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Summary: We establish nonparametric identification in a class of so-called index models by
using a novel approach that relies on general topological results. Our proof strategy requires
substantially weaker conditions on the functions and distributions characterising the model
than those required by existing strategies; in particular, it does not require any large-support
conditions on the regressors of our model. We apply the general identification result to additive
random utility and competing risk models.
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1. INTRODUCTION

We develop a novel nonparametric identification result for the following class of models,
IT(w, x,z) =A(a(w, x), z), (1.1
where
a(w,x)=gw)+h(x) (1.2)

is a vector of additively separable index functions, and A : R/ x R%* > R, g : R > R’, and
h : R% > R’ are all vector-valued functions of dimension J > 1. The arguments w € R% and
x € R represent the values of two sets of regressors, W and X, whereas z € R% corresponds to
values of a set of control variables, Z. We take as a high-level assumption that we know (have
observed from data) the function I1(w, x, z), for (w, x, z) in the support of (W, X, Z), from which
we then wish to identify the unknown functions A(a, z) and h(x), while we treat the function g(w)
as being known. We refer to this class of models as index models because W and X are restricted
to enter the model through g(W) and h(X), respectively.

We make three major contributions relative to the existing literature. First, we do not impose
any large-support conditions on any of the regressors in our model. Most existing results on
identification within this class of models require availability of a set of ‘special’ continuously
distributed regressors; identification is then achieved by sending each of these special regressors
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2 M. Fosgerau and D. Kristensen

off to the boundary of their support. Estimators based on such a ‘thin-set identification” argument
were analyzed by Khan and Tamer (2010), who showed that they tend to be irregularly behaved
with slow convergence rates. In contrast, we achieve identification as long as the random index
a(W, X) exhibits sufficient, but potentially bounded, variation. We expect this to translate into
better-behaved estimators.

Second, we impose weak conditions on the functions of interest and distributions of the random
variables (W, X, Z). We do not require continuity or differentiability of the functions entering
the model in order to show identification, whereas most existing results at a minimum require
these to be differentiable. Similarly, we require only g(W) to have continuous support, whereas
(X, Z) can be either discrete or continuous, or a mix of the two, as long as their supports satisfy
certain conditions. Thus, our results cover models with thresholds and kinks in A, g, and &, which
existing results cannot handle. In the case of discrete choice models, such features may occur
if the decision-maker optimises subject to constraints; see, e.g., Cantillo and de Dios Ortizar
(2006). These models have traditionally been formulated in a parametric fashion; our theory
demonstrates how they can be identified without parametric constraints. There is a growing
literature on nonparametric estimation with unknown thresholds and kinks, which we conjecture
can be used in our setting to translate our identification result into actual estimators; see, e.g.,
Chiou et al. (2018).

Third, we show how the presence of the controls Z can help to achieve identification in a
nontrivial way. We first show local identification at each value of the control Z. Suitable variation
in Z then allows us to piece the locally identified components together across different values of Z
to achieve global identification. In comparison, most other papers that allow for control variables
show identification at a fixed arbitrary value of Z, in which case variation in Z is unnecessary for
identification.

Our proof strategy relies on arguments from general topology that, to our knowledge, are
completely new to the literature on nonparametric identification. These should be of general
interest because they can be used for identification in other settings. The two key elements of our
approach are the notions of relative identification and connected sets. Below, we state our formal
definition of the former:

DEFINITION 1. A function h is said to be relatively identified on a given set X if identification
of h(x") at some point x* € X implies that h(x) is also identified at all other x € X.

Next, recall the topological notion of connnectedness: A connected set cannot be contained in
the union of two non-empty disjoint open sets while having non-empty intersection with both. In
particular, it is not possible to split a connected open set into disjoint open subsets.

