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Abstract

Sequential evaluation and decision problems must frequently be solved under
uncertainty. The sequential nature of activities like research, development or
exploration, requires optimal funding criteria that take into account the fact that
further funding decisions will be made throughout the future.

In this thesis, we examine several sequential and parallel strategies for R&D
project selection and capital budgeting problems. Some of these problems have
as a solution a prioritisation index. We pay particular interest to the Pearson and
Gittins indices. We relate the Pearson index to the Neyman-Pearson lemma and
state clearly the kind of problems the Pearson index solves. We reformulate this
problem using non-linear utility function and show how to solve it for different
utility functions.

These kind of indices may need to have a forecast for R&D rewards or costs.
We discuss adaptive prediction, we derive the forecasting rule for various data
generating processes, and study the behaviour of unconditional and conditional
forecast variances. Furthermore, we study the connection of R&D projects with
real options theory, and discuss the suitability of this methodology and its fun-
damental principle of economic rationality or no-arbitrage.

Finally, the multi-armed bandit problem is introduced and is reconciled with
the option pricing. We prove that an additional condition is required for an index
policy to be optimal when two projects are selected simultaneously with criterion

the sum of their indices to be maximum.
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Chapter 1

Introduction

The objective of this thesis is to examine issues related to various decision ana-
lytic approaches to sequential choice and implementation of projects with special
motivation from and application to the Pharmaceutical industry. More specifi-
cally we study prioritisation indices such as the Pearson index (Pearson, 1972)
and the Gittins index (Gittins, 1979), the problems solved by these indices and
other statistical and financial aspects related to these problems.

These indices can have an application to prioritize or finance Research and
Development (R&D) projects, which should be understood as multi-stage long
term financial investments meaning that investment decisions are made sequen-
tially, the initial investment may be very large, and they are characterized by
high uncertainty and high rewards when they are completed successfully. For
example, Pharmaceutical research and development (Gittins, 1996, 1997) has a
time scale of at least 15 years or more, where costs are incurred, but it can be
easily be more than 30 years. Also, no financial benefit accrues until a drug
is marketed. Thus, great uncertainty characterizes the duration of the research
and development process and the ultimate technical success or failure of research
process.

In Chapter 2, we begin by introducing the R&D selection problem and dis-
cuss the existence of optimal priority index rules. We study some priority indices
which although they originated from sequential decision process problems, have
an application to portfolio selection problems. We discuss the capital budgeting

problem as a Linear programming problem and its relation to the knapsack prob-
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lem. The innovation of this chapter is that we relate the Neyman-Pearson lemma
to the Pearson index and provide a comparison of the Pearson index with the
Gittins index. We also examine sequential decision processes like the secretary
problem and the search problem.

In Chapter 3, we review some Portfolio models. We develop a stochastic
resource allocation model based on an extension of the new interpretation of
the Pearson index given in Chapter 2. We maximize non-linear utility functions
(exponential and negative exponential) and assume the Normal distribution for
random rewards. Part of the solution of these optimization problems is to study
the Kuhn-Tucker conditions and the quadratic knapsack problem.

In Chapter 4, the theme is adaptive prediction. Future rewards and costs
change continuously and their actual magnitude determine the ranking of each
project. Because of the high uncertainty in the duration of the R&D procedure,
future rewards need to be predicted based on the information gained by observing
Market conditions up to any current time. We assume that the data generating
process is specified by an Ito stochastic differential equation. Examples are Ge-
ometric Brownian motion, Ornstein-Uhlenbech process etc. We want to predict
the value of the process some steps ahead, at a certain time point in the future.
We derive the forecasting rules for this kind of prediction for each of these pro-
cesses. We also study the behaviour of conditional and unconditional variance of
forecast. An example of forecasting system with autoregressive conditional het-
eroscedastic model is given. We present the theory of Option pricing (Martingale
approach) and explain its relation to forecasting.

In Chapter 5, we discuss the theory of Real Options. Real options is the
application of financial option pricing theory to real investment, such as the
valuation and management of an R&D project, taking account of flexibility on
resource allocation decisions. We compare the real option approach and the
decision analysis approach to the capital budgeting problem. We give emphasis
to the no-arbitrage condition and discuss its usefulness. We set up an example
to explain the concept of option value and how it arises due to strategic options.

In Chapter 6, the Multi-Armed Bandit problem is introduced. We prove that

it is optimal to add two Gittins indices and select two projects simultaneously
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if the sum of their indices is maximum under certain assumptions. We reconcile
the Multi-Armed Bandit problem with option pricing.

In Chapter 7, we summarize the results and discuss future lines of research.

12



Chapter 2

The R&D Selection Problem

2.1 Introduction

In this chapter we discuss several sequential and parallel strategies for the R&D
project selection and capital budgeting problems. Evaluation and selection of
R&D projects is done to aid the best use of limited resources, since development
of the set of all available projects is not usually attainable.

We focus especially on ranking indices, and more specifically on the Pearson
Index (Gittins, 1996; Senn, 1996, 1997, 1998), which is used as a simple method
for evaluating R&D projects in the Pharmaceutical Industry. It is defined as
the ratio of expected net present value of the reward of an R&D project to its
expected development cost. This productivity index (Regan & Senn, 1997) is
used by practitioners as a measure of project value, and also as an indication of
the relative of the relative values of available projects (ranking index).

The Pearson Index is defined (and used) without any reference to the R &D
manager’s objectives. For example, when the manager’s goal is to maximise the
net present value of the expected profit stream from any project undertaken,
it is not clear why one should try to maximize the ratio of expected reward to
the expected cost, and not, for example, to seek maximization of their long-
run difference. In this chapter we address the issues of which project selection
problem the Pearson index solves, and what is its relationship to Portfolio theory
and resource allocation models.

Another relevant question is how the selection strategy for prioritisation of

13



projects would differ if the optimisation were to be implemented sequentially over
time. Sequential decision problems are formulated as optimal stopping problems
and can have an application to the decision making problem of whether to con-
tinue an R&D project which will gain an uncertain reward, or to abandon it. We
consider a class of sequential decision problems, such as hiring a secretary, selling
an asset, the two-armed bandit problem, search problem etc, and show how their
solutions are related to the Pearson Index.

The R&D and capital budgeting problems can be related to statistical decision
theory, for example it provides us with search theory application in the capital
budgeting problem. We also present an interpretation to the Pearson Index using
the Neyman-Pearson lemma. The likelihood ratio test is optimal for choocsing
between two hypotheses in the sense of maximising the power of the test for a
specific significance level. Likewise, the Pearson Index can be seen as the optimal
rule for selecting a subset of projects under a budget constraint.

In the next section the R&D selection problem is discussed and emphasis is
given to the parallel and series selection methods. In section (2.3) the Capital
budgeting problem is studied. Then section (2.4) refers to Pearson index, its
origin and related problems. Sequential decision processes are examined in the

section (2.5) and a conclusion is presented in the last section (2.6).

