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Abstract

Fuel cells and batteries hold the potential to revolutionise emission performance for

coastal ships. A critical review of previous research and projects in this field high-

lighted potential benefits offered through using fuel cell and battery technologies to

decarbonise the coastal shipping. Currently, there is a lack of holistic design meth-

ods for such systems operating in different regions with variable energy properties.

This research project aims to develop a holistic power sourcing sizing method-

ology that can optimise the alternative propulsion system designs, and effective

energy management strategies for such systems. This research employs energy ef-

ficiency oriented propulsion system models which are calibrated and validated by

experimental data. The proposed multi-objective sizing methodology explores the

optimal power source sizing of a typical coastal ferry with sensitivity studies of

different energy properties. The sizing methodology has been validated using the

random search method. Reinforcement learning and deep reinforcement learning

agents were trained with real-ship power profiles to generate near-optimal energy

management strategies. These strategies have been compared and verified with re-

sults solved by deterministic dynamic programming.

The conclusions of this research suggest that energy properties and power

source characteristics can significantly influence the designs of hybrid fuel cell and

battery systems. Ships operating on short routes can potentially benefit from such

systems. Additionally, continuously monitored power profiles can be used to train

reinforcement learning agents to achieve near-optimal operating costs.
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Impact Statement

This research work identifies opportunities and constraints of using fuel cell and bat-

tery power to decarbonise coastal shipping. A novel power source sizing methodol-

ogy for coastal ships focusing on both life-cycle greenhouse gas emissions and costs

of the alternative propulsion systems has been developed. The developed design

methodology can be used by the shipping industry to achieve a balanced plug-in

hybrid fuel cell and battery propulsion system design, considering life-cycle green-

house gas emissions, costs and shipboard constraints.

Reinforcement learning and deep reinforcement learning based on-line energy

management strategies have been developed using extensive continuous monitor-

ing data to achieve near-optimal cost performance in un-predicted voyages. The

near-optimal cost performance of the developed energy management strategies has

highlighted the potential of deep reinforcement learning algorithms in the control

of hybrid propulsion systems. The proposed intelligent hybrid propulsion system

control framework can be adopted by the industry to minimise cost impacts from

the plug-in hybrid fuel cell and battery systems with multiple power sources.

Though the proposed hybrid propulsion system design methodology and in-

telligent energy management strategies are initially developed for coastal ships in

this study, they are transferable to other applications such as road vehicles. Other

researchers should be able to benefit from the output of this work as formulate

and solve the hybrid propulsion system optimal energy management problem with

extensive continuous monitoring data using suitable reinforcement learning algo-

rithms.
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Chapter 1

Introduction

1.1 Coastal shipping

1.1.1 Coastal shipping scope

Coastal shipping, also known as Short Sea Shipping (SSS) in the European Union

(EU), is the transport of cargo and passengers by sea over relatively short distances

that does not involve an ocean crossing (Johnson and Styhre, 2015). It is considered

a mode of transport that can alleviate road congestion and provide better energy

efficiency by shifting 30% of road freight over 300 km (Douet and Cappuccilli,

2011; Johnson et al., 2014; Eurostat, 2018). Early definition of SSS limits the ship

size to a maximum of 5000 gross tonnage (Crilley and Dean, 1993). According

to Musso et al. (2002), typical coastal ship sizes can vary from to 1000 to 15000

Deadweight Tonnage (DWT). However, there is no decisive academic agreement on

the definition on coastal shipping (Douet and Cappuccilli, 2011). Nonetheless, the

scope of this research project is limited to coastal ships sailing on short routes that

do not cross oceans, which could potentially benefit from integrating fuel cells and

energy storage technologies.

28



Introduction 29

1.1.2 Coastal shipping overview

Figure 1.1 provides an overview of coastal shipping of the EU in 2016. In 2016,

60% of EU goods transported by sea (19 Gt) were by coastal shipping (Eurostat,

2018). As depicted in Figure 1.1a, liquid and dry bulk are the main cargo types

transported via coastal shipping, followed by containers and Roll-on/Roll-off units.

The Mediterranean Sea, the North Sea and the Baltic Sea are the main areas where

these shipping activities occurred (Figure 1.1b).
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Total

Liquid bulk Dry bulk Containers Roll-on/Roll-off units Other cargo
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Mediterranean 
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EU-28 261 450 131 611 542 87

12.5% 21.6% 6.3% 29.3% 26.0% 4.2%

Figure 2: EU-28 Short Sea Shipping (SSS) of goods by sea region of partner ports in 2016 (in % of total gross weight of goods transported)

Source: Eurostat (mar_sg_am_cws)
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Figure 1.1: Short sea shipping in the European Union in 2016. (a) percentage of total gross
weight of goods transported by sea region and (b) percentage of total gross
weight of goods transported for each sea region (source: (Eurostat, 2018)).
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1.2 Motivation

1.2.1 Global shipping emissions

The global commercial shipping fleet emitted 2.2% of global anthropogenic Green-

house Gases (GHGs) in 2012 (International Maritime Organization, 2014a). The

International Maritime Organization (IMO) has set a long-term GHG reduction goal

for the shipping industry to be in line with the global GHG reduction target to limit

the global temperature rise to no more than 2 °C above pre-industrial levels (Ver-

gara et al., 2012; Cames et al., 2015). By 2050, the maritime transport segment will

need to reduce its total annual GHG emissions by 50% compared to 2008 levels and

achieve zero GHG emissions as soon as is practicable in this century (Figure 1.2)

(International Maritime Organization, 2019).

Figure 1.2: IMO strategy on reducing GHG emissions from ships. (source: International
Maritime Organization (2019)).

Figure 1.3 shows the evolution of IMO GHG reduction regulations since 1997

(International Maritime Organization, 2015). Two mandatory emission reduction

mechanisms, i.e. the Energy Efficiency Design Index (EEDI) and the Ship Energy

Efficiency Management Plan (SEEMP) have been introduced by the IMO to guide

energy-efficient ship design and operation, respectively.
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Figure 1.3: IMO energy efficiency regulatory developments. (source: International Mar-
itime Organization (2015)).

In 2009, the EEDI was proposed by the IMO to improve the energy efficiency

of new ships by promoting more energy efficiency technologies (International Mar-

itime Organization, 2011). In 2014, the EEDI scope was extended to a broader

range of ships (accounting for 85% of global shipping GHG emissions) including

Roll-on/Roll-off cargo and passenger ships.

The SEEMP, proposed in 2009, establishes an operational approach to im-

prove the energy efficiency of ships cost-effectively over time using, for example,

the Energy Efficiency Operational Indicator (EEOI) as a monitoring tool for set-

ting energy efficiency targets and evaluating energy efficiency levels (International

Maritime Organization, 2009, 2016).

1.2.2 Coastal shipping emissions

Although typical coastal ship sizes are much smaller than those vessels used for

ocean transits, the emissions from coastal ships make up a significant proportion

of the total emissions from the global commercial fleet. It has been estimated that

70% of global shipping emissions are produced within 400 km of coastlines, where
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almost half of the world’s population resides (Corbett et al., 1999; Viana et al., 2014;

Kay and Alder, 2017). Aulinger et al. (2016) indicate that smaller ships (less than

60000 gross tonnage) consumed 16.4% of the diesel fuel of the whole shipping fleet

in the North Sea region. The author’s earlier work (Wu et al., 2016) suggests that

ships of less than 15000 DWT mainly operate in coastal waters, and these ships

account for approximately 25% of global shipping emissions.

The EEDI and SEEMP mechanisms focus primarily on energy efficiency and

GHG emissions, while Emission Control Areas (ECAs) (Figure 1.4) have also been

designated to limit SOx, NOx and Particulate Matter (PM) emissions, mainly in

coastal waters (International Maritime Organization, 2014b; Zhen et al., 2018; Xia

et al., 2019). The PM emissions are only limited within the North American area

and the United States Caribbean Sea areas. The Baltic sea and the North sea areas

only limit SOx but not NOx. From 2020, the sulphur content in marine fuels is

limited to no more than 0.5%.

Figure 1.4: Emission Control Areas (source: (International Maritime Organization, 2014b;
Zhen et al., 2018; Xia et al., 2019)).

Almost 15% of total global anthropogenic NOx emissions and 4-9% of SOx

emissions are from shipping which is a significant and increasing source of air pol-

lutants (Endresen et al., 2003; Eyring et al., 2010; Viana et al., 2014). Nearly 70%
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of these emissions are estimated to occur within 400 km of coastlines, which is a po-

tential influence on air quality in coastal areas where 45% of the world’s population

resides (Corbett et al., 1999; Viana et al., 2014; Kay and Alder, 2017). SOx emis-

sions can harm human respiratory systems and cause damage to sensitive ecosys-

tems by contributions to acid rain (Halkos and Tsilika, 2019). Long-term exposure

to NOx can cause respiratory and lung cancer deaths (Lu et al., 2016). According

to Sofiev et al. (2018), even with cleaner marine fuels, ship-related PM2.5 will still

account for approximately 2.5×105 deaths and 6.4×106 childhood asthma cases

annually. There is a necessity to cut down emissions from ships, especially those

operating in coastal waters.

Marine diesel engines, as the primary sources of the pollutants and GHG emis-

sions from coastal shipping, are not a viable long-term powering solution as regards

the required reduction in GHG and pollutants (Deniz and Zincir, 2016). Various

efforts have been investigated to improve the existing diesel engine based tech-

nologies, e.g. using Liquefied Natural Gas (LNG) in dual-fuel and gas engines

(Thomson et al., 2015). Though the NOx, SOx and PM emissions can be reduced

significantly with LNG, the GHG savings offered by LNG is limited to no more

than 21%, and methane slip could potentially cancel out that benefit (Brynolf et al.,

2014; Thomson et al., 2015; Ekanem Attah and Bucknall, 2015). Ships operating

within Emissions Control Areas have adopted exhaust gas treatment devices which

could potentially lead to the GHG emission performance being even worse as a con-

sequence of the additional power requirement and the negative impact on engine ef-

ficiency (Verschaeren et al., 2014; Di Natale and Carotenuto, 2015; Boscarato et al.,

2015).

1.3 Alternative powering solutions

There is a need for the shipping industry to develop alternative power and propulsion

plants to meet these emission reduction goals. Proton Exchange Membrane Fuel

Cell (PEMFC) and lithium battery technologies have seen sustained development
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and are now commercially available, though improvements are still expected from

both (Sharaf and Orhan, 2014; Larcher and Tarascon, 2015). Coastal ships operat-

ing on short routes at modest speed can potentially benefit from hybrid propulsion

systems with PEMFC and batteries by utilising clean H2 energy and shore power

(McConnell, 2010; de Troya et al., 2016; van Biert et al., 2016). However, fac-

tors including both the power and energy density of the power sources, degradation

characteristics, energy properties and operational requirements can vary from place

to place and influence the design of such a hybrid propulsion system significantly

(Wu and Bucknall, 2018). For instance, in 2016, the average GHG emission for grid

power in the UK was 281 g CO2kWh−1, while it was 166 g CO2kWh−1 in Denmark

(European Environment Agency, 2019). A holistic design methodology and a suit-

able Energy Management System (EMS) are required to inform an overall optimum

alternative propulsion system design.

PEMFC operating on H2 has gone through rapid development in recent decades

with improving performance and reducing cost and has been adopted by parallel

industries such as road transport (Alaswad et al., 2016; Dicks and Rand, 2018).

There has been an increasing interest in utilising PEMFC for ship applications (van

Biert et al., 2016; Choi et al., 2016; Sasank et al., 2016; de Troya et al., 2016).

Compared to other fuel cell types, such as the solid oxide fuel cell or the molten

carbonate fuel cell, PEMFC offers better power density and transient performance

but lower efficiency and less fuel flexibility (Sharaf and Orhan, 2014). When used

in transport applications, PEMFC is typically used with batteries or supercapacitors

to provide better overall efficiency and capability for managing power transients.

Lithium battery technology is evolving rapidly and is recognised as having

great potential for utilising renewable energy and improving the performance of ex-

isting powering solutions (Luo et al., 2015; Hannan et al., 2017). Batteries can be

used as stand-alone or in hybrid configurations in ship propulsion systems. When

used in a hybrid configuration, batteries can help optimise the loadings of other

power sources (e.g. fuel cells or internal combustion engines). Ovrum and Bergh

(2015) reported that a 30% fuel reduction could be achieved with regenerative en-
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ergy recovered from ship crane operations. In configurations without regeneration,

much less fuel saving can be expected, depending on the configuration and power

profiles. 15% fuel saving is reported in a case of a non-regenerative hybrid ship

(Stefanatos et al., 2015). When only a battery is used, the shipboard system be-

comes zero-emission, but the life-cycle emission performance depends on the shore-

generated electricity. Currently battery technologies are still constrained by limited

energy densities, even though the world’s largest battery package in ship applica-

tions has reached a capacity of 6.1 MWh (Larcher and Tarascon, 2015; Corvus,

2019a).

Although H2 appears as a clean fuel when the scope is only limited to the

propulsion system, the H2 production process (e.g. natural gas reforming) could

be carbon-intensive (Acar and Dincer, 2014). Also, the power generation process

that provides the energy for H2 production and battery charging would have a cer-

tain carbon intensity, and this intensity would vary depending upon location. Other

factors including power source power capacity, energy densities, degradation char-

acteristics, energy properties and operational requirements can differ from place to

place and significantly influence the design of such a hybrid propulsion system.

The hybridisation of PEMFC and Lithium-ion batteries for coastal ship propul-

sion systems may potentially offer beneficial emission performance. However, the

design of such hybrid propulsion systems must consider a series of variables to

achieve an overall optimal design. As shown in Figure 1.5, the alternative system

has to provide sufficient and reliable power, without occupying too large a vol-

ume and mass margins from the propulsion plant. Moreover, the alternative system

needs to be more environmentally friendly yet commercially competitive. When

multiple power sources are integrated into one propulsion system, an effective EMS

is essential to manage power flows.
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Figure 1.5: The complexity of alternative propulsion system design.

1.4 Research questions

This research aims to answer the following: How can coastal shipping substantially

reduce harmful GHG emissions from their propulsion and power systems using fuel

cells and batteries and remain attractive commercially? This key research question

is split into sub-questions as follows:

1. What are the opportunities and constraints of new technologies and how do

they compare to traditional technologies for the design of propulsion and

power systems for coastal shipping?

2. How can fuel cells and batteries be best integrated into an electric propulsion

system for coastal ships?

3. How do the fuel cell and battery propulsion and power system designs per-

form and compare with conventional arrangements?

4. For a given hybrid propulsion and power system configuration, how much

saving can be achieved from reinforcement learning and deep reinforcement
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learning based energy management strategies using continuous monitoring

data?

1.5 Thesis outline

This thesis is organised as follows:

Chapter 1 introduces the motivation behind this research project and provides

an overview of the project and this thesis. It also describes the research contributions

with the author’s publications listed.

Chapter 2 details a critical literature review of existing diesel engines and their

improvement technologies, alternative fuels, fuel cell technologies, energy storage

systems and marine hybrid-electric propulsion system architecture. This chapter

aims to identify the opportunities and constraints of alternative power sources in

comparison to existing systems, and to further identify the challenges of integrating

alternative power sources to coastal ships.

Chapter 3 provides justifications for the research questions via a critical gap

analysis and an overview of methodologies adopted in this study. The main method-

ologies are constrained multi-objective optimisation for hybrid propulsion system

design optimisation, reinforcement learning (RL) and deep RL energy management

strategies for hybrid propulsion systems.

Chapter 4 deals with the problem of optimal sizing of alternative propulsion

and power systems utilising grid power, based upon a proposed plug-in hybrid fuel

cell and battery propulsion system model. A two-layer multi-objective optimisation

sizing methodology is proposed considering both economic and environmental per-

formance. Such a methodology can be used to guide practical shipboard alternative

propulsion system design with variable energy and power source properties.

Chapter 5 formulates and solves the optimal online power split problem for the

proposed plug-in hybrid system using RL in discrete state and action spaces. The

RL agents are trained with a set of historical power profiles and validated with data

over another period.
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Chapter 6 extends discrete state spaces in Chapter 5 to continuous state spaces

utilising deep neural networks as function approximators to achieve higher resolu-

tion.

Chapter 7 further improves Chapter 6 by extending both the discrete state and

action spaces to continuous spaces. This chapter also extends the optimal control of

fuel cell actions to multiple clusters. In Chapter 5 and 6, the fuel cells are controlled

uniformly.

Chapter 8 concludes this project and recommends future work.
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Chapter 2

Literature review

2.1 Overview

This literature review draws on four key themes. These themes are conventional

diesel-based powering solutions, fuel cell technologies, energy storage systems and

the system architecture integrating the fuel cells and batteries. The scope is limited

to coastal ships sailing on short routes, which could benefit from integrating fuel

cells and batteries. This chapter presents the literature review in four parts:

• The first part aims to provide an overview of the baseline diesel-based pow-

ering solutions of coastal shipping (Section 2.2).

• The aim of the second part is to offer a review of fuel cell technologies and

their applications in marine applications (Section 2.3), the intention of which

is to identify suitable fuel cell technology with potentials and constraints pro-

vided.

• The aim of the third part is to provide a review of energy storage technologies

(with a focus on batteries) and their application in marine propulsion (Section

2.4), the intention of which is to identify suitable energy storage technologies

with potentials and constraints highlighted.

41



Literature review 42

• The fourth part of this literature review is aimed to identify suitable hybrid-

electric system architectures integrating fuel cells and batteries for coastal

shipping (Section 2.5).

2.2 Review of diesel engine based powering systems

2.2.1 A historical review of conventional powering solutions

Figure 2.1 presents a timeline with the historical highlights of the marine vessel’s

power system development from 1900 to 2017 (El-Gohary, 2013; Barnes, 2014;

Skjong et al., 2015; Geertsma et al., 2017). From the 1900s to 1960s, steam turbines

were the primary powering solutions for commercial ships, notwithstanding the

evolving diesel engine technologies had gradually begun to be used in small ships.

Since the 1960s, driven by the need of better fuel economy, marine diesel engines

have been the dominant power sources for commercial ships (Barnes, 2014). In

1969, Wärtsilä delivered five 16080 DWT container ships powered by medium-

speed diesel engines. In 1987, the cruise ship Queen Elizabeth 2 was retrofitted

with diesel-electric propulsion, replacing its original steam turbines.

However, diesel engines are not a perfect solution. Technologies such as waste

heat recovery and exhaust gas recirculation have been introduced to improve effi-

ciency and reduce emissions (Sprouse III and Depcik, 2013; Baldi and Gabrielii,

2015; Pan et al., 2019). Since 1997, the International Maritime Organisation (IMO)

has introduced a series of regulations to limit GHG emissions and pollutants (In-

ternational Maritime Organization, 2014b, 2015). Since 2010, batteries have been

applied to commercial ships in hybridisation with diesel engines to achieve better

overall efficiency by load levelling. For instance, an 800 kWh battery is fitted to the

ferry MV Hallaig with its 3.5 MW generating sets (Geertsma et al., 2017). Also,

fuel cells have emerged as power sources for marine applications since 2000 (Pratt

and Klebanoff, 2016). For example, in 2015, the SF-BREEZE was designed with a

total installed PEMFC power of 4920 kW to achieve zero emissions.
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2.2.2 The state-of-the-art of diesel engine based systems

Figure 2.2 shows the two types of most widely used diesel engines (4-stroke

medium-speed in Figure 2.2a and 2-stroke low-speed in Figure 2.2b). Large 2-

stroke low-speed diesel engines (2.2b (MAN, 2019)) with output power of up to 80

MW are mainly used as the main propulsion engines for large ships (Carlton et al.,

2013; Barnes, 2014). 4-stroke medium and high-speed engines, which are typically

much smaller in size and power output but with higher power density, can either be

used as main propulsion engines (through reduction gears) or prime movers of gen-

erating sets (Woud and Stapersma, 2002; Mollenhauer et al., 2010; Barnes, 2014).

These 4-stroke diesel engines widely used by coastal ships with a typical Specific

Fuel Consumption (SFC) of around 195 gkWh−1 are approximately 10% less effi-

cient than large 2-stroke engines (Woud and Stapersma, 2002; El-Gohary, 2013). A

SFC of 195 gkWh−1 corresponds to a specific CO2 emission of 601 gkWh−1.

(a)

(b)

Figure 2.2: Marine diesel engines. (a) 4-stroke medium-speed and (b) 2-stroke low-speed
diesel engines (source: (Wartsila, 2019; MAN, 2019)).



Literature review 45

2.2.3 Issues of diesel engine based systems

The global commercial shipping fleet emitted 2.2% of the global anthropogenic

Greenhouse Gases (GHGs) in 2012 (International Maritime Organization, 2014a).

By 2050, the maritime transport sector needs to reduce its total annual GHG emis-

sions by 50% compared to 2008 to be in line with the global GHG reduction target

to limit the global temperature rise to no more than 2 °C above pre-industrial levels

(Vergara et al., 2012; Cames et al., 2015). On the other hand, according to Endresen

et al. (2003); Eyring et al. (2010); Viana et al. (2014), almost 15% of total global an-

thropogenic NOx emissions and 4–9% of SOx emissions are from shipping which

is a significant and increasing source of air pollutants. Moreover, the studies of

Corbett et al. (1999); Viana et al. (2014); Kay and Alder (2017) suggest that nearly

70% of these emissions are estimated to occur within 400 km of coastlines, which

has a potential influence on air quality in coastal areas where 45% of the world’s

population resides.

A timeline of IMO emission regulations on SOx and NOx is shown in Figure

2.3 (Carlton et al., 2013; International Maritime Organization, 2014b). The fuel oil

sulphur mass percentage limits are subject to a series of step changes over the years.

From 01 January 2020, the sulphur content is limited to no more than 0.5% globally.

Moreover, within the Emission Controls Areas (ECAs), Regulation 13 of MARPOL

Annex VI controls the engine emissions within the Tier III limits (these vary with

engine speed, e.g. 2.5 gkWh−1 for an engine speed of 1000 rpm) (International

Maritime Organization, 2014b).

2.2.3.1 SOx

SOx emission, as a significant pollutant from marine diesel engines has been limited

in ECAs (Lindstad et al., 2015). SOx emission is a product of the sulphur content of

the fuels. To limit SOx emissions, two approaches can be adopted, either by using

low sulphur fuel and/or an exhaust gas after-treatment device such as a scrubber,

which can be of the wet, dry or hybrid types (Lloyd’s Register, 2015). The price
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20112011 20122012 20132013 20142014 20152015 20162016 20172017 20182018 20192019

1 July 2010

Tier II NOx limit 

for new engines 

[Global]

1 July 2010

Tier II NOx limit 

for new engines 

[Global]

1 July 2011

US Caribbean Sea ECA 

adopted at IMO MEPC 62

1 July 2011

US Caribbean Sea ECA 

adopted at IMO MEPC 62

1 August 2012

North American ECA 

SOx and NOx 

[Local]

1 August 2012

North American ECA 

SOx and NOx 

[Local]

1 January 2014

US Caribbean Sea ECA 

SOx and NOx 

[Local]

1 January 2014

US Caribbean Sea ECA 

SOx and NOx 

[Local]

1 July 2015

ECA cap on sulphur content of 

fuel 1.00% to 0.10% 

[Local]

1 July 2015

ECA cap on sulphur content of 

fuel 1.00% to 0.10% 

[Local]

1 January 2016

Tier III NOx limit for 

new engines NOx ECA’s only 

[Local]

1 January 2016

Tier III NOx limit for 

new engines NOx ECA’s only 

[Local]

1 January 2020

Cap on sulphur content of 

fuel 3.50% to 0.50% 

[Global]

1 January 2020

Cap on sulphur content of 

fuel 3.50% to 0.50% 

[Global]

1 January 2012

Cap on sulphur content of

 fuel 4.50% to 3.50% 

[Global]

1 January 2012

Cap on sulphur content of

 fuel 4.50% to 3.50% 

[Global]

Figure 2.3: Timeline of IMO emission regulations on pollutants (Carlton et al., 2013; In-
ternational Maritime Organization, 2014b).

of low sulphur fuel with 0.1% sulphur content has been estimated to be 70–80%

higher than heavy fuel oil (Holmgren et al., 2014). Instead, sulphur scrubbers have

been widely adopted to meet the ECA requirements (Jiang et al., 2014; Panasiuk

and Turkina, 2015). However, such devices inevitability will require additional

power, which will further impact the overall energy efficiency and GHG emission

performance.

2.2.3.2 NOx

NOx emissions are formed during the process of combustion and is highly depen-

dent on the local flame temperature (Zhang et al., 2019). Technologies such as

exhaust gas recirculation, selective catalytic reactors, adjusted timing and fuel in-

jection strategies can be used to reduce NOx emissions (Guo et al., 2015). However,

these NOx abatement technologies could impact engine efficiency due to reduction

in combustion temperature (Pan et al., 2019). Verschaeren et al. (2014) indicate

that up to 70% NOx reduction could be achieved with exhaust gas recirculation and

Miller timing. However, the drawbacks, including reduced fuel efficiency and other

emissions like CO and Particulate Matter (PM) need further investigation.
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2.2.3.3 Greenhouse gases

Carlton et al. (2013) argue that although marine diesel engines are reliable and have

been primary power sources for the majority of commercial ships for decades, they

could not be the long-term powering solution for future ships without step changes

to meet the GHG emission reduction goal. Such an argument has been supported by

El-Gohary (2013); Barnes (2014); Skjong et al. (2015). Marine diesel engines are

typically optimised for a specific load region (e.g. 80% of rated power); operating

the engines under non-optimum load would lead to even poorer fuel economy and

emission performance, especially under low load conditions (Woud and Stapersma,

2002; Wartsila, 2019). The specific CO2 emission of 601 gkWh−1 is more than dou-

ble that of UK national grid electricity GHG level (281 gkWh−1) in 2016 (Eurostat,

2019). That is, the UK grid electricity GHG emission performance is more than two

times better than that of the marine diesel engines.

2.2.3.4 Improvement technologies to diesel engines

There have been various energy efficiency improvement technologies investigated

for marine diesel engines (Smith et al., 2010; Calleya, 2014; Scott et al., 2017).

Among these technologies, waste heat recovery technologies have been widely ap-

plied to marine diesel engines to recover waste heat mainly from exhaust gases

(Suárez De La Fuente, 2016; Baldi and Gabrielii, 2015). Singh and Pedersen (2016)

indicate that the primary waste heat recovery for marine applications the include

Rankine Cycle, Organic Rankine Cycle, Supercritical Rankine Cycle, Kalina Cycle,

exhaust gas turbine systems (hybrid turbocharging, mechanical turbo-compound

system, hydraulic turbo-compound system and electrical turbo-compound system)

and thermoelectric generators. However, the energy efficiency improvement that

could be offered by such technologies are limited to 15% (Larsen et al., 2013;

Sprouse III and Depcik, 2013; Singh and Pedersen, 2016).

When used in a hybrid configuration, energy storage device (e.g. batteries) can

optimise the loadings on the diesel engines. Ovrum and Bergh (2015) reported that

30% fuel reduction could be achieved with regenerative energy recovered from the
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ship’s crane operations. In configurations without regeneration much less fuel sav-

ing can be expected. 15% fuel saving is reported in the case of a non-regenerative

hybrid ship (Stefanatos et al., 2015). It should be noted that the achievable sav-

ing can vary for different applications, depending on the configuration and power

profiles.

2.2.3.5 Alternative fuels for diesel engines

As suggested by Raucci (2017); Balcombe et al. (2019), fuel changes are optional

approaches to reduce shipping emissions. Table 2.1 provides a comparison be-

tween Marine Diesel Oil (MDO) and potential alternative fuels for coastal shipping

(Gilbert et al., 2018; Wartsila, 2019). The alternative fuels included in this review

are Liquefied Natural Gas (LNG), H2 and methanol. Note that biofuels are omitted

due to the potential of such fuels being heavily constrained by the complex trade-

offs with human essentials such as food and water, and carbon neutrality could be

unachievable due to carbon content in the fuels and sacrifice of forests for arable

land (Florentinus et al., 2012; Balcombe et al., 2019).

Table 2.1: Potential alternative marine fuels for diesel engines in comparison with MDO
(Gilbert et al., 2018; Wartsila, 2019).

Fuel Net calorific Volumetric SFC Operational fuel emission factor gkWh−1

value MJkg−1 energy density MJl−1 gkWh−1 CO2 CH4 N2O SOx NOx PM

MDO 42.6 38.3 195 601 0.011 0.030 0.367 16.976 0.184
LNG (a) 48.6 21.9 169 473 3.380 0.018 0.003 1.318 0.030
Liquefied H2 120.0 8.5 >78 (b) 0 0 (c) 0 (c) 0
Methanol 20.0 15.8 381 522 0 0 0 3.050 0

a: the data is for a typical Wartsila 32 duel-fuel engine; additional 3.5 gkWh−1 MDO as pilot fuel
b: SFC not provided as a lack of mature pure H2 engine;
but the efficiency H2 engine are not expected to be much higher than diesel engines
c: vary with fraction of H2 energy in H2 assisted dual fuel engines

Thomson et al. (2015) indicate that application of LNG as a fuel in the ma-

rine industry has been developing rapidly in the past decade mainly due to the IMO

emission control regulations. Figure 2.4 shows the trend of LNG powered marine

engines installed from 2010 to 2015 (Clarksons, 2016). Although it is a fossil fuel,

compared to its liquid fuel equivalents, it is far better in terms of SOx (near zero),

NOx (less than 10%) and PM (near zero) emissions when used by marine dual-fuel
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or gas engines (Carlton et al., 2013; Balcombe et al., 2019). LNG has a better car-

bon factor compared to MDO and could provide up to 21% of CO2 saving without

considering methane slip (Brynolf et al., 2014). However, it should be noted that

methane is the second most prevalent GHG emitted from human activities, and the

GHG effect of methane on the climate is 25 times higher than that of CO2 over 100

years (Boucher et al., 2009). Methane slip occurs during transporting, bunkering,

and combustion process of LNG engines, which could cancel out the GHG sav-

ing achieved by its advantage in chemical composition (Anderson et al., 2015). To

achieve overall GHG emission savings, methane slip must be controlled throughout

the life-cycle of LNG.

Figure 2.4: LNG fuelled gas and dual-fuel engine number installed on commercial ships
built from 2010 to 2015 (data source: (Clarksons, 2016)).

Bicer and Dincer (2018) adopted a life-cycle approach to analyse the poten-

tial of utilising H2 as a marine fuel. Their results indicate that the life-cycle GHG

emission could be reduced by about 40% when H2 is used by dual-fuel engines

compared to conventional diesel fuel. Bicer and Dincer (2018) also indicated that

the usage of H2 in marine power and propulsion systems eventually depends on the

capability of producing clean and low-cost energy. Dimitriou and Tsujimura (2017)
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indicated that developing H2 fuelled compression ignition engines is still challeng-

ing, and most existing H2 fuelled engine projects focus on using H2 as an additional

fuel to other base fuels such as biofuels. The overall efficiency improvement could

be marginal or negative, and NOx is one of the problematic emissions (Zhou et al.,

2016; Gurz et al., 2017; Dimitriou et al., 2018). Nevertheless, conversion of H2 to

electricity with fuel cells is typically more efficient than within internal combustion

engines, which makes it an effective approach to use H2 with fuel cells (White et al.,

2006; Edwards et al., 2008; van Biert et al., 2016). When used in transportation ap-

plications, limited system-level volumetric energy density could be a significant

limitation of H2 (van Biert et al., 2016; de Troya et al., 2016).

It appears that methanol could provide about 13% CO2 saving compared to

MDO (Table 2.1). According to Jenkins (2016), methanol can be produced via

two main approaches: natural gas or biomass reforming. However, the natural

gas reforming approach requires additional energy, and will inevitably give rise to

methane slip during the production process (Hansson et al., 2019; Blumberg et al.,

2019). Methanol produced from this approach is not a viable alternative marine

fuel from the perspective of GHG reduction. The second approach of producing

methanol from biomass, will also inevitably face the problems of biofuels as men-

tioned at the beginning of this section (Florentinus et al., 2012; Balcombe et al.,

2019).

2.2.4 Summary of review on diesel-based systems

As indicated by Barnes (2014); Deniz and Zincir (2016); Balcombe et al. (2019),

Marine diesel engines operating with heavy fuel oil or marine diesel oil are not

a long-term powering solution for the shipping industry in terms of the required

reduction in GHG and pollutants emissions. Various efforts have been made to im-

prove the existing diesel engine based technologies, e.g. using LNG in dual-fuel or

gas engines (Thomson et al., 2015; Balcombe et al., 2019). Though the NOx, SOx

and PM emissions can be reduced significantly with LNG, the GHG savings offered

by LNG are limited to no more than 21%, and methane slips could potentially cancel
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out the benefit (Brynolf et al., 2014; Thomson et al., 2015; Ekanem Attah and Buck-

nall, 2015). Ships operating within Emissions Control Areas have adopted exhaust

gas treatment devices which could potentially lead to the GHG emission perfor-

mance being even worse as a consequence of the requirement for additional power

and the negative impacts on engine efficiency (Verschaeren et al., 2014; Di Natale

and Carotenuto, 2015; Boscarato et al., 2015). Methanol, as an alternative fuel,

would only provide very marginal GHG saving. Using H2 with internal combustion

engines remains challenging. For the long-term future, alternative technologies like

fuel cells and batteries are promising options.

