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Abstract

Sequential evaluation and decision problems must frequently be solved under 

uncertainty. The sequential nature of activities like research, development or 

exploration, requires optimal funding criteria that take into account the fact that 

further funding decisions will be made throughout the future.

In this thesis, we examine several sequential and parallel strategies for R&D 

project selection and capital budgeting problems. Some of these problems have 

as a solution a prioritisation index. We pay particular interest to the Pearson and 

Gittins indices. We relate the Pearson index to the Neyman-Pearson lemma and 

state clearly the kind of problems the Pearson index solves. We reformulate this 

problem using non-linear utility function and show how to solve it for different 

utility functions.

These kind of indices may need to have a forecast for R&D rewards or costs. 

We discuss adaptive prediction, we derive the forecasting rule for various data 

generating processes, and study the behaviour of unconditional and conditional 

forecast variances. Furthermore, we study the connection of R&D projects with 

real options theory, and discuss the suitability of this methodology and its fun

damental principle of economic rationality or no-arbitrage.

Finally, the multi-armed bandit problem is introduced and is reconciled with 

the option pricing. We prove that an additional condition is required for an index 

policy to be optimal when two projects are selected simultaneously with criterion 

the sum of their indices to be maximum.
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Chapter 1

Introduction

The objective of this thesis is to examine issues related to various decision ana

lytic approaches to sequential choice and implementation of projects with special 

motivation from and application to the Pharmaceutical industry. More specifi

cally we study prioritisation indices such as the Pearson index (Pearson, 1972) 

and the Gittins index (Gittins, 1979), the problems solved by these indices and 

other statistical and financial aspects related to these problems.

These indices can have an application to prioritize or finance Research and 

Development (R&D) projects, which should be understood as multi-stage long 

term financial investments meaning that investment decisions are made sequen

tially, the initial investment may be very large, and they are characterized by 

high uncertainty and high rewards when they are completed successfully. For 

example. Pharmaceutical research and development (Gittins, 1996, 1997) has a 

time scale of at least 15 years or more, where costs are incurred, but it can be 

easily be more than 30 years. Also, no financial benefit accrues until a drug 

is marketed. Thus, great uncertainty characterizes the duration of the research 

and development process and the ultimate technical success or failure of research 

process.

In Ghapter 2, we begin by introducing the R&D selection problem and dis

cuss the existence of optimal priority index rules. We study some priority indices 

which although they originated from sequential decision process problems, have 

an application to portfolio selection problems. We discuss the capital budgeting 

problem as a Linear programming problem and its relation to the knapsack prob
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lem. The innovation of this chapter is that we relate the Neyman-Pearson lemma 

to the Pearson index and provide a comparison of the Pearson index with the 

Gittins index. We also examine sequential decision processes like the secretary 

problem and the search problem.

In Chapter 3, we review some Portfolio models. We develop a stochastic 

resource allocation model based on an extension of the new interpretation of 

the Pearson index given in Chapter 2. We maximize non-linear utility functions 

(exponential and negative exponential) and assume the Normal distribution for 

random rewards. Part of the solution of these optimization problems is to study 

the Kuhn-Tucker conditions and the quadratic knapsack problem.

In Chapter 4, the theme is adaptive prediction. Future rewards and costs 

change continuously and their actual magnitude determine the ranking of each 

project. Because of the high uncertainty in the duration of the R&D procedure, 

future rewards need to be predicted based on the information gained by observing 

Market conditions up to any current time. We assume that the data generating 

process is specified by an Ito stochastic differential equation. Examples are Ge

ometric Brownian motion, Ornstein-Uhlenbech process etc. We want to predict 

the value of the process some steps ahead, at a certain time point in the future. 

We derive the forecasting rules for this kind of prediction for each of these pro

cesses. We also study the behaviour of conditional and unconditional variance of 

forecast. An example of forecasting system with autoregressive conditional het- 

eroscedastic model is given. We present the theory of Option pricing (Martingale 

approach) and explain its relation to forecasting.

In Chapter 5, we discuss the theory of Real Options. Real options is the 

application of financial option pricing theory to real investment, such as the 

valuation and management of an R h D  project, taking account of flexibility on 

resource allocation decisions. We compare the real option approach and the 

decision analysis approach to the capital budgeting problem. We give emphasis 

to the no-arbitrage condition and discuss its usefulness. We set up an example 

to explain the concept of option value and how it arises due to strategic options.

In Chapter 6, the Multi-Armed Bandit problem is introduced. We prove that 

it is optimal to add two Gittins indices and select two projects simultaneously
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if the sum of their indices is maximum under certain assumptions. We reconcile 

the Multi-Armed Bandit problem with option pricing.

In Chapter 7, we summarize the results and discuss future lines of research.
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Chapter 2

The R&D Selection Problem

2.1 Introduction

In this chapter we discuss several sequential and parallel strategies for the R&D 

project selection and capital budgeting problems. Evaluation and selection of 

R&D projects is done to aid the best use of limited resources, since development 

of the set of all available projects is not usually attainable.

We focus especially on ranking indices, and more specifically on the Pearson 

Index (Gittins, 1996; Senn, 1996, 1997, 1998), which is used as a simple method 

for evaluating R&D projects in the Pharmaceutical Industry. It is defined as 

the ratio of expected net present value of the reward of an R&D project to its 

expected development cost. This productivity index (Regan & Senn, 1997) is 

used by practitioners as a measure of project value, and also as an indication of 

the relative of the relative values of available projects (ranking index).

The Pearson Index is defined (and used) without any reference to the R &D 

manager’s objectives. For example, when the manager’s goal is to maximise the 

net present value of the expected profit stream from any project undertaken, 

it is not clear why one should try to maximize the ratio of expected reward to 

the expected cost, and not, for example, to seek maximization of their long- 

run difference. In this chapter we address the issues of which project selection 

problem the Pearson index solves, and what is its relationship to Portfolio theory 

and resource allocation models.

Another relevant question is how the selection strategy for prioritisation of
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projects would differ if the optimisation were to be implemented sequentially over 

time. Sequential decision problems are formulated as optimal stopping problems 

and can have an application to the decision making problem of whether to con

tinue an R&D project which will gain an uncertain reward, or to abandon it. We 

consider a class of sequential decision problems, such as hiring a secretary, selling 

an asset, the two-armed bandit problem, search problem etc, and show how their 

solutions are related to the Pearson Index.

The R&D and capital budgeting problems can be related to statistical decision 

theory, for example it provides us with search theory application in the capital 

budgeting problem. We also present an interpretation to the Pearson Index using 

the Neyman-Pearson lemma. The likelihood ratio test is optimal for choosing 

between two hypotheses in the sense of maximising the power of the test for a 

specific significance level. Likewise, the Pearson Index can be seen as the optimal 

rule for selecting a subset of projects under a budget constraint.

In the next section the R&D selection problem is discussed and emphasis is 

given to the parallel and series selection methods. In section (2.3) the Capital 

budgeting problem is studied. Then section (2.4) refers to Pearson index, its 

origin and related problems. Sequential decision processes are examined in the 

section (2.5) and a conclusion is presented in the last section (2.6).

2.2 The R&D selection problem

In this section, an introduction is given to parallel and sequential strategies in 

R&D projects. It is shown how the R&D project selection and capital budgeting 

problem can be related to optimal statistical decision theory. The R&D selec

tion problem is concerned with how to evaluate and identify the best subset of 

projects among several proposed ones under some constraints. The argument 

under consideration is to whether tasks should be proceeded in parallel or in 

series.

The parallel selection method is addressed with the following question. Sup

pose that G is the set of the available projects. How should one separate these 

projects into two sets in order to decide which projects will or will not be devel
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oped? To get an effective analysis of the decision problem of choosing projects, a 

criterion to choose amongst projects is needed. When the target is to maximize 

some measure of reward or utility subject to a budget constraint, the problem 

may be formulated using a linear programming approach.

In the series system, the projects are selected in a sequential manner, that 

is, try one project and work on it. Then observe the result, and choose another 

one and so on. To model problems which involve sequential decisions over time, 

assuming that only one task can be undertaken at a time, a dynamic programming 

approach is used. Therefore the optimization is with respect to time.

To connect the R&D selection problem with optimal statistical decision prob

lems the following problems are considered in this chapter. These are “the secre

tary problem” , “discrete search problems”, and “the job sequencing problems”. 

A characteristic of such sequential decision problems is that the decision maker 

must make an irrevocable choice from a number of applicants (jobs or tasks) 

whose values are revealed only sequentially.

Parallel and Series systems of tasks are considered. The problem is to de

termine an optimal sequence to implement these projects so as to optimize an 

objective function. In some cases the solution to these optimisation problem is 

an index.

Methods like ranking procedures, scoring or rating methods, decision analysis 

and optimization techniques such as linear programming and dynamic program

ming were used in the past. Different scenarios could be of interest such as a 

series system of n tasks, a parallel system of n alternatives etc. Some structures 

are considered in the next section.

2.2.1 Probability structure of different strategies 

A Series System

Consider, for example, an R&D project which is composed of several tasks. The 

first case is a series system of tasks where the tasks are performed sequentially 

over time. One stage is implemented at each time and the next task is initiated 

if and only if the current task is completed successfully. The selection process is 

terminated as soon as one of the tasks is failed. If there are n possible independent
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stages and the general stage j { j  =  1, . .  .n) has a probability of success pj then, 

the probability of success of the system is:

n

Probability of completing the procedure =
j=i

Parallel system  of alternatives

A more complicated system of sequential selection processes than the series sys

tem is the parallel system of alternatives. One stage can be thought of as parallel 

system of alternatives, that is the situation in which several alternatives trials 

can be attempted until the first success is achieved (see Figure 2.1) and thus a 

stage is completed.

Cl
success

failure
1 - P i success

failure

Cj success

failure

Figure 2.1: Decision tree for parallel system of alternatives

In each stage, the decision process continues until one of the alternatives is 

completed successfully. Given the probabilities of success pj of the general stage 

j  for j  =  1, . . .  n, the probability of success of the system is given by

n

Probability of completing the procedure =  1 — YJ(1 — P j ) .

j=i

2.2.2 Expected cost structure of different strategies

Let 7T =  (tti, 7T2, . . .  ,7Tn) deuote an ordering strategy, where vr̂  G { 1 , 2 , . . .  , n} for 

i =  1, 2, . . .  ,n,  and when nj =  i, the ordering strategy tt requires the decision 

maker to undertake task i at the stage.
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The expected total cost E(c(7r)) in a series system is given by

b=i
E ( c ( 7t ) )  =  +  y ]

i = 2

which is dependent on the order tt =  (7ri,7T2 . . .  ,7t„) of tasks where P t̂ . and 

are the probability of success and the cost of task s .  It is not difficult to prove 

based on interchange argument that the expected cost is minimized if and only 

if the order of tasks is arranged in the order of their increasing ratios Cg/(1 — P s)

i . e . ,  start with the task with lowest ratio (Ben-Dov, 1981)

^  (2 .1)
1 -  Pi 1 -  P2 1 -  Pn

To show how the interchange argument yields ordering relations, we have:

Let the expected cost of ordering strategy tt =  (7ri,7r2... ,7r„) denoted by 

E { c (7Ti ,7T2 • • • ,7T„)} be

E {c(l, 2 , 3 . . .  , n) }  =  Cl +  C2P1 +  C3P1P2 +  . . . +  CnPlP2 ■ ■ - P n - l -

Now for the expected cost for ordering strategy tti =  2, 7T2 =  1, tts =  3 , . . .  7t„ =  n

E{c(2, 1 , 3 . . .  , n )} =  C2 +  C1P2 +  C3P1P2 +  . • • +  CnPlP2 ■ • - P n - l -

Suppose that the least expensive sequence is the first one. Then, we have:

E {c (l, 2 , 3 . . .  , n)} <  E{ c ( 2 , 1 , 3 . . .  , n ) } .