2.2 The R&D selection problem

In this section, an introduction is given to parallel and sequential strategies in
R&D projects. It is shown how the R&D project selection and capital budgeting
problem can be related to optimal statistical decision theory. The R&D selec-
tion problem is concerned with how to evaluate and identify the best subset of
projects among several proposed ones under some constraints. The argument
under consideration is to whether tasks should be proceeded in parallel or in
series.

The parallel selection method is addressed with the following question. Sup-
pose that G is the set of the available projects. How should one separate these

projects into two sets in order to decide which projects will or will not be devel-
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oped? To get an effective analysis of the decision problem of choosing projects, a
criterion to choose amongst projects is needed. When the target is to maximize
some measure of reward or utility subject to a budget constraint, the problem
may be formulated using a linear programming approach.

In the series system, the projects are selected in a sequential manner, that
is, try one project and work on it. Then observe the result, and choose another
one and so on. To model problems which involve sequential decisions over time,
assuming that only one task can be undertaken at a time, a dynamic programming
approach is used. Therefore the optimization is with respect to time.

To connect the R&D selection problem with optimal statistical decision prob-
lems the following problems are considered in this chapter. These are “the secre-
tary problem” , “discrete search problems”, and “the job sequencing problems”.
A characteristic of such sequential decision problems is that the decision maker
must make an irrevocable choice from a number of applicants (jobs or tasks)
whose values are revealed only sequentially.

Parallel and Series systems of tasks are considered. The problem is to de-
termine an optimal sequence to implement these projects so as to optimize an
objective function. In some cases the solution to these optimisation problem is
an index.

Methods like ranking procedures, scoring or rating methods, decision analysis
and optimization techniques such as linear programming and dynamic program-
ming were used in the past. Different scenarios could be of interest such as a
series system of n tasks, a parallel system of n alternatives etc. Some structures

are considered in the next section.

2.2.1 Probability structure of different strategies
A Series System

Consider, for example, an R&D project which is composed of several tasks. The
first case is a series system of tasks where the tasks are performed sequentially
over time. One stage is implemented at each time and the next task is initiated
if and only if the current task is completed successfully. The selection process is

terminated as soon as one of the tasks is failed. If there are n possible independent
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stages and the general stage j(j = 1,...n) has a probability of success p; then,

the probability of success of the system is:

n
Probability of completing the procedure = H D;.
j=1

Parallel system of alternatives

A more complicated system of sequential selection processes than the series sys-
tem is the parallel system of alternatives. One stage can be thought of as parallel
system of alternatives, that is the situation in which several alternatives trials
can be attempted until the first success is achieved (see Figure 2.1) and thus a

stage is completed.

D
success
Ch
failure
1—p success
failure
Cy
& RNY success
failure
Cn

Figure 2.1: Decision tree for parallel system of alternatives

In each stage, the decision process continues until one of the alternatives is
completed successfully. Given the probabilities of success p; of the general stage

j for j = 1,...n, the probability of success of the system is given by

n
Probability of completing the procedure =1 — H(l — pj)-
i=1

2.2.2 Expected cost structure of different strategies

Let m = (my, 73, ... ,m,) denote an ordering strategy, where m; € {1,2,...,n} for
i =1,2,...,n, and when 7; = i, the ordering strategy m requires the decision

maker to undertake task i at the j** stage.
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The expected total cost E(c(n)) in a series system is given by

i—1
pvr]- Cﬂ'i
1

j=

n

E(c(r)) =cny + Y

1=2

which is dependent on the order 7 = (my,m3... ,m,) of tasks where p,, and c,,
are the probability of success and the cost of task s. It is not difficult to prove
based on interchange argument that the expected cost is minimized if and only
if the order of tasks is arranged in the order of their increasing ratios ¢;/(1 — p;)

i.e., start with the task with lowest ratio (Ben-Dov, 1981)

9 @2 o < & (2.1)
l-p1 " 1-p 1 —pn

To show how the interchange argument yields ordering relations, we have:
Let the expected cost of ordering strategy m = (my,72...,m,) denoted by
E{c(my,ma... ,mn)} be

E{c(1,2,3...,n)} =c1+ cap1 + cspip2 + . .. + CaD1D2 - - - P—1-
Now for the expected cost for ordering strategy m = 2,1, = 1,73 =3,... 1, =n
E{c(2,1,3... ,n)} =co+c1p2 +cspip2+ ...+ CcpP1P2 - - - Pn_1-
Suppose that the least expensive sequence is the first one. Then, we have:
E{c(1,2,3...,n)} <E{c(2,1,3...,n)}.
Therefore,
E{c(2,1,3...,n)} —E{c(1,2,3... ,n)} =ca+c1po—c1 —cap1 > 0. (2.2)

From (2.2) we get:

C1 S Co .
1—-pr =~ 1—po

(2.3)

Now suppose we interchange any two adjacent elements m and m + 1 of the
original sequence. Similarly we get
E{c(1,2,..., m=1,m+1,mm+2...n)} — E{c(1,2,3... ,n)} =
=D1p2 .. 'pm—l(cm—H + CmPm+1 — Cmn — Cm+1pm) Z O (24)
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From (2.4) we get:

Cm < Cm+1
1- Pm 1- Pm+1

m=1,...,n—1. (2.5)

Clearly, if (2.5) holds then minimum expected cost occurs when the tasks are

arranged in the order of their increasing ratios ¢;/(1 — ps) ratios.

Alternatively, the expected cost E(c(r)) for a parallel systems of alternatives

(Ben-Dov, 1981) is given by:

E(c(n)) = ¢r, + Z {1:[(1 — p,,j)] Cr;-

i=2 |j=1

The cost is minimized if and only if tasks are chosen with the following criterion,

TcZoc (2.6)
YL 7)) Pn

that is, the tasks are ordered by increasing values of the above index. Comparing
results (2.1) and (2.6) it is concluded that the minimization of the expected cost
in parallel and sequential scenarios is the ratio of the cost to the probability of
success or the ratio of cost to the probability of failure of the task.

Therefore a ratio criterion gives the optimal solution to optimization problems

with either series or parallel system structure.

2.2.3 Existence of optimal priority index sequencing rules

In this section, examples of sequencing rules are presented. Suppose that there are
n alternatives tasks or jobs. There are n! possible ordering strategies. Parameters
which might be taken into account are the probability of successful completion
of each stage, the completion time, the cost of the stage, the discounting factor

and the reward obtained upon the successfully completion of the stage.

Job Sequencing Problem

In the job scheduling problem (Walrand, 1988), there are n jobs that require
independent random service times Si, ..., Sy, respectively. A single server pro-

cesses these jobs, one at a time, non-preemptively. That is, once a job starts,
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it cannot be interrupted until completion. The parameters associated with each
- job j are the processing time ¢;, that is the time at which the processing of the
job j is completed (1 < j < n) and the delay cost rate ¢; which is paid for time
interval 0 <t <¢; for each 7 = 1,...,n. The cost of the job j is ¢; x t; where ¢;
is a positive constant. The sum Zj c;t; is called total weighted flow time.

The problem is to find in which sequence the jobs should be processed so as

to minimize the expected weighted flowtime

E{;cjtj}.

