
IEEE TRANS. ON CSVT, VOL. , NO. , 2020 1

Domain Fingerprints for No-reference Image
Quality Assessment

Weihao Xia, Yujiu Yang, Member, IEEE, Jing-Hao Xue, Jing Xiao, Member, IEEE

Abstract—Human fingerprints are detailed and nearly unique
markers of human identity. Such a unique and stable fingerprint
is also left on each acquired image. It can reveal how an image
was degraded during the image acquisition procedure and thus
is closely related to the quality of an image. In this work, we
propose a new no-reference image quality assessment (NR-IQA)
approach called domain-aware IQA (DA-IQA), which for the first
time introduces the concept of domain fingerprint to the NR-IQA
field. The domain fingerprint of an image is learned from image
collections of different degradations and then used as the unique
characteristics to identify the degradation sources and assess the
quality of the image. To this end, we design a new domain-aware
architecture, which enables simultaneous determination of both
the distortion sources and the quality of an image. With the
distortion in an image better characterized, the image quality can
be more accurately assessed, as verified by extensive experiments,
which show that the proposed DA-IQA performs better than
almost all the compared state-of-the-art NR-IQA methods.

Index Terms—No-reference image quality assessment, domain
fingerprints, generative adversarial network

I. INTRODUCTION

NO-reference image quality assessment (NR-IQA) [1–4]
is a fundamental yet challenging task that automatically

assesses the perceptual quality of a degraded image without
the corresponding reference for comparison. It serves as a
key component in low-level computer vision, since in many
applications it is difficult or even impossible to acquire the
non-distorted image as reference to evaluate the quality of a
distorted image. The ill-posed nature of NR-IQA is particularly
pronounced for the absence of the prior knowledge about
distortion form.

Numerous efforts [5–12] have been made to extract powerful
features to represent images and image degradations. Tradi-
tional hand-crafted feature based methods usually leverage
natural scene statistics (NSS) [2, 10, 11] and learning-based
metrics [7–9]. For example, Saad et al. [11] leverage the
statistical features of discrete cosine transform (DCT) for
blind image quality assessment. Mittal et al. [2] propose to
extract NSS features in the spatial domain to estimate the
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image quality. Ye et al. [7, 8] propose codebook representation
approaches to predict subjective image quality scores by
support machine regression (SVR). These hand-crafted features,
however, lack flexibility and diversity for representing complex
diverse degradations.

In recent years, deep learning methods achieve promising
results in NR-IQA. Due to the extremely limited training
datasets, many methods use various data augmentation or multi-
task strategies to better exploit the power of Deep Neural
Networks (DNNs). Some methods [13–15] focus on simulating
the behavior of Human Visual System (HVS) by Generative
Adversarial Networks (GANs). Specifically, Lin et al. [13]
propose a discrepancy-guided quality regression network to
encode the difference between distorted image and hallucinated
reference to make precise prediction. Ren et al. [14] propose the
restorative adversarial net, i.e., the restorator reconstructs the
non-distorted patches while the discriminator tries to distinguish
the restored patches from the pristine distortion-free ones, and
the evaluator takes the distorted patch and the restored patch as
inputs and predicts a perceptually quantified score. However,
these methods treat images of different distortions the same
and the discriminative representations of distortions are under-
explored.

Different types of distortion change distortion-free images
into different distorted versions, leading to significantly differ-
ent visual perception. As shown in Figure 1, the image quality
depends on the distortion type and level. Some previous NR-
IQA methods [16, 17] try to evaluate the image quality by
considering the information of the distortion, but most of them
simply use the distortion information by adding a classification
to identify the distortion.

To address the above drawbacks, we propose the domain-
aware no-reference image quality assessment (DA-IQA), which
exploits the domain fingerprints for image quality assessment.
A domain here is defined as the images with the same type and
similar levels of distortion. Similar to human fingerprints, a
unique and stable fingerprint is also left on each acquired
image. It can reveal how an image was degraded during
the image acquisition procedure and thus is closely related
to the quality of an image. To get domain fingerprints, we
design a novel domain-aware architecture to get disentangled
representations for different domains. These representations
are used as detailed and unique markers to better express
particular degradation information, as shown in Figure 2. More
specifically, a degraded image can be decomposed as the image
content together with the degradation. We disentangle the image
content and degradation features from degraded images to
more accurately encode degradation information into the image
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Fig. 1. The two aspects of image quality. The quality of an image is strongly
linked to its distortion type. The degradation arises from the specific distortion,
and the image quality depends on the distortion type and level. Higher score
denotes worse quality (DMOS, range [0,100]).

quality assessment framework. The disentangled representations
for different domains would be discriminated significantly well
in high dimensional feature space. Furthermore, instead of
adding a classification layer as in [16, 17], benefiting from the
design of domain-aware network architecture, DA-IQA can
also identify the distortion type of an image simultaneously.

