ǫrY
2
0,r

(

q
(r)
1 − q

(r)
2

)

1+
(

q
(r)
1 − q

(r)
2

)

λ− q
(r)
2

(

q
(r)
1
−q(r)

2

)

1−q(r)
2

λ2
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Figure 10. Probability density of entropy production for multivariate OU process
(A(y) = −y) starting from the origin, in dimension 1, 2, 3. Time intervals: (a) and (c)
[0.0625, 0.125]; (b) and (d) [0.0625, 2]. Starting-points (Y0): (a) and (b) [0 · · · 0]†; (c)
and (d) [1 · · · 1]†.

which is a sum of d results of the form (28), as anticipated.

In summary:

Proposition 3. In a d-dimensional OU model the pdf of the entropy generation is a d-

fold convolution of one-dimensional models along the principal axes. If Y0 = 0, then in the

isotropic case a = θI, we have

p(∆s) =
(b2 − a2)ν+

1
2

√
πΓ(ν + 1

2
)
ea(∆s−∆s⋆)

∣

∣

∣

∣

∆s−∆s⋆

2b

∣

∣

∣

∣

2ν

Kν(b|∆s−∆s⋆|) (45)

with ν = (d − 1)/2 and a, b as in proposition 1 and

∆s⋆ =
d

2
ln

1− e−2θκt2

1− e−2θκt1
.

In general the effect of increasing the dimension is to make the pdf of the entropy production

‘less singular’, i.e. smoother and closer to being normally distributed. This is seen in �gure 10,

which shows some representative cases.

The limit of zero mean reversion can be done as in the one-dimensional case. This gives the

m-dimensional arithmetic Brownian motion

dXt = µdt + σdWt (46)
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with µ ∈ R
d and σ ∈ R

d,d. Writing Σ̇ = σσ† for the instantaneous covariance we �nd that

the analogue of (34) is that the mean entropy production is

d

2
ln (t2/t1)+ 2µ†

Σ̇
−1µ(t2 − t1) (47)

so that, in the second term, 2µ†
Σ̇

−1µ is the rate of accretion of entropy resulting from the drift.

We �nish this section with some comments about non-symmetric generators. When a is

not symmetric, so that the force �eld is not the gradient of a potential, and the system is

no longer a detailed-balance one, solution of the Fokker–Planck equation is more dif�cult.

Some discussion of this is given in [26, section 4.3]. Brie�y, the idea is that, if we de�ne two

generators a to be equivalent if they give rise to the same long-time covariance matrix, then

we can show that any generator is equivalent to a unique symmetric one. This allows us to

approximate a nonconservative model by a conservative one, which can, at least in princi-

ple, be used as a �rst approximation for the purposes of calculation of entropy production,

though the matter needs further attention in the light of previous studies [44]. As the focus of

this paper is on detailed-balance systems, we will study non-conservative systems in future

work.

4.2. General potential

The multivariate analogue of (5) is

dYt = κA(Yt)dt +
√
2κ dWt (48)

where, in d dimensions, Wt, Yt ∈ R
d and A:Rd → R

d is the force �eld. The corresponding

Fokker–Planck equation is (with τ = κt as before)

∂ fY
∂τ

= −∇ · (A fY)+∇2 fY . (49)

If A is conservative, i.e. the gradient of a potential, then

A(y) = ∇ ln fY(∞, y) (50)

and gY(t, y) = f Y (t, y)/ f Y(∞, y) obeys the backward equation

∂gY
∂τ

= A · ∇gY +∇2gY ; (51)

but neither of these last two equations is true if A is non-conservative (the statement of the

backward equation is correct, it is just that gY does not satisfy it). We concentrate only on the

conservative case from now on.

The analogue of θ in (40) is now a symmetric matrix θ given by

θ = 〈−∇A〉∞ = 〈AA〉∞ (52)

which shows it to be positive-de�nite, and as before we write

q = exp(−2θτ ).
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Again in the interest of stating our results upfront, we have analogously to (35) and (36),

fY(t, y) ∼
1

|I − q|1/2 exp

(

−1

2
(y− Y0)

† θ
√
q

I − q
(y− Y0)

)

(

|θ/2π|
f (∞,µ∞)2

)ρ(τ )

fY(∞, y)

Ω(τ , y)Ω(τ , Y0)
.