One should note that the value of the expected weighted flowtime depends on
the order in which jobs are processed through the ¢;.

It can be shown based on interchange argument that the total expected
weighted flow time ), ¢;t; is minimized if the jobs are processed in decreasing

order of the following index 4,

Rothkopf (1966) incorporated a continuous discount rate factor 5 (0 < 3 < 1),
for the cost ¢; paid at future time ¢. Thus the present value of cost ¢; paid at
future time ¢ is ¢; exp(—0t;), and he derived the following priority index as an

extension to the above index:

5. Gbe™™
I T 1 —e Pt

Rothkopf and Smith (1984) proved that there are no undiscovered priority
index solutions to the job sequencing problem. The only two cases are:

1. the delay cost function is linear k; + ¢;t, i.e., the cost of delaying a task is

proportional to the length of the delay,
2. exponential delay cost function k; + ¢;{1 — exp(—rt)}/r,

where ¢; indicates the cost of deferring the completion of task j until time ¢ > 0, r

is the discounting rate and k; is the constant cost for j** task, for all j = 1,...n.
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Discrete Search Problem

In the discrete search problem (DeGroot, 1970), an object is hidden in one of n
possible locations. We assume that the prior probability that the object is at the
j*" location is p; (3. p; = 1). We also denote by «; the probability that the object
will not be found in a particular search of the location j even though the object
is actually in j*! location. This probability is called the overlook probability and
remains the same for every search of location j. A cost c; must be paid for the
search of location j.

The objective is to minimize the expected search cost of the strategy until the
object is found. The solﬁtion to the discrete search problem is to examine the
locations in decreasing order of the index

5, = pj(lc; @)

The cost c; can be replaced by t;, the time taken to search the location g if

the objective is to minimize the time spent to identify the hidden item rather

than the total expected search cost.

R&D Project Selection Problem

According to Chun (1994), Dean (1966) appears to be the first who considered
the optimality of sequencing strategies in terms of the development cost c¢; and
the probability of success p;. He considered a series system model and he derived
the index

5 = 1;—11’1

which is the same result as the index (2.1).

Joyce (1971) examined a similar problem in which he assumed that a research
project consists of several sub-projects. Each sub-project must be successfully
completed for the total research project. Assume that there are n alternative
approaches for task 7 denoted by m;;;m9;... ;7. Let ¢;; be the cost of the
j™ alternative of the ™ task and p;; is the probability of its success. Let ¢;

be the cost of carrying out the alternatives in the order m;1;m;2;... ; 7, until
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one succeeds or until all have been tried. The expected cost ¢; of the i** task is
minimized if its alternatives are pursued in the order of increasing value of their
¢ ;/pi,; ratios, that is if
C. . c. .
T Tt i1 n— 1.
Pij  DPijn1

then ¢; is minimized.

Kwan and Yuan (1988) proposed an index for a parallel system of investment
alternatives, that is, there are n mutually exclusive projects and project j is
chosen. Let z; be the reward if the project is successfully completed and y; is
the benefit otherwise. The probability of success of the project j is equal to p;.
Projects are chosen sequentially (see Figure 2.2), and the objective is to maximize
the expected net present value of cashflow of the chosen project. Projects are
chosen in decreasing order of

_ G Y
6 = (zj — ;) — P
This is an index for sequential choice of projects which denotes which project

should be undertaken first.

Zj

Yi

Figure 2.2: Sequential choice of projects

Series system of tasks

Chun (1994) considered a series system of tasks in the R&D project selection
problem with ordering strategy m = {my,m,--- , 7, }. His objective was to derive

a priority index in order to find the optimal ordering strategy which maximizes
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the expected discounted reward T'(w) which, in this case, is equal to,

i—1

[0+ 87"

Jj=0

n

T(r) =)

i=1

R(ﬂ-i)a

where the empty product is taken to be one, the reward R(m;) is gained if stage @
is completed successfully, with discounting factor 8 and time taken to complete
the stage j, is ¢, then, the priority index is,

’ 1—pi(1+,3)“i )

The optimal policy chooses projects in descending order of the above index.

Precedence Restriction

Now, suppose that there are two tasks j and k in a series system of tasks and
that task 7 must precede task k. If, also, the task k directly follows task 7 then
the two tasks can be thought of as a single joint task ¢ as far as the ordering is
concerned. Chun (1994) proved that the ordering index of the single joint task ¢

is given as follows:

5. = Bm) +pi(1+ B)" R(m)
C 1-ppk(l+ B

and projects are chosen in the descending order of é;.

Parallel System of Alternatives

Chun (1994) studied the problem for parallel system of alternatives with objective

to maximize the expected discounted reward T'(r), which is equal to

n 1—1

T(r)=>_ |\[]Q - pr) (1 +B8) 7" | R(m).

i=1 [j=0
The priority index related to this optimization problem is given by

5 — pilt(m)(1 4+ B)™"
T l-(1-p)(Q+p)

where the optimal strategy is to perform tasks in descending order of the above

i=1,...,n, (2.7)

index.
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Parallel system of alternatives occurs when several projects are chosen sequen-
tially, one at each time until the first success is achieved. The expected present
value of reward for any selection strategy w is expressed as follows

T(W) = Z |:I——[(1 _pﬂ'j) [me(W,‘) - ci] exp [_ﬁ‘ztﬂj] ’

J=0

where p,, = 0.
Chun and Platt (1992) showed that the appropriate priority index is

pr R(m) — ¢
1 — — Bt
po + exp(—0t;)
exp(—p0t;)
Priority index (2.8) can be derived from (2.7) when (1 + £)~* and R(w;) are

5 =

i=1,...,n. (2.8)

substituted by exp(—/ft;) and {p., R(m;) — ¢;} respectively.

The above example is very interesting because it shows us how the functional
form of priority index changes when the discounting factor 3 is taken into the
account. It could be the case that the priority index will give different ordering
results if undiscounted values for rewards and costs are used compared to the
ordering strategy one would get, if discounted values are used and the discounting

factor is equal to zero.

2.3 Capital Budgeting in a firm

In the previous section we discussed how priority indices can solve parallel and
sequential selection problems. In this section an account is given how project
selection problems are formulated using a mathematical programming approach,
with the main emphasis on linear programming .

A firm has available an amount C' of investment capital. There are n differ-
ent projects which are competing for the available funds. Project j requires an
investment of ¢; and yields future profit which has present value R;. A project
must either be taken (lincenced out) or not. We introduce a binary variable y;
for each project j to denote whether the project 7 is selected or not. Let

1 if project j is selected,

Y; =
0 otherwise.

23



The objective is to maximize the total discounted return Z = Z;‘L:I y;R; and
spend exactly an amount C'. Furthermore, ¢c; > 0 and i; > Oforevery j =1...n.
The solution to this project selection problem is determined by the following

integer linear programming problem

n

Maximize Z y; R, (2.9)
7j=1
n

subject to Zyjcj =C, : (2.10)
j=1

y; € {0,1} for 7=1,---,n. (2.11)

However, trying to maximize the objective function with the equality constraint
is not only unrealistic but it may be an infeasible problem if no combination of
the available projects exist such that their total cost is equal to C.

