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Abstract

We propose a new semiparametric approach for modelling nonlinear univariate diffusions,

where the observed process is a nonparametric transformation of an underlying parametric dif-

fusion (UPD). This modelling strategy yields a general class of semiparametric Markov diffusion

models with parametric dynamic copulas and nonparametric marginal distributions. We provide

primitive conditions for the identification of the UPD parameters together with the unknown

transformations from discrete samples. Likelihood-based estimators of both parametric and

nonparametric components are developed and we analyze the asymptotic properties of these.

Kernel-based drift and diffusion estimators are also proposed and shown to be normally dis-

tributed in large samples. A simulation study investigates the finite sample performance of our

estimators in the context of modelling US short-term interest rates. We also present a simple

application of the proposed method for modelling the CBOE volatility index data.
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1 Introduction

Most financial time series have fat tails that standard parametric models are not able to generate.

One forceful argument for this in the context of diffusion models was provided by Aı̈t-Sahalia

(1996b) who tested a range of parametric models against a nonparametric alternative and found

that most standard models were inconsistent with observed features in data.

One popular semiparametric approach that allows for more flexibility in terms of marginal

distributions, and so allowing for fat tails, is to use the so-called copula models, where the copula

is parametric and the marginal distribution is left unspecified (nonparametric). Joe (1997) showed

how bivariate parametric copulas could be used to model discrete-time stationary Markov chains

with flexible, nonparametric marginal distributions. The resulting class of semiparametric models

are relatively easy to estimate; see, e.g. Chen and Fan (2006). However, most parametric copulas

known in the literature have been derived in a cross-sectional setting where they have been used to

describe the joint dependence between two random variables with known joint distribution, e.g. a

bivariate t-distribution. As such, existing parametric copulas may be difficult to interpret in terms

of the dynamics they imply when used to model Markov processes. This in turn means that applied

researchers may find it difficult to choose an appropriate copula for a given time series.

One could have hoped that copulas with a clearer dynamic interpretation could be developed

by starting with an underlying parametric Markov model and then deriving its implied copula.

This approach is unfortunately hindered by the fact that the stationary distributions of general

Markov chains are not available on closed-form and so their implied dynamic copulas are not

available on closed form either. This complicates both the theoretical analysis (such as establishing

identification) and the practical implementation of such models.

An alternative approach to modelling fat tails using Markov diffusions is to specify flexible forms

for the so-called drift and diffusion term. Such non-linear features tend to generate fat tails in the

marginal distribution of the process. This approach has been widely used to, for example, model

short-term interest rates; see, e.g., Aı̈t-Sahalia (1996a,b), Conley et al. (1997), Stanton (1997),

Ahn and Gao (1999) and Bandi (2002). These models tend to either be heavily parameterized or

involve nonparametric estimators that suffer from low precision in small and moderate samples.

We here propose a novel class of dynamic copulas that resolves the above-mentioned issues:

We show how copulas can easily be generated from parametric diffusion processes. The copulas

have a clear interpretation in terms of dynamics since they are constructed from an underlying

dynamic continuous-time process. At the same time, a given copula-based diffusion can exhibit

strong non-linearities in its drift and diffusion term even if the underlying copula is derived from,

for example, a linear model. Furthermore, primitive conditions for identification of the parameters

are derived; and this despite the fact that the copulas are implicit. Finally, the models can easily be

implemented in practice using existing numerical methods for parametric diffusion processes. This

in turn implies that estimators are easy to compute and do not involve any smoothing parameters;

this is in contrast to existing semi- and nonparametric estimators of diffusion models.

The starting point of our analysis is to show that there is a one-to-one correspondence between
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any given semiparametric Markov copula model and a model where we observe a nonparametric

transformation of an underlying parametric Markov process. We then restrict attention to para-

metric Markov diffusion processes which we refer to as underlying parametric diffusions (UPD’s).

Copulas generated from a given UPD has a clear interpretation in terms of dynamic properties. In

particular, standard results from the literature on diffusion models can be employed to establish

mixing properties and existence of moments for a given model; see, e.g. Chen et al. (2010). More-

over, we are able to derive primitive conditions for the parameters of the copula to be identified

together with the unknown transformation.

Once identification has been established, estimation of our copula diffusion models based on

a discretely sampled process proceeds as in the discrete-time case. One can either estimate the

model using a one-step or two-step procedure: In the one-step procedure, the marginal distribution

and the parameters of the UPD are estimated jointly by sieve-maximum likelihood methods as

advocated by Chen, Wu and Yi (2009). In the two-step approach, the marginal distribution is first

estimated by the empirical cdf, which in turn is plugged into the likelihood function of the model.

This is then maximized with respect to the parameters of the UPD. We provide an asymptotic

theory for both cases by importing results from Chen, Wu and Yi (2009) and Chen and Fan (2006),

respectively. In particular, we provide primitive conditions for their high-level assumptions to

hold in our diffusion setting. The resulting asymptotic theory shows
√
n-asymptotic normality

of the parametric components. Given the estimates of parametric component, one can obtain

semiparametric estimates of the drift and diffusion functions and we also provide an asymptotic

theory for these.

Our modelling strategy has parametric ascendants: Bu et al. (2011), Eraker and Wang (2015)

and Forman and Sørensen (2014) considered parametric transformations of UPDs for modelling

short-term interest rates, variance risk premia and molecular dynamics, respectively. We here pro-

vide a more flexible class of models relative to theirs since we leave the transformation unspecified.

At the same time, all the attractive properties of their models remain valid: The transition density

of the observed process is induced by the UPD and so the estimation of copula-based diffusion

models is computationally simple. Moreover, copula diffusion models can furthermore be easily

employed in asset pricing applications since (conditional) moments are easily computed using the

specification of the UPD. Finally, none of these papers fully addresses the identification issue and

so our identification results are also helpful in their setting.

There are also similarities between our approach and the one pursued in Aı̈t-Sahalia (1996a)

and Kristensen (2010). They developed two classes of semiparametric diffusion models where either

the drift or the diffusion term is specified parametrically and the remaining term is left unspecified.

The remaining term is then recovered by using the triangular link between the marginal distribu-

tion, the drift and the diffusion terms that exist for stationary diffusions. In this way, the marginal

distribution implicitly ties down the dynamics of the observed diffusion process. Unfortunately, it

is very difficult to interpret the dynamic properties of the resulting semiparametric diffusion model.

In contrast, in our setting, the UPD alone ties down the dynamics of the observed diffusion and

so these are much better understood. The estimation of copula diffusions are also less computa-

3



tionally burdensome compared to the Pseudo Maximum Likelihood Estimator (PMLE) proposed

in Kristensen (2010).

The remainder of this paper is organized as follows. Section 2 outlines our semiparametric

modelling strategy. Section 3 investigates the identification issue of our model. In Section 4,

we discuss the estimators of our model while Section 5 investigates their asymptotic properties.

Section 6 presents a simulation study to examine the finite sample performance of our estimators.

In Section 7, we consider a simple empirical application. Some concluding remarks are given in

Section 8. All proofs and lemmas are collected in Appendices.

2 Copula-Based Diffusion Models

2.1 Framework

Consider a continuous-time process Y = {Yt : t ≥ 0} with domain Y = (yl, yr), where −∞ ≤ yl <

yr ≤ +∞. We assume that Y satisfies

Yt = V (Xt) , (2.1)

where V : X 7→Y is a smooth monotonic univariate function and X = {Xt : t ≥ 0} solves the

following parametric SDE:

dXt = µX (Xt; θ) dt+ σX (Xt; θ) dWt. (2.2)

Here, µX (x; θ) and σ2
X (x; θ) are scalar functions that are known up to some unknown parameter

vector θ ∈ Θ, where Θ is the parameter space, while W is a standard Brownian motion. We call

X the underlying parametric diffusion (UPD) and let X = (xl, xr), −∞ ≤ xl < xr ≤ +∞, denote

its domain.

We call Y a copula-based diffusion since its dynamics are determined by the implied (dynamic)

copula of the UPD X, as we will explain below. Given a discrete sample of Y , Yi∆, i = 0, 1, . . . , n,

where ∆ > 0 denotes the time distance between observations, we are then interested in drawing

inference regarding the parameter θ and the function V . Note here that we only observe Y while

X remains unobserved since we leave V unspecified (unknown to us). For convenience, we collect

the unknown component in the structure S ≡ (θ, V ).

The above class of models allows for added flexibility through the transformation V which we

treat as a nonparametric object that we wish to estimate together with θ. By allowing for a broad

nonparametric class of transformations V , our model is richer and more flexible compared to the

fully parametric case with known or parametric specifications of V . In particular, as we shall see,

any given member of the above class of models is able to completely match the marginal distribution

of any given time series.

We will require that the underlying Markov process X sampled at i∆, i = 1, 2, ..., possesses a

transition density pX (x|x0; θ),

Pr (X∆ ∈ A|X0 = x0) =

∫
A
pX (x|x0; θ) dx, A ⊆ X . (2.3)
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Moreover, some of our results require X to be recurrent, a property which can be stated in terms

of the so-called scale density and scale measure. These are defined as

s (x; θ) := exp

{
−
∫ x

x∗

2µX (z; θ)

σ2
X (z; θ)

dz

}
and S (x; θ) :=

∫ x

x∗
s (z; θ) dz (2.4)

for some x∗ ∈ X . We then impose the following:

Assumption 2.1. (i) µX (·; θ) and σ2
X (·; θ) > 0 are twice continuously differentiable; (ii) the scale

measure satisfies S (x; θ)→ −∞ (+∞) as x→ xl (xr); (iii) ξ (θ) =
∫
X
{
σ2
X (x; θ) s (x; θ)

}−1
dx <

∞.

Assumption 2.2. The transformation V is strictly increasing with inverse U = V −1, i.e., y =

V (x)⇔ x = U (y), and is twice continuously differentiable.

Assumption 2.1(i) provides primitive conditions for a solution to eq. (2.2) to exist and for the

transition density pX (x|x0; θ) to be well-defined, while Assumption 2.1(ii) implies that this solution

is positive recurrent; see Bandi and Phillips (2003), Karatzas and Shreve (1991, Section 5.5) and

McKean (1969, Section 5) for more details. Assumption 2.1(iii) strengthens the recurrence property

to stationarity and ergodicity in which case the stationary marginal density of X takes the form

fX (x; θ) =
ξ (θ)

σ2
X (x; θ) s (x; θ)

, (2.5)

where ξ (θ) was defined in Assumption 2.1(iii). However, stationarity will not be required for all

our results to hold; in particular, some of our identification results and proposed estimators do not

rely on stationarity. This is in contrast to the existing literature on dynamic copula models where

stationarity is a maintained assumption.

Assumption 2.2 requires V to be strictly increasing; this is a testable restriction under the

remaining assumptions introduced below which ensures identification: Suppose that indeed V is

strictly decreasing; we then have Yt = V̄
(
X̄t

)
, where V̄ (x) = V (−x) is increasing and X̄t =

−Xt has dynamics pX (−x| − x0; θ). Assuming that the chosen UPD satisfies pX (−x| − x0; θ) 6=
pX(x|x0; θ̃) for θ 6= θ̃, we can test whether V indeed is decreasing or increasing.

The smoothness condition on V is imposed so that we can employ Ito’s Lemma on the trans-

formation to obtain that the continuous-time dynamics of Y can be written in terms of S as

dYt = µY (Yt;S) dt+ σY (Yt;S) dWt,

with

µY (y;S) =
µX (U (y) ; θ)

U ′ (y)
− 1

2
σ2
X (U (y) ; θ)

U ′′ (y)

U ′ (y)3 , (2.6)

σY (y;S) =
σX (U (y) ; θ)

U ′ (y)
, (2.7)

where we have used that, with U ′ (y) and U ′′ (y) denoting the first two derivatives of U (y),

V ′ (U (y)) = 1/U ′ (y) and V ′′ (U (y)) = −U ′′ (y) /U ′ (y)3. In particular, Y is a Markov diffusion
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process. As can be seen from the above expressions, the dynamics of Y , as characterized by µY

and σ2
Y , may appear quite complex with U potentially generating nonlinearities in both the drift

and diffusion terms even if µX and σ2
X are linear. We demonstrate this feature in the subsequent

subsection where we present examples of simple UPD’s are able to generate non-linear shapes of

µY and σ2
Y via the non-linear transformation V . At the same time, if we transform Y by U we re-

cover the dynamics of the UPD. As a consequence, the transition density of the discretely sampled

process Yi∆, i = 0, 1, 2, ..., can be expressed in terms of the one of X as

pY (y|y0;S) = U ′ (y) pX (U (y) |U (y0) ; θ) , (2.8)

using standard results for densities of invertible transformations. By similar arguments, the sta-

tionary density of Y satisfies

fY (y;S) = U ′ (y) fX (U (y) ; θ) , (2.9)

which shows that any choice for UPD is able to fully adapt to any given marginal density of Y due

to the nonparametric nature of U .

The above expressions also highlights the following additional theoretical and practical advan-

tages of our modelling strategy: First, for a given choice of U , we can easily compute pY (y|y0;S)

and fY (y;S) since computation of parametric transition densities and stationary densities of diffu-

sion models is in general straightforward, even if they are not available on closed form. Second, Y

inherits all its dynamic properties from X; and in the modelling of X, we can rely on a large litera-

ture on parametric modelling of diffusion models. Formally, we have the following straightforward

results adopted from Forman and Sørensen (2014).