Our identification strategy then proceeds in three steps, where we here initially suppress the
presence of Z for simplicity. First, we decompose the support of X into suitable subsets and
achieve relative identification on each of these. This is done via two features of our model: (a)
For a given x, we are able to identify the relative variation in A(a), with a = h(x) + g(w), through
the observed variation in IT(w, x) with respect to w through the known function g(w). (b) By
injectivity of A, we are then able to identify the relative value of a, which in turn yields the
relative value of h(x) = a — g(w) on suitably chosen subsets of the support of X. Second, we
achieve global identification on the union of these subsets by using the second main ingredient of
our proof strategy, connectedness. We will require the support of a(W, X) to be connected, which
is used to extend relative local identification to global identification. Third, reintroducing Z, we
again rely on the supports of X|Z = z to be suitably connected across different values of z in the
support of Z to enlarge the identification region further.

© 2020 Royal Economic Society.
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Identification of a class of index models 3

Like us, Berry and Haile (2018) and Evdokimov (2010), among others, relied on connectness
to achieve global identification, but in those papers, the restriction was imposed directly on the
support of the covariates, thereby implicity restricting the covariates to be continuous. In contrast,
we impose connectedness on the image of a(W, X) and so allow for both X and W to contain
discrete components.

Two leading examples that fall within our general framework are nonparametric additive
versions of multiple discrete choice and competing risk models, as shown in the next section.
There is a large literature on identification and estimation of semiparametric multinomial choice
models (see, e.g., Manski, 1975; Lewbel et al., 2000). In contrast, the literature on nonparametric
identification is quite thin, with few results having been developed since the seminal work of
Matzkin (1993). In terms of modelling, Matzkin (1993) is probably the most closely related to
our setting, but the assumptions made and identification strategy pursued in that paper are very
different from ours. Our and her sets of assumptions are not clearly ranked, with some of our
assumptions being stronger and others weaker than hers. One key feature of her proof strategy
was the introduction of assumptions that ensure the multinomial model can be converted into
a binary choice problem followed by a thin-set identification argument. More recently, Allen
and Rehbeck (2019) provided conditions under which one can identify how regressors alter the
desirability of alternatives by using only average demands. Their conditions are weaker than
ours, but on the other hand they were able to identify only certain features of the model, not the
underlying data-generating structure.

There is also a nascent literature on nonparametric identification of so-called BLP models
(Berry, Levinsohn, and Pakes, 1995) as used in industrial organisation; see, for example, Berry
and Haile (2018) and Chiappori et al. (2018). The setting of the BLP model is somewhat different,
though, because there the choice probabilities are treated as observed variables that depend on
unobserved product characteristics, which have to be controlled for. This leads to a different
identification problem from ours.

Finally, there is also a literature on identification in competing risk models. The two most
closely related papers in terms of modelling are Heckman and Honoré (1989) and Lee and
Lewbel (2013). Heckman and Honoré (1989) achieved identification by assuming the index
[in our notation a(W, X)] has support on (0, co)’ and then achieved identification of a given
component of the index by letting the other components go to zero, and so their result falls in
the thin-set identification category. Abbring and van den Berg (2003) weakened this assumption
substantially for the class of mixed proportional-hazard models, a subclass of competing risk
models. Lee and Lewbel (2013) provided a high-level assumption for identification of the general
model involving a rank condition of an integral operator. Primitive conditions for this to hold are
not known. Honoré and Lleras-Muney (2006) derived bounds for the functions of interest when
only discrete covariates are available. We complement these studies by showing identification
in the general competing risk model under primitive conditions that allow for the presence of
discrete covariates but at the same time impose more structure on the index; cf. Equation (2.2).

In the next section, we give two motivating examples in form of a random utility model
and a competing risk model that both fall within the setting of Equation (1.1). We present our
general framework in Section 3, as well as the assumptions we will work under, and provide our
identification results in Section 4. Section 5 applies our general result to the two examples, and
Section 6 concludes.

© 2020 Royal Economic Society.
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4 M. Fosgerau and D. Kristensen

2. TWO MOTIVATING EXAMPLES

The model (1.1) comprises a range of models that are met in economics. We here present two
classes of models that fall within our framework. We will return to these two classes of models
in Section 5, where we apply our general identification result to each of them.

2.1. Discrete choice models

We here first demonstrate that the class of additive random utility models (ARUM) can be mapped
into (1.1). On the basis of existing results in the literature, this in turn implies that our results also
apply to a broad class of rational inattention discrete choice models (Fosgerau et al., 2019) and
an even wider class of perturbed utility models.