Therefore,

E{ c ( 2 , 1 , 3 . . .  , 77.)} — E {c (l, 2, 3 . . .  , n )} =  C2 C \P 2  — C\ — C2 P 1 >  0. (2.2)

From (2.2) we get:

(2.3)
1 -  Pi 1 -  P2

Now suppose we interchange any two adjacent elements m and m +  1 of the 

original sequence. Similarly we get

E {c(l, 2 , . . .  , m — 1, m +  1, m, m +  2 . . .  n)}  — E {c(l, 2,3 . . .  , n)}  =

P 1P 2 • • - P m —l(Cm+l T  (^mPm+1 (^m+lPm) ^  0- ( 2 .4 )
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From (2.4) we get:

m =  (2.5)
1 — Pm 1 ~  Pm+1

Clearly, if (2.5) holds then minimum expected cost occurs when the tasks are 

arranged in the order of their increasing ratios Cg/(1 — Ps) ratios.

Alternatively, the expected cost E(c(7t)) for a parallel systems of alternatives 

(Ben-Dov, 1981) is given by:

' i - l

E(c(7r)) =  c,, +
i = 2

JJ(1 - P ttj) 
ij=l

The cost is minimized if and only if tasks are chosen with the following criterion,

(2.6)
Pi P2 Pn

that is, the tasks are ordered by increasing values of the above index. Comparing 

results (2.1) and (2.6) it is concluded that the minimization of the expected cost 

in parallel and sequential scenarios is the ratio of the cost to the probability of 

success or the ratio of cost to the probability of failure of the task.

Therefore a ratio criterion gives the optimal solution to optimization problems 

with either series or parallel system structure.

2.2.3 Existence of optimal priority index sequencing rules

In this section, examples of sequencing rules are presented. Suppose that there are 

n alternatives tasks or jobs. There are n! possible ordering strategies. Parameters 

which might be taken into account are the probability of successful completion 

of each stage, the completion time, the cost of the stage, the discounting factor 

and the reward obtained upon the successfully completion of the stage.

Job Sequencing Problem

In the job scheduling problem (Walrand, 1988), there are n jobs that require 

independent random service times 5 i , . . .  ,5„, respectively. A single server pro

cesses these jobs, one at a time, non-preemptively. That is, once a job starts,

18



it cannot be interrupted until completion. The parameters associated with each 

job j  are the processing time tj, that is the time at which the processing of the 

job j  is completed (1 < j  < n) and the delay cost rate Cj which is paid for time 

interval 0 < t  < t j  for each j  =  1, . . .  , n. The cost of the job j  is Cj x tj where Cj 

is a positive constant. The sum Cjtj is called total weighted flow time.

The problem is to flnd in which sequence the jobs should be processed so as 

to minimize the expected weighted flowtime

3

One should note that the value of the expected weighted flowtime depends on 

the order in which jobs are processed through the tj.

It can be shown based on interchange argument that the total expected 

weighted flow time Cjtj is minimized if the jobs are processed in decreasing 

order of the following index ôj,

4  =  Ê{5.)

Rothkopf (1966) incorporated a continuous discount rate factor /? (0 < /5 < 1), 

for the cost Ci paid at future time t. Thus the present value of cost Ci paid at 

future time t is Cj exp(— and he derived the following priority index as an 

extension to the above index:

ÜÔ —
1 -  ■

Rothkopf and Smith (1984) proved that there are no undiscovered priority 

index solutions to the job sequencing problem. The only two cases are:

1. the delay cost function is linear kj +  Cjt, i.e., the cost of delaying a task is 

proportional to the length of the delay,

2. exponential delay cost function kj +  Cj{l — exp(—rt)} /r ,

where Cj indicates the cost of deferring the completion of task j  until time t >  0, r 

is the discounting rate and kj is the constant cost for task, for all j  =  1, . . .  n.
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D iscrete Search Problem

In the discrete search problem (DeGroot, 1970), an object is hidden in one of n 

possible locations. We assume that the prior probability that the object is at the 

location is Pj Ç^Pi =  1). We also denote by aj  the probability that the object 

will not be found in a particular search of the location j  even though the object 

is actually in location. This probability is called the overlook probability and 

remains the same for every search of location j .  A cost Cj must be paid for the 

search of location j .

The objective is to minimize the expected search cost of the strategy until the 

object is found. The solution to the discrete search problem is to examine the 

locations in decreasing order of the index

& =  M L lM .
Cj

The cost Cj can be replaced by tj, the time taken to search the location j  if 

the objective is to minimize the time spent to identify the hidden item rather 

than the total expected search cost.

R& D P roject Selection Problem

According to Chun (1994), Dean (1966) appears to be the first who considered 

the optimality of sequencing strategies in terms of the development cost Cj and 

the probability of success Pj . He considered a series system model and he derived 

the index

h

which is the same result as the index (2.1).

Joyce (1971) examined a similar problem in which he assumed that a research 

project consists of several sub-projects. Each sub-project must be successfully 

completed for the total research project. Assume that there are n alternative 

approaches for task i denoted by 77̂ 2̂1 •• • Let q j  be the cost of the

alternative of the task and Pij  is the probability of its success. Let c% 

be the cost of carrying out the alternatives in the order 7rî 2; • • • ’,7n,n until

20



one succeeds or until all have been tried. The expected cost c% of the task is 

minimized if its alternatives are pursued in the order of increasing value of their 

Q j/p ij ratios, that is if

P h j P i, j+ l

then Ci is minimized.

Kwan and Yuan (1988) proposed an index for a parallel system of investment 

alternatives, that is, there are n mutually exclusive projects and project j  is 

chosen. Let Xj be the reward if the project is successfully completed and yj is 

the benefit otherwise. The probability of success of the project j  is equal to pj. 

Projects are chosen sequentially (see Figure 2.2), and the objective is to maximize 

the expected net present value of cashflow of the chosen project. Projects are 

chosen in decreasing order of

4  =  { 3̂ ~ y j) — “ •
Pj

This is an index for sequential choice of projects which denotes which project 

should be undertaken first.

1 -  Pi
Vi

Figure 2.2; Sequential choice of projects

Series system  of tasks

Chun (1994) considered a series system of tasks in the R&D project selection 

problem with ordering strategy tt =  {tti, 7T2, • • • , 7t„}. His objective was to derive 

a priority index in order to find the optimal ordering strategy which maximizes
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the expected discounted reward T{ tt) which, in this case, is equal to.

i=l

i- l

L j = o

where the empty product is taken to be one, the reward R{'Ki) is gained if stage i 

is completed successfully, with discounting factor j3 and time taken to complete 

the stage j, is then, the priority index is,

g -
■ l - p i ( l + / 3 ) - «  •

The optimal policy chooses projects in descending order of the above index.

Precedence R estriction

Now, suppose that there are two tasks j  and k in a, series system of tasks and 

that task j  must precede task k. If, also, the task k directly follows task j  then 

the two tasks can be thought of as a single joint task i as far as the ordering is 

concerned. Chun (1994) proved that the ordering index of the single joint task i 

is given as follows:

^  R{TTj) +Pj-(1 +  P)-^Œ{7Tk)
1 -  +  /?)-(b+(^)

and projects are chosen in the descending order of ôi.

Parallel System  of A lternatives

Chun (1994) studied the problem for parallel system of alternatives with objective 

to maximize the expected discounted reward T ( 7 t) ,  which is equal to

i=l

i-l

U=o
R{ni).

The priority index related to this optimization problem is given by

PiR(7T^)(l + /))-*'
6i = i =  1. , n . (2.7)

l - ( l - p j ) ( l  +  /3)-‘< 

where the optimal strategy is to perform tasks in descending order of the above 

index.
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Parallel system of alternatives occurs when several projects are chosen sequen

tially, one at each time until the first success is achieved. The expected present 

value of reward for any selection strategy t t  is expressed as follows

n ^ )  =  E
z-1
r i ( i  - pttj)

U-o
[p ,̂R{7Ti) -  Ci] exp

where = 0 .

Chun and Platt (1992) showed that the appropriate priority index is

'^•= -  e x p { - D t , j  * =  (2.8)

exp(-/?ti)

Priority index (2.8) can be derived from (2.7) when (1 +  and R{7Ti) are 

substituted by exp{—/3ti) and {pT̂ .R{7Ti) — cJ  respectively.

The above example is very interesting because it shows us how the functional 

form of priority index changes when the discounting factor (5 is taken into the 

account. It could be the case that the priority index will give different ordering 

results if undiscounted values for rewards and costs are used compared to the 

ordering strategy one would get, if discounted values are used and the discounting 

factor is equal to zero.

2.3 Capital Budgeting in a firm

In the previous section we discussed how priority indices can solve parallel and 

sequential selection problems. In this section an account is given how project 

selection problems are formulated using a mathematical programming approach, 

with the main emphasis on linear programming .

A firm has available an amount C  of investment capital. There are n differ

ent projects which are competing for the available funds. Project j  requires an 

investment of Cj and yields future profit which has present value Rj.  A project 

must either be taken (lincenced out) or not. We introduce a binary variable pj 

for each project j  to denote whether the project j  is selected or not. Let

1 if project j  is selected,
Vj  =  ]

0 otherwise.
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The objective is to maximize the total discounted return Z  =  and

spend exactly an amount C. Furthermore, Cj > 0 and Rj >  0 for every j  =  1 . .  .n. 

The solution to this project selection problem is determined by the following 

integer linear programming problem

n

Maximize ^  yjRj  (2.9)
j=i

n

subject to =  C j (2.10)
;=i

E {0,1} for j  =  l j - - j Ti .  (2.11)

However, trying to maximize the objective function with the equality constraint 

is not only unrealistic but it may be an infeasible problem if no combination of 

the available projects exist such that their total cost is equal to C.

Let us forget the constraint (2.11) and consider the linear programming prob

lem:

n

Maximize VjRj
3 ^ 1

n

subject to ^  UjCj =  C j

3 =  1

Consider also its dual program, that is 

Minimize Cx

subject to xcj >  Rjj j  =  1, • • • , n (2.12)

where x denotes the achievable profit per unit cost. From (2.12), one can conclude 

that X > Rj /c j  for all j  and therefore the value of the objective function U{C)

at the optimum point as a function of the available capital C  is given by

t / ( C 7 ) = m æ c { ^ } a

A different approach to the capital budgeting problem is to reformulate the 

above problem with inequality constraint Vj ĵ —

Being able to spend less than the available capital, that is the budget con

straint becomes an inequality, the optimal solution which maximizes the benefit
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might be such that the projects chosen did not exhaust all the available resources. 

However, if, the projects can be chosen in any rate between zero and one, which 

means that yj is not restricted to values 0 and 1 only, then the optimum solution 

spends all the available funds if the rewards gained are increasing function with 

respect to the intensities of the available projects. The mathematical formulation 

is a linear programming problem with bounds

Maximize yjRj

n

subject to ^ 2  Vj ĵ ^  C" j  =  1, • • • , n
j=i
0 < y j  < l  j  =  1, • • • ,n

The solution is given by comparing the ratio Rj /c j  and 1, since yj must be 

bounded by 1.

