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Abstract

Background: Cost-effectiveness analyses in patients with migraine require estimates of patients’ utility values and
how these relate to monthly migraine days (MMDs). This analysis examined four different modelling approaches to
assess utility values as a function of MMDs.

Methods: Disease-specific patient-reported outcomes from three erenumab clinical studies (two in episodic
migraine [NCT02456740 and NCT02483585] and one in chronic migraine [NCT02066415]) were mapped to the
5-dimension EuroQol questionnaire (EQ-5D) as a function of the Migraine-Specific Quality of Life Questionnaire
(MSQ) and the Headache Impact Test (HIT-6™) using published algorithms. The mapped utility values were used to
estimate generic, preference-based utility values suitable for use in economic models. Four models were assessed
to explain utility values as a function of MMDs: a linear mixed effects model with restricted maximum likelihood
(REML), a fractional response model with logit link, a fractional response model with probit link and a beta
regression model.

Results: All models tested showed very similar fittings. Root mean squared errors were similar in the four models
assessed (0.115, 0.114, 0.114 and 0.114, for the linear mixed effect model with REML, fractional response model with
logit link, fractional response model with probit link and beta regression model respectively), when mapped from
MSQ. Mean absolute errors for the four models tested were also similar when mapped from MSQ (0.085, 0.086,
0.085 and 0.085) and HIT-6 and (0.087, 0.088, 0.088 and 0.089) for the linear mixed effect model with REML,
fractional response model with logit link, fractional response model with probit link and beta regression model,
respectively.

Conclusions: This analysis describes the assessment of longitudinal approaches in modelling utility values and the
four models proposed fitted the observed data well. Mapped utility values for patients treated with erenumab were
generally higher than those for individuals treated with placebo with equivalent number of MMDs. Linking patient
utility values to MMDs allows utility estimates for different levels of MMD to be predicted, for use in economic
evaluations of preventive therapies.

Trial registration: ClinicalTrials.gov numbers of the trials used in this study: STRIVE, NCT02456740 (registered
May 14, 2015), ARISE, NCT02483585 (registered June 12, 2015) and NCT02066415 (registered Feb 17, 2014).
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Background
Cost-effectiveness analyses are often used by reimburse-
ment agencies to make decisions on whether to reim-
burse new healthcare interventions. Health-related
quality of life (HRQoL) values can be expressed as utility
scores, which capture social preferences for different
health states [1]. Often, studies with HRQoL outcomes
have repeated assessment over time and are longitudinal
in nature. Analysing longitudinal data can present
various challenges, such as missing data or the variations
in patient HRQoL over time [2]. Therefore, it is import-
ant to consider the appropriate model when analysing
longitudinal HRQoL data.
Regression models have been used to estimate

treatment-effect impact on HRQoL [3]. Simple linear
regression models, however, may not be optimal be-
cause health utility measures, including measures of
HRQoL, may be multimodal and have ceiling effects,
floor effects or skewed distributions [3–5]. In these
circumstances, multivariable analyses, such as linear
mixed models, may be more appropriate to estimate
the changes in HRQoL over time. Linear mixed
models, which are an extension of simple linear
models and contain both fixed and random effects,
can overcome the limitations associated with a longi-
tudinal data set [2]. Recent analyses have demon-
strated the suitability of the use of linear mixed
models to measure HRQoL in longitudinal cohorts in
a range of disease areas [2, 6]. Anink et al. applied
linear mixed models to examine HRQoL data in pa-
tients with juvenile idiopathic arthritis [6]. Wailoo
et al. demonstrated the use of bespoke mixed models
to model the 5-dimension EuroQol questionnaire
(EQ-5D) in patients with ankylosing spondylitis [4].
Griffiths et al. estimated utility values from mixed
regression models using EQ-5D data in patients with
chronic heart failure [2].
According to the National Institute for Health and

