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Within computational neuroscience, the algorithmic and neural basis of structure learning

remains poorly understood. Concept learning is one primary example, which requires

both a type of internal model expansion process (adding novel hidden states that explain

new observations), and a model reduction process (merging different states into one

underlying cause and thus reducing model complexity via meta-learning). Although

various algorithmic models of concept learning have been proposed within machine

learning and cognitive science, many are limited to various degrees by an inability

to generalize, the need for very large amounts of training data, and/or insufficiently

established biological plausibility. Using concept learning as an example case, we

introduce a novel approach for modeling structure learning—and specifically state-space

expansion and reduction—within the active inference framework and its accompanying

neural process theory. Our aim is to demonstrate its potential to facilitate a novel line

of active inference research in this area. The approach we lay out is based on the idea

that a generative model can be equipped with extra (hidden state or cause) “slots” that

can be engaged when an agent learns about novel concepts. This can be combined

with a Bayesian model reduction process, in which any concept learning—associated

with these slots—can be reset in favor of a simpler model with higher model evidence.

We use simulations to illustrate this model’s ability to add new concepts to its state

space (with relatively few observations) and increase the granularity of the concepts it

currently possesses. We also simulate the predicted neural basis of these processes.

We further show that it can accomplish a simple form of “one-shot” generalization to

new stimuli. Although deliberately simple, these simulation results highlight ways in which

active inference could offer useful resources in developing neurocomputational models of

structure learning. They provide a template for how future active inference research could

apply this approach to real-world structure learning problems and assess the added utility

it may offer.
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INTRODUCTION

The ability to learn the latent structure of one’s environment—
such as inferring the existence of hidden causes of regularly
observed patterns in co-occurring feature observations—is
central to human cognition. For example, we do not simply
observe particular sets of colors, textures, shapes, and sizes—we
also observe identifiable objects such as, say, a “screwdriver.” If
we were tool experts, we might also recognize particular types of
screwdrivers (e.g., flat vs. Phillip’s head), designed for a particular
use. This ability to learn latent structure, such as learning to
recognize co-occurring features under conceptual categories (as
opposed to just perceiving sensory qualities; e.g., red, round,
etc.), is also highly adaptive. Only if we knew an object was
a screwdriver could we efficiently infer that it affords putting
certain structures together and taking them apart; and only if we
knew the specific type of screwdriver could we efficiently infer,
say, the artifacts to use it on. Many concepts of this sort require
experience-dependent acquisition (i.e., learning).

From a computational perspective, the ability to acquire a new
concept can be seen as a type of structure learning involving
Bayesian model comparison (MacKay and Peto, 1995; Botvinick
et al., 2009; Gershman and Niv, 2010; Salakhutdinov et al., 2013;
Tervo et al., 2016). Specifically, concept acquisition can be cast as
an agent learning (or inferring) that a new hypothesis (referred
to here as a hidden cause or state) should be added to the internal
or generative model with which it explains its environment,
because existing causes cannot account for new observations
(e.g., an agent might start out believing that the only tools are
hammers and screwdrivers, but later learn that there are also
wrenches). In other words, the structure of the space of hidden
causes itself needs to expand to accommodate new patterns of
observations. This model expansion process is complementary to
a process called Bayesian model reduction (Friston and Penny,
2011), in which the agent can infer that there is redundancy in
its model, and a model with fewer states or parameters provides
a more parsimonious (i.e., simpler) explanation of observations
(Schmidhuber, 2006; Friston et al., 2017b). For example, in some
instances it may be more appropriate to differentiate between
fish and birds as opposed to salmon, peacocks and pigeons. This

reflects a reduction in model complexity based on a particular
feature space underlying observations and thus resonates with
other accounts of concept learning as dimensionality reduction
(Stachenfeld et al., 2017; Behrens et al., 2018)—a topic we discuss
further below.

A growing body of work in a number of domains has

approached this problem from different angles. In developmental
psychology and cognitive science, for example, probability

theoretic (Bayesian) models have been proposed to account for
word learning in children and the remarkable human ability to

generalize from very few (or even one) examples in which both
broader and narrower categorical referents could be inferred
(Kemp et al., 2007; Xu and Tenenbaum, 2007a,b; Perfors et al.,
2011; Lake et al., 2015). In statistics, a number of nonparametric
Bayesian models, such as the “Chinese Room” process and the
“Indian Buffet” process, have been used to infer the need for
model expansion (Gershman and Blei, 2012). There are also

related approaches in machine learning, as applied to things
like Gaussian mixture models (McNicholas, 2016), as well as
models based on Bayesian program learning (Lake et al., 2015)
and combinations of deep learning and hierarchical Bayesian
methods (Salakhutdinov et al., 2013).

Such approaches often employ clustering algorithms, which
take sets of data points in a multidimensional space and divide
them into separable clusters (e.g., see Anderson, 1991; Love et al.,
2004; Sanborn et al., 2010). While many of these approaches
assume the number of clusters is known in advance, various
goodness-of-fit criteria may be used to determine the optimal
number. However, a number of approaches require much larger
amounts of data than humans do to learn new concepts (Geman
et al., 1992; Lecun et al., 1998; LeCun et al., 2015; Hinton et al.,
2012; Mnih et al., 2015). Many also require corrective feedback to
learn and yet fail to acquire sufficiently rich conceptual structure
to allow for generalization (Osherson and Smith, 1981; Barsalou,
1983; Biederman, 1987; Ward, 1994; Feldman, 1997; Markman
andMakin, 1998; Williams and Lombrozo, 2010; Jern and Kemp,
2013).

Approaches to formally modeling structure learning,
including concept learning, have not yet been examined within
the emerging field of research on Active Inference models within
computational neuroscience (Friston, 2010; Friston et al., 2016,
2017b,c). This represents a novel and potentially fruitful research
avenue that, as discussed below, may offer unique advantages in
research focused on understanding the neural basis of learning
latent structure. In this paper, we explore the potential of this
approach. We aim to provide a type of modeling template that
could be used in future active inference research on real-world
structure learning problems—and assess the additional utility
it might offer. We provide a number of example simulations
demonstrating how structure learning can be seen as an emergent
property of active inference (and learning) under generative
models with “spare capacity”; where spare or uncommitted
capacity is used to expand the repertoire of representations
(Baker and Tenenbaum, 2014), while Bayesian model reduction
(Hobson and Friston, 2012; Friston et al., 2017b) promotes
generalization by minimizing model complexity—and releasing
representations to replenish “spare capacity.”

From a machine learning perspective, Bayesian model
reduction affords the opportunity to consider generative models
with a large number of hidden states or latent factors and then
optimize the number (or indeed partitions) of latent factors with
respect to a variational bound on model evidence. This could be
regarded as a bounded form of non-parametric Bayes, in which a
potentially infinite number of latent factors are considered; with
appropriate (e.g., Indian buffet process) priors over the number
of hidden states generating data features1. The approach we
articulate here is bounded in the sense that an upper bound on the
number of hidden states is specified prior to structure learning.
Furthermore, in virtue of the (biologically plausible) variational
schemes used for model reduction, there is no need to explicitly
compute model evidence; thereby emulating the computational

1Generally motivated by starting with a finite parametric model and taking the

limit as the number of latent states with more parameters tends to infinity.
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efficiency of non-parametric Bayes (Gershman and Blei, 2012),
while accommodating any prior over models.

In what follows, we first provide a brief overview of active
inference. We then introduce a model of concept learning (using
basic and subordinate level animal categories), as a representative
example of structure learning. We specifically model cognitive
(semantic) processes that add new concepts to a state space
and that optimize the granularity of an existing state space.
We then establish the validity of this model using numerical
analyses of concept learning, when repeatedly presenting a
synthetic agent with different animals characterized by different
combinations of observable features. We demonstrate how
particular approaches combining Bayesian model reduction and
expansion can reproduce successful concept learning without
the need for corrective feedback—and allow for generalization.
We further demonstrate the ability of this model to generate
predictions about measurable neural responses based on the
neural process theory that accompanies active inference. We
conclude with a brief discussion of the implications of this
work. Our goal is to present an introductory proof of concept—
that could be used as the foundation of future active inference
research on the neurocomputational basis of structure learning.

AN ACTIVE INFERENCE APPROACH FOR
MODELING CONCEPT LEARNING
THROUGH STATE-SPACE EXPANSION

A Primer on Active Inference
Active Inference suggests that the brain is an inference
machine that approximates optimal probabilistic (Bayesian)
belief updating across perceptual, cognitive, and motor domains.
Active Inference more specifically postulates that the brain
embodies an internal model of the world that is “generative” in
the sense that it can simulate the sensory data that it should
receive if its model of the world is correct. These simulated
(predicted) sensory data can be compared to actual observations,
and differences between predicted and observed sensations can
be used to update the model. Over short timescales (e.g.,
a single observation) this updating corresponds to inference
(perception), whereas on longer timescales it corresponds to
learning (i.e., updating expectations about what will be observed
later). Another way of putting this is that perception optimizes
beliefs about the current state of the world, while learning
optimizes beliefs about the relationships between the variables
that constitute the world. These processes can be seen as ensuring
the generative model (entailed by recognition processes in the
brain) remains an accurate model of the world that it seeks to
regulate (Conant and Ashbey, 1970).

Active Inference casts decision-making in similar terms.
Actions can be chosen to resolve uncertainty about variables
within a generative model (i.e., sampling from domains in
which the model does not make precise predictions), which
can prevent anticipated deviations from predicted outcomes. In
addition, some expectations are treated as a fixed phenotype
of an organism. For example, if an organism did not continue
to “expect” to observe certain amounts of food, water, and

shelter, then it would quickly cease to exist (McKay and
Dennett, 2009)—as it would not pursue those behaviors that
fulfill these expectations (c.f. the “optimism bias” Sharot, 2011).
Thus, a creature should continually seek out observations that
support—or are internally consistent with—its own continued
existence. Decision-making can therefore be cast as a process in
which the brain infers the sets of actions (policies) that would
lead to observations consistent with its own survival-related
expectations (i.e., its “prior preferences”). Mathematically, this
can be described as selecting sequences of actions (policies) that
maximize “Bayesian model evidence” expected under a policy,
where model evidence is the (marginal) likelihood that particular
sensory inputs would be observed under a given model.