Proposition 2.1 Suppose that Assumptions 2.1(i)–(ii) and 2.2 hold. Then the following results

hold for the model (2.1)-(2.2):

1. If Assumption 2.1(iii) hold, then X is stationary and ergodic and so is Y .

2. The mixing coefficients of X and Y coincide.

3. If E [|Xt|q1 ] <∞ and |V (x)| ≤ B (1 + |x|q2) for some B <∞ and q1, q2 ≥ 0, then E[|Yt|q1/q2 ] <

∞.

4. If ϕ is an eigenfunction of X with corresponding eigenvalue ρ in the sense that E [ϕ (X1) |X0] =

ρϕ (X0) then ϕ ◦ U is an eigenfunction of Y with corresponding eigenvalue ρ.

The above theorem shows that, given knowledge (or estimates) of S, the properties of Y in

terms of mixing coefficients, moments, and eigenfunctions are well-understood since they are in-

herited from the specification of X. In addition, computations of conditional moments of Y can be

done straightforwardly utilizing knowledge of the UPD. For example, for a given function G, the

corresponding conditional moment can be computed as

E [G (Yt+s) |Yt = y] = E [GX (Xt+s) |Xt = U (y)] , where GX (x) := G (V (x)) .
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The right-hand side moment only involves X and so standard methods for computing moments

of parametric diffusion models (e.g., Monte Carlo methods, solving partial differential equations,

Fourier transforms) can be employed. This facilitates the use of our diffusion models in asset pricing

where the price often takes the form of a conditional moment. We refer to Eraker and Wang (2015)

for more details on asset pricing applications for our class of models; they take a fully parametric

approach but all their arguments carry over to our setting.

The last result of the above theorem will prove useful for our identification arguments since

these will rely on the fundamental nonparametric identification results derived in Hansen et al.

(1998). Their results involve the spectrum of the observed diffusion process, and the last result of

the theorem implies that the spectrum of Y is fully characterized by the spectrum of X together

with the transformation. The eigenfunctions and their eigenvalues are also useful for evaluating

long-run properties of Y . In our semiparametric approach, the eigenfunctions and corresponding

eigenvalues of Y are easily computed from X and so we circumvent the problem of estimating these

nonparametrically as done in, for example, Chen, Hansen and Scheinkman (2009) and Gobet et al.

(2004).

2.2 Examples of UPDs

Our framework is quite flexible and in principle allows for any specification of the UPD for X. Many

parametric models are available for that purpose, and we here present three specific examples from

the literature on continuous-time interest rate modelling.

Example 1: Ornstein-Uhlenbeck (OU) model. The OU model (c.f. Vasicek, 1977) is given

by

dXt = κ (α−Xt) dt+ σdWt, (2.10)

defined on the domain X = (−∞,+∞). The process is stationary if and only if κ > 0, in which case

X mean-reverts to its unconditional mean α. The scale of X is controlled by σ. Its stationary and

transition distributions are both normal, and the corresponding copula of the discretely sampled

process is a Gaussian copula with correlation parameter e−κ∆. For this particular model, the

resulting drift and diffusion term of the observed process takes the form

µY (y;S) =
κ (α− U (y))

U ′ (y)
− 1

2
σ2 U

′′ (y)

U ′ (y)3 , σ2
Y (y;S) =

σ2

U ′ (y)2 . (2.11)

In Figure 2 (found in Section 6), we plot these two functions with U and θ fitted to the 7-day

Eurodollar interest rate time series used in Aı̈t-Sahalia (1996b). Observe that U generates non-

linear behavior in µY and σ2
Y despite the UPD being a linear Gaussian process.

Example 2: Cox-Ingersoll-Ross (CIR) model. The CIR process (c.f. Cox et al., 1985) is

given by

dXt = κ (α−Xt) dt+ σ
√
XtdWt. (2.12)

The process has domain X = (0,+∞) and is stationary if and only if κ > 0, α > 0 and 2κα/σ2 ≥ 1.

Conditional on Xi∆, X(i+1)∆ admits a non-central χ2 distribution with fractional degrees of freedom
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while its stationary distribution is a Gamma distribution. To our best knowledge, the corresponding

dynamic copula has not been analyzed before or used in empirical work. Figure 4 (in Section 6)

displays µY and σ2
Y , with U and θ chosen in the same way as in Exampe 1. Compared to this

example, the resulting drift and diffusion term of Y exhibit even stronger non-linearities.

Example 3: Nonlinear Drift Constant Elasticity Variance (NLDCEV) model. The

NLDCEV specification (c.f. Conley et al., 1997) is given by

dXt =

(
l∑

i=−k
αiX

i
t

)
dt+ σXβ

t dWt (2.13)

with domain X = (0,+∞). It is easily seen that when α−k > 0 and αl < 0 the drift term of

the diffusion in (2.13) exhibits mean-reversions for large and small values of X. A popular choice

for various studies in finance assumes that k = 1 and l = 2 or 3 (c.f. Aı̈t-Sahalia, 1996b; Choi,

2009; Kristensen, 2010; Bu, Cheng and Hadri, 2017), in which case the drift has linear or zero

mean-reversion in the middle part and much stronger mean-reversion for large and small values of

X. Meanwhile, the CEV diffusion term is also consistent with most empirical findings of the shape

of the diffusion term. It follows that since (2.13) is one of the most flexible parametric diffusions,

diffusion processes that are unspecified transformations of (2.13) should represent a very flexible

class of diffusion models. Similar to (2.12), the implied copula of the NLDCEV is new to the copula

literature.

Examples 1-2 are attractive from a computational standpoint since the corresponding transition

densities are available on closed-form thereby facilitating their implementation. But this comes at

the cost of the dynamics being somewhat simple. The NLDCEV model implies more complex

and richer dynamics but on the other hand its transition density is not available on closed form.

However, the marginal pdf of the NLDCEV process, as well as more general specifications, can be

evaluated in closed form by (2.5). Moreover, closed-from approximations of the transition density of

the NLDCEV model developed by, for example, Aı̈t-Sahalia (2002) and Li (2013) can be employed.

Alternatively, simulated versions of the transition density can be computed using the techniques

developed in, for example, Kristensen and Shin (2012) and Bladt and Sørensen (2014). In either

case, an approximate version of the exact likelihood can be easily computed, thereby allowing for

simple estimation of even quite complex underlying UPDs.

2.3 Related Literature

As already noted in the introduction, copula-based diffusions are related to the class of so-called

discrete-time copula-based Markov models; see, for example, Chen and Fan (2006) and references

therein. To map the notation and ideas of this literature into our continuous-time setting, we set

the sampling time distance ∆ = 1 in the remaining part of this section.

Let us first introduce copula-based Markov models where a given discrete-time, stationary

scalar Markov process Y = {Yi : i = 0, 1, . . . , n} is modelled through a bivariate parametric copula
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density1, say, cX (u0, u; θ), together with its stationary marginal cdf FY , i.e., so that Y ’s transition

density satisfies

pY (y|y0; θ, FY ) = fY (y) cX (FY (y0) , FY (y) ; θ) , (2.14)

where fY (y) = F ′Y (y). An alternative representation of this model is

Yi = F−1
Y

(
X̄i

)
, X̄i+1|X̄i = x0 ∼ cX (x0, ·; θ) , (2.15)

so that Yi is a transformation of an underlying Markov process X̄i ∈ [0, 1]; the latter having a

uniform marginal distribution and transition density cX (x0, x; θ). Thus, if cX (x0, x; θ) is induced

by an underlying Markov diffusion transition density, the corresponding copula-based Markov model

falls within our framework.

Reversely, consider a copula-based diffusion and suppose that the UPD X is stationary with

marginal cdf FX (x; θ). By definition of Y , its marginal cdf satisfies

FY (y) = FX (U (y) ; θ)⇔ U (y) = F−1
X (FY (y) ; θ) . (2.16)

Substituting the last expression for U into (2.8), we see that pY can be expressed in the form of

(2.14) where cX (u0, u; θ) is the density function of the (dynamic) copula implied by the discretely

sampled UPD X,

cX (u0, u; θ) =
pX
(
F−1
X (u; θ) |F−1

X (u0; θ) ; θ
)

fX
(
F−1
X (u; θ) ; θ

) . (2.17)

Thus, any discretely sampled stationary copula-based diffusion satisfies (2.15) with X̄i = FX (Xi).

However, the literature on copula-based Markov models focus on discrete-time models with

standard copula specifications derived from bivariate distributions in an i.i.d. setting. Using copulas

that are originally derived in an i.i.d. setting complicates the interpretation of the dynamics of the

resulting Markov model, and conditions for the model to be mixing, for example, can be quite

complicated to derive; see, e.g., Beare (2010) and Chen, Wu and Yi (2009). This also implies that

very few standard copulas can be interpreted as diffusion processes; to our knowledge, the only one

is the Gaussian copula which corresponds to the OU process in Example 1.

The reader may now wonder why we do not simply generate dynamic copulas by first deriv-

ing the transition density pX (x|x0; θ) for a given discrete-time Markov model and then obtain

the corresponding Markov copula through eq. (2.17)? The reason is that for most discrete-time

Markov models the stationary distribution FX (x; θ) is not known on closed form. Thus, first of

all, F−1
X (u; θ) and thereby also cX have be approximated numerically. Second, since cX is now not

available on closed form, the analysis of which parameters one can identify from the resulting copula

model becomes very challenging. And identification in copula-based Markov models is a non-trivial

problem: Generally, for a given parametric Markov model, not all parameters are identified from

the corresponding copula as given in (2.17) and some of them have to be normalized.

1The copula CX (u0, u1; θ) for a given Markov process is defined as

CX (u0, u1; θ) = Pr
(
X0 ≤ F−1

X (u0; θ) , X1 ≤ F−1
X (u1; θ)

)
.

The corresponding copula density is then given by cX (u0, u1; θ) = ∂2CX (u0, u1; θ) / (∂u0∂u1).
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We here directly generate copulas through an underlying continuous-time diffusion model for

X. This resolves the aforementioned drawbacks of existing copula-based Markov models: First,

we are able to generate highly flexible copulas so far not considered in the literature. Second,

given that our copulas are induced by specifying the drift and diffusion functions of X, the time

series properties are much more easily inferred from our model, c.f. Theorem 2.1. Third, by Ito’s

Lemma, eqs. (2.6)-(2.7) provide us with explicit expressions linking the drift and diffusion terms

of the observed diffusion process Y to the UPD through the transformation V ; this will allow us

to derive necessary and sufficient conditions for identification in the following. Fourth, in terms of

estimation, the stationary distribution of a given diffusion model has an explicit form, c.f. eq. (2.5),

which allows us to develop computationally simple estimators of copula diffusion models. Finally,

some of our identification results will not require stationarity and so expands the scope for using

copula-type models in time series analysis.

Our modelling strategy is also related to the ideas of Aı̈t-Sahalia (1996a) and Kristensen (2010,

2011) where FY is left unspecified while either the drift, µY , or the diffusion term, σ2
Y , is specified

parametrically. As an example, consider the former case where σ2
Y (y; θ) is known up to the pa-

rameter θ. Given knowledge of the marginal density fY (or a nonparametric estimator of it), the

diffusion term can then be recovered as a functional of fY and µY as

µY (y; fY , θ) =
1

2fY (y)

∂

∂y

[
σ2
Y (y; θ) fY (y)

]
.

So in their setting fY pins down the resulting dynamics of Y in a rather opaque manner.

3 Identification

Suppose that a particular specification of the UPD as given in (2.2) has been chosen. Given the

discrete sample of Y , the goal is to obtain consistent estimates of θ together with V . To this end,

we first have to show that these are actually identified from data. In order to do so, we need to

be precise about which primitives we can identify from data. Given the primitives, we then wish

to recover (θ, V ). In the cross-sectional literature, one normally take as given the distribution of

data and then establish a mapping between this and the structural parameters. In our setting, we

are able to learn about the transition density of our data, pY , from the population and so it would

be natural to use this as primitive from which we wish to recover (θ, V ). However, the mapping

from pY to (θ, V ) is not available on closed form in general in our setting and so this identification

strategy appears highly complicated. Instead we will take as primitives the drift, µY , and diffusion

term, σ2
Y , of Y and then show identification of (θ, V ) from these. This identification argument

relies on us being able to identify µY and σ2
Y in the first place, which we formally assume here:

Assumption 3.1 The drift, µY , and the diffusion, σ2
Y , are nonparametrically identified from the

discretely sampled process Y .

The above assumption is not completely innocuous and does impose some additional regularity

conditions on the Data Generating Process (DGP). We therefore first provide sufficient conditions

10



under which Assumption 3.1 holds. The first set of conditions are due to Hansen et al. (1998) who

showed that Assumption 3.1 is satisfied if Y is stationary and its infinitesimal operator has a discrete

spectrum. Theorem 2.1(4) is helpful in this regard since it informs us that the spectrum of Y can be

recovered from the one of X. In particular, if X is stationary with a discrete spectrum, then Y will

have the same properties. Since the dynamics of X is known to us, the properties of its spectrum are

in principle known to us and so this condition can be verified a priori. The second set of primitive

conditions come from Bandi and Phillips (2003): They show that as ∆ → 0 and n∆ → ∞, the

drift and diffusion functions of a recurrent Markov diffusion process are identified. This last result

holds without stationarity, but on the other hand requires high-frequency observations.