M ultiple stage projects

Suppose, now, that each project has k multiple stages, which must be imple

mented in some order with success and the reward is gained at the end of the last 

stage. Let Cij be the capital required for project j  in period i. The indicator func

tion for selecting project j  is yj. Now, we introduce an indicator function for each 

stage of a given project. Let yij be the binary variable which is 1 when the stage 

i of the project j  has been implemented and 0 otherwise. To consider the time 

sequencing for flow of funds in each project, consider the following mathematical 

program. To maximize the profit

Maximize ^  yjRjy

n k

subject to ^  X )  VijCij < C
j = l  i = \

V i j > y j  i =  l r - , k  j  =  1, • • • ,n

ŷ j =  0 o i l ,  i =  j  =

yj =  O oi l  j  =  1, • • • ,n.

This formulation requires that for a given project j  whose indicator function is 

yj, its reward Rj  is gained if all the stages i happen with total cost X lL i Qr ^
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project j  is chosen, if only if all stages can be funded as it is required by constraint 

Uij > Uj- If not all the stages i happen for a given project j , then some yij are 

equal to zero and therefore yj =  0, that is the reward Rj  is not gained.

Groups of projects

Consider the situation where there is a set S  of candidate projects, and each 

project consists of K  stages. S  is partitioned into disjoint subsets 5 i, 52, • • • , Sk,  

where the subset Sj are all the projects that their first j  — I stages have been 

implemented. Let us suppose that there is a collection of different budgets with 

amount Cj for j  =  1, . .  . K  where Cj is the budget investment for all projects 

which their next stage to be implemented is the stage. To maximize the profit, 

we have:

n

Maximize yj Rj
j=i

n k

subject to X I  ^
j =  l 

n

^  ^ Uij Q j  ^  Ci i 1 ,  ■ ' ' , ^  

j=i
Uij > y j  i =  1, • • • , /c j  =  1, • • • , n

yij = 0 or I i = j  =

yj = 0 or 1 j  =  1, • • • ,n.

The first constraint says that the total budget available is equal to C.  The sec

ond constraint Ylj^Sk — Q  determines the budgets of each subset (category) 

of projects denoted by 5% for all 2 =  1, . . .  , %.

It can be easily seen that in every different project selection scenario, a differ

ent linear programming problem may be constructed. However, people in practice 

found it more convenient to have a basic approach a productivity index, namely, 

the Pearson index (Regan & Senn, 1997).
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2.4 The Pearson Index

The Pearson Index (Pearson, 1972) was suggested as a ranking formula in R&D 

projects by Pearson in 1972. It was argued that all the indices existing before 

Pearson were giving misleading results because they failed to take into account the 

multistage characteristics of R&D projects. Therefore, it seemed to be necessary 

that the new index would be based on a decision tree type approach, i.e., by the 

technique of backward induction (see, e.g., Raiffa 1968), we calculate the value 

of the project at the first decision of the tree. Examples of indices (see, Pearson 

1972, p. 69) before Pearson index are:

'’’ T .a r & .r  “ ''

where Pt and Pc are the probability of technical and commercial success respec

tively, p and c are the price and the cost, V  and L are the sales volume per year 

and the life of the product respectively, (1 +  i) is the discounting factor and 

refers to the net income in the year of the project’s life.

To explain the definition of the Pearson Index, consider the following Figure

(2.3). The general form of the Pearson index is the ratio of the expected net

R  — Cl — C2 — C3

i  -P3

- C l  — 02
I -  P iInvest

- C l

JDo not invest

— Cl — C2 — C3

Figure 2.3: Pearson Index decision tree for a three stage project

reward to the expected development cost. Consider a project with n stages with
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fixed order, where stage i has cost q , probability of success Pi given success at the 

previous stages and, if successful at all stages, final reward R. Thus, the decision 

to invest to an R&D project consists of a series of cash inflows and outflows. 

The Net Present Value (NPV) rule of an investment is the difference between the 

net present value of all cash inflows rate, and, the net present value of all cash 

outflows, everything discounted at some interest rate. Assuming that the reward 

R  all costs Ci for z =  1, . . .  , n are discounted and applying the NPV rule that 

the expected value of the decision to invest is equal to the expected value of the 

benefits less the expected value of the cost, we get:

n n z—1
Expected net reward =  R Y [  Pi — ^  Q Pj .

1=1 z=l j=0

The expected cost of the decision to invest is:

n z—1
Expected cost =  ^  Q JJPj-

i=\ j=Q

Pearson Index is defined to be:
n n z—1

z=l z=l j—0
n z—1

z=l j=0

(2.15)

where po =  1. Its meaning is the expected net reward per unit expected cost.

Suppose that one has to value the decision to invest in an n-stage project in 

which the first k — 1 stages have been implemented. We denote the Pearson index 

by P„(z) for z =  1, . . .  , n — 1, where z indicates the next stage to be run

n n z—1

“ E  (̂ Tl%
n / 7 \  i = k + l  j = k

=  ----------------- n------ — I-----------

i = k + l  j = k

An important property of Pearson Index is its higher ratio property, that is, 

Pn{i) >  PnU)  for any z > j .

Pearson concluded that:
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1. Simple rank indices will inevitably lead to a “bias” in the calculation of the 

expectation from a particular project.

2 . The “bias” will increase as the degree of uncertainty of the initial stages of 

the project increases.

3. The “bias” can be removed by the use of a modified form of ranking index 

based on a decision tree type analysis.

Pearson did not explain why his index should have a ratio form and did not 

give any definition of the term “bias”. Also, he did not account at all for its 

higher ratio property and how it is related to its portfolio selection problem. 

An account for these two issues will be given later. The Pearson index solves a 

selection problem subject to linear constraint of the type of Knapsack problem 

(Martello & Toth, 1997).

Pearson derived his index by folding backwards a simple decision tree (see 

Figure 2.3) and as a result he derived an index which is based on a net present 

value rule. It is well known that NPV rules and other discounted cash flow 

techniques for capital budgeting may be inappropriate to build a portfolio of 

research because they may favour short term projects in relatively certain markets 

over long term and relatively uncertain markets. This will not happen in a 

dynamical model in which uncertainty unravels over time creating flexibility for 

decision makers, who behave optimally (in some sense) at each point in time.

Flexibility has a value which should be quantified. This flexibility is due to 

variability of future reward and costs. Stochastic dynamic programming is a pos

sible solution to the problem of quantification of flexibility. In the Pearson index 

case, one should note that there is variability in rewards and costs. The proba

bilities of the Pearson index refer to technical success and not to the uncertain 

future payoffs of the R&D project.

In order to build an appropriate framework to value such risky R&D projects, 

a model is essential to give us an idea how the information about the future value 

of the project evolves. The framework provided by the theory of real options can 

price a project in a better way a than the Pearson index.

Real Option is the application of Financial option theory applied to real in-
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Invest now

- V
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Defer Defer
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Invest

Defer

Decline

Figure 2.4: Decision tree with option value

vestment such as the valuation and management of an undeveloped oil field or 

an R&D project. Given an optimal way to make decisions at some future time 

t, the decision maker makes a decision in such way that the future decisions will 

be made in the given optimal way.

Consider the Figure (2.4). The decision maker has three possible choices. 

These are to “invest now”, “defer” the investment and “decline” the investment. 

The decision to “invest now” yields expected reward px +  qy, where p is the 

probability to get reward x and q { =  I — p) is the probability to get reward y. 

This decision has cost V.  Denote by Ü,q the value associated with the decision to 

invest now or never, i.e., the option to delay the investment decision whether to 

invest or not is not available. We set

Do =  max {px +  qy — V , 0 ) ,

that is, the maximum between the net present values of the two decisions, namely, 

the decision to invest now and the decision to reject the project. Denote by Fq, 

the value of the opportunity to invest now at time t =  0 or later at time t  =  1.
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The “defer” option costs Q. We set

Fq =  max (NPV of the decision to invest now , NPV of the decision to invest later) 

=  max F q y - V ,  Eo(Fi) -  q |  ,

where Fi is the random variable which denotes the value of the decision of type 

“invest or not” at time  ̂ =  1 and Eo(Fi) is the expected value of Fi given the 

information at time t =  0. All future values are discounted at rate r. We define 

the random variable Wq =  Fq — Qq to be the option to postpone the decision to 

“invest now” or never. The option to postpone the decision to invest has value:

Wo

0 ii px F qy ~ V  >  ^ ^ E o (F i)  — Q > 0

~  Q ~  +  92/ — if (î+ôEo(Ei) — Q >  px F qy - V

(P^Eo(Fi) -  Q otherwise.

The weakness of the Pearson Index which is inherent in standard NPV approach 

is in the treatment of the contingent cash flow and values arising from implicit 

or explicit ‘options’ which arise as a project evolves. The option to postpone the 

decision to invest is a random variable and it depends on the level on uncertainty 

and how it is resolved in the future.

To discuss in more depth the concept of options, a sequential decision frame

work is needed to model the uncertainty. For the analysis of the next section, the 

concept of contingent cash flows is ignored, in order to study which problem the 

Pearson Index solves. In the next section, the relation of the knapsack problem 

and the Pearson Index is studied.

2.4.1 The knapsack problem and the Pearson index

The classical knapsack problem is to pack a knapsack of integer volume V  with 

objects from K  different classes in order to maximize profit. There are K  different 

classes, j  =  1 , • • • , iF, and each object from a given class j , consumes Cj integer 

units of the knapsack and produces profit Pj. We also assume that the class j  

consists of bj items (j =  1 , . . .  , iF).

The problem has a simple solution: fill the knapsack entirely, if possible, with 

objects from class j  that has the highest profit to volume ratio Pj/cj .  If the
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knapsack volume ratio is not an integer multiple of the object volumes, then 

the problem can still be solved with dynamic programming. In terms of linear 

programming, the Knapsack problem is formulated as follows:

Let yj denote the number of items selected from class. The 0 — 1 Knapsack 

problem is

K

Maximize Pjyj

K

subject to '^^Cjyj <  V,
j=i
Vj G {0 ,1} J =  1, ' • •

where, yj is 1 if j object is selected and 0 otherwise. Suppose now, that one can 

select up to bj items for the class. Then, we have

K

Maximize Pjyj
j=i

K

subject to '^^Cjyj <  K,
3 = 1
0 <  <  bj j  =  1, • • • ,X ,

yj integer j  =  l , - - - , K ,

and is known as a bounded knapsack problem. We can now relax the constraint 

that yj {j =  . . .  , K )  are integers and have the continuous version of the Knap

sack problem, i.e., we are allowed to choose items partially, that is:

K

Maximize Pjyj
i=i 

K

subject to ^  y->
j=i
0 <  2/j < 1 j  — I, - ■ ■ , K.

Its solution is given by:

Order the items according to decreasing values of their ratios, namely, profit per 

weight. The items are inserted consecutively until the first item, s, is found which 

does not fit. This is called the critical item s =  min{ i  : Cj >  K}. Then the
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optimal solution is given by:

ÿj =  l  for j  =  1, • • • ,s  -  1

F; =  0 for j  =  s +  1, • • •

Vs where V =  V -  9 -

The ranking property gives the solution to the selection problem given the linear 

equality constraint. It is obvious that all the above wholly or partially chosen 

projects, have equal or greater ratio than the critical item. This property can be 

found in any mathematical program of the form (Zipkin, 1980),

Maximize  Rj {yj)

n

subject to ^ 2  Uj ^ B  7/̂  >  0 j  =  1, • ' • , n 
j=i

provided that, B > 0, and each : R  —)• R  is continuously differentiable and 

strictly concave.

The Pearson index can be thought of as a critical ratio for the selection prob

lem. If one wants to select a subset of the available projects in a way which 

maximises the total expected net return of the selected projects given a fixed 

total expected cost of the selected projects, then, this can be achieved with an 

index of the form

E i N e t R e w a r d )  ^  ^ (g .16)
E{cost)

where A is constant.