2.1.1. Additive random utility. Consider an agent choosing between J + 1 alternatives, each
carrying an associated indirect utility of the form

Uy=a;(W,X)+¢;, j=0,1,..,J,

where (W, X) is a set of observed covariates and ¢ = (&g, &1, ..., £;) is unobserved. This model was
initially proposed by McFadden (1973) and has since become one of the workhorses in applied
microeconomics; see, e.g., Ben-Akiva and Lerman (1985) and Maddala (1986). As is standard in
the literature, we impose the following normalisation on the ‘outside’ option j = 0: ap(w, x) = 0.

Some of the regressors (W, X) may potentially be dependent on ¢. To handle this situation,
we assume the availability of a set of control variables Z so that (W, X) are independent of &
conditional on Z. In addition to (W, X, Z), the researcher also observes the utility-maximising
choice, D = argmax¢(o,1,...s) U;. Thus, the conditional choice probabilities (CCPs),

I;(w,x,2):=PD=jIW,X,Z)=(w,x,2)), j=0,1,.... J, (2.2)

are identified in the population. We collect these in the vector-valued function IT(w, x, z) =
{I'Ij (w,x,2):j=1,.., J} € R/, where we leave out the CCP of the outside option. It now
follows from standard results in the literature that I1(w, x, z) can be written in the form of (1.1),
with A being the gradient of the so-called surplus function; see Section 5 for further details.

Our identification result requires the researcher to group the observed covariates into two sets.
The first set, denoted W, contains the ‘special’ regressors that enter the index a through a known
function g(W), as specified by the researcher; cf. Equation (2.2). The second set, denoted X, then
enters a through A(X), which is left unspecified.

The choices of Wand g(W) are application specific and should be guided by two considerations.
First, g(W) needs to exhibit sufficient continuous variation on R’ because this is a key requirement
for our identification result to go through. Second, because g;(W) affects the utility of the jth
alternative positively by definition, it should be specified accordingly.

As an example of this joint modelling and identification strategy, let us consider the problem of
estimating willingness to pay for different goods, a common problem in various applied fields of
economics (e.g., Fosgerau, 2006; Bontemps and Nauges, 2016). In this setting, choosing g to be
gi(W;) = —In W;, where W; is the price of alternative j,j = 1, ..., J, transforms a positive price vector
into a vector that can in principle attain values in all of R’. With this choice, /;(X) + ¢; captures
the log willingness to pay for good j, where X contains characteristics of the agent and other
characteristics of the different alternatives. Prices generally exhibit continuous variation and so
satisfy the first of the two aforementioned requirements. This example assumes the availability of

© 2020 Royal Economic Society.
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alternative-specific regressors, Wy, ...., W,;. However, our identification result may still be applied
if this is not true. In this case, the researcher needs to construct alternative-specific regressors
g1(W), ..., g;(W) from a set of underlying covariates W.

Our assumption of g(W)’s being known has antecedents in the literature on identification in
discrete choice models. For example, in the context of binary choice (J/ = 1), Lewbel et al. (2000)
also assumed the presence of a ‘special’ regressor, in our notation W, that entered the utility of
alternative 1 in a known fashion. However, that paper furthermore restricted A(x) to be linear,
h(x) = Bx, and, importantly, identification of § was achieved through variation of g(W) on the
boundary of its support. Our identification result does not rely on any such argument.

Our framework also includes the so-called rational inattention discrete choice model. Fosgerau
etal. (2019) showed that any ARUM satisfying the conditions above is observationally equivalent
to arational inattention discrete choice model in which the prior is held constant. This generalises
the finding of Matéjka and McKay (2015), who showed that the multinomial logit model has a
foundation as a rational inattention model. Thus, our identification result extends without effort
to a broad class of rational inattention models.