2.3 Review of fuel cells

A fuel cell is a galvanic device that produces electrical energy from the chemical

energy of a fuel (Dicks and Rand, 2018). When H2 is used as the fuel, fuel cells gen-

erate electricity, and the by-product is simply water. Figure 2.5 shows the electrode

reactions and charge flow for acid electrolyte (Figure 2.5a) and alkaline electrolyte

(Figure 2.5b) fuel cells, respectively (Dicks and Rand, 2018). As in Figure 2.5a, in

an acid electrolyte fuel cell, H2 is oxidised at the anode, creating H+ by the release

of electrons. The H+ ions then pass through the electrolyte, while the electrons flow

from the anode to cathode. By this means electric current is produced, powering

external loads (e.g. an electric motor). It should be noted that such an operating

principle is identical to the one used by William Grove in 1839 and is still the most

widely adopted for commercial fuel cell applications (e.g. PEMFC) (O’Hayre et al.,

2016). In a fuel cell with an alkaline electrolyte (Figure 2.5b), OH– ions produced at

the cathode pass through the alkaline electrolyte and react with H2 fuel at the anode.

They then produce H2O by release of electrons. The electrons flow through an ex-

ternal circuit, powering external loads. This operating principle applies to Alkaline

Fuel Cell (AFC). It is worth mentioning that, for other fuel cell types (e.g. Solid

Oxide Fuel Cell), the operating principles can vary, depending on the electrolyte

used and the reactions at the two electrodes.
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(a)

(b)

Figure 2.5: Electrode reaction and charge flow for a fuel cell with: (a) an acid electrolyte
and (b) an alkaline electrolyte (source: (Dicks and Rand, 2018)).

2.3.1 Fuel cell technologies

There have been a variety of fuel cell technologies developed with specific features

for different purposes. For maritime applications, the following aspects should be

considered (van Biert et al., 2016): electrical efficiency, power density, energy den-

sity (fuel related), load following and system start-up time, reliability, safety and

cost. Table 2.2 summarises some relevant features of these major fuel cell technolo-

gies (Mekhilef et al., 2012; van Biert et al., 2016; O’Hayre et al., 2016; Wu, 2018;

Dicks and Rand, 2018).
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2.3.1.1 Alkaline Fuel Cell

Alkaline Fuel Cell (AFC) operates following the principle detailed in Figure 2.5b.

AFCs typically operate within the temperature range of 60–100 °C. Although an

AFC can provide LHV efficiency of up to 60%, one of the drawbacks of the AFC

is the electrolyte reacts with CO2, which may be contained within the O2 or the

H2. Consequently, AFCs cannot even tolerate low concentrations of CO2 due to the

way CO2 reacts with the electrolyte solution (de Troya et al., 2016). Because of this

limitation, the AFC has to use pure H2 concurrently with O2 free of CO2. Such cells

have been used in space and transportation applications.

The requirement to use pure O2 makes the AFC not a practical option for

coastal shipping applications due to the additional infrastructures and costs are

needed to provide for pure O2. The high cost of AFCs is another major limitation

(Wu, 2018). There is a trend that the AFC is being rapidly replaced the by Proton

Exchange Membrane Fuel Cell (PEMFC) in transportation applications (Alaswad

et al., 2016). Such cells have never been used in marine applications.

2.3.1.2 Proton Exchange Membrane Fuel Cell

PEMFC also referred to as solid polymer fuel cell, comprises a membrane-electrode

assembly, two bipolar plates and two seals (Mehta and Cooper, 2003). PEMFC

operates following the principles described in Figure 2.5a. The PEMFC needs to

operate with pure H2 at 60–80 °C and is sensitive to CO as CO can be absorbed

by the anode catalyst which consequently leads to blocked active sites which are in-

tended for H2 oxidation reaction (Stephens et al., 2016; Narayanan and Basu, 2017).

Note that traces of CO can be found in H2 fuel generated via steam reforming of

hydrocarbons. Although the PEMFC prices are relatively lower compared to other

cell types, due to having to use a precious Pt catalyst, the still high cost and limited

life- time are still major limitations of the PEMFC (O’Hayre et al., 2016; van Biert

et al., 2016). Nonetheless, as indicated by Thompson and Papageorgopoulos (2019),

platinum-group metal-free catalysts and mass production could potentially improve

the long-term cost competitiveness of PEMFCs for transportation applications.
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With start-up flexibility and relatively better dynamic performance, PEMFCs

have been widely used in various applications including submarines, ships and road

vehicles, and are commercially available (de Troya et al., 2016; Xie et al., 2019).

Another merit offered by the PEMFC is high power density, which is crucial for

coastal shipping applications with very limited weight and space margins for their

propulsion systems.

The development of High-Temperature PEMFC (HT-PEMFC) could poten-

tially alleviate the poisoning issue inherent to PEMFCs by using polymer and phos-

phoric acid membranes (Chandan et al., 2013; Rosli et al., 2017). A HT-PEMFC,

typically operating in the temperature range of 100–200 °C, is less sensitive to im-

purities in the fuel and could offer higher overall efficiency, but is still under devel-

opment (Chandan et al., 2013; Rosli et al., 2017). It should be noted that such cells

are not commercially available and could also suffer from the limitation of high cost

owing to the use of expensive Pt based catalysts.

2.3.1.3 Molten Carbonate Fuel Cell

The Molten Carbonate Fuel Cell (MCFC) typically operates at high temperatures

of 600–700 °C (Dicks and Rand, 2018). Such a high temperature is necessary for

the molten carbonate electrolyte to reach an adequate level of conductivity. MCFCs

are not sensitive to CO. MCFCs can consume fuels that contain gaseous impuri-

ties reformed from natural gas or even coal, which makes it flexible regrading fuels

(Dicks, 2004). The high operating temperature of MCFC contributes to an effi-

ciency of approximately 50% (up to 60%). However, high operating temperature

requires a long start-up time (≥ 10 h) and leads to high-temperature corrosions,

which makes them non ideal for transport applications requiring short-up time (Wu,

2018; Dicks and Rand, 2018).

Although MCFCs are commercially available, high production costs and lim-

ited lifetime remain as challenges (van Biert et al., 2016; Wu, 2018). Also, the

power density of an MCFC is much lower compared to that of an equivalent

PEMFC. It should be noted that although MCFCs can operate with fuels reformed
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from hydrocarbons (e.g. natural gas), the GHG savings that could be achieved from

the combination of an MCFC with hydrocarbon derived fuels are very limited due

to CO2 inevitably being emitted into the atmosphere without carbon capture.

2.3.1.4 Phosphoric Acid Fuel Cell

The Phosphoric Acid Fuel Cell (PAFC), which uses phosphoric acid (H3PO4) as an

electrolyte, typically operates in the temperature range of 150–220 °C (Mekhilef

et al., 2012). The PAFC is more flexible regarding fuel options compared to the

AFC and PEMFC but requires a longer start-up time (1–4 h) (Wu, 2018). Such

a long start-up time makes the PAFC impractical for applications in coastal ships

which require frequent start-stop of the power sources. The PAFC is commercially

available but is only used in stationary applications. Although it is less sensitive

to impurities, contamination by carbon monoxide and sulphur compounds, which

could poison the anode, still need to be prevented (Mekhilef et al., 2012). The

efficiency of a PAFC is 40–50% (Dicks and Rand, 2018).

2.3.1.5 Solid Oxide Fuel Cell

The Solid Oxide Fuel Cell (SOFC) uses a solid ceramic inorganic oxide as the elec-

trolyte and typically has an operating temperature range of 750–1000 °C (Staniforth

and Ormerod, 2003). The efficiency can be up to 60% and when combined with gas

turbines, even higher efficiencies can be achieved (Ebrahimi and Moradpoor, 2016).

A SOFC, being flexible in fuel choices, can generally run on a mixture of H2 and

CO formed by hydrocarbon fuel reforming. The high operating temperature leads

to a long start-up time. A limitation in the number of applicable start/stop cycles is

one of the issues of the SOFC (Dicks and Rand, 2018). Similar to the MCFC, the

system-level power density is much lower compared to that of an equivalent PEMFC

due to balancing of plant (van Biert et al., 2016). For these reasons, current SOFCs

are not an ideal solution for large scale shipboard applications. Although the SOFC

could offer better efficiency compared to low-temperature fuel cells, potential GHG

savings that can be achieved from the combination of SOFC and hydrocarbon fuels

are limited and could potentially be cancelled out due to issues such as methane
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slip.

Based on the comparisons above, the PEMFC is deemed the most promis-

ing for application in coastal shipping considering the PEMFC’s merits in terms of

power density, start-up time, commercial availability, maturity and comparatively

lower price driven by the road vehicle applications. Although the HT-PEMFC ap-

pears promising, it is still under development, hence not considered in this research.

High-temperature fuel cells such as the MCFC and SOFC are not suitable for coastal

ships due to long start-up time and low power density. Moreover, any potential

GHG savings that could be offered by using high-temperature fuel cells with hydro-

carbon fuels are limited due to the life-cycle GHG emissions of hydrocarbon fuels

(e.g. LNG).

2.3.2 Fuel cells in marine applications

Figure 2.6 details major fuel cell marine applications from 2003 onwards (Pratt and

Klebanoff, 2016; Tronstad et al., 2017). Among the 18 listed projects, the number of

ships using PEMFC, HT-PEMFC, SOFC and MCFC are 9, 3, 3 and 3 respectively.

The FCS Alsterwasser is a hybrid PEMFC and battery powered 100-passenger

boat launched in 2008 (Figure 2.7a) (McConnell, 2010). The FCS Alsterwasser is

part of the EU funded (C2.4 million) Zemship project. Two PEMFC stacks with

a total power of 96 kW were fuelled by 12 H2 tanks (a total of 50 kg H2 stored at

350 bar). A battery pack was also installed to guarantee operations at peak hours and

level the load on the PEMFC while docking and casting-off to prolong PEMFC life-

time (Zemships, 2013). According to (McConnell, 2010), the boat’s hybrid PEMFC

and battery propulsion system provided double the efficiency of a diesel system.

Another PEMFC powered marine example is the SF-BREEZE (Figure 2.7e) (Pratt

and Klebanoff, 2016). To date, the SF-BREEZE, a high speed ferry with a total

4920 kW PEMFC operating on pure H2, is the largest fuel cell powered concept

ship to date .

In the FellowSHIP project (2003–2011), a modularised MCFC system was
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installed onboard Viking Lady to investigate the concept of using a high-temperature

fuel cell in marine applications (Figure 2.7b) (Ovrum and Dimopoulos, 2012). The

FellowSHIP used a prototype 320 kW MCFC with LNG as the fuel. It should be

noted that the MCFC output power was kept stable due to the MCFC only being

able to handle slow load changes. The measured system-level efficiency of the

MCFC at full load is 52%, which is approximately 10% better than the installed

diesel engines.

In 2009, the PA-X-ELL project was launched to investigate the potential of

reducing emissions from cruise ships, yachts and RoPax ferries through the integra-

tion of decentralised fuel cell power systems (Tronstad et al., 2017). Three methanol

powered HT-PEMFC stacks (total 60 kW) were installed onboard MS Mariella (Fig-

ure 2.7c). Although it has been claimed that the project was successful, the use of

methanol would only provide marginal GHG saving.

In the SchiBz project, a 100 kW SOFC was installed onboard MS Forester. The

installed SOFC stacks operate with low sulphur diesel fuel with an external diesel

reformer (Tronstad et al., 2017). Note that the ships shown in Figure 2.7 b to d

still operate with the majority of the power being provided from diesel or dual-fuel

engines (Tronstad et al., 2017).

It is apparent that PEMFCs with H2 are the most widely used fuel cell type

and logistic fuel combination. The largest marine fuel cell application is the SF-

BREEZE with a PEMFC power of 4920 kW. HT-PEMFCs, with less stringent

requirements on fuels, have been tested in the projects of E4Ships–MS Mariella,

RiverCell and MF Vagen with methanol and H2. Two types of high-temperature fuel

cells, i.e. MCFC and SOFC have been tested over 6 projects, operating on carbon or

hydrocarbon-based fuels including LNG, diesel and methanol. Such an observation

suggests that high-temperature fuel cells are utilised to operate with conventional

fuels. It should be noted that the use of conventional fossil fuels does not bring

obvious savings in terms of GHG emissions since the efficiency improvements are

not hugely significant when compared to diesel engines.
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(a) (b)

(c) (d)

(e)

Figure 2.7: Fuel cell powered ships. (a) FCS Alsterwasser with 96 kW PEMFC (Mc-
Connell, 2010). (b) FellowSHIP with 320 kW MCFC (Ovrum and Dimopou-
los, 2012). (c) MS Mariella with 60 kW HT-PEMFC (Tronstad et al., 2017).
(d) MS Forester with 100 kW SOFC (Tronstad et al., 2017). (e) SF-BREEZE
with 4920 kW PEMFC (Pratt and Klebanoff, 2016).
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2.3.3 Summary of review on fuel cells

The SOFC and MCFC could offer some efficiency improvement over low-

temperature fuel cells (see Table 2.2). However, the life-cycle GHG emission

savings that would be realised by using these fuel cells would be limited due to the

carbon content in the fuels, without an additional significant efficiency advantage

over diesel engines or the low-temperature fuel cells (Stephens et al., 2016). Al-

though either MCFCs or SOFCs could operate with H2 (Dicks and Rand, 2018),

limitations such as long start-up time, low power density, limited cycling number,

availability and maturity, make them less appealing for use in coastal ships sailing

on short routes that frequent start-stop and manoeuvring.

As depicted by Stephens et al. (2016), low-temperature fuel cells operating

with renewable fuels are a more promising option for transportation applications.

Although there are still major challenges, such as high production costs, the PEMFC

is commercially available, and the cost of production cost is expected to decrease

rapidly (Chen et al., 2015; Fletcher et al., 2016; Ehsani et al., 2018). This model

of fuel cell can offer desirable life-cycle emission performance provided that the

H2 is produced using clean and low-cost energy (Singh et al., 2015; Ahmed et al.,

2016; Gurz et al., 2017; Bicer and Dincer, 2018). The limited system-level energy

density of H2 energy is one of the main obstacles for its maritime applications (van

Biert et al., 2016; Raucci, 2017). Nevertheless, for coastal ships operating on short

routes, e.g. SF-BREEZE, the excessive volumetric impact from H2 storage could be

insignificant, but more frequent replenishment of H2 may be necessary (Pratt and

Klebanoff, 2016).

2.4 Review of energy storage technologies

Table 2.3 compares the main ESS technologies, including Lithium-ion batteries,

supercapacitors and flywheels from a range of perspectives, including energy den-

sity, power density, lifetime and efficiency. In hybrid-electric propulsion systems,

an ESS can be used to store energy from regeneration, to optimise engine loading
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conditions and to provide direct propulsion.

Table 2.3: Main ESS technologies (May et al., 2018; Kim et al., 2015a; Hameer and van
Niekerk, 2015; González et al., 2016; Farrier et al., 2017; Gür, 2018).

Energy Power Specific Specific Daily Self Cycle Lifetime System
ESS density density energy power discharge life efficiency

[WhL−1] [WL−1] [Whkg−1] [Wkg] [% of energy] [cycle] [year] [%]

Lead-acid 60–110 10–400 20-40 75–300 0.2 1200–1800 5–15 50–95
Nickel-Cd 150–300 80–600 50-80 150–300 0.3 1500–2500 10–20 60–83
Lithium-ion 250–675 1500–10000 50-250 500–2000 0.1–0.3 400–9000 15–20 90–99

Flywheel 20–80 1000–2000 10–30 400–1500 ≥20% per hour >1000000 15–20 70–95

Supercapacitor 10–30 >100000 1–10 500–10000 10–20 >1000000 10–20 85–98

2.4.1 Supercapacitors

Supercapacitors are electrochemical energy storage devices. As shown in Figure

2.8, supercapacitors store electric energy by means of an electrolyte solution be-

tween two solid conductors which are typically designed to offer large surface areas

(Sabri et al., 2016; Farrier et al., 2017) such that large capacitances can be achieved

with a large amount of electric charge stored with a small distances between the

two electrodes. Supercapacitors can discharge stored electric charge within a short

period. As a consequence, supercapacitors are characterised as having high power

density and specific power, which makes them ideal for short period high pulse

loads. However, supercapacitors offer low energy density, which makes them less

suitable for marine propulsion applications (González et al., 2016).

2.4.2 Flywheels

Figure 2.9 illustrates the structure and components of a flywheel (Amiryar and

Pullen, 2017). Flywheels store the kinetic energy by using a high-speed rotating fly-

wheel inside a containment vacuum on a set of bearings (Faraji et al., 2017; Amir-

yar and Pullen, 2017). The flywheel rotor is coupled to a motor/generator which

functions as the electromechanical interface between the flywheel and the external

system via a bi-directional converter (Luo et al., 2015). High-speed flywheels oper-

ate at speeds of up to 1×105 rpm. Flywheels have been used in applications such as
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Figure 2.8: Schematic of a supercapacitor (source: (Saleem et al., 2016)).

Figure 2.9: Structure and components of a flywheel (source: (Amiryar and Pullen, 2017)).

uninterruptable power supply systems, hybrid vehicles and power quality improve-

ment by storing and releasing energy with specific power up to 1500 Wkg−1 (Arani

et al., 2017). Flywheels offer superior lifetime and safety characteristics but have

limited energy density and need to deliver and recover energy in short periods due

to having a high self-discharge rate (Gür, 2018).
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2.4.3 Batteries

The Lead-acid battery is a mature, dependable technology but offers low specific

energy and specific power. They have an efficiency of around 70% and discharg-

ing below 80% will affect its lifetime significantly (May et al., 2018). Nickel-Cd

batteries are superior to Lead-acid batteries in terms of capacity and lifetime. In

comparison with Lithium-ion batteries, both Lead-acid and Nickel-Cd batteries of-

fer limited energy densities and inferior system efficiencies. Consequently, the two

types of batteries are considered less suitable for coastal shipping applications.

Figure 2.10 illustrates the schematic of the first Lithium-ion battery (Goode-

nough and Park, 2013). Lithium-ion batteries provide the highest energy density

with reasonable lifetime and power density (Kim et al., 2015a). Among all the

possible ESS solutions, Lithium-ion batteries are the most widely used in the au-

tomotive industry and have been developed extensively over the past decade with

increasing energy density and reducing production cost (Lu et al., 2013; Jaguemont

et al., 2016). They are still costly at present, and a shortage of Lithium and some of

the transition metals currently used in Lithium-ion batteries may become an issue

in the future. However, a significant shortage of Lithium is unlikely in the near fu-

ture, and Lithium-ion batteries will probably continue to dominate electrochemical

energy storage for years to come (Nitta et al., 2015; Curry, 2017).

Figure 2.10: Schematic of the first Lithium-ion battery (LiCoO2/Li + electrolyte/graphite)
(source: (Goodenough and Park, 2013)).
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2.4.4 Battery-powered ships

All-electric battery-powered vehicles are becoming an important option for the de-

carbonisation of road transport by utilising grid power (Anandarajah et al., 2013;

Andwari et al., 2017). However, currently all battery vehicles have limited ranges

due to limited battery energy density; hybrid plug-in configurations with internal

combustion engines or H2 fuelled PEMFCs have emerged with extended ranges

(Sabri et al., 2016; Ehsani et al., 2018). Batteries are also being widely used in

non-plug-in hybrid configurations with internal combustion engines or fuel cells

to optimise propulsion system performance through load levelling (Cuma and Ko-

roglu, 2015).

In recent years, progress has been made with the development of battery-

powered ships. Figure 2.11 shows the battery-powered ship numbers (Figure 2.11b)

trend and battery ship categories (Figure 2.11a) from 2011 to the first quarter of

2017 (Alnes et al., 2017). Passenger/car ferries are the main ship type adopting

battery power. The main reason for this is passenger/car ferries typically operate

on short routes with relatively low power demands, which helps alleviates the en-

ergy density issue of batteries. Moreover, operating on relatively fixed routes makes

access to charging infrastructures less challenging.

Batteries have also been used in hybrid propulsion systems to allow the diesel

engines or fuel cells to operate at optimised load, i.e. load levelling to improve effi-

ciency. Caledonian Ferries has three hybrid vessels, each having two banks of 800

kWh batteries (Figure 2.12a) (Geertsma et al., 2017). The battery banks are charged

by utilising shore generated electricity and optimise the loading of the diesel gener-

ating sets. It has been reported that a 35% fuel saving was demonstrated during sea

trials owing to the hybrid diesel/battery propulsion system (Breijs and Amam, 2016;

Geertsma et al., 2017). The gird electricity directly accounted for a 24% fuel sav-

ing. The other 11% fuel saving was achieved by levelling the diesel engine loads by

using the batteries and controlled using an energy management system specifically

developed for this application (Breijs and Amam, 2016).
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The Norwegian ferry MF Ampere (Figure 2.12b), which came into operation

in 2015, is the world’s first large-sized all-electric battery-powered car ferry (Alnes

et al., 2017). This vessel undertakes 56 journeys per day, each which is of 5.6 km,

and is powered by a 1.04 MWh Lithium-ion battery which is recharged by two 410

kWh shore charging stations located at each end of its journey (Skjong et al., 2015;

Geertsma et al., 2017). It should be noted due to limited battery energy density, a

purely battery-powered propulsion system is limited to ships like MF Ampere that

require very limited range.

To date, the world’s largest maritime battery application that has been an-
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Figure 2.11: Battery ship statistics and trend (data source: (Alnes et al., 2017)).
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nounced is a hybrid LNG-electric cruise ship with a battery capacity of 10 MWh

(Figure 2.12d) (Corvus, 2019b). Another large hybrid LNG-battery ship with

planned battery capacity of 6.1 MWh was announced in early 2019 (Figure 2.12c)

(Corvus, 2019a).

Batteries have also been used with solar energy. Several car carriers with exten-

sive upper deck area have been equipped with photovoltaic panels which generate

enough energy to satisfy about 8% of the service load (Barnes, 2014). The exper-

imental craft Planet Solar has 8.5 t of Lithium-ion batteries in its two hulls with

solar cells to recharge them (Visa et al., 2016).

(a) (b)

(c) (d)

Figure 2.12: Battery-powered ships. (a) hybrid diesel-battery Caledonian MacBrayne ferry
MV Hallaig ((Geertsma et al., 2017)). (b) Norwegian all-electric battery-
powered ferry MF Ampere (Alnes et al., 2017). (c) Havila Kystruten’s hy-
brid gas-battery ship (Corvus, 2019a). (d) World’s largest battery maritime
application: 10 MWh with LNG engines (Corvus, 2019b).
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2.4.5 Battery challenges

2.4.5.1 Energy density

Thackeray et al. (2012) indicate that battery energy density should reach 300–750

Whkg−1 for road vehicles (see Figure 2.13). This would allow electric-powered

vehicles to attain a 300–400 mile range between recharges to better match the per-

formance of internal combustion engine powered vehicles. Limited battery energy

density is also an issue for maritime applications, especially for those smaller ships

typically powered by 4-stroke medium or high-speed diesel engines with minimal

volume and weight margin within their propulsion systems. Compared to a tradi-

tional diesel system, for a coastal bulk carrier with a voyage length of 100 nau-

tical miles, at an operational speed of 10 knots, the battery system would require

approximately 2.5 and 6 times more volume and mass than the installed diesel en-

gines respectively if replaced by a state-of-the-art Lithium-ion battery pack with

an energy density of 250 Whkg−1 and 300 WhL−1. Nevertheless, more advanced

battery technologies, such as Lithium-O2, could probably solve the volumetric and

weight constraints by offering approximately ten times higher energy density than

the Lithium ion battery option (Rahman et al., 2014).

2.4.5.2 Production cost

One of the main obstacles to battery power is the high production cost of the bat-

teries (Schmidt et al., 2017). Batteries need to be replaced when they reach their

calendrical life limits or cycling limits. The replacement costs will also contribute

to the through-life cost of battery-powered ships. Nevertheless, such high prices

are expected to decrease (Larcher and Tarascon, 2015; Alnes et al., 2017). From

a long-term standpoint, e.g. 10 or 20 years, batteries can potentially deliver bet-

ter economic performance over the traditional diesel system if and when the battery

price falls below 150 $kWh−1, which is the long-term goal for commercialisation of

electric vehicles (see Figure 2.14) (Nykvist and Nilsson, 2015; Alnes et al., 2017).
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Figure 2.13: Battery theoretical and practical energy densities (source: (Thackeray et al.,
2012)).
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gas, biofuels, renewable energy, and hydrogen all play 
important roles. Electrification and energy storage enable a 
broader range of energy sources to be used. Renewable 
energy such as wind and solar can be produced and stored 
for use on ships either in batteries or as hydrogen. In addi-
tion to the already existing IMO regulations and interna-
tional standards, a continuous development of relevant 
rules and recommended practices is necessary for the safe 
implementation of any of these rapidly developing technol-
ogies. To achieve this, the role of class societies will be cru-
cial. Currently, Li-ion battery technology represents, by far, 
the most promising and mature energy storage technology 
for the maritime industry and is being used in multiple 
ship types (Figure 3). 

Maritime Battery Systems: Past,  
Present, and Future
The use of electrochemical batteries for the operation of 
ships is by no means a new concept. The first known boat 
powered by batteries was a 24-ft vessel built in St. Peters-
burg, Russia, in 1839 that could carry 14 passengers at a 
speed of 3 kn. The precondition for this was the invention 
and development of the electric motor to convert electri-
cal energy into mechanical energy. However, due to 
required further developments for the batteries and the 
electric motor, it was not until the late 19th century that 
electric boats powered by batteries were produced and uti-
lized in large numbers. These boats were small and main-
ly used in inland rivers and lakes due to range limitations 
and the dependence on charging stations for the batteries.

In the early 20th century, the emergence of the internal 
combustion engine led to a dramatic decrease in the pop-
ularity of electric power ships. It was not until the 1970s 
that hybrid energy systems regained some popularity due 
to the energy crisis. Combined with the emerging solar cell 
technology, this provided new opportunities with respect 
to the application of small battery-driven vessels. Howev-
er, although the interest in energy storage increased, the 
number of ships produced and their application were lim-
ited until recent years. Looking at the number of battery 
projects for DNV GL over the past five years, this is clearly 
about to change (Figure 4). The future might very well be 
electric, with batteries playing a major role.

Battery development is expected to continue, as there 
are ongoing technological developments in the Li-ion bat-
tery industry, making it relevant for a growing number of 
ship segments. Battery power might prove to be one of the 
most transformative technologies introduced to the mari-
time sector in several decades.

Li-ion battery technology is developing fast, and for 
the short and medium term, significant increases in life 
cycle, energy density, and current ratings are continually 
being realized. Both technological developments and 
decreasing costs continue to outperform market forecasts 
(see Figure 5). The cell level cost decrease is, to a large 
extent, a result of increased manufacturing volume and 

Other
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21.4%
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Figure 3. The percentage of DNV GL battery-powered ships per ship-
ping segment as of the first quarter of 2017.
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Figure 4. The development by year in the number of DNV GL-class 
battery-powered vessels.
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2.4.5.3 Safety

Lithium-ion batteries could fail due to reasons such as thermal stressing, physi-

cal damage, charge and discharge failures and short circuit (Doughty and Roth,

2012). These failures could lead to fires or explosions. There have been acci-

dents caused by Lithium-ion batteries in transport applications including cars and

aeroplanes (Wang et al., 2012). For shipboard applications, Rao et al. (2015) pro-

posed safety measures for utilising Lithium-ion batteries including distributed bat-

tery space, flame-resistant shell materials, structural and thermal separation of ad-

jacent battery spaces, a suitable fire extinguishing system (e.g. heptafluoropropane

type).

The family of Lithium-ion batteries is vast, and each type may have its own

failure characteristics so it is essential to design the safety and protection function

of battery system in accordance with the particular characteristics when integrat-

ing them into ships (DNV GL, 2016). With increasing energy and power density,

designing a safe battery could become more challenging as more highly reactive

materials and higher operating voltage levels are used. Therefore, it is necessary to

prioritise safety features throughout the design and manufacturing processes. Spe-

cial attention would also need to be paid to safety when batteries are integrated into

propulsion systems.

2.4.5.4 Recycling

Lithium-ion batteries contain valuable material, including Co, Li, Mn, and Ni (Zeng

et al., 2014). Although Lithium-ion batteries are not generally classified as danger-

ous waste, they could be flammable and also have a negative impact on the en-

vironment. The study by Dewulf et al. (2010) shows that the recycling scenarios

could lead to 51.3% natural resource savings and approximately 50% reduction in

energy demand. According to Larcher and Tarascon (2015), the production process

of Lithium-ion batteries is energy-intensive, i.e. more than 400 kWh is needed to

manufacture a 1 kWh Lithium-ion battery whilst the production of 1 kWh of elec-

tricity from coal produces 1 kg of CO2. Swain (2017) reviewed the technologies for
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recovery and recycling of Lithium from used batteries and proposed that hydromet-

allurgical recycling of Lithium-ion batteries should be the focus. It is necessary

to develop a more advanced recycling system for Lithium-ion batteries and other

future battery types to achieve more sustainable battery power development with a

lower overall carbon footprint, fewer pollutants and more resources recycled.

2.4.5.5 Charging infrastructures

For Electric Vehicles (EV), the shortage of charging infrastructure is no longer a ma-

jor issue as more and more standardised charging ports are being built (Neubauer

and Wood, 2014; Burnham et al., 2017). However, ships typically have much higher

power and energy demands compared to EV and would need charging infrastructure

with much higher capacities to be developed along with the battery-powered ships.

The availability of charging infrastructures has a direct influence on a ship’s battery

system arrangement. The installed battery capacity has to be doubled if only one

of the two ends of the route has charging infrastructure. Ships usually only remain

for a limited time at ports. Therefore, the capability must exist for the batteries

to be charged during that period. Hence, fast charging could be necessary, which

could have a negative impact on the local electricity grid. Muratori (2018) consid-

ered the charging impact of plug-in hybrid-electric vehicles on the residential grids.

However, similar research work can rarely be found for maritime applications. The

MF Ampere has two additional battery banks installed on each end of its route to

minimise the charging impact to the local grid.

Batteries, as a type of energy storage device, do not themselves emit GHG into

the atmosphere. However, electricity from the power grid is generated with a certain

size of carbon footprint, depending on the type of power generation method. The

current global average electricity CO2 intensity of approximately 500 g CO2 kWh−1

is required to reduce to 100 g CO2 kWh−1 by 2050 (Tran et al., 2012). Figure 2.15

shows the grid electricity Global Warming Potential (GWP) trends in the EU from

1990 to 2016. Actual GWP decreasing trends can be observed at both the EU and

country levels. As mentioned in Section 2.2.2, the specific CO2 emission of a typical



Literature review 72

1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 1 0 2 0 1 5 2 0 2 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

g C
O 2

 kW
h-1

Y e a r

 E u r o p e a n  U n i o n
 U n i t e d  K i n g d o m
 D e n m a r k
 G e r m a n y
 S w e d e n

Figure 2.15: Grid electricity GWP in the European Union (Eurostat, 2019).

medium-speed marine diesel engine is approximately 600 g CO2 kWh−1. The use of

shore-generated electricity would reduce the GWP emissions by 50% with the EU

average grid electricity GWP of 296 g CO2 kWh−1 in 2016. More GHG savings

can be achieved by countries like Denmark with even lower grid electricity GWP.

For countries with grid electricity GWP well above 600 g CO2 kWh−1 (Li et al.,

2017), using battery power would not realise GHG benefits.

2.5 Review of hybrid-electric propulsion systems

Having identified that diesel-based propulsion systems are not a viable powering op-

tion for future coastal shipping with increasingly stringent regulations on emissions

in Section 2.2, the scope of this section is focused on electric propulsion system

topologies which are more suitable for fuel cell (Section 2.3) and battery (Section

2.4) power.
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Shipboard electric propulsion has been around for more than 100 years (Åd-

nanes, 2003). The availability of power electronics and variable speed converters

makes modern all-electric propulsion systems feasible for large scale commercial

marine applications (Woud and Stapersma, 2002; Hansen and Wendt, 2015). Fig-

ure 2.16 details the evolution of shipboard all-electric propulsion systems. Since the

1980s, the use of power electronics has become a common method for commercial

ships such as cruise vessels to improve fuel efficiency (McCoy, 2002; Kim et al.,

2015b). Integrated Full Electric Propulsion (IFEP) (Figure 2.16a) was adopted by

Queen Elizabeth 2 to replace the steam turbines for better fuel efficiency. Such a

system topology has also been used by other ships such as platform supply vessels

with highly variable load profiles.

More recently, the emerging energy storage technologies (mainly Lithium bat-

teries) enable IFEP with even better fuel efficiency (i.e. by load levelling to allow

more efficient operation of the diesel engines), and the capability of utilising greener

shore-generated power when larger battery modules are installed onboard (see Fig-

ure 2.16b) (Geertsma et al., 2017). Such a hybrid diesel/battery system has been

adopted by ships such as MV Hallaig (see Figure 2.12a). However, the overall ef-

ficiency improvement that can be offered by such systems are limited, and would

depend on the application, load characteristics and control strategies (Breijs and

Amam, 2016; Geertsma et al., 2017).

One of the major limitations of AC based diesel-electric propulsion systems

(Figure 2.16a and 2.16b) is that the diesel prime-movers have to operate at fixed

speeds, which limits the overall fuel efficiency due to high SFC when the engine

operates under part-load conditions (Geertsma et al., 2017). To further improve fuel

efficiency of these systems, a DC hybrid power system (Figure 2.16c) is a viable

option (Zahedi et al., 2014; Herrera et al., 2015). In a DC power system, the diesel

engines can operate at optimised speeds rather than fixed speeds to achieve better

part-load efficiency. However, to utilise these types of DC systems, challenges such

as fault protection and system stability would need to be addressed to allow reliable

operations (Zadeh et al., 2013; Herrera et al., 2015).
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Figure 2.16: Evolution of ship electric propulsion system (Geertsma et al., 2017). (a) In-
tegrated full electric propulsion AC power system applied on cruise ships and
offshore vessels. (b) Hybrid diesel/battery electric with shore power and AC
power system. (c) Hybrid diesel/battery with shore power and DC power sys-
tem. (d) Hybrid fuel cell/battery with shore power and DC power system.