2.4.2 Neym an-Pearson Lemma

A similar constrained maximization problem occurs in the Neyman-Pearson the

ory of hypothesis testing (Berger, 1980).

A test of a statistical hypothesis is based on the evidence of the observed data 

X. A decision has to be made whether to reject Hq, the null hypothesis under 

consideration, or to accept it. Rejecting Hq when it is true is called a Type I 

error, and not rejecting Hq when it is false is called a Type II error. The sample 

space S  can be partitioned into two regions, W  and S  — W,  such that whenever
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X falls in 1/F(critical region), the null hypothesis Hq is rejected, and whenever x 

is in region S — W,  Hq is not rejected.

For a simple hypothesis Hq, let P { W \ H q) be the probability of committing 

a type I error. For a simple alternative hypothesis Hi,  let P { S  — W\Hi)  be the 

probability of committing a type II error. The power of this test is 1 — ^ =  

P{W\Hi) ,  that is, the probability of accepting the alternative hypothesis Hi  

when it is true.

The Neyman-Pearson problem can be stated as:

Maximize 1 — p =  1 — P { S  — W\Hi)

subject to P { W \ H q) =  a  ( a given value). (2.17)

W* is optimal for this problem if there exists a real number k such that

IT* =  {x\P{x\Hi)  >  kP{x\Ho)}  and P{w*\Ho) =  a.  (2.18)

In a randomized test, the probability of the rejecting Hq is specified, on the 

basis of the observed data. In general, the sample space S  is partitioned into 

three non-overlapping regions, Wi, W 2  and S — Wi — W 2 .

The decision rule is:

Reject Hq iî x e  Wi  

Accept Hq if X G W 2

Reject Hq with probability ̂ {x) {0 < ^{x) < 1) iî x e  S — Wi — W 2 -

In statistical decision theory one tends to think in terms of losses rather than

gains and the above problem is reformulated as follows:

Minimize a  -f- A/? =  J  (f){x)[Xfo{x) 4 - fi{x)]dx

for fixed A > 0 and 0 < cf) < 1. This is solved by using the likelihood ratio

test with “cut-off” A: i.e. reject H q if >  A, accept Hq if > A and be 

indifferent if =  A.

Therefore, the three possible decisions are:

$(x) =  0 if X f o { x )> f i { x )

$(x) =  1 if Xfo{x) < fi{x)

$(:r) =  7 (x) if Xfo{x) =  fi{x)
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for some A > 0 and 0 <  7 (x) < 1. If Xfo{x) =  fi (x)  has positive probability, 

this is not unique. Choose any such rule 6*, it will have some size a* and power 

1 — yd*. Let Ô be any rule at all, with size a  and power (3. Then, it is concluded 

that

O'* +  \(3* <  o; +  A/3,

which is

Ayd* >  (O'* -  O') +  Ayd.

Now, if O' <  O'*, yd* >  yd then 6 * solves the problem of maximizing the power for 

size equal or less than a*.

2.5 Sequential Decision Processes

In a sequential decision problem the decision maker (Statistician) is looking at a 

sequence of observations one at a time and he has to decide after each observation 

whether to stop sampling and take an action immediately or continue sampling 

and postpone taking action to some later time.

A sequential decision function has two components, namely, a sampling plan 

(or stopping rule) and a decision rule. To explain these two terms, we shall assume 

that the distribution of the sequence x  of observations depends on a parameter 

W  whose values are in a parameter space Q. A decision space V  consists of all 

possible decisions d which might be made by the statistician. A loss function L 

is defined on the product space Q. x V ,  that is L =  L{w,d)  and represents the 

loss for any point {w,d) E x V  when the value of the parameter W  is w and 

the statistician chooses decision d. In the sampling plan, the statistician specifies 

whether a decision in V  should be chosen without any observation or whether 

an observation (at least one) should be taken. In case at least one observation is 

to be taken, the statistician specifies, given the sequence of observation, whether 

sampling should stop and a decision in V  should be chosen or whether more 

observations should be taken. A decision rule (5(x) is specified by the statistician 

for each possible set of observed values x.
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We shall assume that, given a specific value for the parameter W  =  Wi, 

the observations for random variables %i, %2 - - - are independent and identically 

distributed. Let the conditional p.d.f of each observation Xi  when W  =  Wi he 

f(. \wi).  We denote by c% the cost to be paid for observing the value of Xi.

For example, suppose that a sequential random sample %i, %2 , - - - can be 

taken from a Bernoulli distribution with unknown parameter W.  We suppose 

that, Q =  {wi, W2} has just two points and that D  =  {di, c/2} has two points. 

The loss function L is specified as follows:

— Z/(w25 ^2) — 0)

L(wi,c/2) — L{w2,di) =  b > 0.

We suppose further that each observation costs 1 unit. The prior distribution of 

W  is specified by  ̂ =  Pr(FF =  Wi) =  1 — Pr(VF =  W2).

Under a sequential decision procedure, the total number of observations N  

that are taken before a decision in V  is chosen is a random variable. The problem 

is to determine a sequential procedure that minimizes the expected terminal loss.

In the next sections, we shall consider sequential decision processes in which 

there are two choices at any stage. The decision maker may have to decide 

whether to continue experimenting or to terminate the process. If he decides 

to continue he may have to choose one of two or more random variables that 

are available at each stage. Random variables may represent experiments or 

another item of interest. The statistician can exercise some control over the 

distributions of the observations generated during the process and in this sense, 

over the distribution of his rewards and costs.

A discrete tim e sequential decision m odel

Consider a dynamic system evolving in discrete time according to the equation 

Xk+l =  fki^k  ̂' k̂i €&), /c =  0, 1, . . . , A  — 1,

where Xk denotes the state of the system, that is the variable of interest, Uk a 

control input which determines the decision made after the most recent observa

tions, and 6k is a random variable. Suppose also that the function fk are given
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and that Xk^Uk ê  ̂ are elements of the appropriate sets. The system operates 

over a finite number of stages N  (finite horizon problem). We shall assume that 

Ck is characterized by probability measure Pk{-\xk,Uk) defined on a collection of 

events in space which Ck belongs to, and that Ck depends on the current state Xk 

and control input Uk, but does not depend on the values of the prior uncertain 

parameter cq, c i , . . .  , Ck—i-

A characteristic of this process is that it is a forward induction process as 

opposed to the backward dynamic programming. A problem in which the notion 

of forward induction plays an important role is the Bandit problem.

2.5.1 Two-Armed Bandit Problem

One of the most interesting problems in stochastic control problem is the ban

dit problem. Consider two random variables X  and Y . The distribution of X  

depends on the value of a parameter W\ {uji GSl i )  and the distribution of Y  

depends on the value of another parameter W 2  {0 J2  G ^ 2). Also, suppose that 

the statistician will take a fixed number n of observations at most, sequentially. 

If at some stage i {i <  n) the random variable X  is chosen for observation, the 

conditional p.d.f when W  =  (for i =  1 , 2 ), are independent of the

choices and outcomes of the observations in the previous stages. Let  ̂ be the 

prior joint distribution of the parameter Wi  and W 2 . The statistician’s concern 

is to find a sequential procedure that maximises the expected value of the sum 

of the n observations.

Let W (6 ) denote this maximal expected sum of n observations. If the first 

observation is made on X ,  the expected sum of all n observations is E { X  +  

W_i[(^(X)]} where W -i[C(^)] is the expected sum of the remaining n — 1 obser

vations with ((%) being the posterior joint distribution of Wi and W 2 . Similarly, 

if the first observation is made on F , then the expected sum of the n observations 

is E { Y -f W -iK(l^)]} with W -iK (F)] to denote the sum of the n — 1 observations 

when an optimal procedure is adapted. Then, the optimal sequential procedure 

must be the decision rule which maximises the expected reward, that is,

%.(() =  max{i?[X +  K - i { ? W } ] ,  E[Y  +
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where the expectations are computed with respect to the prior distribution

Bandit problems appear to have been first proposed by Thompson (1933, 

1935) in sequential analysis for determining which of two drugs is superior. Bell

man (1956) introduced the discounted Bayesian setting. Bradt, Johnson, and 

Karlin (1956) gave us one of the early treatments of the bandit problem.

A generalization of the two-armed bandit problem is the A'-armed bandit 

problem which has as a solution the Gittins index. The bandit problem is solvable 

only for infinite time horizon.

2.5.2 The G ittins Index

The multi-armed bandit problem is concerned with the question of how to dy

namically allocate a single resource among several alternatives. A bandit problem 

in statistical decision theory consists of N { N  >  2) independent stochastic pro

cess which represent arms (projects, machines or treatments.) that can be pulled 

(chosen) in any order. Each time only one of these arms is selected. Each pull 

from a bandit process results in a random reward. The problem for the deci

sion maker is to find the optimal strategy that maximizes the expected values of 

reward over an infinite time of horizon.

Bandit processes can be used to model problems where a sequence of choices 

has to be made between a collection of fixed alternatives, for example, the schedul

ing of jobs on a single machine and the design of sequential clinical trials, job 

search and labour market analysis in economics etc.

In general, the decision maker faces the conflict between taking those actions 

which yield immediate reward and those whose benefit will come only later. This 

is an important characteristic of the problem. If the long-term performance is 

important to the decision maker, not choosing an action which yields immediate 

benefit may be justified if the gain of extra information about the projects (jobs 

or treatments) is worth more than the immediate reward.

Suppose that there are N  independent projects, each divisible into stages, 

and only one project can be worked on at each time. Project i has state Xi{t) 

at time t =  1 , 2 . . . ,  for % =  1 , 2 , . . .  A . At each time t, one must operate 

exactly one project. If project i is selected, it gives immediate reward Ri[xi(t))^
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a function of the current state Xi{t) of the chosen project and its state Xi{t) then 

changes according to a stationary Markov transition rule. The states of the other 

projects remain frozen. The states of all projects are observed, and the problem 

is to schedule the order in which the projects are operated so as to maximize the 

expected present values of the sequence of immediate rewards, that is,

E j £ a ‘i?(0

where 0 < a  < 1 is a fixed discounting factor, R{t) denotes the reward gained at 

time t and n is the strategy used for choosing between projects. Gittins (1979; 

Gittins & Jones, 1974) proved that the solution to this problem is to associate 

to each project i an index Vi{xi{t)), which is a function only of its state, and at 

each time operate the project with the largest current index. Gittins’ index (see 

Gittins, 1979) has the following form. Its numerator is the expected discounted 

reward for a certain project up to the chosen stopping time r, and its denominator 

is the expected discounted time up to the stopping time r:

Vi{xi) =  max

E \ Y ^ a * R i ( x i { t ) )
I

Xj(l) — ^

I 4=1
^z(l) — 4̂ ̂

(2.19)

where the maximization is over the set of all stopping times r > 1 . Gittins called 

his index a Dynamic Allocation Index. It is interpreted as the maximum expected 

discounted reward per unit of expected discounted time.

This index is sequential in the sense that it needs to be recalculated at each 

decision point in order to guide the reallocation process. The theory of Gittins’ 

index, and more generally of any priority index, is based on the idea that the index 

for each project depends on the past history of the given (or chosen) project only 

and not on the history of other projects. Effort is allocated to the project with 

the highest current index value.