Our contributions are summarized as follows:
• We propose the domain-aware no-reference image quality

assessment (DA-IQA), which for the first time introduces
the discriminative disentangled representations for differ-
ent types of distortions to image quality assessment.

• Our method can also identify the distortion type of an
image, and use the distortion type and quality score to
characterize the image quality.

• Our method achieves superior performance on popular
IQA datasets to state-of-the-art methods.

II. RELATED WORK

A. No-Reference Image Quality Assessment

The existing studies on NR-IQA can be broadly classified
into two categories: designing hand-crafted features [1, 2, 10,
11] and learning discriminant visual features automatically [7–
9]. The first category of methods typically use a two-stage
framework, which performs the distortion identification and
the distortion-specific quality estimation accordingly. However,
Mittal et al. [2] have shown that such two-stage methods are
not superior to the distortion-blind approaches. The second
category of work attempts to learn discriminant visual fea-
tures automatically without using hand-crafted features. Ye et
al. [7, 8] construct a small yet accurate codebook to look
up the proper features. Kang et al. [5, 16] and Bosse et
al. [6] adopt deep neural network to extract features from
the raw input and perform regression to estimate perceptual
scores. The above NR-IQA methods can be summarized as
feature extraction and regression based only on distorted images.
However, according to the free-energy theory [18], HVS tends
to restore the distorted image before quality assessment. Despite
building NR-IQA models based on the free-energy theory,
[3, 19] restore the distorted image with a linear autoregressive
model, which is not capable of producing a satisfactory result

when the input suffers from high-level distortion and therefore
may not be consistent with HVS. Lin et al. [13] and Ren et
al. [14] simulate the behavior of HVS by using generative
adversarial networks (GANs) to generate the corresponding
restored counterparts as reference. Ren et al. [14] propose
the restorative adversarial net and Lin et al. [13] propose a
discrepancy-guided quality regression network to encode the
difference between distorted image and hallucinated reference
to make precise prediction. However, their methods do not
exhibit the capability of disentangling and characterising
discriminative latent representations for different degradations,
which is one of our key contributions.

B. Representation Disentanglement

Many recent works on disentangled representation aim to
learn an interpretable and transferable representation. For
example, Denton et al. [20] separate time-independent and
time-varying components for long-term video prediction. Some
studies [21–23] focus on disentanglement of content and style
to achieve multi-domain image translation. It is difficult to
define content and style explicitly, and different studies adopt
different definitions for their specific tasks. Liu et al. [24]
propose a unified model that learns disentangled representation
for describing and manipulating data across multiple domains.
For image restoration, Lu et al. [25] disentangle the content
and blur features from blurred images. Different from [25], we
disentangle the content and discriminative representations of
multiple degradations. We use the content features to restore
images and use the discriminative representations for NR-IQA.

C. Image Fingerprint

Digital fingerprint is a signature that could be used to identify,
track, monitor and monetize images by converting their content
into compact digital asset or impression. Prior digital fingerprint
techniques focus on detecting hand-crafted features for device
fingerprints [26]. Recently, [27] introduces this concept to the
image forensic field and show their application to the GAN
source identification. Based on that, [28] replaces the hand-
crafted fingerprint formulation with a learning-based one, and
classify an image as real or GAN-generated by learning GAN
fingerprints of different GAN models.

D. Domain-Aware Applications

The word Domain-aware mostly occurs in the NLP applica-
tions and its meaning varies from case to case. For example,
[29] propose a domain-aware dialog system, which aims to
maintain a fluent and natural conversation within the domain
as well as during switching of domains. The domain in this
case refers to the topic or theme of the conversation. Slightly
different, [30] refer domain to a specific field such as retail,
travel and entertainment, and introduce the task of multimodal
domain-aware conversations.

A domain in our work refers to a collection of images
with certain degradation. The process of image restoration can
be formulated as the translation from the degraded domain
to the pristine domain. Thus our work is mostly related to
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Fig. 2. Illustration of domain fingerprints. We use t-SNE [32] for visual
comparison between the entangled features (left) and our fingerprint features
(right), for degradation representations.

multi-domain image translation. Specifically, [31] recently
proposes a unified model to achieve multi-domain image-to-
image translation. [24] proposes a model that is able to perform
continuous cross-domain image translation and exhibits ability
to learn and disentangle desirable latent representations.