Replacing the diesel generators and their rectifiers in Figure 2.16c with fuel

cells, a hybrid fuel cell/battery DC power system would be offered as in Figure

2.16d. Such a DC system would seem a natural fit since the fuel cells and batteries

provide power outputs that are both DC (Sulligoi et al., 2016; Skjong et al., 2016).

The fully battery-powered ferry MF Ampere (Figure 2.12b) has been constructed
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with such a DC system (Skjong et al., 2015). Nevertheless, challenges similar to

those encountered in the diesel engine based DC systems still apply to the fuel

cell/battery powered system. It is possible to use a conventional AC power distribu-

tion system for fuel cell and battery powered ships but this would introduce further

conversion losses when the DC power is converted to AC.

2.6 Summary

This literature review has been focused on the future direction of marine power

and propulsion systems for coastal shipping. Diesel engines and their associated

improvement technologies, alternative fuels, fuel cell technologies, energy stor-

age systems and marine hybrid-electric propulsion system topologies have been

reviewed.

As determined by Stephens et al. (2016), low-temperature fuel cells offer great

potential as a means of replacing fossil fuels with renewable energy for transporta-

tion applications. Although there are still major challenges such as high production

costs, the PEMFC is commercially available, and the production costs are expected

to decrease rapidly (Chen et al., 2015; Fletcher et al., 2016; Ehsani et al., 2018).

Such fuel cells can offer desirable life-cycle emission performance provided that

the H2 can be produced through use of clean and low-cost energy (Singh et al.,

2015; Ahmed et al., 2016; Gurz et al., 2017; Bicer and Dincer, 2018). The limited

system-level energy density of H2 is one of the main obstacles hindering its appli-

cation to wide ranging maritime operation (van Biert et al., 2016; Raucci, 2017).

However, for coastal ships operating on short routes, e.g. SF-BREEZE, the volu-

metric impact of H2 storage requirements could be alleviated, but at the cost of the

need for more frequent replenishment of H2 (Pratt and Klebanoff, 2016).

Existing batteries could be a viable powering solution for ships operating on

short routes and have access to low-carbon grid power. However, challenges such

as energy density, lifetime, safety, grid power GWP need to be considered before

applications (Thackeray et al., 2012; Larcher and Tarascon, 2015; Wu and Bucknall,
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2016; Doughty and Roth, 2012). Flywheels are not suitable for ship power due to

very limited energy density and high self-discharging rates (Amiryar and Pullen,

2017). Supercapacitors could be useful for transient loads; however, with limited

energy density, they are not ideal to be main power sources (Saleem et al., 2016).

To decarbonise the coastal shipping, the GHG emissions need to be considered

holistically, as well as the constraints such as high costs and low energy densities

compared to conventional plants. Both the H2 powered PEMFC and Lithium battery

would appear as zero or near zero-emission if the scope is only limited to the ship.

However, the carbon intensities, measured by Global Warming Potential, of both H2

and electricity, can vary greatly depending on the energy sources. The uncertainties

from the energy supply side, power source manufacturing and practical ship design

requirements need to be well addressed holistically to achieve balanced alternative

propulsion system design.

The hybridisation of PEMFC, battery and grid power in a DC system architec-

ture could potentially provide balanced propulsion system designs for coastal ship

operating on short routes and have access to clean and renewable energy sources.



Chapter 3

Problem formulation

3.1 Overview

In Chapter 2, a range of technology options to replace diesel-based systems are con-

sidered. Based on this review, a Proton Exchange Membrane Fuel Cell (PEMFC),

Lithium battery and shore power in hybrid plug-in configuration will be selected

as the primary candidate technologies to decarbonise coastal shipping engaged on

relatively short transits for their potential to eliminate carbon emissions. This chap-

ter identifies research gaps (Section 3.2) that exist in integrating PEMFC and bat-

tery technology to marine propulsion and power systems. Development of energy

management strategies for hybrid PEMFC and battery power systems will also be

explored. Section 3.3 provides details of the candidate ship that will be the basis for

this research. Section 3.4 summarises this chapter.

3.2 Gap analysis

As shown in Figure 3.1, designing and optimising hybrid propulsion systems with

multiple power sources requires consideration of both the system optimisation and

control design aspects (Hu et al., 2015b; Silvas et al., 2016; Valera-García and

77
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Atutxa-Lekue, 2018). Conventional commercial ship propulsion systems typically

utilise diesel engines as the main power source (Woud and Stapersma, 2002), which

makes for a less complex propulsion system design than that for hybrid propulsion

systems. Having identified a plug-in hybrid propulsion system with PEMFC and

Lithium battery as the preferred configuration for this project, the research gaps in

the power source sizing optimisation and optimal control of such hybrid propulsion

systems need to be identified and clearly defined. Power source sizing is intended to

optimise the propulsion system during the design phase prior to operations. How-

ever, control strategies for such systems should be considered in the sizing process.

The aim of optimal control is the satisfying of specific operational objectives such

as minimum fuel consumption.

Topology generation

Topology optimisation
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Figure 3.1: Propulsion system level design and its multi-layers (Silvas et al., 2016).

3.2.1 Hybrid propulsion system optimisation

Table 3.1 provides a list of research works relevant to hybrid propulsion design

optimisation. The scope is extended to include road vehicles, aircraft, submarines

as well as ships so as to include any concepts and methods that have been used

in parallel industries and may prove to be of value of this research. The hybrid

propulsion system design optimisation problem can be mathematically formulated

as constrained optimisations. Optimisation schemes such as a Genetic Algorithm

or a Particle Swarm Optimisation have been proposed and applied to solve such
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problems (Erdinc and Uzunoglu, 2012). A minimising optimisation problem with a

single objective function can be stated as to find a vector of decision variables:

x = [x1,x2, ...,xn] (3.1)

which minimises the objective function:

f = f (x) (3.2)

subject to the constraints:

gi (x)≤ 0 (3.3)

for i = 1,2, ...,m, and:

l j (x) = 0 (3.4)

for j = 1,2, ...,n, where gi is the ith inequality constraint and l j is the jth equality

constraint. For problems with multiple objectives, the objective functions can be

expressed as:

f = [ f1(x), f2(x), ..., fz(x)] (3.5)

where fk(x),k ∈ [1,z] is the kth objective function.

For road vehicle applications, optimisation methods have been widely adopted

to optimise hybrid propulsion system designs. Kim and Peng (2007) proposed

a combined power source sizing and energy management for a hybrid fuel cell

and battery road vehicle using a DIRECT optimisation algorithm and a pseudo-

Stochastic Dynamic Programming Energy Management System (EMS) with a scal-

able system model. Their proposed method is a single-objective approach focusing

on minimising H2 consumption without considering any degradation of the power

sources and life-cycle GHG emissions. (Hu et al., 2015a) applied convex optimisa-

tion to size the power sources of a hybrid PEMFC/battery road vehicle to minimise

H2 fuel and battery degradation costs. However, the degradation of the PEMFC,

which could potentially influence the system design, were not considered.
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In practice, the design of a hybrid propulsion system often needs to consider

the trade-off between multiple objectives due to potential conflicts amongst the ob-

jectives (Sulaiman et al., 2018). Ribau et al. (2014) developed a sizing methodol-

ogy optimising fuel consumption, cost and life-cycle GHGs concurrently based on

the well-established Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb

et al., 2002) for a plug-in hybrid fuel cell/battery bus operating in Portugal. Their

results suggest that 67% of the life-cycle GHG emissions can be reduced for the

application scenario. However, different energy properties and driving cycles can

influence the system design. The optimal design can vary significantly for different

energy sources and driving cycles. Song et al. (2014, 2015); Zhang et al. (2017)

adopted the same optimisation routine to optimise the designs of plug-in hybrid

battery/supercapacitor road vehicles with different optimisation objectives.

Earlier work by Skinner et al. (2007) adopted a multi-objective genetic algo-

rithm to optimise the integrated electric propulsion system for a naval submarine.

The multi-objective genetic algorithm was proven to be effective in dealing with

multi-objective and high dimensional design problems. There were 16 objective

functions, and the design space had 9 discrete and continuous design variables. (Xie

et al., 2018) proposed using NSGA to size the hybrid-electric propulsion system for

retrofitting a mid-scale aircraft. Fuel consumption and flight duration were the two

objectives on which the design was focussed.

For shipboard applications, when the decision space has limited dimensions

and sizes, it is feasible to search sweeping through the design space. Bassam et al.

(2016) proposed a power source sizing methodology for a hybrid PEMFC/battery

powered ferry to minimise a lumped cost, including initial and operational costs

through exhaustive search over the sizing variable spaces. However, such an ap-

proach did not consider any volumetric and weight constraints, which could in-

validate the solutions. The optimal energy management problem for each sizing

combination was solved using a classical Proportional-Integral controller (Motapon

et al., 2013). Mashayekh et al. (2012) adopted a similar search approach for their

diesel/battery hybrid propulsion system battery sizing determination. The opti-
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mal energy management solution is obtained by using dynamic dispatch for a nor-

malised load profile.

When the design variable space is continuous or is of large dimension and

size, it would be impossible or computationally expensive to loop through the vari-

able space. Valera-García and Atutxa-Lekue (2018) applied NSGA-II (Deb et al.,

2002) to optimise three objectives (fuel consumption, battery capacity and battery

energy consumption) concurrently for a platform supply vessel. Zhu et al. (2018)

adopted NSGA-II (Deb et al., 2002) and Multiple Objective Particle Swarm Op-

timisation (MOPSO) (Coello and Lechuga, 2002) to optimise their plug-in hybrid

diesel/battery propulsion systems with several constraints applied to determine the

diesel system design parameters and battery module configuration. The objectives

include fuel consumptions, GHG emissions and life-cycle costs. A rule-based EMS

was used in their nested optimisation flow. A similar approach was used in the

work of Zhu et al. (2019), but with the number of objective functions reduced to

two, focusing on fuel consumption and GHG emissions.

Multi-objective optimisation schemes such as NSGA-II have been successfully

applied to optimise plug-in and non-plug-in hybrid propulsion systems of road ve-

hicles, submarines and aircraft. Such schemes have also been adopted to optimise

the designs of plug-in hybrid diesel/battery ships. However, no work on optimis-

ing plug-in hybrid fuel cell/battery propulsion systems focusing on life-cycle GHG

emissions and power source energy costs could be found in the literature. Moreover,

coastal ships, such as ferries, typically have limited volume and weight margins for

their propulsion systems. These constraints need to be accounted for in the topology

optimisation phase.

It is worth mentioning that the design of a hybrid propulsion system is a nested

problem, i.e. the system topology and control strategies need to be considered con-

currently (Silvas et al., 2016). Also, note that alternative power sources, such as

fuel cells and batteries, have limited lifetimes and could degrade at different rates

under different control strategies. Although existing works have applied energy
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management strategies, such as rule-based strategy when optimising the hybrid sys-

tem designs, none of the existing studies have considered degradation of the fuel

cells and batteries concurrently.

3.2.2 Energy management strategy

In a hybrid propulsion system, an effective EMS is crucial to managing power flows

among multiple power sources (Martinez et al., 2016; Kalikatzarakis et al., 2018).

Table 3.2 presents a compilation of energy management studies for hybrid-electric

propulsion systems deemed relevant to this research. The EMS determines actions

taken by the hybrid propulsion system under certain operating conditions. However,

it is a challenge to develop an effective EMS for hybrid systems if future power

profiles are unknown.

The research into EMS for hybrid propulsion systems is primarily driven by

road vehicle applications. Sulaiman et al. (2015) provided a comprehensive review

of the main EMS categories for hybrid fuel cell road vehicles. Their review indicates

that rule-based, fuzzy logic, Equivalent Consumption Minimisation Strategy and

wavelet-based load sharing are the main EMS streams for hybrid fuel cell road

vehicles.

Caux et al. (2010) proposed an on-line fuzzy energy management system for

the propulsion system of a hybrid fuel cell/supercapacitor road vehicle. Their fuzzy

system parameters were optimised for two standard driving cycles using a genetic

optimisation algorithm. The results suggest that the energy consumption when

under the control of their fuzzy EMS is approximately 30% worse than that of

the optimal EMS acquired via dynamic programming. An adaptive fuzzy-logic

EMS was proposed for a plug-in hybrid/battery road vehicle later by Khayyam and

Bab-Hadiashar (2014). However, the performance of that EMS was not compared

against one derived by dynamic programming, but a 10% fuel consumption reduc-

tion has been observed when compared to the original EMS. Chen et al. (2017)

proposed an on-line predictive fuzzy-logic EMS for a plug-in hybrid engine/battery
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road vehicle. Their study tackles the uncertainties of driving cycles by combining

dynamic-neighbourhood particle swarm optimisation and fuzzy logic. The energy

consumption that could be achieved is up to 9.7% (when compared to their charge-

depleting and charge-sustaining EMS).

Fletcher et al. (2016) adopted stochastic dynamic programming to generate an

optimal EMS for a hybrid fuel cell/battery road vehicle, accounting for the fuel

cell degradation characteristics generalised from experimental results. Their EMS

was able to reduce the cost by 12.3% through prolonging fuel cell lifetime. The

main contributions from this study are: (1) addressing the importance of consid-

ering power source degradation characteristics for EMS design and optimisation;

(2) applying stochastic dynamic programming to generate an optimal EMS based

on historical load profiles. However, the accuracy of stochastic dynamic program-

ming is limited by its resolution due to ‘the curse of dimensionality’ (Sutton and

Barto, 1998). Wang et al. (2019) proposed more sophisticated fuel cell and battery

degradation models based on the degradation mechanisms. However, Wang et al.

(2019) only used deterministic dynamic programming to generate an optimal EMS

for a specific load profile based on these degradation models. It should be noted

that an EMS generated by deterministic dynamic programming is a useful as an off-

line EMS against which to benchmark other on-line EMSs, but it is not practical to

apply it to actual unknown load profiles.

Recently, machine learning EMS have started to emerge for road vehicles.

Muñoz et al. (2017) presented a neural network EMS for a hybrid fuel cell and

battery road vehicle based upon supervised learning. With a target EMS for specific

driving cycles generated through optimisation approaches, the neural network was

subsequently trained to achieve levels of performance similar to that achieved by

the target EMS. The actual performance of such an EMS for unknown future driv-

ing cycles is not clear. Murphey et al. (2012a,b) applied neural network for power

demand prediction and used dynamic programming to generate an EMS. However,

actual power demands could vary in practical driving conditions, which would in-

fluence the performance of the pre-generated EMS.
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For a hybrid system with an energy storage device, the problem, in essence, is

a sequential-decision making problem, i.e. what actions or controls should be taken

over the power cycles to deliver performance that approximates the optimal objec-

tives (e.g. minimum operational costs or emissions). Reinforcement Learning (RL),

as an approach for solving such sequential-decision making problems, has been pro-

posed for hybrid diesel engine and battery road vehicles. Hu et al. (2018) and Wu

et al. (2018) implemented Deep Q-Network (DQN) to generate an EMS for stan-

dard driving cycles. It is worth noting that, using a limited number of driving cycles

to train an RL agent could lead to the generated EMS only being able to perform as

per design under specific driving cycles. Xiong et al. (2018) proposed solving the

optimal power split problem using Q-learning with the Kullback-Leibler divergence

as an indicator as whether to update the EMS over time. Their results suggest that

updating an EMS over time may further reduce fuel consumption. However, there is

a lack of implementation of reinforcement learning algorithms for fuel cell/battery

hybrid propulsion systems. Moreover, these road vehicle implementations only fo-

cus on single power source control (either the engine or the fuel cell stack in discrete

action spaces). In contrast, marine propulsion systems would require control over

multiple power sources for redundancy and reliability considerations.

For shipboard applications, it is rare to find an intelligent EMS based on

RL. Kalikatzarakis et al. (2018) presented ‘Equivalent Consumption Minimisation

Strategies’ for shipboard applications with a diesel engine in hybridisation with bat-

tery and shore power. Their results indicate that a 6% fuel saving can be achieved

compared to the rule-based method. However, the actual fuel consumption achieved

is not clear for actual ship operations since only a limited number of power profiles

were analysed in this study. Bassam et al. (2017) proposed a multi-scheme EMS

with a mix of several sub-EMSs in different states for a hybrid fuel cell passen-

ger ship based on an operational profile of eight hours duration. Choi et al. (2016)

implemented a load-following EMS for their hybrid fuel cell and battery powered

boat, in which the fuel cells operate at a designated power ouput while the batteries

provide any additional power demands. Han et al. (2014) proposed a rule-based
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EMS tuned by a typical load cycle for a passenger boat.

The research efforts mentioned above have successfully developed hybrid

propulsion system EMSs for shipboard applications. However, the existing EMSs

were developed using a limited number of load profiles. Understanding of the ac-

tual EMS performance for as yet unknown voyages in the future has not been made

clear in existing works that can be found from the literature. Novel approaches us-

ing reinforcement learning algorithms and historical power profiles over the long

term do not exist in the literature for marine applications.

3.2.3 Identified research gaps

3.2.3.1 Design

There is no clear systematic integrating methodology that exists for designing and

managing the alternative powering solutions for coastal ships. It is true that fuel

cells operating on H2 are emission-free or near emission-free. However, the pro-

duction processes of H2 can itself be carbon-intensive. The CO2 emissions which

have been transferred to other phases of the fuel production cycle could be even

higher than that from conventional diesel engine based solutions. In addition, most

of the current alternative power sources, such as fuel cells and batteries, do have cer-

tain disadvantages and limitations such as high production costs and low lifetime.

These drawbacks and limitations could make alternative power systems extremely

uneconomic to operate. In addition, the cost and CO2 impact of fuel production vary

significantly between different countries and regions of the world, which has to be

considered from the beginning of the power system design phase. The identified

research gap on integrating fuel cells and batteries for coastal shipping is:

• There is a lack of holistic sizing methodologies for the design of plug-in hy-

brid PEMFC/battery propulsion systems, considering life-cycle GHG emis-

sions, costs and shipboard constraints.
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3.2.3.2 Operation

For hybrid road vehicles it is typical to use standard driving cycles to develop the

EMS. However, for hybrid ships, such standard cycles do not exist, and actual power

demands over different voyages may vary significantly due to factors such as sea

states, weather and ship cargo load conditions. In recent years, continuous moni-

toring of power demand over the long term provides a potential new approach to

advance the EMS development for such vessels (Eriksen et al., 2018). The identi-

fied research gaps on intelligent EMS for plug-in hybrid PEMFC/battery propulsion

system are:

• Cost-effective reinforcement learning EMS trained by large-scale stochastic

power profiles collected via continuous monitoring.

• EMS in continuous state spaces using deep neural networks as function ap-

proximators.

• Multiple fuel cell cluster control in continuous state and action spaces.

3.3 Case ship

Considering the quality and quantity of the data available, the proposed hybrid

propulsion system optimisation methodology and reinforcement learning based en-

ergy management strategies will be applied to a coastal ferry with a route as shown

in Figure 3.2 (Eriksen et al., 2018). Table 3.3 depicts the case ship’s specifications.

The original propulsion system featured an integrated full electric propulsion con-

figuration with a total installed power capacity of 4370 kW (five diesel generator

sets, with each prime mover rated at 874 kW). The annual operating duty is 300

days, and the ship operates between two fixed ports accomplishing 16 voyages (8

round trips) per day, with each voyage being of 60 min duration. It is assumed that

battery charging can be carried out in both ports of the defined route, and hydrogen

will be replenished overnight and never during the operational period.
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Table 3.3: Case ship specifications.

Parameters Value

Ship type Ferry
Gross tonnage 4500
Power system configuration Integrated full electric propulsion
Installed engine power 4370 kW
Fuel tank volume 140 m3

Daily voyage number 16 (8 rounds)
Average voyage time 1 h

(a)

(b)

Figure 3.2: Case ship (a) and its route (b) (Eriksen et al., 2018).

Figure 3.3 presents sample power profiles of the case ship collected using mon-

itoring and measuring equipment at the time step of 15 s. It can be observed that

most of the time the actual engine power being delivered is less than the power

capacity rating of two diesel generators (3.3c). High power profiles can also be

observed, but the probability of them occurring is much lower than time spent op-

erating at the moderate and low power profiles. Unfavourable low load operation,
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which leads to low fuel economy, can also be observed as in 3.3d. The energy

efficiency for this ship can be potentially improved by integrating energy storage

systems for load levelling.

(a)

(b)

(c)

(d)

Figure 3.3: Continuous monitoring collected raw power data of the case ship. (a) individual
engine power and (b) total delivered engine power; (c) cumulative probability
of total delivered engine power below specific values, note that the probability
of power below 1641 kW is 0.85, in other words, most of the time, the power
demands are below the capacity of two generator sets; and (d) power delivered
by Engine 5 in 5 continuous sample voyages, frequent unfavourable low load
operations can be observed.
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3.4 Summary

In this chapter, the research gaps in integrating fuel cells and batteries have been

identified. There is a lack of holistic design methodology dealing with the trade-

off between life-cycle GHG emissions and costs. The proposed two-layer multi-

objective hybrid propulsion system optimisation method has been introduced to deal

with the challenge of considering variable energy properties and optimal hybrid

system control strategies concurrently. Such a design methodology is intended to

achieve balanced hybrid propulsion system designs at the design phase.

This chapter also identified research gaps in the development of intelligent

energy management strategies for hybrid fuel cell and battery propulsion systems.

Reinforcement learning and deep reinforcement learning algorithms have been pro-

posed to solve the optimal energy management problems using continuous monitor-

ing data. Unlike the application scenarios for road vehicles, hybrid marine propul-

sion systems are subject to more complex operating conditions and could therefore

require high dimensional control over multiple fuel cell stacks. The reinforcement

learning and deep reinforcement learning based energy management strategies are

aimed at improving the cost-effectiveness and energy efficiency in the operation

phase.



Chapter 4

System modelling and optimisation

4.1 Overview

In this chapter, a holistic design methodology optimising the power source sizing

for coastal ship plug-in hybrid PEMFC/battery propulsion systems based upon an

energy efficiency model is proposed. Exiting studies on optimising plug-in hybrid

PEMFC/battery are mainly focused on road vehicle applications. For coastal ship

applications, life-cycle GHG emissions, costs and shipboard constraints need be

considered to achieve environmentally and economically feasible sizing solutions.

Such a methodology deals with the research gap associated with the integration of

a PEMFC and battery in a hybrid propulsion system for coastal shipping identified

in Chapter 3.

This sizing methodology optimises system performance while balancing the

trade-off between life-cycle GHG emissions and average voyage costs while consid-

ering shipboard constraints, power and the properties of energy sources. The power

source sizing problem is solved using constrained mixed-integer multi-objective op-

timisation in the external layer. The global optimum energy management strategies

for an averaged operating profile are obtained from deterministic dynamic program-

ming in the inner layer while considering power source degradations in the sizing

92
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algorithm. Section 4.2 details the system model development. In this chapter Sec-

tion 4.3 describes the sizing methodology. Section 4.4 implements the proposed

methodology to the case coastal ferry to investigate the feasibility and benefit poten-

tial of adopting the plug-in hybrid PEMFC/battery propulsion system. A sensitivity

analysis is presented in Section 4.5. Section 4.6 summarises the chapter.

4.2 System modelling

The models used in this chapter were coded in Matlab script to achieve fast simula-

tion speed which is essential for system optimisation and EMS development (using

reinforcement learning). The PEMFC, battery and converter models are developed

to have the flexibility of being calibrated by experimental data. Such that the pro-

posed methodology can be adopted with other types of power sources or converters,

depending on the actual devices would be used for a project.

4.2.1 Modelling purpose and requirement

The purpose of modelling the plug-in hybrid PEMFC/battery system is to estab-

lish a scalable framework to investigate the influences of not easily predictable en-

ergy properties (i.e. life-cycle GHG emissions and prices) on the system design

via multi-objective optimisation. Such a model will also be used as a basis for re-

inforcement learning energy management strategy development in the subsequent

chapters. Figure 4.1 presents the single line diagram of the system model. Note

that the focus of this research project is on system level optimisation and energy

management. Therefore, a quasi-steady-state model has been developed. Such an

approach has been validated and has been widely adopted in sizing optimisation and

energy management studies (Hu et al., 2015a; Song et al., 2015; Wu et al., 2018;

Xiong et al., 2018).



System modelling and optimisation 94

Ship Services & 

auxiliary loads

Battery
Shore 

power

Total load

PEMFC BatteryPEMFC 

... ... ... ...

Propulsion 

motor

M

Propulsion 

motor

M

DC bus

Ship Services & 

auxiliary loads

Battery
Shore 

power

Total load

PEMFC BatteryPEMFC 

... ... ... ...

Propulsion 

motor

M

Propulsion 

motor

M

DC bus

Figure 4.1: Single line diagram of the plug-in hybrid PEMFC/battery system.

4.2.2 Modelling assumptions and limitations

When using the proposed sizing methodology and reinforcement learning based en-

ergy management strategies based on the system model, the following assumptions

and limitations apply and are deemed acceptable for the purposes of developing the

model.

4.2.2.1 Modelling assumptions

The following assumptions will apply throughout this and the following chapters:

• Suitable power converters exist that can match the efficiency curves adopted

in this study for the power source sizes under consideration.

• Shore power is immediately available when the ship arrives at the ports; in

reality, extra time would be required to establish the electrical connections

which could prolong the necessary docking time in port. However, it should

be noted that automated charging solutions using industrial robots that can

minimise connection time are commercially available (ABB, 2018). When

the ship is in port, the shore electricity is used to power the auxiliary ship

loads as well as charging the battery, i.e. cold ironing.

• As the case ship is continuously in service on operational days (Eriksen et al.,
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2018), the PEMFC is not switched off but maintained at an idling setting

when in port. In other words, the PEMFC is only switched off at the end of

the operational day. This is such that excessive degradation due to unneces-

sary on/off cycling is avoided. Also, the power required for idling has been

included in the load profiles.

• H2 and electricity available on both ends of the case ship route have identical

properties considering the case ship only operates domestically in Denmark

with a voyage duration of 1 h.

4.2.2.2 Modelling limitations

• The models that will be employed do not allow the examination of detailed

transient performance which is beyond the scope of this research.

• The models cannot be used to investigate the influences on performance of

fuel cell and battery operating temperatures.

• The models are limited to ships plying routes that have access to H2 replen-

ishing and battery charging infrastructures.

• The models would need re-calibration if different types of power source are

used.

4.2.3 System overview

To help determine the optimal design of a plug-in hybrid PEMFC and battery

propulsion system for coastal ships, a quasi-steady-state model with PEMFC and

lithium batteries that can be adjusted to scale has been developed. Figure 4.2

presents the system schematic of a plug-in hybrid PEMFC battery propulsion sys-

tem. Such a layout is designed for coastal ships sailing on short routes with access

to battery charging and H2 replenishing facilities. The distribution system on a DC

ship eliminates the need for dc to ac inverters within the main propulsion distribu-

tion system. Although there are still practical challenges to implementing such a

DC distribution system, it directly matches the proposed power sources which are

DC (Hansen and Wendt, 2015; Higier et al., 2017).



System modelling and optimisation 96

F
u

el
 c

e
ll

 

st
a
ck

B
o
o

st
 D

C
/D

C
 

co
n
v
e
rt

er

P
ro

p
u

ls
io

n
 

m
o
to

r

d
ri

v
e

P
ro

p
u

ls
io

n
 

m
o
to

r

S
h

ip
 s

e
rv

ic
e 

d
ri

v
e

S
h

ip
 s

e
rv

ic
e 

lo
ad

s

D
C

 B
u
s

B
a
tt

er
y

B
id

ir
e
ct

io
n
al

 D
C

/

D
C

 c
o
n
v

er
te

r

A
C

/D
C

 c
o

n
v
e
rt

er

P
1

P
2

P
fc

P
b
a

t

P
S

Energy management

P
M P
A

S
O

C

P
d
e
m

 a

P
sh

o
re

R
e
f

sp
A

D
fc

M
ec

h
an

ic
al

 c
o
n
n
ec

ti
o
n

E
le

ct
ri

ca
l 

p
o
w

er
H

2
 t

an
k

H
2
 t

an
k

S
ig

n
al

 e
x
ch

an
g
e

S
h
o
re

 

el
ec

tr
ic

it
y

H
2
 f

lo
w

P
fc

D
b
a

t

F
u

el
 c

e
ll

 

st
a
ck

B
o
o

st
 D

C
/D

C
 

co
n
v
e
rt

er

P
ro

p
u

ls
io

n
 

m
o
to

r

d
ri

v
e

P
ro

p
u

ls
io

n
 

m
o
to

r

S
h

ip
 s

e
rv

ic
e 

d
ri

v
e

S
h

ip
 s

e
rv

ic
e 

lo
ad

s

D
C

 B
u
s

B
a
tt

er
y

B
id

ir
e
ct

io
n
al

 D
C

/

D
C

 c
o
n
v

er
te

r

A
C

/D
C

 c
o

n
v
e
rt

er

P
1

P
2

P
fc

P
b
a

t

P
S

Energy management

P
M P
A

S
O

C

P
d
e
m

 a

P
sh

o
re

R
e
f

sp
A

D
fc

M
ec

h
an

ic
al

 c
o
n
n
ec

ti
o
n

E
le

ct
ri

ca
l 

p
o
w

er
H

2
 t

an
k

S
ig

n
al

 e
x
ch

an
g
e

S
h
o
re

 

el
ec

tr
ic

it
y

H
2
 f

lo
w

P
fc

D
b
a

t

Fi
gu

re
4.

2:
H

yb
ri

d
pr

op
ul

si
on

sy
st

em
sc

he
m

at
ic

.



System modelling and optimisation 97

The two main operational modes that are envisaged during the ship’s routine

are sailing and port modes. In sailing mode, either cruising or manoeuvring, the

battery will work as an energy buffer to optimise the fuel cell loading and reduce the

need for severe reaction to power transients at the PEMFC. Note that when the ship

is in sailing mode the battery can undergo charging from the PEMFC or discharge

power to the ship and propulsion. When the ship is berthed, i.e. in port mode, the

shore connection charges the battery and powers the ship’s electrical loads, while

the PEMFC is idling during the operational turn around or shut down at the end of

the operational day.

The energy management system manages the power split between the power

sources by monitoring power demand, fuel cell power level, battery State of Charge

(SOC) and shore power availability, then determines the fuel cell power change for

the next time step. For each time step, the power supplied by the power sources has

to satisfy:

P1 +P2 +Ps = Pdem (4.1a)

P1 = Pf cη1 (4.1b)

Pf c =

≥ 0, sailing mode

= 0, port mode
(4.1c)

Ps =

= 0, sailing mode

≥ 0, port mode
(4.1d)

P2 =

Pbatη2, Pbat ≥ 0 for battery discharging or idling

Pbat/η3, Pbat < 0 for battery charging
(4.1e)

where P1 and P2 are the fuel cell and battery power after the power converters re-

spectively; Pf c and Pbat are fuel cell stack power output and battery power output

respectively; Pdem is the ship’s lumped loads (including propulsive and auxiliary).

Note that Pf c is determined by the EMS when in sailing mode and the fuel cell will

not be providing any power to the system when the ship is on shore supply. Also
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note that Pbat in port mode is calculated in line with the maximum charging rate

neglecting the internal resistance. The actual charging rate would be slightly be-

low the maximum charging rate due to the battery’s resistance (will be identified in

Section 4.2.7.3). η1, η2 and η3 are the fuel cell and battery converter (charging and

discharging) efficiencies respectively.

4.2.4 Power converter efficiency models

The power converter efficiency models output energy efficiency with the input of per

unit power to the converters. Note that the converter efficiency models are represen-

tative of achievable characteristics and can be easily updated with real data when

actual converter performance data is available for actual engineering applications.

Such an approach is valid and has been widely adopted in similar studies (Hu et al.,

2015a; Kalikatzarakis et al., 2018). As shown in Figure 4.3a, the power conversion

efficiency is plotted against the percentage power output for each of the conversion

modes. These efficiency models are based upon experimental data (Kanstad et al.,

2019; Tseng et al., 2016). The maximum error of any of these best fit efficiency

curves is 3%, which occurs at the 20% loading condition (Figure 4.3b). In high

load regions, the percentage error is less than 1%.
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Figure 4.3: Power converter efficiency: (a) power converter efficiency curves fitted from
experimental results and (b) errors of fitted efficiency curves compared to ex-
perimental data from (Kanstad et al., 2019; Tseng et al., 2016).
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4.2.5 PEMFC model

To obtain fuel cell system specific hydrogen consumption and fuel cell degradation

rates under different operating conditions, a system level PEMFC model has been

developed and calibrated. Figure 4.4a represents the schematic of the PEMFC stack

system, including ancillary components (Pukrushpan, 2003; Dicks and Rand, 2018).

