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Abstract

Fuel cells and batteries hold the potential to revolutionise emission performance for
coastal ships. A critical review of previous research and projects in this field high-
lighted potential benefits offered through using fuel cell and battery technologies to
decarbonise the coastal shipping. Currently, there is a lack of holistic design meth-

ods for such systems operating in different regions with variable energy properties.

This research project aims to develop a holistic power sourcing sizing method-
ology that can optimise the alternative propulsion system designs, and effective
energy management strategies for such systems. This research employs energy ef-
ficiency oriented propulsion system models which are calibrated and validated by
experimental data. The proposed multi-objective sizing methodology explores the
optimal power source sizing of a typical coastal ferry with sensitivity studies of
different energy properties. The sizing methodology has been validated using the
random search method. Reinforcement learning and deep reinforcement learning
agents were trained with real-ship power profiles to generate near-optimal energy
management strategies. These strategies have been compared and verified with re-

sults solved by deterministic dynamic programming.

The conclusions of this research suggest that energy properties and power
source characteristics can significantly influence the designs of hybrid fuel cell and
battery systems. Ships operating on short routes can potentially benefit from such
systems. Additionally, continuously monitored power profiles can be used to train

reinforcement learning agents to achieve near-optimal operating costs.



Impact Statement

This research work identifies opportunities and constraints of using fuel cell and bat-
tery power to decarbonise coastal shipping. A novel power source sizing methodol-
ogy for coastal ships focusing on both life-cycle greenhouse gas emissions and costs
of the alternative propulsion systems has been developed. The developed design
methodology can be used by the shipping industry to achieve a balanced plug-in
hybrid fuel cell and battery propulsion system design, considering life-cycle green-

house gas emissions, costs and shipboard constraints.

Reinforcement learning and deep reinforcement learning based on-line energy
management strategies have been developed using extensive continuous monitor-
ing data to achieve near-optimal cost performance in un-predicted voyages. The
near-optimal cost performance of the developed energy management strategies has
highlighted the potential of deep reinforcement learning algorithms in the control
of hybrid propulsion systems. The proposed intelligent hybrid propulsion system
control framework can be adopted by the industry to minimise cost impacts from

the plug-in hybrid fuel cell and battery systems with multiple power sources.

Though the proposed hybrid propulsion system design methodology and in-
telligent energy management strategies are initially developed for coastal ships in
this study, they are transferable to other applications such as road vehicles. Other
researchers should be able to benefit from the output of this work as formulate
and solve the hybrid propulsion system optimal energy management problem with
extensive continuous monitoring data using suitable reinforcement learning algo-

rithms.
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Air specific heat ratio

Electrode surface roughness factor
Degradation function

Time step, s

Air compressor efficiency

Air compressor motor efficiency
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Nfe Fuel cell stack net efficiency

n Efficiency

A Degree of humidification

Oy, Price, USD

Om Fuel cell membrane conductivity, S m~!

Vg GWP, kg CO, kg~!

Yre Fuel cell specific H, consumption, kgkWh™!
Chapter 5

Roman Symbols

A Action space

a Action

cost Cost incurred in one time step
E Expectation

Noax Maximum episode

n Episode

P Transition probability
Piom Power, kW

Py, Shore power, kW

(0] Action-value function
R Reward function

r Immediate reward

S State space

s State

Sactual Actual state

SpA Shore power availability
Soc Battery state of charge
T Time horizon

t Time step, s

X Fuel cell power state
Greek Symbols

o Learning rate

Y Discount rate
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€ Exploration probability

At Time step, s

o Degradation function

Oy, Price, USD

Uk GWP, kg CO, kg~!

Yye Fuel cell specific H, consumption, kgkWh ™!

Chapter 6

Roman Symbols
A
a

cost

D

J

K

L

M
N
Piem

Pdem

XD O

=~

%)

)

Pﬂ%

N2 o~ S

Action batch

Action

Cost incurred in one time step
Mini-batch size

J — th element of the mini-batch
Time step when battery charged to higher state of charge limit
Loss function

Replay memory size

Episode number when « and € start to be constants
Power demand, kW

Normalised power demand

Q network

Q-target network

Reward batch

Immediate reward

Current state batch

Next state batch

State

Next state

Total time steps of one power profile
Time step, s

Target value batch

Target value

Training interval in time steps



Nomenclature 23
Greek Symbols
a Learning rate
Bi Exponential decay rate for the first moment estimates of Adam
optimiser
B Exponential decay rate for the second moment estimates of
Adam optimiser
Y Discount factor
o Temporal difference
0 Q network parameters
0~ Q-target network parameters
T Q-target network soft-update rate
transition sequence
Chapter 7

Roman Symbols
a

a

ag

am

;sg&ﬁ&wﬁg‘g

Pfc,rated

Action vector
Action given by target actor network with noise

k—th (k=1,2,...,m—1,m) PEMFC cluster per unit power

adjustment

PEMFC maximum allowed per unit power adjustment ampli-

tude

PEMFC maximum allowed per unit power decreasing limit
PEMFC maximum allowed per unit power increasing limit
Policy noise clip factor

Mini-batch capacity

Delayed policy update step

Expectation

Expected return

Experience memory size

PEMEC cluster number

Gaussian noise

Total installed fuel cell power, kW

PEMEC cluster power, kW
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Py

Greek Symbols

o

B

Q =

Qe

Mk

Delivered fuel cell power after the power converters, kW
i —th critic network

i —th critic target network

discounted sum of rewards from time step ¢

Immediate reward

State

Next state

Time step, s

Target value

Training interval in time steps

Learning rate

Exponential decay rate for the first moment estimates of Adam
optimiser

Exponential decay rate for the second moment estimates of
Adam optimiser

Discount factor

Standard deviation of policy exploration noise

Standard deviation of policy value smooth noise

Temporal difference of j —th sample in the mini-batch of i —th
critic

Action exploration noise

Clipped noise for a

Uni-directional power converter efficiency of kK —th PEMFC

cluster

Q network parameters

Q-target network parameters

Actor, policy

Actor network with parameters ¢
State distribution following policy 7
Target network soft-update rate
Actor network parameters

Actor target network parameters
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Other Symbol
\Y%

Gradient



Abbreviations

AC Alternating Current

AFC Alkaline Fuel Cell

CAPEX Capital Expenditure

DC Direct Current

DWT Deadweight Tonnage

DDP Deterministic Dynamic Programming
DDPG Deep Deterministic Policy Gradient
DPG Deterministic Policy Gradient

DQN Deep Q-Network

ECA Emission Controls Areas

EEDI Energy Efficiency Design Index
EEOI Energy Efficiency Operational Indicator
EMS Energy Management System

EU European Union

EV Electric Vehicles

GHG Greenhouse Gas

GWP Global Warming Potential

HEV Hybrid Electric Vehicles

HT-PEMFC High-Temperature PEMFC

IFEP Integrated Full Electric Propulsion
IMO International Maritime Organization
LNG Liquefied Natural Gas

MCEC Molten Carbonate Fuel Cell

MDO Marine Diesel Oil

MDP Markov Decision Process

MOPSO Multiple Objective Particle Swarm Optimisation
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MSE
NSGA
NOx
ocv
OPEX
PAFC
PEMFC
PM

RL
SEEMP
SFC
SOC
SOFC
SOx
SSS
TD3
UK

Mean Squared Error

Non-dominated Sorting Genetic Algorithm
Nitrogen Oxides

Open Circuit Voltage

Operating Expenses

Phosphoric Acid Fuel Cell

Proton Exchange Membrane Fuel Cell
Particulate Matter

Reinforcement Learning

Ship Energy Efficiency Management Plan
Specific Fuel Consumption

State of Charge

Solid Oxide Fuel Cell

Sulphur Oxides

Short Sea Shipping

Twin Delayed Deep Deterministic Policy Gradient
United Kingdom



Chapter 1

Introduction

1.1 Coastal shipping

1.1.1 Coastal shipping scope

Coastal shipping, also known as Short Sea Shipping (SSS) in the European Union
(EU), is the transport of cargo and passengers by sea over relatively short distances
that does not involve an ocean crossing (Johnson and Styhre, 2015). It is considered
a mode of transport that can alleviate road congestion and provide better energy
efficiency by shifting 30% of road freight over 300 km (Douet and Cappuccilli,
2011; Johnson et al., 2014; Eurostat, 2018). Early definition of SSS limits the ship
size to a maximum of 5000 gross tonnage (Crilley and Dean, 1993). According
to Musso et al. (2002), typical coastal ship sizes can vary from to 1000 to 15000
Deadweight Tonnage (DWT). However, there is no decisive academic agreement on
the definition on coastal shipping (Douet and Cappuccilli, 2011). Nonetheless, the
scope of this research project is limited to coastal ships sailing on short routes that
do not cross oceans, which could potentially benefit from integrating fuel cells and

energy storage technologies.
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1.1.2 Coastal shipping overview

Figure 1.1 provides an overview of coastal shipping of the EU in 2016. In 2016,
60% of EU goods transported by sea (19 Gt) were by coastal shipping (Eurostat,
2018). As depicted in Figure 1.1a, liquid and dry bulk are the main cargo types
transported via coastal shipping, followed by containers and Roll-on/Roll-off units.
The Mediterranean Sea, the North Sea and the Baltic Sea are the main areas where

these shipping activities occurred (Figure 1.1b).

- 100%
I I I I 80%
60%

40%
\ T T 0%

Atlantic Baltic Black Mediterranean Sea North Total
Ocean Sea Sea Sea

@ Liquid bulk ~ Dry bulk ® Containers = Roll-on/Roll-off units ™ Other cargo

(a)

Baltic Sea
Atlantic Ocean 22%
13%

Others
4% Black Sea

6%

North Sea

26%

Mediterranean Sea
29%

(b)

Figure 1.1: Short sea shipping in the European Union in 2016. (a) percentage of total gross
weight of goods transported by sea region and (b) percentage of total gross
weight of goods transported for each sea region (source: (Eurostat, 2018)).
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1.2 Motivation

1.2.1 Global shipping emissions

The global commercial shipping fleet emitted 2.2% of global anthropogenic Green-
house Gases (GHGs) in 2012 (International Maritime Organization, 2014a). The
International Maritime Organization (IMO) has set a long-term GHG reduction goal
for the shipping industry to be in line with the global GHG reduction target to limit
the global temperature rise to no more than 2 °C above pre-industrial levels (Ver-
gara et al., 2012; Cames et al., 2015). By 2050, the maritime transport segment will
need to reduce its total annual GHG emissions by 50% compared to 2008 levels and
achieve zero GHG emissions as soon as is practicable in this century (Figure 1.2)

(International Maritime Organization, 2019).

3500
mmmmm Design and technical measures (EEDI)

3000 Operational measures (SEEMP)

=== Emissions gap to fill using innovative
2500 measures, fuels and technologies

= == = Business-as-usual emission scenario
2000

1500

CO, [mill tonnes]

1000
500

0
2010 2015 2020 2025 2030 2035 2040 2045 2050

Figure 1.2: IMO strategy on reducing GHG emissions from ships. (source: International
Maritime Organization (2019)).

Figure 1.3 shows the evolution of IMO GHG reduction regulations since 1997
(International Maritime Organization, 2015). Two mandatory emission reduction
mechanisms, i.e. the Energy Efficiency Design Index (EEDI) and the Ship Energy
Efficiency Management Plan (SEEMP) have been introduced by the IMO to guide

energy-efficient ship design and operation, respectively.
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Figure 1.3: IMO energy efficiency regulatory developments. (source: International Mar-
itime Organization (2015)).

collection

In 2009, the EEDI was proposed by the IMO to improve the energy efficiency
of new ships by promoting more energy efficiency technologies (International Mar-
itime Organization, 2011). In 2014, the EEDI scope was extended to a broader
range of ships (accounting for 85% of global shipping GHG emissions) including
Roll-on/Roll-off cargo and passenger ships.

The SEEMP, proposed in 2009, establishes an operational approach to im-
prove the energy efficiency of ships cost-effectively over time using, for example,
the Energy Efficiency Operational Indicator (EEOI) as a monitoring tool for set-
ting energy efficiency targets and evaluating energy efficiency levels (International

Maritime Organization, 2009, 2016).

1.2.2 Coastal shipping emissions

Although typical coastal ship sizes are much smaller than those vessels used for
ocean transits, the emissions from coastal ships make up a significant proportion
of the total emissions from the global commercial fleet. It has been estimated that

70% of global shipping emissions are produced within 400 km of coastlines, where
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almost half of the world’s population resides (Corbett et al., 1999; Viana et al., 2014;
Kay and Alder, 2017). Aulinger et al. (2016) indicate that smaller ships (less than
60000 gross tonnage) consumed 16.4% of the diesel fuel of the whole shipping fleet
in the North Sea region. The author’s earlier work (Wu et al., 2016) suggests that
ships of less than 15000 DWT mainly operate in coastal waters, and these ships

account for approximately 25% of global shipping emissions.

The EEDI and SEEMP mechanisms focus primarily on energy efficiency and
GHG emissions, while Emission Control Areas (ECAs) (Figure 1.4) have also been
designated to limit SOx, NOx and Particulate Matter (PM) emissions, mainly in
coastal waters (International Maritime Organization, 2014b; Zhen et al., 2018; Xia
et al., 2019). The PM emissions are only limited within the North American area
and the United States Caribbean Sea areas. The Baltic sea and the North sea areas
only limit SOx but not NOx. From 2020, the sulphur content in marine fuels is

limited to no more than 0.5%.

New ECA?

i

ECA

A
§ ECA New ECA? L4
New ECA?
ECA 7 ECA
§ >
New ECA? ECA

New ECA?
New ECA?

| Existing
Possible future ECA

Figure 1.4: Emission Control Areas (source: (International Maritime Organization, 2014b;
Zhen et al., 2018; Xia et al., 2019)).

Almost 15% of total global anthropogenic NOx emissions and 4-9% of SOx
emissions are from shipping which is a significant and increasing source of air pol-

lutants (Endresen et al., 2003; Eyring et al., 2010; Viana et al., 2014). Nearly 70%
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of these emissions are estimated to occur within 400 km of coastlines, which is a po-
tential influence on air quality in coastal areas where 45% of the world’s population
resides (Corbett et al., 1999; Viana et al., 2014; Kay and Alder, 2017). SOx emis-
sions can harm human respiratory systems and cause damage to sensitive ecosys-
tems by contributions to acid rain (Halkos and Tsilika, 2019). Long-term exposure
to NOx can cause respiratory and lung cancer deaths (Lu et al., 2016). According
to Sofiev et al. (2018), even with cleaner marine fuels, ship-related PM, 5 will still
account for approximately 2.5 x 10° deaths and 6.4 x 10° childhood asthma cases
annually. There is a necessity to cut down emissions from ships, especially those

operating in coastal waters.

Marine diesel engines, as the primary sources of the pollutants and GHG emis-
sions from coastal shipping, are not a viable long-term powering solution as regards
the required reduction in GHG and pollutants (Deniz and Zincir, 2016). Various
efforts have been investigated to improve the existing diesel engine based tech-
nologies, e.g. using Liquefied Natural Gas (LNG) in dual-fuel and gas engines
(Thomson et al., 2015). Though the NOx, SOx and PM emissions can be reduced
significantly with LNG, the GHG savings offered by LNG is limited to no more
than 21%, and methane slip could potentially cancel out that benefit (Brynolf et al.,
2014; Thomson et al., 2015; Ekanem Attah and Bucknall, 2015). Ships operating
within Emissions Control Areas have adopted exhaust gas treatment devices which
could potentially lead to the GHG emission performance being even worse as a con-
sequence of the additional power requirement and the negative impact on engine ef-
ficiency (Verschaeren et al., 2014; Di Natale and Carotenuto, 2015; Boscarato et al.,
2015).

1.3 Alternative powering solutions

There is a need for the shipping industry to develop alternative power and propulsion
plants to meet these emission reduction goals. Proton Exchange Membrane Fuel

Cell (PEMFC) and lithium battery technologies have seen sustained development
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and are now commercially available, though improvements are still expected from
both (Sharaf and Orhan, 2014; Larcher and Tarascon, 2015). Coastal ships operat-
ing on short routes at modest speed can potentially benefit from hybrid propulsion
systems with PEMFC and batteries by utilising clean H, energy and shore power
(McConnell, 2010; de Troya et al., 2016; van Biert et al., 2016). However, fac-
tors including both the power and energy density of the power sources, degradation
characteristics, energy properties and operational requirements can vary from place
to place and influence the design of such a hybrid propulsion system significantly
(Wu and Bucknall, 2018). For instance, in 2016, the average GHG emission for grid
power in the UK was 281 g CO,kWh ™!, while it was 166 g CO,kWh™! in Denmark
(European Environment Agency, 2019). A holistic design methodology and a suit-
able Energy Management System (EMS) are required to inform an overall optimum

alternative propulsion system design.

PEMEFC operating on H, has gone through rapid development in recent decades
with improving performance and reducing cost and has been adopted by parallel
industries such as road transport (Alaswad et al., 2016; Dicks and Rand, 2018).
There has been an increasing interest in utilising PEMFC for ship applications (van
Biert et al., 2016; Choi et al., 2016; Sasank et al., 2016; de Troya et al., 2016).
Compared to other fuel cell types, such as the solid oxide fuel cell or the molten
carbonate fuel cell, PEMFC offers better power density and transient performance
but lower efficiency and less fuel flexibility (Sharaf and Orhan, 2014). When used
in transport applications, PEMFC is typically used with batteries or supercapacitors

to provide better overall efficiency and capability for managing power transients.

Lithium battery technology is evolving rapidly and is recognised as having
great potential for utilising renewable energy and improving the performance of ex-
isting powering solutions (Luo et al., 2015; Hannan et al., 2017). Batteries can be
used as stand-alone or in hybrid configurations in ship propulsion systems. When
used in a hybrid configuration, batteries can help optimise the loadings of other
power sources (e.g. fuel cells or internal combustion engines). Ovrum and Bergh

(2015) reported that a 30% fuel reduction could be achieved with regenerative en-
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ergy recovered from ship crane operations. In configurations without regeneration,
much less fuel saving can be expected, depending on the configuration and power
profiles. 15% fuel saving is reported in a case of a non-regenerative hybrid ship
(Stefanatos et al., 2015). When only a battery is used, the shipboard system be-
comes zero-emission, but the life-cycle emission performance depends on the shore-
generated electricity. Currently battery technologies are still constrained by limited
energy densities, even though the world’s largest battery package in ship applica-
tions has reached a capacity of 6.1 MWh (Larcher and Tarascon, 2015; Corvus,
2019a).

Although H, appears as a clean fuel when the scope is only limited to the
propulsion system, the H, production process (e.g. natural gas reforming) could
be carbon-intensive (Acar and Dincer, 2014). Also, the power generation process
that provides the energy for H, production and battery charging would have a cer-
tain carbon intensity, and this intensity would vary depending upon location. Other
factors including power source power capacity, energy densities, degradation char-
acteristics, energy properties and operational requirements can differ from place to

place and significantly influence the design of such a hybrid propulsion system.

The hybridisation of PEMFC and Lithium-ion batteries for coastal ship propul-
sion systems may potentially offer beneficial emission performance. However, the
design of such hybrid propulsion systems must consider a series of variables to
achieve an overall optimal design. As shown in Figure 1.5, the alternative system
has to provide sufficient and reliable power, without occupying too large a vol-
ume and mass margins from the propulsion plant. Moreover, the alternative system
needs to be more environmentally friendly yet commercially competitive. When
multiple power sources are integrated into one propulsion system, an effective EMS

is essential to manage power flows.
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Figure 1.5: The complexity of alternative propulsion system design.

1.4 Research questions

This research aims to answer the following: How can coastal shipping substantially
reduce harmful GHG emissions from their propulsion and power systems using fuel
cells and batteries and remain attractive commercially? This key research question

is split into sub-questions as follows:

1. What are the opportunities and constraints of new technologies and how do
they compare to traditional technologies for the design of propulsion and

power systems for coastal shipping?

2. How can fuel cells and batteries be best integrated into an electric propulsion

system for coastal ships?

3. How do the fuel cell and battery propulsion and power system designs per-

form and compare with conventional arrangements?

4. For a given hybrid propulsion and power system configuration, how much

saving can be achieved from reinforcement learning and deep reinforcement
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learning based energy management strategies using continuous monitoring

data?
1.5 Thesis outline

This thesis is organised as follows:

Chapter 1 introduces the motivation behind this research project and provides
an overview of the project and this thesis. It also describes the research contributions

with the author’s publications listed.

Chapter 2 details a critical literature review of existing diesel engines and their
improvement technologies, alternative fuels, fuel cell technologies, energy storage
systems and marine hybrid-electric propulsion system architecture. This chapter
aims to identify the opportunities and constraints of alternative power sources in
comparison to existing systems, and to further identify the challenges of integrating

alternative power sources to coastal ships.

Chapter 3 provides justifications for the research questions via a critical gap
analysis and an overview of methodologies adopted in this study. The main method-
ologies are constrained multi-objective optimisation for hybrid propulsion system
design optimisation, reinforcement learning (RL) and deep RL energy management

strategies for hybrid propulsion systems.

Chapter 4 deals with the problem of optimal sizing of alternative propulsion
and power systems utilising grid power, based upon a proposed plug-in hybrid fuel
cell and battery propulsion system model. A two-layer multi-objective optimisation
sizing methodology is proposed considering both economic and environmental per-
formance. Such a methodology can be used to guide practical shipboard alternative

propulsion system design with variable energy and power source properties.

Chapter 5 formulates and solves the optimal online power split problem for the
proposed plug-in hybrid system using RL in discrete state and action spaces. The
RL agents are trained with a set of historical power profiles and validated with data

over another period.
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Chapter 6 extends discrete state spaces in Chapter 5 to continuous state spaces
utilising deep neural networks as function approximators to achieve higher resolu-

tion.

Chapter 7 further improves Chapter 6 by extending both the discrete state and
action spaces to continuous spaces. This chapter also extends the optimal control of
fuel cell actions to multiple clusters. In Chapter 5 and 6, the fuel cells are controlled

uniformly.

Chapter 8 concludes this project and recommends future work.
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Chapter 2

Literature review

2.1 Overview

This literature review draws on four key themes. These themes are conventional
diesel-based powering solutions, fuel cell technologies, energy storage systems and
the system architecture integrating the fuel cells and batteries. The scope is limited
to coastal ships sailing on short routes, which could benefit from integrating fuel

cells and batteries. This chapter presents the literature review in four parts:

* The first part aims to provide an overview of the baseline diesel-based pow-

ering solutions of coastal shipping (Section 2.2).

* The aim of the second part is to offer a review of fuel cell technologies and
their applications in marine applications (Section 2.3), the intention of which
is to identify suitable fuel cell technology with potentials and constraints pro-

vided.

* The aim of the third part is to provide a review of energy storage technologies
(with a focus on batteries) and their application in marine propulsion (Section
2.4), the intention of which is to identify suitable energy storage technologies

with potentials and constraints highlighted.
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* The fourth part of this literature review is aimed to identify suitable hybrid-
electric system architectures integrating fuel cells and batteries for coastal

shipping (Section 2.5).

2.2 Review of diesel engine based powering systems

2.2.1 A historical review of conventional powering solutions

Figure 2.1 presents a timeline with the historical highlights of the marine vessel’s
power system development from 1900 to 2017 (El-Gohary, 2013; Barnes, 2014;
Skjong et al., 2015; Geertsma et al., 2017). From the 1900s to 1960s, steam turbines
were the primary powering solutions for commercial ships, notwithstanding the
evolving diesel engine technologies had gradually begun to be used in small ships.
Since the 1960s, driven by the need of better fuel economy, marine diesel engines
have been the dominant power sources for commercial ships (Barnes, 2014). In
1969, Wiirtsild delivered five 16080 DWT container ships powered by medium-
speed diesel engines. In 1987, the cruise ship Queen Elizabeth 2 was retrofitted

with diesel-electric propulsion, replacing its original steam turbines.

However, diesel engines are not a perfect solution. Technologies such as waste
heat recovery and exhaust gas recirculation have been introduced to improve effi-
ciency and reduce emissions (Sprouse III and Depcik, 2013; Baldi and Gabrielii,
2015; Pan et al., 2019). Since 1997, the International Maritime Organisation (IMO)
has introduced a series of regulations to limit GHG emissions and pollutants (In-
ternational Maritime Organization, 2014b, 2015). Since 2010, batteries have been
applied to commercial ships in hybridisation with diesel engines to achieve better
overall efficiency by load levelling. For instance, an 800 kW h battery is fitted to the
ferry MV Hallaig with its 3.5 MW generating sets (Geertsma et al., 2017). Also,
fuel cells have emerged as power sources for marine applications since 2000 (Pratt
and Klebanoff, 2016). For example, in 2015, the SF-BREEZE was designed with a

total installed PEMFC power of 4920 kW to achieve zero emissions.
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2.2.2 The state-of-the-art of diesel engine based systems

Figure 2.2 shows the two types of most widely used diesel engines (4-stroke
medium-speed in Figure 2.2a and 2-stroke low-speed in Figure 2.2b). Large 2-
stroke low-speed diesel engines (2.2b (MAN, 2019)) with output power of up to 80
MW are mainly used as the main propulsion engines for large ships (Carlton et al.,
2013; Barnes, 2014). 4-stroke medium and high-speed engines, which are typically
much smaller in size and power output but with higher power density, can either be
used as main propulsion engines (through reduction gears) or prime movers of gen-
erating sets (Woud and Stapersma, 2002; Mollenhauer et al., 2010; Barnes, 2014).
These 4-stroke diesel engines widely used by coastal ships with a typical Specific
Fuel Consumption (SFC) of around 195 gkWh~! are approximately 10% less effi-
cient than large 2-stroke engines (Woud and Stapersma, 2002; El-Gohary, 2013). A
SFC of 195 gkWh™! corresponds to a specific CO, emission of 601 gkWh™!.

(b)

Figure 2.2: Marine diesel engines. (a) 4-stroke medium-speed and (b) 2-stroke low-speed
diesel engines (source: (Wartsila, 2019; MAN, 2019)).



Literature review 45

2.2.3 Issues of diesel engine based systems

The global commercial shipping fleet emitted 2.2% of the global anthropogenic
Greenhouse Gases (GHGs) in 2012 (International Maritime Organization, 2014a).
By 2050, the maritime transport sector needs to reduce its total annual GHG emis-
sions by 50% compared to 2008 to be in line with the global GHG reduction target
to limit the global temperature rise to no more than 2 °C above pre-industrial levels
(Vergara et al., 2012; Cames et al., 2015). On the other hand, according to Endresen
et al. (2003); Eyring et al. (2010); Viana et al. (2014), almost 15% of total global an-
thropogenic NOx emissions and 4-9% of SOx emissions are from shipping which
is a significant and increasing source of air pollutants. Moreover, the studies of
Corbett et al. (1999); Viana et al. (2014); Kay and Alder (2017) suggest that nearly
70% of these emissions are estimated to occur within 400 km of coastlines, which
has a potential influence on air quality in coastal areas where 45% of the world’s

population resides.

A timeline of IMO emission regulations on SOx and NOXx is shown in Figure
2.3 (Carlton et al., 2013; International Maritime Organization, 2014b). The fuel oil
sulphur mass percentage limits are subject to a series of step changes over the years.
From 01 January 2020, the sulphur content is limited to no more than 0.5% globally.
Moreover, within the Emission Controls Areas (ECAs), Regulation 13 of MARPOL
Annex VI controls the engine emissions within the Tier III limits (these vary with
engine speed, e.g. 2.5gkWh™! for an engine speed of 1000 rpm) (International
Maritime Organization, 2014b).

2.23.1 SOx

SOx emission, as a significant pollutant from marine diesel engines has been limited
in ECAs (Lindstad et al., 2015). SOx emission is a product of the sulphur content of
the fuels. To limit SOx emissions, two approaches can be adopted, either by using
low sulphur fuel and/or an exhaust gas after-treatment device such as a scrubber,

which can be of the wet, dry or hybrid types (Lloyd’s Register, 2015). The price
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Figure 2.3: Timeline of IMO emission regulations on pollutants (Carlton et al., 2013; In-
ternational Maritime Organization, 2014b).

of low sulphur fuel with 0.1% sulphur content has been estimated to be 70-80%
higher than heavy fuel oil (Holmgren et al., 2014). Instead, sulphur scrubbers have
been widely adopted to meet the ECA requirements (Jiang et al., 2014; Panasiuk
and Turkina, 2015). However, such devices inevitability will require additional
power, which will further impact the overall energy efficiency and GHG emission

performance.

2.2.3.2 NOx

NOx emissions are formed during the process of combustion and is highly depen-
dent on the local flame temperature (Zhang et al., 2019). Technologies such as
exhaust gas recirculation, selective catalytic reactors, adjusted timing and fuel in-
jection strategies can be used to reduce NOx emissions (Guo et al., 2015). However,
these NOx abatement technologies could impact engine efficiency due to reduction
in combustion temperature (Pan et al., 2019). Verschaeren et al. (2014) indicate
that up to 70% NOx reduction could be achieved with exhaust gas recirculation and
Miller timing. However, the drawbacks, including reduced fuel efficiency and other

emissions like CO and Particulate Matter (PM) need further investigation.
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2.2.3.3 Greenhouse gases

Carlton et al. (2013) argue that although marine diesel engines are reliable and have
been primary power sources for the majority of commercial ships for decades, they
could not be the long-term powering solution for future ships without step changes
to meet the GHG emission reduction goal. Such an argument has been supported by
El-Gohary (2013); Barnes (2014); Skjong et al. (2015). Marine diesel engines are
typically optimised for a specific load region (e.g. 80% of rated power); operating
the engines under non-optimum load would lead to even poorer fuel economy and
emission performance, especially under low load conditions (Woud and Stapersma,
2002; Wartsila, 2019). The specific CO, emission of 601 gkWh~! is more than dou-
ble that of UK national grid electricity GHG level (281 ngh’l) in 2016 (Eurostat,
2019). Thatis, the UK grid electricity GHG emission performance is more than two

times better than that of the marine diesel engines.
2.2.3.4 Improvement technologies to diesel engines

There have been various energy efficiency improvement technologies investigated
for marine diesel engines (Smith et al., 2010; Calleya, 2014; Scott et al., 2017).
Among these technologies, waste heat recovery technologies have been widely ap-
plied to marine diesel engines to recover waste heat mainly from exhaust gases
(Suéarez De La Fuente, 2016; Baldi and Gabrielii, 2015). Singh and Pedersen (2016)
indicate that the primary waste heat recovery for marine applications the include
Rankine Cycle, Organic Rankine Cycle, Supercritical Rankine Cycle, Kalina Cycle,
exhaust gas turbine systems (hybrid turbocharging, mechanical turbo-compound
system, hydraulic turbo-compound system and electrical turbo-compound system)
and thermoelectric generators. However, the energy efficiency improvement that
could be offered by such technologies are limited to 15% (Larsen et al., 2013;
Sprouse I and Depcik, 2013; Singh and Pedersen, 2016).

When used in a hybrid configuration, energy storage device (e.g. batteries) can
optimise the loadings on the diesel engines. Ovrum and Bergh (2015) reported that

30% fuel reduction could be achieved with regenerative energy recovered from the
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ship’s crane operations. In configurations without regeneration much less fuel sav-
ing can be expected. 15% fuel saving is reported in the case of a non-regenerative
hybrid ship (Stefanatos et al., 2015). It should be noted that the achievable sav-
ing can vary for different applications, depending on the configuration and power

profiles.
2.2.3.5 Alternative fuels for diesel engines

As suggested by Raucci (2017); Balcombe et al. (2019), fuel changes are optional
approaches to reduce shipping emissions. Table 2.1 provides a comparison be-
tween Marine Diesel Oil (MDO) and potential alternative fuels for coastal shipping
(Gilbert et al., 2018; Wartsila, 2019). The alternative fuels included in this review
are Liquefied Natural Gas (LNG), H, and methanol. Note that biofuels are omitted
due to the potential of such fuels being heavily constrained by the complex trade-
offs with human essentials such as food and water, and carbon neutrality could be
unachievable due to carbon content in the fuels and sacrifice of forests for arable

land (Florentinus et al., 2012; Balcombe et al., 2019).

Table 2.1: Potential alternative marine fuels for diesel engines in comparison with MDO
(Gilbert et al., 2018; Wartsila, 2019).