Let us forget the constraint (2.11) and consider the linear programming prob-

lem:
n
Maximize Z y; R
j=1

n
subject to Z yic; = C,
=1

Consider also its dual program, that is

Minimize Cz

subject to z¢; > R;, j=1,---,n (2.12)

where z denotes the achievable profit per unit cost. From (2.12), one can conclude
that £ > R;/c; for all j and therefore the value of the objective function U(C)

at the optimum point as a function of the available capital C' is given by

A different approach to the capital budgeting problem is to reformulate the
above problem with inequality constraint Z;’Zl yic; < C.
Being able to spend less than the available capital, that is the budget con-

straint becomes an inequality, the optimal solution which maximizes the benefit
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might be such that the projects chosen did not exhaust all the available resources.
However, if, the projects can be chosen in any rate between zero and one, which
means that y; is not restricted to values 0 and 1 only, then the optimum solution
spends all the available funds if the rewards gained are increasing function with
respect to the intensities of the available projects. The mathematical formulation

is a linear programming problem with bounds
n
Maximize Y _y;R;
j=1

n
subject to Zyjcng’ j=1-,n
Jj=1

0<y; <1 j=1---,n

The solution is given by comparing the ratio R;/c; and 1, since y; must be

bounded by 1.

Multiple stage projects

Suppose, now, that each project has k£ multiple stages, which must be imple-
mented in some order with success and the reward is gained at the end of the last
stage. Let c;; be the capital required for project j in period 7. The indicator func-
tion for selecting project j is y;. Now, we introduce an indicator function for each
stage of a given project. Let y;; be the binary variable which is 1 when the stage
1 of the project 7 has been implemented and 0 otherwise. To consider the time
sequencing for flow of funds in each project, consider the following mathematical

program. To maximize the profit

n
Maximize E y; R
=1

n k
subject to Z Zyijcij _<_ C

7=1 i=1

Yij = Yj i=1,---,k j=1,---,n
yi; = 0orl, i=1,---,k j=1,---,n
y; =0orl j=1,---,n.

This formulation requires that for a given project ;7 whose indicator function is

y;, its reward R; is gained if all the stages ¢ happen with total cost Zle Cij. A
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project 7 is chosen, if only if all stages can be funded as it is required by constraint
yij > y;- If not all the stages 7 happen for a given project j, then some y;; are

equal to zero and therefore y; = 0, that is the reward R; is not gained.

Groups of projects

Consider the situation where there is a set S of candidate projects, and each
project consists of K stages. S is partitioned into disjoint subsets S;, Ss,- - , Sk,
where the subset S; are all the projects that their first j — 1 stages have been
implemented. Let us suppose that there is a collection of different budgets with
amount C; for 7 = 1,... K where C; is the budget investment for all projects
which their next stage to be implemented is the j*" stage. To maximize the profit,

we have:

n
Maximize E y; R;
j=1

n k
subject to 2 Zyijcij S C

7=1 i=1

ZyijcijSCi i=1,---,k

j=1

yijzyj Z:]-?)k j:]-:"'an
y,-j:OOrl ’L:l,,k jzl,--~,n
ijOOI'l j=1-,n.

The first constraint says that the total budget available is equal to C. The sec-
ond constraint ) ies, YiiCij < C; determines the budgets of each subset(category)
of projects denoted by S; foralli=1,... , K.

It can be easily seen that in every different project selection scenario, a differ-
ent linear programming problem may be constructed. However, people in practice
found it more convenient to have a basic approach a productivity index, namely,

the Pearson index (Regan & Senn, 1997).
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2.4 The Pearson Index

The Pearson Index (Pearson, 1972) was suggested as a ranking formula in R&D
projects by Pearson in 1972. It was argued that all the indices existing before
Pearson were giving misleading results because they failed to take into account the
multistage characteristics of R&D projects. Therefore, it seemed to be necessary
that the new index would be based on a decision tree type approach, i.e., by the
technique of backward induction (see, e.g., Raiffa 1968), we calculate the value
of the project at the first decision of the tree. Examples of indices (see, Pearson
1972, p. 69) before Pearson index are:

_ BxP.x(p—-cxVxL
Index 1 = Total Cost and (2.13)

I I I,
dex 9 - DX FeXamtwiy ot w
Total discounted R&D Cost ’

(2.14)

where P; and P, are the probability of technical and commercial success respec-
tively, p and c are the price and the cost, V and L are the sales volume per year
and the life of the product respectively, (1 + i) is the discounting factor and I,
refers to the net income in the n'" year of the project’s life.

To explain the definition of the Pearson Index, consider the following Figure
(2.3). The general form of the Pearson index is the ratio of the expected net

R—C1—Cz—63

—C1 —C2 —C3

Invest

—c1

Do not invest

Figure 2.3: Pearson Index decision tree for a three stage project

reward to the expected development cost. Consider a project with n stages with
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fixed order, where stage 7 has cost ¢;, probability of success p; given success at the
previous stages and, if successful at all stages, final reward R. Thus, the decision
to invest to an R&D project consists of a series of cash inflows and outflows.
The Net Present Value (NPV) rule of an investment is the difference between the
net present value of all cash inflows rate, and, the net present value of all cash
outflows, everything discounted at some interest rate. Assuming that the reward
R all costs ¢; for i = 1,... ,n are discounted and applying the NPV rule that
the expected value of the decision to invest is equal to the expected value of the

benefits less the expected value of the cost, we get:

n n i—1
Expected net reward = RH Di — Z C; H Dj-

=1 i=1 7=0

The expected cost of the decision to invest is:

n 1—1
Expected cost = Z ¢ H Dj-

i=1  j=0

Pearson Index is defined to be:

n

n i—1
R][pi=> a]]n
i=1 =0

i=1
n i—1
> ]

where pg = 1. Its meaning is the expected net reward per unit expected cost.

(2.15)

Suppose that one has to value the decision to invest in an n-stage project in

which the first £ — 1 stages have been implemented. We denote the Pearson index

by P,(i) for i =1,...,n — 1, where 7 indicates the next stage to be run
n n 1—1
Rsz —Ck — Z Cin]
i=k i=k+1  j=k
Fr(k) = n i1
a+ D al]r
i=k+1 j=

An important property of Pearson Index is its higher ratio property, that is,
Po(i) > Pyu(j) for any i > j.

Pearson concluded that:
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1. Simple rank indices will inevitably lead to a “bias” in the calculation of the

expectation from a particular project.

2. The “bias” will increase as the degree of uncertainty of the initial stages of

the project increases.

3. The “bias” can be removed by the use of a modified form of ranking index

based on a decision tree type analysis.

Pearson did not explain why his index should have a ratio form and did not
give any definition of the term “bias”. Also, he did not account at all for its
higher ratio property and how it is related to its portfolio selection problem.
An account for these two issues will be given later. The Pearson index solves a
selection problem subject to linear constraint of the type of Knapsack problem
(Martello & Toth, 1997).