Care Excellence ‘Guide to the Methods of Technology
Appraisal’, EQ-5D is the preferred method for
measuring utilities [7, 8]. Utilities can be estimated
from individual patient-level data collected as part of
clinical studies (or extrapolated in the absence of
long-term data) [9]. However, the collection of EQ-
5D utilities is not always appropriate or possible in
every disease state, so other methods may be used [7,
8]. Limited guidance exists on approaches to extrapo-
lating outcomes such as utilities [10]. Applying exist-
ing algorithms is one of the options to derive utilities
for health-state estimates when they are not available
from the original data set [10, 11]. Extrapolation
methods should, however, consider processes that
influence utilities that may not be linked to clinical
events (e.g. past medical history of a patient or

changes in clinical practice over time that may affect
current practice) [10]. These considerations are par-
ticularly relevant to migraine, a chronic neurological
disorder with episodic attacks of headache and an
array of other symptoms [12]. Migraine is a debili-
tating disease in which utilities are typically measured
via the Health Utilities Index (HUI) or the EQ-5D
[13–16]. Migraine has considerable negative effects on
a person’s HRQoL, in addition to a high economic
burden due to high direct costs (physician visits,
emergency department visits, etc.) and indirect costs
(lost work days, decreased productivity at work, etc.)
[17]. Migraine can be divided into two categories
based on the number of days on which patients have
a headache in a 28-day month. Chronic migraine
(CM) is defined as experiencing ≥15 monthly head-
ache days (MHD) for ≥3 or more months, 8 of which
meet the criteria for migraine and/or respond to
migraine-specific treatments [12]. Episodic migraine
(EM) is defined as experiencing ≤14 MHD [18–20].
Reduction in the frequency of monthly migraine

days (MMD) is an important measure in the efficacy
of migraine prophylaxis; however, there are limited
data on the relationship between migraine frequency
and health status [15]. Furthermore, patient-level
data collected within the time frame of a clinical
study often cover too short a duration to assess the
likely costs and benefits that may yield over an indi-
vidual’s entire lifetime [10]. Preventive treatment can
reduce the burden and disability associated with mi-
graine [21]. Erenumab is a fully human monoclonal
antibody that specifically blocks the calcitonin gene-
related peptide receptor complex [22] and has been
shown to have a favourable safety and efficacy pro-
file in phase 2 and phase 3 clinical studies [23–25].
In 2018, erenumab was approved by the US Food
and Drug Administration for the prevention of
migraine in adults [26].
The pivotal erenumab clinical studies included

endpoints that recorded HRQoL data. This study
aimed to leverage the HRQoL data from these stud-
ies to estimate patient utility values associated with
specific levels of MMD. Various models for utilities
in the longitudinal framework were compared using
the observed utility data. Quantifying how the pri-
mary outcomes of the clinical studies, that is,
MMDs, relate to utility values is important to inform
cost-effectiveness analyses of preventive therapies
such as erenumab [27].

Methods
Data source
The populations assessed in the models are the po-
pulations of three pivotal erenumab clinical studies
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[23, 24, 28]. In the phase 3 (NCT02456740) STRIVE
(Study to Evaluate the Efficacy and Safety of Erenu-
mab in Migraine Prevention), 955 patients with EM
were enrolled. In the phase 3 (NCT02483585) ARISE
(A phase 3, Randomized, double-blind, placebo-
controlled Study to Evaluate the efficacy and safety
of AMG 334 in migraine prevention), 577 patients
with EM were enrolled and in the phase 2 study, 667
patients with CM were enrolled. The EM studies re-
cruited individuals with ≤14 MHD and 4–14 MMDs
per 28 days and the CM study recruited individuals
with ≥15 HDs per 28 days and > 8 MD. To generalize
the influence that MMD frequency has on patient
utility values, the patient-reported outcomes for the
placebo and erenumab (70 mg and 140 mg) arms of
the three studies were combined to produce a
complete migraine data set. Patient-level data were
obtained for the participants in each study, with the
following variables extracted for use in the analysis as
the covariate set: participant identification (ID), study
ID, age (continuous), sex (categorical), race (categor-
ical), MMD at baseline (count), MMD (count) and
treatment status (categorical). Covariates were selected
based on known associations and clinical advice from
experts in the field [29, 30]. Study-level effects were
originally included in the hierarchical models, but as
they demonstrated a negligible amount of variability
between the studies, this layer was removed. As the
objective of the analysis was to estimate patient utility
based on MMD across the full migraine spectrum,
combined models based on both EM and CM were
fitted. Furthermore, the trials were comparable in
terms of patients characteristics [31], therefore only
patients level data were retained in the multilevel
models presented here.