Fuel Net calorific Volumetric SFC Operational fuel emission factor gkWh™!
value MIkg~'  energy density MJ1=!  gkWh™! CO, CH, N,0 SOx NOx PM

MDO 42.6 383 195 601 0.011 0.030 0367 16976 0.184
LNG (a) 48.6 21.9 169 473 3380 0.018 0003 1.318 0.030
Liquefied H, 120.0 8.5 >78b) 0 0 © 0 (© 0
Methanol 20.0 15.8 381 52 0 0 0 3050 0

a: the data is for a typical Wartsila 32 duel-fuel engine; additional 3.5 gkWh™~! MDO as pilot fuel
b: SFC not provided as a lack of mature pure H, engine;

but the efficiency H, engine are not expected to be much higher than diesel engines

c: vary with fraction of H, energy in H, assisted dual fuel engines

Thomson et al. (2015) indicate that application of LNG as a fuel in the ma-
rine industry has been developing rapidly in the past decade mainly due to the IMO
emission control regulations. Figure 2.4 shows the trend of LNG powered marine
engines installed from 2010 to 2015 (Clarksons, 2016). Although it is a fossil fuel,
compared to its liquid fuel equivalents, it is far better in terms of SOx (near zero),

NOx (less than 10%) and PM (near zero) emissions when used by marine dual-fuel
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or gas engines (Carlton et al., 2013; Balcombe et al., 2019). LNG has a better car-
bon factor compared to MDO and could provide up to 21% of CO, saving without
considering methane slip (Brynolf et al., 2014). However, it should be noted that
methane is the second most prevalent GHG emitted from human activities, and the
GHG effect of methane on the climate is 25 times higher than that of CO, over 100
years (Boucher et al., 2009). Methane slip occurs during transporting, bunkering,
and combustion process of LNG engines, which could cancel out the GHG sav-
ing achieved by its advantage in chemical composition (Anderson et al., 2015). To
achieve overall GHG emission savings, methane slip must be controlled throughout

the life-cycle of LNG.

200 LNG (gas &dual-fuel} engine trend
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Figure 2.4: LNG fuelled gas and dual-fuel engine number installed on commercial ships
built from 2010 to 2015 (data source: (Clarksons, 2016)).

Bicer and Dincer (2018) adopted a life-cycle approach to analyse the poten-
tial of utilising H, as a marine fuel. Their results indicate that the life-cycle GHG
emission could be reduced by about 40% when H, is used by dual-fuel engines
compared to conventional diesel fuel. Bicer and Dincer (2018) also indicated that
the usage of H, in marine power and propulsion systems eventually depends on the

capability of producing clean and low-cost energy. Dimitriou and Tsujimura (2017)
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indicated that developing H, fuelled compression ignition engines is still challeng-
ing, and most existing H, fuelled engine projects focus on using H, as an additional
fuel to other base fuels such as biofuels. The overall efficiency improvement could
be marginal or negative, and NOX is one of the problematic emissions (Zhou et al.,
2016; Gurz et al., 2017; Dimitriou et al., 2018). Nevertheless, conversion of H, to
electricity with fuel cells is typically more efficient than within internal combustion
engines, which makes it an effective approach to use H, with fuel cells (White et al.,
2006; Edwards et al., 2008; van Biert et al., 2016). When used in transportation ap-
plications, limited system-level volumetric energy density could be a significant

limitation of H, (van Biert et al., 2016; de Troya et al., 2016).

It appears that methanol could provide about 13% CO, saving compared to
MDO (Table 2.1). According to Jenkins (2016), methanol can be produced via
two main approaches: natural gas or biomass reforming. However, the natural
gas reforming approach requires additional energy, and will inevitably give rise to
methane slip during the production process (Hansson et al., 2019; Blumberg et al.,
2019). Methanol produced from this approach is not a viable alternative marine
fuel from the perspective of GHG reduction. The second approach of producing
methanol from biomass, will also inevitably face the problems of biofuels as men-
tioned at the beginning of this section (Florentinus et al., 2012; Balcombe et al.,

2019).

2.2.4 Summary of review on diesel-based systems

As indicated by Barnes (2014); Deniz and Zincir (2016); Balcombe et al. (2019),
Marine diesel engines operating with heavy fuel oil or marine diesel oil are not
a long-term powering solution for the shipping industry in terms of the required
reduction in GHG and pollutants emissions. Various efforts have been made to im-
prove the existing diesel engine based technologies, e.g. using LNG in dual-fuel or
gas engines (Thomson et al., 2015; Balcombe et al., 2019). Though the NO,, SO,
and PM emissions can be reduced significantly with LNG, the GHG savings offered

by LNG are limited to no more than 21%, and methane slips could potentially cancel
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out the benefit (Brynolf et al., 2014; Thomson et al., 2015; Ekanem Attah and Buck-
nall, 2015). Ships operating within Emissions Control Areas have adopted exhaust
gas treatment devices which could potentially lead to the GHG emission perfor-
mance being even worse as a consequence of the requirement for additional power
and the negative impacts on engine efficiency (Verschaeren et al., 2014; Di Natale
and Carotenuto, 2015; Boscarato et al., 2015). Methanol, as an alternative fuel,
would only provide very marginal GHG saving. Using H, with internal combustion
engines remains challenging. For the long-term future, alternative technologies like

fuel cells and batteries are promising options.

2.3 Review of fuel cells

A fuel cell is a galvanic device that produces electrical energy from the chemical
energy of a fuel (Dicks and Rand, 2018). When H, is used as the fuel, fuel cells gen-
erate electricity, and the by-product is simply water. Figure 2.5 shows the electrode
reactions and charge flow for acid electrolyte (Figure 2.5a) and alkaline electrolyte
(Figure 2.5b) fuel cells, respectively (Dicks and Rand, 2018). As in Figure 2.5a, in
an acid electrolyte fuel cell, H, is oxidised at the anode, creating H* by the release
of electrons. The H* ions then pass through the electrolyte, while the electrons flow
from the anode to cathode. By this means electric current is produced, powering
external loads (e.g. an electric motor). It should be noted that such an operating
principle is identical to the one used by William Grove in 1839 and is still the most
widely adopted for commercial fuel cell applications (e.g. PEMFC) (O’Hayre et al.,
2016). In a fuel cell with an alkaline electrolyte (Figure 2.5b), OH™ ions produced at
the cathode pass through the alkaline electrolyte and react with H, fuel at the anode.
They then produce H,O by release of electrons. The electrons flow through an ex-
ternal circuit, powering external loads. This operating principle applies to Alkaline
Fuel Cell (AFC). It is worth mentioning that, for other fuel cell types (e.g. Solid
Oxide Fuel Cell), the operating principles can vary, depending on the electrolyte

used and the reactions at the two electrodes.
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Hydrogen fuel
Load
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Figure 2.5: Electrode reaction and charge flow for a fuel cell with: (a) an acid electrolyte
and (b) an alkaline electrolyte (source: (Dicks and Rand, 2018)).

2.3.1 Fuel cell technologies

There have been a variety of fuel cell technologies developed with specific features
for different purposes. For maritime applications, the following aspects should be
considered (van Biert et al., 2016): electrical efficiency, power density, energy den-
sity (fuel related), load following and system start-up time, reliability, safety and
cost. Table 2.2 summarises some relevant features of these major fuel cell technolo-
gies (Mekhilef et al., 2012; van Biert et al., 2016; O’Hayre et al., 2016; Wu, 2018;
Dicks and Rand, 2018).
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2.3.1.1 Alkaline Fuel Cell

Alkaline Fuel Cell (AFC) operates following the principle detailed in Figure 2.5b.
AFCs typically operate within the temperature range of 60—100 °C. Although an
AFC can provide LHV efficiency of up to 60%, one of the drawbacks of the AFC
is the electrolyte reacts with CO,, which may be contained within the O, or the
H,. Consequently, AFCs cannot even tolerate low concentrations of CO, due to the
way CO, reacts with the electrolyte solution (de Troya et al., 2016). Because of this
limitation, the AFC has to use pure H, concurrently with O, free of CO,. Such cells

have been used in space and transportation applications.

The requirement to use pure O, makes the AFC not a practical option for
coastal shipping applications due to the additional infrastructures and costs are
needed to provide for pure O,. The high cost of AFCs is another major limitation
(Wu, 2018). There is a trend that the AFC is being rapidly replaced the by Proton
Exchange Membrane Fuel Cell (PEMFC) in transportation applications (Alaswad

et al., 2016). Such cells have never been used in marine applications.
2.3.1.2 Proton Exchange Membrane Fuel Cell

PEMEFC also referred to as solid polymer fuel cell, comprises a membrane-electrode
assembly, two bipolar plates and two seals (Mehta and Cooper, 2003). PEMFC
operates following the principles described in Figure 2.5a. The PEMFC needs to
operate with pure H, at 60—80 °C and is sensitive to CO as CO can be absorbed
by the anode catalyst which consequently leads to blocked active sites which are in-
tended for H, oxidation reaction (Stephens et al., 2016; Narayanan and Basu, 2017).
Note that traces of CO can be found in H, fuel generated via steam reforming of
hydrocarbons. Although the PEMFC prices are relatively lower compared to other
cell types, due to having to use a precious Pt catalyst, the still high cost and limited
life- time are still major limitations of the PEMFC (O’Hayre et al., 2016; van Biert
etal., 2016). Nonetheless, as indicated by Thompson and Papageorgopoulos (2019),
platinum-group metal-free catalysts and mass production could potentially improve

the long-term cost competitiveness of PEMFCs for transportation applications.
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With start-up flexibility and relatively better dynamic performance, PEMFCs
have been widely used in various applications including submarines, ships and road
vehicles, and are commercially available (de Troya et al., 2016; Xie et al., 2019).
Another merit offered by the PEMFC is high power density, which is crucial for
coastal shipping applications with very limited weight and space margins for their

propulsion systems.

The development of High-Temperature PEMFC (HT-PEMFC) could poten-
tially alleviate the poisoning issue inherent to PEMFCs by using polymer and phos-
phoric acid membranes (Chandan et al., 2013; Rosli et al., 2017). A HT-PEMFC,
typically operating in the temperature range of 100-200 °C, is less sensitive to im-
purities in the fuel and could offer higher overall efficiency, but is still under devel-
opment (Chandan et al., 2013; Rosli et al., 2017). It should be noted that such cells
are not commercially available and could also suffer from the limitation of high cost

owing to the use of expensive Pt based catalysts.

2.3.1.3 Molten Carbonate Fuel Cell

The Molten Carbonate Fuel Cell (MCFC) typically operates at high temperatures
of 600-700 °C (Dicks and Rand, 2018). Such a high temperature is necessary for
the molten carbonate electrolyte to reach an adequate level of conductivity. MCFCs
are not sensitive to CO. MCFCs can consume fuels that contain gaseous impuri-
ties reformed from natural gas or even coal, which makes it flexible regrading fuels
(Dicks, 2004). The high operating temperature of MCFC contributes to an effi-
ciency of approximately 50% (up to 60%). However, high operating temperature
requires a long start-up time (> 10 h) and leads to high-temperature corrosions,
which makes them non ideal for transport applications requiring short-up time (Wu,

2018; Dicks and Rand, 2018).

Although MCFCs are commercially available, high production costs and lim-
ited lifetime remain as challenges (van Biert et al., 2016; Wu, 2018). Also, the
power density of an MCFC is much lower compared to that of an equivalent

PEMEFC. It should be noted that although MCFCs can operate with fuels reformed
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from hydrocarbons (e.g. natural gas), the GHG savings that could be achieved from
the combination of an MCFC with hydrocarbon derived fuels are very limited due

to CO, inevitably being emitted into the atmosphere without carbon capture.
2.3.1.4 Phosphoric Acid Fuel Cell

The Phosphoric Acid Fuel Cell (PAFC), which uses phosphoric acid (H;PO,) as an
electrolyte, typically operates in the temperature range of 150-220 °C (Mekhilef
et al., 2012). The PAFC is more flexible regarding fuel options compared to the
AFC and PEMEFC but requires a longer start-up time (1-4 h) (Wu, 2018). Such
a long start-up time makes the PAFC impractical for applications in coastal ships
which require frequent start-stop of the power sources. The PAFC is commercially
available but is only used in stationary applications. Although it is less sensitive
to impurities, contamination by carbon monoxide and sulphur compounds, which
could poison the anode, still need to be prevented (Mekhilef et al., 2012). The
efficiency of a PAFC is 40-50% (Dicks and Rand, 2018).

2.3.1.5 Solid Oxide Fuel Cell

The Solid Oxide Fuel Cell (SOFC) uses a solid ceramic inorganic oxide as the elec-
trolyte and typically has an operating temperature range of 750—1000 °C (Staniforth
and Ormerod, 2003). The efficiency can be up to 60% and when combined with gas
turbines, even higher efficiencies can be achieved (Ebrahimi and Moradpoor, 2016).
A SOFC, being flexible in fuel choices, can generally run on a mixture of H, and
CO formed by hydrocarbon fuel reforming. The high operating temperature leads
to a long start-up time. A limitation in the number of applicable start/stop cycles is
one of the issues of the SOFC (Dicks and Rand, 2018). Similar to the MCFC, the
system-level power density is much lower compared to that of an equivalent PEMFC
due to balancing of plant (van Biert et al., 2016). For these reasons, current SOFCs
are not an ideal solution for large scale shipboard applications. Although the SOFC
could offer better efficiency compared to low-temperature fuel cells, potential GHG
savings that can be achieved from the combination of SOFC and hydrocarbon fuels

are limited and could potentially be cancelled out due to issues such as methane
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slip.

Based on the comparisons above, the PEMFC is deemed the most promis-
ing for application in coastal shipping considering the PEMFC’s merits in terms of
power density, start-up time, commercial availability, maturity and comparatively
lower price driven by the road vehicle applications. Although the HT-PEMFC ap-
pears promising, it is still under development, hence not considered in this research.
High-temperature fuel cells such as the MCFC and SOFC are not suitable for coastal
ships due to long start-up time and low power density. Moreover, any potential
GHG savings that could be offered by using high-temperature fuel cells with hydro-
carbon fuels are limited due to the life-cycle GHG emissions of hydrocarbon fuels

(e.g. LNG).

2.3.2 Fuel cells in marine applications

Figure 2.6 details major fuel cell marine applications from 2003 onwards (Pratt and
Klebanoff, 2016; Tronstad et al., 2017). Among the 18 listed projects, the number of
ships using PEMFC, HT-PEMFC, SOFC and MCFC are 9, 3, 3 and 3 respectively.

The FCS Alsterwasser is a hybrid PEMFC and battery powered 100-passenger
boat launched in 2008 (Figure 2.7a) (McConnell, 2010). The FCS Alsterwasser is
part of the EU funded (€2.4 million) Zemship project. Two PEMFC stacks with
a total power of 96 kW were fuelled by 12 H, tanks (a total of 50kg H, stored at
350 bar). A battery pack was also installed to guarantee operations at peak hours and
level the load on the PEMFC while docking and casting-off to prolong PEMFC life-
time (Zemships, 2013). According to (McConnell, 2010), the boat’s hybrid PEMFC
and battery propulsion system provided double the efficiency of a diesel system.
Another PEMFC powered marine example is the SF-BREEZE (Figure 2.7¢) (Pratt
and Klebanoff, 2016). To date, the SF-BREEZE, a high speed ferry with a total
4920 kW PEMEFC operating on pure H,, is the largest fuel cell powered concept

ship to date .

In the FellowSHIP project (2003-2011), a modularised MCFC system was
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installed onboard Viking Lady to investigate the concept of using a high-temperature
fuel cell in marine applications (Figure 2.7b) (Ovrum and Dimopoulos, 2012). The
FellowSHIP used a prototype 320 kW MCFC with LNG as the fuel. It should be
noted that the MCFC output power was kept stable due to the MCFC only being
able to handle slow load changes. The measured system-level efficiency of the
MCEC at full load is 52%, which is approximately 10% better than the installed

diesel engines.

In 2009, the PA-X-ELL project was launched to investigate the potential of
reducing emissions from cruise ships, yachts and RoPax ferries through the integra-
tion of decentralised fuel cell power systems (Tronstad et al., 2017). Three methanol
powered HT-PEMEFC stacks (total 60 kW) were installed onboard MS Mariella (Fig-
ure 2.7c). Although it has been claimed that the project was successful, the use of

methanol would only provide marginal GHG saving.

In the SchiBz project, a 100 kW SOFC was installed onboard MS Forester. The
installed SOFC stacks operate with low sulphur diesel fuel with an external diesel
reformer (Tronstad et al., 2017). Note that the ships shown in Figure 2.7 b to d
still operate with the majority of the power being provided from diesel or dual-fuel

engines (Tronstad et al., 2017).

It is apparent that PEMFCs with H, are the most widely used fuel cell type
and logistic fuel combination. The largest marine fuel cell application is the SF-
BREEZE with a PEMFC power of 4920kW. HT-PEMFCs, with less stringent
requirements on fuels, have been tested in the projects of E4Ships—MS Mariella,
RiverCell and MF Vagen with methanol and H,. Two types of high-temperature fuel
cells, i.e. MCFC and SOFC have been tested over 6 projects, operating on carbon or
hydrocarbon-based fuels including LNG, diesel and methanol. Such an observation
suggests that high-temperature fuel cells are utilised to operate with conventional
fuels. It should be noted that the use of conventional fossil fuels does not bring
obvious savings in terms of GHG emissions since the efficiency improvements are

not hugely significant when compared to diesel engines.
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Figure 2.7: Fuel cell powered ships. (a) FCS Alsterwasser with 96 kW PEMFC (Mc-
Connell, 2010). (b) FellowSHIP with 320 kW MCFC (Ovrum and Dimopou-
los, 2012). (c) MS Mariella with 60 kW HT-PEMFC (Tronstad et al., 2017).
(d) MS Forester with 100kW SOFC (Tronstad et al., 2017). (e) SF-BREEZE
with 4920 kW PEMFC (Pratt and Klebanoff, 2016).
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2.3.3 Summary of review on fuel cells

The SOFC and MCFC could offer some efficiency improvement over low-
temperature fuel cells (see Table 2.2). However, the life-cycle GHG emission
savings that would be realised by using these fuel cells would be limited due to the
carbon content in the fuels, without an additional significant efficiency advantage
over diesel engines or the low-temperature fuel cells (Stephens et al., 2016). Al-
though either MCFCs or SOFCs could operate with H, (Dicks and Rand, 2018),
limitations such as long start-up time, low power density, limited cycling number,
availability and maturity, make them less appealing for use in coastal ships sailing

on short routes that frequent start-stop and manoeuvring.

As depicted by Stephens et al. (2016), low-temperature fuel cells operating
with renewable fuels are a more promising option for transportation applications.
Although there are still major challenges, such as high production costs, the PEMFC
is commercially available, and the cost of production cost is expected to decrease
rapidly (Chen et al., 2015; Fletcher et al., 2016; Ehsani et al., 2018). This model
of fuel cell can offer desirable life-cycle emission performance provided that the
H, is produced using clean and low-cost energy (Singh et al., 2015; Ahmed et al.,
2016; Gurz et al., 2017; Bicer and Dincer, 2018). The limited system-level energy
density of H, energy is one of the main obstacles for its maritime applications (van
Biert et al., 2016; Raucci, 2017). Nevertheless, for coastal ships operating on short
routes, e.g2. SF-BREEZE, the excessive volumetric impact from H, storage could be
insignificant, but more frequent replenishment of H, may be necessary (Pratt and

Klebanoff, 2016).

2.4 Review of energy storage technologies

Table 2.3 compares the main ESS technologies, including Lithium-ion batteries,
supercapacitors and flywheels from a range of perspectives, including energy den-
sity, power density, lifetime and efficiency. In hybrid-electric propulsion systems,

an ESS can be used to store energy from regeneration, to optimise engine loading
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conditions and to provide direct propulsion.

Table 2.3: Main ESS technologies (May et al., 2018; Kim et al., 2015a; Hameer and van
Niekerk, 2015; Gonzalez et al., 2016; Farrier et al., 2017; Giir, 2018).

Energy Power Specific Specific Daily Self Cycle Lifetime  System
ESS density density energy power discharge life efficiency

[WhL~!]  [WL™1 [Whkg™'] [Wkg] [% of energy] [cycle] [year] [%]
Lead-acid 60-110 10-400 20-40 75-300 0.2 1200-1800  5-15 50-95
Nickel-Cd 150-300  80-600 50-80 150-300 0.3 1500-2500  10-20 60-83
Lithium-ion 250-675 1500-10000  50-250 500-2000 0.1-0.3 400-9000 15-20 90-99
Flywheel 20-80 1000-2000 10-30 400-1500 >20% per hour ~ >1000000 15-20 70-95
Supercapacitor ~ 10-30 >100000 1-10 500-10000  10-20 >1000000 10-20 85-98

2.4.1 Supercapacitors

Supercapacitors are electrochemical energy storage devices. As shown in Figure
2.8, supercapacitors store electric energy by means of an electrolyte solution be-
tween two solid conductors which are typically designed to offer large surface areas
(Sabri et al., 2016; Farrier et al., 2017) such that large capacitances can be achieved
with a large amount of electric charge stored with a small distances between the
two electrodes. Supercapacitors can discharge stored electric charge within a short
period. As a consequence, supercapacitors are characterised as having high power
density and specific power, which makes them ideal for short period high pulse
loads. However, supercapacitors offer low energy density, which makes them less

suitable for marine propulsion applications (Gonzélez et al., 2016).

2.4.2 Flywheels

Figure 2.9 illustrates the structure and components of a flywheel (Amiryar and
Pullen, 2017). Flywheels store the kinetic energy by using a high-speed rotating fly-
wheel inside a containment vacuum on a set of bearings (Faraji et al., 2017; Amir-
yar and Pullen, 2017). The flywheel rotor is coupled to a motor/generator which
functions as the electromechanical interface between the flywheel and the external
system via a bi-directional converter (Luo et al., 2015). High-speed flywheels oper-

ate at speeds of up to 1 x 10° rpm. Flywheels have been used in applications such as
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Figure 2.8: Schematic of a supercapacitor (source: (Saleem et al., 2016)).
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Figure 2.9: Structure and components of a flywheel (source: (Amiryar and Pullen, 2017)).

uninterruptable power supply systems, hybrid vehicles and power quality improve-
ment by storing and releasing energy with specific power up to 1500 Wkg~! (Arani
et al., 2017). Flywheels offer superior lifetime and safety characteristics but have
limited energy density and need to deliver and recover energy in short periods due

to having a high self-discharge rate (Giir, 2018).
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2.4.3 Batteries

The Lead-acid battery is a mature, dependable technology but offers low specific
energy and specific power. They have an efficiency of around 70% and discharg-
ing below 80% will affect its lifetime significantly (May et al., 2018). Nickel-Cd
batteries are superior to Lead-acid batteries in terms of capacity and lifetime. In
comparison with Lithium-ion batteries, both Lead-acid and Nickel-Cd batteries of-
fer limited energy densities and inferior system efficiencies. Consequently, the two

types of batteries are considered less suitable for coastal shipping applications.

Figure 2.10 illustrates the schematic of the first Lithium-ion battery (Goode-
nough and Park, 2013). Lithium-ion batteries provide the highest energy density
with reasonable lifetime and power density (Kim et al., 2015a). Among all the
possible ESS solutions, Lithium-ion batteries are the most widely used in the au-
tomotive industry and have been developed extensively over the past decade with
increasing energy density and reducing production cost (Lu et al., 2013; Jaguemont
et al., 2016). They are still costly at present, and a shortage of Lithium and some of
the transition metals currently used in Lithium-ion batteries may become an issue
in the future. However, a significant shortage of Lithium is unlikely in the near fu-
ture, and Lithium-ion batteries will probably continue to dominate electrochemical

energy storage for years to come (Nitta et al., 2015; Curry, 2017).

Separator

L.

Anode Electrolyte Cathode
(graphite) (LiCo0y)

J

Figure 2.10: Schematic of the first Lithium-ion battery (LiCoO,/Li + electrolyte/graphite)
(source: (Goodenough and Park, 2013)).
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2.4.4 Battery-powered ships

All-electric battery-powered vehicles are becoming an important option for the de-
carbonisation of road transport by utilising grid power (Anandarajah et al., 2013;
Andwari et al., 2017). However, currently all battery vehicles have limited ranges
due to limited battery energy density; hybrid plug-in configurations with internal
combustion engines or H, fuelled PEMFCs have emerged with extended ranges
(Sabri et al., 2016; Ehsani et al., 2018). Batteries are also being widely used in
non-plug-in hybrid configurations with internal combustion engines or fuel cells
to optimise propulsion system performance through load levelling (Cuma and Ko-

roglu, 2015).

In recent years, progress has been made with the development of battery-
powered ships. Figure 2.11 shows the battery-powered ship numbers (Figure 2.11b)
trend and battery ship categories (Figure 2.11a) from 2011 to the first quarter of
2017 (Alnes et al., 2017). Passenger/car ferries are the main ship type adopting
battery power. The main reason for this is passenger/car ferries typically operate
on short routes with relatively low power demands, which helps alleviates the en-
ergy density issue of batteries. Moreover, operating on relatively fixed routes makes

access to charging infrastructures less challenging.

Batteries have also been used in hybrid propulsion systems to allow the diesel
engines or fuel cells to operate at optimised load, i.e. load levelling to improve effi-
ciency. Caledonian Ferries has three hybrid vessels, each having two banks of 800
kWh batteries (Figure 2.12a) (Geertsma et al., 2017). The battery banks are charged
by utilising shore generated electricity and optimise the loading of the diesel gener-
ating sets. It has been reported that a 35% fuel saving was demonstrated during sea
trials owing to the hybrid diesel/battery propulsion system (Breijs and Amam, 2016;
Geertsma et al., 2017). The gird electricity directly accounted for a 24% fuel sav-
ing. The other 11% fuel saving was achieved by levelling the diesel engine loads by
using the batteries and controlled using an energy management system specifically

developed for this application (Breijs and Amam, 2016).
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The Norwegian ferry MF Ampere (Figure 2.12b), which came into operation
in 2015, is the world’s first large-sized all-electric battery-powered car ferry (Alnes
et al., 2017). This vessel undertakes 56 journeys per day, each which is of 5.6 km,
and is powered by a 1.04 MWh Lithium-ion battery which is recharged by two 410
kWh shore charging stations located at each end of its journey (Skjong et al., 2015;
Geertsma et al., 2017). It should be noted due to limited battery energy density, a
purely battery-powered propulsion system is limited to ships like MF Ampere that

require very limited range.

To date, the world’s largest maritime battery application that has been an-

I Passenger/Car ferry
[ Offshore Vesses|
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Figure 2.11: Battery ship statistics and trend (data source: (Alnes et al., 2017)).
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nounced is a hybrid LNG-electric cruise ship with a battery capacity of 10 MWh
(Figure 2.12d) (Corvus, 2019b). Another large hybrid LNG-battery ship with
planned battery capacity of 6.1 MWh was announced in early 2019 (Figure 2.12c)
(Corvus, 2019a).

Batteries have also been used with solar energy. Several car carriers with exten-
sive upper deck area have been equipped with photovoltaic panels which generate
enough energy to satisfy about 8% of the service load (Barnes, 2014). The exper-
imental craft Planet Solar has 8.5 t of Lithium-ion batteries in its two hulls with

solar cells to recharge them (Visa et al., 2016).

Figure 2.12: Battery-powered ships. (a) hybrid diesel-battery Caledonian MacBrayne ferry
MYV Hallaig ((Geertsma et al., 2017)). (b) Norwegian all-electric battery-
powered ferry MF Ampere (Alnes et al., 2017). (c) Havila Kystruten’s hy-
brid gas-battery ship (Corvus, 2019a). (d) World’s largest battery maritime
application: 10 MWh with LNG engines (Corvus, 2019b).
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2.4.5 Battery challenges

2.4.5.1 Energy density

Thackeray et al. (2012) indicate that battery energy density should reach 300-750
Whkg~! for road vehicles (see Figure 2.13). This would allow electric-powered
vehicles to attain a 300—400 mile range between recharges to better match the per-
formance of internal combustion engine powered vehicles. Limited battery energy
density is also an issue for maritime applications, especially for those smaller ships
typically powered by 4-stroke medium or high-speed diesel engines with minimal
volume and weight margin within their propulsion systems. Compared to a tradi-
tional diesel system, for a coastal bulk carrier with a voyage length of 100 nau-
tical miles, at an operational speed of 10 knots, the battery system would require
approximately 2.5 and 6 times more volume and mass than the installed diesel en-
gines respectively if replaced by a state-of-the-art Lithium-ion battery pack with
an energy density of 250 Whkg~! and 300 WhL~!. Nevertheless, more advanced
battery technologies, such as Lithium-O,, could probably solve the volumetric and
weight constraints by offering approximately ten times higher energy density than

the Lithium ion battery option (Rahman et al., 2014).

2.4.5.2 Production cost

One of the main obstacles to battery power is the high production cost of the bat-
teries (Schmidt et al., 2017). Batteries need to be replaced when they reach their
calendrical life limits or cycling limits. The replacement costs will also contribute
to the through-life cost of battery-powered ships. Nevertheless, such high prices
are expected to decrease (Larcher and Tarascon, 2015; Alnes et al., 2017). From
a long-term standpoint, e.g. 10 or 20 years, batteries can potentially deliver bet-
ter economic performance over the traditional diesel system if and when the battery
price falls below 150 $kWh~!, which is the long-term goal for commercialisation of

electric vehicles (see Figure 2.14) (Nykvist and Nilsson, 2015; Alnes et al., 2017).
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2.4.5.3 Safety

Lithium-ion batteries could fail due to reasons such as thermal stressing, physi-
cal damage, charge and discharge failures and short circuit (Doughty and Roth,
2012). These failures could lead to fires or explosions. There have been acci-
dents caused by Lithium-ion batteries in transport applications including cars and
aeroplanes (Wang et al., 2012). For shipboard applications, Rao et al. (2015) pro-
posed safety measures for utilising Lithium-ion batteries including distributed bat-
tery space, flame-resistant shell materials, structural and thermal separation of ad-

jacent battery spaces, a suitable fire extinguishing system (e.g. heptafluoropropane
type).

The family of Lithium-ion batteries is vast, and each type may have its own
failure characteristics so it is essential to design the safety and protection function
of battery system in accordance with the particular characteristics when integrat-
ing them into ships (DNV GL, 2016). With increasing energy and power density,
designing a safe battery could become more challenging as more highly reactive
materials and higher operating voltage levels are used. Therefore, it is necessary to
prioritise safety features throughout the design and manufacturing processes. Spe-
cial attention would also need to be paid to safety when batteries are integrated into

propulsion systems.
2.4.5.4 Recycling

Lithium-ion batteries contain valuable material, including Co, Li, Mn, and Ni (Zeng
et al., 2014). Although Lithium-ion batteries are not generally classified as danger-
ous waste, they could be flammable and also have a negative impact on the en-
vironment. The study by Dewulf et al. (2010) shows that the recycling scenarios
could lead to 51.3% natural resource savings and approximately 50% reduction in
energy demand. According to Larcher and Tarascon (2015), the production process
of Lithium-ion batteries is energy-intensive, i.e. more than 400 kWh is needed to
manufacture a 1 kWh Lithium-ion battery whilst the production of 1 kWh of elec-

tricity from coal produces 1 kg of CO,. Swain (2017) reviewed the technologies for



Literature review 71

recovery and recycling of Lithium from used batteries and proposed that hydromet-
allurgical recycling of Lithium-ion batteries should be the focus. It is necessary
to develop a more advanced recycling system for Lithium-ion batteries and other
future battery types to achieve more sustainable battery power development with a

lower overall carbon footprint, fewer pollutants and more resources recycled.

2.4.5.5 Charging infrastructures

For Electric Vehicles (EV), the shortage of charging infrastructure is no longer a ma-
jor issue as more and more standardised charging ports are being built (Neubauer
and Wood, 2014; Burnham et al., 2017). However, ships typically have much higher
power and energy demands compared to EV and would need charging infrastructure
with much higher capacities to be developed along with the battery-powered ships.
The availability of charging infrastructures has a direct influence on a ship’s battery
system arrangement. The installed battery capacity has to be doubled if only one
of the two ends of the route has charging infrastructure. Ships usually only remain
for a limited time at ports. Therefore, the capability must exist for the batteries
to be charged during that period. Hence, fast charging could be necessary, which
could have a negative impact on the local electricity grid. Muratori (2018) consid-
ered the charging impact of plug-in hybrid-electric vehicles on the residential grids.
However, similar research work can rarely be found for maritime applications. The
MF Ampere has two additional battery banks installed on each end of its route to

minimise the charging impact to the local grid.

Batteries, as a type of energy storage device, do not themselves emit GHG into
the atmosphere. However, electricity from the power grid is generated with a certain
size of carbon footprint, depending on the type of power generation method. The
current global average electricity CO, intensity of approximately 500 g CO, kWh™!
is required to reduce to 100 g CO, kWh~! by 2050 (Tran et al., 2012). Figure 2.15
shows the grid electricity Global Warming Potential (GWP) trends in the EU from
1990 to 2016. Actual GWP decreasing trends can be observed at both the EU and

country levels. As mentioned in Section 2.2.2, the specific CO, emission of a typical
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Figure 2.15: Grid electricity GWP in the European Union (Eurostat, 2019).

medium-speed marine diesel engine is approximately 600 g CO, kWh~!. The use of
shore-generated electricity would reduce the GWP emissions by 50% with the EU
average grid electricity GWP of 296 g CO, kWh™! in 2016. More GHG savings
can be achieved by countries like Denmark with even lower grid electricity GWP.
For countries with grid electricity GWP well above 600 g CO, kWh™! (Li et al.,
2017), using battery power would not realise GHG benefits.

