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ABSTRACT

The aim of my PhD project was to examine the developmental expression and
functional significance of gap junctional communication in ectodermally derived
embryonic tissues (nervous system and epidermis) of the rat, with particular emphasis
on elucidating the role of gap junctions and putative mechanisms of gap junctional

regulation in the development of dorsal root ganglion (DRG) neurons.

In this study, immunohistochemistry in combination with the technique of the laser
scanning confocal microscopy (LSCM) with its PC-IMAGE image analysis programme
was used to determine the developmental expression of gap junction proteins
(connexins). Antisera specific to certain peptide sequences of the three major connexin
(Cx) types (Cx26, Cx32 and Cx43) were used. Gap junction-mediated intercellular
communication was assessed by observing the transfer of the low molecular weight
fluorescent dye, Lucifer Yellow CH (LY), from an intracellularly microinjected cell to
neighbouring cells under epifluorescence optics. In thick tissue, the extent of dye

transfer was visualized subsequently on the LSCM.

These immunohistochemical and dye-injection techniques were used to study connexin
expression and functional gap junctional communication in developing non-neural
ectoderm (predominantly flank epidermis) and in neural derivatives of ectoderm
(predominantly DRG neurons). A developmental study of flank epidermis revealed a
temporal increase in Cx26 and Cx43 from embryonic days 10 to 14 (E10-E14). LY
dye-coupling assays carried out in parallel were consistent with the
immunohistochemical analysis. The observed increases in connexin expression and

functional gap junctional communication coincide with the time period in which the



epidermis is transformed from a simple unilayer of ectoderm into an epidermal and

peridermal bilayer.

DRG neurons had previously been shown to be dye-coupled in small groups from E13-
E15, but during subsequent embryonic development, both the number of cells that
transfer dye and the mean number of cells in a coupled group decreased steadily
(Fulton, B.P. J. Physiol. 426: 122P, 1990). Immunohistochemical studies of these
developing neurons established that this decrease in dye-coupling was accompanied by

a decrease in expression of Cx26 and Cx43.

I also carried out in vitro experiments using explant cultures of DRGs and transverse
slices of embryos containing intact DRGs, to address questions about the mechanisms
controlling developmental regulation of gap junction expression. These results suggest
that nerve growth factor and possibly other target derived factors may play a role in

gap junctional protein regulation in developing DRG neurons.
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The aim of my PhD project has been to examine connexin expression and functional
gap junctional communication in cells of four ectodermally derived tissues: flank
epidermis, apical ectoderm ridge (AER), dorsal root ganglia and neural tube. Thus,
firstly, I will outline how these tissues are formed from the ectodermal germ layer
giving approximate times for each event in the rat. Secondly, I will briefly discuss the
rationale for examining connexin expression and gap junctional communication in the
four ectodermally derived tissues mentioned above. Finally, I will give an account of
the structure, biochemistry, physiological properties, modulation and roles of gap

junctions.

FORMATION OF ECTODERMALLY DERIVED TISSUES:- EPIDERMIS,
NEURAL TUBE AND DORSAL ROOT GANGLIA , WITH APPROXIMATE
TIMES GIVEN FOR THE RAT.

In mammals the epiblast of the bilaminar disc, through the process of gastrulation,
forms the three germ layers of the embryo proper (endoderm, mesoderm and
ectoderm) (E5.5-E6). Neural induction is generally thought to begin during
gastrulation and to involve the production of inducing signals from the mesoderm to
the ectoderm which instructs the ectoderm to change from a skin-forming to a neural
fate (Spemanﬁ, 1938). Dorsal mesoderm is thought to induce and pattern neural tissue
in a vertical manner as it involutes under the ectoderm during gastrulation (see Ruiz i
Altaba, 1993; 1994; Ruiz i Altaba and Jessel, 1993). Recent studies indicate that
noggin (see S"ﬁﬂar]:i,‘ 1994; Kelly and Melton, 1995) and follistatin (see Kelly and
Melton, 19\9;'5) induce neural tissue directly in the absence of mesoderm. It has been
postulated that neural induction involves the repression of signals that normally inhibit
the formation of neural tissue; in this context follistatin may inhibit activin thereby

inducing neural tissue (see Kelly and Meltofi, 1995). A further neuralizing signal is the

15



hepatoctye growth factor / scatter factor (HGF/SF) which is thought to promote neural
differentiation by evoking competence to respond to neural inducing signals or by

e

direct action (Kelly and Melton, 1995). \,,/

The neural plate forms as a result of these inductive events. It becomes elevated
laterally, forming the neural folds, and depressed centrally, forming the neural groove
(E6-8). These folds fuse at the midline, in a rostro-caudal sequence (neurulation ) to
form the neural tube (E8-9) (Fig.1.1). Cephalic regions of the neural tube dilate to
form the primary brain vesicles, whereas regions caudal to this form the future spinal
cord. Regional patterning of the neural tube is thought to be established by the
combined effects of vertical and planar signalling throughout gastrulation and

neurulation (see Fig. 1.2 and Chapter 5 for more detail).