In order to formally state the above two results, we need some additional notation. Recall that

the infinitesimal operator, denoted LX , of a given UPD X is defined as

LX,θg (x) := µX (x; θ) g′ (x) +
1

2
σ2
X (x; θ) g′′ (x) ,

for any twice differentiable function g (x). We follow Hansen et al. (1998) and restrict the domain

of LX to the following set of functions:

D (LX,θ) =

{
g ∈ L2 (fX) : g′ is a.c., LX,θg ∈ L2 (fX) and lim

x↓xl

g′ (x)

s (x)
= lim

x↑xu

g′ (x)

s (x)
= 0

}
.

where a.c. stands for absolutely continuous. The spectrum of LX,θ is then the set of solution pairs

(ϕ, ρ), with ϕ ∈ D (LX,θ) and ρ ≥ 0, to the following eigenvalue problem, LX,θϕ = −ρϕ. We

refer to Hansen et al. (1998) and Kessler and Sørensen (1999) for a further discussion and results

regarding the spectrum of LX . The following result then holds:

Proposition 3.1 Suppose that Assumption 2.1(i)-(ii) is satisfied. Then Assumption 3.1 holds

under either of the following two sets of conditions:

1. Assumption 2.1(iii) holds and LX,θ has a discrete spectrum where θ is the data-generating

parameter value.

2. ∆→ 0 and n∆→∞.

Importantly, the above result shows that Assumption 3.1 can be verified without imposing

stationarity. Unfortunately, this requires high-frequency information (∆ → 0). To our knowledge,

there exists no results for low-frequency (∆ > 0 fixed) identification of the drift and diffusion terms

of scalar diffusion processes under non-stationarity. But by inspection of the arguments of Hansen

et al. (1998) one can verify that at least the diffusion component is nonparametrically identified

from low-frequency information without stationarity.

We are now ready to analyze the identification problem. Recall that S = (θ, V ) contains

the objects of interest and let our model consist of all the structures that satisfy, as a minimum,

Assumptions 2.1(i)–(ii) and 2.2. According to (2.6)-(2.7), each structure implies a drift and diffusion

term of the observed process. We shall say that two structures S = (θ, V ) and S̃ = (θ̃, Ṽ ) are

11



observationally equivalent, a property which we denote by S ∼ S̃, if they imply the same drift and

diffusion of Y , i.e.

∀y ∈ Y : µY (y;S) = µY

(
y; S̃

)
and σY (y;S) = σY

(
y; S̃

)
. (3.1)

The structure S is then said to be identified within the model if S ∼ S̃ implies S = S̃. In our

setting, without suitable normalizations on the parameters of the UPD, identification will generally

fail. To see this, observe that any given structure S is observationally equivalent to the following

process: Choose any one-to-one transformation T : X 7→ X , and rewrite the DGP implied by S as

Yt = Ṽ
(
X̃t

)
, Ṽ (x) = V (T (x)) , (3.2)

where X̃t = T−1 (Xt) solves

dX̃t = µT−1(X)

(
X̃t; θ

)
dt+ σT−1(X)

(
X̃t; θ

)
dWt, (3.3)

with

µT−1(X) (x; θ) =
µX (T (x) ; θ)

∂T (x) / (∂x)
− 1

2
σ2
X (T (x) ; θ)

∂2T (x) /
(
∂x2

)
∂T (x) / (∂x)3 , (3.4)

σT−1(X) (x; θ) =
σX (T (x) ; θ)

∂T (x) / (∂x)
. (3.5)

Suppose now that there exists θ̃ so that µT−1(X) (x; θ) = µX

(
x; θ̃
)

and σT−1(X) (x; θ) = σX

(
x; θ̃
)

.

Then the alternative representation (3.2)-(3.3) is a member of our model with structure S̃ = (θ̃, Ṽ )

which is observationally equivalent to S = (V, θ). The following result provides a complete charac-

terizations of the class of observationally equivalent structures for a given model:

Theorem 3.2 Suppose that Assumptions 3.1 is satisfied. For any two structures S = (V, θ) and

S̃ = (Ṽ , θ̃) satisfying Assumptions 2.1(i) and 2.2, the following hold: S ∼ S̃ if and only if there

exists one-to-one transformation T : X 7→ X so that

Ṽ (x) = V (T (x)) (3.6)

and, with µT−1(X)

(
x; θ̃
)

and σT−1(X)

(
x; θ̃
)

given in eqs. (3.4)-(3.5),

(i) µT−1(X)(x; θ̃) = µX (x; θ) and (ii) σT−1(X)(x; θ̃) = σX (x; θ) . (3.7)

In particular, the data-generating structure is identified if and only if there exists no one-to-one

transformation T such that (3.7) holds for θ 6= θ̃.

Note that the above theorem does not require stationarity since it is only concerned with the

mapping S 7→ (µY (·;S) , σY (·;S)) which is well-defined irrespectively of whether data is stationary.

The first part of the theorem provides a exact characterization of when any two structures are

equivalent, namely if there exists a transformation T so that (3.6)-(3.7) hold. The second part
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comes as a natural consequence of the first part: If there exists no such transformation, then the

data-generating structure must be identified.

Unfortunately, the above result may not always be useful in practice since it requires us to

search over all possible one-to-one transformations T and for each of these verify that there exists

no θ 6= θ̃ for which eq. (3.7) holds. In some cases, it proves useful to first normalize the UPD

suitably and then verify eq. (3.7) in the normalized version. First note that for any one-to-one

transformation T̄ (·; θ) : X 7→ X̄ , an equivalent representation of the model is

Yt = V
(
X̄t

)
,

where the ”normalised” UPD X̄t := T̄−1 (Xt; θ) ∈ X̄ solves

dX̄t = µX̄
(
X̄t; θ

)
dt+ σX̄

(
X̄t; θ

)
dWt,

with

µX̄ (x̄; θ) =
µX
(
T̄ (x̄; θ) ; θ

)
∂T̄ (x̄; θ) / (∂x̄)

− 1

2
σ2
X

(
T̄ (x̄; θ) ; θ

) ∂2T̄ (x̄; θ) /
(
∂x̄2

)
∂T̄ (x̄; θ) / (∂x̄)3 , (3.8)

σX̄ (x̄; θ) =
σX
(
T̄ (x̄; θ) ; θ

)
∂T̄ (x̄; θ) / (∂x̄)

. (3.9)

Given that the above representation is observationally equivalent to the original model, we can still

employ Theorem 3.2 but with µX̄ and σX̄ replacing µX and σX . Verifying the identification con-

ditions stated in the second part of the theorem for the normalised versions will in some situations

be easier by judicious choice of T̄ .

Below, we present three particular normalising transformations that we have found useful in this

regard. The chosen transformations allow us to provide easy-to-check conditions for a given UPD

to be identified. For a given UPD, the researcher is free to apply either of the three identification

schemes depending on which is the easier one to implement. The three schemes lead to different

normalizations/parametrizations, but they all lead to models that are exactly identified (no over-

identifying restrictions are imposed) and so are observationally equivalent: The resulting form of

µY and σY will be identical irrespectively of which scheme is employed.

The three transformations that we consider also highlights three alternative modelling ap-

proaches: Instead of starting with a parametric UPD as found in the existing literature, such as

Examples 1-3, one can alternatively build a UPD with unit diffusion (σX = 1), zero drift (µX = 0)

or known marginal distribution. As we shall see, either of these three modelling approaches are in

principle as flexible as the standard approach where the researcher jointly specifies the drift and

diffusion term.

3.1 First Scheme

In our first identification scheme, we choose to normalize Xt by the so-called Lamperti transform,

X̄t = T̄−1 (Xt; θ) := γ (Xt; θ) , γ (x; θ) =

∫ x

x∗

1

σX (z; θ)
dz,

13



for some x∗ ∈ X . The resulting process is a unit diffusion process,

dX̄t = µX̄
(
X̄t; θ

)
dt+ dWt,

with domain X̄ = (x̄l, x̄r), where x̄r = limx→x+r γ (x; θ) and x̄l = limx→x−l
γ (x; θ), and drift function

µX̄ (x̄; θ) =
µX
(
γ−1 (x̄; θ) ; θ

)
σX (γ−1 (x̄; θ) ; θ)

− 1

2

∂σX
∂x

(
γ−1 (x̄; θ) ; θ

)
. (3.10)

For the unit diffusion version of the UPD, the equivalence condition (3.7)(ii) becomes

1 = σX̄ (x̄; θ) = σT−1(X̄)

(
x̄; θ̃
)

=
1

∂T (x̄) / (∂x)
,

which can only hold if T (x̄) = x̄ + η for some constant η ∈ R. Thus, we can restrict attention to

this class of transformations and (3.7)(i) becomes:

Assumption 3.2. With µX̄ given in (3.10): There exists no η 6= 0 and θ̃ 6= θ such that µX̄(x̄; θ̃) =

µX̄ (x̄+ η; θ) for all x̄ ∈ X̄ .

Assumption 3.2 imposes a normalization condition on the transformed drift function to ensure

identification. When verifying Assumption 3.2 for the transformed unit diffusion X̄ defined above,

we will generally need to fix some of the parameters that enter µX (x; θ) and σ2
X (x; θ) of the original

process X, see below.

Corollary 3.3 Under Assumptions 2.1(i), 2.2 and 3.1, S is identified if and only if Assumption

3.2 is satisfied.

The above transformation result can be applied to standard parametric specifications when

γ (x; θ) is available on closed-form. But it also highlights that in terms of modelling copula diffu-

sions, we can without loss of generality build a model where we from the outset restrict σX = 1

and only model the drift term µX . For example, we could choose the following flexible polynomial

drift model where we have already normalized the diffusion term:

dXt =

(
l∑

i=1

αiX
i
t

)
dt+ dWt, (3.11)

where θ = (α1, ..., αl). Corollary 3.3 shows that this particular copula diffusion specification is

identified without further restrictions on θ. Below we apply Corollary 3.3 to some of the standard

parametric diffusions introduced earlier:

Example 1 (continued). The Lamperti transform of the OU process in (2.10) is given by

dX̄t = κ
(
α/σ − X̄t

)
dt+ dWt.
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Since α/σ is a location shift of X̄, we need to normalize α/σ in order for the identification condition

3.3 to be satisfied; one such is α/σ = 0 leading to the following identified model,

dX̄t = −κX̄tdt+ dWt. (3.12)

Example 2 (continued). The Lamperti transform of the CIR diffusion in (2.12) is given by

dX̄t =

[
κ

(
2

X̄t

α

σ2
− X̄t

2

)
− 1

2X̄t

]
dt+ dWt, (3.13)

which only depends on θ = (κ, α∗) where α∗ = α/σ2. Note that the dimension of the parameter

vector reduced from 3 to 2. Crucially, it also suggests that we can only identify α and σ2 up to a

ratio. Hence, normalization requires fixing either α, σ2, or their ratio.

Example 3 (continued). It can be easily verified that the Lamperti transform of the NLDCEV

diffusion in (2.13) takes the form

dX̄t =

[
l∑

i=−k
α∗i X̄

i−β
1−β
t − β

2 (1− β)
X̄−1
t

]
dt+ dWt, (3.14)

where α∗i := αiσ
i−1
1−β (1− β)

i−β
1−β , i = −k, ..., l. Hence, the parameters θ =

(
β, α∗−k, ..., α

∗
−l
)

are

identified and the number of parameters is reduced from l + k + 3 to l + k + 2. Note that just as

(2.10) and (2.12) are special cases of (2.13), both (3.12) and (3.13) are special cases of (3.14).

3.2 Second Scheme

Our second identification strategy transforms X by its scale measure defined in eq. (2.4),

X̄t := S (Xt; θ) ,

which brings the diffusion process onto its natural scale,

dX̄t = σX̄
(
X̄t; θ

)
dWt,

where the drift is zero (and so known) while

σ2
X̄ (x̄; θ) = s2

(
S−1 (x̄; θ) ; θ

)
σ2
(
S−1 (x̄; θ) ; θ

)
. (3.15)

Since the drift term is zero, the identification condition (3.7)(i) becomes

0 = −1

2
σ2
X̄

(
T (x̄) ; θ̃

) ∂2T (x̄) /
(
∂x̄2

)
∂T (x̄) / (∂x̄)3 , (3.16)

which can only hold if ∂2T (x̄) /
(
∂x̄2

)
= 0. We can therefore restrict attention to linear transfor-

mations T (x̄) = η1x̄+ η2, for some constants η1, η2 ∈ R, in which case (3.7)(ii) becomes:
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Assumption 3.3. With σ2
X̄

given in (3.15): There exists no η1 6= 1, η2 6= 0 and θ̃ 6= θ such that

σ2
X̄

(x̄; θ̃) = σ2
X̄

(η1x̄+ η2; θ) /η2
1 for all x̄ ∈ X̄ .

In comparison to Assumption 3.2, we here have to impose two normalizations to ensure identi-

fication. The intuition for this is that setting the drift to zero does not act as a complete normal-

ization of the process: Any additional scale transformation of X̄ still leads to a zero-drift process.