2.5 Review of hybrid-electric propulsion systems

Having identified that diesel-based propulsion systems are not a viable powering op-
tion for future coastal shipping with increasingly stringent regulations on emissions
in Section 2.2, the scope of this section is focused on electric propulsion system
topologies which are more suitable for fuel cell (Section 2.3) and battery (Section

2.4) power.
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Shipboard electric propulsion has been around for more than 100 years (Ad-
nanes, 2003). The availability of power electronics and variable speed converters
makes modern all-electric propulsion systems feasible for large scale commercial
marine applications (Woud and Stapersma, 2002; Hansen and Wendt, 2015). Fig-
ure 2.16 details the evolution of shipboard all-electric propulsion systems. Since the
1980s, the use of power electronics has become a common method for commercial
ships such as cruise vessels to improve fuel efficiency (McCoy, 2002; Kim et al.,
2015b). Integrated Full Electric Propulsion (IFEP) (Figure 2.16a) was adopted by
Queen Elizabeth 2 to replace the steam turbines for better fuel efficiency. Such a
system topology has also been used by other ships such as platform supply vessels

with highly variable load profiles.

More recently, the emerging energy storage technologies (mainly Lithium bat-
teries) enable IFEP with even better fuel efficiency (i.e. by load levelling to allow
more efficient operation of the diesel engines), and the capability of utilising greener
shore-generated power when larger battery modules are installed onboard (see Fig-
ure 2.16b) (Geertsma et al., 2017). Such a hybrid diesel/battery system has been
adopted by ships such as MV Hallaig (see Figure 2.12a). However, the overall ef-
ficiency improvement that can be offered by such systems are limited, and would
depend on the application, load characteristics and control strategies (Breijs and

Amam, 2016; Geertsma et al., 2017).

One of the major limitations of AC based diesel-electric propulsion systems
(Figure 2.16a and 2.16b) is that the diesel prime-movers have to operate at fixed
speeds, which limits the overall fuel efficiency due to high SFC when the engine
operates under part-load conditions (Geertsma et al., 2017). To further improve fuel
efficiency of these systems, a DC hybrid power system (Figure 2.16¢) is a viable
option (Zahedi et al., 2014; Herrera et al., 2015). In a DC power system, the diesel
engines can operate at optimised speeds rather than fixed speeds to achieve better
part-load efficiency. However, to utilise these types of DC systems, challenges such
as fault protection and system stability would need to be addressed to allow reliable

operations (Zadeh et al., 2013; Herrera et al., 2015).
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Figure 2.16: Evolution of ship electric propulsion system (Geertsma et al., 2017). (a) In-
tegrated full electric propulsion AC power system applied on cruise ships and
offshore vessels. (b) Hybrid diesel/battery electric with shore power and AC
power system. (c) Hybrid diesel/battery with shore power and DC power sys-
tem. (d) Hybrid fuel cell/battery with shore power and DC power system.

Replacing the diesel generators and their rectifiers in Figure 2.16¢ with fuel
cells, a hybrid fuel cell/battery DC power system would be offered as in Figure
2.16d. Such a DC system would seem a natural fit since the fuel cells and batteries
provide power outputs that are both DC (Sulligoi et al., 2016; Skjong et al., 2016).
The fully battery-powered ferry MF Ampere (Figure 2.12b) has been constructed
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with such a DC system (Skjong et al., 2015). Nevertheless, challenges similar to
those encountered in the diesel engine based DC systems still apply to the fuel
cell/battery powered system. It is possible to use a conventional AC power distribu-
tion system for fuel cell and battery powered ships but this would introduce further

conversion losses when the DC power is converted to AC.

2.6 Summary

This literature review has been focused on the future direction of marine power
and propulsion systems for coastal shipping. Diesel engines and their associated
improvement technologies, alternative fuels, fuel cell technologies, energy stor-
age systems and marine hybrid-electric propulsion system topologies have been

reviewed.

As determined by Stephens et al. (2016), low-temperature fuel cells offer great
potential as a means of replacing fossil fuels with renewable energy for transporta-
tion applications. Although there are still major challenges such as high production
costs, the PEMFC is commercially available, and the production costs are expected
to decrease rapidly (Chen et al., 2015; Fletcher et al., 2016; Ehsani et al., 2018).
Such fuel cells can offer desirable life-cycle emission performance provided that
the H, can be produced through use of clean and low-cost energy (Singh et al.,
2015; Ahmed et al., 2016; Gurz et al., 2017; Bicer and Dincer, 2018). The limited
system-level energy density of H, is one of the main obstacles hindering its appli-
cation to wide ranging maritime operation (van Biert et al., 2016; Raucci, 2017).
However, for coastal ships operating on short routes, e.g. SF-BREEZE, the volu-
metric impact of H, storage requirements could be alleviated, but at the cost of the

need for more frequent replenishment of H, (Pratt and Klebanoff, 2016).

Existing batteries could be a viable powering solution for ships operating on
short routes and have access to low-carbon grid power. However, challenges such
as energy density, lifetime, safety, grid power GWP need to be considered before

applications (Thackeray et al., 2012; Larcher and Tarascon, 2015; Wu and Bucknall,
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2016; Doughty and Roth, 2012). Flywheels are not suitable for ship power due to
very limited energy density and high self-discharging rates (Amiryar and Pullen,
2017). Supercapacitors could be useful for transient loads; however, with limited

energy density, they are not ideal to be main power sources (Saleem et al., 2016).

To decarbonise the coastal shipping, the GHG emissions need to be considered
holistically, as well as the constraints such as high costs and low energy densities
compared to conventional plants. Both the H, powered PEMFC and Lithium battery
would appear as zero or near zero-emission if the scope is only limited to the ship.
However, the carbon intensities, measured by Global Warming Potential, of both H,
and electricity, can vary greatly depending on the energy sources. The uncertainties
from the energy supply side, power source manufacturing and practical ship design
requirements need to be well addressed holistically to achieve balanced alternative

propulsion system design.

The hybridisation of PEMFC, battery and grid power in a DC system architec-
ture could potentially provide balanced propulsion system designs for coastal ship

operating on short routes and have access to clean and renewable energy sources.



Chapter 3

Problem formulation

3.1 Opverview

In Chapter 2, a range of technology options to replace diesel-based systems are con-
sidered. Based on this review, a Proton Exchange Membrane Fuel Cell (PEMFC),
Lithium battery and shore power in hybrid plug-in configuration will be selected
as the primary candidate technologies to decarbonise coastal shipping engaged on
relatively short transits for their potential to eliminate carbon emissions. This chap-
ter identifies research gaps (Section 3.2) that exist in integrating PEMFC and bat-
tery technology to marine propulsion and power systems. Development of energy
management strategies for hybrid PEMFC and battery power systems will also be
explored. Section 3.3 provides details of the candidate ship that will be the basis for

this research. Section 3.4 summarises this chapter.

3.2 Gap analysis

As shown in Figure 3.1, designing and optimising hybrid propulsion systems with
multiple power sources requires consideration of both the system optimisation and

control design aspects (Hu et al., 2015b; Silvas et al., 2016; Valera-Garcia and

7
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Atutxa-Lekue, 2018). Conventional commercial ship propulsion systems typically
utilise diesel engines as the main power source (Woud and Stapersma, 2002), which
makes for a less complex propulsion system design than that for hybrid propulsion
systems. Having identified a plug-in hybrid propulsion system with PEMFC and
Lithium battery as the preferred configuration for this project, the research gaps in
the power source sizing optimisation and optimal control of such hybrid propulsion
systems need to be identified and clearly defined. Power source sizing is intended to
optimise the propulsion system during the design phase prior to operations. How-
ever, control strategies for such systems should be considered in the sizing process.
The aim of optimal control is the satisfying of specific operational objectives such

as minimum fuel consumption.

Topology optimisation

space increase

System
- design Topology & size
2 optimisation
2l o 2
© 2
S _ @
Ol | Control Optimal control A
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Figure 3.1: Propulsion system level design and its multi-layers (Silvas et al., 2016).

3.2.1 Hybrid propulsion system optimisation

Table 3.1 provides a list of research works relevant to hybrid propulsion design
optimisation. The scope is extended to include road vehicles, aircraft, submarines
as well as ships so as to include any concepts and methods that have been used
in parallel industries and may prove to be of value of this research. The hybrid
propulsion system design optimisation problem can be mathematically formulated
as constrained optimisations. Optimisation schemes such as a Genetic Algorithm

or a Particle Swarm Optimisation have been proposed and applied to solve such
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problems (Erdinc and Uzunoglu, 2012). A minimising optimisation problem with a

single objective function can be stated as to find a vector of decision variables:

X = [X1,X2, ..., Xp] (3.1)

which minimises the objective function:

f=rk) (3.2)
subject to the constraints:

gi(x) <0 (3.3)
fori=1,2,...,m, and:

L (x) =0 (3.4)

for j = 1,2,...,n, where g; is the i’ inequality constraint and [ j 1s the i equality
constraint. For problems with multiple objectives, the objective functions can be

expressed as:

f=1fix), fa(x), ..., f2(x)] (3.5)
where fi(x),k € [1,7] is the k" objective function.

For road vehicle applications, optimisation methods have been widely adopted
to optimise hybrid propulsion system designs. Kim and Peng (2007) proposed
a combined power source sizing and energy management for a hybrid fuel cell
and battery road vehicle using a DIRECT optimisation algorithm and a pseudo-
Stochastic Dynamic Programming Energy Management System (EMS) with a scal-
able system model. Their proposed method is a single-objective approach focusing
on minimising H, consumption without considering any degradation of the power
sources and life-cycle GHG emissions. (Hu et al., 2015a) applied convex optimisa-
tion to size the power sources of a hybrid PEMFC/battery road vehicle to minimise
H, fuel and battery degradation costs. However, the degradation of the PEMFC,

which could potentially influence the system design, were not considered.
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In practice, the design of a hybrid propulsion system often needs to consider
the trade-off between multiple objectives due to potential conflicts amongst the ob-
jectives (Sulaiman et al., 2018). Ribau et al. (2014) developed a sizing methodol-
ogy optimising fuel consumption, cost and life-cycle GHGs concurrently based on
the well-established Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb
et al., 2002) for a plug-in hybrid fuel cell/battery bus operating in Portugal. Their
results suggest that 67% of the life-cycle GHG emissions can be reduced for the
application scenario. However, different energy properties and driving cycles can
influence the system design. The optimal design can vary significantly for different
energy sources and driving cycles. Song et al. (2014, 2015); Zhang et al. (2017)
adopted the same optimisation routine to optimise the designs of plug-in hybrid

battery/supercapacitor road vehicles with different optimisation objectives.

Earlier work by Skinner et al. (2007) adopted a multi-objective genetic algo-
rithm to optimise the integrated electric propulsion system for a naval submarine.
The multi-objective genetic algorithm was proven to be effective in dealing with
multi-objective and high dimensional design problems. There were 16 objective
functions, and the design space had 9 discrete and continuous design variables. (Xie
et al., 2018) proposed using NSGA to size the hybrid-electric propulsion system for
retrofitting a mid-scale aircraft. Fuel consumption and flight duration were the two

objectives on which the design was focussed.

For shipboard applications, when the decision space has limited dimensions
and sizes, it is feasible to search sweeping through the design space. Bassam et al.
(2016) proposed a power source sizing methodology for a hybrid PEMFC/battery
powered ferry to minimise a lumped cost, including initial and operational costs
through exhaustive search over the sizing variable spaces. However, such an ap-
proach did not consider any volumetric and weight constraints, which could in-
validate the solutions. The optimal energy management problem for each sizing
combination was solved using a classical Proportional-Integral controller (Motapon
et al., 2013). Mashayekh et al. (2012) adopted a similar search approach for their

diesel/battery hybrid propulsion system battery sizing determination. The opti-
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mal energy management solution is obtained by using dynamic dispatch for a nor-

malised load profile.

When the design variable space is continuous or is of large dimension and
size, it would be impossible or computationally expensive to loop through the vari-
able space. Valera-Garcia and Atutxa-Lekue (2018) applied NSGA-II (Deb et al.,
2002) to optimise three objectives (fuel consumption, battery capacity and battery
energy consumption) concurrently for a platform supply vessel. Zhu et al. (2018)
adopted NSGA-II (Deb et al., 2002) and Multiple Objective Particle Swarm Op-
timisation (MOPSO) (Coello and Lechuga, 2002) to optimise their plug-in hybrid
diesel/battery propulsion systems with several constraints applied to determine the
diesel system design parameters and battery module configuration. The objectives
include fuel consumptions, GHG emissions and life-cycle costs. A rule-based EMS
was used in their nested optimisation flow. A similar approach was used in the
work of Zhu et al. (2019), but with the number of objective functions reduced to

two, focusing on fuel consumption and GHG emissions.

Multi-objective optimisation schemes such as NSGA-II have been successfully
applied to optimise plug-in and non-plug-in hybrid propulsion systems of road ve-
hicles, submarines and aircraft. Such schemes have also been adopted to optimise
the designs of plug-in hybrid diesel/battery ships. However, no work on optimis-
ing plug-in hybrid fuel cell/battery propulsion systems focusing on life-cycle GHG
emissions and power source energy costs could be found in the literature. Moreover,
coastal ships, such as ferries, typically have limited volume and weight margins for
their propulsion systems. These constraints need to be accounted for in the topology

optimisation phase.

It is worth mentioning that the design of a hybrid propulsion system is a nested
problem, i.e. the system topology and control strategies need to be considered con-
currently (Silvas et al., 2016). Also, note that alternative power sources, such as
fuel cells and batteries, have limited lifetimes and could degrade at different rates

under different control strategies. Although existing works have applied energy
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management strategies, such as rule-based strategy when optimising the hybrid sys-
tem designs, none of the existing studies have considered degradation of the fuel

cells and batteries concurrently.

3.2.2 [Energy management strategy

In a hybrid propulsion system, an effective EMS is crucial to managing power flows
among multiple power sources (Martinez et al., 2016; Kalikatzarakis et al., 2018).
Table 3.2 presents a compilation of energy management studies for hybrid-electric
propulsion systems deemed relevant to this research. The EMS determines actions
taken by the hybrid propulsion system under certain operating conditions. However,
it is a challenge to develop an effective EMS for hybrid systems if future power

profiles are unknown.

The research into EMS for hybrid propulsion systems is primarily driven by
road vehicle applications. Sulaiman et al. (2015) provided a comprehensive review
of the main EMS categories for hybrid fuel cell road vehicles. Their review indicates
that rule-based, fuzzy logic, Equivalent Consumption Minimisation Strategy and
wavelet-based load sharing are the main EMS streams for hybrid fuel cell road

vehicles.

Caux et al. (2010) proposed an on-line fuzzy energy management system for
the propulsion system of a hybrid fuel cell/supercapacitor road vehicle. Their fuzzy
system parameters were optimised for two standard driving cycles using a genetic
optimisation algorithm. The results suggest that the energy consumption when
under the control of their fuzzy EMS is approximately 30% worse than that of
the optimal EMS acquired via dynamic programming. An adaptive fuzzy-logic
EMS was proposed for a plug-in hybrid/battery road vehicle later by Khayyam and
Bab-Hadiashar (2014). However, the performance of that EMS was not compared
against one derived by dynamic programming, but a 10% fuel consumption reduc-
tion has been observed when compared to the original EMS. Chen et al. (2017)

proposed an on-line predictive fuzzy-logic EMS for a plug-in hybrid engine/battery
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road vehicle. Their study tackles the uncertainties of driving cycles by combining
dynamic-neighbourhood particle swarm optimisation and fuzzy logic. The energy
consumption that could be achieved is up to 9.7% (when compared to their charge-

depleting and charge-sustaining EMS).

Fletcher et al. (2016) adopted stochastic dynamic programming to generate an
optimal EMS for a hybrid fuel cell/battery road vehicle, accounting for the fuel
cell degradation characteristics generalised from experimental results. Their EMS
was able to reduce the cost by 12.3% through prolonging fuel cell lifetime. The
main contributions from this study are: (1) addressing the importance of consid-
ering power source degradation characteristics for EMS design and optimisation;
(2) applying stochastic dynamic programming to generate an optimal EMS based
on historical load profiles. However, the accuracy of stochastic dynamic program-
ming is limited by its resolution due to ‘the curse of dimensionality’ (Sutton and
Barto, 1998). Wang et al. (2019) proposed more sophisticated fuel cell and battery
degradation models based on the degradation mechanisms. However, Wang et al.
(2019) only used deterministic dynamic programming to generate an optimal EMS
for a specific load profile based on these degradation models. It should be noted
that an EMS generated by deterministic dynamic programming is a useful as an off-
line EMS against which to benchmark other on-line EMSs, but it is not practical to

apply it to actual unknown load profiles.

Recently, machine learning EMS have started to emerge for road vehicles.
Muiioz et al. (2017) presented a neural network EMS for a hybrid fuel cell and
battery road vehicle based upon supervised learning. With a target EMS for specific
driving cycles generated through optimisation approaches, the neural network was
subsequently trained to achieve levels of performance similar to that achieved by
the target EMS. The actual performance of such an EMS for unknown future driv-
ing cycles is not clear. Murphey et al. (2012a,b) applied neural network for power
demand prediction and used dynamic programming to generate an EMS. However,
actual power demands could vary in practical driving conditions, which would in-

fluence the performance of the pre-generated EMS.
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For a hybrid system with an energy storage device, the problem, in essence, is
a sequential-decision making problem, i.e. what actions or controls should be taken
over the power cycles to deliver performance that approximates the optimal objec-
tives (e.g. minimum operational costs or emissions). Reinforcement Learning (RL),
as an approach for solving such sequential-decision making problems, has been pro-
posed for hybrid diesel engine and battery road vehicles. Hu et al. (2018) and Wu
et al. (2018) implemented Deep Q-Network (DQN) to generate an EMS for stan-
dard driving cycles. It is worth noting that, using a limited number of driving cycles
to train an RL agent could lead to the generated EMS only being able to perform as
per design under specific driving cycles. Xiong et al. (2018) proposed solving the
optimal power split problem using Q-learning with the Kullback-Leibler divergence
as an indicator as whether to update the EMS over time. Their results suggest that
updating an EMS over time may further reduce fuel consumption. However, there is
a lack of implementation of reinforcement learning algorithms for fuel cell/battery
hybrid propulsion systems. Moreover, these road vehicle implementations only fo-
cus on single power source control (either the engine or the fuel cell stack in discrete
action spaces). In contrast, marine propulsion systems would require control over

multiple power sources for redundancy and reliability considerations.

For shipboard applications, it is rare to find an intelligent EMS based on
RL. Kalikatzarakis et al. (2018) presented ‘Equivalent Consumption Minimisation
Strategies’ for shipboard applications with a diesel engine in hybridisation with bat-
tery and shore power. Their results indicate that a 6% fuel saving can be achieved
compared to the rule-based method. However, the actual fuel consumption achieved
is not clear for actual ship operations since only a limited number of power profiles
were analysed in this study. Bassam et al. (2017) proposed a multi-scheme EMS
with a mix of several sub-EMSs in different states for a hybrid fuel cell passen-
ger ship based on an operational profile of eight hours duration. Choi et al. (2016)
implemented a load-following EMS for their hybrid fuel cell and battery powered
boat, in which the fuel cells operate at a designated power ouput while the batteries

provide any additional power demands. Han et al. (2014) proposed a rule-based
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EMS tuned by a typical load cycle for a passenger boat.

The research efforts mentioned above have successfully developed hybrid
propulsion system EMSs for shipboard applications. However, the existing EMSs
were developed using a limited number of load profiles. Understanding of the ac-
tual EMS performance for as yet unknown voyages in the future has not been made
clear in existing works that can be found from the literature. Novel approaches us-
ing reinforcement learning algorithms and historical power profiles over the long

term do not exist in the literature for marine applications.

3.2.3 Identified research gaps

3.2.3.1 Design

There is no clear systematic integrating methodology that exists for designing and
managing the alternative powering solutions for coastal ships. It is true that fuel
cells operating on H, are emission-free or near emission-free. However, the pro-
duction processes of H, can itself be carbon-intensive. The CO, emissions which
have been transferred to other phases of the fuel production cycle could be even
higher than that from conventional diesel engine based solutions. In addition, most
of the current alternative power sources, such as fuel cells and batteries, do have cer-
tain disadvantages and limitations such as high production costs and low lifetime.
These drawbacks and limitations could make alternative power systems extremely
uneconomic to operate. In addition, the cost and CO, impact of fuel production vary
significantly between different countries and regions of the world, which has to be
considered from the beginning of the power system design phase. The identified

research gap on integrating fuel cells and batteries for coastal shipping is:

* There is a lack of holistic sizing methodologies for the design of plug-in hy-
brid PEMFC/battery propulsion systems, considering life-cycle GHG emis-

sions, costs and shipboard constraints.
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3.2.3.2 Operation

For hybrid road vehicles it is typical to use standard driving cycles to develop the
EMS. However, for hybrid ships, such standard cycles do not exist, and actual power
demands over different voyages may vary significantly due to factors such as sea
states, weather and ship cargo load conditions. In recent years, continuous moni-
toring of power demand over the long term provides a potential new approach to
advance the EMS development for such vessels (Eriksen et al., 2018). The identi-
fied research gaps on intelligent EMS for plug-in hybrid PEMFC/battery propulsion

system are:

» Cost-effective reinforcement learning EMS trained by large-scale stochastic

power profiles collected via continuous monitoring.

* EMS in continuous state spaces using deep neural networks as function ap-

proximators.

* Multiple fuel cell cluster control in continuous state and action spaces.

3.3 Case ship

Considering the quality and quantity of the data available, the proposed hybrid
propulsion system optimisation methodology and reinforcement learning based en-
ergy management strategies will be applied to a coastal ferry with a route as shown
in Figure 3.2 (Eriksen et al., 2018). Table 3.3 depicts the case ship’s specifications.
The original propulsion system featured an integrated full electric propulsion con-
figuration with a total installed power capacity of 4370kW (five diesel generator
sets, with each prime mover rated at 874 kW). The annual operating duty is 300
days, and the ship operates between two fixed ports accomplishing 16 voyages (8
round trips) per day, with each voyage being of 60 min duration. It is assumed that
battery charging can be carried out in both ports of the defined route, and hydrogen

will be replenished overnight and never during the operational period.
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Table 3.3: Case ship specifications.

Parameters Value

Ship type Ferry

Gross tonnage 4500

Power system configuration Integrated full electric propulsion
Installed engine power 4370 kW

Fuel tank volume 140 m?

Daily voyage number 16 (8 rounds)

Average voyage time 1h

Copenhagen

Denmark

= Odeonse

Fyn

(b)

Figure 3.2: Case ship (a) and its route (b) (Eriksen et al., 2018).

Figure 3.3 presents sample power profiles of the case ship collected using mon-
itoring and measuring equipment at the time step of 15s. It can be observed that
most of the time the actual engine power being delivered is less than the power
capacity rating of two diesel generators (3.3c). High power profiles can also be
observed, but the probability of them occurring is much lower than time spent op-

erating at the moderate and low power profiles. Unfavourable low load operation,
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which leads to low fuel economy, can also be observed as in 3.3d. The energy

efficiency for this ship can be potentially improved by integrating energy storage

systems for load levelling.
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Figure 3.3: Continuous monitoring collected raw power data of the case ship. (a) individual
engine power and (b) total delivered engine power; (c) cumulative probability
of total delivered engine power below specific values, note that the probability
of power below 1641 kW is 0.85, in other words, most of the time, the power
demands are below the capacity of two generator sets; and (d) power delivered
by Engine 5 in 5 continuous sample voyages, frequent unfavourable low load
operations can be observed.
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3.4 Summary

In this chapter, the research gaps in integrating fuel cells and batteries have been
identified. There is a lack of holistic design methodology dealing with the trade-
off between life-cycle GHG emissions and costs. The proposed two-layer multi-
objective hybrid propulsion system optimisation method has been introduced to deal
with the challenge of considering variable energy properties and optimal hybrid
system control strategies concurrently. Such a design methodology is intended to

achieve balanced hybrid propulsion system designs at the design phase.

This chapter also identified research gaps in the development of intelligent
energy management strategies for hybrid fuel cell and battery propulsion systems.
Reinforcement learning and deep reinforcement learning algorithms have been pro-
posed to solve the optimal energy management problems using continuous monitor-
ing data. Unlike the application scenarios for road vehicles, hybrid marine propul-
sion systems are subject to more complex operating conditions and could therefore
require high dimensional control over multiple fuel cell stacks. The reinforcement
learning and deep reinforcement learning based energy management strategies are
aimed at improving the cost-effectiveness and energy efficiency in the operation

phase.



Chapter 4

System modelling and optimisation

4.1 Overview

In this chapter, a holistic design methodology optimising the power source sizing
for coastal ship plug-in hybrid PEMFC/battery propulsion systems based upon an
energy efficiency model is proposed. Exiting studies on optimising plug-in hybrid
PEMFC/battery are mainly focused on road vehicle applications. For coastal ship
applications, life-cycle GHG emissions, costs and shipboard constraints need be
considered to achieve environmentally and economically feasible sizing solutions.
Such a methodology deals with the research gap associated with the integration of
a PEMFC and battery in a hybrid propulsion system for coastal shipping identified
in Chapter 3.

This sizing methodology optimises system performance while balancing the
trade-off between life-cycle GHG emissions and average voyage costs while consid-
ering shipboard constraints, power and the properties of energy sources. The power
source sizing problem is solved using constrained mixed-integer multi-objective op-
timisation in the external layer. The global optimum energy management strategies
for an averaged operating profile are obtained from deterministic dynamic program-

ming in the inner layer while considering power source degradations in the sizing

92
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algorithm. Section 4.2 details the system model development. In this chapter Sec-
tion 4.3 describes the sizing methodology. Section 4.4 implements the proposed
methodology to the case coastal ferry to investigate the feasibility and benefit poten-
tial of adopting the plug-in hybrid PEMFC/battery propulsion system. A sensitivity

analysis is presented in Section 4.5. Section 4.6 summarises the chapter.

4.2 System modelling

The models used in this chapter were coded in Matlab script to achieve fast simula-
tion speed which is essential for system optimisation and EMS development (using
reinforcement learning). The PEMFC, battery and converter models are developed
to have the flexibility of being calibrated by experimental data. Such that the pro-
posed methodology can be adopted with other types of power sources or converters,

depending on the actual devices would be used for a project.

4.2.1 Modelling purpose and requirement

The purpose of modelling the plug-in hybrid PEMFC/battery system is to estab-
lish a scalable framework to investigate the influences of not easily predictable en-
ergy properties (i.e. life-cycle GHG emissions and prices) on the system design
via multi-objective optimisation. Such a model will also be used as a basis for re-
inforcement learning energy management strategy development in the subsequent
chapters. Figure 4.1 presents the single line diagram of the system model. Note
that the focus of this research project is on system level optimisation and energy
management. Therefore, a quasi-steady-state model has been developed. Such an
approach has been validated and has been widely adopted in sizing optimisation and
energy management studies (Hu et al., 2015a; Song et al., 2015; Wu et al., 2018;
Xiong et al., 2018).
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Figure 4.1: Single line diagram of the plug-in hybrid PEMFC/battery system.

4.2.2 Modelling assumptions and limitations

When using the proposed sizing methodology and reinforcement learning based en-
ergy management strategies based on the system model, the following assumptions
and limitations apply and are deemed acceptable for the purposes of developing the

model.
4.2.2.1 Modelling assumptions

The following assumptions will apply throughout this and the following chapters:

 Suitable power converters exist that can match the efficiency curves adopted

in this study for the power source sizes under consideration.

» Shore power is immediately available when the ship arrives at the ports; in
reality, extra time would be required to establish the electrical connections
which could prolong the necessary docking time in port. However, it should
be noted that automated charging solutions using industrial robots that can
minimise connection time are commercially available (ABB, 2018). When
the ship is in port, the shore electricity is used to power the auxiliary ship

loads as well as charging the battery, i.e. cold ironing.

* As the case ship is continuously in service on operational days (Eriksen et al.,
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2018), the PEMFC is not switched off but maintained at an idling setting
when in port. In other words, the PEMFC is only switched off at the end of
the operational day. This is such that excessive degradation due to unneces-
sary on/off cycling is avoided. Also, the power required for idling has been

included in the load profiles.

* H, and electricity available on both ends of the case ship route have identical
properties considering the case ship only operates domestically in Denmark

with a voyage duration of 1 h.

4.2.2.2 Modelling limitations

* The models that will be employed do not allow the examination of detailed

transient performance which is beyond the scope of this research.

* The models cannot be used to investigate the influences on performance of

fuel cell and battery operating temperatures.

* The models are limited to ships plying routes that have access to H, replen-

ishing and battery charging infrastructures.

* The models would need re-calibration if different types of power source are

used.

4.2.3 System overview

To help determine the optimal design of a plug-in hybrid PEMFC and battery
propulsion system for coastal ships, a quasi-steady-state model with PEMFC and
lithium batteries that can be adjusted to scale has been developed. Figure 4.2
presents the system schematic of a plug-in hybrid PEMFC battery propulsion sys-
tem. Such a layout is designed for coastal ships sailing on short routes with access
to battery charging and H, replenishing facilities. The distribution system on a DC
ship eliminates the need for dc to ac inverters within the main propulsion distribu-
tion system. Although there are still practical challenges to implementing such a
DC distribution system, it directly matches the proposed power sources which are

DC (Hansen and Wendt, 2015; Higier et al., 2017).
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The two main operational modes that are envisaged during the ship’s routine
are sailing and port modes. In sailing mode, either cruising or manoeuvring, the
battery will work as an energy buffer to optimise the fuel cell loading and reduce the
need for severe reaction to power transients at the PEMFC. Note that when the ship
is in sailing mode the battery can undergo charging from the PEMFC or discharge
power to the ship and propulsion. When the ship is berthed, i.e. in port mode, the
shore connection charges the battery and powers the ship’s electrical loads, while
the PEMFC is idling during the operational turn around or shut down at the end of

the operational day.

The energy management system manages the power split between the power
sources by monitoring power demand, fuel cell power level, battery State of Charge
(SOC) and shore power availability, then determines the fuel cell power change for
the next time step. For each time step, the power supplied by the power sources has

to satisfy:

P+P+P =P, (4.1&)

Py = Premy (4.1b)

>0, sailing mode
Pfc — (4.10)

=0, port mode

=0, sailing mode
Py = (4.1d)

>0, port mode
\

Py,  Ppy > 0 for battery discharging or idling
P = (4.1e)

Pout /M3, Ppar < O for battery charging

where P; and P, are the fuel cell and battery power after the power converters re-
spectively; Pr. and Py, are fuel cell stack power output and battery power output
respectively; Py, is the ship’s lumped loads (including propulsive and auxiliary).
Note that Py, is determined by the EMS when in sailing mode and the fuel cell will

not be providing any power to the system when the ship is on shore supply. Also
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note that P, in port mode is calculated in line with the maximum charging rate
neglecting the internal resistance. The actual charging rate would be slightly be-
low the maximum charging rate due to the battery’s resistance (will be identified in
Section 4.2.7.3). 11, N2 and 13 are the fuel cell and battery converter (charging and

discharging) efficiencies respectively.

4.2.4 Power converter efficiency models

The power converter efficiency models output energy efficiency with the input of per
unit power to the converters. Note that the converter efficiency models are represen-
tative of achievable characteristics and can be easily updated with real data when
actual converter performance data is available for actual engineering applications.
Such an approach is valid and has been widely adopted in similar studies (Hu et al.,
2015a; Kalikatzarakis et al., 2018). As shown in Figure 4.3a, the power conversion
efficiency is plotted against the percentage power output for each of the conversion
modes. These efficiency models are based upon experimental data (Kanstad et al.,
2019; Tseng et al., 2016). The maximum error of any of these best fit efficiency
curves is 3%, which occurs at the 20% loading condition (Figure 4.3b). In high

load regions, the percentage error is less than 1%.

100 T T T T 5 T T T T
e AN — -@— - Fuel cell converter
s Fuel cell converter I 4r — -@— - Battery converter discharge |
Battery converter discharge sl Battery converter charge | |
Battery converter charge
= 20
= = I
g, 51r. // &
g 5 1 ey 3
5] 3 0~ :a// SO y ‘t’/"'/;
) o e D —g®—
= o -1f
. =
L 2b
-3r
40 -
At
30 - . L : -5 . . . .
20 40 60 80 100 20 40 60 80 100
Power percentage [%)] Power percentage [%]
(a) (b)

Figure 4.3: Power converter efficiency: (a) power converter efficiency curves fitted from
experimental results and (b) errors of fitted efficiency curves compared to ex-
perimental data from (Kanstad et al., 2019; Tseng et al., 2016).
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4.2.5 PEMFC model

To obtain fuel cell system specific hydrogen consumption and fuel cell degradation
rates under different operating conditions, a system level PEMFC model has been
developed and calibrated. Figure 4.4a represents the schematic of the PEMFC stack
system, including ancillary components (Pukrushpan, 2003; Dicks and Rand, 2018).
Figure 4.4b represents a single cell within the stack. The fuel cell stack model takes
account of power consumed by the auxiliary equipment. Individual cell outputs are

connected in series and parallel to form the stack output.