Bergman and Gittins (1985) refer to two different versions of dynamic alloca

tion index related to Pearson Index. These are given by (2.20) and (2.21):

RPlP2Ps ~  Cl — C2 P1 — C3P1P2

1 — (1 — P i ) D i  — p i { l  —  ^ 2 ) 7 ) 2  — P 1 P 2 D 3  

39

(2 .20)



The index given by (2.20) is for a three stage project, with final reward R,  costs 

Cl, C2, C3 for stage one, two, and three respectively, probability of success of each 

stage pi, p2 andpg. Di denotes the present discounted value of one monetary 

unit at time for % =  1 , 2 , 3. The numerator is the expected net profit and the 

denominator expresses the discounted probability that all stages of the project 

are implemented. The above can be approximated by the following index as the 

discounting rate approaches zero:

RP1 P2 P3  — c\ — C2 P1 — C3 P1 P2  

ti +  t2Pl +  t^PiP2

One should observe that the Pearson index (2.15) and the index given by (2 .2 1 ) 

differ only in their denominator. However, there are differences between the 

Pearson and Gittins indices and a comparison is made below.

Com parison of G ittins and Pearson Index

The multi-armed bandit problem can be thought of as a mathematical program

ming problem. There are N  statistically independent stochastic process. The 

reward gained from the process is denoted by Ri := Ri{x(t)}'^■^ ,̂ a bounded 

real stochastic process on (fl, JF). =  0 , 1 , . . .  , 0 0 }, the information

process associated with arm i, is a non-decreasing family of sub cr-fields of JF and 

O is the sample space of the reward process. We also assume independence of 

the N  reward processes, and that the expected total discounted reward is finite, 

that is,

00

E ^ û;*|i?i(a;i(t))| < 0 0 , i =
t=i

Selecting a process, say z, results in a reward Ri{{x{t))} ,  a function of the state 

Xi{t) at time t of the selected process. . The states of the other processes remain 

frozen and yield no reward. The objective of the decision maker is to find the 

spliced sequence which results in the maximum expected discounted reward. The 

problem (Ishikida & Varaiya, 1994) is as follows:
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Problem  1
N  oo

i=i (=1
N

subject to =  1, t =  l , 2 , . . . ,  (2.22)
i=l

A x i { t )  G {0,1}, 2 =  1,2, . . .  , AT and 1,2, . . .  , (2.23)
N

Ax{t)  is \ J  J^^{xi{t -  1)) — measurable, t =  1, 2, . . .  , (2.24)

where the maximization is over Ax{t) := {Axi{t) ,  A x 2 { t ) , . . .  ,AxN(t) ) ,  and 

Axii t )  takes value one if the project i is chosen at time t  whose state is Xi{t) and 

zero otherwise. Constraint (2.22) indicates that at any given time t =  1, 2, . . .  , 

only one project is chosen; the next constraint (2.23) says that projects can 

not be chosen partially. Also, the indicator function Ax{t)  is dependent on or 

measurable with respect to all the available information about the all rewards of 

the projects up to most recent decision time t — 1.

The Pearson index can have the following representation.

Problem  2
n

Maximize  y^yjE (i?j), (2.25)
j=i

n

subject to y^?/jE(cj) < B  > 0 j  =  1, • • • , n. (2.26)
j=i

where ^{Rj)  is the expected reward to be gained from project j  and E(cj) is 

the expected cost of the project j .  As was mentioned earlier the solution to 

these mathematical programs are the Gittins and Pearson Indices, which have 

the following mathematical forms:

jE[Net discounted reward up to stopping time T|process state at time t] 
T>t E'[Discounted time up to stopping time T| process state at time t]

^  ̂ , E(Net discounted reward [starting state)
Pearson Index =  — ---------- —------;-------:----- !----- r--------------.

E(cost[starting state)

One difference is that the Gittins index is a function of time whereas the 

Pearson index is not. The Multi-armed bandit problem, as an allocation problem,
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is concerned with the sharing of limited resources. The resource which one is 

allocating is one’s time or effort. This reflects that the Gittins index solves a 

sequential selection problem since the optimization is with respect to time and 

the decision maker is looking for that stopping time which maximizes the expected 

reward per unit expected discounted time for a certain period. The allocation is 

being varied in time to meet changing conditions.

The decision maker who uses the Pearson index is not concerned about this 

type of maximization and selects projects without maximising the objective func

tion with respect to time. Therefore, the Pearson index maximises the expected 

reward instantly as opposed to Gittins index which maximises the expected re

ward sequentially.

The difference is due to the principle of forward induction which in its simplest 

form is termed a one-step look ahead policy. The decision maker applies one-step 

look ahead policy when he compares stopping immediately with stooping after 

one period. The Gittins index is understood as the solution to the following 

problem:

In sequential selection, the decision maker has to think how far into the future 

he is required to use a certain project in order to achieve the maximum attainable 

reward up to the chosen time into the future.

The Pearson index is used to classify projects into two subsets, namely, 

projects which will be developed and projects which will not be considered.

2.5.3 Search problem

An object is located in one of the n possible locations (n >  2). Let Pi be the 

prior probability that the object is in the location z, where Pi > 0 {i =  1 , . . .  , n.) 

and Y^^=iPi — 1- The decision maker is allowed to search only one location at a 

time. Let q , c% > 0 be the cost to search location i. It is assumed that when the 

object is in location i it can be overlooked with probability aj(0 < ai <  1) for 

i =  1, . . .  n. The objective of the decision maker is to discover the object at the 

minimal expected cost. One needs to devise a sequential search procedure which 

specifies how the decision maker should choose at each stage which location is to 

be searched next.
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The above problem has been approached as follows. Suppose that the location 

j  is searched first, and the object is not found. Then the posterior probability p* 

that the object is in location i is

Pi for i ^  j.Pj-aj+l-Pj

If the first location to be searched is j  the probability that the object will be 

found in the first search is Pj{l  — Oij) and the probability that the object will not 

be found in the search is pjŒj +  (1 — Pj). Let F ( p i , . . .  ,p„) denote the minimal 

expected cost function. Then the optimality equation is given by

y { P i ^ - - -  , P n )  =  , m m ^ { c j - ^ { p j a j  +  l - p j ) V { p l \ j , . . .  , p ^ y ) }

where V(p^j , . . .  ,p*. ) is the expected cost of the remainder of the searching 

process when an optimal procedure is adopted after the first search had been 

completed unsuccessfully.

The strategy which minimizes the expected search cost (see page 20) is to 

examine the locations in descending order of the following priority index:

J _  -  %)
' -  C, •

A more generalized result is that the expected cost of the search is minimized if 

the search of the location j  is in place i i.e., in order, if among the numbers 

Pjaj~^{l — <yj)/cj, the {k, j )  is the largest (Black, 1965).

Search theory and its applications

Assume that there are n possible projects. Project j  corresponds to a location j  

in the Search problem, for all j .  Suppose now that the project j  is divided into 

two consecutive tasks, denoted by j i  and and that the probability of success of 

task ji is Pj., independently for i =  1,2. In this case the expected cost Cj of project 

j  can be expressed as Cj =  cj  ̂ +  - Furthermore, the overlook probability

aj  represents whether the project will be reconsidered which we set to zero for 

every project when the projects are not reconsidered. For simplicity, assume that 

all projects consist of two stages each. Let all the project give unit reward. We
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wonder in which order projects should be attempted in order to minimize the 

expected cost. Taking into account these changes the index becomes

J _  ~  _  Pj lPj2 _  Pj lPj2  -  Cjl -  Pjl (^j2 ^  ^

Cj  ^ j l  P j l ^ j 2 ^ j l  P j l ^ j 2

This index gives the same rankings to a set of projects as the Pearson index for 

a two stage project with reward 1.

2.5.4 The Secretary Problem or the Search for the B est

In the secretary problem, an employer will interview n candidates sequentially 

in order to hire an individual to fill a vacancy for a secretarial position. After 

interviewing an individual, the employer must decide whether to accept (and 

terminate the process) or reject the current individual and continue the process. 

Once a candidate is rejected the candidate is no longer eligible. The only infor

mation available to the decision maker at any time is the relative rank of the 

current candidate compared with the previous candidates. The decision maker 

does not know how the current candidate compares with the candidates he has 

not seen yet.

The decision maker in the secretary problem wishes to appoint a candidate 

who ranks highly. The question is, when to take the positive decision of appoint

ment. The difficulty related with this decision is its timing. If the decision is 

made too early in the sequence, one is neglecting the possibility of good can

didates not being considered. On the other hand if made too late, the field of 

candidates remaining may not include the best candidate.

M axim ization of the probability to  appointing the best

One version of the objective is to maximize the probability of selecting the best 

candidate when all n\ orderings of the candidates are assumed to be equally likely. 

Let V  (r, o) denote the maximum expected probability of choosing the best item 

just after the interview when a  is the relative rank of the candidate. The 

next state of the process will be V { r ^ l , b )  where b is equally likely to be any one 

of the values 1, 2, . . .  , r d- l .  The probability that the best candidate is realized
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if the candidate is accepted assuming best of those seen is given by 

P{r) =  P(offer is best of n|offer is best of first r)

r
A dynamic programming approach yields the equations

V{r , l )  =  +  (227)

1 +̂1
k(r, a) =  +  1,6) (a =  2, 3, . . .  , r) (2.28)

6= 1

with V”(n, a) =  1 if o; =  1 and 0 otherwise. Equation (2.27) equates the probabil

ity of appointing the best candidate when r candidates have been observed and 

not appointed and the candidate having the first rank so far, y (r, 1), with 

the maximum of the following probabilities:

P{r)  =  P(offer is best of n|offer is best of first r) =  r /n , or

E { V { r  -f 1, b)\Wr ; is rejected} where the expectation is with respect to the 

ranking of the next candidate given Wr, that is, the information for the 

first r candidates and the has been rejected.

M inim ization of the expected rank

A different objective, yielding a second version of the problem, is to maximize the 

expected utility which has value n —i when the best candidate is accepted. This 

maximization corresponds to minimization of the expected rank of the accepted 

candidate.

Let V  (r, a)  be the expected utility of the optimal continuation when r can

didates have been interviewed and the P^ has been found to have relative rank 

a.  Let Lo(r, o) be the expected utility if the P^ candidate is accepted and the 

interview procedure is terminated.

Now consider the probability that the candidate which has rank a  among the 

first r candidates has actually rank i among all n candidates

/ z - l  W n - i \

-Pn,z(A«) =  i — a , . . .  ,n +  a - r .
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Therefore the expected utility is

n + a -r  -,

F o (r ,  a) =  ^  (n -  i)Pn,i =  n -  a.
i=a

Also, the expected utility of interviewing the (r +  1)*̂  candidate having rejected 

the first r candidates and then continuing in an optimal way is

r + l

r +  '

1

6 = 1

In terms of Dynamic programming, we get:

V{r ,a)  =  m a x |v b (r ,a ) , +  (2.29)

V(n,a)  =  n — a  (a =  2, 3, . . .  , r). (2.30)

The optimal procedure is to continue the interviews if V(r^a) >  Vo(r, a )  and to 

stop when V{r,  a) =  Vo(r, a).

2.5.5 Dealing with Random rewards

Projects with equal expect rewards need to be ranked in a different way than the 

Pearson index if the decision maker has to allow for the fact that these projects 

might realize different gains. Suppose, that the reward n-stages before the end 

is equal to r. At the next stage, the information arrives that this project will 

be worth: either {r — J} or {r +  ^} with equal probability. Let us impose the 

condition that 0 < 6 < r. If one is trying to maximize the expected reward, or 

maximize the probability of gaining the highest reward, which selection strategy 

should be followed?

Denote by Fs{r) the maximal expected reward s-stages before the end of the 

project. Then, one can write the following optimality equation

Fs{r) =  max r, - S )  +  ^Fa-i{r  +  S) max[r,

with terminal condition T o ( r )  =  r.