In this work, we demonstrate the existence and uniqueness
of domain fingerprints, that signify disentangled discriminative
representations of different degradations, for image quality
assessment tasks.

III. OUR APPROACH

A. Problem Formulation

Given a distorted image Id, our goal is to learn a mapping
f : Id → s, in which s ∈ R+ denoted the predicted quality
score of Id and should be consistent with the result of Mean
Opinion Score (MOS). To simulate the Human Visual System
(HVS), we first restore degraded contents as reference. Assume
in a dataset, there are n domains {D1,D2, · · · ,Dn} of images.
Each domain represents a collection of images with certain
degradation or distortion. For each image Id in a domain D,
it can be represented as the combination of pristine image
Igt and a certain distortion d, i.e., Id = Igt ⊗ d. Our goal
is to disentangle the representation d of a distorted image Id
to get the restored image Ir consistent with Igt, and use this
domain-aware distortion pattern to obtain image quality score
s under the supervision of ground truth human visual quality
score sgt.

B. Overview of the Proposed Approach

The framework of our proposed DA-IQA is demonstrated
in Figure 3. As shown, given several collections of images
with different types and levels of degradations, referred to as n
domains, an image Id is randomly selected from one domain,
the generator G tries to produce an image indistinguishable
with the real pristine image to the image discriminator D.
At the same time, the domain discriminator Dc tries to
recognize the domain label ci of representation and also
reacts on the generator to further disentangle discriminative
features for different degradations. After the convergence of
restoration, we further train a regression network by using
the high-level domain-aware distorted representation (domain
fingerprint) and the obtained restored images Ir to get the

desired quality score s. The aforementioned processes are
implemented by two corresponding modules, the domain-aware
image restoration network and the hallucination-guided quality
regression network, respectively, as shown in Figure 3.

C. Domain-Aware Image Restoration Network

The overview of proposed domain-aware image restoration
network (DA-Restore) is shown in Figure 4. This DA-Restore
module takes the distorted image as input and aims to produce
the corresponding restoration. Meanwhile, the model tries to
disentangle the distorted representation of specific degradation
from the content. The restored image could act as a hallucinated
reference for the distorted image, which compensates the
absence of true reference information and simulates the
behavior of the human visual system. Furthermore, due to
the design of domain awareness, it determines the distortion
type of the input distorted image.

1) Latent Feature Loss: The latent feature loss aims to
penalize the latent representations from two aspects. To learn
disentangled representation across domains, we use the first
term Lkl = KL(q(z|x)‖p(z)) to calculate the Kullback-Leibler
divergence, which makes the latent code z close to a prior
Gaussian distribution p (z). However, this term alone cannot
guarantee the disentanglement of domain-specific information
from the latent space, since the generator recovers the distorted-
free images simply from the representation z without using
any domain information.

To address the above problem and achieve simultaneous
training of multiple domains with a single model, we extend
the loss by adding a domain classification loss term, to eliminate
the domain-specific information from the representation z.
We assign a unique label for each domain, and introduce
an auxiliary domain classifier which tries to distinguish the
latent representations z from different domains.

Typically, latent representation z can be learned directly
from the images through an encoder-decoder architecture. The
encoder extracts features from images and the decoder uses
these features to reconstruct the images. The latent feature loss
is used to force the encoder to disentangle the content and the
degradation information. Without the latent feature loss, the
model can still learn a latent representation from the images,
but the obtained representation would be entangled as shown
in the left-hand panels of Figure 2 and Figure 6, since no
constraints are added on the disentanglement process.

Different from [31], which aims to translate facial attributes
among domains, image restoration transfers several domains
of different distortions into one single distortion-free domain.
Thus, we assign labels to representations instead of images.
More precisely, we introduce a domain discriminator Dc, which
takes the latent representation z in domain c as input and
aims to distinguish the predicted domain code vc from its real
domain code. In contrast, the encoder E tries to confuse Dc

from predicting the correct domain. The second term of latent
feature loss, named domain classification loss, can be defined
as

LclsE = −LclsDc
= −E[− logP (vc|E(xc)], (1)
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Fig. 3. The framework of the proposed DA-IQA. Given a dataset that contains several collections of images with different degradations (a), referred to as
n domains, we first randomly select a distorted image Id together with its specific domain label c from a certain domain D, the generator G of Domain-Aware
Image Restoration Network (b) aims to separate the distortion d from Id to get the restoration Ir , while the discriminator D tries to distinguish if the input
image is real or fake and the domain discriminator Dc recognizes the domain category (D and Dc are omitted from the framework for simplicity). The
original distorted image Id and its discrepancy map |Id −G(Id)| are fed into the Hallucination-Guided Quality Regression Network (c). The two images
are first through feature extractors to get their corresponding features fr and fd. The two feature extractors share the same weights. Then fr and fd are
concatenated with high-level domain-aware distortion representation f(H(Id)), which is extracted from the restoration network. The fused feature is regressed
to a patch-wise quality and weight estimation. The score of an image is the weighted average of all scores of its patches.

where z = E(xc) with xc denoting the input image, and
P is the probability distribution over domains c, which
is produced by the domain discriminator Dc. Ideally, the
latent representation z should contain distortion-free image
content information together with disentangled domain-specific
degradation information.