In real-world settings, directly computing Bayesian model
evidence is generally intractable. Thus, some approximation is
necessary. Active Inference proposes that the brain computes a
quantity called “variational free energy” that provides a bound on
model evidence, such that minimization of free energy indirectly
maximizes model evidence (this is exactly the same functional
used in machine learning where it is known as an evidence
lower bound or ELBO). In this case, decision-making will be
approximately (Bayes) optimal if it infers (and enacts) the policy
that will minimize expected free energy (i.e., free energy with
respect to a policy, where one takes expected future observations
into account). Technically, expected free energy is the average
free energy under the posterior predictive density over policy-
specific outcomes.

Expected free energy can be decomposed in different ways
that reflect uncertainty and prior preferences, respectively (e.g.,
epistemic and instrumental affordance or ambiguity and risk).
This formulation means that any agent that minimizes expected
free energy engages initially in exploratory behavior to minimize
uncertainty in a new environment. Once uncertainty is resolved,
the agent then exploits that environment to fulfill its prior
preferences. The formal basis for Active Inference has been
thoroughly detailed elsewhere (Friston et al., 2017a), and the
reader is referred there for a full mathematical treatment.

When the generative model is formulated as a partially
observable Markov decision process (a mathematical framework
for modeling decision-making in cases where some outcomes are
under the control of the agent and others are not, and where
states of the world are not directly known but must be inferred
from observations), active inference takes a particular form.
Here, the generative model is specified by writing down plausible
or allowable policies, hidden states of the world (that must be
inferred from observations), and observable outcomes, as well as
a number of matrices that define the probabilistic relationships
between these quantities (see right panel of Figure 1).

The “A” matrix indicates which observations are generated by
each combination of hidden states (i.e., the likelihood mapping
specifying the probability that a particular set of observations
would be observed given a particular set of hidden states). The
“B” matrix is a transition matrix, indicating the probability that
one hidden state will evolve into another over time. The agent,
based on the selected policy, controls some of these transitions
(e.g., those that pertain to the positions of its limbs). The “D”
matrix encodes prior expectations about the initial hidden state
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FIGURE 1 | (Left) Illustration of the trial structure performed by the agent. At the first time point, the agent is exposed to one of 8 possible animals that are each

characterized by a unique combination of visual features. At the second time point, the agent would then report which animal concept matched that feature

combination. The agent could report a specific category (e.g., pigeon, hawk, minnow, etc.) or a general category (i.e., bird or fish) if insufficiently certain about the

specific category. See the main text for more details. (Right) Illustration of the Markov decision process formulation of active inference used in the simulations

described in this paper. The generative model is here depicted graphically, such that arrows indicate dependencies between variables. Here observations (o) depend

on hidden states (s) at each timepoint (t), as specified by the A matrix, and those states depend on both previous states (as specified by the B matrix, or the initial

states specified by the D matrix) and the policies (π) selected by the agent. The probability of selecting a particular policy in turn depends on the expected free energy

(G) of each policy with respect to the prior preferences (C) of the agent. The degree to which expected free energy influences policy selection is also modulated by a

prior policy precision parameter (γ), which is in turn dependent on beta (β)—where higher values of beta promote more randomness in policy selection (i.e., less

influence of the differences in expected free energy across policies). For more details regarding the associated mathematics, see (Friston et al., 2017a,b).

the agent will occupy. Finally, the “C” matrix specifies prior
preferences over observations; it quantifies the degree to which
different observed outcomes are rewarding or punishing to the
agent. In these models, observations and hidden states can be
factorized into multiple outcome modalities and hidden state
factors. This means that the likelihood mapping (the A matrix)
can also model the interactions among different hidden states
when generating outcomes (observations).

From Principles to Process Theories
One potential empirical advantage of the present approach stems
from the fact that active inference models have a plausible
biological basis that affords testable neurobiological predictions.
Specifically, these models have well-articulated companion
micro-anatomical neural process theories, based on commonly
used message-passing algorithms (Friston et al., 2017a; Parr
and Friston, 2018; Parr et al., 2019). In these process theories,
for example, the activation level of different neural populations
(typically portrayed as consisting of different cortical columns)
can encode posterior probability estimates over different hidden
states. These activation levels can then be updated by synaptic
inputs with particular weights that convey the conditional
probabilities encoded in the A and B (among other) matrices
described above, where active learning then corresponds to
associative synaptic plasticity. Phasic dopamine responses also

play a particular role in these models, by reporting changes in
policy precision (i.e., the degree of confidence in one policy over
others) upon new observations (see Figure 2 and the associated
legend for more details). In what follows, we describe how this
type of generative model—that underwrites these processes—was
specified to perform concept inference/learning.

A Model of Concept Inference and
Learning Through State-Space Expansion
To model concept inference, we constructed a simple task for
an agent to perform (see Figure 1, left panel). In this task, the
agent was presented with different animals on different trials and
asked to answer a question about the type of animal that was seen.
As described below, in some simulations the agent was asked to
report the type of animal that was learned previously; in other
simulations, the agent was instead asked a question that required
conceptual generalization. Crucially, to answer these questions
the agent was required to observe different animal features,
where the identity of the animal depended on the combination
of features. There were three feature categories (size, color, and
species-specific; described further below) and two discrete time
points in a trial (observe and report).

To simulate concept learning and state-space expansion
(based on the task described above) we needed to specify
an appropriate generative model. Once this model has been
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FIGURE 2 | This figure illustrates the mathematical framework of active inference and associated neural process theory used in the simulations described in this

paper. The differential equations in the left panel approximate Bayesian belief updating within the graphical model depicted in the right panel of Figure 1, via a gradient

descent on free energy. The right panel illustrates a possible neural basis by which neurons making up cortical columns could implement these equations. The

equations have been expressed in terms of two types of prediction errors. State prediction errors (ε) are used to update expectations over states (s) by driving

depolarization (v) in neurons encoding those hidden states. The probability distribution over hidden states is then obtained via a softmax (normalized exponential)

function (σ). Outcome prediction errors (ς ) convey the difference between preferred observations and those predicted under each policy (π), and are used to evaluate

the expected free energy (G) of each policy. This term additionally considers the expected ambiguity or conditional entropy (H) between states and outcomes, as well

as a novelty term (W) reflecting the degree to which beliefs about how states generate outcomes would change upon observing different possible state-outcome

mappings. Outcome prediction errors thus allow policies to be evaluated based on both expected information gain and expected reward. Policy-specific free energies

are then integrated to give the policy probabilities via a softmax function. Actions at each time point (u) are then chosen out of the possible actions under each policy

(U), weighted by the probability of each policy. In our simulations, the model learned associations between hidden states and observations (A) via a process in which

counts were accumulated (a) reflecting the number of times the agent observed a particular outcome when it believed that it occupied each possible hidden state.

Although not displayed explicitly, learning prior expectations over initial hidden states (D) is similarly accomplished via accumulation of concentration parameters (d).

These prior expectations reflect counts of how many times the agent believes it previously occupied each possible initial state. Concentration parameters are

converted into expected log probabilities using digamma functions (ψ ). The way in which Bayesian model reduction was performed in this paper is also written in the

lower left (where B indicates a beta function, and m is the posterior probability of each model). Here, the posterior distribution over initial states (d) is used to assess

the difference in the evidence (1F) it provides for the number of hidden states in the current model and other possible models characterized by fewer hidden states.

Prior concentration parameters are shown in italics, posteriors in bold, and those priors and posteriors associated with the reduced model are equipped with a tilde

(∼). As already stated, the right panel illustrates a possible neural implementation of the update equations in the left panel. In this implementation, probability estimates

have been associated with neuronal populations that are arranged to reproduce known intrinsic (within cortical area) connections. Red connections are excitatory, blue

connections are inhibitory, and green connections are modulatory (i.e., involve a multiplication or weighting). These connections mediate the message passing

associated with the equations in the left panel. Note that the various messages passed between neurons to implement the equations on the left are denoted with

corresponding numbers in the left and right panels—conveying policy values (message 1), prior expectations (messages 2,3), sensory signals (message 4), and

expected free energies (message 5). Cyan units correspond to expectations about hidden states and (future) outcomes under each policy, while red states indicate

their Bayesian model averages (i.e., a “best guess” based on the average of the probability estimates for the states and outcomes across policies, weighted by the

probability estimates for their associated policies). Pink units correspond to (state and outcome) prediction errors that are averaged to evaluate expected free energy

and subsequent policy expectations (in the lower part of the network). This (neural) network formulation of belief updating means that connection strengths

correspond to the parameters of the generative model described in the text. Learning then corresponds to changes in the synaptic connection strengths. Only

exemplar connections are shown to avoid visual clutter. Furthermore, we have just shown neuronal populations encoding hidden states under two policies over three

time points (i.e., two transitions), whereas in the task described in this paper there are greater number of allowable policies. For more information regarding the

mathematics and processes illustrated in this figure, see (Friston et al., 2017a,b).
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specified, one can use standard (variational) message passing to
simulate belief updating and behavior in a biologically plausible
way: for details, please see (Friston et al., 2017a,c). In our
(minimal) model, the first hidden state factor included (up
to) eight levels, specifying four possible types of birds and
four possible types of fish (Figure 3A). The outcome modalities
included: a feature space including two size features (big,
small), two color features (gray, colorful), and two species-
differentiating features (wings, gills). The A matrix specified
a likelihood mapping between features and animal concepts,
such that each feature combination was predicted by an animal
concept (Hawk, Pigeon, Parrot, Parakeet, Sturgeon, Minnow,
Whale shark, Clownfish). This model was deliberately simple to
allow for a clear illustration, but it is plausibly scalable to include
more concepts and a much larger feature space. The B matrix
for the first hidden state factor was an identity matrix, reflecting
the belief that the animal identity was conserved during each trial
(i.e., the animals were not switched out mid-trial).