(53)

and

gY(t, y) ∼
1

|I − q|1/2 exp

(

−1

2
(y− Y0)

† θ
√
q

I − q
(y− Y0)

)

(

|θ/2π|
f (∞,µ∞)2

)ρ(τ )

Ω(τ , y)Ω(τ , Y0)
. (54)

These are exact for the (conservative) multivariate OU model and generalise the one-

dimensional work in a reasonably natural way. The function ρ is de�ned by

ρ(τ ) =
1

d
tr

√
q

I +
√
q
. (55)

The function Ω is de�ned by

Ω(τ , y) = exp

∫ y

µ∞
dx ·

( √
q

I +
√
q
A(x)

)

, (56)

where µ∞ = 〈Y〉∞ is the mean of the stationary distribution and the path of integration is a

straight line; regardless of the dimension of the problem (d), this is still a one-dimensional

integral, and in the examples considered it can be calculated in closed form.

The remainder of this section is devoted to details relating to the above results and the reader

may omit it.

As before we de�ne H = −g−1
Y ∇gY , which satis�es the vector equation

∂H

∂τ
= ∇(A · H +∇ · H − H · H). (57)

Analogously to the univariate case, and also following from the multivariate OU model, for

which the following is exact, we adopt the ansatz

H(t, y) =
θ
√
q

I − q
(y− Y0)+

√
q

I +
√
q
A(y)+

√
qo(1). (58)

The �rst term integrates to give a Gaussian, which is immediately visible in (53) and (54) and to

be expected. The second term is more dif�cult and the functionΩ arises from integrating it. The

main analytical features of it are (i) it tends to A(y)/2 as t→ 0, which is seen from dominant

balance in (57), and (ii) it vanishes as t→∞. But despite its links to the OU model and to the

one-dimensional theory given earlier, this second term is not in general a conservative �eld.

To see why this is, consider its gradient: de�ning the symmetric matrixφ =
√
q/(I+

√
q), the

gradient is γ given by

γi j = φ jk∂iAk

(summing over the repeated suf�x k in the usual way). Now A is conservative so ∂ iAk = ∂kAi,
and so the above expression is the product of two symmetric matrices. Such a product is a

symmetric matrix iff the two matrices commute, which in turn holds iff their principal axes

(eigenvectors) are in alignment.
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We point out that in certain cases this condition will already be met as the necessary com-

mutation already holds. One is the OUmodel, for whichφ and∇A are both inR[a] (thoughwe

know that there cannot be a problem as the expression forH is exact). Another is any spherical

model, i.e. one in which f Y (∞, y) is a function of (y− µ)†(y− µ) for some constant vector µ:
in that case θ, and hence φ, are scalar multiples of the identity matrix.

In general, though, some alteration of the second term in (58) is in principle necessary.

By rotating φ by a ‘small’ amount—more speci�cally replacing φ with w†φw, where w is

orthogonal—will align its principal axes with those of ∇A to make γ symmetric, and hence

make (58) a conservative �eld. While this is a solution, there are potential dif�culties with it:

we must �nd w, which depends on y, and is also not as yet well-de�ned; and then we must

integrate it, which would probably have to be done numerically.

Importantly, the antisymmetric part (or curl) of γ, i.e. γ i j − γ ji, which measures how non-

conservative is the second term in (58), is O(τ ) as τ → 0. This error is commensurate with,

or possibly smaller than, the error incurred by ignoring the term marked
√
qo(1) in (58). Put

differently, �xing the ‘non-conservativeness’ of the second term in (58) may well not give a

signi�cantly more accurate result. Also the curl vanishes as τ →∞, and it vanishes on aver-

age, i.e. if y is integrated over the stationary distribution f Y(∞, ·). Besides, the main objective

of this work is to provide an approximation that is reasonably simple to calculate. This is

why we persist with (58) and its consequences, even though the expression is not theoretically

ideal.

4.3. Examples

4.3.1. Student t. The multivariate form of the one-dimensional model we considered earlier

is

fY(∞, y) =
Γ
(

ν+d
2

)

|a|1/2
Γ
(

ν
2

)

(νπ)d/2

(

1+
y†ay

ν

)− ν+d
2

for which

A(y) =
− ν+d

ν ay

1+ y†ay/ν
; 〈−∇A〉∞ =

ν + d

ν + d + 2
a;

a is related to the steady-state covariance matrix byΣ∞ = ν
ν−2

a−1, provided ν > 2. Also

Ω(τ , y) =

(

f∞(y)

f∞(0)

)η(τ ,y)

, η(τ , y) = y†
a
√
q

I +
√
q
y/y†ay

so (53) is explicit. The density starts off circularly-symmetric, and ends up ellipsoidal (for a

numerical demonstration see the examples in [26]). Like the univariate Student t it has power-

law tails.