2) Perceptual Loss: From our preliminary experiments,
we observe some unpleasing artifacts in the restored images.
Motivated by [13], we add a perceptual loss [33] LP between
the ground-truth images Igt and the corresponding restored
ones Ir:

LP = E[
∑
i

1

Ni
‖φi(Ir)− φi(Igt)‖1], (2)

where φi denotes the ith layer of the feature maps extracted
from the pre-trained VGG-19 network, Ni is the number of the
selected layers. The features extracted from pre-trained deep
networks contain rich semantic information and are widely
used in learning-based image generation tasks. The perceptual
loss encourages the decoder G to generate images that match
ground-truth images perceptually.

Different from the per-pixel loss functions, the perceptual
loss compares high level differences such as content and
style discrepancies between images, instead of understanding
differences at a pixel level. The perceptual loss is a commonly
used loss function to provide accurate and photo-realistic
results.

3) Adversarial Loss: The VAE architecture tends to generate
blurry samples [34], which would not be desirable for practical
use. To get satisfactory image restoration from latent representa-
tion, we additionally introduce an image discriminator D, which
also enhances the ability of representation disentanglement from
the latent space. We define the objective functions LadvD and
LadvG for adversarial learning between image discriminator D
and image generator G as

LadvD = E[log(D(x̂))] + E[log(1−D(xc))],

LadvG = −E[log(D(x̂))],
(3)

where x and x̂ denote the input image and its restoration,
respectively.

4) Overall Training Loss: For stable training, high image
quality and considerable diversity, we use the least-squares
GAN [35] in our experiment. The total training loss functions
of the encoder E, decoder G, image discriminator D and
domain discriminator Dc are defined as

LE =λ1Lkl + λ2LP + LclsE , LDc
= LclsDc

,

LG =λ1Lkl + λ2LP + LadvG , LD = LadvD ,
(4)

where λ1 and λ2 are regularization parameters controlling the
importance of losses.

D. Hallucination-Guided Quality Regression Network

As shown in Figure 3, the DA-Restore module generates the
residual image for restoration. This residual image is different
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TABLE I
CROSS-VALIDATION ON TID2013 AND LIVE. OUR PROPOSED METHOD PERFORMS BETTER THAN ALMOST ALL THE OTHER STATE-OF-THE-ART FR-IQA

AND NR-IQA METHODS IN TERMS OF BOTH PLCC AND SROCC.

Category Method TID2013 LIVE
SROCC PLCC SROCC PLCC

FR-IQA

PSNR 0.889 0.847 0.880 0.805
SSIM [36] 0.856 0.867 0.918 0.780
FSIM [37] 0.963 0.932 0.952 0.822
VSI [38] 0.947 0.939 0.936 0.853

NR-IQA

DIVINE [1] 0.855 0.851 0.885 0.853
BLIINDS-II [39] 0.877 0.841 0.931 0.930

BRISQUE [2] 0.922 0.917 0.940 0.911
CORNIA [7] 0.903 0.917 0.913 0.888

CNN [5] 0.903 0.917 0.913 0.888
CNN++ [16] 0.843 0.804 0.928 0.897

DIQaM-NR [6] 0.933 0.909 0.960 0.972
RAN [14] 0.948 0.937 0.972 0.968
DA-IQA 0.952 0.929 0.977 0.975

Domain Classification

Real/Fake

Fig. 4. Overview of our proposed DA-Restore network. This module takes
the distorted image as input and aims to produce its corresponding restoration.
Meanwhile, the model tries to disentangle the discriminative representations
for different degradations.

from the concept of error map in FR-IQA, which represents
pixel-wise error between the distorted image and the reference.
To emphasize the difference, we refer to the residual image as
discrepancy map and use the original distorted image together
with the discrepancy map as input to acquire the desired quality
score. The NR-IQA problem is now formulated as a regression
by solving

θ̂ = argmin
θ

1

N

N∑
i=1

L(R(Iid,
∣∣Iid −G(Iid)∣∣), sigt), (5)

where R(·) denotes the regression network for predicting the
quality score,

∣∣Iid −G(Iid)∣∣ is the discrepancy map generated
by the DA-Restore module G, and sgt represents the ground
truth score.