The second hidden state factor was the agent’s report. That
this is assumed to factorize from the first hidden state factor
means that there is no prior constraint that links the chosen
report to the animal generating observations. The agent could
report each of the eight possible specific animal categories, or opt
for a less specific report of a bird or a fish. Only one category
could be reported at any time. Thus, the agent had to choose to
report only bird vs. fish or to report a more specific category. In
other words, the agent could decide upon the appropriate level of
coarse-graining of its responses (Figure 3B).

During learning trials, the policy space was restricted such that
the agent could not provide verbal reports or observe corrective
feedback (i.e., all it could do is “stay still” in its initial state
and observe the feature patterns presented). This allowed the
agent to learn concepts in an unsupervised manner (i.e., without
being told what the true state was or whether it was correct or
incorrect). After learning, active reporting was enabled, and theC
matrix was set so that the agent preferred to report correct beliefs.
We defined the preferences of the agent such that it preferred
correctly reporting specific category knowledge and was averse to
incorrect reports. This ensured that it only reported the general
category of bird vs. fish, unless sufficiently certain about the more
specific category.

In the simulations reported below, there were two time points
in each trial of categorization or conceptual inference. At the
first time point, the agent was presented with the animal’s
features, and always began in a state of having made no report
(the “start” state). The agent’s task was simply to observe the
features, infer the animal identity, and then report it (i.e., in
reporting trials). Over 32 simulations (i.e., 4 trials per animal),
we confirmed that, if the agent already started out with full
knowledge of the animal concepts (i.e., a fully precise A matrix),
it would report the specific category correctly 100% of the time.
Over an additional 32 simulations, we also confirmed that, if
the agent was only equipped with knowledge of the distinction
between wings and gills (i.e., by replacing the rows in the A

matrix corresponding to the mappings from animals to size
and color with flat distributions), it would report the generic
category correctly 100% of the time but would not report the

specific categories2. This was an expected and straightforward
consequence of the generative model—but provides a useful
example of how agents trade off preferences and different types
of uncertainty.

SIMULATING CONCEPT LEARNING AND
THE ACQUISITION OF EXPERTISE

Having confirmed that our model could successfully recognize
animals if equipped with the relevant concepts (i.e., likelihood
mappings)—we turn now to concept learning.

Concept Acquisition Through State-Space
Expansion
We first examined our model’s ability to acquire concept
knowledge in two distinct ways. This included (1) the agent’s
ability to effectively “expand” (i.e., fill in an unused column
within) its state space and add new concepts and (2) the agent’s
ability to increase the granularity of its conceptual state space
and learn more specific concepts, when it already possessed
broader concepts.

Adding Concepts
To assess whether our agent could effectively expand its state
space and acquire a new concept, we first set one column
of the previously described model’s A matrix (mapping an
animal concept to its associated features) to be a uniform
distribution3; creating an imprecise likelihood mapping for one
concept—essentially, that concept predicted all features with
nearly equal probability. Here, we chose sturgeon (large, gray,
gills) as the concept for which the agent had no initial knowledge
(see Figure 4A, right-most column of left-most “pre-learning”
matrix). We then generated 2,000 observations based on the
outcome statistics of a model with full knowledge of all eight
animals (the “generative process”), to test whether the model
could infer that a novel animal was present and then learn the
correct likelihood mapping for sturgeon (note: this excessive
number of observations was used for consistency with later
simulations, in which more concepts had to be learned, and
also to evaluate how performance improved as a function of the
number of observations the agent was exposed to; see Figure 4B).

We refer to this as “effective” state space expansion because
the dimensions of the hidden state space do not change.

2However, “risky” reporting behavior could be elicited by manipulating the

strengths of the agent’s preferences such that it placed a very high value on

reporting specific categories correctly (i.e., relative to how much it disliked

reporting incorrectly).
3To break the symmetry of the uniform distribution, we added small amounts

of Gaussian noise (with a variance of 0.001) to avoid getting stuck in local

free energy minima—or any locations with zero free energy gradient—during

learning (e.g., in this case, exactly equal concentration parameter updates could

repeatedly occur across state-outcome mappings on each trial and prevent the

agent from converging to a more accurate model). To be clear, while there

are no local minima for (mean-field) free energy functionals constructed purely

from categorical distributions (Da Costa et al., 2020), this can be disrupted by

incorporating the conjugate Dirichlet priors necessary for parameter learning in

our model. As exemplified here, potential local minima of this kind can be avoided

through careful parameter initialization.
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FIGURE 3 | (A) Illustration of the first hidden state factor containing columns (levels) for 8 different animal concepts. Each of these 8 concepts generated a different

pattern of visual feature observations associated with the outcome modalities of size, color, and species-specific features. The B matrix was an identity matrix,

indicating that the animal being observed did not change within a trial (white = 1, black = 0). The A matrix illustrates the specific mapping from animal concepts to

feature combinations. As depicted, each concept corresponded to a unique point in a 3-dimensional feature space. (B) illustration of the second hidden state factor

corresponding to the verbal reports the agent could choose in response to its observations. These generated feedback as to whether its verbal report was accurate

with respect to a basic category report or a specific category report. As illustrated in the C matrix, the agent most preferred to be correct about specific categories,

but least preferred being incorrect. Thus, reporting the basic categories was a safer choice if the agent was too uncertain about the specific identity of the animal.
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FIGURE 4 | (A) illustration of representative simulation results in which the agent successfully learned 1, 2, or 4 new animal concept categories with no prior

knowledge beforehand. The generative process is shown in the upper right, illustrating the feature combinations to be learned. Before learning, either 1, 2, or 4

columns in the likelihood mapping began as a flat distribution with a slight amount of Gaussian noise. The agent was then provided with 2,000 observations of the 8

animals with equal probability. Crucially, the agent was prevented from providing verbal reports during these 2,000 trials and thus did not receive feedback about the

true identity of the animal. Thus, learning was driven completely by repeated exposure in an unsupervised manner. Also note that, while the agent was successful at

learning the new concepts, it did not always assign the new feature patterns to the same columns as illustrated in the generative process. This is to be expected given

that

(Continued)
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FIGURE 4 | the agent received no feedback about the true hidden state that generated its observations. (B) illustration of how reporting accuracy, and the proportion

of basic category and specific category responses, changed as a function of repeated exposures. This was accomplished by taking the generative model at a number

of representative trials and then testing it with 20 observations of each animal in which reporting was enabled. As can be seen, maximal accuracy was achieved much

more quickly when the agent had to learn fewer concepts. When learning 4 concepts, it also began by reporting the general categories and then subsequently

became sufficiently confident to report the more specific categories.

Instead, based on the model structure described above, the agent
begins with implicit prior expectations about the structure of
its environment (“structural priors”)—namely, that there could
be up to eight different concept categories accounting for (i.e.,
hidden causes generating) patterns in its possible observations.
When a new animal is presented, the agent must first infer that
the animal is novel and engage an unused “slot” in its state
space (i.e., infer that a noisy, flat distribution better accounts
for the new pattern of observations than any current state-
observation mapping it knows), and then learn the new state-
outcome contingencies over repeated observations. Thus, as we
use the term, model expansion increases the number of hidden
states the agent uses, but not the formal dimensions of the state
space itself.

In these simulations, learning was implemented via updating
(concentration) parameters for the model’s A matrix after each
trial. For details of these free energy minimizing learning
processes, please see (Friston et al., 2016) as well as the left
panel of Figure 2 and associated legend. An intuitive way to
think about this belief updating process is that the strength of
association between a concept and an observation is quantified
simply by counting how often they are inferred to co-occur. This
is exactly the same principle that underwrites Hebbian plasticity
and long-term potentiation (Brown et al., 2009). Crucially,
policies were restricted during learning, such that the agent
could not select reporting actions or receive corrective feedback;
thus, learning was driven entirely by repeated exposure to
different feature combinations. We evaluated successful learning
in two ways. First, we compared the A matrix learned by the
model to that of the generative process. Second, we disabled
learning after various trial numbers (i.e., such that concentration
parameters no longer accumulated) and enabled reporting. We
then evaluated reporting accuracy with 20 trials for each of the
eight concepts.

As shown in Figure 4A, the A matrix (likelihood) mapping
learned by the agent—and the column for sturgeon in
particular—strongly resembled that of the generative process.
When first evaluating reporting, the model was 100% accurate
across 20 reporting trials, when exposed to a sturgeon (reporting
accuracy when exposed to each of the other animals also
remained at 100%) and first reached this level of accuracy after
around 50 exposures to all eight animals (with equal probability)
(Figure 4B). The agent also always chose to report specific
categories (i.e., it never chose to only report bird or fish). Model
performance was stable over eight repeated simulations.

Crucially, during learning, the agent was not told which
state was generating its observations. This meant that it had to
solve both an inference and a learning problem. First, it had to
infer whether a given feature combination was better explained

by an existing concept, or by a concept that predicts features
uniformly. In other words, it had to decide that the features
were sufficiently different from things it had seen before to
assign it a new hypothetical concept. Given that a novel state
is only inferred when another state is not a better explanation,
this precludes learning “duplicate” states that generate the same
patterns of observations. The second problem is simpler. Having
inferred that these outcomes are caused by something new,
the problem becomes one of learning a simple state-outcome
mapping through accumulation of Dirichlet parameters.

To examine whether this result generalized, we repeated these
simulations under conditions in which the agent had to learn
more than one concept. When the model needed to learn one
bird (parakeet) and one fish (minnow), the model was also
able to learn the appropriate likelihood mapping for these two
concepts (although note that, because the agent did not receive
feedback about the state it was in during learning, the new feature
mappings were often not assigned to the same columns as in the
generative process; see Figure 4A). Reporting also reached 100%
accuracy, but required a notably greater number of trials. Across
eight repeated simulations, the mean accuracy reached by the
model after 2,000 trials was 98.75% (SD= 2%).

