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ABSTRACT

The Izmir-Ankara-Erzincan suture zone is the major Neotethyan suture in northern
Anatolia. Two areas of ophiolitic and related metamorphic rocks from this zone have
been studied, near to the town of Kiitahya. The Begdegirmen area, north of Kiitahya,
includes dismembered ophiolitic rocks (the Kinik Ophiolite) and consists of
serpentinised pyroxenite and peridotites together with gabbros and gabbro dykes. The
Kaynarca area, southeast of Kiitahya, contains metamorphic sole rocks (mainly

amphibolites, amphibole-schists and quartz-schists) at the base of the ophiolite.

Microprobe study indicates that the Begsdegirmen gabbros contain very calcic
plagioclase (Ang;,,) and magnesio-hornblende as the principal phases. Despite some
mineralogical and chemical similarities to rocks reported from arc settings the
Besdegirmen gabbros are interpreted as oceanic in origin. Trace element and REE data
from gabbro and dyke samples show the patterns which are transitional between mid-
ocean ridge and island arc basalts suggesting a backarc setting for the ophiolitic rocks

from the Besdegirmen area.

Unlike many other Tethyan ophiolites the Kinik Ophiolite appears to represent a
fragfnent of Neotethyan ocean basin, rather than a supra—subduction zone environment.
Isotopic dating suggests a Late Cretaceous (Santonian) age for the formation of the

Besgdegirmen gabbros.

For the Kaynarca amphibolites, microscopic and microprobe results prove at least two
stages of metamorphism. The first stage is represented by a high grade amphibolite
facies metamorphism and late greenschist facies metamorphism resulting in
counterclockwise P-T paths. In contrast, the second stage metamorphism is marked by
a medium to high pressure overprint of the first stage metamorphic rocks of Kaynarca.
The low crossite content of the amphiboles, and the absence of high pressure mineral
assemblages such as glaucophane and lawsonite, suggest the transition between
blueschist facies and greenschist facies metamorphism for the second stage. Trace
element and REE data from the amphibolite samples are comparable to ocean island

basalts.



The Kaynarca rocks formed as an ocean island, and the Kaynarca sole rocks were
formed by intra-oceanic thrusting during the closure of Izmir-Ankara-Erzincan ocean.
Isotopic data indicate an earliest Late Cretaceous metamorphic (Turonian-Cenomanian)
age for the Kaynarca sole rocks. The sub-ophiolite metamorphic rocks were overprinted
by LT-HP metamorphism related to Late Cretaceous subduction. Final emplacement

related to the terminal collisional event occurred at the end of the Cretaceous.
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CHAPTER ONE
GENERAL INTRODUCTION

1.1. Introduction

Ophiolite complexes are regarded as remnants of oceanic crust and upper mantle
emplaced in orogenic belts by lithosphere shortening and imbrication (e.g., by
obduction) (Dewey and Bird, 1971; Coleman, 1971), having the petrological and
physical characters of ocean crust (Moores and Jackson, 1974). However, oceanic
lithosphere represented by ophiolite complexes may have formed in a number of
settings, such as: (1) crust generated at major oceanic spreading ridges, (2) crust
generated as a result of backarc spreading, (3) the roots of island arcs or mid-plate
oceanic islands (Saunders et al., 1979), or (4) forearcs. It is important to find out the
site of origin for an ophiolite since this provides important constraints on paleotectonic
and paleo-oceanographic reconstructions. In this context numerous petrologic and
‘geochemical data have been proposed to enable recognition of the site of origin of
ophiolites, especially when there is an absence of definitive field evidence to
characterise them (e.g., Pearce and Cann, 1973; Saunders et al., 1980; Miyashiro, 1975;
Pearce, 1975). However, there are different interpretations for some ophiolites (e.g.,
Troodos ophiolite) partly because of the uncertainties concerning critical differences
between features of the settings in which ophiolites form, such as ocean floor, marginal
basins, and island arcs.

Important differences along the Tethyan ophiolitic belt have been detected by
petrological and geochemical studies (Fig. 1.1). The Alpine and Apennine ophiolites
have MORB-type chemistry, have dominantly lherzolitic ultramafics and are of Jurassic
age. Lherzolite ultramafics are dominant in the western former Yugoslavia and Albania
whereas in the eastern belt in former Yugoslavia and northern Greece they are largely
harzburgites of Jurassic age. The Vourinos complex formed in an island arc setting and
is harzburgitic, but the Pindos and Othris ophiolites are lherzolitic and formed in an
associated marginal or backarc basin, although interpretation is complicated because of
the presence of both island arc and ocean floor volcanics in these complexes. In