Previous studies have shown that the quality results obtained
by methods based on HVS are greatly affected by the eligibility
of the restoration [13, 14]. An unqualified hallucination as the
reference would introduce a large bias by deteriorating the
gap between the distorted image and the restored one. To
alleviate this drawback and stabilize the quality regression, we
fuse the discrepancy information together with the high-level

information from the generative network as with [13]. Different
from their work, ours uses the domain-specific distortion
information.

Assume G has been trained. As shown in Figure 3, features
of the original distorted image and its discrepancy map, fr and
fd, are extracted by a CNN and are concatenated with the high-
level domain-aware distortion representation f(H(Id)), which
is extracted from the restoration network. H(Id) denotes the
feature maps of the distorted image, f(·) is a linear projection
to ensure that the dimensions of H and K are equal, and K
represents the feature maps that concatenate with H. Then the
fused feature is regressed to a patch-wise estimation of quality
and weight estimation, denoted by si and wi, respectively, and
wi is treated as the relative importance for each patch i.

The loss function of the patch quality estimation would be
formulated as

LR =
1

T

T∑
i=1

‖si − sgt‖1 , (6)

where si = R2(f(H(Id)) ⊕ K(Id,
∣∣Iid −G(Iid)∣∣)), R2 is the

fully connected layers of R(·), ⊕ denotes the concatenation
operation, and T is the number of patches.

We assign different weights for the respective patches and
use the normalized weights to estimate the quality score of
the whole image. The reason of integrating a branch of weight
estimation is that simply averaging all local quality scores
does not consider the effect of spatial variance of relative
image quality and perceptual relevance of local quality. The
two branches are parallel and share the same dimension. The
weight wi of each input patch i is calculated by activating the
output of weight estimation branch w′ through a ReLU and
adding a small stability term:

wi = max(0, w′) + ε. (7)

The final image quality score ŝ is thus

ŝ =

T∑
i

wisi. (8)
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E. Network Architecture

For the domain-aware image restoration network, inspired
by recent image translation studies, our generators follow an
encoder-decoder architecture similar to that in [24]. Given depth
d = 5, the ith layer of Encoder E operates on 4 × 4 spatial
regions with a stride 2 and produces a feature map with size of
{64×2i−1}di=1, i.e.,16, 128, 256, 512, 1024, respectively. Each
convolutional layer is followed by Instance Normalization [40],
and Leaky ReLU are utilized. Generator G follows a reversed
symmetrical architecture of E. Residual learning is adopted
because it has been shown effective for image processing tasks
and helpful on convergence. That is, the generator only learns
the difference between the input image and the ground truth
image. The domain discriminator Dc (discriminator with an
auxiliary domain classifier) is built on top of the discriminator
D.

For the hallucination-guided quality regression network, the
domain-aware distortion representation is extracted from the
well-trained restoration network and acts as compensation for
IQA. The hallucination-guided quality regression network takes
the distorted patch and the corresponding restored residual patch
as input. Feature representations fr and fd are extracted by the
same layers and fused with obtained feature map z. The fused
feature vector is then fed into two branches for estimating
perceptual score si and weight wi, respectively.

IV. EXPERIMENTS

In this section, we conduct several experiments to test the
performance of our proposed method on various IQA bench-
marks. We pre-train DA-IQA on Waterloo Exploration [41]
and perform cross validation on TID2013 [42] and LIVE [43].

A. Datasets and Evaluation Protocols

1) TID2013: TID2013 includes 25 distortion-free reference
images and 3000 distorted images. These images are created
from references with 24 types and 5 levels of distortions,
ranging from additive Gaussian noise to Chromatic aberrations.
Every image is annotated with Mean Opinion Scores (MOS),
which is produced by several observers in subjective tests. The
obtained MOS has to vary from 0 to 9 and its larger values
correspond to better perceptual quality. Its wide range makes
it one of the most comprehensive IQA databases.

2) LIVE: LIVE consists of 29 reference images and 779
distorted samples with 5 distortion types including Fast Fading,
Gaussian Blur, White Noise, JPEG Compression and JP2K
Compression. Each image is provided with Differential Mean
Opinion Scores (DMOS), ranging from 0 to 100. Lower DMOS
means higher perceptual quality. DMOS value of zero indicates
the image is distortion-free.