Therefore, for the third scheme to work we need both a scale and location normalization.

Theorem 3.4 Under Assumptions 2.1(i)–(ii), 2.2 and 3.1, S is identified if and only if Assumption

3.3 is satisfied.

Compared to the first identification scheme, it is noticeably harder to apply this one to existing

parametric diffusion models since the inverse of the scale transform is usually not available in closed

form. But, similar to the first identification scheme, the result shows that without loss of flexibility,

we can focus on UPDs with zero drift and then model the diffusion term in a flexible manner, e.g.,

dXt = exp

(
l−1∑
i=1

βiX
i
t + βl |Xt|l

)
dWt. (3.17)

Corollary 3.4 shows that this UPD is identified together with V without any further parameter

restrictions on θ = (β1, ..., βl).

3.3 Third scheme

Our third identification strategy transforms a given stationary UPD by its marginal cdf,

X̄t = FX (Xt; θ) . (3.18)

In this case, there is generally no simplification in terms of the drift and diffusion term, which take

the form

µX̄ (x̄; θ) = µX
(
F−1
X (x̄; θ) ; θ

)
fX
(
F−1
X (x̄; θ) ; θ

)
(3.19)

+
1

2
σ2
X

(
F−1
X (x̄; θ) ; θ

)
f ′X
(
F−1
X (x̄; θ) ; θ

)
and

σX̄ (x̄; θ) = σX
(
F−1
X (x̄; θ) ; θ

)
fX
(
F−1
X (x̄; θ) ; θ

)
. (3.20)

for x̄ ∈ X̄ = (0, 1). But the marginal distribution is now known with X̄t ∼ U (0, 1) and we can

directly identify the transformation function by U (y) = FY (y), c.f. eq. (2.16). The identification

condition then takes the form:
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Assumption 3.4. With µX̄ (x̄; θ) and σX̄ (x̄; θ) given in eqs. (3.19)-(3.20), the following hold:

∀x̄ ∈ (0, 1) : µX̄ (x̄; θ) = µX̄

(
x̄; θ̃
)

and σX̄ (x̄; θ) = σX̄

(
x̄; θ̃
)
⇔ θ = θ̃.

Corollary 3.5 Under Assumptions 2.1-2.2 and 3.1, S is identified if and only if Assumption 3.4

is satisfied.

The above result is only useful for showing identification of a given UPD if F−1 (x̄; θ) is available

on closed form. But similar to the previous identification schemes, it demonstrates we can restrict

attention to diffusions with known marginal distributions in the model building phase. Specifically,

one can choose a known density fX (x) that describes the stationary distribution of X together

with a parametric specification for, say, the drift function. We can then rearrange eq. (2.5) to back

out the diffusion term of the UPD:

σ2
X (x; θ) =

2

fX (x)

∫ x

xl

µX (z; θ) fX (z) dz. (3.21)

If the drift is specified so that µX (·; θ) 6= µX(·; θ̃) for θ 6= θ̃, then Assumption 3.4 will be satisfied

for this model. Alternatively, one could choose a parametric specification of the diffusion term and

then derive the corresponding drift term of the UPD satisfying

µX (x; θ) =
1

2fX (x)

∂

∂x

[
σ2
X (x; θ) fX (x)

]
.

The resulting copula diffusion model is identified as long as the chosen diffusion term satisfies

σX (·; θ) 6= σX(·; θ̃) for θ 6= θ̃, then Assumption 3.4 will be satisfied for this model.

Below, we apply the third identification scheme to the OU and CIR model:

Example 1 (continued). The stationary distribution of (2.10) is N
(
α, v2

)
with v2 = σ2/2κ and

so the marginal density and cdf takes the form fX (x; θ) = 1
vφ
(
x−α
v

)
and FX (x; θ) = Φ

(
x−α
v

)
,

where φ and Φ denote the density and cdf of the N (0, 1) distribution. Applying the transformation

(3.18) yields, after some tedious calculations,

dX̄t = −2κΦ−1
(
X̄t

)
φ
(
Φ−1

(
X̄t

))
dt+

√
2κφ

(
Φ−1

(
X̄t

))
dWt,

which is independent of α and σ2 and these therefore have to be fixed, leaving κ as the only free

parameter. This is the same finding as with the first identification strategy.

Example 2 (continued). The stationary distribution of the CIR process is a Γ-distribution with

scale parameter ω = 2κ/σ2 and shape parameter ν = 2κα/σ2. Thus, the marginal density and cdf

can be written as

fX (x; θ) = fX (x;ω, ν) =
ων

Γ (ν)
xν−1e−ωx

FX (x; θ) = FX (x;ω, ν) =
1

Γ (ν)
γ (ν, ωx)
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where Γ (ν) is the gamma function and γ (ν, ωx) is the lower incomplete gamma function. Applying

the transformation (3.18) yields

µX̄ (x̄; θ) =

[
κ

(
ν

2κ
− γ−1 (ν, x̄Γ (ν))

2κ

)
+

(
ν − 1

2
− γ−1 (ν, x̄Γ (ν))

2

)]
2κ

Γ (ν)
γ−1 (ν, x̄Γ (ν))ν−1 e−γ

−1(ν,x̄Γ(ν))

and

σ2
X̄ (x̄; θ) = 2κγ−1 (ν, x̄Γ (ν))

[
1

Γ (ν)
γ−1 (ν, x̄Γ (ν))ν−1 e−γ

−1(ν,x̄Γ(ν))

]2

.

Note that µX̄ (x̄; θ) and σ2
X̄

(x̄; θ) only depend on κ and ν, which means we can only identify α and

σ2 up to a ratio say α∗ = α/σ2. Hence, either α or σ2 must be fixed, which is in accordance with

what we found when applying the first identification strategy to the CIR. We could, for example,

set σ2 = 2κ which leads to the following normalized CIR

dXt = κ (α−Xt) dt+
√

2κXtdWt.

4 Estimation

In this section we develop two alternative semiparametric estimators of θ and V for a given specifi-

cation of the UPD. The first takes the form of a two-step Pseudo Maximum Likelihood Estimator

(PMLE). The second is a semiparametric sieve-based ML estimator (SMLE). We consider two dif-

ferent scenarios when developing estimators: In the first one (see Section 4.1), Y is observed at low

frequency which we formally define as the case when ∆ > 0 is fixed as n→∞. In the second one

(see Section 4.2), high-frequency data is available so that ∆→ 0 as n→∞.

4.1 Low-frequency estimators

To motivate the two estimators, suppose that U is known, in which case the MLE of θ is given by

θ̂MLE = arg max
θ∈Θ

Ln (θ, U) ,

where Ln (θ, U) is the log-likelihood of {Yi∆ : i = 0, 1, ..., n},

Ln (θ, U) =
1

n

n∑
i=1

{
log pX

(
U (Yi∆) |U

(
Y(i−1)∆

)
; θ
)

+ logU ′ (Yi∆)
}
, (4.1)

where pX was is defined in eq. (2.3). If U is unknown, the above estimator is not feasible and we

instead have to estimate it together with θ.

Our PMLE assumes Y is stationary in which case U satisfies eq. (2.16), where FX is known up

to θ while FY is unknown. The latter can be estimated by the empirical cdf defined as

F̃Y (y) =
1

n+ 1

n∑
i=0

I {Yi∆ ≤ y} ,
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where I {·} denotes the indicator function, or alternatively by the following kernel smoothed em-

pirical cdf,

F̂Y (y) =
1

n+ 1

n∑
i=0

Kh (Yi∆ − y) , (4.2)

where Kh (y) = K (y/h) with K (y) =
∫ y
−∞K (z) dz, K being a kernel (e.g., the standard normal

density), and h > 0 a bandwidth. Replacing FY in eq. (2.16) with either F̃Y or F̂Y , we obtain the

following two alternative estimators of U ,

Ũ (y; θ) = F−1
X (F̃Y (y) ; θ); Û (y; θ) = F−1

X (F̂Y (y) ; θ). (4.3)

Since F̂Y (y) = F̃Y (y) + O
(
h2
)
, the above two estimators of U will be first-order asymptotically

equivalent under appropriate bandwidth conditions. A natural way to estimate θ in our semipara-

metric framework would then be to substitute either Û (y; θ) or Ũ (y; θ) into Ln (θ, U). However,

in the latter case, this is not possible since Ln (θ, U) depends on U ′ and Ũ is not differentiable.

However, note that

U ′ (y) =
fY (y)

fX (U (y) ; θ)
, (4.4)

so that logU ′ (y) = log fY (y)− log fX (U (y) ; θ). Since the first term is parameter independent, it

can be ignored and so we arrive at the following semiparametric PMLE,

θ̂PMLE = arg max
θ∈Θ

L̄n(θ, Ũ (·; θ)),

where Θ is the parameter space and

L̄n (θ, U) =
1

n

n∑
i=1

{
log pX

(
U (Yi∆) |U

(
Y(i−1)∆

)
; θ
)
− log fX (U (Yi∆) ; θ)

}
is Ln (θ, U) −

∑n
i=1 log fY (Yi∆) /n. One can easily check that, by rewriting the above in terms of

the implied copula of X, this estimator is equivalent to the one analyzed in Chen and Fan (2006).

Our second proposal, the SMLE, replaces the unknown density function fY (y) by a sieve ap-

proximation fY,m (y) ∈ Fm where Fm is a finite-dimensional function space reflecting the properties

of fY , m = 1, 2, .... For a given candidate density, we then compute

U (y; fY,m, θ) = F−1
X (FY,m (y) ; θ)

where FY,m (y) =
∫ y
yl
fY,m (z) dz. Substituting this into the likelihood function yields the following

semiparametric sieve maximum-likelihood estimator,

(θ̂SMLE, f̂Y,m) = arg max
θ∈Θ,fY,m∈Fm

Ln (θ, U (·; fY,m, θ)) . (4.5)

The above SMLE is identical to the one proposed by Chen, Wu and Yi (2009) for the estimation of

copula-based Markov models, except that while they estimate the parameters of a copula function,

we estimate those of the drift and diffusion functions of the UPD. In comparison with the PMLE, the

numerical implementation of the SMLE involves joint maximization over both θ and Fm, which is
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a harder numerical problem and potentially more time-consuming. In terms of statistical efficiency,

θ̂SMLE will in general reach the semiparametric efficiency bound under stationarity, while the PMLE

is inefficient.

Both of the above estimators require us to evaluate F−1
X (x; θ) which in general is not available

on closed form and so has to be computed using numerical methods, e.g., numerical integration

or Monte Carlo methods combined with a equation solver. For the SMLE, one can circumvent

this issue by directly approximating U instead of fY : For a given finite-dimensional function

space of one-to-one transformations Um, an alternative to the SMLE in (4.5) is (θ̃SMLE, Ũm) =

arg maxθ∈Θ,Um∈Um Ln (θ, Um). We expect this to be computationally more efficient compared to

the density version above; the theoretical analysis of this alternative SMLE is left for future re-

search.

Once an estimator for θ has been obtained, we can estimate the drift and diffusion terms

of Y using the expressions given in (2.6) and (2.7) by replacing θ and U with their estimators.

However, this involves estimating the first and second derivative of U . For the SMLE this is not

an issue assuming that Fm is a differentiable function space. For the PMLE, since Ũ (y; θ) is

not differentiable, we instead use the kernel smoothed version Û (y; θ), leading to the following

three-step estimators of the drift and diffusion functions

µ̂Y (y) =
µX(Û (y) ; θ̂PMLE)

Û ′ (y)
− 1

2
σ2
X(Û (y) ; θ̂PMLE)

Û ′′ (y)

Û ′ (y)3
, (4.6)

σ̂2
Y (y) =

σ2
X(Û (y) ; θ̂PMLE)

Û ′ (y)2
, (4.7)

where Û (y) = F−1
X (F̂Y (y) ; θ̂PMLE).

4.2 High-frequency estimators

We now turn to the case where high-frequency data is available; this scenario is formally modelled

as ∆→ 0 as n→∞. The proposed estimators described in the previous section remains valid, but

an alternative estimation method is available in this case since the exact density of the underlying

UPD, pX , is well-approximated by

p̂X (x|x0; θ) =
1√

2π∆
σX (x0; θ) exp

[
−(x− x0 − µX (x0; θ) ∆)2

2σ2
X (x0; θ) ∆

]
(4.8)

as ∆ → 0, c.f. Kessler (1997). We then propose to estimate θ using either the two-step or sieve

approach described in the previous section, except that we here replace pX (x|x0; θ) with its high-

frequency approximation, p̂X (x|x0; θ), in the definition of Ln (θ, U) and L̄n (θ, U). The advantage of

doing so is computational in that p̂X (x|x0; θ) is on closed form for any given UPD while pX (x|x0; θ)

generally can only be evaluated using numerical methods as pointed out earlier.