Cooling

H, pressure
H, tank reducing valu

—

[ R Ll O et Exhaust
Air Intercooler  Air
compressor humidification
Water tank
(a)
Hy + 2H™— 2@ =mmeeeerees H, + H,0
HZ + Hzo .
—— > Bipolar plate
Reaction: I e
H, + 1/20,— H,0|
M» Bipolar plate Ty
2H'+1/20, +26 >H,0 - Alr+ H.0
(b)

Figure 4.4: Fuel cell schematic: (a) PEMFC system and (b) single cell.
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4.2.5.1 PEMFC modelling assumptions

* All the PEMFC’s individual cells perform in exactly the same manner within

a stack, and any internal connection resistance can be considered negligible.

* The individual PEMFC cells are one dimensional with cell current uniformly
distributed. The humidified reactant gases are in equilibrium with liquid wa-
ter. Water presents as vapour at the membrane-electrode interface and the
water activity is uniform across the membrane and is in equilibrium state.
Gas convection is neglected by assuming there is no pressure gradient be-
tween anode and cathode. There are no internal currents nor fuel crossover

losses (Abdin et al., 2016).

* The PEMFC is properly cooled and operates at constant temperature, the tem-
perature being uniform across individual cells. However, the operating pres-
sure will vary with stack loading to match the cathode inlet air compressor

operating line and improve efficiency at high load.

4.2.5.2 PEMFC single cell model

The single cell model considers three overpotentials, i.e. ohmic overpotential V,,,,,
activation overpotential V., and convection overpotential V,,,. Due to the three
overpotentials, the single cell output voltage V,.;; varies at different current den-
sities (corresponding to different loadings). The single cell governing equations
are described in Table 4.1. The PEMFC model is calibrated using the results ac-
quired from (Yan et al., 2006). The molar flow rates of O,, H, and H,0, i.e. ng,,
ny, and ”220 were calculated using the method provided in (Abdin et al., 2016).
Model adjustable parameters such as f,ir,%m, igef and a are estimated by min-
imising the difference between model voltage output and experimental results with
Particle Swarm Optimisation function provided in Matlab. Once these parameters

are calibrated, the model is verified by running the model in other operating states.
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4.2.5.3 PEMFC stack model

By connecting the individual fuel cell outputs in series and parallel, the PEMFC
stack model is formulated (Figure 4.5). Note that the equivalent circuit resistances
could vary with cell stack density (see Table 4.1). It is assumed that all the cells
within the stack perform uniformly. The total electrical power output of the stack is
calculated by:

Pre = Viclfe — Peom — Paux 4.2)

where Vi and Iy, are fuel cell stack voltage and current output respectively, and
Vie =mVeerr, Ire = mileeyy = myiA,, (my is number of strings in parallel, ny is num-
ber of cells in series, A,, is the active area of membrane electrode assembly). P,

is the power consumed the by air compressor:

et crl%)
Peomy = ——ringjrcpT |CR\ 7o /) —1 4.3)
NeNm

where 1), is the air compressor efficiency, obtained from (Dicks and Rand, 2018) and
normalised with respect to fuel cell loading. 1, is the compressor motor efficiency,
and it is assigned a constant value of 0.96 in this study. ¢, = 1004J kg 'K~ !is
the inlet air specific heat capacity. CR is the cathode air compression ratio which
increases along the compressor operating line when fuel cell load level increases. ¥,
is the air specific heat ratio. F,y. is balancing of plant power, and is a linear function

of fuel cell power (Kim and Peng, 2007):
Pafc = klpfc “+ 2 4.4)

where ki and ¢, are constant coefficients. The fuel cell stack net efficiency is calcu-
lated by:

Py
_ e 1009 45
e = L = S

where LHV is the Lower Heating Value of H,, 71y, is hydrogen mass flow rate
which can be calculated from cell H, molar flow rate ny,, molar mass and total cell

number.
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Figure 4.5: PEMFC equivalent circuit: (a) PEMFC module schematic and (b) PEMFC sin-
gle cell equivalent circuit.

Figure 4.6a shows the single cell power at different current densities and corre-
sponding power consumed by the air compressor and other auxiliary loads. The fuel
cell stack net efficiency and specific H, consumption across 0-100% fuel cell load
are shown in Figure 4.6b. The maximum fuel cell stack net efficiency is about 52%;
the net efficiency at full load is 36%. As in Figure 4.6¢, the fuel cells operating
pressure increases along the compressor operating line with the increase of fuel cell
load (Dicks and Rand, 2018). The fuel cell model outputs specific H, consumption

with the input of fuel cell power percentage.

4.2.5.4 PEMFC degradation model

Compared to marine diesel engines, PEMFCs generally have a much shorter oper-
ational life. Factors such as power transients, cycling frequency and loading condi-
tions can influence the rate of degradation. Considering the high production costs
of PEMFCs, it is necessary to include the degradation characteristics in both the
design development and operating phases of the ship to obtain the overall optimal
cost performance. Table 4.2 details the PEMFC'’s single cell degradation rates used
in this study (Fletcher et al., 2016; Chen et al., 2015). The cell degradation resulting

from one voyage is:

ch = Dl()w + Dhigh + Dtransienl + Dcycle (46)
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Figure 4.6: (a) Single cell power and auxiliary power consumption at different operating
current densities, note that the compressor operates following the operating line
in (c), the cell net power is cell electrical power subtracted by compressor and
auxiliary loads and the net power output drops down rapidly after 0.68 Acm ™2
hence regions beyond this point are not considered as useable region, (b) spe-
cific H, consumption and net fuel cell stack efficiency in different fuel cell
power fractions, highest efficiency appears around 20% power region and (c)
compressor map from (Dicks and Rand, 2018).



System modelling and optimisation 105

where Djoyy, Dpighs Diransiens and Dyl are cell voltage degradation caused by: low
power operation, high power operation, power transient and start/stop cycling, re-
spectively. These parameters will differ across different fuel cell types, depending
on the design and actual operating parameters, and the model will require recalibra-

tion using experimental data before use.

Table 4.2: PEMFC cell degradation rates (Fletcher et al., 2016; Chen et al., 2015).

Operating condition Degradation rate

Low power (0-80% rated power)  10.17 uV/h
High power (> 80% rated power) 11.74 uV/h
Transient loading 0.0441 uV/AkW
Start/stop 23.91 uV/cycle

4.2.6 PEMFC model validation

Figure 4.7 presents the fuel cell validation results against actual experimental data.
Note that the validation data is acquired from Yan et al. (2006), and the experi-
mental data in Figure 4.7b, i.e. at the operating pressure of 2 atm for both anode
and cathode was used to calibrate the adjustable model parameters. The operat-
ing temperature is fixed at 80 °C. A good agreement between the model output
and experimental results can be observed in Figure 4.7a, 4.7c and 4.7d. The root-
mean-squared error between the model output and experimental data is 0.031 (the
normalised root-mean-squared error is 3.5%). It is worth mentioning that increas-
ing operating pressure brings higher cell voltage output, especially in high current
density load regions. The degradation model is directly fitted from experimental

data and can be deemed valid for this study.
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Figure 4.7: PEMFC model calibration and validation using experimental data from (Yan
et al., 2006). The operating temperature is set at 80 °C for all the operating
pressures. From (a) to (d), the operating pressures are 1 atm, 2 atm, 3 atm and
4 atm, respectively. Note that the experiment data of 2 atm is used to calibrate

the model adjustable parameters.
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4.2.7 Lithium-ion battery model

To accurately represent battery performance across its capacity range, an equivalent
circuit calibrated using experimental data from (Zheng et al., 2016) has been devel-
oped. Figure 4.8 shows the battery model equivalent circuit adopted in this study.
The battery cells are connected in series and parallel to form the battery module (Hu
et al., 2015a):

Py = IgVp 4.7)

where I, Vp are battery module current and voltage respectively. Note that Vp =
nyV;, and V; is the battery cell terminal voltage, which is a function of battery cell

open circuit voltage V,. (SOC) (V,. is a function of battery SOC), Ry, R; and Ci:

Vt - Voc - iORO - Vc (48)
. VC io

Ve=— U 4.9
¢ RC O 4.9)

Over a period, the battery SOC changes as:

15)
SOC, =SOC, —n, | C(t)dt (4.10)
t

1

where V, is the voltage over the capacitor Cy; C(t) is battery charge rate (unit is C,
1 C corresponds to the current which discharges the cell from full capacity to zero
capacity in 1h) at time 7; note C(¢) is positive for battery discharging and C(¢) is

negative for battery charging; 1, is the battery coulombic efficiency.

4.2.7.1 Lithium-ion battery modelling assumptions

» All battery cells perform exactly the same within a battery module, and re-
sistance of the internal connections can be deemed as negligible (Hu et al.,

2015a).

 All the battery cells are properly cooled and work at the temperature of the

experiment carried out to identify model parameters.
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Figure 4.8: Battery equivalent circuit: (a) battery module schematic and (b) battery single
cell equivalent circuit.

* Batteries can be fast-charged at a C-rate of up to 3 C in port. This assumption
is based on the requirement that the case ship has only very limited port time.
Lower charging rate would inevitably need more time in port and would not
fit the operational profiles. When the ship is in normal operation, in sailing
mode, the maximum allowable C-rate is 6 C but only in extremis. It is rec-
ommended not to exceed the C-rate beyond 3 C under discharge conditions

to prolong battery life Corvus (2017).

4.2.7.2 Open circuit voltage

The low-current OCV-SOC experimental data from (Zheng et al., 2016) was applied
to identify the OCV-SOC map. Such low-current tests can be used to approximate
the OCV-SOC mapping by charging and discharging the cell with very low current
(e.g. 0.05 C) (Dai et al., 2012; Xing et al., 2014). In the OCV-SOC test of Zheng
et al. (2016), the battery was initially charged at a constant voltage until the charg-
ing current reduces to 0.01 C, indicating the cell had been effectively charged to
100% SOC. Subsequently, the cell was fully discharged until the terminal voltage is
reduced to 2.5 V. The cell was then charged with a constant current of 0.05 C until
the battery terminal voltage rises 4.2 V. In this way, the experimental results were
acquired to identify the OCV-SOC mapping, i.e. V,.(SOC). Note that due to the
presence of hysteresis (Roscher et al., 2011; Eichi and Chow, 2012), the charging
OCYV (V,¢ c1) tends to be higher than the discharging OCV (V. 4;5) (see Figure 4.9).
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Therefore, an average V. is obtained via:

Voe,dis(SOC) + Ve cn(SOC)
2
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Figure 4.9: Battery cell open circuit voltage.
4.2.7.3 Equivalent circuit parameters

Having identified the open circuit voltage map V,.(SOC) in Section 4.2.7.2, Ry,
R and C; were identified using a least square algorithm with the dynamic stress
test (DST) experiment data (at 25 °C) from (Zheng et al., 2016). As the influence of
battery temperature is not the focus of this study, all these parameters were identified
using experimental data at 25 °C. The identified parameters are presented in Table
4.3. There was good agreement between the model output and experimental data
(Figure 4.10). Due to the large time step and the main focus of this study being
energy efficiency and emissions, as opposed to dynamic performance, the direct
current internal resistance (R + R;) of the battery model is used in the subsequent

simulations (Kim et al., 2012).
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Table 4.3: Battery parameters.

Ro [Q] R[] Ci[F]
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Figure 4.10: Battery model calibration with the dynamic stress test.

4.2.8 Lithium-ion battery model validation

To validate the battery cell model, the urban driving schedule (UDS), i.e. a time
series of battery currents normalised from an UDS load cycle, from (Zheng et al.,
2016) was applied. As depicted by Eq. 4.8, the battery cell model outputs terminal
voltage V; with given current ig. The battery model outputs are compared against the
experimental measurements of battery terminal voltage as in Figure 4.11. A good

agreement between the model outputs and experimental results can be observed.

4.3 Multi-objective propulsion system optimisation

Based upon the hybrid fuel cell and battery propulsion system model, the proposed

multi-objective propulsion system sizing methodology optimises the power source
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Figure 4.11: Battery model validation using urban driving schedule.

sizes as shown in Figure 4.12. The two-layer multi-objective design methodology
looks to solve the power source sizing problem by considering both emission and
economic performances. With an average operating profile normalised from route
performance data obtained from an actual ship of similar capacity or other routines
such as scaled experiments, the inner layer solves the optimal power split problem
for each power source sizing combination passed from the external layer to min-

imise average voyage cost.

The optimisation method adopted for the external layer is Non-dominated Sort-
ing Genetic Algorithm II, based upon the work of Deb et al. (2002). Such an ap-
proach has been successfully applied in the field of hybrid propulsion system sizing
optimisation (see Table 3.1). The external layer optimises the average voyage cost
and GWP emissions concurrently. The decision variables of the external layer are a
vector of the fuel cell and battery module sizing parameters. The trade-off between

the two objectives needs to be determined manually based on the Pareto front.
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4.3.1 External layer

Both fuel cell and battery modules are emission-free if the scope is limited only
to the ship. However, looking beyond the ship itself, the production of H, and
generation of shore power will have specific carbon footprints. The high prices,
shorter life and lower energy/power densities are significant drawbacks of these
technologies when compared to conventional diesel engine based solutions. To bal-
ance the trade-off between emission and economic performance, a multi-objective
power source sizing methodology considering both emission performance and av-

erage voyage cost is formulated as follows:

minimise: F(Z) = [fi, f2]" (4.12)
(
KPPy < Pfc + Ppar,1C

K>Pyy < Pf. A Poar 3¢

subject to: 4.13)

Vx S VD

\Wx S WD

where Z = [ml,nl,mz,nz]T is a vector of power source sizing integer variables,
which is constrained by its lower and upper limits (Z; and Z,); F(Z) is a vector of
objective functions: f; is the average voyage cost including fuel cell and battery
degradation costs, hydrogen cost and shore electricity costs, f, is voyage GWP
emission comprising through life GWP emissions from hydrogen production and

shore electricity generation:

T T T T
u u
fi= Z Vre(x+ Et)PchlGHz + Z Ofc (% + Et)Pchfc + Z Py,Ato, + Z Obar BOhat
t=1 =1 t=J =1
4.14)

T T
u
Hr=Y wreln+ E’)Pchsz +Y PyAro, (4.15)
t=1 t=J

where Y. is the fuel cell specific hydrogen consumption function (see Figure 4.6b),
x; 1s the fuel cell power fraction in time step ¢ and u, is the fuel cell power change in

time step ¢ (note that H, consumption is calculated by an averaged fuel cell power
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level in one time step), 7 is the final time step; Oy, is the fuel cell degradation
function and is determined by the degradation rates in Table 4.2; Py, is shore power
when the ship is in port; 8, is an averaged battery degradation rate in each time
step, assuming the batteries are guaranteed to last for a specific period; oy,, O, O,
and oy, are H,, shore electricity, fuel cell and battery prices respectively; vy, and

v, are H, and shore electricity GWP respectively; B is battery capacity.

V, and W, are hybrid system volume and weight (including both power sources
and fuels) respectively; Vp and Wp are original diesel system volume and weight
respectively; Pﬁ,, Pyar,1c> Prar3c and Py, are rated fuel cell power output, battery
output power at 1 C discharge rate, battery output power at 3 C discharge rate and
diesel generator rated power output in the original system. The first two constraints
guarantee that the hybrid system can provide sufficient power. K; is the highest
frequency statistically weighted number of diesel engines required online. The hy-
brid system should be able to provide sufficient power without need for fast charg-
ing/discharging the batteries in the normal operation scenarios. Therefore, the bat-
tery power delivered at 1 C together with the rated fuel cell power should not be less
than the capacity provided by the K; number of diesel generators. K is the number
of installed diesel generators in the original diesel-electric system. Note that K is
usually larger than K; in an IFEP system for reasons of redundancy. Since the bat-
teries can provide higher C-rates than 1 C, such capabilities are ideal for providing
extra redundancy without installing additional power sources (e.g. extra generators
in the original IFEP system). The battery power delivered at recommended maxi-
mum C-rate (3 C, see Section 4.2.7.1 for battery modelling assumptions) together
with the fuel cell rated power output should not be less than the total installed diesel
generator power. The last two constraints in Eq. 4.13 ensure that the hybrid’s sys-

tem volume and weight do not exceed those of the original diesel-electric system.
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4.3.2 Inner layer—optimal energy management for the average

operating profile

The inner layer of the sizing process is solved using a process of reverse iteration
to find the optimal energy management strategy 7 for the average power profile
for each feasible power source sizing combination Z using Deterministic Dynamic
Programming (DDP) (Sundstrom et al., 2010). As a special case of stochastic dy-
namic programming, the transition from one state to the next is deterministic in
DDP; hence the computation time is significantly reduced when compared to that
of stochastic dynamic programming. DDP requires complete knowledge of voyage
power demands during all time steps, which is not realistic for an on-line strategy
but can be used to obtain an optimal off-line strategy to benchmark the quality of
the on-line strategy. The optimal strategy 7* (#|x) minimises the objective function

/1 subject to the constraints listed in Eq. 4.16:

uclU (4.16a)
SOCin < SOC < SOCax (4.16b)
Poat min < Prar < Prat max (4.16¢)
Ppat, port — Paem,port + Pshmax = 0 (4.16d)

x=0, port mode
(4.16e)

0<x<1, sailing mode

where U 1is a set of fuel cell power change ratios. x is fuel cell power expressed
in per unit. Py, 4y 18 the maximum available shore power; when Py 0, 18 Nega-
tive this indicates the battery charging power in port mode. Py por: 18 the ship’s
power demand in port mode. Note that Py, i, 1 a negative value, and corresponds
the maximum battery charging power. With the optimal energy management strat-
egy solved, the second objective function, that of the GWP emissions, can then be

calculated.
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4.4 Case studies and discussion

4.4.1 Simulation settings

In this section, the proposed hybrid fuel cell and battery propulsion system model
and power sources sizing methodology are applied to the case ship with the spec-
ification as presented in Table 3.3. The original system featured an integrated full
electric propulsion configuration with a total installed diesel powered capacity of
4370kW. It is assumed that the annual operating duty is 300 days, and the ship
operates between two fixed ports with 16 voyages (8 round trips) per day—each
voyage taking approximately one hour. It is also assumed that the batteries can be
charged at both ends of the defined voyage, and hydrogen needs to be replenished at
the end of the operational day. The simulations were implemented in Matlab 2019a

on a workstation with two Intel Xeon E5-2683 V3 processors and 64 GB memory.

The case ship (Figure 3.2a) and its route (Figure 3.2b) have been detailed in
Chapter 3 (Eriksen et al., 2018). The continuous monitoring power data, compiled
from measurements obtained from the original diesel powered ship upon which the
case ship is based, acquired from (Eriksen et al., 2018) was segregated into voyage
power profiles by judging the ship’s speed and location. An average operating pro-
file based upon these profiles was generated for sizing and optimisation, as shown
in Table 4.4. Table 4.5 shows the grids of state and action spaces for the inner layer
DDP. Note the fuel cell power change fraction is defined by considering fuel cell

power ramp up/down limits (Rouholamini and Mohammadian, 2016).

The original time step of the raw data used to generate the power profile was
15s. The same time step was adopted in this study. Since the problem is solvable
with the available computational power, the time step was not increased. The DDP
energy management solver in the inner layer can generate an off-line strategy in
less than 1 s with the above-mentioned settings and time step. Fletcher et al. (2016)
reported that their Stochastic Dynamic Programming algorithm took approximately

6 h to generate an on-line strategy using a quad-core processor. Nevertheless, it is
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worth noting that the application of DDP is limited to on-line strategy due to the
requirement of complete profile information being available before a solution can

de derived.

Table 4.4: Average operating profile for sizing.

Parameter Value Unit
Port time 810 S
Departing time 375 S
Sailing time 2025 s
Approaching time 375 S
Sailing power 1454 kW

Power at shore 283 kW

Table 4.5: State and action space grid setting for dynamic programming.

Parameter Grid length Range

Power demand 50 0-4400 kW

SOC 0.05 0-1

Fuel cell power level 0.02 0-1

Shore power availability - Oorl

Fuel cell power change fraction 0.02 [—0.04,-0.02,0,0.02,0.04]

Table 4.6 details the parameters adopted for the case studies. The power
sources’ parameters were acquired from manufacturer’s specifications. It should
be noted that the optimal design would most likely be different for different geo-
graphical locations as they may have different energy supply tariffs and fuel costs.
Since H, GWP and price can depend on the method of and energy source for H, pro-
duction, H, produced by electrolysis using two different energy sources (by nuclear
power generation and wind power generation) are considered in two case studies.
The first case study optimises they system for the ship’s original operating area
(Denmark), whereas the second case study investigates the optimising of the hybrid

system should the ship operate in UK waters with UK energy tariffs.
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Table 4.6: Case study parameters.

Category Parameter Value Unit Reference

Original diesel generator system volume 294 m?
Diesel system Diesel system price 500 $kw ! (Caterpillar, 2018)

Diesel system lifetime 20 year

Original diesel generator system weight 156 t
(BunkerIndex, 2017)

Marine gas oil Marine gas oil price 0.64  $kg~!
(Kristensen, 2012)
Marine gas oil GWP 32 kgCO,kg™!
PEMFC price 830  Skw! (Raucci, 2017)
PEMFC volumetric specific power 128 KkWm3 (Ballard, 2019)
. allard,
PEMFC system PEMFC gravimetric specific power 200 kWt !
H, tank volume 0.17 m’kg ' H, .
(Choi et al., 2016)
H, tank weight 28,5 kgkg ' H,
Battery price 800  $kwh~! (Ovrum and Dimopoulos, 2012)
Battery lifetime 1.5 year (Stroe et al., 2015)
Battery volumetric specific energy 91.8 kWhm3
Battery system
Battery gravimetric specific energy 80.6 kWht!
Battery SOC higher limit 0.25 (Corvus, 2017)
Battery SOC lower limit 0.90
Battery maximum C-rate 6 C
. Shore electricity price 0.16  $kWh~!
UK electricity (Eurostat, 2019)
Shore electricity GWP 028 kg CO, kWh™!
. Shore electricity price 0.09  $kWh~!
Denmark electricity (Eurostat, 2019)
Shore electricity GWP 0.17 kg CO, kWh™!
. H, price 350  $kg~'H, )
Nuclear-powered electrolysis H, (Acar and Dincer, 2014)
H, GWP 240 kg CO,kg™!
. . H, price 824 $kg~' H, .
Wind-powered electrolysis H, (Acar and Dincer, 2014)
H, GWP 1.50 kgCO,kg™!

4.4.2 Case study 1

For this case study (Denmark), detailed fuel cell and battery sizing combinations
with regards to the cost and emission objectives are presented in Figure 4.13 for the

two considered two H, scenarios (Table 4.7).

Table 4.7: Case study 1 scenarios.

Scenario  Electricity H,

1-a nuclear power generation
Denmark ] p & .
1-b wind power generation
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In the scenario of H, produced using nuclear-powered high temperature elec-
trolysis (Figure 4.13a), the minimum voyage GWP that can be achieved is about 155
kg CO,, at a voyage cost of $610. This minimum GWP corresponds to a PEMFC
power of 4320 kW and a battery capacity of 37 kW h. Note that the fuel cell power
at this point is very close to the original total diesel engine power of 4370 kW, and
the battery capacity is comparatively negligible when compared to the installed fuel
cell power. Such an observation suggests that, under the parameters governing this
case study, to achieve extremely low GWP emissions, a large fuel cell plant com-
bined with a comparatively small capacity battery would be the optimum solution.
However, it would be more reasonable to select the design point around fuel cell
power of 2915 kW and battery capacity of 600 kW h, which corresponds the knee
point (voyage cost of $480 and GWP of 170kg) of the Pareto front as in Figure
4.13a-3. Such a design point avoids unfavourably large cost sacrifice to achieve

minimal improvement in emission performance.

For the scenario of H, produced using wind-powered electrolysis (Figure
4.13b), an even lower GWP can be achieved (105 kg CO,) due to the GWP of this
H, approach (1.5kg CO, kg~ !) is much lower than that from the nuclear-powered
approach. However, such a low GWP emission would lead to a voyage cost of
$860. It is also true that a large fuel cell plant leads to lower emissions. A large
battery plant can achieve lower average voyage cost (minimum $615 per voyage).
In practice, when choosing the design point, other factors need to be considered

with reference to these Pareto fronts.

Note the Pareto front in Figure 4.13b—3 appears more linear compared to that
in Figure 4.13a-3. This is mainly due to the nuclear power generated H, is much
cheaper than that generated by wind power; increasing the fuel cell power from
2400kW to 2915 kW would rapidly bring down the voyage GWP to 170 kg CO,
with increased fuel cell efficiency (see Figure 4.6b). However, beyond this knee
point, increasing the fuel cell power would lead to fuel cell degradation costs more
dominating and the GWP saving could be achieved by increasing installed fuel cell

becomes more challenging.
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Figure 4.13: Case study 1 (Denmark electricity) fuel cell and battery sizing combina-
tions with regards to the cost and emission objectives: (a) scenario of H,
via nuclear-powered high temperature electrolysis and (b) scenario of H, via

wind-powered electrolysis.
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4.4.2.1 Optimal energy management

To further illustrate the optimal energy management strategy (Section 4.3.2), based
on the Pareto front shown in Figure 4.13b, a design point of fuel cell power of
2940kW and battery capacity of 581 kWh is selected for demonstration. Figure
4.14 shows the optimal strategy for the selected power source design under the
averaged operating profile (Table 4.4). The battery provides power solely during
departure and deliver a small portion of power while cruising. As this operating
profile is averaged for sizing and does not include power transients, the optimal
strategy does not charge the battery during sailing (i.e. the battery power flow is
never negative during sailing). When the ship is in port, the fuel cell is switched
to idle while the batteries are charged by shore power. Note that such a strategy is

solved by DDP, and the entire profile is known in advance.

To better understand the compositions of voyage cost and emission of the se-
lected design point discussed in Section 4.4.2.1, Table 4.8 shows the cost and emis-
sion breakdown of the proposed hybrid and original systems. H, cost contributes
more than 50% of the average cost. The fuel cell degradation cost is a significant
source as well. The total GWP emission is reduced by 85% with 226% cost increase
compared to the original diesel-electric system. The hybrid system is more expen-
sive than the conventional diesel engine based system. However, the Pareto front

could vary significantly if parameters such as fuel cell price or H, price decrease.

Table 4.8: Voyage cost and GWP emission breakdown

Cost [$] GWP emission [kg CO,]

Fuel cell 238 -
Hydrogen 368 67
Battery 65 -
Shore electricity 39 123
Total 710 190
Diesel engine 46 -
Diesel fuel 168 838
Shore electricity 4 4

Total 218 842
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Figure 4.14: DDP solved energy management strategy for averaged power profile of se-
lected power source sizing: (a) averaged power profile, (b) power distribution
between power sources and (c¢) battery SOC trajectory.

4.4.2.2 Optimisation methodology validation

To validate the proposed multi-objective design methodology, sizing results gener-
ated by random search over the decision variable space (i.e. the sizing parameters
of the PEMFC and batteries) are compared against the Pareto front generated by
the optimisation solver as in Figure 4.15. The parameters used for this validation
are identical to the ones applied for the Denmark—wind power generated H, case.
Solutions violating the constraints (see Eq. 4.16) are filtered out from the random

search solution space, leaving only the feasible ones as presented in Figure 4.15
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(red circles). The lower boundary of the random search solutions matches well with
the Pareto front. Such that, the optimisation methodology is validated. It is worth
noting that the random search is also a feasible approach, but it would require more

time compared to the optimisation solver.
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Figure 4.15: Multi-objective optimisation methodology validation against random search
over the sizing parameters.

4.4.3 Case study 2

To understand how the proposed hybrid system should be optimised if it operates in
UK waters and uses UK grid power, further investigations of the two H, scenarios
(Table 4.9) are shown in Figure 4.16a and 4.16b. Similar to the Denmark case,
larger fuel cells lead to lower GWP in both H, scenarios. Due to UK non-household
electricity costs being higher than that of Denmark, the minimum voyage costs are
$510 (Figure 4.16a) and $670 (Figure 4.16b) respectively. As in Figure 4.16a—
1&2, increasing the fuel cell power from 2900 to 3090 kW (corresponding battery
capacity is 425 kW h) would bring down the voyage GWP down from 215 to 200 kg
CO,. However, it is more challenging to further reduce voyage GWP by increasing

installed fuel cell power beyond this knee point. As shown in Figure 4.16b, the knee
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Table 4.9: Case study 2 scenarios.

Scenario  Electricity H,
2-a UK nuclear power generation
2-b wind power generation

point is around the fuel cell power of 3060 kW and the battery capacity of 450 kW h.
This knee point provides an average voyage cost of $750 and GWP of 170kg CO,.
Comparing Figure 4.16a and 4.16b, wind power generated H, would provide much
lower voyage GWP (minimum 110kg CO,), though the cheapest sizing solution is

still more expensive than $600 (maximum voyage cost appeared in Figure 4.16a).

4.4.4 Summary of case studies

Figure 4.17 provides an overview above mentioned case studies. The two consid-
ered H, scenarios would both reduce GWP emission significantly. The maximum
voyage GWP for the wind-powered electrolysis generated H, scenario is 290 kg
CO, for the UK case (65% GWP emission reduction compared to the original
diesel-electric configuration), whereas it is 185 kg CO, for the Denmark case. How-
ever, for the nuclear power based H, scenario, the minimum cost increases would
be 120% and 135% for Denmark and the UK respectively. Adopting wind power
generated H, can bring the voyage GWP close to 100 kg CO, for both countries.
However, the minimum cost increase would be 181% and 207% for Denmark and

the UK respectively.

4.5 Sensitivity studies

In this section, sensitivity studies are implemented to further investigate the impacts
from parameters which are subject to change due to uncertainties. The parameters
included in these sensitivity studies are PEMFC price, battery price, H, price. In the
first three studies (Section 4.5.1, 4.5.2 and 4.5.3), one of these parameters is varied
within a range while the others are kept constant as defined in Section 4.4.2, i.e.

the Denmark case with wind power generated H,. In Section 4.5.4, the battery and
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Figure 4.16: Case study 2 (UK electricity) fuel cell and battery sizing combinations with
regards to the cost and emission objectives: (a) scenario of H, via nuclear-
powered high temperature electrolysis and (b) scenario of H, via wind-

powered electrolysis.
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Figure 4.17: Combined Pareto fronts of the case studies.

PEMEFC prices are varied concurrently.

4.5.1 PEMFC price

Although the PEMFC price adopted the previous sections is defined as 830 $kW !,
it is expected to decrease over time and might reach the level around 50 $kW~!
with increasing annual production rate (US Department of Energy, 2018). There-
fore, the PEMFC price is varied from 50 to 950 $kW~! to investigate the PEMFC
price impact on the vessel’s economic and GWP emission performance. Figure
4.18 presents the Pareto fronts of these PEMFC price scenarios. As grid electricity
and H, GWP are fixed at 0.17 kg CO, kWh~! and 1.50 kg CO, kg~! H, respec-
tively, the voyage GWP could be achieved for the seven considered PEMFC price
scenarios are all between 100 and 200 kg CO,. If the PEMFC price of 50 $kW~!
is achievable, the minimum average voyage cost would be around $430, which is
approximately 2 times of the original diesel based plant. Note that PEMFC price
of 50 $kW~! is lower than of the diesel based plant (500 $kW—1). However, its
lifetime is much shorter compared to that of diesel engines (assumed as 20 years in

this study). The H, cost (price of 8.24 $kg_1) is another main contributor to this
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high voyage cost. If available PEMFC price is 950 $kW !, the minimum voyage
cost would be $640 per voyage with battery as the dominating power source for this

design point.
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Figure 4.18: PEMFC price sensitivity study.

4.5.2 Battery price

As predicted by Larcher and Tarascon (2015), the system level production cost of
Lithium batteries is expected to decrease to a level below 200 $kWh~! in the coming
decade (see Figure 2.14). However, these price predictions may change due to
many factors, such as market demand. The battery price sensitivity is implemented
to investigate the impacts of battery price on the design of hybrid PEMFC/battery
propulsion system. As in Figure 4.19, Pareto fronts of seven battery price scenarios
are presented. Note that the PEMFC price is fixed as 830 $kW~!. The battery price
of 50 $kWh~! would yield a minimum average voyage cost of $480. However, such
a voyage cost would still be more than two times of that of the original diesel-based

system, which is mainly due to the high prices of the PEMFC and H,.
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Figure 4.20: H, price sensitivity study.