When the model needed to learn all four birds, performance
varied somewhat more when the simulations were repeated. The
learned likelihood mappings after 2,000 trials always resembled
that of the generative process, but with variable levels of
precision; notably, the model again assigned different concepts to
different columns relative to the generative process, as would be
expected when the agent is not given feedback about the state it is
in. Over eight repeated simulations, the model performed well in
6 (92.50–98.8% accuracy) and failed to learn one concept in the
other 2 (72.50% accuracy in each) due to overgeneralization (e.g.,
mistaking parrot for Hawk in a majority of trials; i.e., the model
simply learned that there are large birds). Figures 4A,B illustrate
representative results when the model was successful (note: the
agent never chose to report basic categories in the simulations
where only one or two concepts needed to be learned).

To further assess concept learning, we also tested the agent’s
ability to successfully avoid state duplication. That is, we wished
to confirm that the model would only learn a new concept if
actually presented with a new animal for which it did not already
have a concept. To do so, we equipped the model with knowledge
of seven out of the eight concept categories, and then repeatedly
exposed it only to the animals it already knew over 80 trials. We
subsequently exposed it to the eighth animal (Hawk) for which it
did not already have knowledge over 20 additional trials. As can
be seen in Figure 5, the unused concept column was not engaged
during the first 80 trials (bottom left and middle). However, in
the final 20 trials, the agent correctly inferred that its current
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FIGURE 5 | Illustration of representative simulation results when the agent had to avoid inappropriately learning a new concept (i.e., avoid state duplication) after only

being exposed to animals for which it already had knowledge. Here the agent began with prior knowledge about seven concept categories and was also equipped

with an eighth column that could be engaged to learn a new concept category (bottom left). The agent was then presented with several instances of each of the seven

animals that it already knew (80 trials in total). In this simulation, the agent was successful in assigning each stimulus to an animal concept it had already acquired and

did not engage the unused concept “slot” (bottom middle). Finally, the agent was presented with a new animal (a hawk) that it did not already know over 20 trials. In

this case, the agent successfully engaged the additional column (i.e., it inferred that none of the concepts it possessed could account for its new observations) and

learned the correct state-observation mapping (bottom right).

conceptual repertoire was unable to explain its new pattern of
observations, leading the unused concept column to be engaged
and the appropriate state-observation mapping to be learned
(bottom right). We repeated these simulations under conditions
in which the agent already had knowledge of six, five, or four
concepts. In all cases, we observed that unused concept columns
were never engaged inappropriately.

Crucially, these simulations suggest that adaptive concept
learning needs to be informed by existing knowledge about other
concepts, such that a novel concept should only be learned
if observations cannot be explained with existing conceptual
knowledge. Here, this is achieved via the interplay of inference
and learning, such that agents initially have to infer whether
to assign an observation to an existing concept, and only if
this is not possible is an “open slot” employed to learn about a
novel concept.

Increasing Granularity
Next, to explore the model’s ability to increase the granularity
of its concept space, we first equipped the model with only
the distinction between birds and fish (i.e., the rows of the
likelihood mapping corresponding to color and size features

were flattened in the same manner described above). We then
performed the same procedure used in our previous simulations.
As can be seen in Figure 6A (bottom left), the A matrix learned
by the model nowmore strongly resembled that of the generative
process. Figure 6B (bottom) also illustrates reporting accuracy
and the proportion of basic and specific category reports as a
function of trial number. As can be seen, the agent initially only
reported general categories, and became sufficiently confident
to report specific categories after roughly 50–100 trials, but its
accuracy increased gradually over the next 1,000 trials (i.e., the
agent reported specific categories considerably before its accuracy
improved). Across 8 repeated simulations, the final accuracy
level reached was between 93–98% in seven simulations, but the
model failed to learn one concept in the 8th case, with 84.4%
overall accuracy (i.e., a failure to distinguish between pigeon
and parakeet, and therefore only learned a broader category of
“small birds”).

To assess whether learning basic categories first was helpful
in subsequently learning specific categories, we also repeated this
simulation without any initial knowledge of the basic categories.
As exemplified in Figures 6A,B, the model tended to perform
reasonably well, but most often learned a less precise likelihood
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FIGURE 6 | (A, left), left Illustration of representative simulation results when the agent had to learn to increase the granularity of its concept space. Here the agent

began with prior knowledge about the basic concept categories (i.e., it had learned the broad categories of “bird” and “fish”) but had not learned the feature patterns

(i.e., rows) that differentiate different types of birds and fish. Post learning (i.e., after 2,000 exposures), the agent did successfully learn all of the more granular concept

categories, although again note that specific concepts were assigned to different columns than depicted in the generative process due to the unsupervised nature of

the learning. (A, right) illustration of the analogous learning result when the agent had to learn all 8 specific categories without prior knowledge of the general

(Continued)
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FIGURE 6 | categories. Although moderately successful, learning tended to be more difficult in this case. (B) Representative plots of reporting accuracy in each of the

2 learning conditions as a function of the number of exposures. As can be seen, when the model starts out with prior knowledge about basic categories, it slowly

becomes sufficiently confident to start reporting the more specific categories, and its final accuracy is high. In contrast, while the agent that did not start out with any

prior knowledge of the general categories also grew confident in reporting specific categories over time, its final accuracy levels tended to be lower. In both cases, the

agent began reporting specific categories before it achieved significant accuracy levels, therefore showing some initial overconfidence.

mapping and reached a lower reporting accuracy percentage after
2,000 learning trials (across eight repeated simulations: mean =

81.21%, SD= 6.39%, range from 68.80 to 91.30%). Thus, learning
basic concept categories first appeared to facilitate learning more
specific concepts later.

Overall, these findings provide a proof of principle that
this sort of active inference scheme can add concepts to a
state space in an unsupervised manner (i.e., without feedback)
based purely on (expected) free energy minimization. In this
case, it was able to accomplish this starting from a completely
uninformative likelihood distribution. It could also learn more
granular concepts after already acquiring more basic concepts,
and our results suggest that learning granular concepts may be
facilitated by first learning basic concepts (e.g., as in currently
common educational practices).

The novel feature of this generative model involved “building
in” a number of “reserve” hidden state levels. These initially
had uninformative likelihood mappings; yet, if a new pattern
of features was repeatedly observed, and the model could
not account for this pattern with existing (informative) state-
observation mappings, these additional hidden state levels could
be engaged to improve the model’s explanatory power. This
approach therefore accommodates a simple form of structure
learning (i.e., model expansion).

Integrating Model Expansion and
Reduction
We next investigated ways in which the form of effective
model expansion simulated above could be combined with an
analogous form of Bayesian model reduction (Friston et al.,
2017b)—allowing the agent to adjust its model to accommodate
new patterns of observations, while also precluding unnecessary
conceptual complexity (i.e., over-fitting). To do so, we again
allowed the agent to learn from 2,000 exposures to different
animals as described in the previous section—but also allowed
the model to learn its “D” matrix (i.e., accumulate concentration
parameters reflecting prior expectations over initial states). This
allowed an assessment of the agent’s probabilistic beliefs about
which hidden state factor levels (animals) it had been exposed
to. In different simulations, the agent was only exposed to
some animals and not others. We then examined whether
a subsequent model reduction step could recover the animal
concepts presented during the simulation; eliminating those
concepts that were unnecessary to explain the data at hand. The
success of this 2-step procedure could then license the agent
to “reset” the unnecessary hidden state columns after concept
acquisition, which would have accrued unnecessary likelihood
updates during learning (i.e., return the mappings in these

columns to flat distributions). Doing so would allow the optimal
ability for those “reserve” states to be appropriately engaged only
if and when the agent was exposed to truly novel stimuli. Thus, as
with ourmodel expansion procedure, thismodel reduction step is
not formally changing the dimensions of the agent’s state space.
It instead prevents the unnecessary use of the agent’s “reserve”
states so that they are only engaged when a novel animal is
truly present.

The 2nd step of this procedure was accomplished by applying
Bayesian model reduction to the D matrix concentration
parameters after learning. This is a form of post-hoc model
optimization (Friston et al., 2016, 2018) that rests upon
estimation of a “full” model, followed by analytic computation of
the evidence that would have been afforded to alternative models
(with alternative, “reduced” priors) had they been used instead.
Mathematically, this procedure is a generalization of things like
automatic relevance determination (Friston et al., 2007; Wipf
and Rao, 2007) or the use of the Savage Dickie ratio in model
comparison (Cornish and Littenberg, 2007). It is based upon
straightforward probability theory and, importantly, has a simple
physiological interpretation; namely, synaptic decay and the
elimination of unused synaptic connections. In this (biological)
setting, the concentration parameters of the implicit Dirichlet
distributions can be thought of as synaptic tags. For a technical
description of Bayesian model reduction techniques and their
proposed neural implementation, see (Hobson and Friston, 2012;
Hobson et al., 2014; Friston et al., 2017b); see the left panel of
Figure 2 for additional details).

The posterior concentration parameters were compared to
the prior distribution for a full model (i.e., a flat distribution
over eight concepts) and prior distributions for possible reduced
models (i.e., which retained different possible combinations of
some but not all concepts; technically, reduced models were
defined such that the to-be-eliminated concepts were less likely
than the to-be-retained concepts). If Bayesian model reduction
provided more evidence for one or more reduced models, the
reduced model with the most evidence was selected. Note: an
alternative would be to performmodel reduction on theAmatrix
(i.e., comparing the state-outcome mappings one has learned
to alternative A matrices that reset specific columns to flat
distributions), but this is more complex due to a larger space of
possible reduced models.

In each simulation, we presented our agent with a different
number of animals (between 7 and 2 animals), with 250
exposures to each animal in randomized order (mirroring the
learning simulations shown in Figure 6). In Table 1, we present
results of 100 repeated simulations using this setup and report
the number of times that the winning model corresponded to
each possible reduced model when compared to the full model.
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TABLE 1 | Frequency of winning models using Bayesian model reduction with different numbers of true hidden causes (animals) after learning.