The optimal policy is either to choose the project with reward r or to choose 

both projects with rewards r -hS and r — S, i.e., the maximal expected reward is 

the same whichever policy is followed.
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Let us change the probabilities. The project with reward r 6 happens with 

probability p and the project with reward r — S happens with probability I — p. 

Rewriting the problem as

Fs{r) =  max [pFs-i(r -  5) +  (1 -  p)Fg_i(r +  ô) ] .
0<ô<r

Now, we suppose that p >  |-

Let 5 =  1, and terminal condition Fo{r) =  U{r) where U{r)  is a given utility 

function then,

Fi(r) =  max \pU{r -  (5) +  (1 -  p)U{r  +  6)].

If U(r)  is a convex function, then consider a linear combination of two points of 

the convex utility function

pU(r  +  J) +  (1 -  p)(r -  Ô) > ^U{r  +  (5) +  i ( r  -  6) > U(r)

where p > In this case the expected utility is greater than the utility gained 

for a single project which gives reward r. If, however, the utility is a concave 

function, then,

pU{r  +  (i) +  (1 -  p)(r -  6) < i [ / ( r  +  (̂ ) +  ^(r -  6) < U{r)

The solution to the above equation will be of the form: if R < a* then go 

for the project which gives reward r, otherwise select the project which will yield 

rewards {R  +  (5}, {i? — (̂ } with probability

2.6 Discussion

In a stochastic scheduling problem, which can be thought of as a case of se

quential experimentation, the Gittins Index gives the solution of how to allocate 

one’s effort over projects sequentially in time so as to maximize expected total 

discounted reward. However, the optimization is over an infinite horizon, and 

Gittins’s result does not give an optimal solution to the finite horizon optimiza

tion problem. The Pearson Index might be more appropriate for the parallel 

selection method, since it is not clear that it solves any sequential optimization 

problem as the Gittins index does. Despite this, the Pearson index incorporates 

features of sequential decision procedures.
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Chapter 3

Portfolio issues

3.1 Introduction

In the previous chapter, it was concluded that the Pearson Index can be used to 

solve a version of the optimal asset allocation problem when the objective is to 

maximize the expectation of a linear utility function subject to linear inequality 

constraints.

The above problem will be extended to that of maximizing the expected value 

of a non-linear utility function, to yield results which can be regarded as an 

extension of the Pearson index. Before the above problem is formulated, some 

general background on the portfolio theory is presented.

In the next section (3.2) Portfolio models are presented. We give an account 

of a non-linear resource allocation model, the fractional resource allocation model 

and the maximization of the utility of terminal wealth. In section (3.2.1) we refer 

to multi-period selection models. In section (3.3) we define the general form of 

the non-linear optimization problem, which is the extension of the optimal asset 

allocation problem solved by Pearson index. In section (3.4) different type of 

utility functions are presented. Then, in section (3.5) we formulate the optimisa

tion problem using negative exponential utility function and we assume Normal 

distribution for the random profit. In section (3.6), we study the optimisation 

problem but we use exponential utility function.
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3.2 Portfolio models

A Portfolio problem involves selecting a strategy for allocating the initial wealth 

among the available competing investment opportunities.

In Portfolio theory, a risky asset is an asset whose return is a random variable, 

as opposed to a riskless asset, which has a constant return. One can consider a 

riskless asset as a risky asset in which the return has variability zero. Thus, 

without loss of generality one can talk about risky assets only.

In order to identify an “optimum portfolio” one needs to define a criterion to 

measure the quality of a portfolio. Markowitz (1990) explains that:

“a portfolio analysis is characterized by -

1. the information concerning securities upon which it is based;

2. the criteria for better and worse portfolios which set the objectives of the 

analysis; and

3. the computing procedures by which portfolios meeting the criteria in (2) 

are derived from the inputs in (1)”,

and that the result of a portfolio analysis is no more than the logical consequences 

of its information concerning securities. Instead of securities, we can have some 

projects.

One can think of an available budget C, to be allocated among a collection of 

risky projects. Let , i =  1, ...n be the amounts allocated to n alternatives R&D 

projects. From the project, an uncertain payoff of size Ti{Xi) will be received, 

a function of the amount Xi  allocated to project i. The total reward is denoted by 

R =  'Ti{Xi). The utility function u : [0, oo) -> [0, oo) gives us a return risk 

ordering for the random return of the chosen projects. The portfolio problem may 

be thought of as that of finding ,z =  1, ...n to maximize the expected utility 

of the portfolio return generated, subject to the budget constraint
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This can be formulated as a mathematical programming problem:

Maximize E{u{R)}  over X i, X 2 , . . .  X»
n

subject to R  =  ri{Xi),
1=1

n

i=l
Xj > 0, for alH =  1, • • • n.

Markowitz (1952) started by considering the returns on securities (any sort 

of investments such as shares or capital projects) over some given time period as 

random variables with known finite means and variances. In this kind of analysis, 

it is also assumed that investors like high expected return, but dislike uncertainty 

about the amount of that return, as expressed by the variance. Therefore, port

folios with high expected return and low variance seem to be particular favorable.

The variance of the returns can enter the analysis in two ways. In the first 

case the variance is the objective function, and one desires to minimize the vari

ance of the return for given level of the expected reward. In the other case the 

optimal portfolio is that achieving the highest expected reward for a given level 

of variance. Portfolios which have a criterion exclusively based on the mean 

and the variance of the gain generated by the portfolio are called mean-variance 

portfolios.

Portfolio diversification

Suppose that there are n asset categories and that the portfolio has proportions 

y  =  (2/1, • ■ • , 2/n) in each, with 2/i =  1- This constraint will be relaxed later.

Let the expected rewards for these categories be r =  (^i , . . .  ,r„). The ex

pected reward of portfolio given by y  can then be defined as r(y) =  y  r =  ^  yiVi. 

Let Si be the standard deviation of the return yielded by asset i. Thus the vector 

s =  (51, . . .  , s„) describes the variability of the returns. The correlation between 

the returns of assets yi and yj is denoted by Cij. The variance of the return from 

the portfolio y, is:

n

=  ViVjSiSjCij,
i=l i ĵ
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where i , j  G {1, 2 , ,  n}.

Suppose, that the minimum risk portfolio is m =  ( mi , . . .  , m„). Assume that 

there are some non-investment related features which create some risk denoted 

by e and this risk is uncorrelated with investment policy. The relative risk of 

portfolio y  relative to portfolio m is the variance difference of two portfolios 

denoted by S { y , m )  where:

n n

=  g2 +  _  nfii)siCijSj{yj -  rrij).
i=l j=l

The disadvantage of this approach is that it is difficult to implement relative 

risk measure for non-symmetric distributions. In this example, lower covariances 

between the returns from investments will reduce the risk of the portfolio.

The non-linear resource allocation problem

In the non-linear resource allocation problem (Bretthauer & Shetty, 1995), re

source should be allocated to each of a set of different activities. The objective is 

to maximize the financial return, which is a non-linear function of the resources 

allocated to each activity.

Suppose that, there are n different activities and denote the general activity 

by j , for j  =  1, . . .  , n. Let the total amount of the available resource be b. The 

variable Xj represents the amount of resource allocated to activity j , that is the 

project j .  The variable Xj is supposed to have lower bound Ij and upper bound 

Uj. If an amount Xj of the resource is allocated to the activity j , then a non-linear 

return f j {xj)  is gained. The total return is fji^j)-  The single constraint is 

the sum of n functions 9ji^j) where gj{xj) is the constraint for the activity 

j  dependent on Xj for all j .

The non-linear resource allocation problem can be formulated as follows:

Maximize
;=i

n

subject to < 6,
i=i
Ij ^ Xj ^

Xj integer, for all j  =  1, • • • n. 
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The Fractional resource allocation problem

In the fractional resource allocation problem the objective function has ratio form 

(Ibaraki & Katoh, 1988). The criterion is the ratio of the expected utility to the 

standard deviation. The portfolio problem is:

Maximise  over X 1 . X 2 , . . .  X n

n

subject to R  =  ri(Xj),
i= l

n

Z=1
Xi  >  0, for alH =  1, . . .  , n.

M axim ize the U tility  of Terminal W ealth

So far the criterion to choose a portfolio was to maximize the expected utility of 

the random gain of the portfolio or a non-linear function of the resource allocated. 

A different criterion is to maximize the expected utility of terminal wealth (Huang 

& Litzenberger, 1988).

Consider an investor with initial wealth Wq. Suppose that there are n different 

risky investments and the individual invests y j  pounds in the investment. The 

riskless interest rate is equal to r j .  The risky investment yields return y j ( l - \ - r j )  

where Cj  is the random rate of return on the risky investment. The terminal 

wealth is thus

J j

=  W o ( l  +  r / )4 - ]> ] y j ( r j  -  r;) .
j

The investor’s problem is to achieve

max E
Vi

u  ̂ W o(l +  r f )  +  y ] % ( n  -  r / ) j

The concept of maximizing the expected utility of the terminal wealth is a 

criterion of multiperiod selection models. In this example the terminal wealth is 

expressed as a proportion of the initial wealth. In the next section the terminal 

wealth is just a summation of the cash flow in and out.
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3.2.1 M ultiperiod selection models

Imagine an investor who wants to maximize his terminal wealth Wt  at a certain 

future point in time, T.  The time between the present and the horizon is divided 

into n periods. At the end of each period the investor can change the structure of 

his portfolio in a way which he will maximize the expected utility of his terminal 

wealth Wt -

Let Wt  (the state variable) be the value of the investor’s portfolio at the 

beginning of the period (t, t +  1). Then,

n

Wt+i =  Wt~{- — Cit), for  ̂=  0 , 1 , . . .  , T — 1,
1=1

where la  is the random return from asset z for z =  1, . . .  , n at time t, Ca is the 

cost to hold a unit of asset z for period (̂ ,  ̂+  1) and y a is the proportion of asset 

z chosen at period +  1), which has lower bound 0. The wealth available at 

time t +  1 is equal to the value of the n risky investments XlILi VitUt minus their 

cost 2/tzQz plus the wealth Wt at the beginning of the period {t,  ̂+  1).

Let ft(Wt)  be the expected utility of following an optimal policy from period 

t to the horizon T given the wealth Wt  available at time t. By definition for t =  T  

we have (Elton & Gruber, 1975)

f r i Wr )  =  E[zz(Wt)| WV_i, z/i(T-i)]- (3.1)

For t =  T  — 1 we have,

f r - iO^T- i )  =  max E [/r(W r)| W t_i, z/î(t-i)1j (3.2)
yi(T-i)

where
n

Wt =  Wt -1 +  ^  yi(T-i){7j(T-i) — G(r-i)}- (3.3)
i=l

Consider equation (3.2). The terminal wealth at time T, Wt , is a random vari

able. Equation (3.2) states that the value of Wt - i pounds is equal to the expected 

utility of the investment which has the maximum expected utility of its outcomes.

It is easy to generalize this relationship for any time t:

ft(Wt) =  mcixE[ft+i{Wt+i)\Wt,yit],  for t =  0 , l , . . . , T -  1. (3.4)
Vit
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This equation represents the general dynamic programming formulation that can 

be used to solve all portfolio problems which have as their criterion the maxi

mization of the expected utility of terminal wealth.

3.3 Selection of an Efficient Portfolio

In this section, a model is presented in the framework of consumer theory, where 

an individual chooses his consumption pattern by optimizing his utility subject 

to a budget constraint.