2.1.2. Perturbed utility. The class of perturbed utility models (Fosgerau and McFadden, 2012;
Fudenberg et al., 2015; Allen and Rehbeck, 2019) is another generalisation of the class of ARUM.
As shown by Hofbauer and Sandholm (2002), the CCPs of an ARUM can be represented as the
solution to a maximisation problem in which an agent chooses the vector of CCPs to maximise a
function that consists of a linear term and a concave term. Here, we present an extended version
that includes controls affecting the concave term, i.e.,

A(a,z) = arg max {aTq + Q2 (ql2)}, (23)
q€

where a € R’/*! is a vector of utility indices, A = {g € R]*" : ij-zo g; = 1} is the unit simplex,

and €2( - |z) is a concave function for each z € Z. The perturbed utility model includes ARUM as
a special case, while allowing an individual to have strict preference for randomisation rather than
to choose a vertex of the probability simplex. As noted by Allen and Rehbeck (2019), observing
only realisations of lotteries across choice options is sufficient for identification, which requires
only the vector of CCPs, IT (w, x, 7). We show in Section 5 that the implied CCPs satisfy (1.1).

2.2. Accelerated failure time models for competing risks

Consider a competing risk model, as in Heckman and Honoré (1989), with J competing causes of
failure. A latent failure time 7; > 0 is associated with each cause j € {1, ..., J}. The econometrician
observes the duration until the first failure, ¥ =min ¢ (1, ., 5} T}, and the associated cause of failure,
D = argminj¢(y,.. ) T}, together with a set of observed covariates (X, W, Z). Assume that the jth
failure time satisfies

lnTj Zdj(W, X)—é‘j, (24)

for some function a;(w, x) , j = 1, ..., J. The model may then be termed a multivariate generalised
accelerated failure time model (Kalbfleisch and Prentice, 1980; Fosgerau et al., 2013). The
econometrician has knowledge of

Ij(w,x,2) =E[mYW=w,X=x,Z=z] - PD=jIW=w,X=x,Z=27), (25)

© 2020 Royal Economic Society.
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6 M. Fosgerau and D. Kristensen

forj =1, ..., J, where Z is used to control for potential dependence between (W, X) and . We
collect the unobservables in ¢ = (¢1, ..., £;) and again require them to be conditionally independent
of (X, W), in which case, as shown in Section 5, IT defined above again satisfies Equation (1.1).

Typical applications of the above model are in the modelling of (un)employment spells in
which an exit from the unemployment register can be the result of finding a full- or part-time
job in a different sector or another change of status. Thus, in this setting, j = 1, ...J indexes the
different exits (types of non-unemployment), and (W, X) contain both variables characterising the
types of employment (such as salary in a given type/sector of employment) and individual-specific
controls (such as age and marital status). Similar to discrete choice models, we would then need to
construct g(W) to capture risk-specific characteristics with continuous variation and then include
all other covariates in X. Most empirical applications assume a parametric structure for the index,
e.g., a(W, X) = aW + BX. In this setting, requiring g to be known effectively assumes fixing
a € R7*4 | At the same time, we impose very weak restrictions on the distributional features of
the regressors X and how they enter the index a(W, X).

3. GENERAL FRAMEWORK

We now return to the general model given in Equations (1.1) and (2.2), where g : R — R’ is
assumed to be a known function, whereas & : R% — R’ and A : R/ x R¥ — R’ are unknown
functions. In the following, let int.4 denote the interior of a given set A, and let supp(Y) denote
the support of a given random variable Y. We then take I1(w, x, z) as given and known to us for
all (w, x, z) € supp(W, X, Z) € R/ x R% x R%, where (W, X, Z) denote the random variables
that we have observed; cf. the examples in the previous section.