4.5.3 H, price

Figure 4.20 shows the sensitivity study on H, price. As the PEMFC and the battery
are still costly (830 $kW—! and 800 $kWh~! respectively) with limited lifetime, an
extreme low H, price of 1 $kW~! would result in a minimum voyage cost of $350

(corresponds 130 kg CO, GWP per voyage). A high H, price of 13 $kW~! would
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lead to a minimum voyage cost of $740. Note that the maximum voyage GWPs
for the low H, price scenarios are lower than those of the high H, price scenarios,
which is due to PEMFC is the more dominating with better fuel efficiency on the
upper left part of the cheaper Pareto fronts; while batteries are more dominating in

the scenarios of high H, prices.

4.5.4 PEMFC and battery prices

In Sections 4.5.1 and 4.5.2, the influences of PEMFC and battery prices were inves-
tigated independently. Driven by road vehicle applications, both the PEMFC and
battery prices are expected to decrease over time (US Department of Energy, 2018;
Larcher and Tarascon, 2015). In this section, the fuel cell and battery prices are
varied simultaneously. Figure 4.21 presents the Pareto fronts of the considered fuel
cell and battery price scenarios. Note that a low fuel cell price corresponds to a low
battery price. Such a setting is designed to simulate both the fuel cell and battery
prices decrease over time. The PEMFC price of 50 $kW~! and battery price of 50
$kWh~! would yield a minimum voyage cost of $289, which is only 33% higher

than that of the diesel-based plant but would reduce the voyage GWP emission by
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Figure 4.21: PEMFC and battery prices sensitivity study.
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77%. Note the H, price of 8.24 $kW~! is relatively high, a reduced H, price would

make the plug-in hybrid PEMFC/battery system even more competitive.

4.6 Summary

In this chapter, a quasi-steady-state plug-in hybrid PEMFC/battery system model
has been developed for power source sizing and energy management strategy de-
velopment purposes. A multi-objective design methodology has been applied to
optimise the PEMFC/battery hybrid system design with the objectives of minimis-
ing average voyage costs and voyage Global Warming Potential emissions in two

case studies.

Power source degradations and optimal energy management between multiple
power sources are considered in the optimisation. It is evident that such a PEMFC
and battery hybrid system can significantly reduce the GWP emissions, but is still
constrained by high costs, mainly from H, cost of production and fuel cell degra-
dation. The multi-objective power source sizing methodology can be used to guide
alternative propulsion system design considering the influences of energy life-cycle
properties and power source degradation characteristics. For the two cases con-
sidered with two H, scenarios, a minimum 65% GWP emission reduction can be
achieved by utilising the plug-in hybrid fuel cell and battery propulsion system con-
figuration. The developed model, design methodology and case studies have been

published in (Wu and Bucknall, 2020).

The sensitivity studies further explore the impacts of power source and energy
prices on the power source sizing and performances. Both the PEMFC, battery and
H, prices are expected to decrease to be competitive with conventional diesel-based
power solutions. Nevertheless, the GWP emission reduction potentials offered by

the plug-in hybrid PEMFC/battery system are significant.



Chapter 5

Reinforcement learning based energy

management strategies

5.1 Overview

In Chapter 4, the plug-in hybrid PEMFC/battery system was been optimised by the
proposed methodology considering the trade-off between average voyage cost and
voyage GWP emissions for the case ship. However, this sizing and operational con-
figuration of the hybrid system is constrained by high costs, due to power source
degradation and energy costs. It would therefore be beneficial to improve the oper-

ational cost-effectiveness of such hybrid systems.

This chapter aims to formulate the practical optimal energy management prob-
lem for shipboard plug-in hybrid fuel cell and battery propulsion systems as a
Markov Decision Process (MDP) which can be solved using reinforcement learning
(RL). Section 5.2 provides an introduction to RL and its mathematical framework—
MDP. Section 5.3 mathematically formulates the energy management problem with
MDP and introduces the two RL agents that will be applied. The agent training pro-
cesses are detailed in Section 5.4. The RL EMS performance is assessed in Section

5.5. Section 5.6 summaries this chapter.

131
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5.2 Reinforcement learning

5.2.1 An introduction to reinforcement learning

Reinforcement learning (RL) is an approach to solving goal-directed problems by
trial-and-error interactions with the environment, which is similar to how an untu-
tored and unguided human learns to perform a new task (Sutton and Barto, 2018).
In contrast to many other approaches such as supervised learning, RL explicitly
considers the whole problem of a goal-directed agent interacting with an uncertain
environment. By interaction with the environment, the sensation of environment
states and observation of reward signals returned from the environment, RL aims to
achieve defined goals by finding an optimal action map which maximises cumula-

tive rewards (Sutton and Barto, 1998).

To explain how RL works, the following terminologies need to be introduced

(Sutton and Barto, 2018):

» Agent: An agent in RL is the decision-making component which determines
actions with given environment states. For example, the AlphaGo computer
programme is an RL agent specialised in playing Go games (Silver et al.,
2016). AlphaGo acts like a master Go player, making decisions by observing

current board states.

* Environment: The other component the agent interacts with is called the en-
vironment, which comprises everything outside the agent. In the AlphaGo
example, the environment includes the other player and the game states rep-

resented by the board with stones of the two players.

» State: States represent the environment status. For example, the State of
Charge (SOC) represents the state of battery capacity. Another example of

the state could be current ship speed or total required power of a sailing ship.

* Action: The agent interacts with its environment by taking actions. For a con-
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trol problem of fuel cells, the action could be increasing or decreasing power
output. For an unmanned surface vehicle navigation problem, the action could

be turning to starboard or to port by a certain degree angle.

* Reward: The reward defines the goal in an RL problem and is a measurement
of how good or bad an event could be to the agent. Such a signal is returned
from the environment to the agent. In biological systems, rewards could be
analogous to the experiences of pleasure or pain. In an RL problem, the value
of the immediate reward is an indication of how the agent ought to behave.

The immediate reward is the primary signal of altering a policy.

* Policy: A policy defines the agent’s behaviour at given environment states. In
other words, a policy is a mapping from observed states of the environment
to actions to be taken by the agent. The training of an RL agent aims to find
an optimal policy which maximises the cumulative rewards. For example, in
the optimal control problem of a hybrid fuel cell/battery propulsion system,

the policy is effectively the energy management strategy.

* Episode: For a problem with a finite time frame, a training episode starts
from time step zero and ends when a terminal state or the horizon is reached.
The agent interacts with its environment in each time step of an episode. The
training episodes are repeated until a rational policy has been found by the

agent.

5.2.2 Markov Decision Process

A Markov Decision Process (MDP) is a stochastic control process in discrete time
space, which provides a mathematical framework to model sequential-decision
making problems (Puterman, 2014). MDPs are idealised mathematical frameworks
of RL problems (Sutton and Barto, 2018). Such a process can be represented by a
tuple (S,A,P,R), where S is a finite set of states s, A is a finite set of actions a, P is

.. eqe,. . /
a set of state transition probabilities, i.e. p s  =Psip1 =55 =s,ar =a], and R
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is a reward function r s = E[r;11]s; = s,a; = a]. The subscript t denotes state s,

action a or reward r at time step .

The action-value function, which is also called the Q function, for an episodic
task with finite horizon of T, is the expected return of taking action a in state s

following a policy 7(s|a):

O(s,a) =E

T

Z'}/(”t+k|st:S,at:a,7T] 5.1
k=0
Solving an MDP is to find an optimal policy 7*:

n*(s) = argmaxE

a

T
Z 7/(”1+k‘5t =S5,ar = a] 5.2)

k=0

which leads to the optimal action-value function (Sutton and Barto, 2018):

Q' (s,a) = max (5.3)

T
Z 7/(”t+k’5t =s8,ar=a
k=0

where ¥ € [0, 1] is the discount rate. As in Figure 5.1, at time step ¢, in current state
s;, the agent takes action a, under the policy 7(s|a) and observes the resulting next

state 5,1 and immediate reward ;| returned from the environment.

5.3 Reinforcement learning based energy
management strategy

This section formulates the optimal energy management problem of the plug-in hy-
brid PEMFC/battery system with MDP and introduces two RL agents which will
be applied to solve the formulated MDP. Figure 5.1 shows the detailed MDP agent-
environment interaction framework for the energy management problem. The envi-
ronment of the MDP framework includes the hybrid PEMFC/battery system model
(developed in Chapter 4) and historical voyage data (Eriksen et al., 2018).

The objective of developing the EMS is to find an optimal policy 7* to achieve
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minimum voyage costs. Note that high operational costs are a major limitation of
the hybrid system (see Chapter 4). The optimal policy ©* is a mapping of system
states to actions, i.e. actions to be taken in certain situations. The voyage cost
comprises two parts, i.e. the degradation costs from power sources (fuel cells and
batteries) and the costs of consumed fuel and energy (H, and electricity). Table
5.1 summarises the RL terminologies, which will be used for the optimal energy

management problem in the subsequent sections.

¢ RL Agent
—>
State| |Reward Action
St Iy ] at
.1rt+1 Environment
i S | System model and [€———

' historical data

Figure 5.1: MDP agent-environment interaction framework.

Table 5.1: Summary of RL terminologies in the optimal energy management problem.

Terminology  Description

Agent Reinforcement learning algorithm

Environment Hybrid system model and historical power profiles

States System states, including current PEMFC power level, battery SOC,
power demand and shore power availability

Action Fuel cell power change

Reward A function of constraints and costs incurred in one time step

Policy Energy management strategy of EMS

5.3.1 States

In the optimal energy management problem, the states represent the current system
status. In the proposed system, such states are characterised by shore power avail-
ability, spA, system power demand, Py,,,, fuel cell power level x € [0, 1], and battery
SOC € [0, 1]. spA is binary, i.e. spA = 0 when the ship is sailing and spA = 1 when

the ship is in port. It is assumed that the transition from transit to port, as regards
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battery charging, is instantaneous, i.e. the shore power is applied immediately when
the ship is in port. Although x, SOC and Py,,, are continuous physical parameters
they are however divided into discrete grids, such that the gridded state space can
be formulated by looping through all possible state combinations. As each of the
state parameters has a finite dimension, the total number of states is the product
of the four state dimensions. Each possible state is assigned a unique state index
sequentially (i.e. from 1 to the total number of states). At time step ¢, the exact state

of the system:

Sactual (t) = [SPA(t) ) Pdem(t)’x(t>7S0C(t)]T (5.4)

is converted into state index s(z), which is an integer. Note that the environment
knows the actual states Sueuq(f) and Sgeruqr(f + 1) which results from taking action
a(t), but only communicates with the agent using state indices. Such a commu-
nication format is designed intentionally so that the agent can record the learning

process into tables.

5.3.2 Action space

In reinforcement learning, the agent interacts with the environment by taking actions
in relation to the system states. The action taken by the agent is the control of fuel
cell power change within each time step in this study. The action space is defined

as a tuple of possible fuel cell power level changes:
A= [al,az,...,am,...,an,l,an]T (5.5)

where a; < 0 is the maximum decrease and a,, > 0 is the maximum increase of
fuel cell power output in a time step. a, = 0 indicates there is no change and the
fuel cell output power remains constant; all other values of a represent changes of
power within the range of (a;,a,). The environment overrides an action when the
resulting fuel cell power output would be negative or greater than the rated power.

When action a; € A is chosen from the action space at time step ¢, the fuel cell power
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level at ¢ + 1 will be:
0, xr+a; <0

Xt4+1 = 1, X +ay > 1 (56)

X +a;, else
\

5.3.3 Reward

The environment returns reward signal r; 1| to the agent when action g, is taken by

the agent. The value of r,; | represents how cost-effective g, is at state s;:

—1, if 5,41 is infeasible

Fe1 =4 —1, if pre+a; ¢[0,1] (5.7)

1
\tanh (cost,H) , else

where the negative reward of -1 means the agent is penalised if the next state is not

1
costy 4

feasible or fuel cell power override will occur; the tanh ( > function normalises
the cost cost;;1 to a reward signal in the range of [0, 1] elsewhere. Note that the
next state is not feasible if the battery is over charged/discharged or C-rate exceeds
the system limit or fuel cell power is not reduced to zero when the ship is in port
(fuel cells are not switched off to avoid unnecessary start/stop cycling degradations).
cost; 11 1s the cost incurred in one time step Af due to action a; if the next state is
feasible:

=

a;
costy 41 = Yre(x: + 5 =)

PrcAtoy, + 5fc(xt + > Pf.Ofc + Py Ato, + OputBOpa (5.8)

i.e. the sum of H, cost, fuel cell degradation cost, battery average degradation cost
and shore power cost (only when the ship is in port), where ¢ denotes price. The
sub-scripts Hp, fc, e and bat denote H,, fuel cell, electricity and battery prices
respectively. Note the cost cost;4 is unpenalised since the negative reward —1
includes a penalty. To better understand the impact of infeasible actions, a penalised

cost 1s also introduced in the following case study. The penalised cost is cost; 1 +
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1 whenever the next state is not feasible, or agent action is overridden or early

termination occurs.

5.3.4 Environment

The environment of the reinforcement learning comprises two parts, i.e. the hy-
brid propulsion system model (see Chapter 4) and historical power profiles col-
lected using continuous monitoring of required power demand. Algorithm B.1 in
Appendix B depicts how the environment of the optimal energy management prob-
lem is formulated. Using the historical voyage power profiles, in each learning
episode, the environment randomly samples one power profile from the historical
data with which the agent interacts. Note that the environment would carry out an
early termination of an episode if the agent fully discharges the battery (SOC < 0)
or over-charges the battery (SOC > 1). Normal termination occurs when the final
targeted time step has been reached. An episode is successful if the agent manages
to achieve all the required time steps and recharge the battery to a SOC of SOCy to
be fully prepared for next voyage; otherwise, the episode terminates and is recorded

as having failed.

5.3.4.1 System model

It is assumed that the original diesel-electric system is replaced by a plug-in hy-
brid PEMFC and battery system, as described in Figure 5.2 (also see Chapter 4).
The ship specifications are presented in Table 3.3. The original system featured an
integrated full electric propulsion configuration with a total installed diesel engine
power of 4370kW. The ship operates between two fixed ports with 8 round trips
(16 voyages) per day—each voyage between the two ports takes approximately 1 h
(Eriksen et al., 2018). It is assumed the ship’s batteries can be recharged at both
ports, and the shipboard H, storage needs to be replenished once per day outside of

operational hours.

The intended fuel cell power and battery capacity for the alternative plug-in

hybrid PEMFC and battery propulsion system are 2940kW and 581 kWh respec-
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tively. The system is capable of delivering a regular service power of 4683 kW and
peak power of 6720 kW, corresponding to battery C-rates of 3 and 6 respectively.
Note that the system sizing has been optimised in Chapter 4 for the scenario when
the ship was operational under the energy tariffs applicable to Denmark using wind
power to supply hydrogen production. The adopted H, Global Warming Potential
(GWP), electricity GWP, H, price and electricity price are set at 1.5 kg CO,kg ™!,
0.166 kg CO,kWh™!, 8.240 $kg~!, and 0.089 $kWh~! respectively. The battery’s
limits of SOC are set to upper and lower limits are limited to upper and lower values
of 0.90 and 0.25 respectively, and the maximum C-rate is 6 for discharge. Note that
the SOC limits are soft constraints, meaning they can be exceeded if deemed neces-
sary. The battery needs to be charged to a SOC of 0.9 prior to departure. A starting
SOC of 0.90 affords the system the flexibility to excessive power from the fuel cells
if and when required. SOC below 0.25 should be avoided to provide minimum

charge conservation, as well as extend battery life (Omar et al., 2014).
5.3.4.2 Historical data

The case ship and its route have been shown in Figure 3.2. The historical power
profiles applied to the agent training were acquired from (Eriksen et al., 2018)
(1081 voyages in total, from 1 July 2018 to 31 August 2018). Another dataset
(392 voyages in total) collected over a different period (from 1 September 2018
to 30 September 2018) will be used for EMS validation. The datasets were first
segregated into voyages determined by the ship’s speed and location. The original
time step of the power profiles is 15 s and remains unchanged. Figure 5.3 shows 8
randomly selected sample power profiles in the training dataset. The original power
values were smoothed with a Gaussian-weighted moving average filter to reduce
measurement noise. The moving average window of the Gaussian filter is 4, and
the standard deviation is calculated from 1/5 of the total window width. Although
the power profiles follow a specific pattern in general, each of them varies from the
others. Such an observation suggests that the MDP environment is stochastic and

uncertain (see Figure A.1 in Appendix A).
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5.3.5 Q-learning agent

The Q-learning (Algorithm B.2 in Appendix B), proposed by Watkins (1989), is
a model-free approach for solving MDPs, i.e. transition probabilities P are not
considered directly during agent training. It is also an off-policy RL method, i.e.
the action-values are updated using the next state and the greedy action. When
updating the action-value function, the agent acts greedily by choosing the action

that maximises the next action-value function:

0(5,a)  Q(s,a) + & | r+70(s ,argmax O(s,) — O(s,a)|  (5.9)

where s’ is next state. However, the maximisation operations involved in the con-
struction of policy and the €-greedy action selection processes can lead to poor
learning performance with maximisation bias in stochastic environments (van Has-

selt, 2010; van Hasselt et al., 2015).

5.3.6 Double Q-learning agent

This study takes advantage of Double Q-learning (a variant of Q-learning) to learn
optimal energy management strategies for the sequential power split problem be-
tween multiple power sources (Sutton and Barto, 2018). Algorithm B.3 in Appendix
B shows the Double Q-learning agent (van Hasselt, 2010). The Double Q agent re-
duces the maximisation bias by using two action-value estimates, Q1 and Q,. For
each update, with 0.5 probability, O is used to determine maximising action while

Q1 updates its value:

Q1(s,a) < Qi(s,a) + o |r+yQa(s,argmax Q1 (s7,a)) — Q1 (s, a) (5.10)

Otherwise Q> is updated with Q1 and Q, being switched. Both the learning rate o
and € of the e-greedy policy decrease linearly with the increase of learning episodes

and stabilise at fixed values after rate decaying episode number N;.
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5.4 Agent training

The objective of the on-line EMS is to minimise the overall voyage cost in an envi-
ronment that is not pre-known. The intent of such an on-line EMS is to manage the
power flows within the hybrid power system effectively when applied for future, and
as yet unknown, voyages. The learning process is an episodic task. In each episode,
the environment randomly samples one of the historical voyage power profiles for
the agent to interact with to learn a policy minimising the voyage cost. This pro-
cess repeats until the average episode reward converges. Related historical power
profiles need to be collected before the beginning of the agent training procedure.
These profiles will be an inherent part of the RL environment. Note that each profile

is unique although there will be similarities.

The RL agent training and policy application follow the procedure presented
in Figure 5.4. Note that the RL training parameters, such as the learning rate o and
the probability of exploration € at a time step, require careful tuning to achieve a

strategy with adequate performance:

* The agent should be able to complete the training voyages without early ter-

minations.

* Achieve minimum voyage cost with the minimum of constraint violations.

Once the training has converged, the learned policy, i.e. the strategy of the EMS,
needs to be validated using a different set of power profiles. In the application phase,
a battery over-discharge protection function ensures the battery modules are not
over-discharged. This protection mechanism is beyond the MDP agent-environment
interaction framework (Figure 5.1) and is not enabled during agent training (see
Figure 5.4), such that the agent can learn from penalties during training without
external interventions. Actions leading to penalties would be avoided due to their

lower Q values in corresponding states.
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5.4.1 Training settings

Table 5.2 provides the detail of the state and action space grids for both the Deter-
ministic Dynamic Programming (DDP) strategy (resolution 1) and Double Q strat-
egy. The DDP implementation is based upon the work of Sundstrom et al. (2010).
The results obtained using DDP are used to evaluate the quality of the strategy gen-
erated by the Double Q agent. Therefore, the grids are defined identically in the two
algorithms to initially allow a fair comparison between on-line and off-line strate-
gies. Note that developing a strategy by DPP requires complete knowledge of the
profile, which is not possible for actual applications. Therefore, a DDP strategy
is only valid as an off-line benchmark to assess the performance of other on-line

strategies.

To further investigate the potential for cost reduction, the DDP strategy SOC
grid length was further refined to 0.0125. However, such a refined SOC resolution
was not implemented in the Double Q strategy due to ‘the curse of dimensionality’
(Sutton and Barto, 2018), which would make the problem impossible to solve with

the available computational resources.

Table 5.2: State and action space grids.

Parameter Grid resolution  Range Unit
Power demand 50 04400 kW
SOC 5 0-100 %
Fuel cell power level 0.02 0-1 pu
Shore power availability - Oorl

Fuel cell power change fraction 0.02 [-0.04,-0.02,0,0.02,0.04] pu

5.4.2 Training

Table 5.3 shows the parameters used to train the Double Q agent. The parameter €
represents the probability of exploration at a time step. The learning rate o deter-
mines to what degree the temporal difference is acquired: @ = 1 suggest that only
the most recent information is learned, @ = 0 nothing new has been learned. Both o

and € decrease linearly from their initial values whilst the training episode number
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is less than N;. Such settings reflect the need for the agent to explore less frequently
and learn more cautiously when enough experience has been gained, while a more
aggressive and bold learning style is preferred at the outset to quickly gain experi-
ence. As the energy managemnet problem is formulated with an average episode
length of 240, and the costs incurred in all steps are of equal importance, the dis-
count rate Y is set at 1 (i.e. un-discounted). It is worth mentioning that careful
tuning of these parameters is necessary to balance the conflict between exploration

and exploitation (Sutton and Barto, 2018).

Table 5.3: Reinforcement learning hyper parameters.

Parameter Description Value

Olinit Initial learning rate 1.0

Aa Learning rate decaying rate 3.3 x 107
Einit Initial € 1.0

Ag € decaying rate 33x107°
Y Discount rate 1.0

Ny Episode o and ¢ stabilises 3.0 x 10°

Figure 5.5 shows the learning process of the RL agent. It is interesting that
the mean episode reward decreases to —12 after 0.6 x 10° episodes. This decrease
suggests that initially the policy being learned was divergent before the agent was
able to learn towards a convergent policy. The training was terminated after 5 x 10°

episodes (4.8 h on an Intel 17-4790 processor using single thread in Matlab 2019a).

The mean episode reward stabilised at a value of 88 after about 3 x 10
episodes of training (Figure 5.5a), while the maximum episode reward stabilised
at around 120. Such stabilisation suggests that the algorithm has converged. The
average success rates (see Algorithm B.1) were close to 100% after convergence.
Note that this rate is not exactly 100% (Figure 5.5b) which is mainly due to a small
exploration probability (1.0 x 1073) that still exists and a minor fraction of training
voyages with high power demand that vary significantly from other voyages. In Fig-
ure 5.5c, both the actual episode cost and penalised episode cost increases rapidly in
the first 1 x 10° episodes. The reason for that is early termination frequently occurs

and at the initial stage of the training. In other words, the agent could not complete
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the majority of the training voyages in the initial stages of training (also see the
mean episode steps in Figure 5.5d) due to the policy’s tendency to drain the battery

aggressively from the beginning.

As the training progressed, the agent managed to complete most of the training
voyages from 2 x 10° episodes onwards. Also, the average voyage cost starts to
decrease after 2 x 10° episodes. The actual cost and penalised cost (including the
penalties caused by exceeding the constraints) overlap with each other, suggesting
non-feasible actions have been reduced to a minimum. In summary, the agent ap-
pears to first complete voyages, then learn to minimise voyages costs (maximum
reward) due to the reward setup. In contrast, as shown in Figure 5.6, with the same
hyperparameter settings, the Q agent failed to converge to a policy with reasonable
performance, owing to the presence of maximisation biases throughout the learning
process (see Eq. 5.9). These biases cause over-estimation of the action-value func-
tion, which leads to unstable training in Q-learning. The double Q-learning reduces

such biases by using two Q-functions.

Note that the environment is highly stochastic, with a small fraction of training
voyages with high power demand that vary significantly from other voyages. The
learned policy fails to fulfil the final battery SOC constraint of SOC = SOCp in less
than 0.5% of the 1081 total training voyages. This failure suggests that an override
function would be necessary to make the learned policy fully compliant with the
final battery state constraint. A battery over-discharge protection, as in Figure 5.4,
was proved to be effective. This protection was realised by forcing the fuel cell to
increase power by 5% of rated power in one time step when the battery SOC drops

below the lower limit (0.25) (Rouholamini and Mohammadian, 2016).
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5.5 Results

5.5.1 Overview of results

Table 5.4 details the two different datasets which will be used in this section.
Dataset A is used to train the agent to generate the strategy of the EMS. Once
the training of the agent has converged, the strategy is verified by removing the
random exploration € adopted in the training phase. Subsequently, the EMS perfor-
mance is validated using the dataset B, which have not been applied to the agent in
the training phase. The strategy is a 4-dimensional action map over the four state
parameters. With the system state observed, the optimal action of fuel cell power

control can then be found from the action map.
Table 5.4: Datasets of load profiles and their purposes. Dataset A is used to train the agent

to generate the strategy of the EMS. The EMS is then applied to load profiles in
dataset B to validate the EMS performance in unseen voyages.

Dataset  Start date End date ~ Voyage number Purpose
A 01/07/2018  31/08/2018 1081 Training/verification
B 01/09/2018  30/09/2018 381 Validation

The learned policy was then applied to the training voyages and a set of val-
idation voyages. As depicted in Table 5.5, for the training voyages, the Double
Q strategy achieved 96.6% cost minimisation performance of the off-line strategy
solved by DDP (knowing complete profiles before solving), both with the SOC grid
resolution of 0.05. Note that state space resolution also limits the accuracy of DDP
(Wang et al., 2015). A refined SOC grid resolution of 0.0125 yields an average voy-
age cost of $740.0 for the training dataset. The Double Q strategy achieves 89.0%
cost minimisation performance of the refined DDP solution. For the validation voy-
ages, similar performance was achieved. The DDP strategy results presented in the

following strategy analysis sections are all solved with SOC resolution of 0.0125.

Figure 5.7 presents the voyage cost achieved by the Double Q strategy in com-

parison with that solved via DDP, for the training (Figure 5.7a) and validation (Fig-
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Table 5.5: Double Q and DDP strategy average voyage costs comparison.

DDP; [$] DDP,[$] RLI[$] DDP;/RL[%] DDP,/RL [%]

SOC resolution 0.0125 0.0500 0.0500 - -

Training voyages 740.0 803.1 831.8  89.0 96.6
Validation voyages 724.9 789.4 815.0 88.9 96.9

ure 5.7b) voyages. The Double Q strategy has achieved satisfactory cost perfor-
mance (only 3.2% higher than DDP strategy) in validation voyages without prior
knowledge of future power demand. Note that some voyages in the training dataset
have much higher power demand, yielding a maximum Double Q strategy voyage

cost close to $1600.0.

To verify the strategy performance learned by the Double Q learning agent,
the Double Q strategy was applied directly (without any exploration) to the training
voyages with over-discharge protection enabled. Such a process will be referred to
as verification in the following content. Applying the strategy to a set of validation
voyages will be referred to as EMS validation. Table 5.6 provides a summary of
the sample voyages with low, moderate and high power demand, which will be

discussed in the following analysis.

Table 5.6: Summary of sample voyages.

Average power Peak power Voyage time

Category Profile
(kW] (kW] [s]

Training sample 1 904.2 1615.3 3585
Training Training sample 2 1086.3 1836.8 3735
Training sample 3 2040.3 3320.4 3165
Validation sample 1 1036.8 1487.0 3555
Validation ~ Validation sample 2 1167.0 2060.0 3555
Validation sample 3 1597.8 2752.7 3555

5.5.2 EMS verification

In this section, the Double Q-learning agent generated EMS is applied to three
sample voyages in the training dataset to evaluate the EMS performance in different

operation scenarios. The three sample voyages are with low, moderate and heavy
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Figure 5.7: Voyage costs: (a) training voyages and (b) validation voyages. The DDP costs
are obtained with a SOC resolution of 0.0125, while it is 0.05 for the Double Q

strategy.



Reinforcement learning based energy management strategies 153

power demand, respectively. Details of the voyage cost and emission compositions
are presented. Note that the objective of the EMS is to minimise voyage costs. The
voyage emissions are calculated based on electricity usage and H, consumption

figures obtained using the models presented in Chapter 4.

5.5.2.1 Training sample 1 with low power demand

Figure 5.8 shows the DDP and Double Q strategies for sample verification voyage
1. This voyage has comparatively low overall power demand in the training dataset.
It starts with relatively high power demand (1600 kW). During cruising, the power
demand stays around 1000 kW. Note that to solve for the DDP strategy requires
complete knowledge of the power profiles in advance. The Double Q strategy only
takes actions in each time step by observing current system states. The PEMFC
power trajectory in the DDP strategy (Figure 5.8a) is relatively smoother than that
of the Double Q strategy (Figure 5.8b). The Double Q strategy tends to adjust
the PEMFC power more frequently within a narrow power band, which could be
due to limited knowledge of future power demand. Such behaviour leads to higher
PEMFC degradation (see Table 4.2) and H, costs (see Table 5.7). Also, the Double
Q strategy rapidly discharges the battery to an SOC of 0.4 (at 950 s) after departure
and then gradually recharges the battery. In contrast, the minimum battery SOC in

the DDP strategy is 0.3 and occurs just before shore charging commences (2800 s).

Table 5.7 details the voyage cost and emission breakdowns of the verification
sample voyage 1. The DDP strategy yields a voyage cost of $585.2, which is 85.3%
of the Double Q strategy voyage cost. The Double Q strategy leads to higher costs
from PEMFC degradation and H, consumption. It is worth noting that the voyage
GWP emission of the DDP strategy is 11.9% higher than that of the Double Q

strategy which is due to the trade-off between voyage cost and GWP emission.
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Figure 5.8: DDP and Double Q energy management strategies for training sample voyage
1 with low power demand: (a) optimal off-line strategy solved by DDP, (b)
on-line strategy solved by the Double Q agent.
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Table 5.7: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for training sample voyage 1.

Voyage cost Voyage GWP Emission
Training voyage |  DDP  Double Q ppcs DDP  DoubleQ  5pig

[$] [$] [%] [kg] [kg] (%]
PEMFC 196.8 252.6 71.9 - - -
Battery 64.3 64.3 100.0 - - -

Electricity 44.6 31.3 142.4 83.4 58.6 142.4

H, 279.5 337.7 82.8 50.9 61.5 82.8

Total 585.2 686.0 85.3 134.3 120.1 111.9

5.5.2.2 Training sample 2 with moderate power demand

Sample voyage 2 is a typical voyage with moderate power demand in the training
dataset. Figure 5.9 compares the off-line DDP strategy (Figure 5.9a) and on-line
Double Q strategy (Figure 5.9b) for this voyage. For both Double Q and DDP
strategies, in the departure phase (0-800 s), the batteries provide most of the power
from the beginning, while the fuel cells come online after a delay. The minimum
SOC of the DDP strategy for this voyage is approximately 0.25 (at 2850s). As the
Double Q agent does not exactly know the future power demand and the strategy
is generic, the Double Q strategy tends to adjust fuel cell power more frequently.
Also, the fuel cells delay being switched to idle until shore power is available, which
is because the agent does not know in advance if shore power is available, and the
environment was designed to force the fuel cell power to decrease to zero only after
shore power was being delivered. Note that, because the ship only stays in port for
a short period between voyages, the batteries need to be charged at high C-rates,

which could pose additional requirements on the charging infrastructure.

Table 5.8 depicts the cost and GWP emission breakdowns for sample voyage
2 in the training dataset. The Double Q strategy achieves 89.8% cost performance
of that of the DDP strategy. Nevertheless, the Double Q strategy yields better GWP
emission performance, which has also been observed in sample voyage 1 (Section
5.5.2.1). The H, costs account for 55.4% and 56.3% of the total voyage costs for
the DDP and Double Q strategies, respectively. PEMFC degradation costs are the
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Figure 5.9: DDP and Double Q energy management strategies for training sample voyage
2 with moderate power demand: (a) optimal off-line strategy solved by DDP,
(b) on-line strategy solved by the Double Q agent.

second highest cost source in both strategy results.
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Table 5.8: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for training sample voyage 2.

Voyage cost Voyage GWP Emission
Training voyage2 DDP  Double Q ppcs DDP  DoubleQ  5pis

[$] [$] [%] [kg] [kg] (%]
PEMFC 206.1 246.4 83.6 - - -
Battery 67.0 67.0 100.0 - - -

Electricity 45.5 34.5 132.1 85.1 64.4 132.1

H, 395.8 447.5 88.5 72.1 81.5 88.5

Total 714.4 795.3 89.8 157.1 145.9 107.7

5.5.2.3 Training sample 3 with high power demand

As mentioned in Section 5.4.2, the Double Q agent failed to provide a strategy to
complete the voyage in less than 0.5% of the training voyages as a consequence of
final battery SOC constraint being exceeded. When these failed voyages were ex-
amined after the training process it was noted that they had much higher power de-
mand compared to the typical voyages in the training dataset. Figure 5.10 presents
a sample profile when it is known that the ship was heavily laden (corresponds the
voyage with maximum cost in Figure 5.7a), and its optimal EMS solved via DDP
(Figure 5.10a). Unlike the profile discussed in Section 5.5.2.2, the fuel cell power
ramps up immediately after departure for this profile, in contrast to the more nor-
mal situation where significant increases in fuel cell power output are delayed as
shown in a typical profile similar to Figure 5.9b. Without the battery over-discharge
protection, the Double Q strategy tends to discharge the battery rapidly to a SOC
below 0.25 after departure from the port. Figure 5.10b illustrates how the battery
over-discharge protection function actuates to minimise the impact and shows how
such an override function is effective when tackling voyages with very high power

demand.