3) Waterloo Exploration: Waterloo Exploration contains
4744 pristine natural images and 94880 distorted images.
The distorted images are generated by MATLAB with four
distortion types and five levels. Compared to TID2013 and
LIVE, Waterloo Exploration has much larger amounts of
images, thus it also has a great diversity of image content.
The four types, i.e., JPEG Compression, JP2K Compression,
Gaussian Blur and White Noise, are also considered the most

common distortion types and are covered both in TID2013 and
LIVE.

4) Evaluation Metrics: Following most previous works [5,
6, 14], the performances on above datasets are evaluated
by two common metrics for model evaluation: the Linear
Correlation Coefficient (LCC) and the Spearman’s Rank
Order Correlation Coefficient (SROCC). LCC is a measure
of the linear correlation between the ground-truth and model
prediction, which is defined as

LCC =

∑N
i=1 (yi − yi)

(
ŷi − ŷi

)√∑N
i=1 (yi − yi)

2
√∑N

i=1

(
ŷi − ŷi

)2 , (9)

where yi and ŷi denote the means of the ground truth and
predicted score, respectively. SROCC measures the prediction
monotonicity between the ground-truth and model prediction,
which could be formulated as

SROCC = 1−
6
∑N
i=1 (vi − pi)

2

N (N2 − 1)
, (10)

where N represents the number of distorted images, vi, pi are
the positions of ŷi, ŷi in the ranking sequences. The SROCC
measures the monotonic relationship between the ground-truth
and estimated IQAs while the PLCC is a measure of the linear
correlation between the ground-truth and predicted quality
scores. Higher SROCC score means higher monotonicity and
higher PLCC score represents higher linear correlation, between
the ground-truth and predicted quality scores.

B. Implementation Details

All the training images are randomly sampled from the
original images of size 256× 256 with stride 96. We train our
model with Pytorch on the GeForce GTX 1080Ti with a batch
size of 32. We apply Adam [44] solver with parameters of
learning rate 0.0002, β1 = 0.5, β2 = 0.999. For domain-aware
image restoration, the weights λ1, λ2 are set as 5 and 100,
respectively. For hallucination-guided quality regression, we
split the TID2013 and LIVE datasets into 6:2:2 for training,
validation and test, respectively. Considering that perceptual
scores are not available in Waterloo Exploration, we provide a
score and weight for every distorted image patch by performing
FSIM [37], which is one of the state-of-the-art FR-IQA metrics.
These scores and weights serve as the ground truth label in
the following training process as in [14]. During the testing of
image quality assessment, we extract overlapped patches from
each test image at a fixed stride and calculate the weighted
scores of all patches as the final quality score.

C. Cross Validation on TID2013 and LIVE

We firstly train the domain-aware image restoration module
on Waterloo Exploration, then train the hallucination-guided
quality regression on TID2013 and LIVE to perform cross
validation, respectively. Since Waterloo Exploration contains
only four distortion types, we train and test DA-IQA on these
following types: Gaussian Blur, White Noise, JPEG and JP2K,
following the same setting as in [14]. As shown in Table I,
the proposed DA-IQA performs better than almost all the



IEEE TRANS. ON CSVT, VOL. , NO. , 2020 7

D
M
O
S

D
M
O
S

D
M
O
S

D
M
O
S

D
M
O
S

D
M
O
S

D
M
O
S

D
M
O
S

Fig. 5. The scatter plot of MOS values with respect to objective values on the LIVE dataset. The blue “+” represents one distorted image and the black curves
are obtained in the curve fitting process. The blue “+” of our method gather evenly and close to the black curve and the curve also exhibits almost a straight
line, which manifests the better correlation between the scores given by our method and the subjective judgements for the image quality.

other state-of-the-art FR-IQA and NR-IQA methods in terms
of both PLCC and SROCC. Furthermore, our model outputs
simultaneously quality estimation and distortion identification.
As shown in Table II, our method also wins the distortion
identification task compared with other distortion-identification
IQA methods [4, 16]. Table III shows the confusion matrices
produced by our method on the LIVE dataset. The column and
the raw contain ground truths and predicted distortion types,
respectively.

For visualization, we also provide the scatter plot of
subjective MOS values with respect to objective values on the
LIVE database in Figure 5, in which we denote the distorted
images with blue “+” and the black curves are obtained in the
curve fitting process as in [45]. One can see the blue “+” of
our method gather evenly and close to the black curve and the
curve also exhibits almost a straight line, which manifests the
better correlation between the scores given by our method and
the subjective judgements for the image quality.

TABLE II
PERFORMANCE OF DISTORTION IDENTIFICATION ON 5 COMMON

DISTORTIONS OF LIVE AND 24 TYPES OF DISTORTION ON TID2013.