Figure 4.4b represents a single cell within the stack. The fuel cell stack model takes

account of power consumed by the auxiliary equipment. Individual cell outputs are

connected in series and parallel to form the stack output.
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H2 pressure 
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humidification

Air 

humidification
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Exhaust

Cooling 

pump

Heat 

exchanger

PEMFC

(a)

Bipolar plate

Anode/Catalyst

Membrane

Cathode/Catalyst

Bipolar plate

H2 + H2O

Air + H2O

H2 + H2O

Air + H2O

e-H+H2O

H2 + 2H+→ 2e-

 2H++1/2O2 +2e-→H2O 

Reaction:

H2 + 1/2O2→ H2O 

Bipolar plate

Anode/Catalyst

Membrane

Cathode/Catalyst

Bipolar plate

H2 + H2O

Air + H2O

H2 + H2O

Air + H2O

e-H+H2O

H2 + 2H+→ 2e-

 2H++1/2O2 +2e-→H2O 

Reaction:

H2 + 1/2O2→ H2O 

(b)

Figure 4.4: Fuel cell schematic: (a) PEMFC system and (b) single cell.
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4.2.5.1 PEMFC modelling assumptions

• All the PEMFC’s individual cells perform in exactly the same manner within

a stack, and any internal connection resistance can be considered negligible.

• The individual PEMFC cells are one dimensional with cell current uniformly

distributed. The humidified reactant gases are in equilibrium with liquid wa-

ter. Water presents as vapour at the membrane-electrode interface and the

water activity is uniform across the membrane and is in equilibrium state.

Gas convection is neglected by assuming there is no pressure gradient be-

tween anode and cathode. There are no internal currents nor fuel crossover

losses (Abdin et al., 2016).

• The PEMFC is properly cooled and operates at constant temperature, the tem-

perature being uniform across individual cells. However, the operating pres-

sure will vary with stack loading to match the cathode inlet air compressor

operating line and improve efficiency at high load.

4.2.5.2 PEMFC single cell model

The single cell model considers three overpotentials, i.e. ohmic overpotential Vohm,

activation overpotential Vact and convection overpotential Vcon. Due to the three

overpotentials, the single cell output voltage Vcell varies at different current den-

sities (corresponding to different loadings). The single cell governing equations

are described in Table 4.1. The PEMFC model is calibrated using the results ac-

quired from (Yan et al., 2006). The molar flow rates of O2, H2 and H2O, i.e. nO2 ,

nH2 and nk
H2O were calculated using the method provided in (Abdin et al., 2016).

Model adjustable parameters such as β ,iL,γm, iRe f
0 and α are estimated by min-

imising the difference between model voltage output and experimental results with

Particle Swarm Optimisation function provided in Matlab. Once these parameters

are calibrated, the model is verified by running the model in other operating states.
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4.2.5.3 PEMFC stack model

By connecting the individual fuel cell outputs in series and parallel, the PEMFC

stack model is formulated (Figure 4.5). Note that the equivalent circuit resistances

could vary with cell stack density (see Table 4.1). It is assumed that all the cells

within the stack perform uniformly. The total electrical power output of the stack is

calculated by:

Pf c =Vf cI f c−Pcom−Paux (4.2)

where Vf c and I f c are fuel cell stack voltage and current output respectively, and

Vf c = n1Vcell , I f c = m1Icell = m1iAm (m1 is number of strings in parallel, n1 is num-

ber of cells in series, Am is the active area of membrane electrode assembly). Pcom

is the power consumed the by air compressor:

Pcom =
1

ηcηm
ṁaircpT

[
CR

(
γa−1

γa

)
−1
]

(4.3)

where ηc is the air compressor efficiency, obtained from (Dicks and Rand, 2018) and

normalised with respect to fuel cell loading. ηm is the compressor motor efficiency,

and it is assigned a constant value of 0.96 in this study. cp = 1004Jkg−1 K−1 is

the inlet air specific heat capacity. CR is the cathode air compression ratio which

increases along the compressor operating line when fuel cell load level increases. γa

is the air specific heat ratio. Pa f c is balancing of plant power, and is a linear function

of fuel cell power (Kim and Peng, 2007):

Pa f c = k1Pf c + c2 (4.4)

where k1 and c2 are constant coefficients. The fuel cell stack net efficiency is calcu-

lated by:

η f c =
Pf c

ṁH2LHV
×100% (4.5)

where LHV is the Lower Heating Value of H2, ṁH2 is hydrogen mass flow rate

which can be calculated from cell H2 molar flow rate nH2 , molar mass and total cell

number.
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Figure 4.5: PEMFC equivalent circuit: (a) PEMFC module schematic and (b) PEMFC sin-
gle cell equivalent circuit.

Figure 4.6a shows the single cell power at different current densities and corre-

sponding power consumed by the air compressor and other auxiliary loads. The fuel

cell stack net efficiency and specific H2 consumption across 0-100% fuel cell load

are shown in Figure 4.6b. The maximum fuel cell stack net efficiency is about 52%;

the net efficiency at full load is 36%. As in Figure 4.6c, the fuel cells operating

pressure increases along the compressor operating line with the increase of fuel cell

load (Dicks and Rand, 2018). The fuel cell model outputs specific H2 consumption

with the input of fuel cell power percentage.

4.2.5.4 PEMFC degradation model

Compared to marine diesel engines, PEMFCs generally have a much shorter oper-

ational life. Factors such as power transients, cycling frequency and loading condi-

tions can influence the rate of degradation. Considering the high production costs

of PEMFCs, it is necessary to include the degradation characteristics in both the

design development and operating phases of the ship to obtain the overall optimal

cost performance. Table 4.2 details the PEMFC’s single cell degradation rates used

in this study (Fletcher et al., 2016; Chen et al., 2015). The cell degradation resulting

from one voyage is:

D f c = Dlow +Dhigh +Dtransient +Dcycle (4.6)
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Figure 4.6: (a) Single cell power and auxiliary power consumption at different operating
current densities, note that the compressor operates following the operating line
in (c), the cell net power is cell electrical power subtracted by compressor and
auxiliary loads and the net power output drops down rapidly after 0.68 Acm−2

hence regions beyond this point are not considered as useable region, (b) spe-
cific H2 consumption and net fuel cell stack efficiency in different fuel cell
power fractions, highest efficiency appears around 20% power region and (c)
compressor map from (Dicks and Rand, 2018).
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where Dlow, Dhigh, Dtransient and Dcycle are cell voltage degradation caused by: low

power operation, high power operation, power transient and start/stop cycling, re-

spectively. These parameters will differ across different fuel cell types, depending

on the design and actual operating parameters, and the model will require recalibra-

tion using experimental data before use.

Table 4.2: PEMFC cell degradation rates (Fletcher et al., 2016; Chen et al., 2015).

Operating condition Degradation rate

Low power (0-80% rated power) 10.17 µV/h
High power (> 80% rated power) 11.74 µV/h
Transient loading 0.0441 µV/∆kW
Start/stop 23.91 µV/cycle

4.2.6 PEMFC model validation

Figure 4.7 presents the fuel cell validation results against actual experimental data.

Note that the validation data is acquired from Yan et al. (2006), and the experi-

mental data in Figure 4.7b, i.e. at the operating pressure of 2 atm for both anode

and cathode was used to calibrate the adjustable model parameters. The operat-

ing temperature is fixed at 80 °C. A good agreement between the model output

and experimental results can be observed in Figure 4.7a, 4.7c and 4.7d. The root-

mean-squared error between the model output and experimental data is 0.031 (the

normalised root-mean-squared error is 3.5%). It is worth mentioning that increas-

ing operating pressure brings higher cell voltage output, especially in high current

density load regions. The degradation model is directly fitted from experimental

data and can be deemed valid for this study.
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Figure 4.7: PEMFC model calibration and validation using experimental data from (Yan
et al., 2006). The operating temperature is set at 80 °C for all the operating
pressures. From (a) to (d), the operating pressures are 1 atm, 2 atm, 3 atm and
4 atm, respectively. Note that the experiment data of 2 atm is used to calibrate
the model adjustable parameters.
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4.2.7 Lithium-ion battery model

To accurately represent battery performance across its capacity range, an equivalent

circuit calibrated using experimental data from (Zheng et al., 2016) has been devel-

oped. Figure 4.8 shows the battery model equivalent circuit adopted in this study.

The battery cells are connected in series and parallel to form the battery module (Hu

et al., 2015a):

Pbat = IBVB (4.7)

where IB, VB are battery module current and voltage respectively. Note that VB =

n2Vt , and Vt is the battery cell terminal voltage, which is a function of battery cell

open circuit voltage Voc (SOC) (Voc is a function of battery SOC), R0, R1 and C1:

Vt =Voc− i0R0−Vc (4.8)

V̇c =−
Vc

R1C1
+

i0
C1

(4.9)

Over a period, the battery SOC changes as:

SOC2 = SOC1−ηb

∫ t2

t1
C(t)dt (4.10)

where Vc is the voltage over the capacitor C1; C(t) is battery charge rate (unit is C,

1 C corresponds to the current which discharges the cell from full capacity to zero

capacity in 1 h) at time t; note C(t) is positive for battery discharging and C(t) is

negative for battery charging; ηb is the battery coulombic efficiency.

4.2.7.1 Lithium-ion battery modelling assumptions

• All battery cells perform exactly the same within a battery module, and re-

sistance of the internal connections can be deemed as negligible (Hu et al.,

2015a).

• All the battery cells are properly cooled and work at the temperature of the

experiment carried out to identify model parameters.
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Figure 4.8: Battery equivalent circuit: (a) battery module schematic and (b) battery single
cell equivalent circuit.

• Batteries can be fast-charged at a C-rate of up to 3 C in port. This assumption

is based on the requirement that the case ship has only very limited port time.

Lower charging rate would inevitably need more time in port and would not

fit the operational profiles. When the ship is in normal operation, in sailing

mode, the maximum allowable C-rate is 6 C but only in extremis. It is rec-

ommended not to exceed the C-rate beyond 3 C under discharge conditions

to prolong battery life Corvus (2017).

4.2.7.2 Open circuit voltage

The low-current OCV-SOC experimental data from (Zheng et al., 2016) was applied

to identify the OCV-SOC map. Such low-current tests can be used to approximate

the OCV-SOC mapping by charging and discharging the cell with very low current

(e.g. 0.05 C) (Dai et al., 2012; Xing et al., 2014). In the OCV-SOC test of Zheng

et al. (2016), the battery was initially charged at a constant voltage until the charg-

ing current reduces to 0.01 C, indicating the cell had been effectively charged to

100% SOC. Subsequently, the cell was fully discharged until the terminal voltage is

reduced to 2.5 V. The cell was then charged with a constant current of 0.05 C until

the battery terminal voltage rises 4.2 V. In this way, the experimental results were

acquired to identify the OCV-SOC mapping, i.e. Voc(SOC). Note that due to the

presence of hysteresis (Roscher et al., 2011; Eichi and Chow, 2012), the charging

OCV (Voc,ch) tends to be higher than the discharging OCV (Voc,dis) (see Figure 4.9).
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Therefore, an average Voc is obtained via:

Voc(SOC) =
Voc,dis(SOC)+Voc,ch(SOC)

2
(4.11)
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Figure 4.9: Battery cell open circuit voltage.

4.2.7.3 Equivalent circuit parameters

Having identified the open circuit voltage map Voc (SOC) in Section 4.2.7.2, R0,

R1 and C1 were identified using a least square algorithm with the dynamic stress

test (DST) experiment data (at 25 °C) from (Zheng et al., 2016). As the influence of

battery temperature is not the focus of this study, all these parameters were identified

using experimental data at 25 °C. The identified parameters are presented in Table

4.3. There was good agreement between the model output and experimental data

(Figure 4.10). Due to the large time step and the main focus of this study being

energy efficiency and emissions, as opposed to dynamic performance, the direct

current internal resistance (R0 +R1) of the battery model is used in the subsequent

simulations (Kim et al., 2012).
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Table 4.3: Battery parameters.

R0 [Ω] R1 [Ω] C1 [F]
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Figure 4.10: Battery model calibration with the dynamic stress test.

4.2.8 Lithium-ion battery model validation

To validate the battery cell model, the urban driving schedule (UDS), i.e. a time

series of battery currents normalised from an UDS load cycle, from (Zheng et al.,

2016) was applied. As depicted by Eq. 4.8, the battery cell model outputs terminal

voltage Vt with given current i0. The battery model outputs are compared against the

experimental measurements of battery terminal voltage as in Figure 4.11. A good

agreement between the model outputs and experimental results can be observed.

4.3 Multi-objective propulsion system optimisation

Based upon the hybrid fuel cell and battery propulsion system model, the proposed

multi-objective propulsion system sizing methodology optimises the power source
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Figure 4.11: Battery model validation using urban driving schedule.

sizes as shown in Figure 4.12. The two-layer multi-objective design methodology

looks to solve the power source sizing problem by considering both emission and

economic performances. With an average operating profile normalised from route

performance data obtained from an actual ship of similar capacity or other routines

such as scaled experiments, the inner layer solves the optimal power split problem

for each power source sizing combination passed from the external layer to min-

imise average voyage cost.

The optimisation method adopted for the external layer is Non-dominated Sort-

ing Genetic Algorithm II, based upon the work of Deb et al. (2002). Such an ap-

proach has been successfully applied in the field of hybrid propulsion system sizing

optimisation (see Table 3.1). The external layer optimises the average voyage cost

and GWP emissions concurrently. The decision variables of the external layer are a

vector of the fuel cell and battery module sizing parameters. The trade-off between

the two objectives needs to be determined manually based on the Pareto front.
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4.3.1 External layer

Both fuel cell and battery modules are emission-free if the scope is limited only

to the ship. However, looking beyond the ship itself, the production of H2 and

generation of shore power will have specific carbon footprints. The high prices,

shorter life and lower energy/power densities are significant drawbacks of these

technologies when compared to conventional diesel engine based solutions. To bal-

ance the trade-off between emission and economic performance, a multi-objective

power source sizing methodology considering both emission performance and av-

erage voyage cost is formulated as follows:

minimise: F(Z) = [ f1, f2]
T (4.12)

subject to:



K1Pdg ≤ PR
f c +Pbat,1C

K2Pdg ≤ PR
f c +Pbat,3C

Vx ≤VD

Wx ≤WD

(4.13)

where Z = [m1,n1,m2,n2]
T is a vector of power source sizing integer variables,

which is constrained by its lower and upper limits (Z1 and Z2); F(Z) is a vector of

objective functions: f1 is the average voyage cost including fuel cell and battery

degradation costs, hydrogen cost and shore electricity costs, f2 is voyage GWP

emission comprising through life GWP emissions from hydrogen production and

shore electricity generation:

f1 =
T

∑
t=1

ψ f c(xt +
ut

2
)Pf c∆tσH2 +

T

∑
t=1

δ f c(xt +
ut

2
)Pf cσ f c+

T

∑
t=J

Psh∆tσe+
T

∑
t=1

δbatBσbat

(4.14)

f2 =
T

∑
t=1

ψ f c(xt +
ut

2
)Pf c∆tυH2 +

T

∑
t=J

Psh∆tυe (4.15)

where ψ f c is the fuel cell specific hydrogen consumption function (see Figure 4.6b),

xt is the fuel cell power fraction in time step t and ut is the fuel cell power change in

time step t (note that H2 consumption is calculated by an averaged fuel cell power
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level in one time step), T is the final time step; δ f c is the fuel cell degradation

function and is determined by the degradation rates in Table 4.2; Psh is shore power

when the ship is in port; δbat is an averaged battery degradation rate in each time

step, assuming the batteries are guaranteed to last for a specific period; σH2 , σe, σ f c

and σbat are H2, shore electricity, fuel cell and battery prices respectively; υH2 and

υe are H2 and shore electricity GWP respectively; B is battery capacity.

Vx and Wx are hybrid system volume and weight (including both power sources

and fuels) respectively; VD and WD are original diesel system volume and weight

respectively; PR
f c, Pbat,1C, Pbat,3C and Pdg are rated fuel cell power output, battery

output power at 1 C discharge rate, battery output power at 3 C discharge rate and

diesel generator rated power output in the original system. The first two constraints

guarantee that the hybrid system can provide sufficient power. K1 is the highest

frequency statistically weighted number of diesel engines required online. The hy-

brid system should be able to provide sufficient power without need for fast charg-

ing/discharging the batteries in the normal operation scenarios. Therefore, the bat-

tery power delivered at 1 C together with the rated fuel cell power should not be less

than the capacity provided by the K1 number of diesel generators. K2 is the number

of installed diesel generators in the original diesel-electric system. Note that K2 is

usually larger than K1 in an IFEP system for reasons of redundancy. Since the bat-

teries can provide higher C-rates than 1 C, such capabilities are ideal for providing

extra redundancy without installing additional power sources (e.g. extra generators

in the original IFEP system). The battery power delivered at recommended maxi-

mum C-rate (3 C, see Section 4.2.7.1 for battery modelling assumptions) together

with the fuel cell rated power output should not be less than the total installed diesel

generator power. The last two constraints in Eq. 4.13 ensure that the hybrid’s sys-

tem volume and weight do not exceed those of the original diesel-electric system.
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4.3.2 Inner layer—optimal energy management for the average

operating profile

The inner layer of the sizing process is solved using a process of reverse iteration

to find the optimal energy management strategy π for the average power profile

for each feasible power source sizing combination Z using Deterministic Dynamic

Programming (DDP) (Sundström et al., 2010). As a special case of stochastic dy-

namic programming, the transition from one state to the next is deterministic in

DDP; hence the computation time is significantly reduced when compared to that

of stochastic dynamic programming. DDP requires complete knowledge of voyage

power demands during all time steps, which is not realistic for an on-line strategy

but can be used to obtain an optimal off-line strategy to benchmark the quality of

the on-line strategy. The optimal strategy π∗ (u|x) minimises the objective function

f1 subject to the constraints listed in Eq. 4.16:

u ∈U (4.16a)

SOCmin ≤ SOC ≤ SOCmax (4.16b)

Pbat,min ≤ Pbat ≤ Pbat,max (4.16c)

Pbat,port−Pdem,port +Psh,max ≥ 0 (4.16d)x = 0, port mode

0≤ x≤ 1, sailing mode
(4.16e)

where U is a set of fuel cell power change ratios. x is fuel cell power expressed

in per unit. Psh,max is the maximum available shore power; when Pbat,port is nega-

tive this indicates the battery charging power in port mode. Pdem,port is the ship’s

power demand in port mode. Note that Pbat,min is a negative value, and corresponds

the maximum battery charging power. With the optimal energy management strat-

egy solved, the second objective function, that of the GWP emissions, can then be

calculated.
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4.4 Case studies and discussion

4.4.1 Simulation settings

In this section, the proposed hybrid fuel cell and battery propulsion system model

and power sources sizing methodology are applied to the case ship with the spec-

ification as presented in Table 3.3. The original system featured an integrated full

electric propulsion configuration with a total installed diesel powered capacity of

4370 kW. It is assumed that the annual operating duty is 300 days, and the ship

operates between two fixed ports with 16 voyages (8 round trips) per day—each

voyage taking approximately one hour. It is also assumed that the batteries can be

charged at both ends of the defined voyage, and hydrogen needs to be replenished at

the end of the operational day. The simulations were implemented in Matlab 2019a

on a workstation with two Intel Xeon E5-2683 V3 processors and 64 GB memory.

The case ship (Figure 3.2a) and its route (Figure 3.2b) have been detailed in

Chapter 3 (Eriksen et al., 2018). The continuous monitoring power data, compiled

from measurements obtained from the original diesel powered ship upon which the

case ship is based, acquired from (Eriksen et al., 2018) was segregated into voyage

power profiles by judging the ship’s speed and location. An average operating pro-

file based upon these profiles was generated for sizing and optimisation, as shown

in Table 4.4. Table 4.5 shows the grids of state and action spaces for the inner layer

DDP. Note the fuel cell power change fraction is defined by considering fuel cell

power ramp up/down limits (Rouholamini and Mohammadian, 2016).

The original time step of the raw data used to generate the power profile was

15 s. The same time step was adopted in this study. Since the problem is solvable

with the available computational power, the time step was not increased. The DDP

energy management solver in the inner layer can generate an off-line strategy in

less than 1 s with the above-mentioned settings and time step. Fletcher et al. (2016)

reported that their Stochastic Dynamic Programming algorithm took approximately

6 h to generate an on-line strategy using a quad-core processor. Nevertheless, it is
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worth noting that the application of DDP is limited to on-line strategy due to the

requirement of complete profile information being available before a solution can

de derived.

Table 4.4: Average operating profile for sizing.

Parameter Value Unit

Port time 810 s
Departing time 375 s
Sailing time 2025 s
Approaching time 375 s
Sailing power 1454 kW
Power at shore 283 kW

Table 4.5: State and action space grid setting for dynamic programming.

Parameter Grid length Range

Power demand 50 0–4400 kW
SOC 0.05 0–1
Fuel cell power level 0.02 0–1
Shore power availability − 0 or 1
Fuel cell power change fraction 0.02 [−0.04,−0.02,0,0.02,0.04]

Table 4.6 details the parameters adopted for the case studies. The power

sources’ parameters were acquired from manufacturer’s specifications. It should

be noted that the optimal design would most likely be different for different geo-

graphical locations as they may have different energy supply tariffs and fuel costs.

Since H2 GWP and price can depend on the method of and energy source for H2 pro-

duction, H2 produced by electrolysis using two different energy sources (by nuclear

power generation and wind power generation) are considered in two case studies.

The first case study optimises they system for the ship’s original operating area

(Denmark), whereas the second case study investigates the optimising of the hybrid

system should the ship operate in UK waters with UK energy tariffs.
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Table 4.6: Case study parameters.

Category Parameter Value Unit Reference

Diesel system

Original diesel generator system volume 294 m3

(Caterpillar, 2018)Diesel system price 500 $kW−1

Diesel system lifetime 20 year

Marine gas oil

Original diesel generator system weight 156 t
(BunkerIndex, 2017)

(Kristensen, 2012)
Marine gas oil price 0.64 $kg−1

Marine gas oil GWP 3.2 kg CO2 kg−1

PEMFC system

PEMFC price 830 $kW−1 (Raucci, 2017)

PEMFC volumetric specific power 128 kWm−3

(Ballard, 2019)
PEMFC gravimetric specific power 200 kWt−1

H2 tank volume 0.17 m3 kg−1 H2 (Choi et al., 2016)
H2 tank weight 28.5 kgkg−1 H2

Battery system

Battery price 800 $kWh−1 (Ovrum and Dimopoulos, 2012)

Battery lifetime 1.5 year (Stroe et al., 2015)

Battery volumetric specific energy 91.8 kWhm−3

(Corvus, 2017)

Battery gravimetric specific energy 80.6 kWht−1

Battery SOC higher limit 0.25

Battery SOC lower limit 0.90

Battery maximum C-rate 6 C

UK electricity
Shore electricity price 0.16 $kWh−1

(Eurostat, 2019)
Shore electricity GWP 0.28 kg CO2 kWh−1

Denmark electricity
Shore electricity price 0.09 $kWh−1

(Eurostat, 2019)
Shore electricity GWP 0.17 kg CO2 kWh−1

Nuclear-powered electrolysis H2
H2 price 3.50 $kg−1H2 (Acar and Dincer, 2014)
H2 GWP 2.40 kg CO2 kg−1

Wind-powered electrolysis H2
H2 price 8.24 $kg−1 H2 (Acar and Dincer, 2014)
H2 GWP 1.50 kg CO2 kg−1

4.4.2 Case study 1

For this case study (Denmark), detailed fuel cell and battery sizing combinations

with regards to the cost and emission objectives are presented in Figure 4.13 for the

two considered two H2 scenarios (Table 4.7).

Table 4.7: Case study 1 scenarios.

Scenario Electricity H2

1-a
Denmark

nuclear power generation
1-b wind power generation
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In the scenario of H2 produced using nuclear-powered high temperature elec-

trolysis (Figure 4.13a), the minimum voyage GWP that can be achieved is about 155

kg CO2, at a voyage cost of $610. This minimum GWP corresponds to a PEMFC

power of 4320 kW and a battery capacity of 37 kWh. Note that the fuel cell power

at this point is very close to the original total diesel engine power of 4370 kW, and

the battery capacity is comparatively negligible when compared to the installed fuel

cell power. Such an observation suggests that, under the parameters governing this

case study, to achieve extremely low GWP emissions, a large fuel cell plant com-

bined with a comparatively small capacity battery would be the optimum solution.

However, it would be more reasonable to select the design point around fuel cell

power of 2915 kW and battery capacity of 600 kWh, which corresponds the knee

point (voyage cost of $480 and GWP of 170 kg) of the Pareto front as in Figure

4.13a–3. Such a design point avoids unfavourably large cost sacrifice to achieve

minimal improvement in emission performance.

For the scenario of H2 produced using wind-powered electrolysis (Figure

4.13b), an even lower GWP can be achieved (105 kg CO2) due to the GWP of this

H2 approach (1.5 kg CO2 kg−1) is much lower than that from the nuclear-powered

approach. However, such a low GWP emission would lead to a voyage cost of

$860. It is also true that a large fuel cell plant leads to lower emissions. A large

battery plant can achieve lower average voyage cost (minimum $615 per voyage).

In practice, when choosing the design point, other factors need to be considered

with reference to these Pareto fronts.

Note the Pareto front in Figure 4.13b–3 appears more linear compared to that

in Figure 4.13a–3. This is mainly due to the nuclear power generated H2 is much

cheaper than that generated by wind power; increasing the fuel cell power from

2400 kW to 2915 kW would rapidly bring down the voyage GWP to 170 kg CO2

with increased fuel cell efficiency (see Figure 4.6b). However, beyond this knee

point, increasing the fuel cell power would lead to fuel cell degradation costs more

dominating and the GWP saving could be achieved by increasing installed fuel cell

becomes more challenging.
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(a) (b)

Figure 4.13: Case study 1 (Denmark electricity) fuel cell and battery sizing combina-
tions with regards to the cost and emission objectives: (a) scenario of H2
via nuclear-powered high temperature electrolysis and (b) scenario of H2 via
wind-powered electrolysis.
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4.4.2.1 Optimal energy management

To further illustrate the optimal energy management strategy (Section 4.3.2), based

on the Pareto front shown in Figure 4.13b, a design point of fuel cell power of

2940 kW and battery capacity of 581 kWh is selected for demonstration. Figure

4.14 shows the optimal strategy for the selected power source design under the

averaged operating profile (Table 4.4). The battery provides power solely during

departure and deliver a small portion of power while cruising. As this operating

profile is averaged for sizing and does not include power transients, the optimal

strategy does not charge the battery during sailing (i.e. the battery power flow is

never negative during sailing). When the ship is in port, the fuel cell is switched

to idle while the batteries are charged by shore power. Note that such a strategy is

solved by DDP, and the entire profile is known in advance.

To better understand the compositions of voyage cost and emission of the se-

lected design point discussed in Section 4.4.2.1, Table 4.8 shows the cost and emis-

sion breakdown of the proposed hybrid and original systems. H2 cost contributes

more than 50% of the average cost. The fuel cell degradation cost is a significant

source as well. The total GWP emission is reduced by 85% with 226% cost increase

compared to the original diesel-electric system. The hybrid system is more expen-

sive than the conventional diesel engine based system. However, the Pareto front

could vary significantly if parameters such as fuel cell price or H2 price decrease.

Table 4.8: Voyage cost and GWP emission breakdown

Cost [$] GWP emission [kg CO2]

Fuel cell 238 -
Hydrogen 368 67
Battery 65 -
Shore electricity 39 123
Total 710 190

Diesel engine 46 -
Diesel fuel 168 838
Shore electricity 4 4
Total 218 842
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Figure 4.14: DDP solved energy management strategy for averaged power profile of se-
lected power source sizing: (a) averaged power profile, (b) power distribution
between power sources and (c) battery SOC trajectory.

4.4.2.2 Optimisation methodology validation

To validate the proposed multi-objective design methodology, sizing results gener-

ated by random search over the decision variable space (i.e. the sizing parameters

of the PEMFC and batteries) are compared against the Pareto front generated by

the optimisation solver as in Figure 4.15. The parameters used for this validation

are identical to the ones applied for the Denmark–wind power generated H2 case.

Solutions violating the constraints (see Eq. 4.16) are filtered out from the random

search solution space, leaving only the feasible ones as presented in Figure 4.15
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(red circles). The lower boundary of the random search solutions matches well with

the Pareto front. Such that, the optimisation methodology is validated. It is worth

noting that the random search is also a feasible approach, but it would require more

time compared to the optimisation solver.
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Figure 4.15: Multi-objective optimisation methodology validation against random search
over the sizing parameters.

4.4.3 Case study 2

To understand how the proposed hybrid system should be optimised if it operates in

UK waters and uses UK grid power, further investigations of the two H2 scenarios

(Table 4.9) are shown in Figure 4.16a and 4.16b. Similar to the Denmark case,

larger fuel cells lead to lower GWP in both H2 scenarios. Due to UK non-household

electricity costs being higher than that of Denmark, the minimum voyage costs are

$510 (Figure 4.16a) and $670 (Figure 4.16b) respectively. As in Figure 4.16a–

1&2, increasing the fuel cell power from 2900 to 3090 kW (corresponding battery

capacity is 425 kWh) would bring down the voyage GWP down from 215 to 200 kg

CO2. However, it is more challenging to further reduce voyage GWP by increasing

installed fuel cell power beyond this knee point. As shown in Figure 4.16b, the knee
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Table 4.9: Case study 2 scenarios.

Scenario Electricity H2

2-a UK nuclear power generation
2-b wind power generation

point is around the fuel cell power of 3060 kW and the battery capacity of 450 kWh.

This knee point provides an average voyage cost of $750 and GWP of 170 kg CO2.

Comparing Figure 4.16a and 4.16b, wind power generated H2 would provide much

lower voyage GWP (minimum 110 kg CO2), though the cheapest sizing solution is

still more expensive than $600 (maximum voyage cost appeared in Figure 4.16a).

4.4.4 Summary of case studies

Figure 4.17 provides an overview above mentioned case studies. The two consid-

ered H2 scenarios would both reduce GWP emission significantly. The maximum

voyage GWP for the wind-powered electrolysis generated H2 scenario is 290 kg

CO2 for the UK case (65% GWP emission reduction compared to the original

diesel-electric configuration), whereas it is 185 kg CO2 for the Denmark case. How-

ever, for the nuclear power based H2 scenario, the minimum cost increases would

be 120% and 135% for Denmark and the UK respectively. Adopting wind power

generated H2 can bring the voyage GWP close to 100 kg CO2 for both countries.

However, the minimum cost increase would be 181% and 207% for Denmark and

the UK respectively.

4.5 Sensitivity studies

In this section, sensitivity studies are implemented to further investigate the impacts

from parameters which are subject to change due to uncertainties. The parameters

included in these sensitivity studies are PEMFC price, battery price, H2 price. In the

first three studies (Section 4.5.1, 4.5.2 and 4.5.3), one of these parameters is varied

within a range while the others are kept constant as defined in Section 4.4.2, i.e.

the Denmark case with wind power generated H2. In Section 4.5.4, the battery and
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(a) (b)

Figure 4.16: Case study 2 (UK electricity) fuel cell and battery sizing combinations with
regards to the cost and emission objectives: (a) scenario of H2 via nuclear-
powered high temperature electrolysis and (b) scenario of H2 via wind-
powered electrolysis.



System modelling and optimisation 126

100 200 300 400 500 600 700 800 900
Average voyage cost [$]

100

200

300

400

500

600

700

800

900

V
oy

ag
e 

G
W

P 
em

is
si

on
s 

[k
g 

C
O

2]

Denmark H
2
 scenario (a)

Denmark H
2
 scenario (b)

UK H
2
 scenario (a)

UK H
2
 scenario (b)

Original diesel based plant

Figure 4.17: Combined Pareto fronts of the case studies.

PEMFC prices are varied concurrently.

4.5.1 PEMFC price

Although the PEMFC price adopted the previous sections is defined as 830 $kW−1,

it is expected to decrease over time and might reach the level around 50 $kW−1

with increasing annual production rate (US Department of Energy, 2018). There-

fore, the PEMFC price is varied from 50 to 950 $kW−1 to investigate the PEMFC

price impact on the vessel’s economic and GWP emission performance. Figure

4.18 presents the Pareto fronts of these PEMFC price scenarios. As grid electricity

and H2 GWP are fixed at 0.17 kg CO2 kWh−1 and 1.50 kg CO2 kg−1 H2 respec-

tively, the voyage GWP could be achieved for the seven considered PEMFC price

scenarios are all between 100 and 200 kg CO2. If the PEMFC price of 50 $kW−1

is achievable, the minimum average voyage cost would be around $430, which is

approximately 2 times of the original diesel based plant. Note that PEMFC price

of 50 $kW−1 is lower than of the diesel based plant (500 $kW−1). However, its

lifetime is much shorter compared to that of diesel engines (assumed as 20 years in

this study). The H2 cost (price of 8.24 $kg−1) is another main contributor to this
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high voyage cost. If available PEMFC price is 950 $kW−1, the minimum voyage

cost would be $640 per voyage with battery as the dominating power source for this

design point.
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Figure 4.18: PEMFC price sensitivity study.

4.5.2 Battery price

As predicted by Larcher and Tarascon (2015), the system level production cost of

Lithium batteries is expected to decrease to a level below 200 $kWh−1 in the coming

decade (see Figure 2.14). However, these price predictions may change due to

many factors, such as market demand. The battery price sensitivity is implemented

to investigate the impacts of battery price on the design of hybrid PEMFC/battery

propulsion system. As in Figure 4.19, Pareto fronts of seven battery price scenarios

are presented. Note that the PEMFC price is fixed as 830 $kW−1. The battery price

of 50 $kWh−1 would yield a minimum average voyage cost of $480. However, such

a voyage cost would still be more than two times of that of the original diesel-based

system, which is mainly due to the high prices of the PEMFC and H2.
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Figure 4.19: Battery price sensitivity study.
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Figure 4.20: H2 price sensitivity study.