The covariates contained in g(W) play a special role in our approach in that we need sufficient
continuous variation in these to achieve identification. First note that dim g (W) = J. Thus,
sufficient continuous variation of g(W), which is known to us, permits us to identify the relative
variation of A(a, z) with respect to a. Formally, for any given pair (x, z) € supp(X, Z), define

Gx,z)=1intsupp(gW)|X =x,Z =2z), X(2) =supp(X|Z =72). 3.1

We will then throughout implicitly require that some of the open sets G (x, z), (x, z) € supp(X, Z)
are non-empty, and then we will achieve identification at the values of x for which this is true.
A sufficient condition for a given G(x, z) to be non-empty is that the distribution of W|X = x,
Z = z is continuous and that g maps open sets into open sets; however, this is not required, and
g(W) may contain discrete components as long as they fall within the support of the continuous
component. Our identification result still applies if any values of a discrete component fall outside
the continuous support, but it excludes these values. This also rules out that some components
of W are included in Z because in this case G (x, z) = . At the same time, however, (X, W) can
depend on Z; we just need sufficient variation in (X, W) conditional on Z. Moreover, no continuity
restrictions are imposed on the distribution of (X, Z), which may be completely discrete. Finally,
we would like to stress that we do not impose any large-support restrictions on g(W), which is in
contrast to most existing results in the literature, as discussed in the introduction. If, for example,
G (x, z) = R’ for all x, then our result demonstrates that A(x) is identified on all of supp(X), but
it is not necessary; identification on all of supp(X) can be achieved without such a full-support
condition.

© 2020 Royal Economic Society.
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Next, let
Mx,2)=0G(x,2) x {x}, Alx,2)=aM(x,2) =G (x,2) + {h(x)},
denote the support of (W, X)|(X, Z) = (x, z) and a(W, X)|(X, Z) = (x, z), respectively, and let
M (@) = Urex oM (x,2), A(2) = UrexA(x, 2) = a(M(2)), (3.2)

denote the supports of the same random variables but now conditioning only on Z = z. Finally,
for some set Z, C supp (Z) chosen according to certain assumptions stated below, let

Ag =Uez, A(2), Xp = Uzez,X (2)

be the supports of a(W, X) and X conditional on Z € Z, respectively. We will then show
identification of h(x) and A(a, z) for x € Xy, a € Ap, and z € Z. Specifically, Z, will be
constructed according to certain properties of the underlying covariates and the functions of
interest. Observe the dependence of M and A on the set Zy. To achieve ‘maximal’ identification,
we would ideally like to choose Z, = supp (Z). However, we potentially have to restrict 2. First,
we require a— A(a, z) to satisfy the following condition for all z € Zj:

ASSUMPTION 3.1. Forany z € 2y, a> A(a, z) is injective on A (z) as defined in (3.2).

By asking for A(a, z) to be injective, we can identify the relative variation in a(w, x) through
the observed variation in IT(w, x, z). In a given application, Assumption 3.1 may not hold for all z
€ supp(Z), in which case we need to remove such values from Zj. In the worst-case scenario, this
leaves us with Z, being empty, and our identification result becomes void. At the other extreme,
Zy = supp (Z), and we may achieve identification on the whole support.

Because of the structure of a(w, x), it follows from the definition of G (x, z) that A (x, z) and
thereby also A (z) and Ay are open sets. We add to this by also requiring A (z) to be connected
for all z € Z;. An open set A is connected if A = O U O, implies that O; N O, # & whenever
O, and O, are non-empty open sets. Thus, an open connected set cannot be separated into two
non-empty disjoint open sets. We then impose:

ASSUMPTION 3.2. A(z) is connected for all z € Z,.

Assumption 3.2 allows us to go from local identification at a given point x € X'(z) to relative
identification on all of X'(z), z € 2 via the image of a(x, w). The assumption imposes restrictions
on the support of the random variable a(X, W) instead of (X, W) themselves. This is done to impose
minimal restrictions on the distribution of X and the smoothness of 4. Recall that W is assumed to
contain a continuous component. Thus, Assumption 3.2 includes, for example, the case of X being
unbounded and discrete, or the case of X being continuous while 4(X) is discontinuous everywhere.
Assumption 3.2 is not verifiable from data, but the same holds for smoothness conditions that
are regularly imposed in existing identification results. If we are willing to entertain certain
smoothness conditions, such as the inverse of A(a, z) being continuous with respect to a, then
the assumption is implied by connectedness of TT(M(z)|z) = A(A(z), z)—this latter property
being verifiable. Similarly, if we restrict X and & to both be continuous, it will be implied by
connectedness of M (z).