Data description
Patient utilities in the model were estimated as a
function of MMD. For this analysis, MMD refers to
the number of migraine days during a 28-day period.
In the three studies, patients’ HRQoL and daily
functioning were collected in a monthly assessment,
using the Headache Impact Test (HIT-6™) [32] and
the Migraine-Specific Quality of Life Questionnaire
(MSQ) [33]. The HIT-6 is designed to provide a
global measure of adverse headache impact. Via a
HRQoL questionnaire, the HIT-6 evaluates six
content areas: pain, role functioning, social function-
ing, energy/fatigue, cognition and emotional distress
[34]. The MSQ is a 14-item HRQoL questionnaire
that measures three dimensions of functional status
(role prevention, role restrictive and emotional
function) specific to migraine [33, 34]. Both the
MSQ and the HIT-6 have been shown to be valid

and reliable tools for measuring the adverse impact
of headache [32, 35]. Disease-specific patient-
reported outcomes from the studies were mapped to
the EQ-5D using published algorithms. The mapping
algorithms applied here have been previously
published by Gillard et al., and these algorithms have
been validated to support the analysis of onabotuli-
num toxin A (Botox®) trial data (see Online
Resource: Additional file 2: Table S1) [34]. The size
of the prediction error of the validated models was
assessed using root mean squared error (RMSE) and
mean absolute error (MAE).
In addition to the complete case analysis, a multivari-

ate imputation by chained equations (MICE; fully condi-
tional specification [FCS] algorithm) was performed with
the assumption that data were missing at random. The
MICE-FCS technique is a standard methodology for
dealing with missing data and is also appropriate in the
context of longitudinal data. The variables used in the
imputation model were mapped MSQ, mapped HIT-6,
treatment, baseline MMD, MMD, visit, age, sex and
race. This imputation assessed the robustness of the re-
sults according to the presence of missing data and was
constructed on a FCS [36] and based on 15 multiple im-
puted data sets [37].

Utility regression models
For this analysis, four models were assessed: (1) a linear
mixed effects model with REML, (2) a fractional re-
sponse model with logit link, (3) a fractional response
model with probit link and (4) a beta regression model.
Multilevel modelling approaches were chosen in order
to take account of the longitudinal framework of the
three trials, which included measurements collected
from the same participants at repeated intervals over the
course of the studies. These multilevel modelling ap-
proaches were used to enable the clustering of observa-
tions at the patient level.
In all models, the covariate set was examined. The

mean predicted utilities by MMD (and by treatment sta-
tus) were estimated with standard errors using the delta
method [38]. Multilevel modelling techniques estimate
the differences between individuals, acknowledging that
measurements from the same person over time are
much more likely to be correlated than measurements
from different individuals [39].
In all four models the covariates included were as

follows: treatment status (erenumab 70mg or 140 mg vs
placebo), age, sex (female vs male), race (black, Asian,
other vs white), MMD at baseline, MMD at each visit
and visit. The mean predicted utilities by MMD (and by
treatment status) were estimated with standard errors
using the delta method [38].
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Linear mixed effects model with REML
A linear mixed effects model has been estimated
with the REML method as a random-effects at the
patient level, to estimate subject-specific effects and
to provide distilled estimates of the specified covari-
ates (the fixed component of the model) and esti-
mates of the random variation according to the
individuals [2, 40]. Acknowledging that a standard
linear regression model (although hierarchical) is not
well suited for an outcome that has a delimited unit
interval such as utility values, which are typically
characterized by a truncated support at both ends of
the distribution (usually ranging between 0 and 1)
and with heteroscedasticity (i.e. the variance of the
residuals is not constant) as an integral part of such
limited dependent variables [41], models fitted under
the generalized linear model (GLM) framework have
been shown to produce better estimates than those
estimated by the linear model [42].