For most standard UPD’s, the parameters can be decomposed into θ = (θ1, θ2) so that µX (x0; θ1) =

µX (x0; θ1) and σX (x0; θ) = σX (x0; θ2) only depends on the first and second component, respec-

tively. One could hope to be able to estimate θ1 and θ2 separately in this case. For known U ,
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this is indeed possible. We could, for example, use least-squares methods similar to Kanaya and

Kristensen (2018) where θ1 and θ2, respectively, are estimated by the minimizers of the following

two least-squares objectives,

L
(µ)
n,∆ (θ1;U) =

n∑
i=1

w
(µ)
i

(
U (Yi∆)− U

(
Y(i−1)∆

)
− µX

(
U
(
Y(i−1)∆

)
; θ1

)
∆
)2
, (4.9)

L
(σ)
n,∆ (θ2;U) =

n∑
i=1

w
(σ)
i

({
U (Yi∆)− U

(
Y(i−1)∆

)}2 − σ2
X

(
U
(
Y(i−1)∆

)
; θ2

)
∆
)2
, (4.10)

where w
(µ)
i = w(µ)

(
Y(i−1)∆, Yi∆

)
and w

(σ)
i = w(σ)

(
Y(i−1)∆, Yi∆

)
are weighting functions.

This approach, however, faces two complications in our setting: First, after applying any of

the three normalizations presented in Section 3 in order to achieve identification, the resulting

drift and diffusion of the UPD tend to share parameters. Second, U is unknown and has to be

estimated together with θ. In the case of PMLE, Ũ (y; θ) in eq. (4.3) generally depends on both

θ1 and θ2 since fX (x; θ) does. Thus, if we replace U by Ũ (y; θ) in the above objectives, we cannot

separately estimate θ1 and θ2. Similarly, the SMLE requires joint estimation of U together with θ

in which case it would have to be re-estimated for each of the two objectives. In conclusion, these

least-squares estimators are rarely useful in practice.

Another alternative approach, inspired by Bandi and Phillips (2007), see also Kristensen (2011),

would be to first obtain non-parametric estimates of µY and σ2
Y and then match these with the

ones implied by the copula model,

Q
(µ)
n,∆ (S) =

n∑
i=1

w
(µ)
i (µ̂Y (Yi∆)− µY (Yi∆;S))2 , Q

(σ)
n,∆ (S) =

n∑
i=1

w
(σ)
i

(
σ̂2
Y (Yi∆)− σ2

Y (Yi∆;S)
)2
,

where µ̂Y (·) and σ̂2
Y (·) are the first-step nonparametric estimators; see Bandi and Phillips (2007)

for their precise forms. This procedure suffers from the same issue as the least-squares one described

in the previous paragraph. An additional complication is that it involves multiple smoothing pa-

rameters: First, µ̂Y (·) and σ̂2
Y (·) depend on two bandwidths and converge with slow rates and,

second, µY (·;S) and σ2
Y (·;S) involve derivatives of U and so if we replace U by its kernel-smoothed

estimator, Û , the two objective funtions will depend on the first and second order derivatives of

the kernel density estimator of fY , which in turn depends on additional bandwidth. All together,

these estimators will be complicated to implement due to the multiple bandwidths that the econo-

metrician have to choose. Moreover, their asymptotic analysis and behaviour will be non-standard.

5 Asymptotic Theory

5.1 Low-frequency Estimation of Parametric Component

We here establish an asymptotic theory for the proposed estimators in the case of low-frequency data

(∆ > 0 fixed). In the theoretical analysis we shall work under the following high-level identification

condition:
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Assumption 4.1 S0 is identified.

The previous section provided three different sets of primitive conditions for Assumption 4.1

to hold in terms of (µY (·;S) , σY (·;S)). This combined with Assumption 3.1 then implies that

the mapping (µY (·;S) , σY (·;S)) 7→ pY (y|y0;S) is injective so that different drift and diffu-

sion terms lead to different transition densities. One implication of Assumptions 3.1 and 4.1 is

E [log pY (Y∆|Y0;S)] < E [log pY (Y∆|Y0;S0)] for any S 6= S0, c.f. Newey and McFadden (1994,

Lemma 2.2). This ensures that the SMLE identifies S0 in the limit. Regarding the PMLE,

we note that it replaces U by Û (y; θ) = F−1
X (F̂Y (y; θ)). By the LLN of stationary and er-

godic sequences, Û (y; θ) →P U (y; θ) = F−1
X (FY (y; θ)), where, by the same arguments as before,

E [log pY (Y∆|Y0; θ, U (·; θ))] < E [log pY (Y∆|Y0; θ0, U (·; θ0))]. Thus, the PMLE will also in the limit

identify θ0.

Next, we import conditions from Chen et al. (2010) guaranteeing, in conjunction with our own

Assumptions 2.1-2.2, that the UPD X, and thereby Y , is stationary and β-mixing with mixing

coefficients decaying at either polynomial rate (c.f. Corollary 5.5 in Chen et al., 2010) or geometric

rate (c.f. Corollary 4.2 in Chen et al., 2010):

Assumption 4.2. (i) µX and σ2
X satisfies

lim
x→xr

{
µX (x; θ0)

σX (x; θ0)
− 1

2

∂σX (x; θ0)

∂x

}
≤ 0, lim

x→xu

{
µX (x; θ0)

σX (x; θ0)
− 1

2

∂σX (x; θ0)

∂x

}
≥ 0;

(ii) With s (x; θ) and S (x; θ) defined in (2.4),

lim
x→xr

{
s (x; θ0)σX (x; θ0)

S (x; θ0)

}
> 0, lim

x→xu

{
s (x; θ0)σX (x; θ0)

S (x; θ0)

}
< 0;

Assumption 4.2(ii) is a strengthening of Assumption 4.2(i). For the analysis of the PMLE,

Assumption 4.2(i) suffices while we need the stronger Assumption 4.2(ii) to establish an asymptotic

theory for the SMLE. As we mentioned before, it is not always straightforward to verify the required

mixing conditions for copula-based (discrete-time) Markov models such as Chen and Fan (2006)

and Chen, Wu and Yi (2009). In contrast, either sets of conditions stated in Assumption 4.2 can

be easily verified by directly examining the drift and diffusion functions of the UPD X.

Finally, we impose the same conditions as used in the asymptotic analysis of the PMLE in Chen

and Fan (2006) and Chen, Wu and Yi (2009), respectively, on the copula implied by the chosen

UPD and the sieve density in the case of SMLE:

Assumption 4.3. (i) cX (u0, u; θ) defined in (2.17) satisfies the regularity conditions set out in

Chen and Fan (2006, A1-A3, A4 or A4’, A5-A6); (ii) cX (u0, u; θ) and the sieve space Fm
satisfy Assumptions 3.1-3.4 and 4.1–4.7, respectively, in Chen, Wu and Yi (2009).
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We here abstain from stating the precise, mostly technical, conditions and refer the interested

reader to Chen and Fan (2006) and Chen, Wu and Yi (2009); broadly speaking their conditions

translate into moment bounds and smoothness conditions on the log-transition density of the UPD.

These conditions depend on the precise choice of the UPD and so will have to be verified on a case-

by-case basis. In Appendix B, we verify the conditions for models in Examples 1–2.

The following result now follows from the general theory of Chen and Fan (2006) and Chen,

Wu and Yi (2009), respectively:

Theorem 5.1 Under Assumptions 2.1-2.2, 4.1, 4.2(i) and 4.3(i),

√
n(θ̂PMLE − θ0)→d N

(
0, B−1ΣB−1

)
,

where B and Σ are defined in Chen and Fan (2006, A1 and A∗n).

Under Assumptions 2.1-2.2, 4.1, 4.2(ii) and 4.3(ii),

√
n(θ̂SMLE − θ0)→d N

(
0, I−1
∗ (θ)

)
,

where I∗ is defined in Chen, Wu and Yi (2009).

Consistent estimators of the asymptotic variances, B−1ΣB−1 and I−1
∗ (θ), can be found in Chen

and Fan (2006) and Chen, Wu and Yi (2009), respectively.

5.2 High-frequency Estimation of Parametric Component

Next, we discuss the asymptotic properties of the PMLE based on the high-frequency log-likelihood

that takes as input p̂X (x|x0; θ) defined in eq. (4.8); a complete analysis of the PMLE and SMLE

in a high-frequency setting is left for future research. In the following, we let T := n∆ denote the

sampling range, which will be assumed to diverge as ∆→ 0.

The high-frequency PMLE is given by θ̂PMLE = arg maxθ∈Θ L̂n

(
θ, Ũ (·; θ)

)
where

L̂n (θ, U) =
1

n

n∑
i=1

{
log p̂X

(
U (Yi∆) |U

(
Y(i−1)∆

)
; θ
)
− log fX (U (Yi∆) ; θ)

}
,

and Ũ (Yi∆; θ) defined in (4.3). We first specialize the general result of Kanaya (2018, Theorem 2)

by choosing B = ψ = 1 and Kh (y) = I {y ≤ 0} in his notation to obtain that under our Assumption

4.2,

sup
y∈Y

∣∣∣F̃Y (y)− FY (y)
∣∣∣ = OP

(√
∆/ log ∆

)
+OP

(
log T/

√
T
)
, (5.1)

where the two terms on the right-hand side correspond to discretization bias and sampling variance,

respectively. By letting T grow sufficiently fast as ∆ → 0, the first term can be ignored. Under

regularity conditions on µX and σX so that (y, y0) 7→ p̂X
(
F−1
X (y; θ) |F−1

Y (y0) ; θ
)
/fY (y0) satisfies

Lipschitz conditions similar to the ones in Chen and Fan (2006), we then obtain

sup
θ∈θ

∣∣∣L̂n (θ, Ũ (·; θ)
)
− L̂n (θ, U (·; θ))

∣∣∣ = OP

(√
∆/ log ∆

)
+OP

(
log T/

√
T
)
,
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where U (y; θ) = FY
(
F−1
X (y; θ)

)
. Consistency of the PMLE now follows by extending the arguments

of Kessler (1997) to allow for the presence of the parameter-dependent transformation U (y; θ).

Next, to simplify our discussion of the asymptotic distribution of the PMLE, we consider two

special cases:

First, suppose that suppose that, after suitable normalizations, σX (x) is known and only

µX (x; θ) is parameter dependent. In this case, we expect that Kessler’s results generalize so that

θ̂PMLE will converge with
√
T -rate towards a Normal distribution, where the asymptotic variance

will have to be adjusted to take into account the first-step estimation of F̂Y .

Next, consider the opposite scenario, µX (x0) is known and only σX (x0; θ) is parameter de-

pendent. With U known, Kessler (1997) shows that θ̂PMLE converges with
√
n-rate towards a

Normal distribution in this case. Note the faster convergence rate compared to the drift estimator.

However, in our setting U (y; θ) is parameter dependent, and as a consequence this result appears

to no longer apply: U (y; θ) enters L̂n (θ, U) in the same way that µX does and so the score of

L̂n (θ, U (·; θ)) will have a component on the same form as in the first case and so will converge with√
T -rate instead of

√
n-rate. Moreover, the presence of the first-step estimator F̃Y (y), which also

converge with
√
T -rate, will generate an additional variance term. In total, estimators of diffusion

parameters appear not to enjoy ”super” consistency in our setting due to the way that the unknown

transformation U enters the likelihood.

5.3 Estimation of Drift and Diffusion Functions

We here analyze the asymptotic properties of the kernel-based estimators of µY and σ2
Y given in

eqs. (4.6)-(4.7). We only do so for the low-frequency case; the analysis of the high-frequency case

should proceed in a similar fashion. Our analysis takes as starting point the following regularity

conditions on the estimator of the parametric component and the kernel function:

Assumption 4.4. The transformation function V is four times continuously differentiable.

Assumption 4.5. The estimator θ̂ of the parameter of the UPD X is
√
n-consistent.

Assumption 4.6. The kernel K is differentiable, and there exists constants D,ω > 0 such that∣∣∣K(i) (z)
∣∣∣ ≤ D |z|−ω , ∣∣∣K(i) (z)−K(i) (z̃)

∣∣∣ ≤ D |z − z̃| , i = 0, 1,

whereK(i) (z) denotes the ith derivative ofK (z). Moreover,
∫
RK (z) dz = 1,

∫
R zK (z) dz = 0

and κ2 =
∫
R z

2K (z) dz <∞.

Assumption 4.4 ensures the existence of the 3rd and 4th derivatives of U (y), which in turn

ensure that relevant quantities entering the asymptotic distributions of µ̂Y and σ̂2
Y are well defined.

Assumption 4.5 implies that the asymptotic properties of µ̂Y and σ̂2
Y are determined by the prop-

erties of the kernel density estimator alone. The proposed PMLE and SMLE satisfy this condition
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under our Assumptions 4.1-4.3, but other
√
n-consistent estimators are allowed for. Assumption

4.6 regulates the kernel functions and allow for most standard kernels such as the Gaussian and

the Uniform kernels. Using the functional delta-method together with standard results for kernel

density estimators, as found in Robinson (1983), we obtain:

Theorem 5.2 Under Assumptions 2.1-2.2, 4.2(i), and 4.4-4.6, we have as n → ∞, h → 0 and

nh3 →∞, √
nh3

{
µ̂Y (y)− µY (y)− h2BµY (y)

}
→d N (0, VµY (y)) ,

where

BµY (y) = −
κ2σ

2
Y (y) f ′′′Y (y)

4fY (y)
, VµY (y) =

σ4
Y (y)

4fY (y)

∫
R
K ′ (z)2 dz.