northern Turkey, the Anatolide and Pontide belts contain Jurassic and Cretaceous



ophiolites as dismembered fragments in melanges, but the Tauride ophiolites in the
south are larger and more intact masses of middle to late Cretaceous age, and are
mainly composed of harzburgites and layered cumulates. The Troodos massif is of
Cretaceous age, and contains a complete ophiolite sequence. The Tethyan ophiolitic belt
extends to the middle to late Cretaceous ophiolites of the Hatay and Baer-Bassit
complexes through eastern Turkey and to Iran along the Zagros thrust zone to the
Semail nappe in Oman, and this zone is known as "Croissant Ophiolitique Peri-Arabe"
(Ricou, 1971). A subra-subduction setting is proposed for this zone by Pearce et al.
(1984), and Moores et al. (1984) suggested that all the ophiolites in this zone formed
in a marginal basin-island arc complex setting similar to the modern Andaman sea.
Ophiolites from eastern Iran, west Pakistan and Afghanistan have slightly younger
obduction or emplacement ages (Paleocene-Eocene) than those of the Croissant
ophiolites. These complexes are related to the opening and closing in the Late
Cretaceous-Early Cenozoic of several small ocean basins. Further east, the ophiolites
along the Indus-Tsangpo suture zone in the Himalyas formed and were emplaced in the
middle to late Cretaceous. North of the suture in northern Tibet, there are an earlier,
probably Jurassic, ophiolites. Beyond the northeast Himalayan syntaxis, the Nagaland
ophiolites of northeast India and Burma continue the Tethyan ophiolite belt to its
eastern extremity (Lippard et al., 1986).

Within the Tethyan belt, Turkey is well known for the large areas of ophiolitic
rocks cropping out extensively in the mountains of the Alpine chain, and presenting
many questions such as their age, the exact tectonic setting in which they formed, the
mechanisms of their emplacement, and the origin of the underlying ophiolitic ’soles’ or
‘inverted metamorphic aureoles’. The metamorphic rocks beneath the ophiolites are
volumetrically insignificant when they are compared with the ophiolites or associated
sediments. They range in thickness from several hundred metres in Crete, Gavdos,
Paphos, Baer-Bassit, and Oman to only a few metres in Pindos, Othris, and Vourinos
(Woodcock and Robertson, 1977). The metamorphics are tectonically emplaced with the
ophiolite and are unrelated to the underlying sedimentary-volcanic rocks.

The subophiolitic metamorphic rocks have been explained in differents ways:
some workers argue that the metamorphic rocks originate elsewhere and are accidentally

incorporated in tectonic slivers beneath the ophiolite during its emplacement (e.g.,
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Coleman et al., 1976); others suggest that peridotites occurring with high temperature
rocks represent intrusive mantle diapirs (e.g., Green, 1967; Loomis, 1972; MacGregor
and Basu, 1979; Hall, 1980). It is now widely accepted that the sole rocks are
dynamothermal aureoles, formed beneath the ophiolites as a result of their tectonic
emplacement by either frictional heating along the thrust plane, or by heat conducted
from a young, still hot ophiolite (e.g., Church and Stevens, 1971; Malpas et al., 1973;
Jamison, 1979; 1981; Spray, 1984).

A study of the metamorphic sole rocks involves the following questions: what
were the conditions of metamorphism?; is the metamorphic sequence continuous?; what
are the protoliths of the metamorphic rocks?; is the sole complex related to peridotite
emplacement?; what can this tell us about ophiolite emplacement?.

The dismembered rocks of the ophiolites near to Kiitahya in northwest Turkey
represent one of the allochthonous units of the Tethyan ophiolitic belt. A study of
ophiolites and the metamorphic sole rocks in the Anatolides along one of the major
suture zones in Turkey should therefore provide important evidence on the evolution of

the northwest part of Turkey.

1.2. Geographic Setting

Two areas of ophiolitic and subophiolitic rocks near Kiitahya were investigated (Fig.
1.2). The first area, Besdegirmen, is situated about 13 km NNE of Kiitahya and includes
mainly ultramafics, gabbroic rocks and dykes of the Kinik ophiolite. The second area,
Kaynarca, is located SE of Kiitahya which is about 30 km from the town, and consists
of sub-ophiolite metamorphic rocks at the contact between the ophiolite and the

Cogiirler Complex.