4.5.3 H2 price

Figure 4.20 shows the sensitivity study on H2 price. As the PEMFC and the battery

are still costly (830 $kW−1 and 800 $kWh−1 respectively) with limited lifetime, an

extreme low H2 price of 1 $kW−1 would result in a minimum voyage cost of $350

(corresponds 130 kg CO2 GWP per voyage). A high H2 price of 13 $kW−1 would
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lead to a minimum voyage cost of $740. Note that the maximum voyage GWPs

for the low H2 price scenarios are lower than those of the high H2 price scenarios,

which is due to PEMFC is the more dominating with better fuel efficiency on the

upper left part of the cheaper Pareto fronts; while batteries are more dominating in

the scenarios of high H2 prices.

4.5.4 PEMFC and battery prices

In Sections 4.5.1 and 4.5.2, the influences of PEMFC and battery prices were inves-

tigated independently. Driven by road vehicle applications, both the PEMFC and

battery prices are expected to decrease over time (US Department of Energy, 2018;

Larcher and Tarascon, 2015). In this section, the fuel cell and battery prices are

varied simultaneously. Figure 4.21 presents the Pareto fronts of the considered fuel

cell and battery price scenarios. Note that a low fuel cell price corresponds to a low

battery price. Such a setting is designed to simulate both the fuel cell and battery

prices decrease over time. The PEMFC price of 50 $kW−1 and battery price of 50

$kWh−1 would yield a minimum voyage cost of $289, which is only 33% higher

than that of the diesel-based plant but would reduce the voyage GWP emission by
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Figure 4.21: PEMFC and battery prices sensitivity study.
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77%. Note the H2 price of 8.24 $kW−1 is relatively high, a reduced H2 price would

make the plug-in hybrid PEMFC/battery system even more competitive.

4.6 Summary

In this chapter, a quasi-steady-state plug-in hybrid PEMFC/battery system model

has been developed for power source sizing and energy management strategy de-

velopment purposes. A multi-objective design methodology has been applied to

optimise the PEMFC/battery hybrid system design with the objectives of minimis-

ing average voyage costs and voyage Global Warming Potential emissions in two

case studies.

Power source degradations and optimal energy management between multiple

power sources are considered in the optimisation. It is evident that such a PEMFC

and battery hybrid system can significantly reduce the GWP emissions, but is still

constrained by high costs, mainly from H2 cost of production and fuel cell degra-

dation. The multi-objective power source sizing methodology can be used to guide

alternative propulsion system design considering the influences of energy life-cycle

properties and power source degradation characteristics. For the two cases con-

sidered with two H2 scenarios, a minimum 65% GWP emission reduction can be

achieved by utilising the plug-in hybrid fuel cell and battery propulsion system con-

figuration. The developed model, design methodology and case studies have been

published in (Wu and Bucknall, 2020).

The sensitivity studies further explore the impacts of power source and energy

prices on the power source sizing and performances. Both the PEMFC, battery and

H2 prices are expected to decrease to be competitive with conventional diesel-based

power solutions. Nevertheless, the GWP emission reduction potentials offered by

the plug-in hybrid PEMFC/battery system are significant.



Chapter 5

Reinforcement learning based energy

management strategies

5.1 Overview

In Chapter 4, the plug-in hybrid PEMFC/battery system was been optimised by the

proposed methodology considering the trade-off between average voyage cost and

voyage GWP emissions for the case ship. However, this sizing and operational con-

figuration of the hybrid system is constrained by high costs, due to power source

degradation and energy costs. It would therefore be beneficial to improve the oper-

ational cost-effectiveness of such hybrid systems.

This chapter aims to formulate the practical optimal energy management prob-

lem for shipboard plug-in hybrid fuel cell and battery propulsion systems as a

Markov Decision Process (MDP) which can be solved using reinforcement learning

(RL). Section 5.2 provides an introduction to RL and its mathematical framework–

MDP. Section 5.3 mathematically formulates the energy management problem with

MDP and introduces the two RL agents that will be applied. The agent training pro-

cesses are detailed in Section 5.4. The RL EMS performance is assessed in Section

5.5. Section 5.6 summaries this chapter.

131



Reinforcement learning based energy management strategies 132

5.2 Reinforcement learning

5.2.1 An introduction to reinforcement learning

Reinforcement learning (RL) is an approach to solving goal-directed problems by

trial-and-error interactions with the environment, which is similar to how an untu-

tored and unguided human learns to perform a new task (Sutton and Barto, 2018).

In contrast to many other approaches such as supervised learning, RL explicitly

considers the whole problem of a goal-directed agent interacting with an uncertain

environment. By interaction with the environment, the sensation of environment

states and observation of reward signals returned from the environment, RL aims to

achieve defined goals by finding an optimal action map which maximises cumula-

tive rewards (Sutton and Barto, 1998).

To explain how RL works, the following terminologies need to be introduced

(Sutton and Barto, 2018):

• Agent: An agent in RL is the decision-making component which determines

actions with given environment states. For example, the AlphaGo computer

programme is an RL agent specialised in playing Go games (Silver et al.,

2016). AlphaGo acts like a master Go player, making decisions by observing

current board states.

• Environment: The other component the agent interacts with is called the en-

vironment, which comprises everything outside the agent. In the AlphaGo

example, the environment includes the other player and the game states rep-

resented by the board with stones of the two players.

• State: States represent the environment status. For example, the State of

Charge (SOC) represents the state of battery capacity. Another example of

the state could be current ship speed or total required power of a sailing ship.

• Action: The agent interacts with its environment by taking actions. For a con-
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trol problem of fuel cells, the action could be increasing or decreasing power

output. For an unmanned surface vehicle navigation problem, the action could

be turning to starboard or to port by a certain degree angle.

• Reward: The reward defines the goal in an RL problem and is a measurement

of how good or bad an event could be to the agent. Such a signal is returned

from the environment to the agent. In biological systems, rewards could be

analogous to the experiences of pleasure or pain. In an RL problem, the value

of the immediate reward is an indication of how the agent ought to behave.

The immediate reward is the primary signal of altering a policy.

• Policy: A policy defines the agent’s behaviour at given environment states. In

other words, a policy is a mapping from observed states of the environment

to actions to be taken by the agent. The training of an RL agent aims to find

an optimal policy which maximises the cumulative rewards. For example, in

the optimal control problem of a hybrid fuel cell/battery propulsion system,

the policy is effectively the energy management strategy.

• Episode: For a problem with a finite time frame, a training episode starts

from time step zero and ends when a terminal state or the horizon is reached.

The agent interacts with its environment in each time step of an episode. The

training episodes are repeated until a rational policy has been found by the

agent.

5.2.2 Markov Decision Process

A Markov Decision Process (MDP) is a stochastic control process in discrete time

space, which provides a mathematical framework to model sequential-decision

making problems (Puterman, 2014). MDPs are idealised mathematical frameworks

of RL problems (Sutton and Barto, 2018). Such a process can be represented by a

tuple (S,A,P,R), where S is a finite set of states s, A is a finite set of actions a, P is

a set of state transition probabilities, i.e. pss′ ,a = P[st+1 = s
′|st = s,at = a], and R
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is a reward function rss′ ,a = E [rt+1|st = s,at = a]. The subscript t denotes state s,

action a or reward r at time step t.

The action-value function, which is also called the Q function, for an episodic

task with finite horizon of T , is the expected return of taking action a in state s

following a policy π(s|a):

Q(s,a) = E

[
T

∑
k=0

γ
krt+k|st = s,at = a,π

]
(5.1)

Solving an MDP is to find an optimal policy π∗:

π
∗(s) = argmax

a
E

[
T

∑
k=0

γ
krt+k|st = s,at = a

]
(5.2)

which leads to the optimal action-value function (Sutton and Barto, 2018):

Q∗(s,a) = max
π

E

[
T

∑
k=0

γ
krt+k|st = s,at = a

]
(5.3)

where γ ∈ [0,1] is the discount rate. As in Figure 5.1, at time step t, in current state

st , the agent takes action at under the policy π(s|a) and observes the resulting next

state st+1 and immediate reward rt+1 returned from the environment.

5.3 Reinforcement learning based energy

management strategy

This section formulates the optimal energy management problem of the plug-in hy-

brid PEMFC/battery system with MDP and introduces two RL agents which will

be applied to solve the formulated MDP. Figure 5.1 shows the detailed MDP agent-

environment interaction framework for the energy management problem. The envi-

ronment of the MDP framework includes the hybrid PEMFC/battery system model

(developed in Chapter 4) and historical voyage data (Eriksen et al., 2018).

The objective of developing the EMS is to find an optimal policy π∗ to achieve
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minimum voyage costs. Note that high operational costs are a major limitation of

the hybrid system (see Chapter 4). The optimal policy π∗ is a mapping of system

states to actions, i.e. actions to be taken in certain situations. The voyage cost

comprises two parts, i.e. the degradation costs from power sources (fuel cells and

batteries) and the costs of consumed fuel and energy (H2 and electricity). Table

5.1 summarises the RL terminologies, which will be used for the optimal energy

management problem in the subsequent sections.

RL Agent

Environment

System model and 

historical data

Action

at

rt+1

st+1

Reward

rt

State

st

Figure 5.1: MDP agent-environment interaction framework.

Table 5.1: Summary of RL terminologies in the optimal energy management problem.

Terminology Description

Agent Reinforcement learning algorithm
Environment Hybrid system model and historical power profiles
States System states, including current PEMFC power level, battery SOC,

power demand and shore power availability
Action Fuel cell power change
Reward A function of constraints and costs incurred in one time step
Policy Energy management strategy of EMS

5.3.1 States

In the optimal energy management problem, the states represent the current system

status. In the proposed system, such states are characterised by shore power avail-

ability, spA, system power demand, Pdem, fuel cell power level x∈ [0,1], and battery

SOC ∈ [0,1]. spA is binary, i.e. spA = 0 when the ship is sailing and spA = 1 when

the ship is in port. It is assumed that the transition from transit to port, as regards
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battery charging, is instantaneous, i.e. the shore power is applied immediately when

the ship is in port. Although x, SOC and Pdem are continuous physical parameters

they are however divided into discrete grids, such that the gridded state space can

be formulated by looping through all possible state combinations. As each of the

state parameters has a finite dimension, the total number of states is the product

of the four state dimensions. Each possible state is assigned a unique state index

sequentially (i.e. from 1 to the total number of states). At time step t, the exact state

of the system:

sactual(t) = [spA(t),Pdem(t),x(t),SOC(t)]T (5.4)

is converted into state index s(t), which is an integer. Note that the environment

knows the actual states sactual(t) and sactual(t +1) which results from taking action

a(t), but only communicates with the agent using state indices. Such a commu-

nication format is designed intentionally so that the agent can record the learning

process into tables.

5.3.2 Action space

In reinforcement learning, the agent interacts with the environment by taking actions

in relation to the system states. The action taken by the agent is the control of fuel

cell power change within each time step in this study. The action space is defined

as a tuple of possible fuel cell power level changes:

A = [a1,a2, ...,am, ...,an−1,an]
T (5.5)

where a1 < 0 is the maximum decrease and an > 0 is the maximum increase of

fuel cell power output in a time step. am = 0 indicates there is no change and the

fuel cell output power remains constant; all other values of a represent changes of

power within the range of (a1,an). The environment overrides an action when the

resulting fuel cell power output would be negative or greater than the rated power.

When action at ∈A is chosen from the action space at time step t, the fuel cell power
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level at t +1 will be:

xt+1 =


0, xt +at < 0

1, xt +at > 1

xt +at , else

(5.6)

5.3.3 Reward

The environment returns reward signal rt+1 to the agent when action at is taken by

the agent. The value of rt+1 represents how cost-effective at is at state st :

rt+1 =


−1, if st+1 is infeasible

−1, if p f c +at /∈ [0,1]

tanh
(

1
costt+1

)
, else

(5.7)

where the negative reward of -1 means the agent is penalised if the next state is not

feasible or fuel cell power override will occur; the tanh
(

1
costt+1

)
function normalises

the cost costt+1 to a reward signal in the range of [0,1] elsewhere. Note that the

next state is not feasible if the battery is over charged/discharged or C-rate exceeds

the system limit or fuel cell power is not reduced to zero when the ship is in port

(fuel cells are not switched off to avoid unnecessary start/stop cycling degradations).

costt+1 is the cost incurred in one time step ∆t due to action at if the next state is

feasible:

costt+1 = ψ f c(xt +
at

2
)Pf c∆tσH2 +δ f c(xt +

at

2
)Pf cσ f c+Psh∆tσe+δbatBσbat (5.8)

i.e. the sum of H2 cost, fuel cell degradation cost, battery average degradation cost

and shore power cost (only when the ship is in port), where σ denotes price. The

sub-scripts H2, f c, e and bat denote H2, fuel cell, electricity and battery prices

respectively. Note the cost costt+1 is unpenalised since the negative reward −1

includes a penalty. To better understand the impact of infeasible actions, a penalised

cost is also introduced in the following case study. The penalised cost is costt+1 +
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1 whenever the next state is not feasible, or agent action is overridden or early

termination occurs.

5.3.4 Environment

The environment of the reinforcement learning comprises two parts, i.e. the hy-

brid propulsion system model (see Chapter 4) and historical power profiles col-

lected using continuous monitoring of required power demand. Algorithm B.1 in

Appendix B depicts how the environment of the optimal energy management prob-

lem is formulated. Using the historical voyage power profiles, in each learning

episode, the environment randomly samples one power profile from the historical

data with which the agent interacts. Note that the environment would carry out an

early termination of an episode if the agent fully discharges the battery (SOC < 0)

or over-charges the battery (SOC > 1). Normal termination occurs when the final

targeted time step has been reached. An episode is successful if the agent manages

to achieve all the required time steps and recharge the battery to a SOC of SOCH to

be fully prepared for next voyage; otherwise, the episode terminates and is recorded

as having failed.

5.3.4.1 System model

It is assumed that the original diesel-electric system is replaced by a plug-in hy-

brid PEMFC and battery system, as described in Figure 5.2 (also see Chapter 4).

The ship specifications are presented in Table 3.3. The original system featured an

integrated full electric propulsion configuration with a total installed diesel engine

power of 4370 kW. The ship operates between two fixed ports with 8 round trips

(16 voyages) per day—each voyage between the two ports takes approximately 1 h

(Eriksen et al., 2018). It is assumed the ship’s batteries can be recharged at both

ports, and the shipboard H2 storage needs to be replenished once per day outside of

operational hours.

The intended fuel cell power and battery capacity for the alternative plug-in

hybrid PEMFC and battery propulsion system are 2940 kW and 581 kWh respec-
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Figure 5.2: Plug-in hybrid PEMFC and battery propulsion system model. (a) top-level sys-
tem model, (b) power converter efficiency, (c) PEMFC specific H2 consumption
and system efficiency, (d) battery stack model and individual cell and (e) bat-
tery individual cell voltage in a function of battery SOC. Note that this model
has been detailed in Chapter 4.
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tively. The system is capable of delivering a regular service power of 4683 kW and

peak power of 6720 kW, corresponding to battery C-rates of 3 and 6 respectively.

Note that the system sizing has been optimised in Chapter 4 for the scenario when

the ship was operational under the energy tariffs applicable to Denmark using wind

power to supply hydrogen production. The adopted H2 Global Warming Potential

(GWP), electricity GWP, H2 price and electricity price are set at 1.5 kg CO2kg−1,

0.166 kg CO2kWh−1, 8.240 $kg−1, and 0.089 $kWh−1 respectively. The battery’s

limits of SOC are set to upper and lower limits are limited to upper and lower values

of 0.90 and 0.25 respectively, and the maximum C-rate is 6 for discharge. Note that

the SOC limits are soft constraints, meaning they can be exceeded if deemed neces-

sary. The battery needs to be charged to a SOC of 0.9 prior to departure. A starting

SOC of 0.90 affords the system the flexibility to excessive power from the fuel cells

if and when required. SOC below 0.25 should be avoided to provide minimum

charge conservation, as well as extend battery life (Omar et al., 2014).

5.3.4.2 Historical data

The case ship and its route have been shown in Figure 3.2. The historical power

profiles applied to the agent training were acquired from (Eriksen et al., 2018)

(1081 voyages in total, from 1 July 2018 to 31 August 2018). Another dataset

(392 voyages in total) collected over a different period (from 1 September 2018

to 30 September 2018) will be used for EMS validation. The datasets were first

segregated into voyages determined by the ship’s speed and location. The original

time step of the power profiles is 15 s and remains unchanged. Figure 5.3 shows 8

randomly selected sample power profiles in the training dataset. The original power

values were smoothed with a Gaussian-weighted moving average filter to reduce

measurement noise. The moving average window of the Gaussian filter is 4, and

the standard deviation is calculated from 1/5 of the total window width. Although

the power profiles follow a specific pattern in general, each of them varies from the

others. Such an observation suggests that the MDP environment is stochastic and

uncertain (see Figure A.1 in Appendix A).
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Figure 5.3: Sample power profiles from the training dataset.



Reinforcement learning based energy management strategies 142

5.3.5 Q-learning agent

The Q-learning (Algorithm B.2 in Appendix B), proposed by Watkins (1989), is

a model-free approach for solving MDPs, i.e. transition probabilities P are not

considered directly during agent training. It is also an off-policy RL method, i.e.

the action-values are updated using the next state and the greedy action. When

updating the action-value function, the agent acts greedily by choosing the action

that maximises the next action-value function:

Q(s,a)← Q(s,a)+α

[
r+ γQ(s,,argmax

a
Q(s,,a))−Q(s,a)

]
(5.9)

where s′ is next state. However, the maximisation operations involved in the con-

struction of policy and the ε-greedy action selection processes can lead to poor

learning performance with maximisation bias in stochastic environments (van Has-

selt, 2010; van Hasselt et al., 2015).

5.3.6 Double Q-learning agent

This study takes advantage of Double Q-learning (a variant of Q-learning) to learn

optimal energy management strategies for the sequential power split problem be-

tween multiple power sources (Sutton and Barto, 2018). Algorithm B.3 in Appendix

B shows the Double Q-learning agent (van Hasselt, 2010). The Double Q agent re-

duces the maximisation bias by using two action-value estimates, Q1 and Q2. For

each update, with 0.5 probability, Q2 is used to determine maximising action while

Q1 updates its value:

Q1(s,a)← Q1(s,a)+α

[
r+ γQ2(s,,argmax

a
Q1(s,,a))−Q1(s,a)

]
(5.10)

Otherwise Q2 is updated with Q1 and Q2 being switched. Both the learning rate α

and ε of the ε-greedy policy decrease linearly with the increase of learning episodes

and stabilise at fixed values after rate decaying episode number Nd .
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5.4 Agent training

The objective of the on-line EMS is to minimise the overall voyage cost in an envi-

ronment that is not pre-known. The intent of such an on-line EMS is to manage the

power flows within the hybrid power system effectively when applied for future, and

as yet unknown, voyages. The learning process is an episodic task. In each episode,

the environment randomly samples one of the historical voyage power profiles for

the agent to interact with to learn a policy minimising the voyage cost. This pro-

cess repeats until the average episode reward converges. Related historical power

profiles need to be collected before the beginning of the agent training procedure.

These profiles will be an inherent part of the RL environment. Note that each profile

is unique although there will be similarities.

The RL agent training and policy application follow the procedure presented

in Figure 5.4. Note that the RL training parameters, such as the learning rate α and

the probability of exploration ε at a time step, require careful tuning to achieve a

strategy with adequate performance:

• The agent should be able to complete the training voyages without early ter-

minations.

• Achieve minimum voyage cost with the minimum of constraint violations.

Once the training has converged, the learned policy, i.e. the strategy of the EMS,

needs to be validated using a different set of power profiles. In the application phase,

a battery over-discharge protection function ensures the battery modules are not

over-discharged. This protection mechanism is beyond the MDP agent-environment

interaction framework (Figure 5.1) and is not enabled during agent training (see

Figure 5.4), such that the agent can learn from penalties during training without

external interventions. Actions leading to penalties would be avoided due to their

lower Q values in corresponding states.
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Figure 5.4: Reinforcement learning agent training and policy application procedure.
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5.4.1 Training settings

Table 5.2 provides the detail of the state and action space grids for both the Deter-

ministic Dynamic Programming (DDP) strategy (resolution 1) and Double Q strat-

egy. The DDP implementation is based upon the work of Sundström et al. (2010).

The results obtained using DDP are used to evaluate the quality of the strategy gen-

erated by the Double Q agent. Therefore, the grids are defined identically in the two

algorithms to initially allow a fair comparison between on-line and off-line strate-

gies. Note that developing a strategy by DPP requires complete knowledge of the

profile, which is not possible for actual applications. Therefore, a DDP strategy

is only valid as an off-line benchmark to assess the performance of other on-line

strategies.

To further investigate the potential for cost reduction, the DDP strategy SOC

grid length was further refined to 0.0125. However, such a refined SOC resolution

was not implemented in the Double Q strategy due to ‘the curse of dimensionality’

(Sutton and Barto, 2018), which would make the problem impossible to solve with

the available computational resources.

Table 5.2: State and action space grids.

Parameter Grid resolution Range Unit

Power demand 50 0–4400 kW
SOC 5 0–100 %
Fuel cell power level 0.02 0–1 pu
Shore power availability − 0 or 1
Fuel cell power change fraction 0.02 [−0.04,−0.02,0,0.02,0.04] pu

5.4.2 Training

Table 5.3 shows the parameters used to train the Double Q agent. The parameter ε

represents the probability of exploration at a time step. The learning rate α deter-

mines to what degree the temporal difference is acquired: α = 1 suggest that only

the most recent information is learned, α = 0 nothing new has been learned. Both α

and ε decrease linearly from their initial values whilst the training episode number
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is less than Ns. Such settings reflect the need for the agent to explore less frequently

and learn more cautiously when enough experience has been gained, while a more

aggressive and bold learning style is preferred at the outset to quickly gain experi-

ence. As the energy managemnet problem is formulated with an average episode

length of 240, and the costs incurred in all steps are of equal importance, the dis-

count rate γ is set at 1 (i.e. un-discounted). It is worth mentioning that careful

tuning of these parameters is necessary to balance the conflict between exploration

and exploitation (Sutton and Barto, 2018).

Table 5.3: Reinforcement learning hyper parameters.

Parameter Description Value

αinit Initial learning rate 1.0
∆α Learning rate decaying rate 3.3×10−6

εinit Initial ε 1.0
∆ε ε decaying rate 3.3×10−6

γ Discount rate 1.0
Ns Episode α and ε stabilises 3.0×105

Figure 5.5 shows the learning process of the RL agent. It is interesting that

the mean episode reward decreases to −12 after 0.6×105 episodes. This decrease

suggests that initially the policy being learned was divergent before the agent was

able to learn towards a convergent policy. The training was terminated after 5×105

episodes (4.8 h on an Intel i7-4790 processor using single thread in Matlab 2019a).

The mean episode reward stabilised at a value of 88 after about 3×105

episodes of training (Figure 5.5a), while the maximum episode reward stabilised

at around 120. Such stabilisation suggests that the algorithm has converged. The

average success rates (see Algorithm B.1) were close to 100% after convergence.

Note that this rate is not exactly 100% (Figure 5.5b) which is mainly due to a small

exploration probability (1.0×10−3) that still exists and a minor fraction of training

voyages with high power demand that vary significantly from other voyages. In Fig-

ure 5.5c, both the actual episode cost and penalised episode cost increases rapidly in

the first 1×105 episodes. The reason for that is early termination frequently occurs

and at the initial stage of the training. In other words, the agent could not complete
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the majority of the training voyages in the initial stages of training (also see the

mean episode steps in Figure 5.5d) due to the policy’s tendency to drain the battery

aggressively from the beginning.

As the training progressed, the agent managed to complete most of the training

voyages from 2×105 episodes onwards. Also, the average voyage cost starts to

decrease after 2×105 episodes. The actual cost and penalised cost (including the

penalties caused by exceeding the constraints) overlap with each other, suggesting

non-feasible actions have been reduced to a minimum. In summary, the agent ap-

pears to first complete voyages, then learn to minimise voyages costs (maximum

reward) due to the reward setup. In contrast, as shown in Figure 5.6, with the same

hyperparameter settings, the Q agent failed to converge to a policy with reasonable

performance, owing to the presence of maximisation biases throughout the learning

process (see Eq. 5.9). These biases cause over-estimation of the action-value func-

tion, which leads to unstable training in Q-learning. The double Q-learning reduces

such biases by using two Q-functions.

Note that the environment is highly stochastic, with a small fraction of training

voyages with high power demand that vary significantly from other voyages. The

learned policy fails to fulfil the final battery SOC constraint of SOC = SOCH in less

than 0.5% of the 1081 total training voyages. This failure suggests that an override

function would be necessary to make the learned policy fully compliant with the

final battery state constraint. A battery over-discharge protection, as in Figure 5.4,

was proved to be effective. This protection was realised by forcing the fuel cell to

increase power by 5% of rated power in one time step when the battery SOC drops

below the lower limit (0.25) (Rouholamini and Mohammadian, 2016).
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Figure 5.5: Double Q agent training process. The values are calculated every 500 episodes.
(a) average reward, (b) maximum reward, (c) average penalised and unspe-
cialised costs and (d) average episode steps.



Reinforcement learning based energy management strategies 149

0 1 2 3 4 5
Episode 105

-120

-100

-80

-60

-40

-20

0

20

40

60

R
ew

ar
d

Mean reward
Maximum reward

(a)

0 1 2 3 4 5
Episode 105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s 

ra
te

(b)

0 1 2 3 4 5
Episode 105

0

100

200

300

400

500

600

700

800

900

E
pi

so
de

 c
os

t [
$]

Episode cost
Episode cost penalised

(c)

0 1 2 3 4 5
Episode 105

0

50

100

150

200

250

M
ea

n 
st

ep

(d)

Figure 5.6: Q agent training process. The values are calculated every 500 episodes. (a)
average reward, (b) maximum reward, (c) average penalised and unspecialised
costs and (d) average episode steps. The Q agent failed to converge to a policy
with reasonable cost performance and the constraints were violated frequently
in late stage of training.
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5.5 Results

5.5.1 Overview of results

Table 5.4 details the two different datasets which will be used in this section.

Dataset A is used to train the agent to generate the strategy of the EMS. Once

the training of the agent has converged, the strategy is verified by removing the

random exploration ε adopted in the training phase. Subsequently, the EMS perfor-

mance is validated using the dataset B, which have not been applied to the agent in

the training phase. The strategy is a 4-dimensional action map over the four state

parameters. With the system state observed, the optimal action of fuel cell power

control can then be found from the action map.

Table 5.4: Datasets of load profiles and their purposes. Dataset A is used to train the agent
to generate the strategy of the EMS. The EMS is then applied to load profiles in
dataset B to validate the EMS performance in unseen voyages.

Dataset Start date End date Voyage number Purpose

A 01/07/2018 31/08/2018 1081 Training/verification
B 01/09/2018 30/09/2018 381 Validation

The learned policy was then applied to the training voyages and a set of val-

idation voyages. As depicted in Table 5.5, for the training voyages, the Double

Q strategy achieved 96.6% cost minimisation performance of the off-line strategy

solved by DDP (knowing complete profiles before solving), both with the SOC grid

resolution of 0.05. Note that state space resolution also limits the accuracy of DDP

(Wang et al., 2015). A refined SOC grid resolution of 0.0125 yields an average voy-

age cost of $740.0 for the training dataset. The Double Q strategy achieves 89.0%

cost minimisation performance of the refined DDP solution. For the validation voy-

ages, similar performance was achieved. The DDP strategy results presented in the

following strategy analysis sections are all solved with SOC resolution of 0.0125.

Figure 5.7 presents the voyage cost achieved by the Double Q strategy in com-

parison with that solved via DDP, for the training (Figure 5.7a) and validation (Fig-
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Table 5.5: Double Q and DDP strategy average voyage costs comparison.

DDP1 [$] DDP2 [$] RL [$] DDP1/RL [%] DDP2/RL [%]

SOC resolution 0.0125 0.0500 0.0500 - -

Training voyages 740.0 803.1 831.8 89.0 96.6
Validation voyages 724.9 789.4 815.0 88.9 96.9

ure 5.7b) voyages. The Double Q strategy has achieved satisfactory cost perfor-

mance (only 3.2% higher than DDP strategy) in validation voyages without prior

knowledge of future power demand. Note that some voyages in the training dataset

have much higher power demand, yielding a maximum Double Q strategy voyage

cost close to $1600.0.

To verify the strategy performance learned by the Double Q learning agent,

the Double Q strategy was applied directly (without any exploration) to the training

voyages with over-discharge protection enabled. Such a process will be referred to

as verification in the following content. Applying the strategy to a set of validation

voyages will be referred to as EMS validation. Table 5.6 provides a summary of

the sample voyages with low, moderate and high power demand, which will be

discussed in the following analysis.

Table 5.6: Summary of sample voyages.

Category Profile
Average power Peak power Voyage time

[kW] [kW] [s]

Training
Training sample 1 904.2 1615.3 3585
Training sample 2 1086.3 1836.8 3735
Training sample 3 2040.3 3320.4 3165

Validation
Validation sample 1 1036.8 1487.0 3555
Validation sample 2 1167.0 2060.0 3555
Validation sample 3 1597.8 2752.7 3555

5.5.2 EMS verification

In this section, the Double Q-learning agent generated EMS is applied to three

sample voyages in the training dataset to evaluate the EMS performance in different

operation scenarios. The three sample voyages are with low, moderate and heavy
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Figure 5.7: Voyage costs: (a) training voyages and (b) validation voyages. The DDP costs
are obtained with a SOC resolution of 0.0125, while it is 0.05 for the Double Q
strategy.
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power demand, respectively. Details of the voyage cost and emission compositions

are presented. Note that the objective of the EMS is to minimise voyage costs. The

voyage emissions are calculated based on electricity usage and H2 consumption

figures obtained using the models presented in Chapter 4.

5.5.2.1 Training sample 1 with low power demand

Figure 5.8 shows the DDP and Double Q strategies for sample verification voyage

1. This voyage has comparatively low overall power demand in the training dataset.

It starts with relatively high power demand (1600 kW). During cruising, the power

demand stays around 1000 kW. Note that to solve for the DDP strategy requires

complete knowledge of the power profiles in advance. The Double Q strategy only

takes actions in each time step by observing current system states. The PEMFC

power trajectory in the DDP strategy (Figure 5.8a) is relatively smoother than that

of the Double Q strategy (Figure 5.8b). The Double Q strategy tends to adjust

the PEMFC power more frequently within a narrow power band, which could be

due to limited knowledge of future power demand. Such behaviour leads to higher

PEMFC degradation (see Table 4.2) and H2 costs (see Table 5.7). Also, the Double

Q strategy rapidly discharges the battery to an SOC of 0.4 (at 950 s) after departure

and then gradually recharges the battery. In contrast, the minimum battery SOC in

the DDP strategy is 0.3 and occurs just before shore charging commences (2800 s).

Table 5.7 details the voyage cost and emission breakdowns of the verification

sample voyage 1. The DDP strategy yields a voyage cost of $585.2, which is 85.3%

of the Double Q strategy voyage cost. The Double Q strategy leads to higher costs

from PEMFC degradation and H2 consumption. It is worth noting that the voyage

GWP emission of the DDP strategy is 11.9% higher than that of the Double Q

strategy which is due to the trade-off between voyage cost and GWP emission.



Reinforcement learning based energy management strategies 154

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d 
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

Po
w

er
 s

ou
rc

e 
po

w
er

 [
kW

]

Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

(a)

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d 
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000
Po

w
er

 s
ou

rc
e 

po
w

er
 [

kW
]

Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

(b)

Figure 5.8: DDP and Double Q energy management strategies for training sample voyage
1 with low power demand: (a) optimal off-line strategy solved by DDP, (b)
on-line strategy solved by the Double Q agent.
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Table 5.7: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for training sample voyage 1.

Training voyage 1
Voyage cost Voyage GWP Emission

DDP Double Q DDP
Double Q DDP Double Q DDP

Double Q
[$] [$] [%] [kg] [kg] [%]

PEMFC 196.8 252.6 77.9 - - -
Battery 64.3 64.3 100.0 - - -

Electricity 44.6 31.3 142.4 83.4 58.6 142.4
H2 279.5 337.7 82.8 50.9 61.5 82.8

Total 585.2 686.0 85.3 134.3 120.1 111.9

5.5.2.2 Training sample 2 with moderate power demand

Sample voyage 2 is a typical voyage with moderate power demand in the training

dataset. Figure 5.9 compares the off-line DDP strategy (Figure 5.9a) and on-line

Double Q strategy (Figure 5.9b) for this voyage. For both Double Q and DDP

strategies, in the departure phase (0-800 s), the batteries provide most of the power

from the beginning, while the fuel cells come online after a delay. The minimum

SOC of the DDP strategy for this voyage is approximately 0.25 (at 2850 s). As the

Double Q agent does not exactly know the future power demand and the strategy

is generic, the Double Q strategy tends to adjust fuel cell power more frequently.

Also, the fuel cells delay being switched to idle until shore power is available, which

is because the agent does not know in advance if shore power is available, and the

environment was designed to force the fuel cell power to decrease to zero only after

shore power was being delivered. Note that, because the ship only stays in port for

a short period between voyages, the batteries need to be charged at high C-rates,

which could pose additional requirements on the charging infrastructure.