Linear mixed effects model with REML

E Uti j Xð Þ ¼ β0 þ β1Treatment J þ β2BaselineMMDi

þ β3MMDti þ β4Agei þ β5Femalei
þ β6Race

K þ β7Visit
T þ ui

Where t = 0, 4, 8, 12, 16, 20, 24a weeks and i = 1, 2,..,
2197 patients; J is erenumab 70mg, erenumab 140 mg
(vs placebo), K is black, other (vs white).

a16–24 weeks for EM studies only.

Fractional response models with a logit link function or a
probit link function
Another valid strategy for handling proportions data in
which zeros and ones may appear (as well as intermedi-
ate values) [43] is the fractional response model [44].
This model can be estimated via the GLM suite using
the logit link function (i.e. the logit transformation of
the response variable) or the probit link function [45].
Robust standard errors have been estimated allowing for
clustering at individual participant level.

Fractional response models with a logit link function or a
probit link function

E Utij Xð Þ ¼ Gðβ1Treatment J þ β2BaselineMMDi

þ β3MMDti þ β4Agei þ β5Femalei
þ β6Race

K þ β7Visit
T Þ

where G(.) is a probit or logit function.

Beta regression model
The fourth model fitted is a beta regression that is useful
to model continuous, 0–1 bounded and beta distributed
outcomes. In the data set for this analysis, outcomes

were constrained to have values higher than 0 and less
than 1. Because some patients had a mapped utility (EQ-
5D) value of 1, these values were decreased by 1.110e-16,
a marginal decrease to ensure minimal difference from
the original values. As for the fractional response
models, robust standard errors were estimated.
The density of the beta-distributed dependent variable

U conditional on covariates X can be written as

f U; μX ;φXð Þ ¼ Γ φXð Þ
Γ μXφXð ÞΓ 1−μXð ÞφX½ �U

μXφX−1 1−Uð Þ 1−μXð ÞφX−1

Where μX = E(Uti| X) is linked to the covariates set by
g(μX) (a logit function of the linear predictor described
above) and φX is the scale parameter of the conditional
variance of U.
Goodness of fit of the regression models was assessed

by RMSE, MAE and visual assessments.
All statistical analyses have been conducted using Stata

15 (StataCorp 2017 Stata Statistical Software, Release 15;
StataCorp LLC, College Station, TX, USA).

Results
Baseline characteristics
The analysis sample included data from 2199 pa-
tients. Characteristics of the patients from the three
studies are presented in Table 1. Baseline character-
istics were similar across the three studies. For
example, the average age was in the range 40.4–42.9
years across the three studies. The majority of
patients in all studies were white and female, as is
typical in migraine.

Validated mapping algorithms
In episodic migraine, the HIT-6 and MSQ algorithms
explained 8 and 14% of the variance, respectively, as
measured by adjusted R2, and had similar prediction
errors (RMSE of 0.32). In chronic migraine, the HIT-6
and MSQ algorithms explained 19 and 30% of the
variance, respectively, and had similar prediction errors
(RMSE of 0.33 and 0.32).