Keeping ν = 3 as before we take two cases:

• Bivariate (d = 2) with generator and starting points

a =

[

1 0

0 2

]

; Y0 =

[

0

0

]

,

[

1

1

]

,

[

2

2

]

The results are shown in �gure 11.
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Figure 11. Bivariate Student t3 example. (a), (c) and (e) Approximate pdf of entropy
production over various time periods, starting from Y0 = [0 0]†, [1 1]†, [2 2]†. (b), (d)
and (f) As (a), (c) and (e) but on logit scale.

• Trivariate (d = 3) with generator and starting points

a =





1 0 0

0 2 0

0 0 3



 ; Y0 =





0

0

0



 ,





1

1

1



 ,





2

2

2



 .

The results are shown in �gure 12.

The results are qualitatively similar to those in �gure 10, which is unsurprising in view of

the qualitative similarity of the invariant density to the multivariate Gaussian.

5. Conclusions and final remarks

We have considered the problem of entropy production in diffusive systems evolving away

from a given starting-point at time zero. Entropy production is understood to be a measure of
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Figure 12. Trivariate Student t3 example. (a), (c) and (e) Approximate pdf of entropy
production over various time periods, starting from Y0 = [0 0 0]†, [1 1 1]†, [2 2 2]†. (b),
(d) and (f) As (a), (c) and (e) but on logit scale.

the extent to which time reversal symmetry is broken within a context of stochastic dynamics:

it expresses the sense that certain patterns of evolution are more likely than the exact reverse

behaviour. More precisely, it assesses the likelihood of observing reverse behaviour over a

period subsequent to that in which the forward behaviour took place. In �nding the distribu-

tion of entropy production over a certain time interval, we characterise the reversibility of the

evolution of a system exposed to ill-determined environmental forces. Whereas macroscopic

systems admit no reversibility of behaviour in these circumstances, and obey a �rm require-

ment that the entropy production be non-negative, small systems can undergo �uctuations

that allow them to retrace their steps, and such events give rise to negative entropy produc-

tion. The modern formulation of the second law of thermodynamics can accommodate such

behaviour.
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In the OU model, if the starting-point coincides with the equilibrium level (i.e. where the

force �eld vanishes) then the distribution of entropy production is the K-distribution, express-

ible in terms of the Kν Bessel function. Otherwise the best route to obtaining the pdf is to use

the inverse Fourier integral, as the moment-generating function is known in closed form. This

is true regardless of dimension. The convenience of these results as well as the centrality of the

OU model justi�es the effort devoted to understanding it here. The result for a drifted Brown-

ian motion (limit of zero mean reversion) is not materially simpler and is most easily found by

the algebra of the OU derivation, suggesting that the OU process is the right way to approach

this special case.

For nonlinear force �elds (non-quadratic potentials), numerical simulation methods are

required, together with a new and powerful analytical approximation to the transition den-

sity; the necessity for this machinery is particularly clear in problems of dimension > 1.

While potentials that are qualitatively similar to the OU model—in effect, unimodal poten-

tials—produce qualitatively similar distributions of entropy production, investigation of the

�ner details requires numerical techniques. Further, when the divergence from the OU case

is substantial, as for example in the double-well potential considered earlier, one has no

choice but to go down the numerical route. This justi�es the effort devoted in the paper to

numerico-analytical work.

An obvious conclusion from any of our graphical results is that some realisations of the

dynamics violate the classical thermodynamic behaviour, in the sense that there is always pos-

itive probability of negative entropy production.Another general result is that as time advances

there is a shift to the right in probabilitymass of the entropy production,which is to be expected

from the integral �uctuation theorem. We also note that the pdf of entropy production often

contains singularities, and that these are sometimes softened as time progresses; they are also

less pronounced in higher-dimensional systems. The explicit pattern of entropy production can

be decidedly complex and problem-speci�c.

One area for further work is improving the approximation to the Fokker–Planck equation,

following where [26] left off. There is also the problem, as identi�ed at the end of section 4.1,

of nonconservative systems, i.e. those not exhibiting detailed balance. Also, we could consider

more complex dynamics: an obvious idea is to incorporate jumps in both directions, thereby

considering so-called Lévy processes. Typically these are considerably more dif�cult to anal-

yse than simple diffusions, as the forward equation is no longer a parabolic PDE but instead

an integro-differential equation. A general introduction to such processes is provided by [46],

and [47] shows how to use calculate certain functionals of Lévy processes, as a way of gener-

alising the Brownian motion. There is, therefore, a broad scope for further work in this �eld,

and we hope that the ideas demonstrated herein will provide fresh insight into stochastic ther-

modynamics, and allow concrete results to be obtained on dif�cult and analytically intractable

models of the world.
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