Table 5.8 depicts the cost and GWP emission breakdowns for sample voyage

2 in the training dataset. The Double Q strategy achieves 89.8% cost performance

of that of the DDP strategy. Nevertheless, the Double Q strategy yields better GWP

emission performance, which has also been observed in sample voyage 1 (Section

5.5.2.1). The H2 costs account for 55.4% and 56.3% of the total voyage costs for

the DDP and Double Q strategies, respectively. PEMFC degradation costs are the



Reinforcement learning based energy management strategies 156

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d 
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

Po
w

er
 s

ou
rc

e 
po

w
er

 [
kW

]

Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

(a)

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d 
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

Po
w

er
 s

ou
rc

e 
po

w
er

 [
kW

]
Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

(b)

Figure 5.9: DDP and Double Q energy management strategies for training sample voyage
2 with moderate power demand: (a) optimal off-line strategy solved by DDP,
(b) on-line strategy solved by the Double Q agent.

second highest cost source in both strategy results.
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Table 5.8: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for training sample voyage 2.

Training voyage 2
Voyage cost Voyage GWP Emission

DDP Double Q DDP
Double Q DDP Double Q DDP

Double Q
[$] [$] [%] [kg] [kg] [%]

PEMFC 206.1 246.4 83.6 - - -
Battery 67.0 67.0 100.0 - - -

Electricity 45.5 34.5 132.1 85.1 64.4 132.1
H2 395.8 447.5 88.5 72.1 81.5 88.5

Total 714.4 795.3 89.8 157.1 145.9 107.7

5.5.2.3 Training sample 3 with high power demand

As mentioned in Section 5.4.2, the Double Q agent failed to provide a strategy to

complete the voyage in less than 0.5% of the training voyages as a consequence of

final battery SOC constraint being exceeded. When these failed voyages were ex-

amined after the training process it was noted that they had much higher power de-

mand compared to the typical voyages in the training dataset. Figure 5.10 presents

a sample profile when it is known that the ship was heavily laden (corresponds the

voyage with maximum cost in Figure 5.7a), and its optimal EMS solved via DDP

(Figure 5.10a). Unlike the profile discussed in Section 5.5.2.2, the fuel cell power

ramps up immediately after departure for this profile, in contrast to the more nor-

mal situation where significant increases in fuel cell power output are delayed as

shown in a typical profile similar to Figure 5.9b. Without the battery over-discharge

protection, the Double Q strategy tends to discharge the battery rapidly to a SOC

below 0.25 after departure from the port. Figure 5.10b illustrates how the battery

over-discharge protection function actuates to minimise the impact and shows how

such an override function is effective when tackling voyages with very high power

demand.

Table 5.9 presents a detailed comparison between the DDP and Double Q

strategies in terms of voyage cost and GWP emissions. Such a high power pro-

file is unusual in the training dataset. The DDP strategy would generate a voyage

cost of $1228.0, which is 71.8% higher than that of sample voyage 2 (discussed in
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Section 5.5.2.2). As a result of the battery over-discharge protection being triggered

at 450 s, the PEMFC degradation cost of the Double Q strategy is less than that of

the DDP strategy as frequent fuel cell power adjustments have been avoided by ac-

tion overrides. However, the Double Q strategy outputs a much higher H2 cost (36%

higher), which is due to the PEMFC being forced to run at very high load regions

where the fuel efficiency is reduced.
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Figure 5.10: DDP and Double Q energy management strategies for training sample voyage
3 with high power demand: (a) optimal off-line strategy solved by DDP, (b)
on-line strategy solved by the Double Q agent.
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Table 5.9: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for training sample voyage 3.

Training voyage 3
Voyage cost Voyage GWP Emission

DDP Double Q DDP
Double Q DDP Double Q DDP

Double Q
[$] [$] [%] [kg] [kg] [%]

PEMFC 242.8 259.0 93.8 - - -
Battery 56.7 56.7 100.0 - - -

Electricity 46.5 32.9 141.4 87.0 61.5 141.4
H2 881.9 1199.9 73.5 160.5 218.4 73.5

Total 1228.0 1548.5 79.3 247.5 279.9 88.4

5.5.3 EMS validation

5.5.3.1 Validation sample 1 with low power demand

Figure 5.11 shows the comparison between the DDP and Double Q strategies of a

sample validation voyage with comparatively lower power demand. The Double Q

strategy (Figure 5.11b) discharges the battery modules quickly down to a SOC of 0.4

in the first 1000 s, and maintains the fuel cell power output to a narrow region during

sailing. The batteries satisfy significant transients in the departing and approaching

phases. In contrast, the DDP strategy only discharges the battery rapidly at the

beginning of the voyage (0-550 s). Similar trends have been observed in the sample

training voyage (Figure 5.9).

Table 5.10 describes the detailed cost and GWP emission breakdowns of the

validation sample voyage 1. The voyage cost of the Double Q strategy is 12.8%

higher than that of the DDP strategy. Nevertheless, the Double Q EMS performs

10.1% better in terms of GWP emission. Such an observation reflects the trade-

off between voyage costs and GWP emissions. Note that similar observations have

been found in the training sample voyages (see Sections 5.5.2.1 and 5.5.2.2).
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Figure 5.11: DDP and Double Q energy management strategies for validation sample voy-
age 1 with low power demand: (a) optimal off-line strategy solved by DDP,
(b) on-line strategy solved by the Double Q agent.
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Table 5.10: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for validation sample voyage 1.

Validation voyage 1
Voyage cost Voyage GWP Emission

DDP Double Q DDP
Double Q DDP Double Q DDP

Double Q
[$] [$] [%] [kg] [kg] [%]

PEMFC 208.6 244.7 85.2 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 44.4 31.2 142.2 82.9 58.3 142.2
H2 345.2 406.8 84.9 62.8 74.1 84.9

Total 661.9 746.5 88.7 145.8 132.4 110.1

5.5.3.2 Validation sample 2 with moderate power demand

Figure 5.12 presents the DDP and Double Q strategies of a sample profile with mod-

erate power demand from the validation dataset. In Figure 5.12a, as the complete

profile is known before solving the DDP strategy, the DDP strategy only adjusts

PEMFC power output when necessary. As in Figure 5.12b, the Double Q strategy

adjusts PEMFC power more frequently due to uncertainty regarding the power de-

mand in the next time steps. Such a pattern has also been observed in the first two

training sample profiles.

The Double Q strategy voyage cost is 11.2% higher than that of the DPP strat-

egy, which is due to frequent PEMFC power adjustments and higher H2 consump-

tion. Note that the Double Q strategy still performs better than the DDP strategy in

terms of GWP emissions (Table 5.11).

Table 5.11: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for validation sample voyage 2.

Validation voyage 2
Voyage cost Voyage GWP Emission

DDP Double Q DDP
Double Q DDP Double Q DDP

Double Q
[$] [$] [%] [kg] [kg] [%]

PEMFC 211.7 239.6 88.4 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 43.9 32.4 135.6 82.0 60.5 135.6
H2 411.9 477.6 86.3 75.0 86.9 86.3

Total 731.2 813.2 89.9 157.0 147.4 106.5
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Figure 5.12: DDP and Double Q energy management strategies for validation sample voy-
age 2 with moderate power demand: (a) optimal off-line strategy solved by
DDP, (b) on-line strategy solved by the Double Q agent.
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5.5.3.3 Validation sample 3 with high power demand

As discussed in Section 5.5.2.3, the Double Q agent failed in training voyages with

extremely high power demand. Nevertheless, the Double Q strategy managed to

complete all the validation voyages without triggering the battery over-discharge

protection function. Figure 5.13 compares the DDP and Double Q strategies. As

in Figure 5.13b, the Double Q strategy discharges the battery rapidly to a SOC of

0.4 after departure with a delay before the PEMFC provides any power output. In

contrast, the DDP strategy (Figure 5.13a) ramps the PEMFC output immediately at

departure in response to such a high load profile.

The voyage cost of the DDP strategy is 89.9% of its RL counterpart (Table

5.12). It is worth noting that the GWP emissions produced by the two strategies

are very close to each other (0.7% difference). Although the Double Q strategy

consumes more H2 than the DDP strategy, it requires much less shore generated

electricity compared to the DDP strategy.

Table 5.12: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for validation sample voyage 3.

Validation voyage 3
Voyage cost Voyage GWP Emission

DDP Double Q DDP
Double Q DDP Double Q DDP

Double Q
[$] [$] [%] [kg] [kg] [%]

PEMFC 256.2 257.4 99.5 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 50.4 36.9 136.3 94.1 69.1 136.3
H2 605.2 734.9 82.3 110.2 133.8 82.3

Total 975.5 1093.0 89.3 204.3 202.8 100.7

Table 5.13 summaries the Double Q-learning strategy performance in compar-

ison with DDP strategy. Wu et al. (2018) reported that, in a non-stochastic envi-

ronment with a single power profile, their Q-learning agent achieved 89.0% fuel

economy compared to dynamic programming policy in their road vehicle-related

study. The Double Q-learning strategy presented in this study has achieved 89.0%,

and 88.9% cost performance of refined DDP strategy results in training and valida-

tion datasets, respectively. The Double Q-learning agent presented in this chapter
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Figure 5.13: DDP and Double Q energy management strategies for validation sample voy-
age 3 with high power demand: (a) optimal off-line strategy solved by DDP,
(b) on-line strategy solved by the Double Q agent.
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can achieve near-optimal cost performance for the case ship in a stochastic envi-

ronment. Although the objective of the Double Q-learning strategy was designed

to minimise voyage costs, due to the trade-off between costs and GWP emissions,

the Double Q-learning strategy perform even better than the DDP strategy in terms

of GWP emissions (approximately 6% less GWP emissions for both training and

validation datasets). More H2 usage would result in higher voyage costs but lower

GWP emissions.

Table 5.13: Summary of Double Q and DDP strategy voyage costs and GWP emissions.

Category Profile
Voyage cost Voyage GWP emission

DDP Double Q DDP
Double Q DDP Double Q DDP

Double Q

[$] [$] [%] [kg] [kg] [%]

Training
Sample 1 585.2 686.0 85.3 134.3 120.1 111.9
Sample 2 714.4 795.3 89.8 157.1 145.9 107.7
Sample 3 1228.0 1548.2 79.3 247.5 279.9 88.4

Average all training profiles 740.0 831.8 89.0 161.4 152.0 106.1

Validation
Sample 1 661.9 746.2 88.7 145.8 132.4 110.1
Sample 2 731.2 813.0 89.9 157.0 147.4 106.5
Sample 3 975.5 1092.7 89.3 204.3 202.8 100.7

Average all validation profiles 723.5 813.8 88.9 158.4 149.2 106.2

5.6 Summary

This chapter has formulated the optimal energy management problem of the plug-in

hybrid PEMFC/battery system using the novel approach of Markov Decision Pro-

cess. The formulated Markov Decision Process has been solved using reinforce-

ment learning agents in discrete state and action spaces. With continuous moni-

toring data collected from the case ship, a Double Q reinforcement learning based

energy management strategy has been proposed. The Double Q agent has been

trained adequately with one dataset of 1081 training voyages and subsequently val-

idated using another dataset of 381 voyages over different periods.

Without prior knowledge of future power demand, the Double Q agent can

achieve a cost-performance similar to that solved by dynamic programming with

the identical settings in state and action spaces. Such a similarity indicate that the

Double Q agent is effective in dealing with stochastic environments by reducing
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maximisation biases. Also, such performance suggests that reinforcement learning

is a viable approach to solve the optimal power split problem in a hybrid propulsion

system, provided that enough historical data has been collected. In contrast, the

Q agent which introduces maximisation biases fails to achieve satisfactory perfor-

mance.

It can also be observed that Double Q strategy tends to adjust fuel cell power

output more frequently, which could be due to two reasons: (1) the agent does not

have certainty as to what will be the next power demand (i.e. the environment is

stochastic) and (2) the state space was defined with limited resolution. Refining the

action and state spaces could possibly reduce the amplitude of these fuel cell power

adjustments. Both approaches would require other RL approaches with function

approximators to deal with the increases in action and state spaces.



Chapter 6

Deep reinforcement learning based

energy management strategies

6.1 Overview

In the previous chapter, the optimal energy management problem of the plug-in

hybrid PEMFC/battery system has been formulated and solved using reinforcement

learning algorithms in discrete state and action spaces. However, the accuracy of

such an approach is limited by the resolutions of the two spaces without applying

function approximators.

This chapter aims to further improve the cost-effectiveness of reinforcement

learning based energy management strategies by refining the state space with deep

neural networks as function approximators. The optimal energy management prob-

lem of the plug-in hybrid PEMFC/battery propulsion system will be solved using

Deep Q-Network (DQN) (Mnih et al., 2015) and Double DQN agents (van Hasselt

et al., 2015). Section 6.2 details the DQN and Double DQN agents. Section 6.3

reshapes the reward function proposed in Chapter 5 by removing unnecessary train-

ing steps in port. Section 6.4 depicts the training processes of the agents. Section

6.5 assesses and discusses the EMS performance.

167
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6.2 Deep reinforcement learning agents

6.2.1 Deep Q-Network

For reinforcement learning problems with large or continuous state spaces, func-

tion approximators are typically needed to generalise from previously encountered

states which are similar in some sense to current ones (Sutton and Barto, 2018). A

function approximator can be linear or non-linear (Boyan and Moore, 1995; Sutton

et al., 2000). However, the training process of reinforcement learning agents can be

unstable or even diverge when a non-linear function approximator such as a neural

network is used (Tsitsiklis and Van Roy, 1997). Lin (1993) developed the concept

of ‘experience replay’ to store the agent experience into a memory pool to train a re-

inforcement learning agent with a neural network. Later work of Mnih et al. (2013)

proposed deep Q-learning using a deep neural network with convolution layers to

approximate high dimensional raw pixel state inputs. Mnih et al. (2015) further

improved the deep Q-learning agents by adding target networks to improve training

stability. Mnih et al. (2015)’s Deep Q-Network (DQN) achieved performance levels

comparable to professional human game testers in 49 Atari 2600 games.

Figure 6.1 presents the detailed DQN agent-environment interaction frame-

work. The DQN is a model-free, off-policy reinforcement learning algorithm (Mnih

et al., 2015). The agent maintains an experience memory pool with capacity M,

storing the most recent M transition sequences. A transition sequence, collected via

agent-environment interaction, is denoted by:

φ = (st ,at ,st+1,rt+1) (6.1)

i.e. at time step t, in state st , the agent performs action at (following ε-greedy

policy) and observes next environment state st+1 and a reward signal rt+1 is returned

from the environment. In each agent training step, a mini-batch with capacity D is

randomly sampled from the experience memory pool such that previous experiences
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can be used effectively. In addition, the random sampling breaks the correlations of

consecutive samples which can lead to unstable neural network training. The DQN

agent includes two deep neural networks with identical structure, i.e. the Q-network

Q(s,a;θ) parametrised by θ , and the Q-target network Q̂(s,a;θ−) parametrised by

θ−. These neural networks approximate the action-value function with state (s)

inputs for all actions (a) in the action space A.
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Figure 6.1: Deep Q-Network agent and environment schematic.

As an improvement to the Deep Q-network of Mnih et al. (2013), the additional

Q-target network enhances the agent training stability by providing fixed target ac-
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tion value y j for non-terminal states:

y j = r j+1 + γ max
a′

Q̂
(
s j+1,a′;θ

−) (6.2)

where j denotes j− th sample in the mini-batch. Note that the terminal state is

defined as states with battery over charged (SOC > 1) or discharged beyond capacity

(SOC < 0). In the original DQN algorithm of Mnih et al. (2015), the Q-target

network is updated periodically, while in this work it is soft-updated at each training

step to further improve training stability:

θ
−← τθ +(1− τ)θ

− (6.3)

where τ � 1 (Lillicrap et al., 2015).

Two types of loss functions (i.e. Mean Squared Error (MSE) and Huber loss

(Huber, 1992)) are employed independently in this study to investigate the influ-

ences of the loss function over training stability and EMS quality in a stochastic

environment. The MSE loss is defined as the mean squared error of the temporal

difference (denoted by δ ) between the action values given by the Q-network and

the targets y j ( j ∈ [1,D]) over a mini-batch:

L(θ) =
1
D

D

∑
j=1

δ
2
j (6.4)

where the temporal difference δ j of j− th sample in the mini-batch is:

δ j = y j−Q
(
s j,a j;θ

)
(6.5)

In the work of Mnih et al. (2015), δ j was clipped to between -1 and +1 to

improve the DQN algorithm stability. Such a technique corresponds to using an

absolute value loss function for temporal differences outside (−1,1). Note that the

clipping reduces the chances of overestimations for the action-value function when

values given by the networks are noisy over large ranges. In Chapter 5, the Q-
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learning agent failed due to overestimations caused by the maximisation operation

which approximated the expected action value. The concept of error clipping may

provide a new approach to dealing with overestimations in the stochastic environ-

ment.

Instead of clipping the error term, the Huber loss, which performs similar func-

tion has been employed in this study. The Huber loss is calculated by (Huber, 1992):

L(θ) =
1
D

D

∑
j=1

σ j (6.6)

where:

σ j =


1
2

δ
2
j , if

∣∣δ j
∣∣< 1∣∣δ j

∣∣− 1
2
, otherwise

(6.7)

The Huber loss is the mean squared error when the temporal difference δ j is small

(
∣∣δ j
∣∣ < 1) but acts like the mean absolute error (|δ | − 1

2
) when the difference is

large, which makes it more robust when overestimations of action-value function

may degrade the agent training.

Figure 6.2 shows the neural network structure for the Q-network and the Q-

target network. The neural networks are configured with two fully-connected hid-

den layers. The Q-network is trained by minimising the loss function L(θ) with

respect to its parameters θ . The optimiser adopted in this study is the Adam op-

timiser (Kingma and Ba, 2014). The neural networks output action-value function

values for each possible action with given state inputs. Note that the continuous

signals (battery state of charge, power demand and fuel cell per unit power) are not

discretised as in Chapter 5. Instead, these states are used as direct inputs to the

Q-network such that the environment states can be accurately represented by con-

tinuous actual values. The state inputs are forward propagated sequentially from

the input layer via hidden layers to output Q-values for all actions. Note that each

neuron of the output layer corresponds to an action in the action space.

As depicted in Algorithm B.4 in Appendix B, the DQN agent training starts
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Figure 6.2: Deep neural network with 2 fully-connected hidden layers.

with randomly initialised network parameters θ and θ−. The exploration probabil-

ity ε of the ε-greedy policy decreases linearly from a large initial value with the

increase of training episode number, and is fixed at a small final value in the later

stage of the training (i.e. training episode n > Nd). Note that completely random

explorations initially fill the experience memory pool before the neural network

training starts. The Q-network is trained every Z steps to gain sufficient experience.

6.2.2 Double Deep Q-Network

The results in Chapter 5 suggest that maximisation biases introduced during the

construction of the action-value function can lead to poor learning performance if

such biases are not addressed properly. The Double Q-learning agent achieved sat-

isfactory performance using two Q-functions, while, with the same hyperparameter

settings, the Q-learning agent diverged. It is not clear whether the DQN agent (as a

deep variant of Q-learning) can succeed in the highly stochastic environment based

on recorded historical power profiles. Therefore, the author has also explored solv-

ing the energy management problem with Double DQN.

The Double DQN (Algorithm B.5 in Appendix B) is proposed by van Hasselt
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et al. (2015) based on the concept of Double Q-learning (van Hasselt, 2010) and

DQN (Mnih et al., 2015). In Double Q-learning, two Q-functions are used to re-

duce the overestimations by decomposing the maximisation in the target into action

selection and action evaluation (van Hasselt, 2010; van Hasselt et al., 2015). With-

out introducing additional neural networks to DQN, the Double DQN utilises the

Q-target network to evaluate the maximising action (i.e. argmaxa
(
Q
(
s j+1,a;θ

))
)

given by the Q-network (see Figure 6.3) such that, the target value is calculated by:

y j = r j + γQ
(

s j+1,argmax
a

(
Q
(
s j+1,a;θ

))
;θ
−
)

(6.8)
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Figure 6.3: Double Deep Q-Network agent and environment schematic.
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6.3 Environment update

6.3.1 Reward function

In Chapter 5, the agent was trained throughout all time steps of the voyages, i.e.

from the first moments of departure to last moments in ports. However, the ship

was designed to operate purely on shore based electricity when in port mode (i.e.

cold ironing, see Eq. 4.1). Although the Double Q agent has demonstrated its ability

to maintain zero fuel cell power state in port mode, removing the training steps in

port mode could potentially simplify the training processes due to the cold ironing

logic (see Section 4.2.2.1) would only utilise shore provided power. Control of the

fuel cell when in port mode appears unnecessary. Also, it has been observed that,

the Double Q agent struggled to maintain final battery SOC constraint in some high

power profiles. In practice, it would be feasible to increase the port time slightly to

get the battery charged to SOCH . Therefore, the reward function of the environment

is reshaped as:

rt+1 =



−1, spA=0, if st+1 is infeasible

−1, spA=0, if p f c +at /∈ [0,1]

tanh
(

1
costt+1

)
, spA=0,else

K

∑
k=t+1

tanh
(

1
costk

)
, spA=1

(6.9)

where when shore power is available (spA = 1), the environment returns a summed

reward of all the costs incurred in port mode of the current episode. In sailing

mode, i.e. spA = 0, the reward function is defined identically as in Chapter 5 (see

Section 5.3.3). Note that K is the time step when the entire profile is completed; and

costk = ∞ if k > T (i.e. extra time required to charge the battery), otherwise costk is

calculated as described in Chapter 5 (Eq. 5.8).
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6.3.2 State space

Previously, in Chapter 5, the four-dimensional state space was discretised to state

indices (Section 5.3.1) to store the action-value function into tables indexed by dis-

crete state indices. Such a discretisation process is necessary for tabular RL ap-

proaches. However, the discretisation process and its resolution limit the quality of

the generated policy (Sutton and Barto, 2018). In this chapter, discretisation of state

space has been removed. The actual state space:

s(t) = [spA(t), pdem(t),x(t),SOC(t)]T (6.10)

is directly applied to represent the environment states, where spA denotes the shore

power availability (spA = 0 for sailing mode, spA = 1 for port mode), Pdem is nor-

malised system power demand by dividing the actual power demand in kW by 1500

(i.e. pdem = Pdem
1500 , such that the power demand input to the Q-network is around 1),

x(t) fuel cell per unit power level at time step t (x ∈ [0,1]), and SOC ∈ [0,1] denotes

battery state of charge (SOC).

6.3.3 Action

The action space is defined as a tuple of fuel cell power level changes:

A = [a1,a2, ...,am, ...,an−1,an]
T (6.11)

where a1 < 0 is the maximum decrease and an > 0 is the maximum increase of fuel

cell output in a time step, am = 0 means maintaining current power level; all other

values of a represent changes of power within the range of (a1,an).

In sailing mode, the environment overrides an action that would result the fuel

cell power output becoming negative or higher than the rated power. When action

at ∈ A is chosen from the action space at time step t, the fuel cell power level at
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t +1 will be:

xt+1 =


0, xt +at < 0

1, xt +at > 1

xt +at , else

(6.12)

In port mode, the agent is not required to control the fuel cell. The environ-

ment would force the fuel cell power to decrease to zero if fuel cell power is not

zero. Note that the environment would extend episode length whenever necessary

to charge the battery SOC to SOCH (the power demand would be extrapolated from

the last power demand that appears in original power profile). Such settings vary

from the ones defined in Chapter 5, in which the agents were required to explore

actions in port mode to maintain cold ironing.

6.4 Agent training

The agents were trained on a workstation with two Intel Xeon E5-2683 V3 proces-

sors running on Windows 10. The environment and the agent were coded in Python.

The agent’s neural networks were built and trained with PyTorch v1.20. Each agent

was trained with 10 different random seeds for reproducibility. During training, the

agent policy performance was assessed by calculating the average values and stan-

dard deviations across the 10 instances running with different random seeds. Note

that as the neural networks are relatively small, only one CPU thread is assigned

to each running instance to avoid training speed degradation due to unnecessary

parallelisation.

Also, the actual policy performance was periodically tested (every 100 training

episodes) with 10 random training voyages during training. Note that in test mode,

the ε−greedy exploration probability was set at 0 with battery over-discharge pro-

tection enabled (disabled in training mode). Once the training of all the 10 instances

was completed, the agent with the lowest episode cost was chosen to generate de-

tailed EMS results in the following sections.



Deep reinforcement learning based energy management strategies 177

6.4.1 Neural network settings

Figure 6.4 illustrates the neural network configuration for the Q and Q-target net-

works. The environment state inputs are processed by the input layer with four neu-

rons with Rectified Linear Unit (ReLU) activation function. Two fully-connected

hidden layers are configured with 256 neurons each. Note that both hidden layers

are applied with an ReLU activation function, while no activation function is ap-

plied to the output layer to allow negative action-value outputs. The neural network

outputs five Q-values, corresponding to the 5 actions in the action space, respec-

tively.
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Figure 6.4: Q-network and Q-target network settings.

6.4.2 Hyperparameter settings

Table 6.1 details the hyperparameter settings used for the four agent-loss function

combinations. The policy is updated every 32 transition sequences (φ ). In each

training step, a mini-batch with 32 transition sequences is randomly sampled from

the experience memory with a capacity of 1×106. Such a mini-batch is applied

to train the Q-network using an Adam optimiser. The learning rate of the Adam

optimiser is fixed at 0.0001 throughout the training. The exponential decay rates
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of first and second moment estimates (β1 and β2) are set at 0.9 and 0.999 respec-

tively (Kingma and Ba, 2014). Note that the Q-target network is soft-updated with

a soft-update weight of τ = 0.001 in each training step. The exploration probabil-

ity ε of ε − greedy policy starts with 1 and fixes at 0.05 after 5×103 episodes of

training. Note that these parameters require careful tuning to achieve satisfactory

performance.

Table 6.1: Hyperparameter settings.

Parameter Description Value

B Mini-batch size 32
M Experience memory size 1×106

τ Target network update weight 0.001
γ Discount factor 1
Z Policy update frequency 32
α Learning rate of Adam optimiser 0.001
β1 Exponential decay rate for the first moment estimates of Adam optimiser 0.9
β2 Exponential decay rate for the second moment estimates of Adam optimiser 0.999
ε0 Initial exploration probability 1
ε f Final exploration probability 0.05

6.4.3 Training

Two agents, i.e. DQN and Double DQN, have been tested in this study. Also, two

types of loss functions, i.e. MSE and Huber losses are tested with the two deep

reinforcement learning agents.

6.4.3.1 MSE loss

Figures 6.5 and 6.6 illustrates the training processes with MSE loss function for the

DQN and Double DQN agents respectively. Both agents were trained over 1.2×104

episodes. Every 100 training episodes, the energy management strategy is tested by

sampling 10 random training profiles. The DQN agent training diverged without

finding an effective strategy. Although the Double DQN performed slightly better

than the DQN, it was not particularly successful.
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(a) (b)

Figure 6.5: DQN agent training and testing with MSE loss function. The deep blue lines
are moving average values across 10 instances running with different random
seeds. The light blue shadows are the confidence bounds calculated by mean
values ± standard deviations across the 10 instances.
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(a) (b)

Figure 6.6: Double DQN agent training and testing with MSE loss function. The deep
blue lines are moving average values across 10 instances running with different
random seeds. The light blue shadows are the confidence bounds calculated by
mean values ± standard deviations across the 10 instances.
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(a) (b)

Figure 6.7: DQN agent training and testing with Huber loss function. The deep blue lines
are moving average values across 10 instances running with different random
seeds. The light blue shadows are the confidence bounds calculated by mean
values ± standard deviations across the 10 instances.
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(a) (b)

Figure 6.8: Double DQN agent training and testing with Huber loss function. The deep
blue lines are moving average values across 10 instances running with different
random seeds. The light blue shadows are the confidence bounds calculated by
mean values ± standard deviations across the 10 instances.
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6.4.3.2 Huber loss

In contrast, with the Huber loss function, the training processes of the two agents

are much more stable (Figures 6.7 and 6.8). Note that both agents are trained across

8000 training episodes. The Double DQN training is more consistent across the

10 running instances with different random seeds. In test mode, the moving aver-

age line of the Double DQN strategy converged to a value of around $780 (6.6b).

Similar performance has been observed for the DQN agent (6.5b).

6.5 Results

The results presented in this section were acquired with the Double DQN agent

trained by the Adam optimiser with Huber loss function. The training and vali-

dation dataset and sample voyages are identical to those used in Chapter 5. Table

6.2 compares the average voyage cost of the strategies generated by Double DQN,

discrete Double Q-learning and off-line DDP (with a SOC resolution of 0.0125).

The strategy generated by the Double DQN achieves average costs of $782.5 and

$768.9 for the training and validation voyages respectively (as mentioned in Chap-

ter 5). The off-line DDP strategy average voyage cost is 94.6% and 94.3% of those

of the Double DQN strategy, for the training and validation datasets respectively.

It is worth mentioning that the DDP strategy is acquired for each voyage indepen-

dently by proving complete power profiles before solving, representing the best that

could theoretically be achieved but requires pre-existing knowledge of power pro-

files. Therefore, the DDP strategy can only be used as a benchmark to assess other

on-line EMS performance. Compared to the Double Q strategy in discrete state

space, the Double DQN strategy further reduces the average voyage costs by ap-

proximately 6.0% with continuous state space. Note that the Double Q strategy is

obtained with a SOC resolution 0.05, while it is continuous for the Double DQN

strategy.

The computation time required by the Double DQN agent to generate a strat-

egy is approximately 27 min using a single thread of an Intel Xeon E5-2683 V3
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Table 6.2: Double DQN, Double Q and DDP strategy average voyage costs comparison.

DDP1 [$] Double Q [$] Double DQN [$] DDP1
Double Q [%] DDP1

Double DQN [%]

SOC resolution 0.0125 0.05 Continuous - -

Training voyages 740.0 831.8 782.5 89.0 94.6
Validation voyages 724.9 815.0 768.9 88.9 94.3

processor (18 min on an Intel i7-4790 processor). The Double Q agent requires

288 min to generate a strategy using a single thread of an Intel i7-4790 processor.

Compared to the Double Q agent, the Double DQN agent managed to achieve a

6.0% improvement in cost performance with 93.8% less computational resource

required.

To examine the strategy performance generated by the Double DQN and Dou-

ble Q agents in detail, the power distributions between the power sources for 6

sample voyages (3 training and 3 validation voyages, see Table 5.6) are discussed

in this section.

6.5.1 Training voyages

6.5.1.1 Training sample 1 with low power demand

Figure 6.9 presents the Double Q (Figure 6.9a) and Double DQN (Figure 6.9b)

strategies for training sample voyage 1. This voyage has relatively low power

demand in the training dataset. The voyage starts with a power demand around

1600 kW. The Double DQN strategy utilises the battery only and rapidly discharges

the battery to a SOC of 0.35 (0–750 s). The Double Q strategy utilised both the fuel

cell and battery during this period and tends to adjust the fuel cell power output

frequently. After the initial 750 s and during cruising, both strategies tend to adjust

fuel cell output frequently, while the power demand is relatively constant. However,

the Double DQN strategy fuel cell power adjustments are less frequent compared

to that of the Double Q strategy. Moreover, the Double Q strategy tends to use the

battery more aggressively, i.e. the battery SOC is mostly maintained in the vicinity

of 0.35, while the Double Q strategy is more conservative. At 950 s, the Double



Deep reinforcement learning based energy management strategies 185

DQN strategy discharges the battery to a SOC of 0.4, and thereafter starts to charge

the battery gradually.
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Figure 6.9: Double Q and Double DQN energy management strategies for training sample
voyage 1 with low power demand: (a) Double Q strategy and (b) Double DQN
strategy.
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Table 6.3 details the voyage cost and GWP emission breakdowns of the sample

training voyage 1. The voyage cost achieved by the Double DQN strategy is $627.3

(91.5% of the Double Q strategy). As the Double DQN strategy tends to use the

batteries more aggressively, shore-generated electricity consumed by the Double

DQN strategy is 28.1% more than that consumed by the Double Q agent. Higher

shore electricity usage results in lower H2 consumption. In addition, the Double

DQN strategy adjusts fuel cell power less frequently. Hence its PEMFC degradation

cost is 11% lower than that of the Double Q strategy. The battery degradation costs

are the same for both strategies, as a simple averaged battery degradation cost model

has been adopted.

Table 6.3: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of training sample voyage 1.

Voyage cost Voyage GWP Emission
Double DQN Double Q Double DQN

Double Q Double DQN Double Q Double DQN
Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 224.9 252.6 89.0 - - -
Battery 64.3 64.3 100.0 - - -

Electricity 40.1 31.3 128.1 75.0 58.6 128.1
H2 298.0 337.7 88.2 54.2 61.5 88.2

Sum 627.3 686.0 91.5 129.3 120.1 107.7

6.5.1.2 Training sample 2 with moderate power demand

Figure 6.10 shows the Double Q and Double DQN strategies for a sample voyage

in the training dataset with moderate power demand. As displayed in Figure 6.10b,

the battery levels off the power transients throughout the voyage, while the fuel cell

power adjustments are much less frequent compared to that of the Double Q strategy

(Figure 6.10a). When approaching the port (2400-2800 s), the Double DQN strategy

reduces the fuel cell power in advance, while the Double Q strategy only reduces

fuel cell power when shore power availability is detected.
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Figure 6.10: Double Q and Double DQN energy management strategies for training sample
voyage 2 with moderate power demand: (a) Double Q strategy and (b) Double
DQN strategy.
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Table 6.4 depicts the cost and GWP emission breakdowns for training sample

2. The voyage cost achieved by the Double DQN is 91.2% of that of the Double Q

strategy. Although the Double DQN strategy consumes more shore generated elec-

tricity, the degradation cost from PEMFC degradation is reduced by 16%, and the

H2 cost has also been reduced since the electricity consumption has been increased.

Due to the trade-off between the voyage cost and GWP emission, the Double DQN

emits 6.1% more GWP emissions. Increased shore-generated electricity consump-

tion can lower the cost of the voyage but would increase the GWP emissions.