Comparison of regression outputs and utility values
Four regression models were fitted using mapped
utility values, MMD and treatment group (erenumab
70 mg, 140 mg and placebo), adjusting for age, sex,
race and baseline MMD in the various time periods
considered. Mapped utility values are described in
Table 2 and the distribution of the mapped utilities
values are shown in Additional file 1: Figure S1 HIT-6
mapped mean (standard deviation [SD]) utility values
were consistently higher than MSQ mapped mean
(SD) utility values for patients treated with erenumab
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70 mg and 140 mg, and for patients receiving placebo.
HIT-6 and MSQ mapped mean (SD) utility values in-
creased over time up to week 16 for patients treated
with erenumab 70 mg and 140 mg, and for patients
treated with placebo. MSQ and HIT-6 mapped mean
utility values were lowest in the 4 weeks before
randomization to treatment or placebo (week 0). Pa-
tients at week 0 were predicted to have MSQ mapped
mean (SD) utility values of 0.633 (0.163) and 0.617
(0.176) for patients treated with erenumab 70 mg and
140 mg, respectively, and 0.615 (0.173) for patients
receiving placebo (Table 2).
The predicted mean utility values by number of

MMD are shown in Figs 1and 2 after mapping from
MSQ and HIT-6, respectively. Mapped utility values
for erenumab patients were consistently higher than
for placebo patients with the same number of MMD.
All models tested showed similar fittings and fit the

observed data well (Figs 1 and 2). Because of the
different likelihood functions used for the four
regression models proposed in this analysis, the fit-
tings could not be compared via Akaike Information
Criterion (AIC) or Bayesian Information Criterion
(BIC).
The regression outputs for the utility values after

mapping from MSQ and HIT-6 are shown in Tables
3 and 4, respectively. In all models tested, the
treatment effect of erenumab 140 mg compared with
placebo was significantly higher when mapped from
HIT-6 (Table 4). Treatment with erenumab 140 mg
compared with placebo was also significantly higher
in all models tested when mapped from MSQ (Table
3). Treatment with erenumab 70 mg compared with
placebo was not significant when mapped from MSQ
or HIT-6 (Tables 3 and 4). Baseline MMD was
significant in all models tested apart from the linear

Table 1 Baseline characteristics of patients in the erenumab clinical trials [23, 24, 28]

Characteristic Episodic migraine
(NCT02456740)
STRIVE

Episodic migraine
(NCT02483585)
ARISE

Chronic migraine
(NCT02066415)

Placebo Erenumab
70 mg

Erenumab
140mg

Placebo Erenumab
70 mg

Placebo Erenumab
70 mg

Erenumab
140mg

Number of patients 319 317 319 291 286 286 191 190

Mean age, years (SD) 41.3 (11.2) 41.1 (11.3) 40.4 (11.1) 42.2 (11.5) 42.3 (11.4) 42.1 (11.3) 41.4 (11.3) 42.9 (11.1)

Sex, n (%)

Male 45 (14.1) 48 (15.2) 47 (14.7) 44 (15.1) 41 (14.3) 60 (21.0) 25 (13.1) 30 (15.8)

Female 274 (85.9) 269 (84.8) 272 (85.3) 247 (84.9) 245 (85.7) 226 (79.0) 166 (86.9) 160 (84.2)

Race, n (%)

White 276 (86.8) 280 (88.6) 293 (91.9) 259 (89.0) 259 (90.6) 268 (93.7) 176 (92.1) 184 (96.8)

Black 24 (7.5) 24 (7.6) 18 (5.6) 27 (9.3) 24 (8.4) 11 (3.8) 10 (5.2) 6 (3.2)

Other 18 (5.7) 12 (3.8) 8 (2.5) 5 (1.7) 3 (1.0) 7 (2.5) 5 (2.6) 0 (0.0)

MMD 8.2 ± 2.5 8.3 ± 2.5 8.3 ± 2.5 8.4 ± 2.6 8.1 ± 2.7 18.2 ± 4.7 17.9 ± 4.4 17.8 ± 4.7

Abbreviations: ARISE A phase 3, Randomised, double-blind, placebo-controlled Study to Evaluate the efficacy and safety of AMG 334 in migraine prevention, MMD
monthly migraine day, SD standard deviation, STRIVE Study to evaluate the efficacy and safety of erenumab in migraine prevention

Table 2 Mean utility (EQ-5D) values extrapolated from MSQ and HIT-6

Week,
mean
(SD)