Pearson derived his index by folding backwards a simple decision tree (see
Figure 2.3) and as a result he derived an index which is based on a net present
value rule. It is well known that NPV rules and other discounted cash flow
techniques for capital budgeting may be inappropriate to build a portfolio of
research because they may favour short term projects in relatively certain markets
over long term and relatively uncertain markets. This will not happen in a
dynamical model in which uncertainty unravels over time creating flexibility for
decision makers, who behave optimally (in some sense) at each point in time.

Flexibility has a value which should be quantified. This flexibility is due to
variability of future reward and costs. Stochastic dynamic programming is a pos-
sible solution to the problem of quantification of flexibility. In the Pearson index
case, one should note that there is variability in rewards and costs. The proba-
bilities of the Pearson index refer to technical success and not to the uncertain
future payoffs of the R&D project.

In order to build an appropriate framework to value such risky R&D projects,
a model is essential to give us an idea how the information about the future value
of the project evolves. The framework provided by the theory of real options can
price a project in a better way a than the Pearson index.

Real Option is the application of Financial option theory applied to real in-
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Invest now

Invest

Decline

Invest

Decline

Figure 2.4: Decision tree with option value

vestment such as the valuation and management of an undeveloped oil field or
an R&D project. Given an optimal way to make decisions at some future time
t, the decision maker makes a decision in such way that the future decisions will
be made in the given optimal way.

Consider the Figure (2.4). The decision maker has three possible choices.
These are to “invest now”, “defer” the investment and “decline” the investment.
The decision to “invest now” yields expected reward pzr + qy, where p is the
probability to get reward z and ¢ (= 1 — p) is the probability to get reward y.
This decision has cost V. Denote by €2, the value associated with the decision to
invest now or never, i.e., the option to delay the investment decision whether to

invest or not is not available. We set
Qo = max (pz + qy — V,0),

that is, the maximum between the net present values of the two decisions, namely,
the decision to invest now and the decision to reject the project. Denote by Fj,

the value of the opportunity to invest now at time ¢t = 0 or later at time £ = 1.
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The “defer” option costs ). We set

Fy = max (NPV of the decision to invest now , NPV of the decision to invest later)

= max {px+qy— V,(llTr)Eo(Fl) - Q},

where Fj is the random variable which denotes the value of the decision of type
“Iinvest or not” at time ¢t = 1 and Eq(F}) is the expected value of F; given the
information at time ¢ = 0. All future values are discounted at rate r. We define
the random variable Wy, = Fy — )y to be the option to postpone the decision to

“invest now” or never. The option to postpone the decision to invest has value:

0 if pz+qy—V > gmE(F)-Q>0
Eo(F} ;

W, = (Olg_r)l)_Q_(px.{_qy——V) if (—HIT)Eo(Fl)—Qpr"*'qy—V
(T}TF)EO( R)-Q otherwise.

The weakness of the Pearson Index which is inherent in standard NPV approach
is in the treatment of the contingent cash flow and values arising from implicit
or explicit ‘options’ which arise as a project evolves. The option to postpone the
decision to invest is a random variable and it depends on the level on uncertainty
and how it is resolved in the future.

To discuss in more depth the concept of options, a sequential decision frame-
work is needed to model the uncertainty. For the analysis of the next section, the
concept of contingent cash flows is ignored, in order to study which problem the
Pearson Index solves. In the next section, the relation of the knapsack problem

and the Pearson Index is studied.

2.4.1 The knapsack problem and the Pearson index

The classical knapsack problem is to pack a knapsack of integer volume V with
objects from K different classes in order to maximize profit. There are K different
classes, 7 = 1,---, K, and each object from a given class j, consumes c; integer
units of the knapsack and produces profit P;. We also assume that the class j
consists of b; items (j =1,..., K).

The problem has a simple solution: fill the knapsack entirely, if possible, with
objects from class j that has the highest profit to volume ratio P;/c;. If the

31



knapsack volume ratio is not an integer multiple of the object volumes, then
the problem can still be solved with dynamic programming. In terms of linear
programming, the Knapsack problem is formulated as follows:

Let y; denote the number of items selected from j** class. The 0— 1 Knapsack

problem is
K
Maximize Z Pjy;
i=1
K
subject to Z ciy; <V,
i=1
ij{O,l} j:]-’"'aK,

where, y; is 1 if j object is selected and 0 otherwise. Suppose now, that one can

select up to b; items for the j* class. Then, we have
K
Maximize Z Pjy;
j=1

K
subject to Zijj <V,
i=1
y; 1integer j=1-- K,
and is known as a bounded knapsack problem. We can now relax the constraint

that y; (j =1,... , K) are integers and have the continuous version of the Knap-

sack problem, i.e., we are allowed to choose items partially, that is:
K
Maximize Z Pjy;
i=1
K
subject to Z c;y; <V,
j=1

Its solution is given by:
Order the items according to decreasing values of their ratios, namely, profit per
weight. The items are inserted consecutively until the first item, s, is found which

does not fit. This is called the critical item s = min{i : Z;___l ¢; > V}. Then the
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optimal solution is given by:

yj:1
g; =0 for j=s+1,--- | K
Z where V=V -"l¢;.

Ys = j=1

The ranking property gives the solution to the selection problem given the linear
equality constraint. It is obvious that all the above wholly or partially chosen
projects, have equal or greater ratio than the critical item. This property can be

found in any mathematical program of the form (Zipkin, 1980),
Mazimize E R;(y;)
Jj=1
subject to ZngB y; >0 j=1,---,n
i=1

provided that, B > 0, and each R; : R — R is continuously differentiable and
strictly concave.

The Pearson index can be thought of as a critical ratio for the selection prob-
lem. If one wants to select a subset of the available projects in a way which
maximises the total expected net return of the selected projects given a fixed
total expected cost of the selected projects, then, this can be achieved with an

index of the form

E(NetReward)
E(cost)

> )\ (2.16)

where A is constant.

2.4.2 Neyman-Pearson Lemma

A similar constrained maximization problem occurs in the Neyman-Pearson the-
ory of hypothesis testing (Berger, 1980).

A test of a statistical hypothesis is based on the evidence of the observed data
z. A decision has to be made whether to reject Hy, the null hypothesis under
consideration, or to accept it. Rejecting Hy when it is true is called a Type 1
error, and not rejecting Hy when it is false is called a Type II error. The sample

space S can be partitioned into two regions, W and S — W, such that whenever
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z falls in W (critical region), the null hypothesis Hj is rejected, and whenever
is in region S — W, Hj is not rejected.
For a simple hypothesis Hy, let P(W|H,) be the probability of committing

a type I error. For a simple alternative hypothesis Hi, let P(S — W|H;) be the
probability of committing a type II error. The power of this test is 1 — § =
P(W|H), that is, the probability of accepting the alternative hypothesis H;
when it is true.
The Neyman-Pearson problem can be stated as:

Maximize 1-f8=1-P(S—-W|H,)

subject to ~ P(W|H,) = o (agiven value). (2.17)
W* is optimal for this problem if there exists a real number k£ such that

W* = {z|P(z|H;) > kP(z|Hy)} and P(w*|Hy) = ¢ (2.18)
In a randomized test, the probability of the rejecting Hy is specified, on the
basis of the observed data. In general, the sample space S is partitioned into
three non-overlapping regions, Wy, W, and S — W; — W,
The decision rule is:
Reject Hy if z € W,
Accept Hy ifx € Wy

Reject Hy with probability ®(z) (0 < &(z) <1) ifze S—-W; - W,.