Generative

process

Retain 8

animals

Retain 7

animals

Retain 6

animals

Retain 5

animals

Retain 4

animals

Retain 3

animals

Retain 2

animals

Correct 2nd-best

model

7 animals 5 56 31 8 0 0 0 12

6 animals 4 18 69 8 0 0 1 20

5 animals 0 4 16 80 0 0 0 12

4 animals 0 2 23 30 45 0 0 14

3 animals 0 0 10 0 1 0 89 55

2 animals 0 0 0 57 43 0 0 0

Results are based on frequencies obtained over 100 repeated simulations, where the order of presentation of each animal was varied between simulations. Bolded numbers correspond

to matches with the underlying generative process. These results are based on a single initialization of the Gaussian noise added to the uniform A-matrix distribution prior to learning

(i.e., for symmetry breaking; see footnote 3). Although not presented systematically due to space constraints, some variability in the pattern of results shown here was also observed

under different initializations (i.e., different patterns of initial Gaussian noise), suggesting some sensitivity to initial conditions.

To provide a further sense of these results, Table 1 also reports
the number of times the 2nd-best model instead corresponded to
the number of causes in the generative process.

As can be seen there, the frequency with which model
reduction successfully recovered the number of causes in the
generative process varied depending on the number of different
types of animals presented (Figure 7 illustrates examples of
successful recovery in the case of generative processes with 7, 6,
and 5 causes). In the presence of 4–7 animals, the most frequently
winning model was the correct model. When the winning model
was not the correct model, this was most often due to the agent
learning simpler, coarser-grained representations (such as “large
bird,” treating color as irrelevant; e.g., the 31/100 cases where
a 6-animal model was retained after 7 different animals were
presented). In some other cases, the agent instead retained overly
fine-grained distinctions (such as the existence of distinct types of
gray birds with different frequencies of being large vs. small; e.g.,
the several cases where a 5- or 6-animal model was retained when
only 4 different animals were presented). In these cases where
the incorrect model was favored, the correct model was often the
model with the 2nd-most evidence. The difference in log evidence
between the winning and 2nd-best model in such cases was also
often small (average differences between−0.40 and−1.23). In the
approach outlined here, in the cases where model reduction was
successful, this would correctly license the removal of changes in
the model’s A and D matrix parameters for unobserved animals
during learning in the previous trials (i.e., re-setting them to then
again be available for future learning).

When there were 3 causes to recover, the winning model
most often only retained 2 animal representations (typically
learning one more coarse-grained concept; e.g., “colorful fish,”
ignoring size). However, the true 3-animal model had the 2nd-
most evidence in the majority of unsuccessful cases (average
log evidence difference with the winning model in these cases
was−1.64).

When there were only 2 causes to recover (in this case, one
bird and one fish), model reduction reliably failed to select the
2-animal model. Further inspection revealed that this was due
to the agent learning—and failingly to subsequently remove—
redundant state-outcome mappings across multiple (either 4 or
5) columns (i.e., it retained a fairly flat distribution over these

states in D). Essentially, the agent learned 2 or 3 redundant
mappings for “bird” and 2 or 3 redundant mappings for “fish.”
Poor performance in this case could be seen as unsurprising,
as the presence of only 2 animals is quite different from the
structural prior of 8 animals inherited by the agent prior to
learning. Note, however, that despite a failure to retain only 2
concept columns, the resulting state-outcome mappings were
coarse-grained in a manner similar to those of our simulated
agent above that could only distinguish birds vs. fish (i.e., as in
in the upper-left “pre-learning” matrix of Figure 6A, prior to
granularity learning). This type of mapping only distinguishes
2 concepts (despite having redundant mappings across several
columns)—and leads the agent to only report 2 coarse-grained
categories (as shown in Figure 6B)—as would be expected if only
familiar with 2 different animals distinguished by 1 feature. So,
from another perspective, the agent successfully retained the type
ofmapping that reflects coarse-grained concept knowledge in our
model and that allows for the appropriate coarse-grained reports.

When considering our overall model reduction results, it is
worth noting that a model’s accuracy need not always correspond
to its adaptiveness (McKay and Dennett, 2009; Al-Muhaideb
and Menai, 2011; Gigerenzer and Gaissmaier, 2011; Baltieri and
Buckley, 2019; Tschantz et al., 2019). In some cases, making
either coarser- or finer-grained distinctions could be more
adaptive for an organism depending on available resources and
environmental/behavioral demands. It is also worth noting that,
while we have used the terms “correct” and “incorrect” above to
describe the model used to generate the data, we acknowledge
that “all models are wrong” (Box et al., 2005), and that the
important question is not whether we can recover the “true”
process used to generate the data, but whether we can arrive at
the simplest but accurate explanation for these data. The failures
to recover the “true” model highlighted above (especially in the
cases where only coarser-grained representations were learned)
may reflect that a process other than that used to generate the
data could have been used to do so in a simpler way. Simpler
here means we would have to diverge to a lesser degree from our
prior beliefs in order to explain the data under a given model,
relative to a more complex model. It is worth highlighting the
importance of the word prior in the previous sentence. This
means that the simplicity of the model is sensitive to our prior
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FIGURE 7 | Representative illustrations of simulations in which the agent performed Bayesian model reduction after learning. In these simulations, the agent was first

given 250 exposures per animal, where either 7, 6, or 5 animals were actually presented (i.e., illustrated in the top row, where only the white columns had non-zero

probabilities in the generative process). In each case, model reduction was often successful at identifying the reduced model with the correct number of animal types

presented (bottom row, where black columns should be removed) based on how much evidence it provided for the posterior distribution over hidden states learned

by the agent (2nd row). This would license the agent to reset the unneeded columns in its likelihood mapping (3rd row) to their initial state (i.e., a flat distribution over

features) such that they could be engaged if/when new types of animals began to be observed (i.e., as in the simulations illustrated in the previous sections).

beliefs about it. To illustrate this, we repeated the same model
comparisons as above, but with precise beliefs in an A matrix
that complies with that used to generate the data. Specifically,
we repeated the simulations above but only enabled D matrix
learning (i.e., the model was already equipped with the A matrix
of the generative process). In each case, Bayesianmodel reduction
now uniquely identified the correct reduced model in 100% of
repeated simulations.

Overall, these results demonstrate that—after a naïve model
has effectively expanded its hidden state space to include
likelihood mappings and initial state priors for a number of
concept categories—Bayesian model reduction can subsequently
be used with moderate success to eliminate any parameter
updates accrued for redundant concept categories. In practice,
the A and D concentration parameters for the redundant
categories identified by model reduction could be reset to their
default pre-learning values—and could then be re-engaged if
new patterns of observations were repeatedly observed in the
future. The variable performance of model reduction in our
simulations appeared to be due to imperfect A matrix learning
(recall that the analogous learning simulations in Figure 6 only
led to 81% reporting accuracy on average). Another potential
consideration is that, because A and D matrix learning occurred
simultaneously, this may have also led to noisier accumulation

of prior expectations over hidden states—as D matrix learning
with a fully precise A matrix led to correct model reduction
in every case tested (i.e., perhaps suggesting that this type of
model reduction procedure could be improved by first allowing
state-observation learning to proceed alone, then subsequently
allowing the model to learn prior expectations over hidden states,
which could then be used in model reduction).

CAN CONCEPT ACQUISITION ALLOW FOR
GENERALIZATION?

One important ability afforded by concept learning is
generalization. In a final set of simulations, we asked if our
model of concept knowledge could account for generalization.
To do so, we altered the model such that it no longer reported
what it saw, but instead had to answer a question that depended
on generalization from particular cross-category feature
combinations. Specifically, the model was shown particular
animals and asked: “could this be seen from a distance?” The
answer to this question depended on both size and color, such
that the answer was yes only for colorful, large animals (i.e.,
assuming small or gray animals would blend in with the sky or
water and be missed).
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FIGURE 8 | Depiction of simulations in which we tested the agent’s ability to generalize from prior knowledge and correctly answered questions about new animals to

which it had not previously been exposed. In the simulations, the generative model was modified so that the agent instead chose to report either “yes” or “no” to the

question: “could this animal be seen from a distance?” Here, the answer was only yes if the animal was both large and colorful. We observed that when the agent

started out with no knowledge of parrots it still correctly answered this question 100% of the time, based only on its knowledge of other animals. Similarly, when it

started with no knowledge of minnows, it also correctly reported “no” 100% of the time. Thus, the agent was able to generalize from prior knowledge with no

additional learning.

Crucially, this question was asked of animals that the model
had not been exposed to, such that it had to generalize from
knowledge it already possessed (see Figure 8). To simulate and
test for this ability, we equipped the model’sAmatrix with expert
knowledge of 7 out of the 8 animals (i.e., as if these concepts
had been learned previously, as in our simulations above). The
8th animal was unknown to the agent, in that it’s likelihood
mapping was set such that the 8th animal state “slot” predicted
all observations equally (i.e., with a small amount of Gaussian
noise, as above). In one variant, the model possessed all concepts
except for “parrot,” and it knew that the answer to the question
was yes for “whale shark” but not for any other concept it knew.
To simulate one-shot generalization, learning was disabled and a
parrot (which it had never seen before) was presented 20 times to
see if it would correctly generalize and answer “yes” in a reliable
manner. In another variant, the model had knowledge of all
concepts except “minnow” and was tested the same way to see
if it would reliably provide the correct “no” response.

Here, we observed that in both of these cases (as well as

all others we tested) the model generalized remarkably well.
It answered “yes” and “no” correctly in 100% of trials. Thus,

the agent did not simply possess concepts to explain things it

saw. It instead demonstrated generalizable knowledge and could

correctly answer questions when seeing a novel stimulus.

OPEN QUESTIONS AND RELATION TO
OTHER THEORETICAL ACCOUNTS OF
CONCEPT LEARNING

As our simulations show, this model allows for learning novel
concepts (i.e., novel hidden states) based on assigning one or
more “open slots” that can be utilized to learn novel feature
combinations. In a simple example, we have shown that this
setup offers a potential computational mechanism for “model
expansion”; i.e., the process of effectively expanding a state
space to account for novel instances in perceptual categorization.
We also illustrated how this framework can be combined
with model reduction, which acts as a mechanism for “re-
setting” unnecessary learning in these open slots based on
recent experience.