Placebo Erenumab 70mg Erenumab 140mg

MSQ HIT-6 MSQ HIT-6 MSQ HIT-6

0 0.615 (0.173) 0.671 (0.136) 0.633 (0.163) 0.677 (0.125) 0.617 (0.176) 0.675 (0.145)

4 0.675 (0.161) 0.721 (0.135) 0.716 (0.142) 0.747 (0.125) 0.716 (0.154) 0.761 (0.147)

8 0.687 (0.160) 0.732 (0.137) 0.726 (0.141) 0.771 (0.133) 0.729 (0.153) 0.775 (0.147)

12 0.687 (0.160) 0.734 (0.139) 0.730 (0.146) 0.776 (0.134) 0.737 (0.144) 0.787 (0.145)

16 0.736 (0.120) 0.781 (0.119) 0.765 (0.111) 0.810 (0.122) 0.775 (0.094) 0.828 (0.114)

20 0.731 (0.127) 0.786 (0.128) 0.771 (0.100) 0.813 (0.121) 0.776 (0.093) 0.824 (0.114)

24 0.729 (0.129) 0.781 (0.132) 0.763 (0.111) 0.812 (0.122) 0.776 (0.091) 0.824 (0.114)

Abbreviations: EQ-5D 5-dimension EuroQol questionnaire, HIT-6 Headache Impact Test, MSQ Migraine-Specific Quality of Life Questionnaire, SD standard deviation
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model when mapped from HIT-6 (Table 3). RMSEs
were similar in the four models assessed (0.115,
0.114, 0.114 and 0.114 for the mixed linear effects
model with REML, fractional response model with
logit link, fractional response model with probit link
and beta regression model, respectively, when mapped
from MSQ (Table 3). MAE for the four models tested
were also similar when mapped from MSQ (0.086,
0.085, 0.085 and 0.085) and HIT-6 and (0.087, 0.088,
0.088 and 0.089) for the mixed linear effects model
with REML, fractional response model with logit link,
fractional response model with probit link and beta
regression model, respectively.

Multiple imputation analyses
The analyses based on the multiple imputed data sets
were substantially similar to the complete case analyses
for MSQ and HIT-6 (see Online Resource: Add-
itional file 3: Table S2 and Additional file 4: Table S3).
In the regression analyses, there were 10,977 and 10,971
complete case records, when mapped from MSQ and

HIT-6, respectively. There were similar proportions of
missing observations in the multiple imputed data sets
(200 [1.7%] and 205 [1.8%] when mapped from MSQ
and HIT-6, respectively) compared with the complete
case analysis (200 [7.5%] and 205 [7.5%] when mapped
from MSQ and HIT-6, respectively).
Not all patients completed all the scheduled visits: 25

(3.7%), 88 (9.2%) and 30 (5.2%) patients did not
complete the planned assessments in the phase 2 study
(which was planned for four visits), STRIVE (planned for
seven visits) and ARISE (planned for four visits),
respectively.

Discussion
Our analysis describes the assessment of longitudinal
approaches in modelling utility values that go be-
yond simple linear models. In all cases, utility values
decreased as the number of MMD increased, and
these associations were non-linear with potential
ceiling effects. The improvement in average utility
values over time in the placebo groups is consistent

Fig. 1 Estimated EQ-5D mean utility values by MMD frequency for erenumab and placebo, mapped from MSQ. Abbreviations: CI confidence
interval, EQ-5D 5-dimension EuroQol questionnaire, FRM fractional response model, MMD monthly migraine day, MSQ Migraine-Specific Quality of
Life Questionnaire, REML restricted maximum likelihood. Observed values with 95% CIs are represented by blue, green and red vertical lines for
erenumab 140 mg and 70mg and placebo, respectively. (a) Linear mixed effects model with REML, (b) FRM (logit), (c) FRM (probit), (d) Beta
regression model
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with the placebo effect on mean MMD frequency
observed in the clinical studies [23, 24, 28]. Consist-
ently, mapped utility values for patients treated with
erenumab 70 mg and 140 mg were higher than those
for participants treated with placebo with the same
number of MMD, although only the 140 mg dose of
erenumab was significant. This finding is consistent
with utility values applied in a previous economic
model for onabotulinumtoxin A, which assumed an
additional treatment effect of active treatment com-
pared with placebo [46]. This additional treatment
effect is most likely driven by improvements in mi-
graine duration and severity, that may not be fully
captured by the primary clinical endpoint, MMD.
All models tested showed very similar fittings,