Method Accuracy
LIVE TID2013

CNN++ [16] 0.925 0.819
MEON [4] 0.912 0.859
DA-IQA 0.942 0.937

D. Results on More Distortion Types

We show results on four distortions in Section IV-C, to
demonstrate the scalability of our domain-aware framework
when handling more distortion types, we further train and
test on the full TID2013 dataset. For pre-training, as in the

TABLE III
THE CONFUSION MATRICES PRODUCED BY OUR METHOD ON THE LIVE
DATASET. THE COLUMN AND THE RAW CONTAIN GROUND TRUTHS AND

PREDICTED DISTORTION TYPES, RESPECTIVELY.

Category JP2K JPEG WN BLUR Pristine

LIVE

JP2K 0.915 0.010 0.000 0.023 0.032
JPEG 0.048 0.919 0.000 0.022 0.011
WN 0.000 0.000 1.000 0.000 0.000

BLUR 0.059 0.007 0.000 0.926 0.008
Pristine 0.007 0.013 0.000 0.034 0.950

previous studies [4, 46], we reproduce 17 out of a total of
24 distortion types in TID2013 and apply them to the 840
high-quality images. For the distortions we did not reproduce
(i.e., #3, #4, #12, #13, #20, #21, #24), we fine-tune from other
distortions. We follow the experimental setting as used in [46]
and the average SROCC of all the experiments performed 10
times is reported in Table IV, where ALL means testing all
distortions together. From Table IV, several patterns can be
observed. First, our proposed DA-IQA outperforms previous
models by a clear margin, which strongly demonstrates the
effectiveness of domain fingerprints. Second, the DA-Restore
has learned domain-aware features, which are fed into the
subsequent module to get the desired score. To some extent,
image restoration and image quality assessment are inherently
consistent. The features learned during the restoration can not
only be used to reconstruct distort-free images but also contain
the degradation type and level information of given images
that can be further processed to get the quality score. However,
it is hard to obtain satisfactory results by directly training a
deep network on IQA data due to the data scarcity. Thus we
pre-trained the DA-Restore module on other large-scale high-
quality datasets to learn the domain-aware features of different
degradations (domain fingerprints) and fine-tuned the quality
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regression module on accurate IQA scores.

E. Feature Disentanglement Visualization

To demonstrate the ability for disentanglement and transfer-
ability of learned features, many works [24, 47] conduct feature
visualization with t-SNE [32]. Similarly, we simultaneously
perform feature disentanglement of distortions at different
domains and show the results in Figure 6. To be more specific,
we trained the DA-Restore module alone with the DIV2K
dataset [48] aiming to restore images of multiple degradations
in one model. The DIV2K [48] is often used in the image
restoration task as the augmented training dataset. Each color
indicates a different domain, i.e., noisy images with σ 15, 25,
30, 50 and 70, JPEG compressed images with quality factor
10 and 20, and low-resolution images with factor 2, 3 and
4. As shown, features of images from different domains are
discriminated significantly well.

Fig. 6. Feature visualization (a) without and (b) with domain-aware mechanism.
Better view in color.

F. Fingerprint Visualization

In Section II-B and Section IV-E, we describe how to
learn and analyze the domain fingerprint which are implicitly
represented in the feature domain. To help better understand the
domain fingerprints, following the similar spirit to [27, 28], we
explicitly represent them in the image domain by introducing
the image fingerprint F Iim and the model fingerprint F dmod. The
image fingerprints are defined as the reconstruction residual,
and the domain fingerprints are learned simultaneously from
each domain. The response is simply defined as pixel-wise
multiplication of two normalized images F Iim � F dmod.

As shown in Figure 7, we can see that images from different
degradations possess different fingerprint patterns. Their pair-
wise interactions are shown as the confusion matrix. Different
from the confusion matrix in Table III, which compares
final predicted distortion types and ground truth labels, this
confusion matrix is image fingerprint responding to model
fingerprint. Ideally, the image fingerprints should maximize
responses only to their own domain fingerprints. The results in
Figure 7 are not visually and perceptually obvious. This can
be due to two reasons: a) Incomplete feature disentanglement.
As emphasized in [49], during feature disentanglement, the
degradation information extracted from a single image contains
some more information rather than only generalized fingerprint
of image collections. In the training phase, the model may
extracts some content features as degradation fingerprints

incorrectly, which means that the fingerprints still contain some
general shared image content. b) The reconstruction error. We
define the reconstruction residual as the image fingerprint. It is
convenient for visualizing and understanding implicit features.
However, the reconstruction results of our DA-Restore module
could not treat to the same extent as the final restoration. Our
goal is to learn and analyze useful feature for image quality
assessment instead of restore images. Nonetheless, an improved
strategy for thorough disentanglement [49] and reconstruction
is our future work.