This provides a first step toward understanding how agents
flexibly expand or reduce their model to adapt to ongoing
experience. Yet, several open questions remain, and for the
approach we illustrate to address real-world problems in
future active inference research, these issues will need to be
examined and integrated with insights from previous work that
has already grappled with them. For example, the proposed
framework resonates with previous similarity-based accounts of
concept learning. Previous work has proposed a computational
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framework for arbitrating between assigning an observation to
a previously formed memory or forming a novel (hidden) state
representation (Gershman et al., 2017), based on evidence that
this observation was sampled from an existing or novel latent
state. This process is conceptually similar to our application of
Bayesian model reduction over states. In the present framework,
concept learning relies on a process based on inference and
learning. First, agents have to infer whether ongoing observations
can be sufficiently explained by existing conceptual knowledge—
or speak to the presence of a novel concept that motivates the use
of an “open slot.” This process is cast as inference on (hidden)
states. Second, if the agent infers that there is a novel concept that
explains current observations, it has to learn about the specific
feature configuration of that concept (i.e., novel state). This
process highlights the interplay between inference, which allows
for the acquisition of knowledge on a relatively short timescale,
and learning, which allows for knowledge acquisition on a longer
and more stable timescale.

Similar considerations apply to the degree of “similarity” of
observations. In the framework proposed here, we have assumed
that the feature space of observations is already learned and fixed.
However, these feature spaces have to be learned in the first place,
which implies learning the underlying components or feature
dimensions that define observations. This relates closely to
notions of structure learning as dimensionality reduction based
on covariance between observations, as prominently discussed in
the context of spatial navigation (Dordek et al., 2016; Stachenfeld
et al., 2017; Behrens et al., 2018; Whittington et al., 2018).

Another important issue is how such abstract conceptual
knowledge is formed across different contexts or tasks. For
example, the abstract concept of a “bird” will be useful
for learning about the fauna in a novel environment, but
specific types of birds—tied to a previous context—might be
less useful in this regard. This speaks to the formation of
abstract, task-general knowledge that results from training across
different tasks, as recently discussed in the context of meta-
reinforcement learning (Wang et al., 2016; Ritter et al., 2018)
with a putative link to the prefrontal cortex (Wang et al.,
2018). In the present framework, such task-general knowledge
would speak to the formation of a hierarchical organization that
allows for the formation of conceptual knowledge both within
and across contexts. Also note that our proposed framework
depends on a pre-defined state space, including a pre-defined
set of “open slots” that allow for novel context learning. The
contribution of the present framework is to show how these
“open slots” can be used for novel concept learning and be
re-set based on model reduction. It will be important to
extend this approach toward learning the structure of these
models in the first place, including the appropriate number of
“open slots” (i.e., columns of the A-matrix) for learning in a
particular content domain and the relevant feature dimensions
of observations (i.e., rows of A-matrix). [Note: In addition to
ontogenetic learning, in some cases structural priors regarding
the appropriate number of open slots (and relevant feature
inputs for learning a given state space of open slots) might also
reflect inherited (i.e., genetically/developmentally pre-specified)
patterns of structural neuronal connectivity—based on what was

adaptive within the evolutionary niche of a given species—which
could then be modified based on subsequent experience].

This corresponds to a potentially powerful and simple
application of Bayesian model reduction, in which candidate
models (i.e., reduced forms of a full model) are readily identifiable
based upon the similarity between the likelihoods conditioned
upon different hidden states. If two or more likelihoods are
sufficiently similar, the hidden states can be merged (by assigning
the concentration parameters accumulated during experience-
dependent learning to one or other of the hidden states). The
ensuing change in model evidence scores the reduction in
complexity. If this reduction is greater than the loss of accuracy—
in relation to observations previously encountered—Bayesian
model reduction will, effectively, merge one state into another;
thereby freeing up a state for the learning of new concepts. We
will demonstrate this form of structure learning via Bayesian
model reduction in future work.

We must also highlight here that cognitive science research
on concept and category learning has a rich empirical and
theoretical history, including many previously proposed formal
models. While our primary focus has been on using concept
learning as an example of a more general approach by which
state space expansion and reduction can be implemented within
future active inference research, it is important to recognize
this previous work and highlight where it overlaps with the
simulations we’ve presented. For example, our results suggesting
that first learning general categories facilitates the learning of
more specific categories relates to both classic and contemporary
findings showing that children more easily acquire “basic” and
“superordinate” (e.g., dog, animal) concepts before learning
“subordinate” (e.g., chihuahua) concepts (Mervis and Rosch,
1981; Murphy, 2016), and that this may involve a type of
“bootstrapping” process (Beck, 2017). Complementary work has
also highlighted ways in which learning new words during
development can invoke a type of “placeholder” structure, which
then facilitates the acquisition of a novel concept—which bears
some resemblance to our notion of blank “concept slots” that
can subsequently acquire meaningful semantics (Gelman and
Roberts, 2017).

There is also a series of previously proposed formalisms
within the literature on category learning. For example, two
previously proposed models—the “rational model” (Anderson,
1991; Sanborn et al., 2010) and the SUSTAIN model (Love et al.,
2004)—both describe concept acquisition as involving cluster
creation mechanisms that depend on statistical regularities
during learning and that use probabilistic updating. The updating
mechanisms within SUSTAIN are based on surprise/prediction-
error in the context of both supervised and unsupervised
learning. This model also down-weights previously created
clusters when their associated regularities cease to be observed
in recent experience. Although not built in intentionally, this
type of mechanism emerges naturally within our model in
two ways. First, when a particular hidden state ceases to be
inferred, concentration parameters will accumulate to higher
values for other hidden states in theDmatrix, reflecting relatively
stronger prior expectations for hidden states that continue
to be inferred—which would favor future inference of those

Frontiers in Computational Neuroscience | www.frontiersin.org 16 May 2020 | Volume 14 | Article 41

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Smith et al. Structure Learning as Active Inference

states over those absent from recent experience. Second, if one
pattern of observations were absent from recent experience
(while other patterns continued to be observed), concentration
parameters in the A matrix would also accumulate to higher
values for patterns that continued to be observed—resulting
in relatively less confidence in the state-outcome mapping
for the less-observed pattern. [However, with respect to this
latter mechanism, so long as this mapping was sufficiently
precise and distinct from others (i.e., it had previously been
observed many times farther in the past), this would not be
expected to prevent successful inference if this pattern were
observed again].

It is also worth highlighting that, as our model is intended
primarily as a proof of concept and a demonstration of an
available model expansion/reduction approach that can be
used within active inference research, it does not explicitly
incorporate some aspects—such as top-down attention—that
are of clear importance to cognitive learning processes, and
that have been implemented in previous models. For example,
the adaptive resonance theory (ART) model (Grossberg, 1987)
was designed to incorporate top-down attentional mechanisms
and feedback mechanisms to address a fundamental knowledge
acquisition problem—the temporal instability of previously
learned information that can occur when a system also remains
sufficiently plastic to learn new (and potentially overlapping)
information. While our simulations do not explicitly incorporate
these additional complexities, there are clear analogs to the
top-down and bottom-up feedback exchange in ART within
our model (e.g., the prediction and prediction-error signaling
within the neural process theory associated with active inference).
ART addresses the temporal instability problem primarily
through mechanisms that learn top-down expectancies that
guide attention andmatch themwith bottom-up input patterns—
which is quite similar to the prior expectations and likelihood
mappings used within active inference.

As an emergent property of the “first principles” approach
in active inference, our model therefore naturally incorporates
the top-down effects in ART simulations, which have been used
to account for known context effects on categorical perception
within empirical studies (McClelland and Rumelhart, 1981). This
is also consistent with more recent work on cross-categorization
(Shafto et al., 2011), which has shown that human category
learning is poorly accounted for by both a purely bottom-
up process (attempting to explain observed features) and a
purely top-down approach (involving attention-based feature
selection)—and has instead used simulations to show that a
Bayesian joint inference model better fits empirical data.

Other proposed Bayesian models of concept learning have
also had considerable success in predicting human generalization
judgments (Goodman et al., 2008). The proof of concept
model presented here has not been constructed to explicitly
compete with such models. It will be an important direction
for future work to explore the model’s ability to scale up to
handle more complex concept learning problems. Here we
simply highlight that the broadly Bayesian approach within
our model is shared with other models that have met with
considerable success—supporting the general plausibility of

using this approach within active inference research tomodel and
predict the neural basis of these processes (see below).

POTENTIAL ADVANTAGES OF THE
APPROACH

The present approach may offer some potential theoretical and
empirical advantages in comparison to previous work. One
theoretical advantage corresponds to the parsimony of casting
this type of structure learning as an instance of Bayesian model
selection. When integrated with other aspects of the active
inference framework, this means that perceptual inference, active
learning, and structure learning are all expressions of the same
principle; namely, the minimization of variational free energy,
over three distinct timescales. Structure learning is particularly
interesting from this perspective, as it occurs both during an
individual’s lifetime, and over the longer timescale of natural
selection; which implements a form of structure learning by
selecting among phenotypes that entail alternative models. It
also highlights the importance of these nested timescales within
an individual’s lifetime, in that active learning must proceed
through repeated perception of the consequences of action, and
structure learning must proceed by (1) accumulating evidence
that the state-outcome mappings one has already learned are
insufficient to account for new observations (entailing the need
for model expansion), and (2) using model reduction to remove
actively learned state-outcome mappings that are unnecessary
to account for past observations. A second, related theoretical
advantage is that, when this type of structure learning is cast as
Bayesian model selection/reduction, there is no need to invoke
additional procedures or schemes (e.g., non-parametric Bayes or
“stick breaking” processes; Gershman and Blei, 2012). Instead,
a generative model with the capacity to represent a sufficiently
complex world will automatically learn causal structure in a way
that contextualizes active inference within active learning, and
active learning within structure learning.