although the beta regression model may be consid-
ered as the optimal candidate for longitudinal and
bounded data, because the beta regression model has
the flexibility of a beta distribution model and has
previously been used to model quality-adjusted life-
years in health economic studies [41, 47]. To deter-
mine the generalizability of this model, it would be

necessary to examine mapped utility values from
other study data.
Some limitations of the analysis have to be ac-

knowledged. Firstly, the HIT-6 and MSQ scores
were captured only monthly in the three clinical
studies. It may be beneficial to capture HRQoL data
more frequently to accurately capture patients’ ex-
periences within the 1-month time periods [34, 48].
This is particularly relevant, because time and other
factors can influence how individuals with migraine
can report their HRQoL [34]. Secondly, the use of
likelihood-based statistics such as AIC/BIC could
not be used to compare models with different likeli-
hood functions. The analysis is further limited by
the duration of the erenumab clinical studies: longer
studies may be able allow more robust models to be
fitted. Finally, because there were very similar
RMSEs between the models, it was important to as-
sess the non-linear associations between utilities and
MMD. In future studies, it would be useful to assess
any longer-term time trends, introducing a specific
fixed-effect covariate and assessing the potential

Fig. 2 Estimated EQ-5D mean utility values by MMD frequency for erenumab and placebo, mapped from HIT-6. Abbreviations: CI confidence
interval, EQ-5D 5-dimension EuroQol questionnaire, HIT-6 Headache Impact Test, MMD monthly migraine day, REML restricted maximum
likelihood. Observed values with 95% CIs are represented by blue, green and red vertical lines for erenumab 140mg and 70 mg and placebo,
respectively. (a) Linear mixed effects model with REML (b) Fractional response model with logit link, (c) Fractional response model with probit link
and (d) beta regression model
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interaction between treatment and MMD. Ex-
ploration of such models as response mappings to
predict the levels of utilities would be of interest.
Future studies that examine mapping from a
measure such as the Migraine Physical Function
Impact Diary, which is a daily, migraine-specific
measurement of patient-reported outcomes, would
also be worth considering [48].
The analysis described here has applications for

economic evaluations. Cost-utility analysis is widely
recognized as a useful approach for measuring and
comparing the efficiency of different health interven-
tions [49]. Furthermore, longitudinal approaches for
modelling utilities can be appropriate when consider-
ing economic evaluations because they can capture
changes in health utility over time. In using utility
values that are useful for decision-making bodies,
the robust findings of this analysis, consistent across
the models fitted, demonstrate the value of this data
for health economic evaluations for migraine preven-
tion and treatment.

Conclusions
Our analysis showed that all models fitted the
observed data well. Mapped utility values for patients
receiving erenumab were higher than those for
patients with the same number of MMD receiving
placebo, indicating that treating migraine may have
benefit beyond simply reducing the number of
migraines a patient experiences and may translate
into improvements in HRQoL. Linking patient utility
values to the number of MMD allows utility esti-
mates for different levels of MMD to be predicted,
for use in economic evaluations of preventive thera-
pies. More broadly, the analysis demonstrates the
application of different models for fitting utilities
from study data.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12955-019-1242-6.

Additional file 1: Figure S1. Distribution of mapped utilities for MSQ
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Headache Impact Test, MSQ Migraine-Specific Quality of life
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Additional file 2: Table S1. Mapping algorithm to estimate EQ-5D
utility values from HIT-6 and MSQ [34]

Additional file 3: Table S2. Multiple imputation outputs for MSQ.

Additional file 4: Table S3. Multiple imputation outputs for HIT-6.
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