Table 5.9 presents a detailed comparison between the DDP and Double Q
strategies in terms of voyage cost and GWP emissions. Such a high power pro-
file is unusual in the training dataset. The DDP strategy would generate a voyage

cost of $1228.0, which is 71.8% higher than that of sample voyage 2 (discussed in
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Section 5.5.2.2). As aresult of the battery over-discharge protection being triggered
at 450 s, the PEMFC degradation cost of the Double Q strategy is less than that of
the DDP strategy as frequent fuel cell power adjustments have been avoided by ac-
tion overrides. However, the Double Q strategy outputs a much higher H, cost (36%
higher), which is due to the PEMFC being forced to run at very high load regions

where the fuel efficiency is reduced.
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Figure 5.10: DDP and Double Q energy management strategies for training sample voyage
3 with high power demand: (a) optimal off-line strategy solved by DDP, (b)
on-line strategy solved by the Double Q agent.
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Table 5.9: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for training sample voyage 3.

Voyage cost Voyage GWP Emission
. DDP DDP
Training voyage 3 DDP  Double Q Double @ DDP  Double Q Double Q@
[$] (8] [%] (kel (kel [%]
PEMFC 242.8 259.0 93.8 - - -
Battery 56.7 56.7 100.0 - - -
Electricity 46.5 329 141.4 87.0 61.5 141.4
H, 881.9 1199.9 73.5 160.5 2184 73.5
Total 1228.0 1548.5 79.3 247.5 279.9 88.4

5.5.3 EMS validation

5.5.3.1 Validation sample 1 with low power demand

Figure 5.11 shows the comparison between the DDP and Double Q strategies of a
sample validation voyage with comparatively lower power demand. The Double Q
strategy (Figure 5.11b) discharges the battery modules quickly down to a SOC of 0.4
in the first 1000 s, and maintains the fuel cell power output to a narrow region during
sailing. The batteries satisfy significant transients in the departing and approaching
phases. In contrast, the DDP strategy only discharges the battery rapidly at the
beginning of the voyage (0-550 s). Similar trends have been observed in the sample

training voyage (Figure 5.9).

Table 5.10 describes the detailed cost and GWP emission breakdowns of the
validation sample voyage 1. The voyage cost of the Double Q strategy is 12.8%
higher than that of the DDP strategy. Nevertheless, the Double Q EMS performs
10.1% better in terms of GWP emission. Such an observation reflects the trade-
off between voyage costs and GWP emissions. Note that similar observations have

been found in the training sample voyages (see Sections 5.5.2.1 and 5.5.2.2).
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Figure 5.11: DDP and Double Q energy management strategies for validation sample voy-
age 1 with low power demand: (a) optimal off-line strategy solved by DDP,
(b) on-line strategy solved by the Double Q agent.
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Table 5.10: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for validation sample voyage 1.

Voyage cost Voyage GWP Emission
Validation voyage 1~ DDP  Double Q 5ot DDP DoubleQ 53ty

(8] (3] [%] (kg] (kg] [%]
PEMFC 208.6 244.7 85.2 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 44.4 31.2 142.2 82.9 58.3 142.2

H, 345.2 406.8 84.9 62.8 74.1 84.9

Total 661.9 746.5 88.7 145.8 132.4 110.1

5.5.3.2 Validation sample 2 with moderate power demand

Figure 5.12 presents the DDP and Double Q strategies of a sample profile with mod-
erate power demand from the validation dataset. In Figure 5.12a, as the complete
profile is known before solving the DDP strategy, the DDP strategy only adjusts
PEMFC power output when necessary. As in Figure 5.12b, the Double Q strategy
adjusts PEMFC power more frequently due to uncertainty regarding the power de-
mand in the next time steps. Such a pattern has also been observed in the first two

training sample profiles.

The Double Q strategy voyage cost is 11.2% higher than that of the DPP strat-
egy, which is due to frequent PEMFC power adjustments and higher H, consump-
tion. Note that the Double Q strategy still performs better than the DDP strategy in
terms of GWP emissions (Table 5.11).

Table 5.11: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for validation sample voyage 2.

Voyage cost Voyage GWP Emission
Validation voyage2 DDP  Double Q %{)DIEQ DDP  Double Q %
($] [$] (%] (ke] (kel (%]
PEMFC 211.7 239.6 88.4 - - -
Battery 63.7 63.7 100.0 - - -
Electricity 439 324 135.6 82.0 60.5 135.6
H, 411.9 4717.6 86.3 75.0 86.9 86.3

Total 731.2 813.2 89.9 157.0 147.4 106.5
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Figure 5.12: DDP and Double Q energy management strategies for validation sample voy-
age 2 with moderate power demand: (a) optimal off-line strategy solved by
DDP, (b) on-line strategy solved by the Double Q agent.
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5.5.3.3 Validation sample 3 with high power demand

As discussed in Section 5.5.2.3, the Double Q agent failed in training voyages with
extremely high power demand. Nevertheless, the Double Q strategy managed to
complete all the validation voyages without triggering the battery over-discharge
protection function. Figure 5.13 compares the DDP and Double Q strategies. As
in Figure 5.13b, the Double Q strategy discharges the battery rapidly to a SOC of
0.4 after departure with a delay before the PEMFC provides any power output. In
contrast, the DDP strategy (Figure 5.13a) ramps the PEMFC output immediately at

departure in response to such a high load profile.

The voyage cost of the DDP strategy is 89.9% of its RL counterpart (Table
5.12). It is worth noting that the GWP emissions produced by the two strategies
are very close to each other (0.7% difference). Although the Double Q strategy
consumes more H, than the DDP strategy, it requires much less shore generated

electricity compared to the DDP strategy.

Table 5.12: Comparison of DDP and Double Q strategy voyage costs and GWP emissions
for validation sample voyage 3.

Voyage cost Voyage GWP Emission
Validation voyage 3 DDP  Double Q 5oty DDP DoubleQ 53ty

(8] (8] [%] (kg] (kg] [%]
PEMFC 256.2 2574 99.5 - - -
Battery 63.7 63.7 100.0 - - -

Electricity 504 36.9 136.3 94.1 69.1 136.3

H, 605.2 734.9 82.3 110.2 133.8 82.3

Total 975.5 1093.0 89.3 204.3 202.8 100.7

Table 5.13 summaries the Double Q-learning strategy performance in compar-
ison with DDP strategy. Wu et al. (2018) reported that, in a non-stochastic envi-
ronment with a single power profile, their Q-learning agent achieved 89.0% fuel
economy compared to dynamic programming policy in their road vehicle-related
study. The Double Q-learning strategy presented in this study has achieved 89.0%,
and 88.9% cost performance of refined DDP strategy results in training and valida-

tion datasets, respectively. The Double Q-learning agent presented in this chapter
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Figure 5.13: DDP and Double Q energy management strategies for validation sample voy-
age 3 with high power demand: (a) optimal off-line strategy solved by DDP,
(b) on-line strategy solved by the Double Q agent.
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can achieve near-optimal cost performance for the case ship in a stochastic envi-
ronment. Although the objective of the Double Q-learning strategy was designed
to minimise voyage costs, due to the trade-off between costs and GWP emissions,
the Double Q-learning strategy perform even better than the DDP strategy in terms
of GWP emissions (approximately 6% less GWP emissions for both training and
validation datasets). More H, usage would result in higher voyage costs but lower
GWP emissions.

Table 5.13: Summary of Double Q and DDP strategy voyage costs and GWP emissions.

Voyage cost Voyage GWP emission
Category Profile DDP  Double Q 5ob%s DDP Double Q 5ty
[$] (8] (%] Ikg] (ke] [%]
Sample 1 5852 686.0 853 1343 1201 111.9
Training Sample 2 7144 7953 89.8  157.1 1459 107.7
Sample 3 12280 15482 793 2475 2799 88.4
Average all training profiles 7400 831.8 89.0 1614 1520  106.1
Sample 1 661.9  746.2 887 1458 1324  110.1
Validation Sample 2 7312 813.0 89.9 1570 1474 106.5
Sample 3 9755 10927 893 2043 2028 100.7
Average  all validation profiles  723.5  813.8 889 1584  149.2 106.2

5.6 Summary

This chapter has formulated the optimal energy management problem of the plug-in
hybrid PEMFC/battery system using the novel approach of Markov Decision Pro-
cess. The formulated Markov Decision Process has been solved using reinforce-
ment learning agents in discrete state and action spaces. With continuous moni-
toring data collected from the case ship, a Double Q reinforcement learning based
energy management strategy has been proposed. The Double Q agent has been
trained adequately with one dataset of 1081 training voyages and subsequently val-

idated using another dataset of 381 voyages over different periods.

Without prior knowledge of future power demand, the Double Q agent can
achieve a cost-performance similar to that solved by dynamic programming with
the identical settings in state and action spaces. Such a similarity indicate that the

Double Q agent is effective in dealing with stochastic environments by reducing
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maximisation biases. Also, such performance suggests that reinforcement learning
is a viable approach to solve the optimal power split problem in a hybrid propulsion
system, provided that enough historical data has been collected. In contrast, the
Q agent which introduces maximisation biases fails to achieve satisfactory perfor-

mance.

It can also be observed that Double Q strategy tends to adjust fuel cell power
output more frequently, which could be due to two reasons: (1) the agent does not
have certainty as to what will be the next power demand (i.e. the environment is
stochastic) and (2) the state space was defined with limited resolution. Refining the
action and state spaces could possibly reduce the amplitude of these fuel cell power
adjustments. Both approaches would require other RL approaches with function

approximators to deal with the increases in action and state spaces.



Chapter 6

Deep reinforcement learning based

energy management strategies

6.1 Overview

In the previous chapter, the optimal energy management problem of the plug-in
hybrid PEMFC/battery system has been formulated and solved using reinforcement
learning algorithms in discrete state and action spaces. However, the accuracy of
such an approach is limited by the resolutions of the two spaces without applying

function approximators.

This chapter aims to further improve the cost-effectiveness of reinforcement
learning based energy management strategies by refining the state space with deep
neural networks as function approximators. The optimal energy management prob-
lem of the plug-in hybrid PEMFC/battery propulsion system will be solved using
Deep Q-Network (DQN) (Mnih et al., 2015) and Double DQN agents (van Hasselt
et al., 2015). Section 6.2 details the DQN and Double DQN agents. Section 6.3
reshapes the reward function proposed in Chapter 5 by removing unnecessary train-
ing steps in port. Section 6.4 depicts the training processes of the agents. Section

6.5 assesses and discusses the EMS performance.
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6.2 Deep reinforcement learning agents

6.2.1 Deep Q-Network

For reinforcement learning problems with large or continuous state spaces, func-
tion approximators are typically needed to generalise from previously encountered
states which are similar in some sense to current ones (Sutton and Barto, 2018). A
function approximator can be linear or non-linear (Boyan and Moore, 1995; Sutton
et al., 2000). However, the training process of reinforcement learning agents can be
unstable or even diverge when a non-linear function approximator such as a neural
network is used (Tsitsiklis and Van Roy, 1997). Lin (1993) developed the concept
of ‘experience replay’ to store the agent experience into a memory pool to train a re-
inforcement learning agent with a neural network. Later work of Mnih et al. (2013)
proposed deep Q-learning using a deep neural network with convolution layers to
approximate high dimensional raw pixel state inputs. Mnih et al. (2015) further
improved the deep Q-learning agents by adding target networks to improve training
stability. Mnih et al. (2015)’s Deep Q-Network (DQN) achieved performance levels

comparable to professional human game testers in 49 Atari 2600 games.

Figure 6.1 presents the detailed DQN agent-environment interaction frame-
work. The DQN is a model-free, off-policy reinforcement learning algorithm (Mnih
et al., 2015). The agent maintains an experience memory pool with capacity M,
storing the most recent M transition sequences. A transition sequence, collected via

agent-environment interaction, is denoted by:

O = (St,a1,5041,7111) (6.1)

i.e. at time step ¢, in state s;, the agent performs action a; (following €-greedy
policy) and observes next environment state s;,; and a reward signal r; | is returned
from the environment. In each agent training step, a mini-batch with capacity D is

randomly sampled from the experience memory pool such that previous experiences
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can be used effectively. In addition, the random sampling breaks the correlations of
consecutive samples which can lead to unstable neural network training. The DQN
agent includes two deep neural networks with identical structure, i.e. the Q-network
O(s,a; 0) parametrised by 6, and the Q-target network Q(s,a; 0~) parametrised by
0~. These neural networks approximate the action-value function with state (s)

inputs for all actions (a) in the action space A.
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Figure 6.1: Deep Q-Network agent and environment schematic.

As an improvement to the Deep Q-network of Mnih et al. (2013), the additional

Q-target network enhances the agent training stability by providing fixed target ac-
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tion value y; for non-terminal states:
yj=rj+1+ymaxQ (sjs1,d'56") (6.2)
a

where j denotes j — th sample in the mini-batch. Note that the terminal state is
defined as states with battery over charged (SOC > 1) or discharged beyond capacity
(SOC < 0). In the original DQN algorithm of Mnih et al. (2015), the Q-target
network is updated periodically, while in this work it is soft-updated at each training

step to further improve training stability:
0 —10+(1—-17)0" (6.3)

where 7 < 1 (Lillicrap et al., 2015).

Two types of loss functions (i.e. Mean Squared Error (MSE) and Huber loss
(Huber, 1992)) are employed independently in this study to investigate the influ-
ences of the loss function over training stability and EMS quality in a stochastic
environment. The MSE loss is defined as the mean squared error of the temporal
difference (denoted by &) between the action values given by the Q-network and

the targets y; (j € [1,D]) over a mini-batch:
12 .,
j=1
where the temporal difference §; of j —th sample in the mini-batch is:
5j:yj—Q(sj,aj;9) (6.5)

In the work of Mnih et al. (2015), 6; was clipped to between -1 and +1 to
improve the DQN algorithm stability. Such a technique corresponds to using an
absolute value loss function for temporal differences outside (—1,1). Note that the
clipping reduces the chances of overestimations for the action-value function when

values given by the networks are noisy over large ranges. In Chapter 5, the Q-
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learning agent failed due to overestimations caused by the maximisation operation
which approximated the expected action value. The concept of error clipping may
provide a new approach to dealing with overestimations in the stochastic environ-

ment.

Instead of clipping the error term, the Huber loss, which performs similar func-

tion has been employed in this study. The Huber loss is calculated by (Huber, 1992):

1 D
L(6)= 5 Y o; (6.6)
j=1
where:
1
~82, if [8;] <1
6;=42" ] (6.7)

‘SJ‘ — %, otherwise

The Huber loss is the mean squared error when the temporal difference 0; is small
1

( |5j{ < 1) but acts like the mean absolute error (|8| — E) when the difference is

large, which makes it more robust when overestimations of action-value function

may degrade the agent training.

Figure 6.2 shows the neural network structure for the Q-network and the Q-
target network. The neural networks are configured with two fully-connected hid-
den layers. The Q-network is trained by minimising the loss function L(6) with
respect to its parameters 6. The optimiser adopted in this study is the Adam op-
timiser (Kingma and Ba, 2014). The neural networks output action-value function
values for each possible action with given state inputs. Note that the continuous
signals (battery state of charge, power demand and fuel cell per unit power) are not
discretised as in Chapter 5. Instead, these states are used as direct inputs to the
Q-network such that the environment states can be accurately represented by con-
tinuous actual values. The state inputs are forward propagated sequentially from
the input layer via hidden layers to output Q-values for all actions. Note that each

neuron of the output layer corresponds to an action in the action space.

As depicted in Algorithm B.4 in Appendix B, the DQN agent training starts
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Figure 6.2: Deep neural network with 2 fully-connected hidden layers.

with randomly initialised network parameters 6 and 6. The exploration probabil-
ity € of the e€-greedy policy decreases linearly from a large initial value with the
increase of training episode number, and is fixed at a small final value in the later
stage of the training (i.e. training episode n > N;). Note that completely random
explorations initially fill the experience memory pool before the neural network

training starts. The Q-network is trained every Z steps to gain sufficient experience.

6.2.2 Double Deep Q-Network

The results in Chapter 5 suggest that maximisation biases introduced during the
construction of the action-value function can lead to poor learning performance if
such biases are not addressed properly. The Double Q-learning agent achieved sat-
isfactory performance using two Q-functions, while, with the same hyperparameter
settings, the Q-learning agent diverged. It is not clear whether the DQN agent (as a
deep variant of Q-learning) can succeed in the highly stochastic environment based
on recorded historical power profiles. Therefore, the author has also explored solv-

ing the energy management problem with Double DQN.

The Double DQN (Algorithm B.5 in Appendix B) is proposed by van Hasselt
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et al. (2015) based on the concept of Double Q-learning (van Hasselt, 2010) and
DQN (Mnih et al., 2015). In Double Q-learning, two Q-functions are used to re-
duce the overestimations by decomposing the maximisation in the target into action
selection and action evaluation (van Hasselt, 2010; van Hasselt et al., 2015). With-
out introducing additional neural networks to DQN, the Double DQN utilises the
Q-target network to evaluate the maximising action (i.e. argmax, (Q (s 1, a; 9)))

given by the Q-network (see Figure 6.3) such that, the target value is calculated by:

yj=rj+70 (st,argmax (0 (sj+1,a;9));9_) (6.8)

4000 P C

2000

w
<
S
S

1000

3000

| |
| |
| |
| |
| — |
[ |
X |
| k=] |
I E |
| 0
| ; 2500 275:00:00 :
| E DC bus !
| & 2000 + [ N . |
| ) | |
2 |
| 1500 | | :
| '03 | | |
I = 1000 | | |
| g | ' |
|5 0 | Propulsion  gpio services Propulsion: :
| L.
! 0 | motor & auxiliary motor | !
| 00:00:00 480:00:00  960:00:00  1440:00:00 load | !
Time [h] ' 0ads
: L e | :
L 1
-[ |_ |_ Environment }
St+1 rtiﬂ St a
P _f _____________________________________________________ i
| |
& -greedy

| e o N |
! Transition o ‘ policy !

sequence Lo N |
! a 2% 2 | ——————=Update Q-network: !
1| (St@4,Ste1,F1+1) I |
| |
| » O |
| el s 5 |
| Q-network =3 > :

$=2
| I | of | ¢ |
! Soft update A g ||
| Q-target network =4 |
| I =1 |
| \ 2 |
| e = g |
| L |
Mini-batch S — S o

: 5. A.S’R) ? Q-target c2 |
| AN network o g - |
| D o wl < = |
| > I
| |
| |

Figure 6.3: Double Deep Q-Network agent and environment schematic.
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6.3 Environment update

6.3.1 Reward function

In Chapter 5, the agent was trained throughout all time steps of the voyages, i.e.
from the first moments of departure to last moments in ports. However, the ship
was designed to operate purely on shore based electricity when in port mode (i.e.
cold ironing, see Eq. 4.1). Although the Double Q agent has demonstrated its ability
to maintain zero fuel cell power state in port mode, removing the training steps in
port mode could potentially simplify the training processes due to the cold ironing
logic (see Section 4.2.2.1) would only utilise shore provided power. Control of the
fuel cell when in port mode appears unnecessary. Also, it has been observed that,
the Double Q agent struggled to maintain final battery SOC constraint in some high
power profiles. In practice, it would be feasible to increase the port time slightly to
get the battery charged to SOCp. Therefore, the reward function of the environment

is reshaped as:

-1, spA=0,if s, is infeasible
—1, spA=0,if ps. +a; ¢ [0,1]
oot — 6.9
ak tanh ( > , spA=0,else ©9)
costy 1
s 1
Z tanh ( > , SpA=1
k=t+1 cosl

where when shore power is available (spA = 1), the environment returns a summed
reward of all the costs incurred in port mode of the current episode. In sailing
mode, i.e. spA = 0, the reward function is defined identically as in Chapter 5 (see
Section 5.3.3). Note that K is the time step when the entire profile is completed; and
costy = if k > T (i.e. extra time required to charge the battery), otherwise costy, is

calculated as described in Chapter 5 (Eq. 5.8).
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6.3.2 State space

Previously, in Chapter 5, the four-dimensional state space was discretised to state
indices (Section 5.3.1) to store the action-value function into tables indexed by dis-
crete state indices. Such a discretisation process is necessary for tabular RL ap-
proaches. However, the discretisation process and its resolution limit the quality of
the generated policy (Sutton and Barto, 2018). In this chapter, discretisation of state

space has been removed. The actual state space:

s(t) = [spA(t), paem(t),x(1),SOC(1)]" (6.10)

is directly applied to represent the environment states, where spA denotes the shore
power availability (spA = 0 for sailing mode, spA = 1 for port mode), Py, is nor-
malised system power demand by dividing the actual power demand in kW by 1500
(i.e. pdem = {)‘5’%, such that the power demand input to the Q-network is around 1),
x(t) fuel cell per unit power level at time step 7 (x € [0, 1]), and SOC € [0, 1] denotes
battery state of charge (SOC).

6.3.3 Action

The action space is defined as a tuple of fuel cell power level changes:
A= [al,az,...,am,...,an,l,an]T (6.11)

where a; < 0 is the maximum decrease and «, > 0 is the maximum increase of fuel
cell output in a time step, a,, = 0 means maintaining current power level; all other

values of a represent changes of power within the range of (aj,ay).

In sailing mode, the environment overrides an action that would result the fuel
cell power output becoming negative or higher than the rated power. When action

a; € A is chosen from the action space at time step ¢, the fuel cell power level at
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t+ 1 will be:
0, X +a; <0

Xt4+1 = 1, X +ay > 1 (612)

X +a;, else
\

In port mode, the agent is not required to control the fuel cell. The environ-
ment would force the fuel cell power to decrease to zero if fuel cell power is not
zero. Note that the environment would extend episode length whenever necessary
to charge the battery SOC to SOCy (the power demand would be extrapolated from
the last power demand that appears in original power profile). Such settings vary
from the ones defined in Chapter 5, in which the agents were required to explore

actions in port mode to maintain cold ironing.

6.4 Agent training

The agents were trained on a workstation with two Intel Xeon E5-2683 V3 proces-
sors running on Windows 10. The environment and the agent were coded in Python.
The agent’s neural networks were built and trained with PyTorch v1.20. Each agent
was trained with 10 different random seeds for reproducibility. During training, the
agent policy performance was assessed by calculating the average values and stan-
dard deviations across the 10 instances running with different random seeds. Note
that as the neural networks are relatively small, only one CPU thread is assigned
to each running instance to avoid training speed degradation due to unnecessary

parallelisation.

Also, the actual policy performance was periodically tested (every 100 training
episodes) with 10 random training voyages during training. Note that in test mode,
the € — greedy exploration probability was set at O with battery over-discharge pro-
tection enabled (disabled in training mode). Once the training of all the 10 instances
was completed, the agent with the lowest episode cost was chosen to generate de-

tailed EMS results in the following sections.
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6.4.1 Neural network settings

Figure 6.4 illustrates the neural network configuration for the Q and Q-target net-
works. The environment state inputs are processed by the input layer with four neu-
rons with Rectified Linear Unit (ReLU) activation function. Two fully-connected
hidden layers are configured with 256 neurons each. Note that both hidden layers
are applied with an ReLLU activation function, while no activation function is ap-
plied to the output layer to allow negative action-value outputs. The neural network
outputs five Q-values, corresponding to the 5 actions in the action space, respec-

tively.
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Figure 6.4: Q-network and Q-target network settings.

6.4.2 Hyperparameter settings

Table 6.1 details the hyperparameter settings used for the four agent-loss function
combinations. The policy is updated every 32 transition sequences (¢). In each
training step, a mini-batch with 32 transition sequences is randomly sampled from
the experience memory with a capacity of 1 x 10°. Such a mini-batch is applied
to train the Q-network using an Adam optimiser. The learning rate of the Adam

optimiser is fixed at 0.0001 throughout the training. The exponential decay rates
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of first and second moment estimates (8; and f3;) are set at 0.9 and 0.999 respec-
tively (Kingma and Ba, 2014). Note that the Q-target network is soft-updated with
a soft-update weight of 7 = 0.001 in each training step. The exploration probabil-
ity € of € — greedy policy starts with 1 and fixes at 0.05 after 5 x 103 episodes of

training. Note that these parameters require careful tuning to achieve satisfactory

performance.

Table 6.1: Hyperparameter settings.
Parameter Description Value
B Mini-batch size 32
M Experience memory size 1 x10°
T Target network update weight 0.001
Y Discount factor 1
z Policy update frequency 32
o Learning rate of Adam optimiser 0.001
b1 Exponential decay rate for the first moment estimates of Adam optimiser 0.9
B Exponential decay rate for the second moment estimates of Adam optimiser  0.999
& Initial exploration probability 1
& Final exploration probability 0.05

6.4.3 Training

Two agents, i.e. DQN and Double DQN, have been tested in this study. Also, two
types of loss functions, i.e. MSE and Huber losses are tested with the two deep

reinforcement learning agents.
6.4.3.1 MSE loss

Figures 6.5 and 6.6 illustrates the training processes with MSE loss function for the
DQN and Double DQN agents respectively. Both agents were trained over 1.2 x 10*
episodes. Every 100 training episodes, the energy management strategy is tested by
sampling 10 random training profiles. The DQN agent training diverged without
finding an effective strategy. Although the Double DQN performed slightly better

than the DQN, it was not particularly successful.
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Figure 6.5: DQN agent training and testing with MSE loss function. The deep blue lines
are moving average values across 10 instances running with different random
seeds. The light blue shadows are the confidence bounds calculated by mean
values + standard deviations across the 10 instances.
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Figure 6.6: Double DQN agent training and testing with MSE loss function. The deep
blue lines are moving average values across 10 instances running with different
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Figure 6.7: DQN agent training and testing with Huber loss function. The deep blue lines

are moving average values across 10 instances running with different random
seeds. The light blue shadows are the confidence bounds calculated by mean
values + standard deviations across the 10 instances.
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6.4.3.2 Huber loss

In contrast, with the Huber loss function, the training processes of the two agents
are much more stable (Figures 6.7 and 6.8). Note that both agents are trained across
8000 training episodes. The Double DQN training is more consistent across the
10 running instances with different random seeds. In test mode, the moving aver-
age line of the Double DQN strategy converged to a value of around $780 (6.6b).

Similar performance has been observed for the DQN agent (6.5b).

6.5 Results

The results presented in this section were acquired with the Double DQN agent
trained by the Adam optimiser with Huber loss function. The training and vali-
dation dataset and sample voyages are identical to those used in Chapter 5. Table
6.2 compares the average voyage cost of the strategies generated by Double DQN,
discrete Double Q-learning and off-line DDP (with a SOC resolution of 0.0125).
The strategy generated by the Double DQN achieves average costs of $782.5 and
$768.9 for the training and validation voyages respectively (as mentioned in Chap-
ter 5). The off-line DDP strategy average voyage cost is 94.6% and 94.3% of those
of the Double DQN strategy, for the training and validation datasets respectively.
It is worth mentioning that the DDP strategy is acquired for each voyage indepen-
dently by proving complete power profiles before solving, representing the best that
could theoretically be achieved but requires pre-existing knowledge of power pro-
files. Therefore, the DDP strategy can only be used as a benchmark to assess other
on-line EMS performance. Compared to the Double Q strategy in discrete state
space, the Double DQN strategy further reduces the average voyage costs by ap-
proximately 6.0% with continuous state space. Note that the Double Q strategy is
obtained with a SOC resolution 0.05, while it is continuous for the Double DQN

strategy.

The computation time required by the Double DQN agent to generate a strat-

egy is approximately 27 min using a single thread of an Intel Xeon E5-2683 V3



Deep reinforcement learning based energy management strategies 184

Table 6.2: Double DQN, Double Q and DDP strategy average voyage costs comparison.

DDP; [$] Double Q[$] Double DQN [$] o [%]  soun sox (%]
SOC resolution 0.0125 0.05 Continuous - -
Training voyages 740.0 831.8 782.5 89.0 94.6
Validation voyages 724.9 815.0 768.9 88.9 94.3

processor (18 min on an Intel 17-4790 processor). The Double Q agent requires
288 min to generate a strategy using a single thread of an Intel 17-4790 processor.
Compared to the Double Q agent, the Double DQN agent managed to achieve a
6.0% improvement in cost performance with 93.8% less computational resource

required.

To examine the strategy performance generated by the Double DQN and Dou-
ble Q agents in detail, the power distributions between the power sources for 6
sample voyages (3 training and 3 validation voyages, see Table 5.6) are discussed

in this section.

6.5.1 Training voyages

6.5.1.1 Training sample 1 with low power demand

Figure 6.9 presents the Double Q (Figure 6.9a) and Double DQN (Figure 6.9b)
strategies for training sample voyage 1. This voyage has relatively low power
demand in the training dataset. The voyage starts with a power demand around
1600 kW. The Double DQN strategy utilises the battery only and rapidly discharges
the battery to a SOC of 0.35 (0-750s). The Double Q strategy utilised both the fuel
cell and battery during this period and tends to adjust the fuel cell power output
frequently. After the initial 750 s and during cruising, both strategies tend to adjust
fuel cell output frequently, while the power demand is relatively constant. However,
the Double DQN strategy fuel cell power adjustments are less frequent compared
to that of the Double Q strategy. Moreover, the Double Q strategy tends to use the
battery more aggressively, i.e. the battery SOC is mostly maintained in the vicinity

of 0.35, while the Double Q strategy is more conservative. At 950s, the Double
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DQN strategy discharges the battery to a SOC of 0.4, and thereafter starts to charge

the battery gradually.
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Figure 6.9: Double Q and Double DQN energy management strategies for training sample
voyage 1 with low power demand: (a) Double Q strategy and (b) Double DQN

strategy.
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Table 6.3 details the voyage cost and GWP emission breakdowns of the sample
training voyage 1. The voyage cost achieved by the Double DQN strategy is $627.3
(91.5% of the Double Q strategy). As the Double DQN strategy tends to use the
batteries more aggressively, shore-generated electricity consumed by the Double
DQN strategy is 28.1% more than that consumed by the Double Q agent. Higher
shore electricity usage results in lower H, consumption. In addition, the Double
DQN strategy adjusts fuel cell power less frequently. Hence its PEMFC degradation
cost is 11% lower than that of the Double Q strategy. The battery degradation costs
are the same for both strategies, as a simple averaged battery degradation cost model

has been adopted.

Table 6.3: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of training sample voyage 1.

Voyage cost Voyage GWP Emission
Double DQN  Double Q ~ P22=P8N Double DQN Double Q 228N
[$] [$] (%] (kg] (kg] (%]

PEMFC 2249 252.6 89.0 - - -

Battery 64.3 64.3 100.0 - - -
Electricity 40.1 31.3 128.1 75.0 58.6 128.1
H, 298.0 337.7 88.2 54.2 61.5 88.2
Sum 627.3 686.0 91.5 129.3 120.1 107.7

6.5.1.2 Training sample 2 with moderate power demand

Figure 6.10 shows the Double Q and Double DQN strategies for a sample voyage
in the training dataset with moderate power demand. As displayed in Figure 6.10b,
the battery levels off the power transients throughout the voyage, while the fuel cell
power adjustments are much less frequent compared to that of the Double Q strategy
(Figure 6.10a). When approaching the port (2400-2800 s), the Double DQN strategy
reduces the fuel cell power in advance, while the Double Q strategy only reduces

fuel cell power when shore power availability is detected.
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Figure 6.10: Double Q and Double DQN energy management strategies for training sample
voyage 2 with moderate power demand: (a) Double Q strategy and (b) Double

DQON strategy.
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Table 6.4 depicts the cost and GWP emission breakdowns for training sample
2. The voyage cost achieved by the Double DQN is 91.2% of that of the Double Q
strategy. Although the Double DQN strategy consumes more shore generated elec-
tricity, the degradation cost from PEMFC degradation is reduced by 16%, and the
H, cost has also been reduced since the electricity consumption has been increased.
Due to the trade-off between the voyage cost and GWP emission, the Double DQN
emits 6.1% more GWP emissions. Increased shore-generated electricity consump-

tion can lower the cost of the voyage but would increase the GWP emissions.

Table 6.4: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of training sample voyage 2.