As the neural folds fuse, cells at the lateral edge ‘of the folds delaminate from the
developing neural tube, and migrate through the surrounding mesenchyme (E10-E11).
These are known as neural crest cells (Fig.1.1) and give rise to diverse and numerous
derivatives, ranging from melanocytes and cranial cartilage to adrenal chromaffin cells

and the neurons and glial cells of the peripheral nervous system.

Neural crest cells are regionalized so that cells derived from different axial levels
follow distinct migratory pathways. At the level of the trunk, two migratory pathways
are present (see Fig. 1.3a). Neural crest cells migrate either ventrally through the
anterior half of the somites, along which precursors to the sensory and
sympathoadrenal precursors pass, or dorsally undemegth the ectoderm, as is the case
for melanocyte precursors (West\&), 1963; Serbedzi!jg et al., 1989) (E10-E13).

Premigratory cells often exhibit multipotentiality, but become progressively determined

during migration as a consequence of environmental cues ( see Bronner-Fraser, 1993).

16



1) .

3

12

'&

%'( 14

>>>>>>>>

$#(5'21!13

2

"(14 941

1



). +./. (1314 12% 94121( !')214 126'46 % !2 91 (2!2) '& 2 "(14

3 $1 13 %I1)(1$ !44" (11!2) 1 1)! 14 3 1'2 ('") 1 2'9" $#(5" 12
$1%>)1 ("41 1)D '@!'2) 6 (!314 H 12 1(('@ | 12% 94121( H !3G 1
1214 . ' % 1( 1 % 9!3 9( "$9 16 2 "('3'% ($. 2!$14 9'4 D 4
9'4 D (!) D H$' %!&! % &('$ '2!13 D +,,01.



1.

+.0H1I

H#I

1.

+.0H#I

9

H

( >%!$ 2 1'214 91 @15

L 34 (" '$D L2 "(14 "# D
L31"%14

[ #

H2$

¢ 31'2 1 46 4°'&
1 @15 '& 2 "(14 3¢ 12
L1%( 2'$ %"441(5 3 44 D

'& 2 "(14 3¢ $1)(1 1'2
‘& ("2G. L% ($1 '$ D L2' '3 '"(%D

L3 '% ($

("2G
% 1 % (!
L 5$91

L%'( 14 ('* )12)4!'1D L91)$ 2 3 44

L%'( '41 (14 91 @15.

11)(1$ 1%19 % &('$ ('22 (> (1 (D

L1'( 1D
D L(' (14D

1

144" (1 12) $1)(1

61 16
13 )12)411D
D L6 2 (14 91

+,,01

‘(5

@15D

6



Dorsal root ganglia (DRGs) form next to the neural tube (Fig.1.3b) in a metameric
manner, determined by the differential properties of rostral and caudal sclerotome
(E11-E12). The rostral sclerotome is not only permissive for neural crest migration
(Keynes and Stern, 1984; Rickman et al., 1985; Bronner-Fraser, 1986) but also
mitogenic for DRG precursor cells (Goldstein et al., 1990). It has recently been
discovered in chick that the neural crest is not the only source of cells which comprise
the sensory ganglia. A second wave of cells migrate away from the dorsal region of
the spinal cord to the spinal ganglia after neural crest migration is complete (E14)
(Shszna et al., 1995). This emigration occurs when cells of the dorsal spinal cord are
still undifferentiated, leaving the spinal cord at the level of the dorsal root entry zone

(DREZ) and migrating through the dorsal roots to the DRGs.

Clonal analysis has clearly demonstrated that early migrating neural crest cells are
either multipotential / bipotential progenitors or fully committed unipotential cells.
Newly formed DRGs may also contain some multi / bipotential progenitor cells either
of the glial lineage [Schwann and satellite cell precursors (Le Douarin et al., 1991)],
neuronal lineage [sensory and autonomic precursors (see Le Douarin and Smith,

1988)] or both.

At about the same time that neural crest cells take part in gangliogenesis, the
neuroepithelium of the neural tube begins differentiating to form primitive neuroblasts.
Differentiation occurs in a rostro-caudal and ventro-dorsal sequence (Altman and
Bayer, 1984), forming a zone adjacent to the germinal zone called the mantle layer,
consisting of neuronal cell bodies, and an outer marginal layer, consisting only of
neuroepithelial cell processes. The continual addition of neuroblasts to the mantle
layer (E11-E13), gives rise ventrally to the basal plate which will form the motor areas
of the spinal cord, and dorsally (E13-E16) to the alar plate which will form the sensory

areas of the spinal cord. The sulcus limitans marks the boundary between these two
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plates. An intermediate area will form between the alar and basal plates and give rise

to pre-ganglionic sympathetic neurons.