1.3. Objectives and Procedures

The work described in this thesis concerns essentially the igneous and metamorphic
petrology, mineralogy, geochemistry and radiometric ages of the mafic and ultramafic
rocks and the sub-ophiolitic metamorphic rocks, from the areas close to Kiitahya. The

layout of the thesis is as follows:
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The dismembered ophiolitic rocks from the Besdegirmen area:

(1) the nature of metagabbro in terms of the mineral chemistry and the metamorphism
of the metagabbros (Chapter Three), (2) P-T conditions of the formation of ultramafic
and mafic rocks and amphibolites (Chapter Four), (3) the character of the ophiolite in
terms of geochemistry (Chapter Five), (4) the age of formation of ophiolites (Chapter
Six), and (5) the tectonic history and environment of formation of the ophiolite and the

comparison with other ophiolitic terrains from different areas (Chapter Seven).

The Kaynarca sole rocks:

(1) the nature of the inverted metamorphic gradients in terms of the mineral chemistry
(Chapter Three), (2) P-T conditions of subophiolite metamorphism (Chapter Four), (3)
the character of the amphibolites in terms of geochemistry (Chapter Five), (4) the age
of formation of the amphibolites (Chapter Six), and (5) the general interpretation of the

tectonic history of the sole rocks (Chapter Seven).

“This study is the first comprehensive petrolbgical survey of the ophiolitié and
sub-ophiolitic rocks in the Kiitahya region, and gives the first radiometric dates from
the ophiolitic and the sole rocks in the region. The results will contribute to knowledge

of the geotectonic evolution of the region.

1.4. Methods of Research
The main methods used were field mapping, petrography, geochemistry, electron

microprobe analysis, and radiometric age determination using K-Ar and Ar-Ar methods.

1.4.1. Fieldwork Programme

Fieldwork was carried out during the summer months of 1989. Areas of
approximately 11 square kilometers from the Besdegirmen area and 5 square kilometers
from the Kaynarca area were mapped in detail by using the bearing and pacing method
on a scale of 1/2500 (Maps 1 and 2). Approximately 630 rock samples were collected
from the ophiolitic and sub-ophiolitic metamorphic rocks of two different areas. A high
proportion of the rock samples were collected from the gabbros and amphibolites.

Sample locations, and ultramafic, serpentinite, gabbro, rodingite and Neogene



boundaries for the Besdegirmen area are shown in Map 1. Sample locations, and
serpentinite, amphibolite, schist and Neogene boundaries for the Kaynarca area are
shown in Map 2. Figure 1.3 shows the location of the mapped area (for the Map 1)
from the Begdegirmen area, and Figure 1.4 shows the location of the mapped area (for

the Map 2) from the Kaynarca area.

1.4.2. Laboratory Programme

All collected samples, of which 406 were from the Besdegirmen area and 209
from the Kaynarca area, have been thin sectioned. The thin sections were first
petrographically examined in order to investigate the primary and secondary mineral
assemblages and their textural relationships, metamorphic overprints, and relict mineral
phases. One hundred and seven representative samples from each group of rocks were
then selected for electron microprobe analysis to obtain the data for the determination
of metamorphic grade and bulk compositional variations. Analyses were carried out
using the energy dispersive electron microprobe (JEOL JXA-733 Superprobe) at
Birkbeck College London. A complete listing of the results of the microprobe analyses,
and details of the analytical procedures and operating conditions are presented in
Appendix 3.

Twenty two representative whole rock samples of each group from the two
areas were analyzed for the major elements and eight of them were analyzed for the
rare earth elements using inductively coupled plasma emission spectrometry (ICPES)
at Royal Holloway and Bedford New College (RHBNC) London. Trace elements of ten
of the whole rock samples were determined by using the Phillips PW1400 XRF
spectrometer at the RHBNC. The details of the analytical techniques for both methods
are given in Appendices 4 and 5.

Twelve samples of gabbros, dykes and amphibolites from two different areas
were selected and isotopically dated using K-Ar method at the NERC Isotope Geology
Centre of the British Geological Survey. The Ar-Ar radiometric dating method was also
applied to four representative samples at the department of Earth Science of Leeds
University in order to obtain more reliable results for the age of the studied rocks.
Appendices 6 and 7 explain the details of the analytical techniques using K-Ar and Ar-
Ar dating methods.



1.5. Terminology and Nomenclature

In the following chapters, for the mafic and ultramafic rocks, the plutonic rock
nomenclature of Streckeisen (1974) has been used. For the minerals analysed by
quantitative energy-dispersive electron microprobe techniques, the following
classification schemes have been used: for calcic-, sodic-calcic-, alkalic-amphiboles, the
standard [.M.A. nomenclature schemes of Leake (1978); for pyroxenes, the L.M.A.
nomenclature schemes of Morimoto et al. (1988); for chlorites, the classification of Hey

(1954).



















































































































































































































































































































































































































































































































































































































































































































































































































