The target is to maximize the utility of the terminal wealth associated with 

the portfolio chosen. In an uncertain environment, the individual maximises the 

expectation of the utility at the next point in time. Denote the initial wealth by 

C, and suppose the individual implements project j  at rate yj  (0 < yj <  1) for all 

j  =  1, • • • n. Project j  requires an investment of Cj and yields random reward Ij.  

The terminal wealth Z  — C Yl^=i Vji^j ~ ĵ) the objective function is the 

mean value of the utility of the random terminal wealth E[u(Z)]. The stochastic 

optimization problem is:

Problem  3

Maximise  'Eu{Z) —  E 4 -  Vjih ~  |

n

subject to ^ 2  < C,
i = i

0 <  2/j <  1, for all j  =  1, - - - n.

The nature of utility function determines the level of difficulty of getting 

solutions for these stochastic optimization programs. Simple cases of non-linear 

utility functions are the negative exponential, exponential and quadratic function. 

These are, respectively,

u(z) =  1 — exp{Az}, 

u{z) =  exp{Az}, 

u{z) =  z — mz^.
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where A and m  are constants. The above problems yield a quadratic programming 

problem, with a closed form solution, when the utility is an exponential function 

of the terminal wealth and Normal distribution of the random rewards is assumed.

In the next sections, we first discuss different forms of utility functions. Then 

we investigate what happens if the utility function is negative exponential and 

the random reward has a Normal distribution.

3.4 Different approaches to risk

Utility functions represent the attitude of the decision maker towards risk.

One way to characterize an agent’s attitude to risk is to examine whether or 

not the decision maker prefers a probability distribution of wealth to its expected 

value. In this approach, an agent is said to be:

1. Risk-averse if, for any probability distribution, he prefers the expected value 

of his distribution to the distribution itself;

2. Risk-neutral if, for any probability distribution, he is indifferent between 

the expected value of the distribution and the distribution itself; and

3. Risk-loving if, for any probability distribution, he prefers the distribution 

to its expected value.

Denote the utility function by u{z) where z is wealth. The agent’s attitude 

to risk is directly related to the curvature of his utility function u[z)  as follows:

Risk — averse 

Risk  — neutral  

Risk  — loving

> if u{z) is <

concave

linear

convex.

One way to measure risk aversion is by means of the absolute risk aversion 

R a , given by
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Suppose that a decision maker is asked to state his preference between changing 

his initial wealth xq by random amount x which has mean zero or paying a 

fixed amount tt instead which may be dependent on his initial wealth xq and 

X. Consider a small fair bet x, i.e., x takes values in a very small interval and 

E(x) =  0. Now consider to add x to the initial wealth xq. Let 7t{xo,x) be the 

decision maker’s premium for X q +  x. Then, the decision maker is indifferent 

between certain wealth Xq — tt and a random terminal wealth which has mean 

utility E{u(xq +  z )} , that is,

u { x q  -  7 t)  =  E { w ( a ; o  +  % ) } .

One can show that by using Taylor’s expansion that

t t { x o , x )  % ^alRA{xo),  (3.5)

where cr̂  is the variance of the lottery x which is equal to E{x ‘̂ ). By (3.5) the risk 

premium increases with the degree of absolute risk aversion and also the variance 

of the bet x .  It is interesting to study what happens to 7 t { x q , x )  as X q  increases. 

We are interested in the following result:

Theorem  3.1 (see K eeney &: Raiffa, 1976, p .167)

The risk aversion R a is constant if only if 7t{xo, x) is a constant function of Xq 

for all X.

Constant absolute risk aversion is obtained from a negative exponential utility 

function.

3.5 Negative exponential utility

Consider the negative exponential utility function u(z) =  — exp(—Az) where A is 

constant.

The problem becomes:

Maximise  E |̂ —
n

subject to < C,
j=i
0 < 2/j < 1, j  =  l , ' " n .
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This is equivalent to minimising a function of the moment generating function 

'ijjiiyi) of the distribution of the random reward Ij subject to the above constraints 

as follows:
n n

M inim ize  ^

3 = 1  3 = 1
n

subject to ^^UjCj  <  C ,

j=i
0 < Uj <  1, for all j  =  1, • • • n.

One case where an analytical approach would be used is when Ij has a Normal 

distribution with mean /Xj and variance cr|. Its moment generating function is 

and the minimising problem takes the following form:

Problem  4

_T_ r I
-ajX'^yj -  \ {n j  -  Cj)M in im ise  Q  — yj 

j=i
n

subject to '^^VjCj < C ,

0 < 2/j < 1, for all j  =  1, • • • n.

The objective function Q  requires the minimization of the variance of the selected 

projects as well as the maximization of their expected return. The objective 

function is convex since cr|Â  > 0 for j  =  1, . . .  , n. The feasible set L consists 

of all 2/ =  i vu- - -  ,yn) such that L =  {y| 0 < yj <  IVj, < C }  is

nonempty and closed. Since the objective function is convex everywhere and the 

feasible set is a closed and bounded set in R", then there must be a solution.

The above quadratic mathematical problem is non-trivial but one can note 

two interesting things. First, the above problem is a special kind of quadratic 

mathematical programming problem, known as a quadratic knapsack problem 

(Bretthauer & Shetty, 1995). It has been studied before in a different context 

and has several applications, for example, in promotion models, hydrological stud

ies, determining if a graph possess a clique of order k (see, Gallo, Hammer, & 

Simeone, 1980). Below an explanation and demonstration is given how to solve a 

continuous version of integer quadratic Knapsack problem as presented by Bret

thauer, Shetty, and Syam (1995). The second observation is that this problem
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can be thought of as a Mean-Variance Portfolio problem since the variance of 

the chosen portfolio will be cr| YTj=i Vj the expected value of the net gain is 

equal to Vjil ĵ ~ Cj)-

3.5.1 Quadratic Knapsack problem

In this section the continuous version of integer quadratic knapsack problem is 

introduced, with extension to inequality constraints and a solution method is 

presented. The integer quadratic knapsack problem (Bretthauer et ah, 1995; 

Bretthauer & Shetty, 1995) is written as follows:

Problem  5

Minimize  / ( y )  =  ^ d j V j  -  (3.6)

n

subject to ' '^^bjyj<b,  (3.7)
j=i
l j < V j < U j ,  j  =  l , . . . n ,  (3.8)

Uj an is integer, j  =  1, • • • n, (3.9)

where dj >  0 and 6̂  > 0 for j  =  1, . . .  , n and & is a real constant. The continuous 

version of the quadratic knapsack problem is defined by the conditions (3.6), (3.7) 

and (3.8) only. Condition (3.8) can be written as two inequality constraints

Ij -  Vj <  0, Vj -  Wj < 0, j  =  1, . . .  n.

Kuhn-Tucker conditions

Non-linear optimization problems with inequality constraints can be solved by 

applying Kuhn-Tucker theory (Hadley, 1964), which gives of a set of conditions 

that need to be satisfied. The case we are interested in is:

Minimize  / (x )

subject to pi(x) <  0 , . . .  , Pm(x) < 0,

X  G C ,

where (7 C R” is convex set and /(x ) ,^ i(x ) < 0 , . . .  , ^^ (̂x) < 0 are convex 

functions defined on C. It is assumed that the objective function / ( x )  and the
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constraints p'̂ (x) for i =  1 . . .  , m have continuous first partial derivatives. Kuhn- 

Tucker theory defines an unconstrained optimization problem which has the same 

solution as the original one, as follows:

The objective function of the unconstrained problem is called the Langragian 

function L(x,/x), and is defined as

m
L { x .,  m )  =  / ( x )  +  r t S i ( x ) ,

i=\

where f i i  is positive constant, called a Langragian multiplier, which refers to the 

constraint pi(x), and /x =  (/xi,. . .  ,/Xm)- If x* is a feasible point for this program 

and an interior point of C, then x* is a solution to the program if and only if 

there is a /x* =  (/xJ,. . .  , /x^) such that:

/X* > 0, for 2 =  l , . . . , m ,  (3.10)

/x-^i(x*)=0,  for x =  l , . . . , m ,  (3.11)
m

V /(x* ) +  =  0. (3.12)

where V /(x*) is the derivative at point x*. Condition (3.11) says that /x* =  0 

unless the constraint p^(x) is active at x*. Condition (3.12) is necessary to iden

tify the stationary point. The idea is that the existence of these multipliers sets 

up a transfer from the given constrained problem to the corresponding uncon

strained problem. These multipliers provide information about the sensitivity of 

the solution to the constraints.

For the quadratic program, / (x )  : R” ^  M , Q is a positive definite n x n 

matrix, x  G R’̂ , 6 G R"̂ , c G R”, a  G R, and T is an m x n matrix of rank m.

We have:

Minimize / (x )  =  a-\- c^x +  ^x^Q x (3.13)

subject to A x  < b, (3.14)

X >  0. (3.15)
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The theory says that if a regular point x* minimizes this quadratic program, then 

there are /i* G r ,  u* G M"' such that:

/i* > 0, for z =  I/* > 0 for j  =  l , . . . , n ,

c T Q x T fi* — f/* =  0,

IJ,*[{Ax)i - b i ] = 0 ,  for 2 =  1 , . . .  , m,

x*u* =  0, for j  =  1 , . . .  ,71.

However, in the continuous version of the Knapsack problem, when one ap

plies the Kuhn-Tucker conditions the multipliers of the conditions are required 

to satisfy condition (3.7) and an algorithm is required to be applied in order to 

yield values which will satisfy all the conditions.

One can get closed form solutions as a function of the multiplier (jl of the knapsack 

inequality constraint ĵVj ^  Let Wj be the multiplier for the constraint

Ij <  Vj, and Vj the multiplier for the constraint yj < Uj. The Kuhn-Tucker 

conditions are

-  &
U=1

-\-Uj—— (/j — yj) — — Oij T Wj — Uj +  fjibj — 0, for all j ,  (3.16)

Wj{yj -  Uj) =  0, for all j,  (3.17)

Uj[lj — yj) =  0, for all j, (3.18)

Wj >  0, Uj >  0, for all j, (3.19)

together with (3.7) and (3.8). For the problem with the inequality budget con

straint (3.7), the extra conditions are

y ~  ~  5̂ (3.20)

/ 2 > 0 .  (3.21)

The solution to the continuous version of the problem with constraint (3.7) requir

ing equality instead of inequality, is given by the following system of equations.
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in terms of ii\

yj(ld) =  Max   ̂  ̂ for all j , (3.22)

Wj(iJ,) =  M a x {a j  -  fibj — djUj.Çi}, for all j ,  (3.23)

Vj{ia) =  Max{fibj — aj  +  djlj ,0},  for all j .  (3.24)

It has been proved by Nielsen and Zenios ((1992), Bretthauer et ah, 1995) that for 

any the solution of the above equations satisfies the Kuhn-Tucker conditions, 

except for the knapsack constraint (3.7). This yields the additional equation 

g{li) 6, with

n

dilA — ^ V (3.25)

=  bjMax  I Min  |  — — — , Uj | , Ij |  • (3.26)

The function g{fi) is a piecewise linear non-increasing function of fi. Denote by 

/i* the value of ji that satisfies g{gi*) =  b.

To solve problem 4, note that dj =  (cr̂ A)̂ , aj =  X{ni — Cj), bj =  Cj and b =  C. 

The equations (3.22)-(3.23) become

Wj{ii) =  Max{X{fij — Cj) — fiCj — ct|A ,̂ 0}, for all j  =  1, • • • n

Vj{fj) =  Max{fiCj — X{iij — Cj),0}.