Initially the non-neural, surface ectoderm is a simple monolayer of cells (E8-E11),
which differentiates into a bilayer (E12-E14). However, as embryogenesis progresses,
it forms a highly differentiated, stratified epithelium called the epidermis. During
epidermal histogenesis some regions of epidermis become specialized instructive
epithelia which control the outgrowth and morphogenesis of underlying mesenchyme
e.g. the AER, epidermal facial primordia and odontogenic placode epithelia, whereas
other regions of epidermis, in the head region, form placode-derived components of
the eye, ear and nose and neurons of several cranial sensory ganglia, e.g vestibular and

nodose ganglia.

RATIONALE FOR CHOOSING THE FOLLOWING ECTODERMALLY
DERIVED TISSUES: FLANK EPIDERMIS, AER, DRGS AND NEURAL
TUBE

Ectodermally derived tissue can either be neural (peripheral and central nervous
system) or non-neural (instructive and non-instructive). Thus an example of
neuroectodermal tissue which forms peripheral nervous system (DRGs) and central
nervous system (neural tube) and an example of non-neural ectoderm which forms
non-instructive (flank epidermis) and instructive (AER) tissue were used as examples
to examine connexin expression and functional gap junctional communication in

ectodermally derived tissues during development.
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THE GAP JUNCTION

Ultrastructural analysis of the gap junction

Gap junctions were first visualized ultrastructurally in electron micrographs, as sites
where the plasma membranes of two apposed cells closely approach each other but are
separated by a small "gap" of 1-2nm (Robertson, 1963; Revel and Karmnovsky, 1967).
Freeze fracture replicas showed this structure to be a plaque-shaped, differentiated
region of the plasma membrane consisting of intramembrane particles (connexons) on
the P-fracture face and a complementary array of pits or depressions on the E-fracture
face. Each particle, or connexon, appeared to have a pore in its centre which was

especially well detected in deep etched preparations (Hirokawa and Heuser, 1982).

Further structural analysis of the gap junction has been made possible due to the
development of gap junction isolation procedures; this has permitted the use of such
techniques as negative stain (Casper et al., 1977, Unwin and Zampighi, 1980) or
frozen-hydrated (Unwin and Ennis, 1984) electron microscopy, X-ray diffraction
analysis (Makowski et al., 1977, 1984, Makowski, 1988) and atomic force microscopy
(Hoh et al.,1991). They all support a model in which the gap junction plaque is
composed of thousands of channels and a single gap junction channel is formed by the
joining of two connexons, analogous to two cylinders, in the plasma membranes of two
adjacent cells. Each of these protein cylinders has been estimated to be 7-7.5 nm in
length and 6.5 nm in diameter with an axial water filled channel of 1.5-2 nm in
diameter which provides a direct aqueous route between the cytoplasm of the two
coupled cells. It was deduced that each connexon is composed of six integral
monomers which take the form of transmembrane polypeptides arranged into o-helices

surrounding the central pore (Fig 1.4).
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Fig. 1.4. Schematic representation of the supramolecular structure of gap
junctions as derived from X-ray diffraction (adapted from Makowski et al.,
1977). Gap junctions are formed by the pairing of two connexons in the
plasma membrane of two neighbouring cells. Each connexon is made of six
connexins which tilt slightly away from the central aqueous pore which they
surround. -
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Members of the gap junction polypeptide family: biochemical and molecular
approaches

Sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of gap
junction preparations from various tissues has assisted in the isolation and
characterization of gap junction polypeptides. Gap junctions isolated from rat liver are
composed of a 27-kD polypeptide and a 21-kD polypeptide (Hertzberg and Gilula,
1979; Traub et al., 1989), whereas gap junctions isolated from rat heart contain a 43-
47 kD polypeptide (Kensler and Goodenough,1980). Edman's degradation sequencing
has shown that liver (Nicholson et al.,1987) and heart (Gros et al., 1981; Nicholson et
al.,1985) gap junction polypeptides show some homology in their amino acid sequence
and on Western blots, some antisera raised to liver gap junctions were specific,
whereas others cross reacted with other gap junction polypeptides (Goodenough et al.,
1988). These studies gave the first indication that gap junction polypeptides might be
homologous enough to be encoded by genes of the same family, but divergent enough
not to arise through alternative RNA splicing or post-translational modification

(Nicholson et al.,1985).

Biochemical analysis of the gap junction polypeptides has been extended and greatly
superceded by contemporary molecular genetic approaches. The first gap junction
polypeptide cDNA to be isolated was that of the 27-kDa rat liver protein. This was
done by using an antibody raised to this protein to screen a bacteriophage expression
library of rat liver; the molecular mass of this polypeptide, predicted by its cDNA, was
32-kDa (Paul, 1986). Low stringency hybridisation of rat heart cDNA libraries led to
the further'identification of the cardiac 43-kDa polypeptide, its predicted molecular

" mass remained the same (Beyer et al., 1987) and the 21-kDa rat liver polypeptide for
which the cDNA encoded a polypeptide with a predicted molecular mass of 26-kDa.

The use of low stringency hybridization of cDNA clones in combination with genomic
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