Once we have achieved relative identification on each X'(z), z € Z, global identification is
then reached through the following assumption:

ASSUMPTION 3.3. If2,U 2, = 2y, Z1, Z5 # 0, then (U ez, M(2) N (U,ez, M(2) # 0.

© 2020 Royal Economic Society.
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8 M. Fosgerau and D. Kristensen

This is used to paste together the relatively identified sets X'(z) across z. Again, this assumption
does not require X and/or 4 to be continuous, only that the sets supp(W, X|Z = z), z € Z overlap.
Finally, the following normalisation on the function % gives us identification on X'(zo):

ASSUMPTION 3.4. There exist zg € Zy and (wy, xg) € M (z¢) so that h(xy) = O.

Such a normalisation is needed to identify the level of & because for any given pair of (A, h),
we have A (g (w)+h(x),z) = A (g(w)+h(x),z),where[\(a, z2)=A(a+c,z)and h(x) =
h (x) — c for some given value of ¢ € R’.

4. MAIN RESULT

As explained earlier, we shall make use of the notion of relative identification in our proof of
identification. As a first step, we show relative identification on any two overlapping images of
a; this is achieved through injectivity of A(a, z), which allows us to map the overlapping images
into overlapping images of IT.

LEMMA 4.1. Suppose that Assumption 3.1 holds and that h(x") is identified at x* € X (z) for
some z € 2. Then the set X* (z) := {x € X()|A*, z2) N A(x, z) # @} is identified, and h(x)
is identified on X* ().

Proof. By definition, A (x*, z) N A (x, z) # ¥ if and only if there exist w" and w so that g (w*) €
G (x*,2), g (w) € G(x,2),and a(w", x*) = a(w, x). Noting that A(alz) is injective by Assumption
3.1, we see that the last equality is equivalent to A(a(w”, x*), z) = A(a(w, x), z), which we
recognise as

I (w*, x*,z) =M (w, x,2), 4.1

where IT is known to us. Thus, X'* (x, z) is identified as the set of solutions x to (4.1) as we vary
(w", w). Next, for any given x € X'* (x, z), let w* and w be the corresponding values for which
(4.1) holds. Because these are known, the value a(w”, x*) = g(w") + h(x") is also known to us.
This in turn implies that 4(x) = a(w, x) — g(w) = a(w", x*) — g(w) is identified. ]

We then use this lemma in conjunction with the connectedness of A(z) to show relative
identification on each of the sets X (z):

LEMMA 4.2. Suppose that Assumptions 3.1 and 3.2 hold. Then, for all 7z € Zy, h(x) is relatively
identified on X (z) as defined in Equation (3.1).

Proof. Let x* € X () be given, and suppose we know the value of A(x"). Let X* (z) C X ()
be the set on which A(x) is identified, and let A* (z) = U,cx+(;)A (x, 2) be the corresponding
values of a(w, x). By assumption, x* € X* (z), and so the identified set is non-empty. This in
turn implies that A* (z) is non-empty and open. Now, seeking a contradiction, suppose that
X* (z) := X (2) \X* (z) # @. Then define A** (z) = Uyer+(;)A (x, z), which is also open and
non-empty. Because A* (z) U A™ (z) = A(z), which is connected according to Assumption 3.2,
there must exist x € X*(z) and x’ € X** () so that A(x,z)N A (x’, z) # @. Lemma 4.1 then

implies that x and h(x) are also identified, which is a contradiction. O

Finally, the ‘connectedness’ of U,z M(z) as stated in Assumption 3.3, together with the
normalisation in Assumption 3.4, give us global identification:
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THEOREM 4.1. Under Assumptions 3.1 through 3.4, h(x) is identified on Xy = U ez, X (2).

Proof. Let X'* be the identified set. By Lemma 4.2, X* = U,cz«X () for some Z* C Z,. By
Assumption 4, zp € Z*, and so the set is non-empty. Seeking a contradiction, suppose that Z** :=
Z0\Z* # @. By definition Z* U Z2** = Z;, and s0 {U,cz- M(2)} N {U ez« M(2)} # 0 by As-
sumption 3.3. This implies that there exist z* € Z* and z™* € Z** so that M(z*) N M(z**) # 0,
which in turn implies that there exists x* € X (z*) N X (z**) for which h(x") is identified. Then
Lemma 4.2 implies that i(x) is identified on all of X" (z**), which is a contradiction. O

Once we have identified &, we can also identify A:

THEOREM 4.2.  Under Assumptions 3.1 through 3.4, A(a, z) is identified on
{(a,2)]a € A(z),z € Zo}.