Voyage cost Voyage GWP Emission
Double DQN  Double Q  PFREPSY  Double DQN  Double Q - BpelsN
[$] [$] [%] [ke] [kg] [%]

PEMFC 207.1 246.4 84.0 - - -

Battery 67.0 67.0 100.0 - - -
Electricity 43.0 34.5 124.8 80.4 64.4 124.8
H, 408.2 447.5 91.2 74.3 815 91.2
Sum 7253 795.3 91.2 154.7 145.9 106.1

6.5.1.3 Training sample 3 with high power demand

Figure 6.11 shows results for the power profile with the highest power demand in
the training dataset. Such a profile is unusual. Both the Double Q and Double DQN
strategies would trigger the battery over-discharge protection, i.e. when the battery
SOC drops below the lower limit (0.25), the over-discharge protection function to
increase fuel cell by 5% of rated fuel cell power until the SOC is restored to above
0.25. As the battery over-discharge protection is enabled in both strategies, the
battery SOC trajectories are similar. The DDP strategy for this voyage presented in
Chapter 5 requires the PEMFC output to be increased immediately after departure.
With the battery over-discharge protection function enabled, both the Double DQN

and Double Q agent can complete all voyages in the training and validation datasets.
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Figure 6.11: Double Q and Double DQN energy management strategies for training sample
voyage 3 with extreme power demand: (a) Double Q strategy and (b) Double
DQON strategy.
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However, neither agent managed to develop a strategy for such an extreme
power profile. Note that the Double DQN strategy is trained by 8000 episodes.
Increasing the training episode number may find a strategy capable of tacking such
extreme voyage profiles without triggering over-discharge protection. However,
further experiments were not implemented since the overall Double DQN strategy

performance is satisfactory.

Table 6.5 compares the cost and emission breakdowns of the Double DQN
strategy with those of the Double Q strategy. As the battery over-discharge pro-
tection functions for most of the duration of this voyage, the cost and emission
performance of the Double DQN strategy are similar to that of the Double Q strat-
egy.

Table 6.5: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of training sample voyage 3.

Voyage cost Voyage GWP Emission
Double DQN  Double Q  PFREPSY  Double DQN  Double Q - BRelsN
[$] [$] [%] (ke] (kg] [%]

PEMFC 263.9 259.0 101.9 - - -

Battery 56.7 56.7 100.0 - - -
Electricity 34.8 32.9 105.8 65.1 61.5 105.8
H, 1214.8 1199.9 101.2 221.1 218.4 101.2
Sum 1570.2 1548.5 101.4 286.2 279.9 102.3

6.5.2 Validation voyages

As the EMS is intended for use on future voyages for which, of course, there would
be no predetermined data, the Double DQN strategy is applied to a set of validation
voyages to examine its performance against load profiles that have not been experi-
enced by the agent. Note that the validation voyages are not included in the training

dataset.
6.5.2.1 Validation sample 1 with low power demand

Figure 6.12 compares the Double DQN strategy (Figure 6.12a) with the Double Q

strategy (Figure 6.12b) for a validation sample voyage with low power demand. In
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Figure 6.12: Double Q and Double DQN energy management strategies for validation sam-

ple voyage 1 with low power demand: (a) Double Q strategy and (b) Double
DQN strategy.

Figure 6.12b, the Double DQN strategy delays the increase of the fuel cell power
until the battery SOC has dropped to 0.36 (750s). During cruising, the fuel cell
power is maintained in a narrow band. However, the Double DQN strategy tends
to adjust fuel cell power output frequently. Nevertheless, unnecessary large adjust-

ments as in Figure 6.12a (1950-2300 s) have been avoided. Moreover, the minimum
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battery SOC of the Double DQN strategy is 0.35, while it is 0.4 for the Double Q

strategy.

Table 6.6 details the cost and GWP emission breakdowns for validation sam-
ple voyage 1. Similar to the voyages discussed in Sections 6.5.1.1 and 6.5.1.2,
the Double DQN strategy reduces the voyage cost by 7.0%, while increasing the
GWP emission by 6.9%. This is due to the conflict between voyage cost and GWP
emission. PEMFC degradation cost is reduced by 8.3% by avoiding unnecessary
PEMFC power adjustments and by making more use of the battery.

Table 6.6: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of validation sample voyage 1.

Voyage cost Voyage GWP Emission
Double DQN  Double Q  PFREPEY  Double DQN Double Q - PpeDeN
[$] [$] [%] [kg] (kg] [%]
PEMFC 2243 2447 91.7 - - -
Battery 63.7 63.7 100.0 - - -
Electricity 40.0 31.2 128.2 74.8 583 128.2
H, 366.5 406.8 90.1 66.7 74.1 90.1
Sum 694.5 746.5 93.0 1415 132.4 106.9

6.5.2.2 Validation sample 2 with moderate power demand

Figure 6.13 illustrates the Double DQN strategy (Figure 6.13b) in comparison with
the Double Q strategy (Figure 6.13a) for a sample voyage with moderate power
demand from the validation voyage dataset. The Double DQN strategy starts ramp-
ing up the PEMFC output at 700s. As in Figure 6.13b, the power trajectory of the
PEMFC is much smoother compared to that in Figure 6.13a. The batteries absorb
the small power transients by frequent charging and discharging. In addition, when
approaching port (2300-2750s), the Double DQN starts to decrease fuel cell power
in advance. Such behaviour has not been observed with the Double Q strategy (e.g.

Figure 6.13a).

Table 6.7 compares the voyage cost and GWP emission breakdowns of the two
strategies for validation sample 2. The Double DQN strategy reduces the voyage

cost by 8.4% for this voyage. As the PEMFC power adjustments are less frequent,
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the PEMFC degradation cost of the Double DQN strategy is reduced by 14.7%. The
Double DQN strategy increases the electricity cost by $9.6 but reduces the H, cost
by $43.2. The Double DQN strategy tends to use more shore-generated electricity
to achieve lower overall voyage cost. Such a tendency would increase the electricity
cost slightly but would bring greater cost reduction from H, consumption. However,

the Double DQN strategy increases voyage GWP emission by 7.0%.
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Figure 6.13: Double Q and Double DQN energy management strategies for validation sam-

ple voyage 2 with moderate power demand: (a) Double Q strategy and (b)
Double DQN strategy.
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Table 6.7: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of validation sample voyage 2.

Voyage cost Voyage GWP Emission
Double DQN  Double Q 2208 Double DQN Double Q P08t
(5] [$] [%] [ke] [ke] [%]

PEMFC 204.5 239.6 85.3 - - -

Battery 63.7 63.7 100.0 - - -
Electricity 42.0 324 129.9 78.6 60.5 129.9
H, 434.4 471.6 91.0 79.1 86.9 91.0
Sum 744.7 813.2 91.6 157.7 1474 107.0

6.5.2.3 Validation sample 3 with high power demand

Figure 6.14 details the Double DQN and Double Q strategies for validation sample
3. This sample has relatively high power demand (with an average power require-
ment of 1597.8 kW). Although the PEMFC power trajectories of the two strategies
follow similar trends in general, the Double DQN strategy maintains the PEMFC
power more consistently and only makes adjustments when significant power tran-
sients have been observed (e.g. at 1450s). Also, the Double DQN discharges the
battery to a SOC of around 0.26 (close to the lower SOC limit). In addition, the
Double DQN decreases the PEMFC output in advance of reaching the port and

reduces fuel cell power output to zero when shore power is available.

Detailed voyage cost and GWP emission breakdowns of the two strategies for
this voyage are detailed in Table 6.8. The voyage costs of the Double DQN and
Double Q strategies are $1056.7 and $1093.0, respectively, corresponding to a 3.3%
voyage cost difference. The cost saving of 3.3% is lower compared to those voyages
discussed in Section 6.5.2.1 and 6.5.2.2. The reason for the reduced cost saving is
the PEMFC power trajectories of the two strategies follow very similar trends, while

the Double DQN strategy only adjusts fuel cell power when necessary.
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Figure 6.14: Double Q and Double DQN energy management strategies for validation sam-
ple voyage 3 with high power demand: (a) Double Q strategy and (b) Double
DQON strategy.
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Table 6.8: Double DQN and Double Q strategy voyage cost and GWP emission break-
downs of validation sample voyage 3.

Voyage cost Voyage GWP Emission
Double DQN Double Q ~ P2=03N - Double DQN Double Q PR8N
(5] [$] [%] [ke] [ke] [%]

PEMFC 2457 2574 95.5 - - -

Battery 63.7 63.7 100.0 - - -
Electricity 435 36.9 117.9 81.4 69.1 117.9
H, 703.7 734.9 95.8 128.1 133.8 95.8
Sum 1056.7 1093.0 96.7 209.5 202.8 103.3

Table 6.9 summaries the Double DQN strategy performance in comparison
with that of the Double Q strategy. The Double DQN strategy further reduces the
average costs for training and validation datasets by 5.9% and 5.5% respectively.
The Double DQN strategy achieves average voyage costs of 105.7% and 106.0% of
that of the DDP strategy in training and validation datasets respectively (see Table
6.2).

Table 6.9: Comparison of Double DQN and Double Q strategy average voyage costs and
GWP emissions.

Voyage cost Voyage GWP emission
Category ~ Profile  Double DQN Double Q 23PEDEN  Double DQN  Double Q  P2=bal
[$] [$] [%] [ke] [ke] (%]
Sample 1 627.3 686.0 915 129.3 120.1 107.7
Training ~ Sample 2 725.3 795.3 91.2 1547 145.9 106.1
Sample 3 1570.2 1548.2 101.4 286.2 279.9 102.3
Average all profiles 782.5 831.8 94.1 159.7 152.0 105.0
Sample 1 694.5 746.2 93.1 1415 1324 106.9
Validation ~ Sample 2 744.7 813.0 91.6 157.7 1474 107.0
Sample 3 1056.7 1092.7 96.7 209.5 202.8 1033
Average all profiles 768.9 813.8 94.5 157.5 149.2 105.5

6.6 Summary

The aim of this chapter was to further improve the cost-effectiveness of reinforce-
ment learning based energy management strategies by extending discrete state space
to be continuous. The environment of the agent-environment interaction framework

has been improved by removing action explorations in port mode since cold ironing
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has been deemed as one of the design requirements. Such an adjustment reduces

training episode length.

Novel approaches using deep reinforcement learning have been pro-
posed to solve the optimal energy management problem of the plug-in hybrid
PEMEFC/battery propulsion system in continuous state space. Two deep reinforce-
ment learning algorithms, i.e. Deep Q-Network and Double Deep Q-network have
been applied in light of the results in Chapter 5 suggesting overestimations of
action-values could lead to divergence in agent training. In addition, two loss func-
tions, Mean Squared Error and Huber loss functions, have been explored to deal

with value overestimations in the stochastic environment.

The training processes of the two agents suggest that the Double Deep Q-
Network performed slightly better than the Deep Q-Network with Mean Squared
Error loss function applied. However, with the Mean Squared Error loss function,
both agents have not achieved what could be considered satisfactory performance.
When the Huber loss function, the Double DQN and DQN agents delivered similar

performance.

The energy management strategy generated by the Double Deep Q-Network
with Huber loss function was examined in detail in comparison to that generated
by the Double Q agent. When compared to the Double Q energy management
strategy developed in Chapter 5, a further 6% cost-performance improvement has
been achieved by the Double Deep Q-Network with more than 90% computation
time reduction. The cost reduction is achieved by more accurate PEMFC control
and reduced H, consumption. However, the Double DQN based energy manage-
ment strategy leads to a 5% increase in voyage GWP emission due to higher shore-

generated electricity consumption.



Chapter 7

Deep reinforcement learning based
continuous energy management

strategies

7.1 Overview

In Chapter 6, the optimal energy management problem was solved in continuous
state but discrete action spaces using DQN and Double DQN agents. Although
both algorithms achieved voyage cost performance close to that of the off-line strat-
egy solved by DDP, such algorithms are limited to small discrete action space (Mnih
et al., 2015). Considering fuel cell power level is a continuous parameter, this chap-

ter aims to extend the discrete action space to be continuous.

In addition, in marine propulsion (especially IFEP) systems, for redundancy
considerations, it is usual to install multiple power sources that can be controlled
independently. Therefore, this chapter will also explore the feasibility of controlling
multiple fuel cell clusters using deep reinforcement learning algorithms. Instead
of controlling each fuel cell stack independently, PEMFC stacks are grouped into

clusters, and stacks within one cluster are controlled uniformly. Such a setting

198
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simplifies the problem by avoiding very high dimensional action and state spaces.

Section 7.2 updates the optimal energy management problem to independent
and continuous control of multiple fuel cell clusters. Section 7.3 introduces the Twin
Delayed Deep Deterministic Policy Gradient (TD3) deep reinforcement learning
algorithms (Fujimoto et al., 2018). Section 7.4 details the training process of the
agent. Section 7.5 assesses the energy management strategy performance using

voyage samples as discussed in previous chapters.

7.2 Optimal energy management problem

reformulation

7.2.1 Action space

In the preceding chapters, the fuel cell stacks are controlled uniformly in one-
dimensional discrete action space. In this chapter, the action space is extended
to be multi-dimensional and continuous to control multiple PEMFC clusters con-
currently. For the energy management problem with m PEMFC clusters, the action

space is defined as:
ai
as

a=| : (7.1)

am

where a; € [ay—,ap+]isthe k—th (k=1,2,...,m— 1,m) PEMFC cluster per unit
power adjustment. Note that ay;— = —0.04, ap+ = +0.04 are maximum allowed
per unit power decreasing and increasing limits, respectively. Note that all the fuel

cell stacks are controlled uniformly when m = 1.
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7.2.2 State space

It is assumed that all PEMFC clusters are assigned with an equal PEMFC power,

. Pfc,ruted

and the rated cluster power is P, praanl

where Py 1404 18 the total installed fuel
cell power (see Chapter 4). As each of the fuel cell clusters has its own power state,

therefore the fuel cell state is extended to:

X1
X2

x=| : (7.2)

Xm—1

Xm

where x; is the k — th fuel cell per unit power. The definitions of shore power
availability spA, battery state of charge SOC, and power demand pg,,, remain un-

changed. Consequently, the new state space of the multi-stack energy management

problem is: i i
X1
X2
X
SocC Xm—1
s = = (7.3)

SpA Xm

Pdem SoC

SpA

Pdem
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With given action a, from current state s to next state s’, the state transition is

calculated by:

X1+ a1

Xy +ap

Xm—1+ am—1

s = (7.4)

Xm + am
socC’

spA’

!
pdem

where the next battery SOC SOC’ is calculated by the system model (see Chapter
4 and Figure 5.2), next shore power availability spA’ and p/,, = are determined by
the power profile. Note the fuel cell power override function still applies (see Eq.
6.12). It is worth mentioning that when calculating battery power, the total fuel cell

power after the power converters, i.e. P; (see Eq. 4.1), is updated to:

m
P = Z PexiM k (7.5)
k=1

where 1 ; is uni-directional power converter efficiency (see Figure 4.3) of k —th

PEMEC cluster.

7.2.3 Reward function

Based on the reward function described in Chapter 6, as multiple PEMFC clusters

are configured, the reward function is updated to:
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-1, spA=0,if s, is infeasible
-1, spA=0,if any x; +a;; ¢ [0, 1]
P 1 7.6
i tanh( ) , spA=0, else (7.6)
costy1
X 1
Z tanh ( ) , spA=1
=t costy

where, when shore power is available (spA = 1), the environment returns a summed
reward of all the costs incurred in port mode of current episode. In sailing mode, i.e.
spA = 0, the environment returns —1 if s, is infeasible or one or more PEMFC
cluster control actions are overridden. Note that the degradation and H, fuel costs
for each PEMFC cluster are calculated independently using the scalable PEMFC

model, then summed to further calculate the cost cost, | incurred in one time step.

7.3 Twin Delayed Deep Deterministic Policy
Gradient

Although Q-network based DQN and Double DQN agents achieved satisfactory
performance in Chapter 6, these algorithms cannot be applied to problems with
continuous or large action space due to maximisation operating in selecting optimal
actions:

a; < argmax (Q (s;41,a;0)) (7.7)

a
i.e. finding the greedy policy at every time step. Silver et al. (2014) proposed an
actor-critic (see Figure 7.1) based Deterministic Policy Gradient (DPG). In DPG,
the actor 7y (i.e. the policy) parametrised by ¢ is updated by taking the gradient of
the expected return J(¢) (Silver et al., 2014; Fujimoto et al., 2018):

V¢J(¢> = ]ESNP’r [VdQﬂ (S7a> |a:7r(s)v¢7t¢ (S)} (7.8)

where Q" (s,a) = Egp, a~x [R:|s,a] is the expected return of performing action a in

state s following policy 7. Note that p” is the state distribution which also depends
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on the policy parameters. R; = l-T:, ¥Y~'r(s;,a;) with a discount factor ¥ is the dis-

counted sum of rewards which the agent aims to maximise. Such an architecture is

applicable to continuous control problems (Silver et al., 2014).

Agent
Actor Ste1
Policy 7(s)
D
qr;or
Action Critic _ Seus
a . Value function €———
4 V(s)
Reward
l+1
: State
> Environment S
t+1

Figure 7.1: Actor-critic architecture (Sutton and Barto, 2018).

Later work of (Lillicrap et al., 2015) developed a Deep Deterministic Policy
Gradient (DDPG) based on DPG. In DDPG, exploration noise ./#; is added to the
actor policy 7y (s;):

a; = Ty (s1) + N (7.9)

The concept of experience replays and target networks have also been included in
DDPG to break sample correlations and to improve training stability. The critic, i.e.

the Q-function Qg (s,a) parametrised by 8, is updated by minimising the loss:

1

L=—
D
J

(v; — Qo(sj.a;))’ (7.10)

aglS

1

The policy 7y is updated using the sampled policy gradient (see Eq. 7.8). In every
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training step, both the actor and critic target networks are soft-updated with a soft-

update rate 7.

Although DDPG can achieve satisfactory performance in some continuous
control tasks, the overestimation bias can be problematic (Fujimoto et al., 2018).
Fujimoto et al. (2018) proposed the Twin Delayed Deep Deterministic Policy Gra-
dient (TD3) (Algorithm 7.1) addressing the function approximation errors and over-
estimation bias in actor-critic methods. The results in Chapters 5 and 6 have high-
lighted the problem of overestimations in the stochastic environment. Consequently,
a novel approach using the TD3 algorithm is proposed in this chapter to solve the

optimal energy management problem of the plug-in hybrid PEMFC/battery system.

Algorithm 7.1 Twin delayed policy deterministic policy gradients (TD3) agent (Fu-
jimoto et al., 2018).
1: Initialise replay memory D to capacity M
2: Initialise critic networks Qg, , Qp,, and actor network 7y with random parameters 6, 6,,
¢
3: Initialise target networks 6] <— 60y, 6 < 6, ¢’ < ¢
4: while n < N, do

5: Initialise initial state s;
6 fortr=1:Tdo
7: Select action a; with exploration noise a;, ~ 7y (s;) + €, € ~ A4 (0,0)
8 Take action a;, observe ry11, ;11 and terminationflag
9 Store transition (s;,dy,r;+1,5:+1) in replay memory
10: Every Z steps sample random mini-batch of transitions (s,a,r,s") from mini-
batch
11: d< my (s')+& & ~clip(A(0,6),—c,c)
, if episode terminates
12: Sety= . .
r+ymin;— » Qle,- (s',a), otherwise
13: Update critics 6; <— argming Ly,
14: if t mod d = O then
15: Update ¢ by the deterministic policy gradient:
16: V¢J(¢) :D_IZVaQ& (sva) |a:n¢(s)v¢7r¢(s)
17: Soft-update target network:
18: 0] — 16;+(1—1)6/
19: ¢ — i+ (1—1)¢
20: end if
21: Terminate if terminationflag
22: end for

23: end while
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In TD3, there are two critic networks, i.e. Qg, and Qg, and one actor network
Typ. The subscripts of 61, 6, and ¢ denote the neural network parameters. Corre-
spondingly, there are two critic target networks Q’Q1 and Q’92 and one actor target
network 71:(;, The superscript / denotes target network. Three key improvements

have been made to DDPG (Fujimoto et al., 2018).

The first improvement is clipped Double Q-learning for the actor-critic. When
calculating the target value, the minimum value between the two critic estimates is
selected:

in Q), (s',d 7.11
y%r+7g1}ngei(s,a) (7.11)

i=
so that the less biased Q-value estimate is used, which is similar to the concept of
Double Q-learning (van Hasselt, 2010). Note that a is given by the target actor net-
work with a small amount of random noise added to the target action to smooth the
value estimate by bootstrapping off of similar state-action value estimates (second

improvement) (Fujimoto et al., 2018):
a<« Ty (s') +&&~clip(4(0,6),—c,c) (7.12)

where & € (—c,¢) is the added noise clipped from a Gaussian distribution .4 (0, &)
with a 0 mean value and a standard deviation of & such that the target is maintained
close to the original action. Moreover, the actor 1y parametrised by ¢ is updated
less frequently than the critics, i.e. ¢ is updated every d critic updates such that

accumulated errors can be reduced.

It is worth noting that the Huber loss function is adopted to update the critic
networks, which is different from the Mean Squared Error used in (Fujimoto et al.,
2018). This adjustment is made to achieve more stable agent training as the Mean
Squared Error loss function in Chapter 6 led to diverged training processes. Conse-

quently, the loss function for the critic is:

1 D
L,—(Q):l—)ZGM (713)
j=1
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where:
1 52

o= 2% if |8;,;] <1

X (7.14)
|5,-7 j| ~ 5 otherwise
where 6; ; = yi j — Qg,(s,a),i=1,2, j=1,2,...,D. 6 denotes temporal difference

(see Chapter 6). i denotes the i — th critic; j denotes the j —th sample in the mini-

batch with capacity D.

7.4 Agent training

The aims of this chapter are twofold: (1) uniform fuel cell control in a continuous
action space and (2) multi-cluster fuel cell control in a continuous action space.

Consequently, the agent is trained separately for each of the two scenarios:

* Uniform fuel cell control, m = 1, i.e. the fuel cells are controlled uniformly

as in Chapters 5 and 6 but in continuous action space.

e Multi-cluster fuel cell control, m = 4, i.e. the fuel cells are distributed to
multiple clusters and are controlled separately. The cluster number m is set
to 4. This results in the number of total power sources is being five (four
PEMEFC clusters and one battery). This setting is to bring the system close to

the original IFEP configuration with 5 diesel generators.

The agents were trained on a workstation with two Intel Xeon E5-2683 V3
processors (28 cores in total) running on Windows 10. The environment and the
agent were coded in Python. The agent’s neural networks were built and trained

with PyTorch v1.20.

As the learning curve of the agent can be influenced by the random seeds (de-
termining the appearance order of training power profiles to the agent) of the envi-
ronment (Henderson et al., 2018) each agent was trained with 28 different random
seeds for reproducibility. The agent policy performance was assessed by calculat-

ing the average values and standard deviations across all converged instances. Note
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that as the neural networks are relatively small, only one CPU thread is assigned
to each running instance to avoid training speed degradation due to unnecessary

parallelisation.

The actual strategy performance was periodically tested (every 100 training
episodes) with 10 random training voyages during training. Note that in test mode,
no exploration noise was added; and battery over-discharge protection was enabled
(disabled in training mode). Once the training of all the 28 instances was completed,
the agent with the lowest episode cost was chosen to generate detailed energy man-

agement strategy results.

7.4.1 Neural network settings

Figure 7.2 illustrates the settings for the actor (Figure 7.2a) and critic (Figure 7.2b).
The actor observes state inputs s and chooses action a. As in Figure 7.2a, the inputs
to the actor are state vectors. Two fully-connected hidden layers forward propagate
the state inputs followed by a fully-connected output layer. The input layer and
the two hidden layers are activated by ReLLU. The output layer is activated by a
hyperbolic tangent function (tanh) then multiplied by ays to match the action limits
of [—0.04,0.04]. As in Figure 7.2b, the critic receives the state and action inputs,
and outputs the Q-value (see Section 7.3). Note that no activation function is applied
to the output layer to allow free value estimates. Also note that, for uniform fuel
cell control, the state and action space dimensions are 4 and 1, respectively; for the

4-cluster control, the state and action space dimensions are 7 and 4, respectively.

7.4.2 Hyperparameters

As the state and action space dimensions differ in the two scenarios to be inves-
tigated, the hyperparameters were tuned separately for the scenarios. Table 7.1
details the hyperparameter settings for the uniform PEMFC control energy man-
agement strategy. The agent is trained every Z time steps (Z = 32) instead of every
time step to increase explorations. Note that the TD3 parameters o, &, ¢ and d

are adopted from (Fujimoto et al., 2018). The mini-batch size D is 32. The Adam
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Figure 7.2: Neural network settings of TD3. (a) Actor network setting and (b) Critic net-
work setting.

optimiser exponential decay rates for the first and second moment estimates adopts
the values as suggested in (Kingma and Ba, 2014). Other parameters are tuned by

trial and error to gain satisfactory performance.
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Table 7.1: Hyperparameters for PEMFC uniform control.

Parameter Hyperparameter Value
B Mini-batch size 32

M Experience memory size 1000000
T Target network update weight 0.001
Y Discount factor 1

Z Update period 32

o Learning rate of Adam optimiser 0.0001
Bi Exponential decay rate for the first moment estimates of Adam optimiser 0.9

B Exponential decay rate for the second moment estimates of Adam optimiser 0.999
c Standard deviation of exploration noise 0.1

(9 Standard deviation of policy noise 0.2

c Policy noise clip factor 0.5

d Delayed policy update step 2

The hyperparameters adopted for the 4-cluster energy management problem

are listed in Table 7.2. The Adam optimiser setting follows the values suggested in

(Kingma and Ba, 2014). The TD3 parameters o, &, ¢ and d are adopted from (Fuji-

moto et al., 2018). The discount rate is Y = 1 as the energy management problem is

an episodic task with a limited number of time steps. This setting is identical to that

used in Chapters 5 and 6. Other parameters are tuned by trial and error to achieve

satisfactory performance.

Table 7.2: Hyperparameters for PEMFC 4-cluster control.

Parameter Hyperparameter Value
B Mini-batch size 128
M Experience memory size 1000000
T Target network update weight 0.005
Y Discount factor 1

Z Update period 8

a Learning rate of Adam optimiser 0.001
Bi Exponential decay rate for the first moment estimates of Adam optimiser 0.9
B Exponential decay rate for the second moment estimates of Adam optimiser  0.999
c Standard deviation of exploration noise 0.1

(o] Standard deviation of policy noise 0.2

c Policy noise clip factor 0.5

d Delayed policy update step 2
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7.4.3 Training

7.4.3.1 Uniform fuel cell control

Figure 7.3 details the training process of the uniform fuel cell control EMS. The
training was implemented on the workstation in 28 instances with different random
seeds (each processor core was assigned a running instance). The policy was eval-
uated every 100 training episodes in test mode by randomly sampling 10 training
voyages. The total number of training episodes is 8000. 7 out of the 28 instances
diverged. It took 100 min for a converged instance to complete the training. The
final test episode costs of the converged instances are around $800.0. The policy

can complete all training voyages with battery over-discharge protection enabled.
7.4.3.2 Multi-cluster fuel cell control

Figure 7.4 illustrates the training process for the 4-cluster fuel cell control EMS.
The training was terminated at 8000 episodes. 2 out of the 28 instances diverged.
It required 204 min for a converged instance to complete the training. Note the
converged reward (around 74) of the 4-cluster strategy is lower than that of uniform
EMS (around 100), which was mainly as result of more frequent fuel cell control
action overrides occurring as the action space dimension increased. The voyage

cost converged to a value slightly higher than $800.0.
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Figure 7.3: Uniform fuel cell control training and testing with Huber loss function. The
deep blue lines are moving average values across 21 converged instances run-
ning with different random seeds. 7 diverged instances are not included. The
light blue shadows are the confidence bounds calculated by mean values +
standard deviations across the 21 instances.
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Figure 7.4: 4-cluster fuel cell control training and testing with Huber loss function. The
deep blue lines are moving average values across 26 converged instances run-
ning with different random seeds. Two diverged instances are not included.
The light blue shadows are the confidence bounds calculated by mean values +
standard deviations across the 26 instances.
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7.5 Results

The learned strategy was first applied to the training voyages to verify the EMS cost
performance without any policy noise. As the learned strategy is intended to achieve
minimum voyage cost for un-predicted future voyages, the EMS was validated by

applying to a set of un-predicted future voyages.

As each of the strategies generated with different random seeds vary slightly
from others, for both scenarios, the strategies with minimum average voyage costs
were selected to generate the detailed voyage power distributions. The training and
validation voyage sets are identical, as used in Chapters 5 and 6. The power profile

samples (see Table 5.6) are also identical to the ones discussed previously.

7.5.1 Training voyages

7.5.1.1 Training sample 1 with low power demand

Training voyage sample 1 is a voyage with relatively low power demand. Figure 7.5
compares the uniform TD3 (Figure 7.5b) and Double DQN (Figure 7.5a) strategies
for this voyage. As in Figure 7.5b, the PEMFC power adjustments during cruis-
ing obtained from the TD3 strategy are smaller than those of the Double DQN.
Although the two strategies follow similar trajectories in general, the TD3 strategy
tends to discharge the battery to a lower SOC value (around 0.28). Consequently,
as depicted in Table 7.3, the TD3 strategy leads to a % voyage cost reduction with
lower PEMFC degradation and H, fuel costs, but a higher electricity cost. The GWP

emission is increased by 4.1% due to an increase in electricity usage.

Figure 7.6 presents the 4-cluster energy management strategy for training sam-
ple voyage 1. After departure (0—800 s), the strategy tends to use all four clusters at
low load; which differs from the Double DQN and TD3 uniform strategy. During
cruising, cluster 3 is maintained with relatively lower power output, while the out-
puts from clusters 1 and 4 are almost identical. However, it should be noted that all

cluster power outputs fluctuate in a small region during cruising. These fluctuations
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Table 7.3: Comparison of TD3 and Double DQN strategy voyage costs and GWP emissions
for training sample 1.

Voyage cost Voyage GWP Emission
TD3 TD3
(8] [$] [%] (kg] (kg] [%]
PEMFC 2229 2249 99.1 - - -
Battery 64.3 64.3 100.0 - - -
Electricity ~ 43.8 40.1 109.0 81.8 75.0 109.0
H, 290.3 298.0 97.4 52.9 54.2 97.4
Sum 621.3 627.3 99.0 134.7 129.3 104.1

together with early PEMFC starts lead to 10.5% increase in PEMFC degradation
cost (see Table 7.4). Consequently, the total voyage cost of the 4-cluster strategy is
increased by 3.7%. Nevertheless, the voyage GWP emission is similar between the

uniform and 4-cluster strategies.

Table 7.4: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for training sample 1.

Voyage cost Voyage GWP Emission
TD3-multi TD3-uniform U]r\:‘f‘(ltr'm TD3-multi TD3-uniform U];/{;‘(l)tr‘m
[$] [$] [%] (kel (ke] [%]
PEMFC 246.2 222.9 110.5 - - -
Battery 64.3 64.3 100.0 - - -
Electricity 43.9 43.8 100.4 82.2 81.8 100.4
H, 290.3 290.3 100.0 52.8 52.9 100.0

Sum 644.7 621.3 103.8 135.0 134.7 100.3
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Figure 7.5: Double DQN and TD3 uniform energy management strategies for training sam-
ple voyage 1 with low power demand: (a) Double DQN strategy and (b) TD3
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7.5.1.2 Training sample 2 with moderate power demand

Figure 7.7 shows the Double DQN strategy (Figure 7.7a) and TD3 uniform strategy
(Figure 7.7b) for a sample voyage in the training dataset with moderate power de-
mand. Both the TD3 and Double DQN strategies delay the time at which the fuel
cell provides power to the system after departure with the batteries delivering the
manoeuvring power. However, the TD3 strategy tends to use the batteries more ag-
gressively, i.e. the battery SOC is maintained in lower values during cruising. Note
that the TD3 strategy adjusts the PEMFC power output frequently by relatively

small amounts.

As detailed in Table 7.5, the TD3 strategy results in a 1% higher voyage cost
due to increased electricity and H, consumption. Such a pattern is different from
the ones observed in Chapter 6. The Double DQN strategy with higher electricity
consumption typically has lower H, consumption. The reason for this is that from
0-800 s the fuel cell power is maintained at a power level very close to zero, which

corresponds to very low efficiency operation.

Table 7.5: Comparison of TD3 and Double DQN strategy voyage costs and GWP emissions
for training sample 2.

Voyage cost Voyage GWP Emission
TD3 TD3
[$] [$] [%] (ke] (kel [%]
PEMFC  207.3 207.1 100.1 - - -
Battery 67.0 67.0 100.0 - - -
Electricity  46.1 43.0 107.2 86.2 80.4 107.2
H, 411.9 408.2 100.9 75.0 74.3 100.9
Sum 732.2 725.3 101.0 161.2 154.7 104.2

Figure 7.8 shows the TD3 4-cluster strategy. As PEMFC cluster outputs are
adjusted frequently, the PEMFC degradation cost is 6.4% higher than that of the
uniform strategy (see Table 7.6). Although the 4-cluster strategy reduces both elec-
tricity and H, costs, the overall voyage cost of the 4-cluster strategy is 6.3% higher
than that of the uniform strategy. Nevertheless, due to reduced electricity and H,

consumptions, the 4-cluster EMS achieves 1.5% less GWP emissions.
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Table 7.6: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for training sample 2.