Based on the process theories summarized in Figure 2, the
present model would predict that the brain contains “reserve”
cortical columns and synapses (most likely within secondary
sensory and association cortices) available to capture new
patterns in observed features. To our knowledge, no direct
evidence supporting the presence of unused cortical columns in
the brain has been observed, although the generation of new
neurons (with new synaptic connections) is known to occur in
the hippocampus (Chancey et al., 2013).”Silent synapses” have
also been observed in the brain, which does appear consistent
with this prediction; such synapses can persist into adulthood
and only become activated when new learning becomes necessary
(e.g., see Kerchner and Nicoll, 2008; Chancey et al., 2013;
Funahashi et al., 2013). One way in which this idea of “spare
capacity” or “reserve” cortical columns might be tested in
the context of neuroimaging would be to examine whether
greater levels of neural activation—within conceptual processing
regions—are observed after learning additional concepts, which
would imply that additional populations of neurons become
capable of being activated. In principle, single-cell recording
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FIGURE 9 | Simulated neuronal firing rates, local field potentials, and dopaminergic responses across learning trials based on the neural process theory associated

with active inference that is summarized in Figure 2. The top left panel displays the predicted firing rates (darker = higher firing rate) of neural populations encoding

the probability of each hidden state over 50 interleaved exposures to each animal (only 10 equally spaced learning trials involving the presentation of a parakeet are

shown for simplicity) in the case where the agent starts out with knowledge of the basic animal categories but must learn the more specific categories. As can be

seen, initially each of the four neural populations encoding possible bird categories (i.e., one row per possible category) have equally low firing rates (gray); as learning

continues, firing rates increase for the “parakeet” population and decrease for the others. The bottom left panel illustrates the predicted local field potentials (based on

the rate of change in firing rates) that would be measured across the task. The top right panel displays the predicted firing rates of neural populations in an analogous

simulation in which reporting policies were enabled (for clarity of illustration, we here show 12 equally spaced learning trials for parakeet over 120 total trials). Enabling

policy selection allowed us to simulate the phasic dopaminergic responses (reporting changes in the expected precision of the probability distribution over policies)

predicted to occur across learning trials; here the agent first becomes confident in its ability to correctly report the general animal category upon observing a stimulus,

then becomes unsure about reporting specific vs. general categories, and then becomes confident in its ability to report the specific categories.

methods might also test for the presence of neurons that remain
at baseline firing rates during task conditions, but then become
sensitive to new stimuli within the relevant conceptual domain
after learning.

Figure 9 provides a concrete example of two specific empirical
predictions that follow from simulating the neural responses
that should be observed within our concept learning task under
these process theories. In the left panel, we plot the firing rates
(darker = higher firing rate) and local field potentials (rate
of change in firing rates) associated with neural populations
encoding the probability of the presence of different animals that
would be expected across a number of learning trials. In this
particular example, the agent began with knowledge of the basic

categories of “bird” and “fish,” but needed to learn the eight
more specific animal categories over 50 interleaved exposures to
each animal (only 10 equally spaced learning trials involving the
presentation of a parakeet are shown for simplicity). As can be
seen, early in learning the firing rates and local field potentials
remain at baseline levels; in contrast, as learning progresses, these
neural responses take a characteristic shape with more and more
positive changes in firing rate in the populations representing the
most probable animal, while other populations drop further and
further below baseline firing rates.

The right panel depicts a similar simulation, but where the
agent was allowed to self-report what it saw on each trial
(for clarity of illustration, we here show 12 equally spaced
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learning trials for parakeet over 120 total trials). Enabling policy
selection allowed us to simulate expected phasic dopamine
responses during the task, corresponding to changes in the
expected precision of the probability distribution over policies
after observing a stimulus on each trial (i.e., updates in the β
term shown in the bottom left of Figure 2). As can be seen,
during early trials the model predicts small firing rate increases
when the agent is confident in its ability to correctly report the
more general animal category after observing a new stimulus,
and firing rate decreases when the agent becomes less confident
in one policy over others (i.e., as confidence in reporting the
specific vs. general categories becomes more similar). Larger and
larger phasic dopaminergic responses are then expected as the
agent becomes more and more confident in its ability to correctly
report the specific animal category upon observing a new
stimulus. It will be important for future neuroimaging studies to
test these predictions in this type of concept learning/stimulus
categorization task.

DISCUSSION

The Active Inference formulation of concept learning presented
here demonstrates a simple way in which a generative model
can effectively expand its state-space to acquire both basic and
highly granular knowledge of the hidden states/causes in its
environment. In comparison to previous theoretical work using
active inference (e.g., Schwartenbeck et al., 2015; Mirza et al.,
2016; Parr and Friston, 2017), the novel aspect of our model was
that it was further equipped with “reserve” hidden states initially
devoid of content (i.e., these states started out with uninformative
likelihood mappings that predicted all outcomes with roughly
equal probability). Over multiple exposures to different stimuli,
these hidden states came to acquire conceptual content that
captured distinct statistical patterns in the features of those
stimuli. This was accomplished via the model’s ability to infer
when its currently learned hidden states were unable to account
for a new observation, leading an unused hidden state column to
be engaged that could acquire a new state-observation mapping.
This provides a simple illustration of how this approach could be
used in active inference research and applied to more complex
structure learning problems.

Crucially, the model was able to start with some concepts
and then expand its representational repertoire to learn others—
but would only do so when a novel stimulus was observed and
detected (i.e., when the model inferred that the flat/noisy state-
outcome mapping of an unused hidden state column better
accounted for its current observations than the existing concept
mappings it had already acquired—a type of “novel concept
detection”). This is conceptually similar to non-parametric
Bayesian learning models, such as the “Chinese Room” process
and the “Indian Buffet” process, that can also infer the need to
invoke additional hidden causes with additional data (Gershman
and Blei, 2012). These statistical learning models do not need
to build in additional “category slots” for learning as in our
model and can, in principle, entertain infinite state spaces. On
the other hand, it is less clear at present how the brain could

implement this type of learning. An advantage of our model is
that learning depends solely on biologically plausible Hebbian
mechanisms (for a possible neural implementation of model
reduction, see Hobson and Friston, 2012; Hobson et al., 2014;
Friston et al., 2017b).

The distinction between non-parametric Bayesian learning
and the current active learning scheme may be important from
a neurodevelopmental perspective as well. In brief, structure
learning in this paper starts with a generative model with a
type of structural prior reflecting a specific amount of built
in “spare capacity,” where uncommitted or naive conceptual
“slots” are used to explain the sensorium, during optimization
of free energy or model evidence. In contrast, non-parametric
Bayesian approaches add new slots when appropriate. One might
imagine that neonates are equipped with brains with “spare
capacity” (Baker and Tenenbaum, 2014) that is progressively
leveraged during neurodevelopment, much in the spirit of
curriculum learning (Al-Muhaideb and Menai, 2011). This
suggestion appears consistent with previous work demonstrating
varying levels of category learning ability across the lifespan,
which has previously been formally modeled as an individual
difference in values of a parameter constraining the ability to
form new clusters in response to surprising events (Love and
Gureckis, 2007)—which bears similarity to the idea of capacity
limitations arising from finite numbers of concept slots in
our model.

In this sense, the current approach to structure learning,
and its implementation for effectively expanding a state space
(i.e., increasing the number hidden states an agent actively
uses to understand its environment) can be understood as a
specific type of active learning with generative models that are
equipped with a large number of available hidden states capable
of acquiring content, which are then judiciously reduced/reset—
via a process of Bayesian model reduction. Furthermore, as in
the acquisition of expertise, our model can also begin with broad
category knowledge and then subsequently learn finer-grained
within-category distinctions, which has received less attention
from the perspective of the aforementioned models. Reporting
broad vs. specific category recognition is also a distinct aspect
of our model—driven by differing levels of uncertainty and
an expectation (preference) not to incorrectly report a more
specific category.

Our simulation results also demonstrated that, when
combined with Bayesian model reduction, the model can guard
against learning too many categories during model expansion—
often retaining only the number of hidden causes actually
present in its environment—and thus keep “reserve” hidden
states available for learning about new causes if or when they
appear. With perfect “expert” knowledge of the possible animal
types it could observe (i.e., fully precise likelihood mappings
matching the generative process) this was true in general. With
an imperfectly learned likelihood mapping, model reduction
performed moderately well when only a few possible concepts
needed to be removed, but performance worsened when larger
numbers of concepts needed to be removed. This is perhaps
unsurprising, as one might expect worse performance when the
true number of hidden causes in the environment diverges more
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strongly from the agent’s structural priors (e.g., when 5 vs. 2
animals are presented to an agent with a structural prior for up
to 8 animals). It would be interesting to test whether a similar
pattern of learning is present in humans.

Neurobiological theories associated with Active Inference also
make predictions about the neural basis of this process (Hobson
and Friston, 2012; Hobson et al., 2014). Specifically, during
periods of rest (e.g., daydreaming) or sleep, it is suggested
that, because sensory information is down-weighted, learning is
driven mainly by internal model simulations (e.g., as appears
to happen in the phenomenon of hippocampal replay; Pfeiffer
and Foster, 2013; Feld and Born, 2017; Lewis et al., 2018); this
type of learning can accomplish a model reduction process in
which redundant model parameters are identified and removed
to prevent model over-fitting and promote selection of the
most parsimonious model that can successfully account for
previous observations. This is consistent with work suggesting
that, during sleep, many (but not all) synaptic strength
increases acquired in the previous day are attenuated (Tononi
and Cirelli, 2014). The role of sleep and daydreaming in
keeping “reserve” representational resources available for model
expansion could therefore be especially important to concept
learning—consistent with the known role of sleep in learning
and memory (Stickgold et al., 2001; Walker and Stickgold, 2010;
Perogamvros and Schwartz, 2012; Ackermann and Rasch, 2014;
Feld and Born, 2017).