Table 6.4: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of training sample voyage 2.

Voyage cost Voyage GWP Emission
Double DQN Double Q Double DQN

Double Q Double DQN Double Q Double DQN
Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 207.1 246.4 84.0 - - -
Battery 67.0 67.0 100.0 - - -

Electricity 43.0 34.5 124.8 80.4 64.4 124.8
H2 408.2 447.5 91.2 74.3 81.5 91.2

Sum 725.3 795.3 91.2 154.7 145.9 106.1

6.5.1.3 Training sample 3 with high power demand

Figure 6.11 shows results for the power profile with the highest power demand in

the training dataset. Such a profile is unusual. Both the Double Q and Double DQN

strategies would trigger the battery over-discharge protection, i.e. when the battery

SOC drops below the lower limit (0.25), the over-discharge protection function to

increase fuel cell by 5% of rated fuel cell power until the SOC is restored to above

0.25. As the battery over-discharge protection is enabled in both strategies, the

battery SOC trajectories are similar. The DDP strategy for this voyage presented in

Chapter 5 requires the PEMFC output to be increased immediately after departure.

With the battery over-discharge protection function enabled, both the Double DQN

and Double Q agent can complete all voyages in the training and validation datasets.
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Figure 6.11: Double Q and Double DQN energy management strategies for training sample
voyage 3 with extreme power demand: (a) Double Q strategy and (b) Double
DQN strategy.
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However, neither agent managed to develop a strategy for such an extreme

power profile. Note that the Double DQN strategy is trained by 8000 episodes.

Increasing the training episode number may find a strategy capable of tacking such

extreme voyage profiles without triggering over-discharge protection. However,

further experiments were not implemented since the overall Double DQN strategy

performance is satisfactory.

Table 6.5 compares the cost and emission breakdowns of the Double DQN

strategy with those of the Double Q strategy. As the battery over-discharge pro-

tection functions for most of the duration of this voyage, the cost and emission

performance of the Double DQN strategy are similar to that of the Double Q strat-

egy.

Table 6.5: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of training sample voyage 3.

Voyage cost Voyage GWP Emission
Double DQN Double Q Double DQN

Double Q Double DQN Double Q Double DQN
Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 263.9 259.0 101.9 - - -
Battery 56.7 56.7 100.0 - - -

Electricity 34.8 32.9 105.8 65.1 61.5 105.8
H2 1214.8 1199.9 101.2 221.1 218.4 101.2

Sum 1570.2 1548.5 101.4 286.2 279.9 102.3

6.5.2 Validation voyages

As the EMS is intended for use on future voyages for which, of course, there would

be no predetermined data, the Double DQN strategy is applied to a set of validation

voyages to examine its performance against load profiles that have not been experi-

enced by the agent. Note that the validation voyages are not included in the training

dataset.

6.5.2.1 Validation sample 1 with low power demand

Figure 6.12 compares the Double DQN strategy (Figure 6.12a) with the Double Q

strategy (Figure 6.12b) for a validation sample voyage with low power demand. In
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Figure 6.12: Double Q and Double DQN energy management strategies for validation sam-
ple voyage 1 with low power demand: (a) Double Q strategy and (b) Double
DQN strategy.

Figure 6.12b, the Double DQN strategy delays the increase of the fuel cell power

until the battery SOC has dropped to 0.36 (750 s). During cruising, the fuel cell

power is maintained in a narrow band. However, the Double DQN strategy tends

to adjust fuel cell power output frequently. Nevertheless, unnecessary large adjust-

ments as in Figure 6.12a (1950–2300 s) have been avoided. Moreover, the minimum



Deep reinforcement learning based energy management strategies 192

battery SOC of the Double DQN strategy is 0.35, while it is 0.4 for the Double Q

strategy.

Table 6.6 details the cost and GWP emission breakdowns for validation sam-

ple voyage 1. Similar to the voyages discussed in Sections 6.5.1.1 and 6.5.1.2,

the Double DQN strategy reduces the voyage cost by 7.0%, while increasing the

GWP emission by 6.9%. This is due to the conflict between voyage cost and GWP

emission. PEMFC degradation cost is reduced by 8.3% by avoiding unnecessary

PEMFC power adjustments and by making more use of the battery.

Table 6.6: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of validation sample voyage 1.

Voyage cost Voyage GWP Emission
Double DQN Double Q Double DQN

Double Q Double DQN Double Q Double DQN
Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 224.3 244.7 91.7 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 40.0 31.2 128.2 74.8 58.3 128.2
H2 366.5 406.8 90.1 66.7 74.1 90.1

Sum 694.5 746.5 93.0 141.5 132.4 106.9

6.5.2.2 Validation sample 2 with moderate power demand

Figure 6.13 illustrates the Double DQN strategy (Figure 6.13b) in comparison with

the Double Q strategy (Figure 6.13a) for a sample voyage with moderate power

demand from the validation voyage dataset. The Double DQN strategy starts ramp-

ing up the PEMFC output at 700 s. As in Figure 6.13b, the power trajectory of the

PEMFC is much smoother compared to that in Figure 6.13a. The batteries absorb

the small power transients by frequent charging and discharging. In addition, when

approaching port (2300–2750 s), the Double DQN starts to decrease fuel cell power

in advance. Such behaviour has not been observed with the Double Q strategy (e.g.

Figure 6.13a).

Table 6.7 compares the voyage cost and GWP emission breakdowns of the two

strategies for validation sample 2. The Double DQN strategy reduces the voyage

cost by 8.4% for this voyage. As the PEMFC power adjustments are less frequent,
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the PEMFC degradation cost of the Double DQN strategy is reduced by 14.7%. The

Double DQN strategy increases the electricity cost by $9.6 but reduces the H2 cost

by $43.2. The Double DQN strategy tends to use more shore-generated electricity

to achieve lower overall voyage cost. Such a tendency would increase the electricity

cost slightly but would bring greater cost reduction from H2 consumption. However,

the Double DQN strategy increases voyage GWP emission by 7.0%.
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Figure 6.13: Double Q and Double DQN energy management strategies for validation sam-
ple voyage 2 with moderate power demand: (a) Double Q strategy and (b)
Double DQN strategy.
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Table 6.7: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of validation sample voyage 2.

Voyage cost Voyage GWP Emission
Double DQN Double Q Double DQN

Double Q Double DQN Double Q Double DQN
Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 204.5 239.6 85.3 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 42.0 32.4 129.9 78.6 60.5 129.9
H2 434.4 477.6 91.0 79.1 86.9 91.0

Sum 744.7 813.2 91.6 157.7 147.4 107.0

6.5.2.3 Validation sample 3 with high power demand

Figure 6.14 details the Double DQN and Double Q strategies for validation sample

3. This sample has relatively high power demand (with an average power require-

ment of 1597.8 kW). Although the PEMFC power trajectories of the two strategies

follow similar trends in general, the Double DQN strategy maintains the PEMFC

power more consistently and only makes adjustments when significant power tran-

sients have been observed (e.g. at 1450 s). Also, the Double DQN discharges the

battery to a SOC of around 0.26 (close to the lower SOC limit). In addition, the

Double DQN decreases the PEMFC output in advance of reaching the port and

reduces fuel cell power output to zero when shore power is available.

Detailed voyage cost and GWP emission breakdowns of the two strategies for

this voyage are detailed in Table 6.8. The voyage costs of the Double DQN and

Double Q strategies are $1056.7 and $1093.0, respectively, corresponding to a 3.3%

voyage cost difference. The cost saving of 3.3% is lower compared to those voyages

discussed in Section 6.5.2.1 and 6.5.2.2. The reason for the reduced cost saving is

the PEMFC power trajectories of the two strategies follow very similar trends, while

the Double DQN strategy only adjusts fuel cell power when necessary.
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Figure 6.14: Double Q and Double DQN energy management strategies for validation sam-
ple voyage 3 with high power demand: (a) Double Q strategy and (b) Double
DQN strategy.
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Table 6.8: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of validation sample voyage 3.

Voyage cost Voyage GWP Emission
Double DQN Double Q Double DQN

Double Q Double DQN Double Q Double DQN
Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 245.7 257.4 95.5 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 43.5 36.9 117.9 81.4 69.1 117.9
H2 703.7 734.9 95.8 128.1 133.8 95.8

Sum 1056.7 1093.0 96.7 209.5 202.8 103.3

Table 6.9 summaries the Double DQN strategy performance in comparison

with that of the Double Q strategy. The Double DQN strategy further reduces the

average costs for training and validation datasets by 5.9% and 5.5% respectively.

The Double DQN strategy achieves average voyage costs of 105.7% and 106.0% of

that of the DDP strategy in training and validation datasets respectively (see Table

6.2).

Table 6.9: Comparison of Double DQN and Double Q strategy average voyage costs and
GWP emissions.

Category Profile
Voyage cost Voyage GWP emission

Double DQN Double Q Double DQN
Double Q Double DQN Double Q Double DQN

Double Q
[$] [$] [%] [kg] [kg] [%]

Training
Sample 1 627.3 686.0 91.5 129.3 120.1 107.7
Sample 2 725.3 795.3 91.2 154.7 145.9 106.1
Sample 3 1570.2 1548.2 101.4 286.2 279.9 102.3

Average all profiles 782.5 831.8 94.1 159.7 152.0 105.0

Validation
Sample 1 694.5 746.2 93.1 141.5 132.4 106.9
Sample 2 744.7 813.0 91.6 157.7 147.4 107.0
Sample 3 1056.7 1092.7 96.7 209.5 202.8 103.3

Average all profiles 768.9 813.8 94.5 157.5 149.2 105.5

6.6 Summary

The aim of this chapter was to further improve the cost-effectiveness of reinforce-

ment learning based energy management strategies by extending discrete state space

to be continuous. The environment of the agent-environment interaction framework

has been improved by removing action explorations in port mode since cold ironing
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has been deemed as one of the design requirements. Such an adjustment reduces

training episode length.

Novel approaches using deep reinforcement learning have been pro-

posed to solve the optimal energy management problem of the plug-in hybrid

PEMFC/battery propulsion system in continuous state space. Two deep reinforce-

ment learning algorithms, i.e. Deep Q-Network and Double Deep Q-network have

been applied in light of the results in Chapter 5 suggesting overestimations of

action-values could lead to divergence in agent training. In addition, two loss func-

tions, Mean Squared Error and Huber loss functions, have been explored to deal

with value overestimations in the stochastic environment.

The training processes of the two agents suggest that the Double Deep Q-

Network performed slightly better than the Deep Q-Network with Mean Squared

Error loss function applied. However, with the Mean Squared Error loss function,

both agents have not achieved what could be considered satisfactory performance.

When the Huber loss function, the Double DQN and DQN agents delivered similar

performance.

The energy management strategy generated by the Double Deep Q-Network

with Huber loss function was examined in detail in comparison to that generated

by the Double Q agent. When compared to the Double Q energy management

strategy developed in Chapter 5, a further 6% cost-performance improvement has

been achieved by the Double Deep Q-Network with more than 90% computation

time reduction. The cost reduction is achieved by more accurate PEMFC control

and reduced H2 consumption. However, the Double DQN based energy manage-

ment strategy leads to a 5% increase in voyage GWP emission due to higher shore-

generated electricity consumption.



Chapter 7

Deep reinforcement learning based

continuous energy management

strategies

7.1 Overview

In Chapter 6, the optimal energy management problem was solved in continuous

state but discrete action spaces using DQN and Double DQN agents. Although

both algorithms achieved voyage cost performance close to that of the off-line strat-

egy solved by DDP, such algorithms are limited to small discrete action space (Mnih

et al., 2015). Considering fuel cell power level is a continuous parameter, this chap-

ter aims to extend the discrete action space to be continuous.

In addition, in marine propulsion (especially IFEP) systems, for redundancy

considerations, it is usual to install multiple power sources that can be controlled

independently. Therefore, this chapter will also explore the feasibility of controlling

multiple fuel cell clusters using deep reinforcement learning algorithms. Instead

of controlling each fuel cell stack independently, PEMFC stacks are grouped into

clusters, and stacks within one cluster are controlled uniformly. Such a setting

198
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simplifies the problem by avoiding very high dimensional action and state spaces.

Section 7.2 updates the optimal energy management problem to independent

and continuous control of multiple fuel cell clusters. Section 7.3 introduces the Twin

Delayed Deep Deterministic Policy Gradient (TD3) deep reinforcement learning

algorithms (Fujimoto et al., 2018). Section 7.4 details the training process of the

agent. Section 7.5 assesses the energy management strategy performance using

voyage samples as discussed in previous chapters.

7.2 Optimal energy management problem

reformulation

7.2.1 Action space

In the preceding chapters, the fuel cell stacks are controlled uniformly in one-

dimensional discrete action space. In this chapter, the action space is extended

to be multi-dimensional and continuous to control multiple PEMFC clusters con-

currently. For the energy management problem with m PEMFC clusters, the action

space is defined as:

a =



a1

a2

...

am−1

am


(7.1)

where ak ∈ [aM−,aM+] is the k− th (k = 1,2, . . . ,m−1,m) PEMFC cluster per unit

power adjustment. Note that aM− = −0.04, aM+ = +0.04 are maximum allowed

per unit power decreasing and increasing limits, respectively. Note that all the fuel

cell stacks are controlled uniformly when m = 1.
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7.2.2 State space

It is assumed that all PEMFC clusters are assigned with an equal PEMFC power,

and the rated cluster power is Pc =
Pf c,rated

m , where Pf c,rated is the total installed fuel

cell power (see Chapter 4). As each of the fuel cell clusters has its own power state,

therefore the fuel cell state is extended to:

x =



x1

x2

...

xm−1

xm


(7.2)

where xk is the k− th fuel cell per unit power. The definitions of shore power

availability spA, battery state of charge SOC, and power demand pdem remain un-

changed. Consequently, the new state space of the multi-stack energy management

problem is:

s =



x

SOC

spA

pdem


=



x1

x2

...

xm−1

xm

SOC

spA

pdem



(7.3)
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With given action a, from current state s to next state s′, the state transition is

calculated by:

s′ =



x1 +a1

x2 +a2

...

xm−1 +am−1

xm +am

SOC′

spA′

p′dem



(7.4)

where the next battery SOC SOC′ is calculated by the system model (see Chapter

4 and Figure 5.2), next shore power availability spA′ and p′dem are determined by

the power profile. Note the fuel cell power override function still applies (see Eq.

6.12). It is worth mentioning that when calculating battery power, the total fuel cell

power after the power converters, i.e. P1 (see Eq. 4.1), is updated to:

P1 =
m

∑
k=1

Pcxkη1,k (7.5)

where η1,k is uni-directional power converter efficiency (see Figure 4.3) of k− th

PEMFC cluster.

7.2.3 Reward function

Based on the reward function described in Chapter 6, as multiple PEMFC clusters

are configured, the reward function is updated to:
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rt+1 =



−1, spA=0, if st+1 is infeasible

−1, spA=0, if any xi +ai,t /∈ [0,1]

tanh
(

1
costt+1

)
, spA=0,else

K

∑
n=t+1

tanh
(

1
costn

)
, spA=1

(7.6)

where, when shore power is available (spA = 1), the environment returns a summed

reward of all the costs incurred in port mode of current episode. In sailing mode, i.e.

spA = 0, the environment returns −1 if st+1 is infeasible or one or more PEMFC

cluster control actions are overridden. Note that the degradation and H2 fuel costs

for each PEMFC cluster are calculated independently using the scalable PEMFC

model, then summed to further calculate the cost costt+1 incurred in one time step.

7.3 Twin Delayed Deep Deterministic Policy

Gradient

Although Q-network based DQN and Double DQN agents achieved satisfactory

performance in Chapter 6, these algorithms cannot be applied to problems with

continuous or large action space due to maximisation operating in selecting optimal

actions:

at ← argmax
a

(Q(st+1,a;θ)) (7.7)

i.e. finding the greedy policy at every time step. Silver et al. (2014) proposed an

actor-critic (see Figure 7.1) based Deterministic Policy Gradient (DPG). In DPG,

the actor πφ (i.e. the policy) parametrised by φ is updated by taking the gradient of

the expected return J(φ) (Silver et al., 2014; Fujimoto et al., 2018):

∇φ J(φ) = Es∼ρπ

[
∇aQπ (s,a) |a=π(s)∇φ πφ (s)

]
(7.8)

where Qπ (s,a) =Es∼ρπ ,a∼π [Rt |s,a] is the expected return of performing action a in

state s following policy π . Note that ρπ is the state distribution which also depends
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on the policy parameters. Rt = ∑
T
i=t γ i−tr(si,ai) with a discount factor γ is the dis-

counted sum of rewards which the agent aims to maximise. Such an architecture is

applicable to continuous control problems (Silver et al., 2014).

Environment

Actor

Policy π(s)   

Critic

Value function

V(s) 

TD 

error 

Agent 

Action

at

Reward

rt+1

State

st+1

st+1

st+1

Figure 7.1: Actor-critic architecture (Sutton and Barto, 2018).

Later work of (Lillicrap et al., 2015) developed a Deep Deterministic Policy

Gradient (DDPG) based on DPG. In DDPG, exploration noise Nt is added to the

actor policy πφ (st):

at = πφ (st)+Nt (7.9)

The concept of experience replays and target networks have also been included in

DDPG to break sample correlations and to improve training stability. The critic, i.e.

the Q-function Qθ (s,a) parametrised by θ , is updated by minimising the loss:

L =
1
D

D

∑
j=1

(
y j−Qθ (s j,a j)

)2 (7.10)

The policy πφ is updated using the sampled policy gradient (see Eq. 7.8). In every
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training step, both the actor and critic target networks are soft-updated with a soft-

update rate τ .

Although DDPG can achieve satisfactory performance in some continuous

control tasks, the overestimation bias can be problematic (Fujimoto et al., 2018).

Fujimoto et al. (2018) proposed the Twin Delayed Deep Deterministic Policy Gra-

dient (TD3) (Algorithm 7.1) addressing the function approximation errors and over-

estimation bias in actor-critic methods. The results in Chapters 5 and 6 have high-

lighted the problem of overestimations in the stochastic environment. Consequently,

a novel approach using the TD3 algorithm is proposed in this chapter to solve the

optimal energy management problem of the plug-in hybrid PEMFC/battery system.

Algorithm 7.1 Twin delayed policy deterministic policy gradients (TD3) agent (Fu-
jimoto et al., 2018).

1: Initialise replay memory D to capacity M
2: Initialise critic networks Qθ1 , Qθ2 , and actor network πφ with random parameters θ1, θ2,

φ

3: Initialise target networks θ ′1← θ1, θ ′2← θ2, φ ′← φ

4: while n < Nmax do
5: Initialise initial state s1
6: for t = 1 : T do
7: Select action at with exploration noise at ∼ πφ (st)+ ε , ε ∼N (0,σ)
8: Take action at , observe rt+1,st+1 and termination f lag
9: Store transition (st ,at ,rt+1,st+1) in replay memory

10: Every Z steps sample random mini-batch of transitions (s,a,r,s′) from mini-
batch

11: ã← πφ ′ (s′)+ ε̃ , ε̃ ∼ clip(N (0, σ̃) ,−c,c)

12: Set y =

{
r, if episode terminates
r+ γ mini=1,2 Q′

θi
(s′, ã) , otherwise

13: Update critics θi← argminθi
Lθi

14: if t mod d = 0 then
15: Update φ by the deterministic policy gradient:
16: ∇φ J (φ) = D−1

∑∇aQθ1 (s,a) |a=πφ (s)∇φ πφ (s)
17: Soft-update target network:
18: θ ′i ← τθi +(1− τ)θ ′i
19: φ ′← τφi +(1− τ)φ ′

20: end if
21: Terminate if termination f lag
22: end for
23: end while
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In TD3, there are two critic networks, i.e. Qθ1 and Qθ2 and one actor network

πφ . The subscripts of θ1, θ2 and φ denote the neural network parameters. Corre-

spondingly, there are two critic target networks Q′
θ1

and Q′
θ2

and one actor target

network π ′
φ

. The superscript ′ denotes target network. Three key improvements

have been made to DDPG (Fujimoto et al., 2018).

The first improvement is clipped Double Q-learning for the actor-critic. When

calculating the target value, the minimum value between the two critic estimates is

selected:

y← r+ γ min
i=1,2

Q′θi

(
s′, ã
)

(7.11)

so that the less biased Q-value estimate is used, which is similar to the concept of

Double Q-learning (van Hasselt, 2010). Note that ã is given by the target actor net-

work with a small amount of random noise added to the target action to smooth the

value estimate by bootstrapping off of similar state-action value estimates (second

improvement) (Fujimoto et al., 2018):

ã← πφ ′
(
s′
)
+ ε̃, ε̃ ∼ clip(N (0, σ̃) ,−c,c) (7.12)

where ε̃ ∈ (−c,c) is the added noise clipped from a Gaussian distribution N (0, σ̃)

with a 0 mean value and a standard deviation of σ̃ such that the target is maintained

close to the original action. Moreover, the actor πφ parametrised by φ is updated

less frequently than the critics, i.e. φ is updated every d critic updates such that

accumulated errors can be reduced.

It is worth noting that the Huber loss function is adopted to update the critic

networks, which is different from the Mean Squared Error used in (Fujimoto et al.,

2018). This adjustment is made to achieve more stable agent training as the Mean

Squared Error loss function in Chapter 6 led to diverged training processes. Conse-

quently, the loss function for the critic is:

Li (θ) =
1
D

D

∑
j=1

σi, j (7.13)
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where:

σi, j =


1
2

δ
2
i, j, if

∣∣δi, j
∣∣< 1∣∣δi, j

∣∣− 1
2
, otherwise

(7.14)

where δi, j = yi, j−Qθi(s,a), i = 1,2, j = 1,2, . . . ,D. δ denotes temporal difference

(see Chapter 6). i denotes the i− th critic; j denotes the j− th sample in the mini-

batch with capacity D.

7.4 Agent training

The aims of this chapter are twofold: (1) uniform fuel cell control in a continuous

action space and (2) multi-cluster fuel cell control in a continuous action space.

Consequently, the agent is trained separately for each of the two scenarios:

• Uniform fuel cell control, m = 1, i.e. the fuel cells are controlled uniformly

as in Chapters 5 and 6 but in continuous action space.

• Multi-cluster fuel cell control, m = 4, i.e. the fuel cells are distributed to

multiple clusters and are controlled separately. The cluster number m is set

to 4. This results in the number of total power sources is being five (four

PEMFC clusters and one battery). This setting is to bring the system close to

the original IFEP configuration with 5 diesel generators.

The agents were trained on a workstation with two Intel Xeon E5-2683 V3

processors (28 cores in total) running on Windows 10. The environment and the

agent were coded in Python. The agent’s neural networks were built and trained

with PyTorch v1.20.

As the learning curve of the agent can be influenced by the random seeds (de-

termining the appearance order of training power profiles to the agent) of the envi-

ronment (Henderson et al., 2018) each agent was trained with 28 different random

seeds for reproducibility. The agent policy performance was assessed by calculat-

ing the average values and standard deviations across all converged instances. Note
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that as the neural networks are relatively small, only one CPU thread is assigned

to each running instance to avoid training speed degradation due to unnecessary

parallelisation.

The actual strategy performance was periodically tested (every 100 training

episodes) with 10 random training voyages during training. Note that in test mode,

no exploration noise was added; and battery over-discharge protection was enabled

(disabled in training mode). Once the training of all the 28 instances was completed,

the agent with the lowest episode cost was chosen to generate detailed energy man-

agement strategy results.

7.4.1 Neural network settings

Figure 7.2 illustrates the settings for the actor (Figure 7.2a) and critic (Figure 7.2b).

The actor observes state inputs s and chooses action a. As in Figure 7.2a, the inputs

to the actor are state vectors. Two fully-connected hidden layers forward propagate

the state inputs followed by a fully-connected output layer. The input layer and

the two hidden layers are activated by ReLU. The output layer is activated by a

hyperbolic tangent function (tanh) then multiplied by aM to match the action limits

of [−0.04,0.04]. As in Figure 7.2b, the critic receives the state and action inputs,

and outputs the Q-value (see Section 7.3). Note that no activation function is applied

to the output layer to allow free value estimates. Also note that, for uniform fuel

cell control, the state and action space dimensions are 4 and 1, respectively; for the

4-cluster control, the state and action space dimensions are 7 and 4, respectively.

7.4.2 Hyperparameters

As the state and action space dimensions differ in the two scenarios to be inves-

tigated, the hyperparameters were tuned separately for the scenarios. Table 7.1

details the hyperparameter settings for the uniform PEMFC control energy man-

agement strategy. The agent is trained every Z time steps (Z = 32) instead of every

time step to increase explorations. Note that the TD3 parameters σ , σ̃ , c and d

are adopted from (Fujimoto et al., 2018). The mini-batch size D is 32. The Adam
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Figure 7.2: Neural network settings of TD3. (a) Actor network setting and (b) Critic net-
work setting.

optimiser exponential decay rates for the first and second moment estimates adopts

the values as suggested in (Kingma and Ba, 2014). Other parameters are tuned by

trial and error to gain satisfactory performance.
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Table 7.1: Hyperparameters for PEMFC uniform control.

Parameter Hyperparameter Value

B Mini-batch size 32
M Experience memory size 1000000
τ Target network update weight 0.001
γ Discount factor 1
Z Update period 32
α Learning rate of Adam optimiser 0.0001
β1 Exponential decay rate for the first moment estimates of Adam optimiser 0.9
β2 Exponential decay rate for the second moment estimates of Adam optimiser 0.999
σ Standard deviation of exploration noise 0.1
σ̃ Standard deviation of policy noise 0.2
c Policy noise clip factor 0.5
d Delayed policy update step 2

The hyperparameters adopted for the 4-cluster energy management problem

are listed in Table 7.2. The Adam optimiser setting follows the values suggested in

(Kingma and Ba, 2014). The TD3 parameters σ , σ̃ , c and d are adopted from (Fuji-

moto et al., 2018). The discount rate is γ = 1 as the energy management problem is

an episodic task with a limited number of time steps. This setting is identical to that

used in Chapters 5 and 6. Other parameters are tuned by trial and error to achieve

satisfactory performance.

Table 7.2: Hyperparameters for PEMFC 4-cluster control.

Parameter Hyperparameter Value

B Mini-batch size 128
M Experience memory size 1000000
τ Target network update weight 0.005
γ Discount factor 1
Z Update period 8
α Learning rate of Adam optimiser 0.001
β1 Exponential decay rate for the first moment estimates of Adam optimiser 0.9
β2 Exponential decay rate for the second moment estimates of Adam optimiser 0.999
σ Standard deviation of exploration noise 0.1
σ̃ Standard deviation of policy noise 0.2
c Policy noise clip factor 0.5
d Delayed policy update step 2
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7.4.3 Training

7.4.3.1 Uniform fuel cell control

Figure 7.3 details the training process of the uniform fuel cell control EMS. The

training was implemented on the workstation in 28 instances with different random

seeds (each processor core was assigned a running instance). The policy was eval-

uated every 100 training episodes in test mode by randomly sampling 10 training

voyages. The total number of training episodes is 8000. 7 out of the 28 instances

diverged. It took 100 min for a converged instance to complete the training. The

final test episode costs of the converged instances are around $800.0. The policy

can complete all training voyages with battery over-discharge protection enabled.

7.4.3.2 Multi-cluster fuel cell control

Figure 7.4 illustrates the training process for the 4-cluster fuel cell control EMS.

The training was terminated at 8000 episodes. 2 out of the 28 instances diverged.

It required 204 min for a converged instance to complete the training. Note the

converged reward (around 74) of the 4-cluster strategy is lower than that of uniform

EMS (around 100), which was mainly as result of more frequent fuel cell control

action overrides occurring as the action space dimension increased. The voyage

cost converged to a value slightly higher than $800.0.
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(a) (b)

Figure 7.3: Uniform fuel cell control training and testing with Huber loss function. The
deep blue lines are moving average values across 21 converged instances run-
ning with different random seeds. 7 diverged instances are not included. The
light blue shadows are the confidence bounds calculated by mean values ±
standard deviations across the 21 instances.
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(a) (b)

Figure 7.4: 4-cluster fuel cell control training and testing with Huber loss function. The
deep blue lines are moving average values across 26 converged instances run-
ning with different random seeds. Two diverged instances are not included.
The light blue shadows are the confidence bounds calculated by mean values±
standard deviations across the 26 instances.



Deep reinforcement learning based continuous energy management strategies 213

7.5 Results

The learned strategy was first applied to the training voyages to verify the EMS cost

performance without any policy noise. As the learned strategy is intended to achieve

minimum voyage cost for un-predicted future voyages, the EMS was validated by

applying to a set of un-predicted future voyages.

As each of the strategies generated with different random seeds vary slightly

from others, for both scenarios, the strategies with minimum average voyage costs

were selected to generate the detailed voyage power distributions. The training and

validation voyage sets are identical, as used in Chapters 5 and 6. The power profile

samples (see Table 5.6) are also identical to the ones discussed previously.

7.5.1 Training voyages

7.5.1.1 Training sample 1 with low power demand

Training voyage sample 1 is a voyage with relatively low power demand. Figure 7.5

compares the uniform TD3 (Figure 7.5b) and Double DQN (Figure 7.5a) strategies

for this voyage. As in Figure 7.5b, the PEMFC power adjustments during cruis-

ing obtained from the TD3 strategy are smaller than those of the Double DQN.

Although the two strategies follow similar trajectories in general, the TD3 strategy

tends to discharge the battery to a lower SOC value (around 0.28). Consequently,

as depicted in Table 7.3, the TD3 strategy leads to a % voyage cost reduction with

lower PEMFC degradation and H2 fuel costs, but a higher electricity cost. The GWP

emission is increased by 4.1% due to an increase in electricity usage.

Figure 7.6 presents the 4-cluster energy management strategy for training sam-

ple voyage 1. After departure (0–800 s), the strategy tends to use all four clusters at

low load; which differs from the Double DQN and TD3 uniform strategy. During

cruising, cluster 3 is maintained with relatively lower power output, while the out-

puts from clusters 1 and 4 are almost identical. However, it should be noted that all

cluster power outputs fluctuate in a small region during cruising. These fluctuations
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Table 7.3: Comparison of TD3 and Double DQN strategy voyage costs and GWP emissions
for training sample 1.

Voyage cost Voyage GWP Emission
TD3 Double DQN TD3

Double DQN TD3 Double DQN TD3
Double DQN

[$] [$] [%] [kg] [kg] [%]

PEMFC 222.9 224.9 99.1 - - -
Battery 64.3 64.3 100.0 - - -

Electricity 43.8 40.1 109.0 81.8 75.0 109.0
H2 290.3 298.0 97.4 52.9 54.2 97.4

Sum 621.3 627.3 99.0 134.7 129.3 104.1

together with early PEMFC starts lead to 10.5% increase in PEMFC degradation

cost (see Table 7.4). Consequently, the total voyage cost of the 4-cluster strategy is

increased by 3.7%. Nevertheless, the voyage GWP emission is similar between the

uniform and 4-cluster strategies.

Table 7.4: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for training sample 1.

Voyage cost Voyage GWP Emission
TD3–multi TD3–uniform Multi

Uniform TD3–multi TD3–uniform Multi
Uniform

[$] [$] [%] [kg] [kg] [%]

PEMFC 246.2 222.9 110.5 - - -
Battery 64.3 64.3 100.0 - - -

Electricity 43.9 43.8 100.4 82.2 81.8 100.4
H2 290.3 290.3 100.0 52.8 52.9 100.0

Sum 644.7 621.3 103.8 135.0 134.7 100.3
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Figure 7.5: Double DQN and TD3 uniform energy management strategies for training sam-
ple voyage 1 with low power demand: (a) Double DQN strategy and (b) TD3
strategy.
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Figure 7.6: TD3 4-cluster energy management strategy for training sample voyage 1 with
low power demand.
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7.5.1.2 Training sample 2 with moderate power demand

Figure 7.7 shows the Double DQN strategy (Figure 7.7a) and TD3 uniform strategy

(Figure 7.7b) for a sample voyage in the training dataset with moderate power de-

mand. Both the TD3 and Double DQN strategies delay the time at which the fuel

cell provides power to the system after departure with the batteries delivering the

manoeuvring power. However, the TD3 strategy tends to use the batteries more ag-

gressively, i.e. the battery SOC is maintained in lower values during cruising. Note

that the TD3 strategy adjusts the PEMFC power output frequently by relatively

small amounts.

As detailed in Table 7.5, the TD3 strategy results in a 1% higher voyage cost

due to increased electricity and H2 consumption. Such a pattern is different from

the ones observed in Chapter 6. The Double DQN strategy with higher electricity

consumption typically has lower H2 consumption. The reason for this is that from

0–800 s the fuel cell power is maintained at a power level very close to zero, which

corresponds to very low efficiency operation.

Table 7.5: Comparison of TD3 and Double DQN strategy voyage costs and GWP emissions
for training sample 2.

Voyage cost Voyage GWP Emission
TD3 Double DQN TD3

Double DQN TD3 Double DQN TD3
Double DQN

[$] [$] [%] [kg] [kg] [%]

PEMFC 207.3 207.1 100.1 - - -
Battery 67.0 67.0 100.0 - - -

Electricity 46.1 43.0 107.2 86.2 80.4 107.2
H2 411.9 408.2 100.9 75.0 74.3 100.9

Sum 732.2 725.3 101.0 161.2 154.7 104.2

Figure 7.8 shows the TD3 4-cluster strategy. As PEMFC cluster outputs are

adjusted frequently, the PEMFC degradation cost is 6.4% higher than that of the

uniform strategy (see Table 7.6). Although the 4-cluster strategy reduces both elec-

tricity and H2 costs, the overall voyage cost of the 4-cluster strategy is 6.3% higher

than that of the uniform strategy. Nevertheless, due to reduced electricity and H2

consumptions, the 4-cluster EMS achieves 1.5% less GWP emissions.
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Figure 7.7: Double DQN and TD3 uniform energy management strategies for training sam-
ple voyage 2 with moderate power demand: (a) Double DQN strategy and (b)
TD3 strategy.
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Figure 7.8: TD3 4-cluster energy management strategy for training sample voyage 2 with
moderate power demand.
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Table 7.6: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for training sample 2.