Voyage cost Voyage GWP Emission
TD3-multi  TD3-uniform M4ei.  TD3-multi TD3-uniform Hed

(8] (8] (%] [kg] (kg] [%]

PEMFC 260.6 207.3 125.7 - - -

Battery 67.0 67.0 100.0 - - -
Electricity 45.5 46.1 98.7 85.1 86.2 98.7
H, 405.2 411.9 98.4 73.8 75.0 98.4
Sum 778.2 732.2 106.3 158.8 161.2 98.5

7.5.1.3 Training sample 3 with high power demand

Figure 7.9 compares the uniform TD3 strategy (Figure 7.9b) with Double DQN
strategy (Figure 7.9a) for an extremely high power profile in the training dataset.
Both strategies triggered the battery over-discharge protection. The TD3 strategy
results in 6.4% lower overall voyage cost (Table 7.7). The H, cost is reduced by
increasing fuel cell power at an earlier stage such that the PEMFC can operate with
higher efficiencies from 400 s to 800 s. With less H, consumption, the TD3 strategy
voyage GWP is reduced by 5.3%.

Table 7.7: Comparison of TD3 and Double DQN strategy voyage costs and GWP emissions
for training sample 3.

Voyage cost Voyage GWP Emission
TD3  Double DQN  poiPlng  TD3  Double DQN  goPhne

[$] (8] (%] [ke] [ke] (%]

PEMFC 248.4 263.9 94.1 - - -

Battery 56.7 56.7 100.0 - - -
Electricity ~ 34.9 34.8 100.2 65.3 65.1 100.2
H, 1130.8 1214.8 93.1 205.8 221.1 93.1
Sum 1470.8 1570.2 93.7 271.1 286.2 94.7

Figure 7.10 shows the TD3 4-cluster strategy for training sample voyage 3. All
the clusters start to increase power output immediately after departure. However,
the PEMFC power outputs are reduced during 150-350s. Consequently, battery

over-discharge protection is also triggered.
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Figure 7.9: Double DQN and TD3 uniform energy management strategies for training sam-
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Table 7.8: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for training sample 3.

Voyage cost Voyage GWP Emission
TD3-multi  TD3-uniform M4ei.  TD3-multi TD3-uniform Hed
(8] (8] (%] [kg] (kg] [%]
PEMFC 264.3 2484 106.4 - - -
Battery 56.7 56.7 100.0 - - -
Electricity 35.7 34.9 102.3 66.8 65.3 102.3
H, 1105.3 1130.8 91.7 201.2 205.8 97.7
Sum 1462.1 1470.8 99.4 268.0 271.1 98.8

Table 7.8 details the voyage cost and GWP emission breakdowns of the two
TD3 strategies for this training voyage with very high loads. The multi-stack strat-
egy achieves slightly less voyage cost and emissions due to reduced H, consump-

tion.

7.5.2 Validation voyages

In this section, the energy management strategies are applied to validation voyages
which were not included in the training dataset such that the EMS performance for

future unknown voyages can be assessed.
7.5.2.1 Validation sample 1 with low power demand

Figure 7.11 compares the Double DQN strategy (Figure 7.11a) with the uniform
TD3 strategy (Figure 7.11b) for a validation sample voyage with low power de-
mand. In Figure 7.11a, the Double DQN strategy delays to increase the fuel cell
power output until the battery SOC has dropped to 0.36 (7505s). In contrast, the
TD3 uniform strategy starts to ramp up fuel cell power later (at 800s). Conse-
quently, the minimum battery SOC of TD3 strategy is 0.26. During cruising, both

strategies frequently adjust fuel cell power output.

Table 7.9 details the cost and GWP emission breakdowns for validation sample
voyage 1. The uniform TD?3 strategy voyage cost is 1.4% lower. This lower voyage
cost is achieved as a result of lower PEMFC degradation H, costs. However, due to

increased electricity consumption, the voyage GWP emission of the TD3 strategy
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is 4.7% higher than that of Double DQN strategy.

Table 7.9: Comparison of TD3 and Double DQN strategy voyage costs and GWP emissions
for validation sample 1.

Voyage cost Voyage GWP Emission
TD3  Double DQN  powbdoy TD3  Double DQN  oados
[$] [$] [%] (kg] (kg] [%]

PEMFC  216.1 2243 96.3 - - -

Battery 63.7 63.7 100.0 - - -
Electricity ~ 44.0 40.0 110.1 82.3 74.8 110.1
H, 361.2 366.5 98.6 65.8 66.7 98.6
Sum 685.1 694.5 98.6 148.1 141.5 104.7

Figure 7.12 presents the TD3 4-cluster strategy for validation sample voyage
1. Clusters 1 and 4 show similar trajectories with higher loads. The power output
of clusters 2 and 3 are also similar but are lower compared to clusters 1 and 4.
Due to early fuel cell starts and unnecessary power adjustments, the TD3 4-cluster
strategy leads to a 19.6% higher PEMFC degradation cost as depicted in Table 7.10.
The voyage GWP emission of the TD3 4-cluster strategy is lower by 2.1% due to

reduced electricity and H, consumption.

Table 7.10: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for validation sample 1.

Voyage cost Voyage GWP Emission
TD3-multi TD3-uniform U]r\:‘f’gtr'm TD3-multi TD3-uniform U];/{}’(l)tr‘m
[$] [$] [%] (kel (ke] [%]
PEMFC 259.4 216.1 120.1 - - -
Battery 63.7 63.7 100.0 - - -
Electricity 43.7 44.0 99.2 81.7 82.3 99.2
H, 347.4 361.2 96.2 63.2 65.8 96.2

Sum 714.3 685.1 104.3 144.9 148.1 97.9
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Figure 7.11: Double DQN and TD3 uniform energy management strategies for validation
sample voyage 1 with low power demand: (a) Double DQN strategy and (b)

TD3 strategy.
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Figure 7.12: TD3 4-cluster strategy for validation sample voyage 1 with low power de-
mand.

7.5.2.2 Validation sample 2 with moderate power demand

Figure 7.13 illustrates the Double DQN strategy (Figure 7.13a) when compared
with the TD3 uniform strategy (Figure 7.13b) for a sample voyage with moderate

power demand from the validation voyage dataset. The Double DQN strategy starts
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ramping up the PEMFC output at 700s. Similar behaviour has been observed for
the TD3 uniform strategy. While the Double DQN maintains the PEMFC power
output relatively constant, the TD3 strategy tends to adjust the power output with
small oscillatory changes. The TD3 strategy leads to higher electricity and H, con-
sumptions, hence the voyage GWP is also higher than that the of Double DQN
strategy (see Table 7.11).

Table 7.11: Comparison of TD3 and Double DQN strategy voyage costs and GWP emis-
sions for validation sample 2.

Voyage cost Voyage GWP Emission
TD3  Double DQN  5oiiPhng TD3  Double DQN  goaPdoe

[$] (3] [%] [kel (kg] [%]

PEMFC 24438 204.7 119.6 - - -

Battery 63.7 63.7 100.0 - - -
Electricity — 44.7 44.9 99.5 83.6 84.0 99.5
H, 427.6 437.9 97.7 77.8 79.7 97.7
Sum 780.8 751.3 103.9 161.4 163.7 98.6

Figure 7.14 shows the TD3 4-cluster strategy for validation sample 2. As the
PEMEFC cluster outputs are adjusted frequently, the PEMFC degradation cost of the
4-cluster strategy is 19.6% higher than that of the uniform strategy (Table 7.12).
Although the 4-cluster strategy increases both electricity and H, costs, the overall
voyage cost of the 4-cluster strategy is 4.0% lower than that of the uniform strategy.
Owing to increased electricity and H, consumption, the 4-cluster strategy results in

1.4% higher voyage GWP emissions.

Table 7.12: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for validation sample 2.

Voyage cost Voyage GWP Emission
TD3-multi  TD3-uniform U]r\ﬂ‘f‘(i‘r'm TD3-multi TD3-uniform Ul;ﬁ}’(l)trlm
[$] [$] [%] kgl [ke] [%]
PEMFC 204.7 244.8 83.6 - - -
Battery 63.7 63.7 100.0 - - -
Electricity 44.9 44.7 100.5 84.0 83.6 100.5
H, 437.9 427.6 102.4 79.7 77.8 102.4

Sum 751.3 780.8 96.2 163.7 161.4 101.4
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Figure 7.13: Double DQN and TD3 uniform energy management strategies for validation
sample voyage 2 with moderate power demand: (a) Double DQN strategy and
(b) TD3 strategy.
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Figure 7.14: TD3 4-cluster strategy for validation sample voyage 2 with moderate power
demand.

7.5.2.3 Validation sample 3 with high power demand

Figure 7.15 presents the TD3 uniform strategy (Figure 7.15b) in comparison with
Double DQN strategy (Figure 7.15a) for validation sample voyage 3. The two

strategies follow similar trends. But the TD3 uniform strategy adjusts the fuel cells
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frequently with small action amplitudes. Table 7.13 compares the voyage cost and
GWP emission breakdowns of the two strategies. The voyage cost of the TD3 uni-
form strategy is 5.7% higher due to increased H, consumption. TD3 uniform strat-

egy emits 3.0% higher voyage GWP emission due to increased H, consumption.

Table 7.13: Comparison of TD3 and Double DQN strategy voyage costs and GWP emis-
sions for validation sample 3.

Voyage cost Voyage GWP Emission
TD3  Double DQN  poiPhoy  TD3  Double DQN  poibds
[$] (8] (%] [kg] [ke] (%]

PEMFC 267.8 246.1 108.8 - - -

Battery 63.7 63.7 100.0 - - -
Electricity =~ 48.9 49.1 99.6 91.4 91.8 99.6
H, 715.9 678.1 105.6 130.3 123.4 105.6
Sum 1096.4 1037.1 105.7 221.8 215.2 103.0

Figure 7.16 illustrates the TD3 4-cluster strategy for validation sample voyage
3. Although the battery handles most of the large power transients, the PEMFC
clusters are occasionally adjusted, leading to a higher PEMFC degradation cost
(Table 7.14). The voyage cost of the 4-cluster strategy is 5.7% higher than that
of the uniform TD3 strategy due to the increase in H, consumption and PEMFC
degradation. The voyage GWP emission of the 4-cluster TD3 strategy is 3.0% lower

as a result of reduced H, consumption.

Table 7.14: Comparison of TD3 uniform and multi-cluster strategy voyage costs and GWP
emissions for validation sample 3.

Voyage cost Voyage GWP Emission
TD3-multi TD3-uniform Ulr\:‘f‘(l)tr‘m TD3-multi TD3-uniform U%?étrlm
[$] [$] [%] (kel (ke] [%]
PEMFC 246.1 267.8 91.9 - - -
Battery 63.7 63.7 100.0 - - -
Electricity 49.1 48.9 100.4 91.8 914 100.4
H, 678.1 715.9 94.7 123.4 130.3 94.7

Sum 1037.1 1096.4 94.6 215.2 221.8 97.0
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Figure 7.15: Double DQN and TD3 uniform energy management strategies for validation
sample voyage 3 with high power demand: (a) Double DQN strategy and (b)
TD3 strategy.
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Figure 7.16: TD3 4-cluster energy management strategy for validation sample voyage 3
with high power demand.

Table 7.15 summaries the TD3 uniform strategy performance in comparison
with the Double DQN strategy. The TD3 strategy further reduces the average costs
for training and validation datasets by 0.6% and 0.8% respectively. However, the

voyage GWP emission of the TD3 uniform strategy is increased by 3.8% due to



Deep reinforcement learning based continuous energy management strategies 233

increased electricity usage. Compared to the DDP strategy solved with complete
voyages information and SOC resolution of 0.0125, the voyage cost of the TD3
uniform strategy is only 5.1% and 5.4% higher for the training and validation voy-

ages respectively.

Table 7.15: Comparison of TD3 and Double DQN strategy average voyage costs and GWP

emissions.
Voyage cost Voyage Emission
Category  Profile  TD3  DoubleDQN  goPhoy  TD3  Double DQN  gobPc
[$] [$] (%] [kg] (kg] [%]
Sample 1 621.3 627.3 99.0 134.7 129.3 104.1
Training Sample 2 732.2 725.3 101.0 161.2 154.7 104.2
Sample 3 1353.5 1570.2 86.2 271.1 286.2 94.7
Average  all profiles  778.0 782.5 99.4 165.7 159.7 103.8
Sample I  685.1 694.5 98.6 148.1 141.5 104.7
Validation ~ Sample 2 751.3 744.7 100.9 163.7 157.7 103.8
Sample 3 1037.1 1056.7 98.1 215.2 209.5 102.7
Average  all profiles  762.5 768.9 99.2 163.3 157.5 103.7

Table 7.16 details the TD3 4-cluster strategy performance in comparison with
the TD3 uniform strategy. The 4-cluster strategy average voyage costs of the train-
ing and validation voyages are $796.3 and $783.1, respectively, which are 2.4%
and 2.7% higher than those of the TD3 uniform strategy. The TD3 uniform strat-
egy emits 1.5% and 1.8% less GWP emissions for the training and validation voy-
ages, respectively. Nevertheless, both the TD3 uniform and multi-cluster strategies
have achieved satisfactory performance when undertaking future unknown voyages.

Note that the aim of multi-cluster control is improved system redundancy.

Table 7.16: Comparison of TD3 uniform and multi-cluster strategy voyage average costs
and GWP emissions.

Voyage cost ' Voyage Emission
Category ~ Profile  Multi  Uniform 8% Multi Uniform et
[$] (8] (%] (kg] (kg] [%]

Sample 1  644.7 621.3 103.8  135.0 134.7 100.3
Training Sample 2 778.2 732.2 106.3  158.8 161.2 98.5
Sample 3 1462.1  1353.5 108.0 268.0 271.1 98.8
Average  all profiles  796.3 778.0 102.4  168.2 165.7 101.5

Sample 1~ 714.3 685.1 1043 1449 148.1 97.9

Validation ~ Sample2 ~ 780.8 751.3 1039 1614 163.7 98.6
Sample 3  1096.4  1037.1 105.7 221.8 2152 103.0

Average  all profiles  783.1 762.5 102.7  166.3 163.3 101.9
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7.6 Summary

This chapter aimed to extend the action space of the optimal energy management
problem to be continuous and multi-dimensional to explore the feasibility of con-
trolling multiple fuel cell clusters in a continuous action space using deep reinforce-
ment learning. A generic multi-cluster fuel cell environment has been implemented
based on the one developed in previous chapters. A Twin Delayed Deep Determin-
istic Policy Gradient with Huber loss function has been applied to solve the updated
energy management problem in multi-dimensional and continuous action space. As
a special case of multi-cluster control, the uniform fuel cell control was first solved
using TD3. The uniform strategy learned by the TD3 agent further reduces the aver-
age voyage cost in both training and validation power profiles. The developed novel
multi-cluster fuel cell control framework can be used to achieve optimal control of

multiple power sources in a stochastic environment.

It was also observed that the multi-cluster TD3 strategy led to less than 3%
average voyage cost increase compared to the uniform TD3 strategy. The reasons
for higher voyage costs and GWP emissions are: (1) the strategy adjusts cluster
power too frequently which would lead to increased PEMFC degradations and (2)
the strategy occasionally operates one or more of the cluster at very low power set-
tings leading to low fuel efficiency. Though finer hyperparameter tuning and more
extended training might further improve the EMS cost and emission performance.
Another possible cause could be the algorithm’s capability in high dimensional ac-
tion space is limited. These possibilities would require further investigations in fur-
ther work. Nevertheless, it should be noted that the multi-cluster control framework
is intended to improve the system redundancy. Consequently, the tiny deviations
are acceptable when the actual strategy performance is near-optimal in comparison

with the DDP off-line strategy.



Chapter 8

Conclusions and future work

8.1 Overview

The question this research aimed to answer was: How can coastal shipping substan-
tially reduce harmful greenhouse gas emissions from their propulsion and power
systems by using fuel cells and batteries and remain commercially viable? A criti-
cal review of previous research and projects in this field has highlighted the potential
of using PEMFC and Lithium battery technologies to decarbonise the coastal ships
with constraints and challenges addressed. It was concluded that there is a lack
of holistic design optimisation methods and intelligent energy management strate-
gies for such systems operating in different regions with variable energy properties.
Consequently, based on the operational standpoint of a typical coastal ferry, this the-
sis demonstrates the development and application of a novel multi-objective power
source sizing methodology and reinforcement learning based energy management

strategies using continuous monitoring data collected from an actual ship.

235
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8.2 Summary of the thesis

In Chapter 4, a scalable quasi-steady-state plug-in hybrid PEMFC/battery propul-
sion system model has been developed for power source sizing optimisation and in-
telligent energy management strategy development. In that chapter a novel holistic
design methodology for coastal hybrid ships based upon the developed model was
proposed. The power source sizing problem was solved using constrained mixed-
integer multi-objective optimisation in the external layer. The global optimum en-
ergy management strategies for an averaged operating profile are obtained from de-
terministic dynamic programming in the inner layer while considering power source

degradations in the sizing algorithm.

The developed multi-objective design methodology has been applied to a case
ship to optimise the alternative plug-in PEMFC/battery hybrid systems with the
objectives of minimising average voyage costs and voyage GWP emissions in two
case studies. The case studies indicated that the proposed propulsion system can
achieve at least a 65-88% life-cycle greenhouse gas reduction. It is evident that
such a PEMFC/battery hybrid system can significantly reduce the GWP emission,
but is still constrained by high costs, mainly from H, cost of production and fuel

cell degradation.

Considering the uncertainties of the future energy market and production costs
of PEMFC and Lithium batteries, the subsequent sensitivity studies further explore
the impacts of power source and energy prices on the design of plug-in hybrid
PEMFC/battery system. The prices of the PEMFC, battery and H, are expected
to decrease and become competitive with conventional diesel-based power solu-
tions. Nevertheless, the potential GWP emission reductions offered by the plug-in
hybrid PEMFC/battery system are significant. Having identified that these high
costs (including CAPEX and OPEX) are major limitations of such systems, the aim
of Chapters 5, 6 and 7 was to develop reinforcement learning and deep reinforce-
ment learning based intelligent energy management strategies to minimise future

unknown voyage cost using continuously monitored real-ship power profiles.
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Chapter 5 formulated the optimal energy management problem using MDP
and solved the formulated MDP using reinforcement learning agents in the discrete
state and action spaces to achieve minimum voyage cost without prior knowledge
of future power demands. With continuously monitored power profiles collected
from the case ship, two reinforcement learning agents (i.e. Q-learning and Double
Q-learning) have been applied to solve the optimal energy management problem.
The Q-learning agent which introduced maximisation biases failed to achieve sat-
isfactory performance. In contrast, the Double Q-learning achieved 96.9% cost-
performance compared to deterministic dynamic programming with identical space
resolutions. The results of this chapter suggested that reinforcement learning based
energy management strategies can achieve near-optimal performance without prior

knowledge of future power demands.

It should be noted that the resolutions of state and action spaces are limited
since Q-tables have been employed in Chapter 5. Frequent unnecessary fuel cell
power adjustments have been observed in the sample voyages due to limited state
space resolution. However, increasing the resolutions of the two spaces would make
the problem practically impossible to solve with the available computational re-
sources due to ‘the curse of dimensionality’. Consequently, Chapter 6 extends the
discrete state space to be continuous with deep neural networks as function approx-

imators.

In Chapter 6, novel approaches of Deep Q-Network and Double Deep Q-
network have been applied considering the results in Chapter 5 suggested over-
estimations of action-values could lead to divergent agent training. Also, two loss
functions, i.e. Mean Squared Error and Huber loss functions, were explored to deal
with the value overestimations in the stochastic environment. Both agents failed
when applied with the Mean Squared Error loss function due to the maximisation
biases. With the Huber loss function, the two deep reinforcement learning agents
achieved similar performance. A further voyage cost reduction of 6% with more
than 90% computation time reduction was achieved compared to the results ac-

quired in Chapter 5.
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The main limitation of the Q-network based agents is that they are not capa-
ble of handling a continuous and high dimensional action space. Chapter 7 further
extended both the state and action spaces to be continuous and developed a novel
generic framework for multi-cluster fuel cell control using a TD3 agent. The TD3
agent achieved satisfactory EMS performance in both uniform and multi-cluster
fuel cell controls. Although the multi-cluster TD3 EMS performance could be fur-
ther improved, the developed multi-cluster framework will be useful for developing
more sophisticated EMS with more constraints (e.g. load sharing and fault toler-

ance).

In summary, this thesis has proposed a novel multi-objective power source
sizing methodology integrating fuel cells and batteries for coastal ships. The pro-
posed sizing methodology has been demonstrated via case and sensitivity studies
for a coastal ferry. Moreover, the optimal energy management problem of the plug-
in hybrid PEMFC/battery system has been formulated with Markov Decision Pro-
cess and solved using reinforcement learning and deep reinforcement learning al-
gorithms. Based on continuously monitored power profiles, the developed energy
management strategies can achieve near-optimal cost performance in un-predicted

future voyages.

8.3 Summary of contributions

As stated in Chapter 1, this thesis focuses on decarbonising coastal ships using fuel
cells and batteries. By analysing and summarising the work, the research aim has

been achieved through the following aspects:

* Opportunities and constraints of using fuel cells and batteries for coastal
shipping decarbonisation: The uncertainties from the energy supply side,
power source manufacturing and practical ship design requirements need to
be addressed holistically to achieve balanced alternative propulsion system
design. The hybridisation of PEMFC, battery and grid power could poten-

tially provide balanced propulsion system designs for coastal ship operating
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on short routes and have access to clean and renewable energy sources.

* Hybrid propulsion system design optimisation: A holistic sizing method-
ology for the design of plug-in hybrid PEMFC/battery propulsion systems
has been proposed to optimise GWP emission and voyage cost. The pro-
posed methodology is based upon a calibratable system model, considering

life-cycle GHG emissions, costs and shipboard constraints.

* Reinforcement learning and deep reinforcement learning based in-
telligent energy management strategies using continuous monitoring
data: The optimal energy management problem of the plug-in hybrid
PEMEFC/battery propulsion system has been formulated in Markov Decision
Process using large-scale historical data. The formulated Markov Decision
Process has been solved using reinforcement learning and deep reinforcement
learning algorithms to achieve near-optimum voyage cost in un-predicted fu-

ture voyages with a very high success rate.

* Deep reinforcement learning based continuous intelligent energy man-
agement strategies for multiple fuel cell cluster control: A generic multi-
cluster fuel cell environment has been developed for continuous and high-
dimensional fuel cell control. The state-of-the-art TD3 deep reinforcement
learning algorithm has been successfully applied to solve the multi-cluster

fuel cell intelligent energy management problem with complete success rate.

The novel contributions of this research are twofold. The sizing methodology
can be applied to guide practical hybrid propulsion system design. The intelligent
energy management strategies can be applied to hybrid systems in operation to min-

imise costs (including CAPEX and OPEX) for un-predicted future voyages.
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8.4 Recommendations for future work

8.4.1 Route and speed optimisation

The current work is based upon continuous monitoring data of power demands,
assuming that such power demands are fixed inputs to the algorithms. What if the
power demands can be reduced? One possible approach of reducing such power
demands is to optimise the routes and speeds. Optimised routes and speeds can
lead to reductions in power demands. The reduced power demands can be further
processed as inputs to the deep reinforcement learning based energy management
strategies to reduce voyage costs and emissions further. The author has explored
solving the path planning problem for unnamed surface vehicles using DQN in

(Zhou et al., 2019).

8.4.2 Advanced deep reinforcement learning agents

In this project, reinforcement learning agents such a Q-learning, Double Q-learning,
DQN, Double DQN, TD3 have been employed. The training processes in Chapters
6 and 7 suggest that agent performance can vary with different experience explo-
rations. Moreover, all the agents have been implemented in this project are single-
threaded. Other agents which can be trained in parallel (e.g. Advantage Actor-
Critic and Asynchronous Advantage Actor-Critic) can be investigated further to
better utilise multi-core processors and gain better performance. The hyperparame-
ters of the current agents require careful tuning to achieve satisfactory performance.
Agents requiring minimum parameter tuning (e.g. Proximal Policy Gradient) can
be further investigated. Note that the function overestimation problem needs to be

addressed properly.

8.4.3 Battery degradation model

In current work, an averaged battery degradation model is adopted assuming the

battery life-time is guaranteed by the manufacturer. In practice, the battery degrada-
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tion rate is subject to change under different operating conditions such as C-rate and
temperature. To implement a more detailed degradation model, a sufficient amount
of experimental data would be needed to fit an empirical degradation model. How-
ever, it should be noted that such models are only applicable to the type of cells
used to identify the model parameters. Industrial collaboration with battery cell

manufacturers would be a practical approach to acquire the data.

8.4.4 Intelligent energy management strategies for other hybrid

systems

Although the energy management strategies developed in this thesis are based on
the developed plug-in hybrid PEMFC/battery model, the reinforcement learning
approaches can be applied to other power systems, e.g. diesel-electric systems with
energy storage. Note that the methodologies can also be transferred to other sectors

such as road transport.

8.4.5 Advanced multi-cluster fuel cell control

In Chapter 7, multiple fuel cell clusters are controlled individually. However, cur-
rent work does not consider any possible failure modes (e.g. loss of one or two
clusters). The agents can be trained to be resilient with potential faults by adding
simulated faulted conditions to the training voyages. Note that additional system
states (e.g. cluster on/off status) are required to represent the power source running
conditions. Moreover, other state parameters such as weather and sea states can be

added to the state space.

8.4.6 System integration and experimental validation

Although the developed sizing methodology is practical, for actual applications, the
design parameters and system models need updates to match the actual scenario
and power sources available. When implementing intelligent energy management
strategies, the actual power source characteristics need to be updated in the system

models. Moreover, more protection functions may need to be added.
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8.4.7 Policy update strategies

8.4.7.1 Periodic policy

In this project, generic energy management strategies were generated based on one
set of historical power profiles. However, considering the power transitions may
change over time due to factors such as seasonal sea states and weather conditions,
periodically updating the policy may bring further improve the cost-effectiveness.
As depicted in Figure 8.1, the vessel starts with an EMS trained via a set of initial
power profiles. During operation, the EMS is updated periodically using the most
recent power profiles. A set of recent power profiles needs to be randomly separated
into two sub-sets: one set for agent training and verification, while the other set for

EMS validation. Once the new EMS is validated, it is ready for future voyages.
8.4.7.2 Adaptive policy

As power transition patterns may change over time, a self-adaptive EMS updating
procedure can be applied with minimum human intervention. Figure 8.2 shows the
training process of an adaptive EMS. The ship starts with an EMS trained by an
initial set of power profiles. A dynamic profile pool is maintained throughout the
ship’s operation by replacing the oldest profile with the most recent profile. Peri-
odically, the EMS performance is evaluated by comparing the actual EMS perfor-
mance against those solved via DDP. The agent would need training if the deviation
between the on-line and DDP strategies exceeds the performance threshold; other-

wise, existing EMS would be applied until the next performance evaluation point.
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Appendix A

Power transition map

Figure A.1 illustrates the power transition probability map with a grid length of
50kW (a power index is assigned every 50 kW). The vertical and horizontal axes
are about current and next power demand indices, respectively. The colour of the
plot represents the transition probability from the current power demand index to
the next power demand index. The diagonal line from lower left to the upper right of
the figure corresponds to the situations those with current and next power demand
indies are identical. In general, the next power demand is more likely to have the
same power demand index (see the highlighted diagonal line). However, the power
transition pattern varies in different power regions. For example, in the low power
regions (0-300 kW, 0—6 power demand indices), the probability of having the same
power demand index is close to 1 (colour close to red). In the power regions from
350 to 1250 kW (7-25 power indices), the probability of having the same power
index in the next time step is around 0.3. In the power regions from 1300 to 1750
kW (26-35 power indices), the probability of having the same power index in the
next time step is approximately 0.5. More scattered transition probability pattern
can be observed in the high power regions (3000-3500 kW, 60-75 power demand

indices).

Note that these transition probabilities are not explicitly used in the EMS train-
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ing since all RL agents adopted in this study are model-free. Instead, the agents
are trained continuously by experiencing different power profiles from the training

dataset in each training episode.

Current power demand index
Transition probability

0 10 20 30 40 50 60 70
Next power demand index

Figure A.1: Case ship power transition probability map with grid length of 50 kW.



Appendix B

Reinforcement learning algorithms

Algorithm B.1 Environment of the Reinforcement Learning problem

1: Store historical voyage power profiles
2: for each learning episode do

3: Randomly select one sample voyage from historical voyages
4 Initialise initial state parameters: ps. = 0, soc = SOCy, spA =0
5 fortr=1:Tdo
6: With action input a; from the agent, at state S indexed as s;
7 Update the next state parameters and the next state index s;
8: Calculate the immediate reward 7,
9: if 5,41 is infeasible or override happens then

10: Fgpq & —1

11: else

12: ri+1 ¢ tanh (1)

13: if r + 1 is final time step and soc,11 = socH then

14: Fip1 1+ 1

15: end if

16: end if

17: Determine terminationflag

18: if 5,1 is infeasible or next time step is final time step then

19: terminationflag < 1

20: break

21: end if

22: end for

23: end for

276



Reinforcement learning algorithms 277

Algorithm B.2 Q reinforcement learning agent adapted from (Watkins, 1989).
1: O(s,a) =0,Vs €S, Vac A
2:n=1,a=1,e=1
3: while n < N, do
4: repeat

5: if n <N, then
6: oa—o—Aaxn
7: €i—€—AeXn
8: end if
9: if rand < € then
10: Select action a randomly from A
11: else
12: a < argmax, (Q(s,a))
13: end if
14: Take action a, observe r, s’ and terminationflag
15: O(s,a) + Q(s,a)+ a[r+yQ(s,argmax, Q(s’,a)) — QO(s,a)]
16: S8
17: until terminationflag is true

18: end while

Algorithm B.3 Double Q RL agent adapted from (van Hasselt, 2010).

1: Qi(s,a) =0, Q2(s,a) =0,Vs € S,Vac A
22n=1l,a=1,e=1

3: while n < N,,;4 do

4. repeat

5: if n <N, then
6: oa—o—Aoxn
7: €i—€—Aexn
8: end if
9: if rand < € then
10: Select action a randomly from A
11: else
12: a < argmax, (Q1(s,a) + Qa(s,a))
13: end if
14: Take action a, observe r, s’ and termination flag
15: With 0.5 probability updating O,
16: if update Q; then
17: Qi(s,a) < Qi(s,a) + a[r+yQa(s,argmax, Qi (s’,a)) — Qi(s,a)]
18: else
19: 0a(s,a) = Oa(s,a) + ot [r+yQi (s, argmax, Os(s’,a)) — Qa(s,a)]
20: end if
21: S8
22: until terminationflag is true

23: end while
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Algorithm B.4 Deep Q Network RL agent adapted from (Mnih et al., 2015).

1: Initialise replay memory D to capacity M
2: Initialise action-value function Q with random weights 6
3: Initialise target action-value function Q with weights 6~ = 6
4: while n < N, do

3 Initialise initial state s
6 forr=1:Tdo

7 if rand < € then

8 Select action a@; randomly from A
9

: else

10: a; < argmax,, (Q (sr+1,a;0))
11: end if
12: Take action a;, observe r;11,5,+1 and terminationflag
13: Store transition (s;,a;,r+1,5+1) in Replay memory
14: Every Z steps sample random mini-batch of transitions (s;,a;,7j+1,54+1) from

D

{r 1 if episode terminates at step j+ 1
15: Set yj= ~ o .
rjs1+ymax,; Q (SJ-H,a ;0 ) , otherwise

16: Perform a gradient descent on L; (6;) with respect to the network parameters

0
17: Soft update the target network: 6~ < 10+ (1 —17)6~
18: Terminate if terminationflag

19: end for

20: if n < N; then

21: E<—E—Aexn
22: end if

23: end while
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Algorithm B.5 Double Deep Q Network RL agent adapted from (van Hasselt et al.,
2015).

1: Initialise replay memory D to capacity M
2: Initialise action-value function Q with random weights 6
3: Initialise target action-value function Q with weights 6~ = 6
4: while n < N, do
5: Initialise initial state s;
6: fortr=1:Tdo
7: if rand < € then
8: Select action a, randomly from A
9: else
10: a; < argmax,, (Q (s;,a;0))
11: end if
12: Take action a;, observe r;11,5,+1 and terminationflag
13: Store transition (s;,a;,ry+1,5:+1) in D
14: Every Z steps sample random mini-batch of transitions (sj,a;,7j41,5j+1) from

replay memory

s Set rj+1, if episode terminates at step j+ 1
' Vi ris1+7YQ(sj+1,argmax, (Q (sj4+1,a;0));07), otherwise
16: Perform a gradient descent on (yj11 — Q(sjt+1,4a;; 6))? with respect to the
network parameters 0
17: Soft update the target network: 6~ <— 10+ (1 —17)60~
18: Terminate if terminationflag
19: end for
20: if n < N; then
21: €i—€—Aexn
22: end if

23: end while
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