It is worth highlighting that, because spare capacity will have
finite limits, it follows that state space expansion will also have
limits (although these limits could be extremely high in complex
biological systems). To manage such limitations effectively, an
agent would need to come equipped with adaptive structural
priors about themaximumnumber of possible categories (hidden
causes) that could be “out there” to learn about in a given
domain (e.g., at each relevant timescale, level of abstraction,
level of multimodal integration, etc.). Such priors for state
space size—in a given domain—could influence learning in
important ways. Most straightforwardly, having priors for a
state space with too few possible causes would prevent adaptive
(granular) learning. In contrast, it is less obvious what the
effects of priors for a state space with too many possible causes
would be. In the simulations above, our model could avoid
state duplication—a case where, even when there was a prior
for 8 possible categories, the model did not inappropriately
learn an 8th concept when only exposed to known hidden
causes. This is because the agent only infers a new cause—
and starts to learn a new state-outcome mapping—when a flat
(noisy) mapping provides a better explanation for observations
than previously learned mappings. This would therefore not
be expected to occur in the presence of a familiar hidden
cause, even with priors for a much larger state space (i.e., a
greater number of empty “slots”). However, in our simulations
of model reduction—where the agent started out with no prior
category knowledge and had to learn the correct number of
causes—the model was less often successful when fewer causes
were present. In some cases, this was because the additional
empty “slots” allowed the agent to learn overly fine-grained or
redundant mappings that model reduction failed to remove.

This demonstrates one way in which having prior expectations
that there are too many causes to learn about could also
have detrimental effects during early development—perhaps
suggesting the need for mechanisms that initially restrict spare
capacity during early learning.

Another emergent feature of our model was its ability to
generalize prior knowledge to new stimuli to which it had not
previously been exposed. In fact, the model could correctly
generalize upon a single exposure to a new stimulus—a type
of “one-shot learning” capacity qualitatively similar to that
observed in humans (Landau et al., 1988; Markman, 1989; Xu
and Tenenbaum, 2007b). While it should be kept in mind that
the example we have provided is very simple, it demonstrates
the potential usefulness of this novel approach. Some other
prominent approaches in machine-learning (e.g., deep learning)
tend to require larger amounts of data (Geman et al., 1992;
Lecun et al., 1998; LeCun et al., 2015; Hinton et al., 2012;
Mnih et al., 2015), and do not learn the rich structure that
allows humans to use concept knowledge in a wide variety of
generalizable functions (Osherson and Smith, 1981; Barsalou,
1983; Biederman, 1987; Ward, 1994; Feldman, 1997; Markman
andMakin, 1998; Williams and Lombrozo, 2010; Jern and Kemp,
2013). Other recent hierarchical Bayesian approaches in cognitive
science havemade progress in this domain, however, bymodeling
concepts as types of probabilistic programs using Bayesian
program learning (Ghahramani, 2015; Goodman et al., 2015;
Lake et al., 2015), and by using models that integrate hierarchical
Bayesian approaches with deep learning (Salakhutdinov et al.,
2013)—both allowing learning from a smaller number of training
examples. Unlike many of the other approaches mentioned
above, these models are not based on clustering algorithms
and represent an important step forward within the context of
Bayesian models of cognition.

It is important to note that this model is deliberately simple
and ismeant only to represent a proof of principle that categorical
inference and conceptual knowledge acquisition can be modeled
within this particular neurocomputational framework, and to
present this approach as a potentially useful tool in future
active inference research. We chose a particular set of feature
combinations to illustrate this, but it remains to be demonstrated
that learning in this model would be equally successful with
a larger feature space and set of learnable hidden causes. Due
to limited scope, we have also not thoroughly addressed all
other overlapping lines of research. For example, work on
exemplar models of concepts has also led to other computational
approaches. As one example, the EBRW model (Nosofsky and
Palmeri, 1997) has demonstrated ways of linking exemplar
learning to drift diffusion models. Another model within this
line of research is the ALCOVE model (Nosofsky et al., 1994)—
an error-driven connectionist model of exemplar-based category
learning that employs selective attention and learns attentional
weights (this model also built on earlier work; see Nosofsky,
2011). Yet another connectionist model with some conceptual
overlap to our own is the DIVAmodel, which learns categories by
recoding observations as task-constrained principle components
and uses model fit for subsequent recognition (Kurtz, 2007). It
will be important in future work to examine the strengths and
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limitations of a scaled-up version of our approach in relation to
these models.

Yet another topic for future work would be the expansion
of this type of model to context-specific learning (e.g., with an
additional hidden state factor for encoding distinct contexts).
In such cases, regularities in co-occurring features differ in
different contexts and other cues to context may not be directly
observable (e.g., the same species of bird could be a slightly
different color or size in different parts of the world that otherwise
appear similar)—creating difficulties in inferring when to update
previously learned associations and when to instead acquire
competing associations assigned to new contexts. At present, it
is not clear whether the approach we have illustrated would be
successful at performing this additional function, although the
process of inferring the presence of a new hidden state level in
a second hidden state factor encoding context would be similar
to what we have shown within a single state factor (for related
work on context-dependent contingency learning, see Gershman
et al., 2013, 2017). Another point worth highlighting is that
we have made particular choices with regard to various model
parameters and the number of observations provided during
learning. Further investigations of the space of these possible
parameter settings will be important. With this in mind, however,
our current modeling results could offer additional benefits. For
example, the model’s simplicity could be amenable to empirical
studies of saccadic eye movements toward specific features
during novel category learning (e.g., following the approach
of Mirza et al., 2018). This approach could also be combined
with measures of neural activity in humans or other animals,
allowing more direct tests of the neural predictions highlighted
above. In addition, the introduction of exploratory, novelty-
seeking actions could be used to reduce the number of samples
required for learning, with agents selecting those data that
are most relevant.

Introducing actions allowing selective data sampling also
brings with it other interesting opportunities for using the
general modeling approach used above. In our model, the agent
learned passively through observations (as a practical means
of preventing learning through feedback). Yet, while infants
may initially be somewhat restricted to passively observing
their environment, observations quickly come under the control
of action (perhaps bootstrapping in a useful way on passive
observations to first acquire sensorimotor contingencies; Deci
and Ryan, 1985; Oudeyer, 2007; Schmidhuber, 2010; Barto
et al., 2013; Baltieri and Buckley, 2019)—opening the possibility
for both beneficial and detrimental effects on learning. By
incorporating action into our active inference model, further
questions could be addressed. For example, under what
circumstances does choosing where to allocate attention, or
what states to visit, facilitate adaptively expanding or reducing
a state space? Under what circumstances (or perhaps unfortunate
sequences of early observations; e.g., see Lane et al., 2018;
Smith et al., 2019a,c) might an agent fail to sample locations
in its environment that would have allowed for adaptive
model expansions or reductions? How might the structural
priors or hyperpriors inherited by an organism in a particular
environmental niche guide adaptive action-guided structure

learning? These questions touch on deep problems in learning
while acting—here in the context of learning structure—that
active inference models may be especially well-equipped to
address (i.e., due to the intrinsic information-seeking drive
provided by expected free energy minimization; Mirza et al.,
2016; Parr and Friston, 2017; Tschantz et al., 2019).

Here it is also again worth highlighting that, for agents acting
within a particular environmental niche, a model’s accuracy need
not correspond to a model’s adaptiveness (i.e., fitness or marginal
likelihood). In some cases, it may be more adaptive for an agent
to efficiently learn to model only the features in its environment
relevant to its own survival, goal-achievement, etc. (Baltieri
and Buckley, 2019; Tschantz et al., 2019), and organisms can
benefit in some cases from acting based on false beliefs (McKay
and Dennett, 2009); e.g., simplifications or heuristic priors (Al-
Muhaideb and Menai, 2011; Gigerenzer and Gaissmaier, 2011).
The distinction between accurate and adaptive models—where
adaptive is operationally defined as free energy minimizing—
is the complexity or KL-Divergence between posteriors and
priors (not unrelated to the notion of satisficing; Oaksford and
Chater, 2003). Interestingly, it is exactly this (complexity) term
that structure learning by Bayesian model reduction optimizes—
which, as discussed above, is also important to consider when
interpreting the “accuracy” of our model reduction results above
across different simulated patterns of experience.

In conclusion, the Active Inference scheme we have
described illustrates feature integration in the service of
conceptual inference: it can successfully simulate simple
forms of concept acquisition and concept differentiation (i.e.,
increasing granularity), and it spontaneously affords one-
shot generalization. Finally, it speaks to empirical work in
which behavioral tasks could be designed to fit such models,
which would allow investigation of individual differences in
concept learning and its neural basis. For example, such
a model can simulate (neuronal) belief updating to predict
neuroimaging responses as we illustrated above; i.e., to identify
the neural networks engaged in evidence accumulation and
learning (Schwartenbeck et al., 2015). In principle, the model
parameters (e.g., A matrix precision) can also be fit to
behavioral choices and reaction times—and thereby phenotype
subjects in terms of the priors under which they infer and
learn (Schwartenbeck and Friston, 2016). This approach could
therefore advance neurocomputational approaches to concept
learning in several directions.

The issues raised here have a special importance in an active
inference setting, in the sense that minimizing expected free
energy means choosing policies that maximize information gain.
In previous work, we have dealt with selection of policies that
yield informative data to help infer states of the world, or to
actively learn the parameters of the generative model. The results
presented here propose an additional challenge for future work:
how do we select policies such that we maximize information
gain about the structure of the generative model itself? Future
research should investigate whether this basic approach can
be successfully extended to meet this challenge and assess the
additional benefits it might offer when applied to more complex
real-world problems.
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SOFTWARE NOTE

Although the generative model—specified by the
various matrices described in this paper—changes
from application to application, the belief updates
are generic and can be implemented using standard
routines (here spm_MDP_VB_X.m). These routines are
available as Matlab code in the DEM toolbox of the
most recent version of SPM academic software: http://
www.fil.ion.ucl.ac.uk/spm/. The simulations in this paper
can be reproduced (and customized) via running the
Matlab code included here as Supplementary Material

(Concepts_model.m).
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