Proof. Letz € Zyanda € A(z) be given. By definition of A (z), there exists some pair (w, x) €
M (z) such that a = a(w, x). Because A( - ) and thereby also a( -, -) are identified, the pair (w, x)
is known. Then we also know I1(w, x, z), and so A(a, z) = I1(w, x, z) is uniquely identified. [

5. APPLICATIONS

This section applies the general result to the two main examples of Section 2, the ARUM and the
competing risk model, and compares our identification results for these two models with existing
ones found in the literature. In both examples, we impose the following conditional independence
restriction on the error term:

ASSUMPTION 5.1. (i) € is conditionally independent of (X, W), Feyw, x, 2)( - | - - 2) = Feiz( - 2)
for all z € Zy for some Zy C supp (Z); (ii) Fy\z( - |z) has a conditional density with full support
forall z € 2.

We demonstrate in the next two subsections that part (i) implies that IT, as defined in Equa-
tions (2.1) and 2.4, respectively, can be written on the forms (1.1) and (2.2) for all z € Z, whereas
part (ii) ensures that the model-specific A(a, z) is injective with respect to a for all z € 2.

5.1. ARUM

Define the surplus function,

G(ag,..a;,z):=E [‘n(}axj UijlaW,X)=a,Z = z:| =E |:An(}axj lej+a;}1Z = z] ,
Jj=0,..., Jj=0,...,
for any given (ao, ay, ..., a;) € R/*!, where the second equality uses Equation (2.1.1) and As-
sumption 5.1(i). The Williams-Daly-Zachary theorem (McFadden, 1981) then implies that the
CCPs, as defined in (2.1), can be written on the forms (1.1) and (2.2) with A defined as the
gradient of the surplus function,

_9G(a,2)

Aa,z): 5

aop =0

We conclude:

COROLLARY 5.1. Any ARUM on the form (2.1.1) that satisfies Assumptions 3.1 through 3.4
and 5.1(i) is identified.
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Next, we discuss each of Assumptions 3.1 through 3.4 in the context of ARUM and how these
compare with existing ones found in the literature on identification of ARUM.

First, Assumption 3.1, injectivity of A( -, z) for each z, is implied by Assumption 5.1(ii); cf.
Hofbauer and Sandholm (2002, Theorem 2.1). However, Assumption 5.1(ii) is not necessary for
injectivity to hold. A simple example is the binomial model, where the probability for alternative
zero is the cumulative distribution of ;. If the distribution includes point masses, then ties can
occur, but this does not destroy injectivity. This is true for any tie-breaking rule. More generally,
if the subdifferential of the surplus function is strictly cyclically monotone (Rockafellar, 1970),
which does not require the existence of a density, then the utility-maximising choice probabilities
under any tie-breaking rule are injective (Sgrensen and Fosgerau, 2020).

Assumptions 3.2 and 3.3 impose restrictions on the joint variation of (g(W), X). For Assumption
3.2 to hold, we need to identify J regressors, g(W), that exhibit enough joint continuous variation
so their joint support, conditional on (X, Z), has a non-empty interior on R’. One instance in
which this can be achieved is if we have observed alternative-specific characteristics. In the case
of demand modelling, one such choice would be a (transformation) of the (relative) prices of
the different alternatives, while X contains all remaining regressors, possibly including other
alternative-specific covariates. In this case, to control for potential endogeneity of prices, we
could then include cost shifters in Z. Prices tend to exhibit continuous variation, and Assumption
3.2 would be likely to hold. Assumption 3.3 requires other observed product characteristics and
the agent’s observed characteristics to exhibit sufficient variation conditional on the controls in Z
so that these have overlapping support across different values of Z.