In statistical decision theory one tends to think in terms of losses rather than

gains and the above problem is reformulated as follows:

Minimize o + A3 = /gb(x)[)\fo(m) + fi(z)]dz

for fixed A > 0 and 0 < ¢ < 1. This is solved by using the likelihood ratio

test with “cut-off” A: i.e. reject Hy if gg:) > ), accept H if %—% > A and be
indifferent if 2& = X,
fi(z)

Therefore, the three possible decisions are:
O(x) =0 if Afo(z) > fi(=)
d)=1 if Mo(e) < fi(z)
v(z) if Afo(z) = fi(z)

2
83
—r
I

34



for some A > 0 and 0 < y(z) < 1. If Afo(z) = fi(x) has positive probability,
this is not unique. Choose any such rule ¢*, it will have some size o* and power
1 — §*. Let  be any rule at all, with size & and power 5. Then, it is concluded

that

o + A0 < a+ G,
which is

AL > (o —a) + A

Now, if a < a*, §* > [ then 6* solves the problem of maximizing the power for

size equal or less than «o*.

2.5 Sequential Decision Processes

In a sequential decision problem the decision maker(Statistician) is looking at a
sequence of observations one at a time and he has to decide after each observation
whether to stop sampling and take an action immediately or continue sampling
and postpone taking action to some later time.

A sequential decision function has two components, namely, a sampling plan
(or stopping rule) and a decision rule. To explain these two terms, we shall assume
that the distribution of the sequence x of observations depends on a parameter
W whose values are in a parameter space €). A decision space D consists of all
possible decisions d which might be made by the statistician. A loss function L
is defined on the product space Q x D, that is L = L(w,d) and represents the
loss for any point (w,d) € £ x D when the value of the parameter W is w and
the statistician chooses decision d. In the sampling plan, the statistician specifies
whether a decision in D should be chosen without any observation or whether
an observation (at least one) should be taken. In case at least one observation is
to be taken, the statistician specifies, given the sequence of observation, whether
sampling should stop and a decision in D should be chosen or whether more
observations should be taken. A decision rule §(x) is specified by the statistician

for each possible set of observed values x.
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We shall assume that, given a specific value for the parameter W = w;,
the observations for random variables X, X, ... are independent and identically
distributed. Let the conditional p.d.f of each observation X; when W = w; be
f(-|w;). We denote by ¢; the cost to be paid for observing the value of X;.

For example, suppose that a sequential random sample X, X,,... can be
taken from a Bernoulli distribution with unknown parameter W. We suppose
that, Q@ = {w;, wy} has just two points and that D = {d;,d>} has two points.

The loss function L is specified as follows:

L(wl,dl) = L(’LUQ,dg) = 0,
L(wl,dg) = L(wg,dl) =b>0.

We suppose further that each observation costs 1 unit. The prior distribution of
W is specified by & = Pr(W = w;) =1 — Pr(W = w,).

Under a sequential decision procedure, the total number of observations N
that are taken before a decision in D is chosen is a random variable. The problem
is to determine a sequential procedure that minimizes the expected terminal loss.

In the next sections, we shall consider sequential decision processes in which
there are two choices at any stage. The decision maker may have to decide
whether to continue experimenting or to terminate the process. If he decides
to continue he may have to choose one of two or more random variables that
are available at each stage. Random variables may represent experiments or
another item of interest. The statistician can exercise some control over the
distributions of the observations generated during the process and in this sense,

over the distribution of his rewards and costs.

A discrete time sequential decision model
Consider a dynamic system evolving in discrete time according to the equation
xk—i-l:fk(mkauk,Ek)) kZOala 7N_17

where z; denotes the state of the system, that is the variable of interest, u, a
control input which determines the decision made after the most recent observa-

tions, and ¢, is a random variable. Suppose also that the function f; are given
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and that zy,ug, €, are elements of the appropriate sets. The system operates
over a finite number of stages N (finite horizon problem). We shall assume that
€ is characterized by probability measure pi(.|z, ux) defined on a collection of
events in space which ¢; belongs to, and that ¢, depends on the current state z;
and control input ug, but does not depend on the values of the prior uncertain
parameter €p, €y, ... ,€x_1.

A characteristic of this process is that it is a forward induction process as
opposed to the backward dynamic programming. A problem in which the notion

of forward induction plays an important role is the Bandit problem.

2.5.1 Two-Armed Bandit Problem

One of the most interesting problems in stochastic control problem is the ban-
dit problem. Consider two random variables X and Y. The distribution of X
depends on the value of a parameter W) (w; € ;) and the distribution of Y
depends on the value of another parameter W, (w, € Q). Also, suppose that
the statistician will take a fixed number n of observations at most, sequentially.
If at some stage 7 (¢ < n) the random variable X is chosen for observation, the
conditional p.d.f when W = w;, fx(.|w;), (for ¢ = 1,2), are independent of the
choices and outcomes of the observations in the previous stages. Let & be the
prior joint distribution of the parameter W; and W,. The statistician’s concern
is to find a sequential procedure that maximises the expected value of the sum
of the n observations.

Let V,(§) denote this maximal expected sum of n observations. If the first
observation is made on X, the expected sum of all n observations is E{X +
Va-1[€(X)]} where V,_1[£(X))] is the expected sum of the remaining n — 1 obser-
vations with £(X) being the posterior joint distribution of W7 and W,. Similarly,
if the first observation is made on Y, then the expected sum of the n observations
is B{Y +V,_1[£(Y)]} with V,,_1[£(Y)] to denote the sum of the n —1 observations
when an optimal procedure is adapted. Then, the optimal sequential procedure

must be the decision rule which maximises the expected reward, that is,

Va(€) = max{E[X + Vo1 {{(X)}], E[Y + Vo {E(Y)}}
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where the expectations are computed with respect to the prior distribution £.
Bandit problems appear to have been first proposed by Thompson (1933,
1935) in sequential analysis for determining which of two drugs is superior. Bell-
man (1956) introduced the discounted Bayesian setting. Bradt, Johnson, and
Karlin (1956) gave us one of the early treatments of the bandit problem.
A generalization of the two-armed bandit problem is the N-armed bandit
problem which has as a solution the Gittins index. The bandit problem is solvable

only for infinite time horizon.

2.5.2 The Gittins Index

The multi-armed bandit problem is concerned with the question of how to dy-
namically allocate a single resource among several alternatives. A bandit problem
in statistical decision theory consists of N(N > 2) independent stochastic pro-
cess which represent arms (projects, machines or treatments.) that can be pulled
(chosen) in any order. Each time only one of these arms is selected. Each pull
from a bandit process results in a random reward. The problem for the deci-
sion maker is to find the optimal strategy that maximizes the expected values of
reward over an infinite time of horizon.