Voyage cost Voyage GWP Emission
TD3–multi TD3–uniform Multi

Uniform TD3–multi TD3–uniform Multi
Uniform

[$] [$] [%] [kg] [kg] [%]

PEMFC 260.6 207.3 125.7 - - -
Battery 67.0 67.0 100.0 - - -

Electricity 45.5 46.1 98.7 85.1 86.2 98.7
H2 405.2 411.9 98.4 73.8 75.0 98.4

Sum 778.2 732.2 106.3 158.8 161.2 98.5

7.5.1.3 Training sample 3 with high power demand

Figure 7.9 compares the uniform TD3 strategy (Figure 7.9b) with Double DQN

strategy (Figure 7.9a) for an extremely high power profile in the training dataset.

Both strategies triggered the battery over-discharge protection. The TD3 strategy

results in 6.4% lower overall voyage cost (Table 7.7). The H2 cost is reduced by

increasing fuel cell power at an earlier stage such that the PEMFC can operate with

higher efficiencies from 400 s to 800 s. With less H2 consumption, the TD3 strategy

voyage GWP is reduced by 5.3%.

Table 7.7: Comparison of TD3 and Double DQN strategy voyage costs and GWP emissions
for training sample 3.

Voyage cost Voyage GWP Emission
TD3 Double DQN TD3

Double DQN TD3 Double DQN TD3
Double DQN

[$] [$] [%] [kg] [kg] [%]

PEMFC 248.4 263.9 94.1 - - -
Battery 56.7 56.7 100.0 - - -

Electricity 34.9 34.8 100.2 65.3 65.1 100.2
H2 1130.8 1214.8 93.1 205.8 221.1 93.1

Sum 1470.8 1570.2 93.7 271.1 286.2 94.7

Figure 7.10 shows the TD3 4-cluster strategy for training sample voyage 3. All

the clusters start to increase power output immediately after departure. However,

the PEMFC power outputs are reduced during 150–350 s. Consequently, battery

over-discharge protection is also triggered.
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Figure 7.9: Double DQN and TD3 uniform energy management strategies for training sam-
ple voyage 3 with extreme power demand: (a) Double DQN strategy and (b)
TD3 strategy.
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Figure 7.10: TD3 4-cluster strategy for training sample voyage 3 with extreme power de-
mand.
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Table 7.8: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for training sample 3.

Voyage cost Voyage GWP Emission
TD3–multi TD3–uniform Multi

Uniform TD3–multi TD3–uniform Multi
Uniform

[$] [$] [%] [kg] [kg] [%]

PEMFC 264.3 248.4 106.4 - - -
Battery 56.7 56.7 100.0 - - -

Electricity 35.7 34.9 102.3 66.8 65.3 102.3
H2 1105.3 1130.8 97.7 201.2 205.8 97.7

Sum 1462.1 1470.8 99.4 268.0 271.1 98.8

Table 7.8 details the voyage cost and GWP emission breakdowns of the two

TD3 strategies for this training voyage with very high loads. The multi-stack strat-

egy achieves slightly less voyage cost and emissions due to reduced H2 consump-

tion.

7.5.2 Validation voyages

In this section, the energy management strategies are applied to validation voyages

which were not included in the training dataset such that the EMS performance for

future unknown voyages can be assessed.

7.5.2.1 Validation sample 1 with low power demand

Figure 7.11 compares the Double DQN strategy (Figure 7.11a) with the uniform

TD3 strategy (Figure 7.11b) for a validation sample voyage with low power de-

mand. In Figure 7.11a, the Double DQN strategy delays to increase the fuel cell

power output until the battery SOC has dropped to 0.36 (750 s). In contrast, the

TD3 uniform strategy starts to ramp up fuel cell power later (at 800 s). Conse-

quently, the minimum battery SOC of TD3 strategy is 0.26. During cruising, both

strategies frequently adjust fuel cell power output.

Table 7.9 details the cost and GWP emission breakdowns for validation sample

voyage 1. The uniform TD3 strategy voyage cost is 1.4% lower. This lower voyage

cost is achieved as a result of lower PEMFC degradation H2 costs. However, due to

increased electricity consumption, the voyage GWP emission of the TD3 strategy
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is 4.7% higher than that of Double DQN strategy.

Table 7.9: Comparison of TD3 and Double DQN strategy voyage costs and GWP emissions
for validation sample 1.

Voyage cost Voyage GWP Emission
TD3 Double DQN TD3

Double DQN TD3 Double DQN TD3
Double DQN

[$] [$] [%] [kg] [kg] [%]

PEMFC 216.1 224.3 96.3 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 44.0 40.0 110.1 82.3 74.8 110.1
H2 361.2 366.5 98.6 65.8 66.7 98.6

Sum 685.1 694.5 98.6 148.1 141.5 104.7

Figure 7.12 presents the TD3 4-cluster strategy for validation sample voyage

1. Clusters 1 and 4 show similar trajectories with higher loads. The power output

of clusters 2 and 3 are also similar but are lower compared to clusters 1 and 4.

Due to early fuel cell starts and unnecessary power adjustments, the TD3 4-cluster

strategy leads to a 19.6% higher PEMFC degradation cost as depicted in Table 7.10.

The voyage GWP emission of the TD3 4-cluster strategy is lower by 2.1% due to

reduced electricity and H2 consumption.

Table 7.10: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for validation sample 1.

Voyage cost Voyage GWP Emission
TD3–multi TD3–uniform Multi

Uniform TD3–multi TD3–uniform Multi
Uniform

[$] [$] [%] [kg] [kg] [%]

PEMFC 259.4 216.1 120.1 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 43.7 44.0 99.2 81.7 82.3 99.2
H2 347.4 361.2 96.2 63.2 65.8 96.2

Sum 714.3 685.1 104.3 144.9 148.1 97.9
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Figure 7.11: Double DQN and TD3 uniform energy management strategies for validation
sample voyage 1 with low power demand: (a) Double DQN strategy and (b)
TD3 strategy.



Deep reinforcement learning based continuous energy management strategies 226

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d 
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Po
w

er
 s

ou
rc

e 
po

w
er

 [
kW

]

PEMFC cluster 1 power
PEMFC cluster 2 power
PEMFC cluster 3 power
PEMFC cluster 4 power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

Figure 7.12: TD3 4-cluster strategy for validation sample voyage 1 with low power de-
mand.

7.5.2.2 Validation sample 2 with moderate power demand

Figure 7.13 illustrates the Double DQN strategy (Figure 7.13a) when compared

with the TD3 uniform strategy (Figure 7.13b) for a sample voyage with moderate

power demand from the validation voyage dataset. The Double DQN strategy starts
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ramping up the PEMFC output at 700 s. Similar behaviour has been observed for

the TD3 uniform strategy. While the Double DQN maintains the PEMFC power

output relatively constant, the TD3 strategy tends to adjust the power output with

small oscillatory changes. The TD3 strategy leads to higher electricity and H2 con-

sumptions, hence the voyage GWP is also higher than that the of Double DQN

strategy (see Table 7.11).

Table 7.11: Comparison of TD3 and Double DQN strategy voyage costs and GWP emis-
sions for validation sample 2.

Voyage cost Voyage GWP Emission
TD3 Double DQN TD3

Double DQN TD3 Double DQN TD3
Double DQN

[$] [$] [%] [kg] [kg] [%]

PEMFC 244.8 204.7 119.6 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 44.7 44.9 99.5 83.6 84.0 99.5
H2 427.6 437.9 97.7 77.8 79.7 97.7

Sum 780.8 751.3 103.9 161.4 163.7 98.6

Figure 7.14 shows the TD3 4-cluster strategy for validation sample 2. As the

PEMFC cluster outputs are adjusted frequently, the PEMFC degradation cost of the

4-cluster strategy is 19.6% higher than that of the uniform strategy (Table 7.12).

Although the 4-cluster strategy increases both electricity and H2 costs, the overall

voyage cost of the 4-cluster strategy is 4.0% lower than that of the uniform strategy.

Owing to increased electricity and H2 consumption, the 4-cluster strategy results in

1.4% higher voyage GWP emissions.

Table 7.12: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for validation sample 2.

Voyage cost Voyage GWP Emission
TD3–multi TD3–uniform Multi

Uniform TD3–multi TD3–uniform Multi
Uniform

[$] [$] [%] [kg] [kg] [%]

PEMFC 204.7 244.8 83.6 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 44.9 44.7 100.5 84.0 83.6 100.5
H2 437.9 427.6 102.4 79.7 77.8 102.4

Sum 751.3 780.8 96.2 163.7 161.4 101.4
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Figure 7.13: Double DQN and TD3 uniform energy management strategies for validation
sample voyage 2 with moderate power demand: (a) Double DQN strategy and
(b) TD3 strategy.
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Figure 7.14: TD3 4-cluster strategy for validation sample voyage 2 with moderate power
demand.

7.5.2.3 Validation sample 3 with high power demand

Figure 7.15 presents the TD3 uniform strategy (Figure 7.15b) in comparison with

Double DQN strategy (Figure 7.15a) for validation sample voyage 3. The two

strategies follow similar trends. But the TD3 uniform strategy adjusts the fuel cells
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frequently with small action amplitudes. Table 7.13 compares the voyage cost and

GWP emission breakdowns of the two strategies. The voyage cost of the TD3 uni-

form strategy is 5.7% higher due to increased H2 consumption. TD3 uniform strat-

egy emits 3.0% higher voyage GWP emission due to increased H2 consumption.

Table 7.13: Comparison of TD3 and Double DQN strategy voyage costs and GWP emis-
sions for validation sample 3.

Voyage cost Voyage GWP Emission
TD3 Double DQN TD3

Double DQN TD3 Double DQN TD3
Double DQN

[$] [$] [%] [kg] [kg] [%]

PEMFC 267.8 246.1 108.8 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 48.9 49.1 99.6 91.4 91.8 99.6
H2 715.9 678.1 105.6 130.3 123.4 105.6

Sum 1096.4 1037.1 105.7 221.8 215.2 103.0

Figure 7.16 illustrates the TD3 4-cluster strategy for validation sample voyage

3. Although the battery handles most of the large power transients, the PEMFC

clusters are occasionally adjusted, leading to a higher PEMFC degradation cost

(Table 7.14). The voyage cost of the 4-cluster strategy is 5.7% higher than that

of the uniform TD3 strategy due to the increase in H2 consumption and PEMFC

degradation. The voyage GWP emission of the 4-cluster TD3 strategy is 3.0% lower

as a result of reduced H2 consumption.

Table 7.14: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for validation sample 3.

Voyage cost Voyage GWP Emission
TD3–multi TD3–uniform Multi

Uniform TD3–multi TD3–uniform Multi
Uniform

[$] [$] [%] [kg] [kg] [%]

PEMFC 246.1 267.8 91.9 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 49.1 48.9 100.4 91.8 91.4 100.4
H2 678.1 715.9 94.7 123.4 130.3 94.7

Sum 1037.1 1096.4 94.6 215.2 221.8 97.0
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Figure 7.15: Double DQN and TD3 uniform energy management strategies for validation
sample voyage 3 with high power demand: (a) Double DQN strategy and (b)
TD3 strategy.
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Figure 7.16: TD3 4-cluster energy management strategy for validation sample voyage 3
with high power demand.

Table 7.15 summaries the TD3 uniform strategy performance in comparison

with the Double DQN strategy. The TD3 strategy further reduces the average costs

for training and validation datasets by 0.6% and 0.8% respectively. However, the

voyage GWP emission of the TD3 uniform strategy is increased by 3.8% due to
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increased electricity usage. Compared to the DDP strategy solved with complete

voyages information and SOC resolution of 0.0125, the voyage cost of the TD3

uniform strategy is only 5.1% and 5.4% higher for the training and validation voy-

ages respectively.

Table 7.15: Comparison of TD3 and Double DQN strategy average voyage costs and GWP
emissions.

Category Profile
Voyage cost Voyage Emission

TD3 Double DQN TD3
Double DQN TD3 Double DQN TD3

Double DQN
[$] [$] [%] [kg] [kg] [%]

Training
Sample 1 621.3 627.3 99.0 134.7 129.3 104.1
Sample 2 732.2 725.3 101.0 161.2 154.7 104.2
Sample 3 1353.5 1570.2 86.2 271.1 286.2 94.7

Average all profiles 778.0 782.5 99.4 165.7 159.7 103.8

Validation
Sample 1 685.1 694.5 98.6 148.1 141.5 104.7
Sample 2 751.3 744.7 100.9 163.7 157.7 103.8
Sample 3 1037.1 1056.7 98.1 215.2 209.5 102.7

Average all profiles 762.5 768.9 99.2 163.3 157.5 103.7

Table 7.16 details the TD3 4-cluster strategy performance in comparison with

the TD3 uniform strategy. The 4-cluster strategy average voyage costs of the train-

ing and validation voyages are $796.3 and $783.1, respectively, which are 2.4%

and 2.7% higher than those of the TD3 uniform strategy. The TD3 uniform strat-

egy emits 1.5% and 1.8% less GWP emissions for the training and validation voy-

ages, respectively. Nevertheless, both the TD3 uniform and multi-cluster strategies

have achieved satisfactory performance when undertaking future unknown voyages.

Note that the aim of multi-cluster control is improved system redundancy.

Table 7.16: Comparison of TD3 uniform and multi-cluster strategy voyage average costs
and GWP emissions.

Category Profile
Voyage cost Voyage Emission

Multi Uniform Multi
Uniform Multi Uniform Multi

Uniform
[$] [$] [%] [kg] [kg] [%]

Training
Sample 1 644.7 621.3 103.8 135.0 134.7 100.3
Sample 2 778.2 732.2 106.3 158.8 161.2 98.5
Sample 3 1462.1 1353.5 108.0 268.0 271.1 98.8

Average all profiles 796.3 778.0 102.4 168.2 165.7 101.5

Validation
Sample 1 714.3 685.1 104.3 144.9 148.1 97.9
Sample 2 780.8 751.3 103.9 161.4 163.7 98.6
Sample 3 1096.4 1037.1 105.7 221.8 215.2 103.0

Average all profiles 783.1 762.5 102.7 166.3 163.3 101.9
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7.6 Summary

This chapter aimed to extend the action space of the optimal energy management

problem to be continuous and multi-dimensional to explore the feasibility of con-

trolling multiple fuel cell clusters in a continuous action space using deep reinforce-

ment learning. A generic multi-cluster fuel cell environment has been implemented

based on the one developed in previous chapters. A Twin Delayed Deep Determin-

istic Policy Gradient with Huber loss function has been applied to solve the updated

energy management problem in multi-dimensional and continuous action space. As

a special case of multi-cluster control, the uniform fuel cell control was first solved

using TD3. The uniform strategy learned by the TD3 agent further reduces the aver-

age voyage cost in both training and validation power profiles. The developed novel

multi-cluster fuel cell control framework can be used to achieve optimal control of

multiple power sources in a stochastic environment.

It was also observed that the multi-cluster TD3 strategy led to less than 3%

average voyage cost increase compared to the uniform TD3 strategy. The reasons

for higher voyage costs and GWP emissions are: (1) the strategy adjusts cluster

power too frequently which would lead to increased PEMFC degradations and (2)

the strategy occasionally operates one or more of the cluster at very low power set-

tings leading to low fuel efficiency. Though finer hyperparameter tuning and more

extended training might further improve the EMS cost and emission performance.

Another possible cause could be the algorithm’s capability in high dimensional ac-

tion space is limited. These possibilities would require further investigations in fur-

ther work. Nevertheless, it should be noted that the multi-cluster control framework

is intended to improve the system redundancy. Consequently, the tiny deviations

are acceptable when the actual strategy performance is near-optimal in comparison

with the DDP off-line strategy.



Chapter 8

Conclusions and future work

8.1 Overview

The question this research aimed to answer was: How can coastal shipping substan-

tially reduce harmful greenhouse gas emissions from their propulsion and power

systems by using fuel cells and batteries and remain commercially viable? A criti-

cal review of previous research and projects in this field has highlighted the potential

of using PEMFC and Lithium battery technologies to decarbonise the coastal ships

with constraints and challenges addressed. It was concluded that there is a lack

of holistic design optimisation methods and intelligent energy management strate-

gies for such systems operating in different regions with variable energy properties.

Consequently, based on the operational standpoint of a typical coastal ferry, this the-

sis demonstrates the development and application of a novel multi-objective power

source sizing methodology and reinforcement learning based energy management

strategies using continuous monitoring data collected from an actual ship.

235
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8.2 Summary of the thesis

In Chapter 4, a scalable quasi-steady-state plug-in hybrid PEMFC/battery propul-

sion system model has been developed for power source sizing optimisation and in-

telligent energy management strategy development. In that chapter a novel holistic

design methodology for coastal hybrid ships based upon the developed model was

proposed. The power source sizing problem was solved using constrained mixed-

integer multi-objective optimisation in the external layer. The global optimum en-

ergy management strategies for an averaged operating profile are obtained from de-

terministic dynamic programming in the inner layer while considering power source

degradations in the sizing algorithm.

The developed multi-objective design methodology has been applied to a case

ship to optimise the alternative plug-in PEMFC/battery hybrid systems with the

objectives of minimising average voyage costs and voyage GWP emissions in two

case studies. The case studies indicated that the proposed propulsion system can

achieve at least a 65–88% life-cycle greenhouse gas reduction. It is evident that

such a PEMFC/battery hybrid system can significantly reduce the GWP emission,

but is still constrained by high costs, mainly from H2 cost of production and fuel

cell degradation.

Considering the uncertainties of the future energy market and production costs

of PEMFC and Lithium batteries, the subsequent sensitivity studies further explore

the impacts of power source and energy prices on the design of plug-in hybrid

PEMFC/battery system. The prices of the PEMFC, battery and H2 are expected

to decrease and become competitive with conventional diesel-based power solu-

tions. Nevertheless, the potential GWP emission reductions offered by the plug-in

hybrid PEMFC/battery system are significant. Having identified that these high

costs (including CAPEX and OPEX) are major limitations of such systems, the aim

of Chapters 5, 6 and 7 was to develop reinforcement learning and deep reinforce-

ment learning based intelligent energy management strategies to minimise future

unknown voyage cost using continuously monitored real-ship power profiles.
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Chapter 5 formulated the optimal energy management problem using MDP

and solved the formulated MDP using reinforcement learning agents in the discrete

state and action spaces to achieve minimum voyage cost without prior knowledge

of future power demands. With continuously monitored power profiles collected

from the case ship, two reinforcement learning agents (i.e. Q-learning and Double

Q-learning) have been applied to solve the optimal energy management problem.

The Q-learning agent which introduced maximisation biases failed to achieve sat-

isfactory performance. In contrast, the Double Q-learning achieved 96.9% cost-

performance compared to deterministic dynamic programming with identical space

resolutions. The results of this chapter suggested that reinforcement learning based

energy management strategies can achieve near-optimal performance without prior

knowledge of future power demands.

It should be noted that the resolutions of state and action spaces are limited

since Q-tables have been employed in Chapter 5. Frequent unnecessary fuel cell

power adjustments have been observed in the sample voyages due to limited state

space resolution. However, increasing the resolutions of the two spaces would make

the problem practically impossible to solve with the available computational re-

sources due to ‘the curse of dimensionality’. Consequently, Chapter 6 extends the

discrete state space to be continuous with deep neural networks as function approx-

imators.

In Chapter 6, novel approaches of Deep Q-Network and Double Deep Q-

network have been applied considering the results in Chapter 5 suggested over-

estimations of action-values could lead to divergent agent training. Also, two loss

functions, i.e. Mean Squared Error and Huber loss functions, were explored to deal

with the value overestimations in the stochastic environment. Both agents failed

when applied with the Mean Squared Error loss function due to the maximisation

biases. With the Huber loss function, the two deep reinforcement learning agents

achieved similar performance. A further voyage cost reduction of 6% with more

than 90% computation time reduction was achieved compared to the results ac-

quired in Chapter 5.
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The main limitation of the Q-network based agents is that they are not capa-

ble of handling a continuous and high dimensional action space. Chapter 7 further

extended both the state and action spaces to be continuous and developed a novel

generic framework for multi-cluster fuel cell control using a TD3 agent. The TD3

agent achieved satisfactory EMS performance in both uniform and multi-cluster

fuel cell controls. Although the multi-cluster TD3 EMS performance could be fur-

ther improved, the developed multi-cluster framework will be useful for developing

more sophisticated EMS with more constraints (e.g. load sharing and fault toler-

ance).

In summary, this thesis has proposed a novel multi-objective power source

sizing methodology integrating fuel cells and batteries for coastal ships. The pro-

posed sizing methodology has been demonstrated via case and sensitivity studies

for a coastal ferry. Moreover, the optimal energy management problem of the plug-

in hybrid PEMFC/battery system has been formulated with Markov Decision Pro-

cess and solved using reinforcement learning and deep reinforcement learning al-

gorithms. Based on continuously monitored power profiles, the developed energy

management strategies can achieve near-optimal cost performance in un-predicted

future voyages.

8.3 Summary of contributions

As stated in Chapter 1, this thesis focuses on decarbonising coastal ships using fuel

cells and batteries. By analysing and summarising the work, the research aim has

been achieved through the following aspects:

• Opportunities and constraints of using fuel cells and batteries for coastal

shipping decarbonisation: The uncertainties from the energy supply side,

power source manufacturing and practical ship design requirements need to

be addressed holistically to achieve balanced alternative propulsion system

design. The hybridisation of PEMFC, battery and grid power could poten-

tially provide balanced propulsion system designs for coastal ship operating
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on short routes and have access to clean and renewable energy sources.

• Hybrid propulsion system design optimisation: A holistic sizing method-

ology for the design of plug-in hybrid PEMFC/battery propulsion systems

has been proposed to optimise GWP emission and voyage cost. The pro-

posed methodology is based upon a calibratable system model, considering

life-cycle GHG emissions, costs and shipboard constraints.

• Reinforcement learning and deep reinforcement learning based in-

telligent energy management strategies using continuous monitoring

data: The optimal energy management problem of the plug-in hybrid

PEMFC/battery propulsion system has been formulated in Markov Decision

Process using large-scale historical data. The formulated Markov Decision

Process has been solved using reinforcement learning and deep reinforcement

learning algorithms to achieve near-optimum voyage cost in un-predicted fu-

ture voyages with a very high success rate.

• Deep reinforcement learning based continuous intelligent energy man-

agement strategies for multiple fuel cell cluster control: A generic multi-

cluster fuel cell environment has been developed for continuous and high-

dimensional fuel cell control. The state-of-the-art TD3 deep reinforcement

learning algorithm has been successfully applied to solve the multi-cluster

fuel cell intelligent energy management problem with complete success rate.

The novel contributions of this research are twofold. The sizing methodology

can be applied to guide practical hybrid propulsion system design. The intelligent

energy management strategies can be applied to hybrid systems in operation to min-

imise costs (including CAPEX and OPEX) for un-predicted future voyages.
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8.4 Recommendations for future work

8.4.1 Route and speed optimisation

The current work is based upon continuous monitoring data of power demands,

assuming that such power demands are fixed inputs to the algorithms. What if the

power demands can be reduced? One possible approach of reducing such power

demands is to optimise the routes and speeds. Optimised routes and speeds can

lead to reductions in power demands. The reduced power demands can be further

processed as inputs to the deep reinforcement learning based energy management

strategies to reduce voyage costs and emissions further. The author has explored

solving the path planning problem for unnamed surface vehicles using DQN in

(Zhou et al., 2019).

8.4.2 Advanced deep reinforcement learning agents

In this project, reinforcement learning agents such a Q-learning, Double Q-learning,

DQN, Double DQN, TD3 have been employed. The training processes in Chapters

6 and 7 suggest that agent performance can vary with different experience explo-

rations. Moreover, all the agents have been implemented in this project are single-

threaded. Other agents which can be trained in parallel (e.g. Advantage Actor-

Critic and Asynchronous Advantage Actor-Critic) can be investigated further to

better utilise multi-core processors and gain better performance. The hyperparame-

ters of the current agents require careful tuning to achieve satisfactory performance.

Agents requiring minimum parameter tuning (e.g. Proximal Policy Gradient) can

be further investigated. Note that the function overestimation problem needs to be

addressed properly.

8.4.3 Battery degradation model

In current work, an averaged battery degradation model is adopted assuming the

battery life-time is guaranteed by the manufacturer. In practice, the battery degrada-
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tion rate is subject to change under different operating conditions such as C-rate and

temperature. To implement a more detailed degradation model, a sufficient amount

of experimental data would be needed to fit an empirical degradation model. How-

ever, it should be noted that such models are only applicable to the type of cells

used to identify the model parameters. Industrial collaboration with battery cell

manufacturers would be a practical approach to acquire the data.

8.4.4 Intelligent energy management strategies for other hybrid

systems

Although the energy management strategies developed in this thesis are based on

the developed plug-in hybrid PEMFC/battery model, the reinforcement learning

approaches can be applied to other power systems, e.g. diesel-electric systems with

energy storage. Note that the methodologies can also be transferred to other sectors

such as road transport.

8.4.5 Advanced multi-cluster fuel cell control

In Chapter 7, multiple fuel cell clusters are controlled individually. However, cur-

rent work does not consider any possible failure modes (e.g. loss of one or two

clusters). The agents can be trained to be resilient with potential faults by adding

simulated faulted conditions to the training voyages. Note that additional system

states (e.g. cluster on/off status) are required to represent the power source running

conditions. Moreover, other state parameters such as weather and sea states can be

added to the state space.

8.4.6 System integration and experimental validation

Although the developed sizing methodology is practical, for actual applications, the

design parameters and system models need updates to match the actual scenario

and power sources available. When implementing intelligent energy management

strategies, the actual power source characteristics need to be updated in the system

models. Moreover, more protection functions may need to be added.
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8.4.7 Policy update strategies

8.4.7.1 Periodic policy

In this project, generic energy management strategies were generated based on one

set of historical power profiles. However, considering the power transitions may

change over time due to factors such as seasonal sea states and weather conditions,

periodically updating the policy may bring further improve the cost-effectiveness.

As depicted in Figure 8.1, the vessel starts with an EMS trained via a set of initial

power profiles. During operation, the EMS is updated periodically using the most

recent power profiles. A set of recent power profiles needs to be randomly separated

into two sub-sets: one set for agent training and verification, while the other set for

EMS validation. Once the new EMS is validated, it is ready for future voyages.

8.4.7.2 Adaptive policy

As power transition patterns may change over time, a self-adaptive EMS updating

procedure can be applied with minimum human intervention. Figure 8.2 shows the

training process of an adaptive EMS. The ship starts with an EMS trained by an

initial set of power profiles. A dynamic profile pool is maintained throughout the

ship’s operation by replacing the oldest profile with the most recent profile. Peri-

odically, the EMS performance is evaluated by comparing the actual EMS perfor-

mance against those solved via DDP. The agent would need training if the deviation

between the on-line and DDP strategies exceeds the performance threshold; other-

wise, existing EMS would be applied until the next performance evaluation point.
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Appendix A

Power transition map

Figure A.1 illustrates the power transition probability map with a grid length of

50 kW (a power index is assigned every 50 kW). The vertical and horizontal axes

are about current and next power demand indices, respectively. The colour of the

plot represents the transition probability from the current power demand index to

the next power demand index. The diagonal line from lower left to the upper right of

the figure corresponds to the situations those with current and next power demand

indies are identical. In general, the next power demand is more likely to have the

same power demand index (see the highlighted diagonal line). However, the power

transition pattern varies in different power regions. For example, in the low power

regions (0–300 kW, 0–6 power demand indices), the probability of having the same

power demand index is close to 1 (colour close to red). In the power regions from

350 to 1250 kW (7–25 power indices), the probability of having the same power

index in the next time step is around 0.3. In the power regions from 1300 to 1750

kW (26–35 power indices), the probability of having the same power index in the

next time step is approximately 0.5. More scattered transition probability pattern

can be observed in the high power regions (3000–3500 kW, 60–75 power demand

indices).

Note that these transition probabilities are not explicitly used in the EMS train-
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ing since all RL agents adopted in this study are model-free. Instead, the agents

are trained continuously by experiencing different power profiles from the training

dataset in each training episode.
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Figure A.1: Case ship power transition probability map with grid length of 50 kW.



Appendix B

Reinforcement learning algorithms

Algorithm B.1 Environment of the Reinforcement Learning problem
1: Store historical voyage power profiles
2: for each learning episode do
3: Randomly select one sample voyage from historical voyages
4: Initialise initial state parameters: p f c = 0, soc = SOCH , spA = 0
5: for t = 1 : T do
6: With action input at from the agent, at state S indexed as st

7: Update the next state parameters and the next state index st+1
8: Calculate the immediate reward rt+1
9: if st+1 is infeasible or override happens then

10: rt+1←−1
11: else
12: rt+1← tanh

( 1
cost

)
13: if t +1 is final time step and soct+1 = socH then
14: rt+1← rt+1 +1
15: end if
16: end if
17: Determine termination f lag
18: if st+1 is infeasible or next time step is final time step then
19: termination f lag← 1
20: break
21: end if
22: end for
23: end for
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Algorithm B.2 Q reinforcement learning agent adapted from (Watkins, 1989).
1: Q(s,a) = 0, ∀s ∈ S, ∀a ∈ A
2: n = 1, α = 1, ε = 1
3: while n < Nmax do
4: repeat
5: if n≤ Nd then
6: α ← α−∆α×n
7: ε ← ε−∆ε×n
8: end if
9: if rand < ε then

10: Select action a randomly from A
11: else
12: a← argmaxa (Q(s,a))
13: end if
14: Take action a, observe r,s, and termination f lag
15: Q(s,a)← Q(s,a)+α [r+ γQ(s,,argmaxa Q(s,,a))−Q(s,a)]
16: s← s,

17: until termination f lag is true
18: end while

Algorithm B.3 Double Q RL agent adapted from (van Hasselt, 2010).
1: Q1(s,a) = 0, Q2(s,a) = 0, ∀s ∈ S, ∀a ∈ A
2: n = 1, α = 1, ε = 1
3: while n < Nmax do
4: repeat
5: if n≤ Nd then
6: α ← α−∆α×n
7: ε ← ε−∆ε×n
8: end if
9: if rand < ε then

10: Select action a randomly from A
11: else
12: a← argmaxa (Q1(s,a)+Q2(s,a))
13: end if
14: Take action a, observe r,s, and termination f lag
15: With 0.5 probability updating Q1
16: if update Q1 then
17: Q1(s,a)← Q1(s,a)+α [r+ γQ2(s,,argmaxa Q1(s,,a))−Q1(s,a)]
18: else
19: Q2(s,a)← Q2(s,a)+α [r+ γQ1(s,,argmaxa Q2(s,,a))−Q2(s,a)]
20: end if
21: s← s,

22: until termination f lag is true
23: end while
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Algorithm B.4 Deep Q Network RL agent adapted from (Mnih et al., 2015).
1: Initialise replay memory D to capacity M
2: Initialise action-value function Q with random weights θ

3: Initialise target action-value function Q̂ with weights θ− = θ

4: while n < Nmax do
5: Initialise initial state s1
6: for t = 1 : T do
7: if rand < ε then
8: Select action at randomly from A
9: else

10: at ← argmaxa (Q(st+1,a;θ))
11: end if
12: Take action at , observe rt+1,st+1 and termination f lag
13: Store transition (st ,at ,rt+1,st+1) in Replay memory
14: Every Z steps sample random mini-batch of transitions (s j,a j,r j+1,s j+1) from

D

15: Set y j =

{
r j+1, if episode terminates at step j+1

r j+1 + γmaxa′ Q̂
(

s j+1,a
′
;θ−

)
, otherwise

16: Perform a gradient descent on L j (θ j) with respect to the network parameters
θ

17: Soft update the target network: θ−← τθ +(1− τ)θ−

18: Terminate if termination f lag
19: end for
20: if n≤ Nd then
21: ε ← ε−∆ε×n
22: end if
23: end while
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Algorithm B.5 Double Deep Q Network RL agent adapted from (van Hasselt et al.,
2015).

1: Initialise replay memory D to capacity M
2: Initialise action-value function Q with random weights θ

3: Initialise target action-value function Q̂ with weights θ− = θ

4: while n < Nmax do
5: Initialise initial state s1
6: for t = 1 : T do
7: if rand < ε then
8: Select action at randomly from A
9: else

10: at ← argmaxa (Q(st ,a;θ))
11: end if
12: Take action at , observe rt+1,st+1 and termination f lag
13: Store transition (st ,at ,rt+1,st+1) in D
14: Every Z steps sample random mini-batch of transitions (s j,a j,r j+1,s j+1) from

replay memory

15: Set y j =

{
r j+1, if episode terminates at step j+1
r j+1 + γQ(s j+1,argmaxa (Q(s j+1,a;θ)) ;θ−) , otherwise

16: Perform a gradient descent on (y j+1−Q(s j+1,a j;θ))2 with respect to the
network parameters θ

17: Soft update the target network: θ−← τθ +(1− τ)θ−

18: Terminate if termination f lag
19: end for
20: if n≤ Nd then
21: ε ← ε−∆ε×n
22: end if
23: end while
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