Also, as n→∞, h→ 0 and nh→∞, we have

√
nh{σ̂2

Y (y)− σ2
Y (y)− h2Bσ2

Y
(y)} →d N (0, Vσ2 (y)) ,

where

Bσ2
Y

(y) = −
κ2σ

2
Y (y) f ′′Y (y)

fY (y)
, Vσ2

Y
(y) =

4σ4
Y (y)

fY (y)

∫
R
K (z)2 dz.

We see that both estimators suffer from smoothing biases, BµY (y) and Bσ2
Y

(y). If h → 0

sufficiently fast, these biases will be negiglible. Also note that the convergence rates of the drift

estimator is slower compared to the diffusion estimator. These features are similar to the asymptotic

properties of the semi-nonparametric drift and diffusion estimators considered in Kristensen (2011).

6 Monte Carlo Simulations

In this section, we compare the finite sample performance of our low-frequency semiparametric

PMLE with that of a fully parametric PMLE (described below) through Monte Carlo simulations.

6.1 Data Generating Processes

We consider the following normalized versions of the UPDs of Examples 1–2,

OU : dXt = −κXtdt+
√

2κdWt, θ = κ, (6.1)

CIR : dXt = κ (α−Xt) dt+
√

2κXtdWt, θ = (κ, α) . (6.2)

The chosen normalizations have the advantage that the marginal distributions of X are invariant

to the mean-reversion parameter κ. Hence, by varying κ, we can change the persistence level of

X (and thus Y ) while keeping the marginal distributions fixed. In this way, we can examine the

impact of persistence on the performance of the proposed estimators of θ, µY and σ2
Y .

Next, we specify the transformation of the DGP of Y . This is done by choosing marginal

cdf FY (y;φ), where φ is a hyper parameter governing the shape of the cdf, which induces the
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transformation V (Xt;φ) = F−1
Y (FX (Xt; θ) ;φ). With fY (y;φ) = F ′Y (y;φ), the transition density

of the true DGP of Y then takes the form

pY (y|y0; θ, φ) = fY (y;φ) cX (FY (y0;φ) , FY (y;φ) ; θ) . (6.3)

We choose FY (y;φ) as a flexible distribution to reflect stylized features such as asymmetry and fat-

tailedness of observed financial data. Specifically, we use the Skewed Student-t (SKST) Distribution

of Hansen (1994) with density

fY (y;φ) =



bq

v

1 +
1

τ − 2

 b

v
(y −m) + a

1− λ


2

−(τ+1)/2

if y < m− av/b,

bq

v

1 +
1

τ − 2

 b

v
(y −m) + a

1 + λ


2

−(τ+1)/2

if y ≥ m− av/b,

(6.4)

where v > 0, 2 < τ < ∞, −1 < λ < 1, a = 4λq

(
τ − 2

τ − 1

)
, b2 = 1 + 3λ2 − a2 and q =

Γ ((τ + 1) /2) /
√
π (τ − 2) Γ2 (τ/2). We collect the hyper parameters in φ = (m, v, λ, τ) which

has to be chosen in order to fully specify the DGP. While m and v are the unconditional mean

and standard deviation of the distribution, λ controls the skewness and τ controls the degrees

of freedom (hence the fat-tailedness) of the distribution. The distribution reduces to the usual

student-t distribution when λ = 0. Due to its flexibility in modelling skewness and kurtosis, the

SKST distribution is often used in financial modelling. (c.f. Patton, 2004; Jondeau and Rockinger,

2006; Bu, Fredj and Li, 2017).

The transformed diffusion Y generated by the SKST marginal distribution together with the

normalized UPD in (6.1) or (6.2) is referred to as the OU-SKST or the CIR-SKST model, respec-

tively. The true data-generating parameters φ and θ are chosen as estimates obtained from fitting

the parametric versions of the two models to the 7-day Eurodollar interest rate time series used

in Aı̈t-Sahalia (1996b). The estimation is based on a fully parametric two-stage PMLE. In the

first stage, the SKST distribution is fitted to the data (as if they are i.i.d) to obtain φ̂. We then

substitute FY (y; φ̂) and fY (y; φ̂) into (6.3) which is then maximized with respect to θ to obtain θ̂

for each of the two UPD’s. The calibrated parameter values of the marginal SKST distribution are

(m̂, v̂, λ̂, τ̂) = (0.0835, 0.0358, 0.5193, 25.3708), and those of the underlying OU and CIR diffusions

are κ̂ = 1.1376 and (κ̂, α̂) = (0.7653, 1.1653), respectively.

We compare the fitted SKST and Normal distributions with a nonparametric kernel estimate

in Figure 1. We see that the SKST distribution does a reasonable job at capturing the marginal

distribution found in data while the Normal one does not provide a very good fit.

[Figure 1]

Artificial samples of sizes n = 2202 and n = 5505, respectively, are then generated using φ = φ̂

and θ = θ̂ as our true data-generating parameters. For both OU-SKST and CIR-SKST, θ involves
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the mean-reversion parameter κ which controls the level of persistence. We create 3 additional

scenarios by multiplying κ by factors of 5, 10, and 20 while keeping everything else unchanged.

Collectively, we have a total of 8 cases corresponding to 2 sample sizes and 4 persistence levels. The

maximum factor 20 is chosen because the implied 1st-order autocorrelation coefficient ρ1 ≈ 0.9,

which is a reasonably high persistent level without being excessively close to the unit root. Finally,

500 replications for each case are generated.

6.2 Estimation Results

We compare our low-frequency PMLE of θ with the corresponding fully parametric PMLE (PPMLE)

described above that we used for our calibration. Note that the only difference between the two

estimators is that the former estimates the marginal distribution FY parametrically, while the latter

estimates it nonparametrically.

The relative bias and RMSE (defined as the ratios of the actual bias and the actual RMSE

over the true parameter value, respectively) of the estimators of the parametric components of the

OU-SKST case are presented in Table 1. Overall, the results from the two estimation methods are

generally comparable with the same magnitudes. The semiparametric PMLE tends to do better in

terms of bias while the parametric PMLE dominates in terms of variance. However, as the level of

persistence decreases, the two estimators’ performance is close to identical.

[Table 1]

The results for the CIR-SKST case are presented in Table 2 and 3 which are qualitatively very

similar to the ones for the OU-SKST. Overall, the performance of the PMLE is comparable with

that of the PPMLE with very similar estimation errors. Moreover, the gap in the performance of

the PMLE relative to the PPMLE appears to narrow when the true DGP gets less persistent.

[Table 2 and 3]

Next, we investigate the performance of the semiparametric estimators of µY and σ2
Y in eqs.

(4.6)-(4.7) relative to their fully parametric estimators. In Figure 2, we plot their pointwise means

and 95% confidence bands from the 500 estimates against the truth for the OU-SKST process with

κ = 22.753 and sample size 2202. First, it is worth noting that µY and σ2
Y exhibit strong nonlin-

earities that closely resemble the nonlinearities depicted in, for example, Aı̈t-Sahalia (1996b), Jiang

and Knight (1997), and Stanton (1997). Second, the mean estimates from both estimation methods

are fairly close to the truth, but the variability of the semiparametric estimators is noticeably larger

than the parametric ones, especially in the right end of the range. This is not surprising: Firstly, as

shown in Theorem 5.2, µ̂Y and σ̂2
Y converges at slower than

√
n-rate due to the use of kernel esti-

mators of fY . From Figure 1, we can see that fY has a long right tail which is difficult to estimate

by the kernel estimator in small and moderate samples. Figure 3 presents the same estimators

at sample size 5505. At this larger sample size, the bias is even smaller for both methods and

the variability of these estimates are also reduced significantly. Overall, although the parametric
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method obviously has the advantage due to its parametric structure, our semiparametric method

also provides fairly satisfactory estimation results.

[Figure 2 and 3]

The drift and diffusion estimators from the two methods where the true DGP is the CIR-SKST

process with κ = 15.307 and the two sample sizes are presented in Figure 4 and 5, respectively.

Almost identical qualitative conclusions can be reached.

[Figure 4 and 5]

7 Empirical Application

7.1 Data

As an empirical illustration, we here model the time series dynamics of the CBOE Volatility Index

data using copula diffusion models. The data consists of the daily VIX index from January 2,

1990 to July 19, 2019 (7445 observations). It is displayed and summarized in Figure 6 and Table

4, respectively. The time series plot shows a clear pattern of mean reversion, and Augmented

Dickey-Fuller tests with reasonable lags all rejected the unit root hypothesis at 5% significance

level, which justifies the use of stationary diffusion models. The mean and the standard deviation

is of VIX is 19.21 and 7.76, respectively. Meanwhile, the skewness and the kurtosis are 2.12 and

10.85, respectively, suggesting that the stationary distribution deviates quite substantially from

normality. This is more formally confirmed by the highly significant Jarque-Bera test statistic with

a negligible p-value.

[Figure 6 and Table 4]

7.2 Models

We focus on whether two well known parametric transformed diffusion models proposed for mod-

elling VIX are supported by the data against their semiparametric alternatives. The two parametric

models are the transformed-OU model of Detemple and Osakwe (2000) (DO) and the transformed-

CIR model of Eraker and Wang (2015) (EW). Specifically, the DO model is the exponential trans-

form of the OU process, which can be written as

Yt = exp (Xt) , dXt = κ (α−Xt) dt+ σdWt

and the EW model is a parameter-dependent transformation of the CIR process, which is given by

Yt =
1

X + δ
+ %, dXt = κ (α−Xt) dt+ σ

√
XtdWt

Meanwhile, the two semiparametric models we consider are the same two models considered in our

simulations, namely, the nonparametrically transformed OU and CIR models, which we denote as
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NPTOU and NPTCIR, respectively. Their associated normalized UPD processes are given in (6.1)

and (6.2).

Importantly, we maintain the assumption that the VIX is a Markov diffusion process. In

particular, we rule out jumps and stochastic volatility (SV) in the VIX which is inconsistent with the

empirical findings of, e.g., Kaeck and Alexander (2013). However, their models are fully parametric

and so impose much stronger functional form restrictions on the drift and diffusion component

compared to our semiparametric approach. Specifically, jumps and SV components are often used

to capture extremal events (fat tails). It is possible that these components are needed in explaining

the VIX dynamics due to the restrictive drift and diffusion specifications they consider. Our

semiparametric approach allows for more flexibility in this respect and so can be seen as a competing

approach to capturing the same features in data. An interesting research topic would be to develop

tools that allow for formal statistical comparison of our class of models against these alternative

ones.

7.3 Results

For each of the two UPDs, we examine whether the parametric specification of the transforma-

tion is supported by the data. We do this by testing each of the parametric models against the

semiparametric alternative where the transformation is left unspecified. We do so by computing

a pseudo Likelihood Ratio (pseudo-LR) test statistic defined as the difference between the pseudo

log-likelihood (pseudo-LL) of the semiparametric model and the log-likelihood (LL) of the paramet-

ric model. Since the model under the alternative is semiparametric and estimated by pseudo-ML,

the pseudo-LL test statistic will not follow a χ2-distribution. We therefore resort to a paramet-

ric bootstrap procedure: For each of the two pseudo-LR test, we simulate 1000 new time series

from the parametric model using as data-generating parameter values the MLEs obtained from

the original sample. For each of the 1000 new data sets, of the same size as the original one, we

estimate both the parametric model and the semiparametric model and compute the corresponding

pseudo-LR statistic. Finally, we use the 95th and 99th quantiles from the simulated distribution

of the pseudo-LR statistic as our 5% and 1% bootstrap critical values, respectively.

The pseudo-LL is computed using the log-likelihood given in (4.1) with U (y) and logU ′ (y; θ)

replaced by Ũ ′ (y; θ) given in (4.3) and log Ũ ′ (y; θ) = log f̂Y (y) − log fX

(
Ũ (y) ; θ

)
, respectively.

Here, f̂Y (y) is the kernel density estimator which requires us choosing a bandwidth. There is

a lack of consensus on the right procedure for choosing bandwidths for kernel estimators using

dependent data. We therefore considered a sequence of bandwidths constructed by multiplying

the Silverman’s rule of thumb bandwidth, denoted as hS , by a factor k between 0.75 and 1.75 on

a small grid. Visual inspection of these density estimates revealed that with k is around 1.5, the

resulting density appears to be the most satisfactory in terms of smoothness and the revelation of

distributional features of the data. For this reason, we report our inferential results based on the

relatively optimal bandwidth 1.5hS = 2.0730 below. However, our conclusions remain unchanged

for any bandwidth within the aforementioned range.
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Our estimation and testing results are reported in Table 5. The upper panel of the table presents

the parameter estimates for the models together with their standard errors in the parentheses un-

derneath. For the two semiparametric models, these were computed using the estimators proposed

in Chen and Fan (2006). Recall that due to normalization, only κ is estimated for the NPTOU

model and only κ and α for the NPTCIR model. In addition, while κ has the same interpretation

(i.e. rate of mean reversion) and scale in all four models, α has different scales in the two trans-

formed CIR models. For both the transformed OU and the transformed CIR classes of models,

we can see that the PMLEs of the mean-reversion parameter κ̂ are slightly lower than their corre-

sponding MLE estimates. The same difference applies to their standard errors. This shows that

parametric (mis-)specification of the stationary distribution does have a quite significant impact

on the estimation of the dynamic parameters.