Bandit processes can be used to model problems where a sequence of choices
has to be made between a collection of fixed alternatives, for example, the schedul-
ing of jobs on a single machine and the design of sequential clinical trials, job
search and labour market analysis in economics etc.

In general, the decision maker faces the conflict between taking those actions
which yield immediate reward and those whose benefit will come only later. This
is an important characteristic of the problem. If the long-term performance is
important to the decision maker, not choosing an action which yields immediate
benefit may be justified if the gain of extra information about the projects (jobs
or treatments) is worth more than the immediate reward.

Suppose that there are N independent projects, each divisible into stages,
and only one project can be worked on at each time. Project i has state z;(t)
at time ¢t = 1,2..., for 7« = 1,2,...N. At each time ¢, one must operate

exactly one project. If project 7 is selected, it gives immediate reward R;(z;(t)),
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a function of the current state z;(t) of the chosen project 4, and its state z;(¢) then
changes according to a stationary Markov transition rule. The states of the other
projects remain frozen. The states of all projects are observed, and the problem
is to schedule the order in which the projects are operated so as to maximize the

expected present values of the sequence of immediate rewards, that is,

Ex {i atR(t)}

where 0 < o < 1 is a fixed discounting factor, R(t) denotes the reward gained at
time ¢t and 7 is the strategy used for choosing between projects. Gittins (1979;
Gittins & Jones, 1974) proved that the solution to this problem is to associate
to each project 7 an index v;(z;(t)), which is a function only of its state, and at
each time operate the project with the largest current index. Gittins’ index (see
Gittins, 1979) has the following form. Its numerator is the expected discounted
reward for a certain project up to the chosen stopping time 7, and its denominator

is the expected discounted time up to the stopping time 7:

(2.19)

where the maximization is over the set of all stopping times 7 > 1. Gittins called
his index a Dynamic Allocation Indez. 1t is interpreted as the maximum expected
discounted reward per unit of expected discounted time.
This index is sequential in the sense that it needs to be recalculated at each
decision point in order to guide the reallocation process. The theory of Gittins’
index, and more generally of any priority index, is based on the idea that the index
for each project depends on the past history of the given (or chosen) project only
and not on the history of other projects. Effort is allocated to the project with
the highest current index value.

Bergman and Gittins (1985) refer to two different versions of dynamic alloca-

tion index related to Pearson Index. These are given by (2.20) and (2.21):

Rpipaps — ¢1 — cap1 — c3pipe2
1—-(Q—p1)D; — p1(1 —p2)Dy — p1p2Ds

(2.20)
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The index given by (2.20) is for a three stage project, with final reward R, costs
c1, Co, c3 for stage one, two, and three respectively, probability of success of each
stage p1, poandps. D; denotes the present discounted value of one monetary
unit at time ¢; for 4 = 1, 2, 3. The numerator is the expected net profit and the
denominator expresses the discounted probability that all stages of the project
are implemented. The above can be approximated by the following index as the

discounting rate approaches zero:

Rpipaps — ¢1 — cop1 — C3p1D2

(2.21)
t1 + topy + t3p1po

One should observe that the Pearson index (2.15) and the index given by (2.21)
differ only in their denominator. However, there are differences between the

Pearson and Gittins indices and a comparison is made below.

Comparison of Gittins and Pearson Index

The multi-armed bandit problem can be thought of as a mathematical program-
ming problem. There are N statistically independent stochastic process. The
reward gained from the " process is denoted by R; := R;{z(t)}%,, a bounded
real stochastic process on (Q,F). F* = {F!,t = 0,1,...,00}, the information
process associated with arm 1, is a non-decreasing family of sub o-fields of F and
Q) is the sample space of the reward process. We also assume independence of
the IV reward processes, and that the expected total discounted reward is finite,

that is,

E) of[Ri(zi(t))| <o, i=1,2,...N.

=1

Selecting a process, say i, results in a reward R;{(z(t))}, a function of the state
z;(t) at time ¢ of the selected process. . The states of the other processes remain
frozen and yield no reward. The objective of the decision maker is to find the

spliced sequence which results in the maximum expected discounted reward. The

problem (Ishikida & Varaiya, 1994) is as follows:
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Problem 1

N o
Maximize E A R(zi (1)) Az (¢
e Y3 o R (0)An()
N
subject to Z Az;(t) =1, t=1,2,..., (2.22)
=1
Az;(t) €{0,1}, i=1,2,...,Nandt=1,2,...,  (2.23)
N
Ax(t) is \/fi(xi(t — 1)) — measurable, t=1,2,..., (2.24)
i=1

where the maximization is over Az(t) := (Azi(t), Azs(t),...,Azn(t)), and
Az;(t) takes value one if the project ¢ is chosen at time ¢ whose state is z;(¢) and
zero otherwise. Constraint (2.22) indicates that at any given time t = 1,2,...
only one project is chosen; the next constraint (2.23) says that projects can
not be chosen partially. Also, the indicator function Az(t) is dependent on or
measurable with respect to all the available information about the all rewards of
the projects up to most recent decision time ¢ — 1.

The Pearson index can have the following representation,
Problem 2

Mazimize Y _y;E(Ry), (2.25)
7=1

subject to Zij(Cj) <B y; >0 j=1,---,n. (2.26)
Jj=1

where E(R;) is the expected reward to be gained from project j and E(c;) is
the expected cost of the project j. As was mentioned earlier the solution to
these mathematical programs are the Gittins and Pearson Indices, which have

the following mathematical forms:

E[Net discounted reward up to stopping time T|process state at time ¢]

max : - — .
7>t  F[Discounted time up to stopping time T|process state at time ¢]

E(Net discounted reward |starting state)

Pearson Index = -
E(cost|starting state)

One difference is that the Gittins index is a function of time whereas the

Pearson index is not. The Multi-armed bandit problem, as an allocation problem,

41



is concerned with the sharing of limited resources. The resource which one is
allocating is one’s time or effort. This reflects that the Gittins index solves a
sequential selection problem since the optimization is with respect to time and
the decision maker is looking for that stopping time which maximizes the expected
reward per unit expected discounted time for a certain period. The allocation is
being varied in time to meet changing conditions.

The decision maker who uses the Pearson index is not concerned about this
type of maximization and selects projects without maximising the objective func-
tion with respect to time. Therefore, the Pearson index maximises the expected
reward instantly as opposed to Gittins index which maximises the expected re-
ward sequentially.

The difference is due to the principle of forward induction which in its simplest
form is termed a one-step look ahead policy. The decision maker applies one-step
look ahead policy when he compares stopping immediately with stooping after
one period. The Gittins index is understood as the solution to the following
problem:

In sequential selection, the decision maker has to think how far into the future
he is required to use a certain project in order to achieve the maximum attainable
reward up to the chosen time into the future.

The Pearson index is used to classify projects into two subsets, namely,

projects which will be developed and projects which will not be considered.