Fig. 7. Visualization of model and image fingerprint samples. Their pairwise
interactions are shown as the confusion matrix. It is simply defined as pixel-
wise multiplication of two normalized images.

G. Ablation Study

To demonstrate the efficacy of the key components of our
method for the performance, we conduct several ablation
experiments on TID2013, in which we remove perceptual loss,
adversarial learning, high-level semantic fusion, or domain
classification and test the performance of the remaining
framework by comparing both SROCC and LCC results, as
shown in Table V.

1) Domain Classification: To show how “domain classifica-
tion” contributes to the performance, we remove the domain
classification mechanism. Domain classification mechanism is
a crucial component to make our approach “domain-aware”.
As illustrated in Figure 6, without domain classification,
the representation disentanglement would be only separation
of content and degradation. The representations of different
degradations are still entangled and no discriminative features
of certain degradation are learned. The results in Table V show
that the discrimination of different degradations can actually
boost the performance of the IQA task.

2) High-Level Semantic Fusion: The two aforementioned
mechanisms contribute to the IQA performance by indirectly
improving the quality of restored reference. When the restora-
tion is unqualified, a large bias would be introduced and lead
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TABLE IV
PERFORMANCE EVALUATION (SROCC) ON THE ENTIRE TID2013 DATASET.

Method #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12 #13
BLIINDS-II [39] 0.714 0.728 0.825 0.358 0.852 0.664 0.780 0.852 0.754 0.808 0.862 0.251 0.755

BRISQUE [2] 0.630 0.424 0.727 0.321 0.775 0.669 0.592 0.845 0.553 0.742 0.799 0.301 0.672
CORNIA [7] 0.341 -0.196 0.689 0.184 0.607 -0.014 0.673 0.896 0.787 0.875 0.911 0.310 0.625

RankIQA 0.667 0.620 0.821 0.365 0.760 0.736 0.783 0.809 0.767 0.866 0.878 0.704 0.810
DA-IQA 0.903 0.801 0.905 0.714 0.891 0.879 0.921 0.912 0.897 0.919 0.925 0.609 0.651
Method #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 ALL

BLIINDS-II [39] 0.081 0.371 0.159 -0.082 0.109 0.699 0.222 0.451 0.815 0.568 0.856 0.550
BRISQUE [2] 0.175 0.184 0.155 0.125 0.032 0.560 0.282 0.680 0.804 0.715 0.800 0.562
CORNIA [7] 0.161 0.096 0.008 0.423 -0.055 0.259 0.606 0.555 0.592 0.759 0.903 0.651

RankIQA 0.597 0.622 0.268 0.613 0.662 0.619 0.644 0.800 0.779 0.629 0.859 0.780
DA-IQA 0.477 0.695 0.438 0.674 0.709 0.852 0.713 0.897 0.808 0.774 0.868 0.828

TABLE V
ABLATION EXPERIMENT ON TID2013. “W/O M” MEANS OUR MODEL

WITHOUT COMPONENT M.

Ablation TID2013
PLCC SROCC

Proposed (Ours) 0.929 0.952
w/o Domain Classification 0.913 0.934
w/o Semantic Fusion 0.917 0.902
w/o Perceptual Loss 0.883 0.876
w/o Adversarial Learning 0.864 0.859

to deterioration of the gap between the distorted image and
the restored one. Thus we design high-level semantic fusion
to alleviate this drawback and stabilize the quality regression.
To show its impact, we remove the fusion module, and the
ablation results shown in Table V demonstrate the validity.

3) Perceptual Loss: We first evaluate the effect of perceptual
loss. The ablated model obtains an obvious performance decline
by removing the perceptual loss since such a loss helps to
restoration at the training process.

4) Adversarial Learning: To explore how adversarial learn-
ing contributes to the restoration performance, we further
evaluate the model without image discriminator and adversarial
loss. Removal of adversarial learning leads to significant
performance decline since the discriminator no longer propelled
the generator.

V. CONCLUSION

In this paper, we propose the domain-aware no-reference
image quality assessment (DA-IQA). The proposed DA-IQA
leverages domain fingerprints for image quality assessment.
These domain fingerprints reveal the disentangled discrimina-
tive feature representations of different degradations. Benefiting
from the design of domain-aware network architecture, our
method is also able to identify the distortion type of an image,
and use the determined distortion type and quality score to
characterize the image quality. Experiments on various standard
IQA datasets have shown its superiority over state-of-the-art
IQA methods.
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