As already mentioned in the introduction, there are few fully nonparametric identification
results for ARUM. To our knowledge, the only results comparable to ours are found in Matzkin
(1993). Her results also require the presence of alternative-specific regressors but impose stronger
conditions on these and other covariates. Moreover, her setup did not include any control variables.
On the other hand, she did not necessarily require that a(W, X) be additive, which we assume
throughout. Theorem 1 of Matzkin (1993) does allow for dependence between (W, X) and ¢, but
in this case, she required the observed component of the utilities to be identical across alternatives
and strictly increasing in one of the arguments. In our notation, this requires a;(W, X), j = 1,
..., J to all be identical. We do not impose any such constraints. Her Theorem 2 requires full
independence between (W, X) and ¢ but, on the other hand, imposes fewer restrictions on a(W,
X) than we do. In both cases, she identified A by letting different components of W diverge to
400, which is an example of thin-set identification, discussed earlier.

5.2. Perturbed discrete choice

We here demonstrate that the CCPs for the perturbed discrete choice model again can be expressed
on the forms (1.1) and (2.2), with A defined in (2.2) as being injective. This is done under
the following restrictions: First, to rule out zero demands, the norm of the gradient V,Q(g|z)
has to approach infinity as g approaches the boundary of the unit simplex. Second, Q(g|z) is
differentiable.! Third, we normalise the outside option so that go(w) = hg(x) = 0. Under these
three restrictions, for each value of the control z, the demand solves the first-order condition for
an interior solution,

a+Y,Q(A(a.2)]2) = M,

! Note we do not require a Hessian.
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where A is a scalar constant and ¢ € R” is a vector consisting of ones. To show that A is injective,
consider this equation at @; and a,, and assume that A(ay, z) = A(as, 7). Define a matrix M such
that Mx = x — xot for all x = (xo, ..., x;) € R/*!. Pre-multiply this matrix onto the first-order
condition to obtain that

ay + MV, Q(A(ar,2) |z) = ar + MV, Q (A (a2, 2) |2)

which implies that a; = a; as required.

5.3. Competing risk

Define

A(a,z):=G(a,z)-

G (a, 2)
“oq (5.1)

where, as before, a = (ay, ..., ay), while G(a, z) is now defined as the expected log failure time,
G(a,z) = E[lnY|a(W, X) =da, 7 = Z] =—F [Anllax‘]{_aj +8j} |Z — Z} ,
J=1

where the second equality uses Equation (2.3) and Assumption 5.1(i). Williams-Daly-Zacchary
theorem (McFadden, 1981) then implies that T, now defined by (2.4), can be written on the forms
(1.1) and (2.2). Injectivity of A(a, z), as given in Equation (5.1), is obtained by recycling the
arguments of the previous subsection, except that no normalisation of one of the causes of failure
is required because the level G(a, z) is included.

COROLLARY 5.2. Any competing risk model on the form (2.3) that satisfies Assumptions 3.1
and 3.4 and 5.1(i) is identified.

Given that the competing risk model and the ARUM share a similar structure, the discussion
of the remaining assumptions carries over to the present setting with obvious modifications.

Compared with existing results (Heckman and Honoré, 1989; Lee and Lewbel, 2013), we
impose stronger conditions on the index a(W, X) because we require it to be additive and with
g(W) known. On the other hand, Heckman and Honoré (1989) required a(W, X) to go to zero as
W diverges and thus relied on a thin-set identification argument, while Lee and Lewbel (2013)
relied on a high-level functional rank condition. It is unclear which primitive conditions suffice
for this rank condition to hold. Finally, Honoré and Lleras-Muney (2006) restricted themselves to
the case of purely discrete regressors and were only able to derive bounds for objects of interest.
We achieve point identification as long as there is some continuous variation in W, while X can
be completely discrete.

6. CONCLUSION

We have established an identification result for a wide class of index models on the basis of general
topological arguments. Three key features of our argument are that smoothness of the model is
not required; no large-support condition is imposed on the regressors; and control variables may
contribute to achieving identification. We leave the development of nonparametric estimators of
the identified components for future research.
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