2.5.3 Search problem

An object is located in one of the n possible locations (n > 2). Let p; be the
prior probability that the object is in the location i, where p; >0 (1 =1,... ,n.)
and > p; = 1. The decision maker is allowed to search only one location at a
time. Let ¢;, ¢; > 0 be the cost to search location 7. It is assumed that when the
object is in location 7 it can be overlooked with probability ¢;(0 < «; < 1) for
1 =1,...n. The objective of the decision maker is to discover the object at the
minimal expected cost. One needs to devise a sequential search procedure which
specifies how the decision maker should choose at each stage which location is to

be searched next.
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The above problem has been approached as follows. Suppose that the location
J is searched first, and the object is not found. Then the posterior probability p

that the object is in location 7 is

—Pi%  fori—=1

py; =4 Pieitioms ore=J
i3

pi L

o +1; for v # j.

If the first location to be searched is j the probability that the object will be
found in the first search is p;(1 — c;) and the probability that the object will not
be found in the search is p;a; + (1 — p;). Let V(py,...,p,) denote the minimal
expected cost function. Then the optimality equation is given by

Vpr,---,pn) = min {e; + (psas +1 =)V (Pl Phy) }

where V(phj, ey p:;lj) is the expected cost of the remainder of the searching
process when an optimal procedure is adopted after the first search had been
completed unsuccessfully.

The strategy which minimizes the expected search cost (see page 20) is to
examine the locations in descending order of the following priority index:

6, = pi(1—ay)
Cj

A more generalized result is that the expected cost of the search is minimized if

the k' search of the location j is in place 7 4.e., 5*" in order, if among the numbers

pja?"l(l — aj)/cj, the (k, 7) is the ™ largest (Black, 1965).

Search theory and its applications

Assume that there are n possible projects. Project j corresponds to a location j
in the Search problem, for all j. Suppose now that the project j is divided into
two consecutive tasks, denoted by j; and j, and that the probability of success of
task j; is pj;, independently for < = 1, 2. In this case the expected cost ¢, of project
J can be expressed as c¢; = ¢ + pj;;cj,. Furthermore, the overlook probability
o represents whether the project will be reconsidered which we set to zero for
every project when the projects are not reconsidered. For simplicity, assume that

all projects consist of two stages each. Let all the project give unit reward. We
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wonder in which order projects should be attempted in order to minimize the

expected cost. Taking into account these changes the index becomes

+ 1.

5 = pi(1 — o) _ __Ppbj  _ PP — C1 — PjiCye
! G Cjy + Pji Cja Cjy t Pj1 Cj
This index gives the same rankings to a set of projects as the Pearson index for

a two stage project with reward 1.

2.5.4 The Secretary Problem or the Search for the Best

In the secretary problem, an employer will interview n candidates sequentially
in order to hire an individual to fill a vacancy for a secretarial position. After
interviewing an individual, the employer must decide whether to accept (and
terminate the process) or reject the current individual and continue the process.
Once a candidate is rejected the candidate is no longer eligible. The only infor-
mation available to the decision maker at any time is the relative rank of the
current candidate compared with the previous candidates. The decision maker
does not know how the current candidate compares with the candidates he has
not seen yet.

The decision maker in the secretary problem wishes to appoint a candidate
who ranks highly. The question is, when to take the positive decision of appoint-
ment. The difficulty related with this decision is its timing. If the decision is
made too early in the sequence, one is neglecting the possibility of good can-
didates not being considered. On the other hand if made too late, the field of

candidates remaining may not include the best candidate.

Maximization of the probability to appointing the best

One version of the objective is to maximize the probability of selecting the best
candidate when all n! orderings of the candidates are assumed to be equally likely.
Let V(r, @) denote the maximum expected probability of choosing the best item
just after the r*® interview when « is the relative rank of the r** candidate. The
next state of the process will be V(r + 1, b) where b is equally likely to be any one
of the values 1,2,... ,7 + 1. The probability that the best candidate is realized
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if the r*® candidate is accepted assuming best of those seen is given by

P(r) = P(offer is best of n|offer is best of first r)

1
_n_T
T
A dynamic programming approach yields the equations
r 1 r+1
Vir,1) = — 1,b 2.2
(r,1) max{n,rﬂgvm ,)} (2:27)
1 r+1
Vir,a) = T+1;V(T+1,b) (@=2,3,...,7) (2.28)

with V(n,a) =1 if & = 1 and 0 otherwise. Equation (2.27) equates the probabil-
ity of appointing the best candidate when r candidates have been observed and
not appointed and the r*® candidate having the first rank so far, V(r, 1), with

the maximum of the following probabilities:

P(r) = P(offer is best of n|offer is best of first r) = r/n, or

E{V(r + 1,b)|W,; r'"is rejected} where the expectation is with respect to the
ranking of the next candidate given W,, that is, the information for the

first r candidates and the r*® has been rejected.

Minimization of the expected rank

A different objective, yielding a second version of the problem, is to maximize the
expected utility which has value n—i when the best " candidate is accepted. This
maximization corresponds to minimization of the expected rank of the accepted
candidate.

Let V(r, ) be the expected utility of the optimal continuation when 7 can-
didates have been interviewed and the r*® has been found to have relative rank
a. Let Vo(r, @) be the expected utility if the r** candidate is accepted and the
interview procedure is terminated.

Now consider the probability that the candidate which has rank o among the

first 7 candidates has actually rank ¢ among all n candidates

45



Therefore the expected utility is

n+a—r

Vo(r,o) = Y (n—i)Pyi=n-—

=

n+1
Q.
r+1

Also, the expected utility of interviewing the (r + 1)** candidate having rejected
the first r candidates and then continuing in an optimal way is

1 r+1

ZV(T‘-’r—l,b)
r+1 P

In terms of Dynamic programming, we get:

r+1
Vir,a) = mw{%@&%;&TEZVU+L®} (2.29)
V(n,a) = n—a (@=2,3,.. _, r). (2.30)

The optimal procedure is to continue the interviews if V(r,a) > V,(r, @) and to

stop when V (r, @) = V4(r, @).

2.5.5 Dealing with Random rewards

Projects with equal expect rewards need to be ranked in a different way than the
Pearson index if the decision maker has to allow for the fact that these projects
might realize different gains. Suppose, that the reward n-stages before the end
is equal to 7. At the next stage, the information arrives that this project will
be worth: either {r — §} or {r + ¢} with equal probability. Let us impose the
condition that 0 < § < r. If one is trying to maximize the expected reward, or
maximize the probability of gaining the highest reward, which selection strategy
should be followed?

Denote by Fi(r) the maximal expected reward s-stages before the end of the

project. Then, one can write the following optimality equation
1 1
F,(r) = max |r, §Fs_1(r -4+ EFs_l(r +9)| = max|[r, EFs_1(r)]

with terminal condition Fy(r) = .
The optimal policy is either to choose the project with reward r or to choose
both projects with rewards r + 6 and r — 4, i.e., the maximal expected reward is

the same whichever policy is followed.
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