[Table 5]

The lower panel presents the LL values and the our pseudo-LR test results. We can see that

the EW model has a much higher LL (−1.1585) than the DO model (−1.1724), suggesting much

better goodness of fit to the data by the former. This is not entirely surprising because the EW

model is more flexible both in terms of the UPD and the transformation function compared to the

DO model. Meanwhile, the NPTCIR model has a higher pseudo-LL than the NPTOU. Since they

have identical stationary distributions, such a difference is solely due to the additional flexibility

of the UPD of the former. Most importantly, we see that when the underlying diffusions are the

same, models with nonparametric transformation have much higher LLs than those with parametric

transformations. More specifically, the resulting pseudo-LR between the NPTOU model and the

DO model is 290.7263, and that between the NPTCIR model and the EW model is 40.8606. This

proves that the exponential transformation of the DO model is too restrictive, and that while the

transformation function of the EW model is more flexible, it is still rather restrictive relatively to

our nonparametric alternative.

To formally assess the significance of the observed differences, we present the empirical 5%

and 1% critical values and the corresponding p-values of our pseudo-LR tests, obtained from our

bootstrap procedure described above. For both tests, we observe that those critical values are

all negative and the p-values are both exactly zero. This means that the original pseudo-LRs of

290.7263 and 40.8606 are not only far greater than their corresponding empirical critical values

but also greater than any of the bootstrap pseudo-LRs when the parametric model under the null

hypothesis is true. This suggests that when either the DO model or the EW model is the true model,

the corresponding NPTOU model or the NPTCIR model is unlikely to produce a higher LL value

than the parametric model itself. This is fairly strong evidence that the parametric assumptions

made by the DO and the EW models are not supported by our data and our nonparametrically

transformed models are strongly favored.

The reason for the rejection of the two parametric models can be found in the implied stationary

densities of the two models which we plot in Figure 7 together with the kernel density estimator.

As can be seen from this figure, the parametric specifications are unable to capture the middle
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range of the empirical distribution of VIX; in contrast, the two semiparametric alternatives are

constructed so that they match the empirical distribution exactly.

[Figure 7]

8 Conclusion

We propose a novel semiparametric approach for modelling stationary nonlinear univariate diffu-

sions. The class of models can be thought of as Markov copula models where the copula is implied

by the UPD model. Primitive conditions for the identification of the UPD parameters together with

the unknown transformations from discrete samples are provided. We derive the asymptotic prop-

erties for our semiparametric likelihood-based estimators of the UPD parameters and kernel-based

drift and diffusion estimators. Our simulation results suggest that our semiparametric method

performs well in finite sample compared to the fully parametric method, and our relatively sim-

ple application shows that the parametric assumptions on the transformation function of the well

known DO model and EW model are rejected by the data against our nonparametric alternatives.

Potential future work under this framework may include extensions to multivariate diffusions and

jump-diffusions.
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A Proofs

Proof of Theorem 3.2. From eqs. (3.2)-(3.5), it is obvious that (3.6)-(3.7) imply S ∼ S̃. Now,

suppose that S ∼ S̃; this implies that µY (y;S) = µY

(
y; S̃

)
and σ2

Y (y;S) = σ2
Y

(
y; S̃

)
, where µY

and σ2
Y are given in eqs. (2.6)-(2.7). That is, for all y ∈ Y,

µX (U (y) ; θ)

U ′ (y)
− 1

2
σ2
X (U (y) ; θ)

U ′′ (y)

U ′ (y)3 =
µX

(
Ũ (y) ; θ̃

)
Ũ ′ (y)

− 1

2
σ2
X

(
Ũ (y) ; θ̃

) Ũ ′′ (y)

Ũ ′ (y)3 ,

σX (U (y) ; θ)

U ′ (y)
=

σX

(
Ũ (y) ; θ̃

)
Ũ ′ (y)

.

Since V is one-to-one we can set y = V (x) in the above to obtain the following for all x ∈ X ,

µX (U (V (x)) ; θ)

U ′ (V (x))
− 1

2
σ2
X (U (V (x)) ; θ)

U ′′ (V (x))

U ′ (V (x))3 (A.1)

=
µX

(
Ũ (V (x)) ; θ̃

)
Ũ ′ (V (x))

− 1

2
σ2
X

(
Ũ (V (x)) ; θ̃

) Ũ ′′ (V (x))

Ũ ′ (V (x))3 ,

σX (U (V (x)) ; θ)

U ′ (V (x))
=

σX

(
Ũ (V (x)) ; θ̃

)
Ũ ′ (V (x))

. (A.2)

Define T (x) = Ũ (V (x))⇔ T−1 (x) = U
(
Ṽ (x)

)
, and observe that

U (V (x)) = x, U ′ (V (x))V ′ (x) = 1,
∂T (x)

∂x
= Ũ ′ (V (x))V ′ (x) .

Eq. (A.2) combined with the above implies (3.7)(ii),

σX (x; θ) =
σX (U (V (x)) ; θ)

U ′ (V (x))V ′ (x)
=
σX

(
Ũ (V (x)) ; θ̃

)
Ũ ′ (V (x))V ′ (x)

=
σX

(
T (x) ; θ̃

)
∂T (x) / (∂x)

= σT−1(X)

(
x; θ̃
)
. (A.3)

Next, divide through with V ′ (x) in (A.1) and rearrange to obtain

µX (x; θ) =
µX

(
T (x) ; θ̃

)
∂T (x) / (∂x)

+
1

2

{
σ2
X (x; θ)

U ′′ (V (x))

U ′ (V (x))3 V ′ (x)
− σ2

X

(
T−1 (x) ; θ̃

) Ũ ′′ (V (x))

Ũ ′ (V (x))3 V ′ (x)

}

=
µX

(
T (x) ; θ̃

)
∂T (x) / (∂x)

+
1

2
σ2
X

(
T (x) ; θ̃

){ 1

Ũ ′ (V (x))2 V ′ (x)3

U ′′ (V (x))

U ′ (V (x))3 −
Ũ ′′ (V (x))

Ũ ′ (V (x))3 V ′ (x)

}
where the second equality uses (A.3). Eq. (3.7)(i) now follows since

1

Ũ ′ (V (x))2 V ′ (x)3

U ′′ (V (x))

U ′ (V (x))3 −
Ũ ′′ (V (x))

Ũ ′ (V (x))3 V ′ (x)

=
1

Ũ ′ (V (x))3 V ′ (x)3

[
Ũ ′ (V (x))U ′′ (V (x))

U ′ (V (x))3 − Ũ ′′ (V (x))V ′ (x)2

]
=

−1

Ũ ′ (V (x))3 V ′ (x)3

[
Ũ ′ (V (x))V ′′ (x) + Ũ ′′ (V (x))V ′ (x)2

]
= −

∂2T (x) /
(
∂x2

)
∂T (x) / (∂x)3 .
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Proof of Theorem 5.1. We first note that the PMLE takes the same form as the one analyzed

in Chen and Fan (2006) with the general copula considered in their work satisfying eq. (2.17). The

desired result will follow if we can verify that the conditions stated in their proof are satisfied by

our assumptions: First, by Assumptions 2.1, the discrete sample {Xi∆ : i = 0, 1, . . . , n} generated

by the UPD X is first-order Markovian and with marginal density fX (x; θ) and transition density

pX (x|x0; θ). Hence, the copula density cX (u0, u; θ) in (2.17) implied by X is absolutely continuous

with respect to the Lebesgue measure on [0, 1]2 due to its continuity in FX (x; θ), fX (x; θ) and

pX (x|x0; θ). Moreover, the implied copula is neither the Fréchet-Hoeffding upper or lower bound

due to Assumption 2.1, i.e., σ2
X (x; θ) > 0 for all x ∈ X . Thus, Chen and Fan (2006, Assumption

1) is satisfied. Second, our Assumption 4.2(i) ensures that X is β-mixing with polynomial decay

rate. Third, by Theorem 2.1, Y is mixing with the same mixing properties as X and so satisfies

Chen and Fan (2006, Assumption 1). The remaining conditions are met by Assumption 4.3(i).

For the analysis of the proposed sieve MLE, we note that it takes the same form as the one

analyzed in Chen, Wu and Yi (2009) and so their results carry over to our setting. Their Assumption

M and assumption of β-mixing property are satisfied by Y under our Assumptions 2.1, 2.2, and

4.2(ii) together with our Theorem 2.1. The remaining conditions are met by Assumption 4.3(ii).

Proof of Theorem 5.2. Similar to the proof strategy employed in Lemma C.1, we define

µ̃Y (y) =
µX (U (y) ; θ)

U ′ (y)
− 1

2
σ2
X(U (y) ; θ)

Û ′′ (y)

U ′ (y)3 , σ̃2
Y (y) =

σ2
X (U (y) ; θ)

Û ′ (y)2
,

and, with f
(i)
Y denoting the ith derivative of fY and similar for other functions, arrive at

√
nh3

{
µ̂Y (y)− µY (y)− 1

2
h2κ2

f
(3)
Y (y)

fX (U (y) ; θ)

[
−
σ2
X (U (y) ; θ)

2U ′ (y)3

]}

=
√
nh3

{
µ̃Y (y)− µY (y)− 1

2
h2κ2

f
(3)
Y (y)

fX (U (y) ; θ)

[
−
σ2
X (U (y) ; θ)

2U ′ (y)3

]}
+ op (1)

= −
σ2
X (U (y) ; θ)

2U ′ (y)3

√
nh3

{
Û (2) (y)− U (2) (y)− 1

2
h2κ2

f
(3)
Y (y)

fX (U (y) ; θ)

}
+ op (1) ,

and

√
nh

{
σ̂2
Y (y)− σ2

Y (y)− 1

2
h2κ2

f
(2)
Y (y)

fX (U (y) ; θ)

[
−

2σ2
X (U (y) ; θ)

U ′ (y)3

]}

=
√
nh

{
σ̃2
Y (y)− σ2

Y (y)− 1

2
h2κ2

f
(2)
Y (y)

fX (U (y) ; θ)

[
−

2σ2
X (U (y) ; θ)

U ′ (y)3

]}
+ op (1)

= −
2σ2

X (U (y) ; θ)

U ′ (y)3

√
nh

{
Û ′ (y)− U ′ (y)− 1

2
h2κ2

f
(2)
Y (y)

fX (U (y) ; θ)

}
+ op (1) .

These together with (C.1) and (C.2) of Lemma C.1 and Slutsky’s Theorem complete the proof.
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B Verification of conditions for OU and CIR model

We here verify the technical conditions of Chen and Fan (2006) for the normalized versions of the OU

and CIR model given in eqs. (6.1) and (6.2), respectively. For both examples, we will require that

U (y; θ), as defined in eq. (2.16), and its first and second-order derivatives w.r.t θ are polynomially

bounded in y. This imposes growth restrictions on the transformation function and is used to

easily verify various moment conditions in the following. Also note that the criterion l (Ui−1, Ui; θ)

in Chen and Fan (2006) takes the form l (Ui−1, Ui; θ) := log pX
(
U (Yi∆; θ) ;U

(
Y(i−1)∆; θ

)
; θ
)
−

log fX (U (Yi∆; θ) ; θ), where Ui = FY (Yi∆), in our notation.

B.1 OU model

Assumption 4.2: It is easily seen that
{
µX(x;θ0)
σX(x;θ0) −

1
2
∂σX(x;θ0)

∂x

}
= −

√
κ
2x and s(x;θ0)σX(x;θ0)

S(x;θ0) =

exp
(
x2

2

)
/
∫ x
x∗ exp

(
z2

2

)
dz. Assumption 4.2 is verified by taking the relevant limits.

Assumption 4.3: The implied copula of the normalized OU process is Gaussian, for which As-

sumption 4.3(i) and 4.3(ii) are satisfied as discussed in Chen and Fan (2006) and Chen, Wu, and

Yi (2009), respectively.

B.2 CIR model

Assumption 4.2: We obtain
{
µX(x;θ0)
σX(x;θ0) −

1
2
∂σX(x;θ0)

∂x

}
= (2α−1)

2

√
κ
2x −

√
κ
4x and s(x;θ0)σX(x;θ0)

S(x;θ0) =

exp{x}
xα

√
2κ
√
x/
∫ x
x∗

exp{z}
zα dz and the assumption is verified by taking relevant limits.

Assumption 4.3. First observe that

pX (x|x0; θ) = exp
[
c0 (θ)− c (θ)

(
x+ e−κ∆x0

)] x0

x
Iα−1

(
2c2 (θ)

√
xx0

)
,

where Iq (·) is the so-called modified Bessel function of the first kind and of order q and c0 (θ,∆) > 0

and c (θ,∆) > 0 are analytic functions. Moreover, fX is here the density of a gamma distribution

and so all polynomial moments of X exist. Since U is assumed to be polynomially bounded,

this implies that all polynomial moments of Y also exist. All smoothness conditions imposed in

Chen and Fan (2006) are trivially satisfied since pX (x|x0; θ) and U (y; θ) are twice continuously

differentiable w.r.t their arguments and so will not be discussed any further. Similarly, we have

already shown that Y is geometrically mixing. It remains to verify the moment conditions and the

identifying restrictions imposed in C1-C.5 in Proposition 4.2 and A2-A6 in Chen and Fan (2006).

C1 is satisfied if we restrict θ = (α, κ) to be situated in a compact set on R2
+ that contains the

true value. Observe that

log pX (x|x0; θ) = c0 (θ)− c (θ)
(
x+ e−κ∆x0

)
+ log

(x0

x

)
+ log Iα−1

(
2c2 (θ)

√
xx0

)
.
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Thus,

sθ (x|x0; θ) : =
∂ log pX (x;x0; θ)

∂θ

= ċ0 (θ)− ċ (θ)
(
x+ e−κ∆x0

)
+ c (θ) ∆e−κ∆x0 +

I ′α−1

(
2c2 (θ)

√
xx0

)
4c (θ)

√
xx0ċ (θ)

Iα−1

(
2c2 (θ)

√
xx0

)
+

 İα−1(2c2(θ)
√
xx0)

Iα−1(2c2(θ)
√
xx0)

0

 ,
where ċ0 (θ) = ∂c0 (θ) / (∂θ) and similar for other functions, I ′α−1 (x) = ∂Iα−1 (x) / (∂x), and

İα−1 (x) = ∂Iα−1 (x) / (∂α). It is easily verified that
∣∣I ′α−1 (x) /Iα−1 (x)

∣∣ and
∣∣∣∣I ′α−1 (x) /Iα−1 (x)

∣∣∣∣
are both bounded by a polynomial in x. Thus, ‖sX (x|x0; θ)‖ is bounded by a polynomial uni-

formly in θ ∈ Θ. The expressions of sx (x|x0; θ) := ∂ log pX (x;x0; θ) / (∂x) and sx0 (x|x0; θ) :=

∂ log pX (x;x0; θ) / (∂x0) are on a similar form and also polynomially bounded. Now, observe that

lθ (Ui−1, Ui; θ) : =
∂l (Ui−1, Ui; θ)

∂θ
= sθ

(
U (Yi∆; θ) |U

(
Y(i−1)∆; θ

)
; θ
)

+sx
(
U (Yi∆; θ) |U

(
Y(i−1)∆; θ

)
; θ
)
U̇ (Yi∆; θ)

+sx0
(
U (Yi∆; θ) |U

(
Y(i−1)∆; θ

)
; θ
)
U̇
(
Y(i−1)∆; θ

)
−∂ log fX (U (Yi∆; θ) ; θ)

∂θ
.

Given that the model is correctly specified and identified, it follows by standard arguments for

MLE that E [lθ (Ui, Ui−1; θ)] = 0 if and only if θ equals the true value.

C4. From the above expression of lθ (Ui, Ui−1; θ) together with our assumption on U (y; θ), it is

easily checked that it is bounded by a polynomial in
(
Yi∆, Y(i−1)∆

)
uniformly in θ ∈ Θ. It now

follows that E [supθ ‖lθ (Ui, Ui−1; θ)‖p] <∞ for any p ≥ 1.

C5.

lθ,1 (Ui−1, Ui; θ) =
∂lθ (Ui−1, Ui; θ)

∂Ui−1
, lθ,2 (Ui−1, Ui; θ) =

∂lθ (Ui−1, Ui; θ)

∂Ui

are again bounded by polynomials in
(
Yi∆, Y(i−1)∆

)
and so have all relevant moments.

A1(ii)-(iii). With W1,i and W2,i defined in (4.2)-(4.3) in Chen and Fan (2006) and

lθ,θ (Ui−1, Ui; θ) =
∂2l (Ui−1, Ui; θ)

∂θ∂θ′
,

lim
n→∞

Var

(
1√
n

n∑
i=1

{lθ (Ui−1, Ui; θ) +W1,i +W2,i}

)
,

and E [lθ,θ (Ui−1, Ui; θ)] to have full rank. We have been unable to verify these two conditions due

to the complex form of the score and hessian of the CIR model.

A4. Observe that |W1,i| ≤ E [|Ui−1| ‖lθ,1 (Ui−1, Ui; θ)‖] <∞ and similar for W2,i. Thus, both have

all relevant moments.

A5-A6 have already been verified above.
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C Lemma

Lemma C.1 Under Assumptions 2.1-2.2, 4.2(i), and 4.4-4.6, we have as n→∞, h→ 0, nh→∞,

√
nh

{
Û ′ (y)− U ′ (y)− 1

2
h2κ2

f ′′Y (y)

fX (U (y) ; θ0)

}
→d N

(
0,
U ′ (y)2

fY (y)

∫
R
K (z)2 dz

)
, (C.1)

and as n→∞, h→ 0, nh3 →∞,

√
nh3

{
Û ′′ (y)− U ′′ (y)− 1

2
h2κ2

f ′′′Y (y)

fX (U (y) ; θ0)

}
→d N

(
0,
U ′ (y)2

fY (y)

∫
R
K ′ (z)2 dz

)
. (C.2)

Proof. With F̂Y (y) given in (4.2), let f̂
(i)
Y (y) = F̂

(i+1)
Y (y), for i = 1, 2, be the ith derivative of the

kernel marginal density estimator. Using standard methods for kernel estimators (c.f. Robinson,

1983), we obtain under the assumptions of the lemma that, as n→∞, h→ 0, and nh1+2i →∞,

√
nh1+2i

{
f̂

(i)
Y (y)− f (i)

Y (y)− 1

2
h2κ2f

(i+2)
Y (y)

}
→d N (0, Vi (y)) (C.3)

where Vi (y) = fY (y)
∫
RK

(i) (z)2 dz. Assumptions 2.1 and 4.4 ensure that fY (y) is sufficiently

smooth so that f
(2)
Y (y) and f

(3)
Y (y) exist. Assumption 4.2(i) and 4.6 regulate the mixing property

of Y and the kernel function, respectively, as required by Robinson (1983).

From (4.4) we have Û ′ (y) = f̂Y (y) /fX(Û (y) ; θ̂). Now define Û ′0 (y) = f̂Y (y) /fX(U (y) ; θ0)

and note that Assumption 4.4 and 4.5 together with the delta-method imply Û ′ (y) − Û ′0 (y) =

OP (1/
√
n) = oP (1/

√
nh). It then follows that

√
nh

{
Û ′ (y)− U ′ (y)− 1

2
h2κ2f

(2)
Y (y)

1

fX (U (y) ; θ0)

}
=
√
nh

{
oP

(
1/
√
nh
)

+ Û ′0 (y)− U ′ (y)− 1

2
h2κ2f

(2)
Y (y)

1

fX (U (y) ; θ0)

}
=

1

fX (U (y) ; θ0)

√
nh

{
f̂Y (y)− fY (y)− 1

2
h2κ2f

(2)
Y (y)

}
+ oP (1) .

Using (C.3) and the same arguments as in Kristensen (2011, Proof of Theorem 1), we arrive at

(C.1).

Next, observe that U ′′ (y) =
f ′Y (y)

fX(U(y);θ) −
f ′X(U(y);θ)fY (y)2

fX(U(y);θ)3
where f ′X (x; θ) and f ′Y (y) are the

first derivatives of fX (x; θ) and fY (y), respectively. Similarly, it is easily checked that Û ′′ (y) =
f̂ ′Y (y)

fX(Û(y);θ̂)
− f ′X(Û(y);θ̂)f̂Y (y)2

fX(Û(y);θ̂)3
. Define Û ′′0 (y) =

f̂ ′Y (y)

fX(U(y);θ0) −
f ′X(U(y);θ0)fY (y)2

fX(U(y);θ0)3
and apply arguments

similar to before to obtain

√
nh3

{
Û ′′ (y)− U ′′ (y)− 1

2
h2κ2f

(3)
Y (y)

1

fX (U (y) ; θ0)

}
=

1

fX (U (y) ; θ0)

√
nh3

{
f ′Y (y)− f ′Y (y)− 1

2
h2κ2f

(3)
Y (y)

}
+ op (1)

which together with (C.3) yield (C.2).
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D Tables and Figures

Table 1: Bias and RMSE of κ in the OU-SKST Model

Bias/κ

Sample Size 2202 5505

True Parameter Value ρ1 PPMLE PMLE PPMLE PMLE

κ = 1.1376 0.9944 0.6121 1.1379 0.2690 0.5054

κ = 5.6882 0.9758 0.1230 0.1987 0.0652 0.0939

κ = 11.377 0.9531 0.0656 0.0888 0.0400 0.0441

κ = 22.753 0.9093 0.0385 0.0383 0.0270 0.0210

RMSE/κ

Sample Size 2202 5505

True Parameter Value ρ1 PPMLE PMLE PPMLE PMLE

κ = 1.1376 0.9944 0.8603 1.2932 0.4476 0.6224

κ = 5.6882 0.9758 0.2420 0.2930 0.1454 0.1655

κ = 11.377 0.9531 0.1574 0.1730 0.0974 0.1044

κ = 22.753 0.9093 0.1059 0.1133 0.0668 0.0711
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Table 2: Bias and RMSE of κ in the CIR-SKST Model

Bias/κ

Sample Size 2202 5505

True Parameter Values ρ1 PPMLE PMLE PPMLE PMLE

(κ, α) = (0.7653, 1.1653) 0.9921 0.9023 1.5269 0.4576 0.7717

(κ, α) = (3.8267, 1.1653) 0.9675 0.2358 0.3347 0.1194 0.1754

(κ, α) = (7.6533, 1.1653) 0.9399 0.1328 0.1816 0.0646 0.0853

(κ, α) = (15.307, 1.1653) 0.8917 0.0768 0.0928 0.0349 0.0398

RMSE/κ

Sample Size 2202 5505

True Parameter Values ρ1 PPMLE PMLE PPMLE PMLE

(κ, α) = (0.7653, 1.1653) 0.9921 1.2424 1.7509 0.6692 0.9231

(κ, α) = (3.8267, 1.1653) 0.9675 0.3881 0.4511 0.2363 0.2746

(κ, α) = (7.6533, 1.1653) 0.9399 0.2431 0.2771 0.1498 0.1672

(κ, α) = (15.307, 1.1653) 0.8917 0.1712 0.1847 0.1003 0.1068

Table 3: Bias and RMSE of α in the CIR-SKST Model

Bias/α

Sample Size 2202 5505

True Parameter Values ρ1 PPMLE PMLE PPMLE PMLE

(κ, α) = (0.7653, 1.1653) 0.9921 0.9458 1.0299 0.6192 0.8720

(κ, α) = (3.8267, 1.1653) 0.9675 0.4353 0.5171 0.1899 0.2554

(κ, α) = (7.6533, 1.1653) 0.9399 0.2633 0.3152 0.1033 0.1279

(κ, α) = (15.307, 1.1653) 0.8917 0.1302 0.1646 0.0663 0.0780

RMSE/α

Sample Size 2202 5505

True Parameter Values ρ1 PPMLE PMLE PPMLE PMLE

(κ, α) = (0.7653, 1.1653) 0.9921 1.5614 1.5784 1.1222 1.4309

(κ, α) = (3.8267, 1.1653) 0.9675 0.8443 0.9197 0.3867 0.4462

(κ, α) = (7.6533, 1.1653) 0.9399 0.5473 0.5695 0.2298 0.2558

(κ, α) = (15.307, 1.1653) 0.8917 0.2802 0.3139 0.1453 0.1684
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Table 4: Descriptive Statistics of Daily VIX

Sample Period January 2, 1990 - July 19, 2019

Sample Size 7445

Mean 19.21

Median 17.31

Std Dev. 7.76

Skewness 2.12

Kurtosis 10.85

Jarque-Bera Statistic 24669.26

Table 5: Model Estimation and Pseudo-LR Test Results

Transformed OU Transformed CIR

DO NPTOU EW NPTCIR

κ̂ 4.4888 3.8191 4.0741 3.7541

(0.5795) (0.4525) (0.5597) (0.4257)

α̂ 2.8890 0.0524 14.6916

(0.0423) (0.0032) (8.8484)

σ̂2 1.0818 0.0695

(0.0179) (0.0097)

%̂ 0.1916

(0.4827)

δ̂ 0.0072

(0.0029)

LL
(
104
)

-1.1724 -1.1579 -1.1585 -1.1565

LR 290.7263 40.8606

CV0.05 -52.1521 -23.6766

CV0.01 -30.5511 -10.9027

p-value 0.0000 0.0000

42



Figure 1: Marginal Densities of the Eurodollar Rates.

Solid = SKST Density, Dashed = Kernel Density, Dotted = Normal Density

Figure 2: Estimated Drift and Diffusion for the OU-SKST Model (T = 2202) .

Solid = True Function, Dashed = Mean of Estimates, Dotted = 95% Confidence Bands

Figure 3: Estimated Drift and Diffusion for the OU-SKST Model ( T = 5505).

Solid = True Function, Dashed = Mean of Estimates, Dotted = 95% Confidence Bands
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Figure 4: Estimated Drift and Diffusion for the CIR-SKST Model (T = 2202).

Solid = True Function, Dashed = Mean of Estimates, Dotted = 95% Confidence Bands

Figure 5: Estimated Drift and Diffusion for the CIR-SKST Model (T = 5505).

Solid = True Function, Dashed = Mean of Estimates, Dotted = 95% Confidence Bands

Figure 6: Time Series of Daily VIX
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Figure 7: Estimated Marginal Densities of Daily VIX
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