In this case the optimal solution to the problem is given by

1 if 1̂ * ^ X{fJ.j-Cj)-{>̂ crj

y J a )  =  K i J - ^ - C j ) - i J . * C j  x i i x j - C j ) - { X a j f  < *̂ < ( 3 . 2 7 )
 ̂ ' [Xaj)̂  Cj — “ — Cj '>  ̂ '

0 if a* >
—  Cj

A n exam ple

Suppose that there are two projects 1 and 2. Let the total cost for project 1 

be Cl =  3  and that for the project 2  be C2 =  2 .  The amount available to be 

spent is (7 =  1.8. Suppose that the random rewards for project 1 and 2 come 

from identical and independent Normal distributions, Ij ~  A (5 ,1 )  for j  =  1 , 2 .
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The target is the maximisation of the terminal wealth z. The utility function is 

u{z) =  exp(-A z).

Maximize  Eu(%) =  Max  E {— exp[—A(1.8 +  y i {h  — 3) +  ^2(^2 — 2))]} 

subject to 3yi +  21/2 <1. 8,

0 < yi <  1 and 0 <  1/2 <  1.

The equivalent minimisation problem (see section, 3.5) is

Minimize  +  2/2) -  2At/i -  3A?/2

subject to 3yi +  2^2 <  18,

0 < V j  <  1,  j  =  1, 2.

Then
n

5'(m) —
J = 1

=  3M ax {M in  {{2 -  3/i), 1} , 0} +  2Max [M in  {(3 -  2/i), 1} , 0}

and setting p ( / i )  =  1.8 yields // =  1.05, which gives the solution

Vi =  0, ?/2 =  0.9.

3.6 The exponential utility function

Now suppose that the utility function is a positive exponential utility function 

u{z) =  e^̂ .

The problem becomes:

Maximize  Eu(%) — E
j=i

(3.28)

subject to ^ ^ y j C j < C ,  (3.29)

0 < 2/j < 1, for all j  =  1, • • • n.

One can view the objective function (3.28) as a function of the random profit

Pj =  Ij — Cj yielded by each project j, for j  =  1, 2 , . . .  , n.
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We want to investigate whether it is always better to spend more in the sense 

that the mean value of the utility of the terminal profit increases as y j  increases. 

Consider

^ E [ex p {A y j(/j  -  c,)}] =  E [A(/j -  Cj) exp{A%(I, -  Cj)}] =  E [g ,(f)],

where gy{P) =  XPe^^^.

In general, we try to understand how the slope of the objective function changes 

with respect to y .  The unconstrained optimization problem is to choose y j  to 

minimize

E [exp{A%(/, -  Cj)}],

and the necessary condition is to equate the first derivative with zero.

It is interesting to show that E [gy{P)] >  0, by showing that,

•  E [ g ,( f ) ] > g [ E g ,( f ) ] ,

•  g{a) >  0.

Let

E [X{Ij — Cj) exp X{Ij — Cj)] =  b for yi =  1.

If a, 6 > 0 one can expect a maximum at yj =  1. If both a, 6 < 0 the maximum 

occurs at =  0. If a  < 0,6 > 0 then we expect a maximimum either at yj =  0 

or yj =  1. The slope of the objective function for yj =  0 is equal to the expected 

profit AE(/ — c). To check whether the slope of the objective function is positive, 

one can consider whether the E[gy{P)]  is a convex function in some range of 

profit. The first derivative of gy{P) is

y  =

which is positive if the profit P  =  I  — c i s  positive. The second derivative is

g" =  Xe^^^(2y +  \y'^P).

So gy{P) is convex in P  for P  > —2/A.

Also by Jensen’s inequality

E[%(P)| > gy [E(P)] =  gy(a)  =
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where E[gy(P)] > 0 if only if a  > 0.

Therefore, if the expected profit E[gy{P)] >  0 and the profit P  >  —2/A 

always, then it is better to spend more.

Norm al distribution

Using the moment generating function of the Normal distribution with mean /j,j 

and variance cr|, the problem becomes

 ̂ n n

Maximize  -A^ ^  +  A ^  — Cj)

n

subject to < C,

0 < Vj <  1, for all j  =  1, ' • • n.

This is a quadratic programming problem, but this time it requires maximiza

tion of quadratic convex function because all terms cr̂  >  0 for j  =  1, . . .  , n. Also 

all terms Cj >  0 and since yj are positive the budget constraint Vj ĵ > 0- 

The feasible region is a closed convex polytope. The decision variables yi are 

restricted between zero and one. The problem has multiple maxima.

The Kuhn-Tucker conditions for y, every global maximum, are

n

Y , V j C , < C ,  (3.30)
j = l
1 -  > 0, j  =  l , . . . , n ,  (3.31)

Vj > 0 ,  j  =  1, . . .  ,71, (3.32)

X^a^yj +  A(/ij — Cj) 4- gCj 4- iZj — /ij =  0, j  =  1, . . .  , ?i, (3.33)

/I ^  yjCj^ = 0 ,  j  =  1, . . .  , 71, (3.34)

ĵVj ~  t ĵVj ~  ~  1) • • • 3 5̂ (3.35)

Uj > 0 ,  /ij >  0, j  =  1, . . .  , 71. (3.36)
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An exam ple

Consider the following example.

Maximize f { y u y 2 ) =  vl +  vl +  Vi +  2/2 

subject to 32/1 +  22/2 < 1.8,

0 <  2/1 < 1, and 0 <  2/2 <  1-

In terms of utility, each unit of asset contributes to utility in exactly the same

way. However project 1 costs more per unit than project 2. The optimal solution

is given by 2/1 =  0 and 2/2 =  0.9 and we have / ( 0 , 0.9) =  1.71.

3 . 7  Discussion

In chapter 2, we concluded that the Pearson index solves the problem of maximiz

ing the expected net reward of the selected project subject to a budget constraint. 

The Pearson index plays the role of Lagrangian multiplier in problem 2 in sec

tion (2.5.2). In chapter 3 we extended problem 2, to the problem 3 which is a

maximization of non-linear utility function. We showed that when this utility is 

negative exponential the optimization problem is equivalent to Quadratic Knap

sack problem. We suggest that the solution of the quadratic problem can be used 

as prioritisation index to select projects when the decision maker is risk averse 

with utility function u{z) =  — exp(—A2:) where A is a constant and the random 

profit comes from Normal distribution . The index has the following form as 

explained by equation (3.27):

^Expected net reward -A(variance)
Expected cost

where the term variance refers to the variance of the random profit.
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Chapter 4

Forecasting System  M odelling

4.1 The use of forecasting model

A forecasting model is developed to predict for a given future point in time, the 

value of Pharmaceutical share. This model might be useful to some Pharmaceu

tical managers who like to think in terms of the market potential of a drug in 

development, as a function of the value of the Pharmaceutical share. The forecast 

value of the random variable could be used for the evaluation of the portfolio of 

shares too.

The marketing man could also use these forecasts of the market value over time, 

in order to decide whether or not to enter a given segment of the market for classes 

of drugs related to a group of diseases such as osteoarthritis, rheumatoid arthri

tis and dismenohrea. A forecasting system can be used to predict future data 

values from those values that have already been observed, in order to base these 

decisions. We assume that information arrives continuously and that forecasts 

need to be modified to take account of it.

More technically, it can be assumed that the data process is modelled as a 

continuous time stochastic process, typically a diffusion type process with known 

drift and diffusion coefficient. This process is observed, usually at some points in 

time which are equally spaced, and observations are used to derive the forecasting 

system rule. If the observations are not equally spaced, the derived forecast rule 

will be different. In the case where coefficients of the data process are not known 

because they may depend on an unknown parameters and an unbiased predictor
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is required, then the forecast is not a martingale, but it is a reversed martingale 

as pointed out by Bjork and Johansson (1992). Examples of this type are not 

the theme of this chapter.

Another interesting issue is that when the data process is observed randomly, 

that is, observations are collected as determined by a counting process ( as orig

inally suggested by Clark (1973)) the observation process might exhibit char

acteristics which do not belong to the original process. This is called a “Time 

Deformed Process” . It is important to understand that there may be discrepancy 

between the data and the observation process.

The work in this chapter is about how to derive these streams of forecasts 

based on statistical laws. The forecaster considers as a “best” prediction method 

between two random variables their conditional expectation. The conditional 

variance of successive forecasts is calculated for the examples under consideration.

In the next section a framework for an adaptive prediction model is developed. 

In section (4.3) various generating data processes for the forecasting system are 

studied. Then in section (4.4) we develop the forecasting rule for each of these 

data generating processes. A forecasting rule for a stochastic variance model is 

given in section (4.5). The last section (4.6) is about some remarks of the theory 

of pricing of financial options in a Black and Scholes market and how these are 

relevant to the adaptive forecasting model.

4.2 Adaptive prediction model

Let Vi, V2 ,... be a sequence of random variables from a specified joint distri

bution. The forecaster has observed the first n random quantities and noted n 

observations Ui, U2 , . . .  fn (n, =  1, 2 , . . .  ). His task is to issue a forecast at any 

time t < T for the random variable E =  Vr by using the vector of the observed 

data {vq,V2 , ■.. ,vt).

Let Ft be the forecast Ft =  E{y \v t ,V t- \^. . .  , %o) that is, the conditional ex

pectation of the random variable V  given the present information Vt and the past 

information Vt-\  ̂ v t - 2 i • • • ^0 of the observed data. The conditional expectation 

Ft is the best approximation of Vt  in the mean-squared error sense by a func
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tion of (Vo, Vi , . . .  , Vt)  ̂ that is to say that the mean square-error E[{Y — Vt Y] 

is minimised over all choices of functions of y  =  y(Vo, V\, . . .  Vt) by the choice 

Y  =  Ft =  E(V\Vo, Vi , . . .  , Vt). The problem is to deduce information about the 

value V =  Ft from the observed data up to the present time t, (vq,Vi , . . .  ,Vt), 

and derive a rule for updating the forecast Ft{\/t < T)  whenever a new observation 

is made.

Consider a forecast of the form Y  — Ft =  F {y \v t ,V t - i , . . .  ,Uq). One could 

think about the distribution of these sequential forecasts Fq, F i , . . .  , F^,. . .  , (Vt <  

T). One should notice that the kind of prediction in the set up of the problem 

is a multi-step prediction, and not only for the next observation. Usually the 

predictive distribution several steps ahead is not easy to derive. In principle, the 

j-step ahead predictive distribution F(Vr|VT-j) given the information Vr-j =  

{fo, - - - , ’̂ T-j] up to time T -  j  is given by

F(VT|Vr-;) =  j  ■ ■ ■ J  Y[P{^T-j+i\VT-j+i- i)dVT-j+i . . .  dVr-i.

However, we can study the conditional mean value and the variance of fore

casts. For example, the conditional expected value of Ft forecast can be shown 

to be equal to the previous forecast by using the properties of conditional expec

tation as follows:

We have

Ft =  F {V\v t ,V t- i , . . .  ,uo).

Then

F {Ft\v t - i ,v t - 2 , - ■ ■ ,uo) =  F {F { V \ v t ,V t - i , . . .  ,Vo)\vt-i,Vt-2 , ■ - ■ ,%o}

=  F(y|'Uf_i,'Ut_2 , . . .  ,'Uo)

=  Ft-\. (4.1)

As a result the expected value of the next forecast is equal to its most recent 

forecast. Thus, Ft is a martingale process.

The variance of the forecast Var{Ft) =  Var[{Fi — Fi_i)] because the martin

gale differences (F̂  — Fi_i) are uncorrelated. The more variance’ terms are added
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to the summation the variance increases. Therefore, the

further into the future the forecast is made, the bigger its variance Var{Ft)  will 

be.

Consider the prediction error ?/(, that is,

Vt =  Vt — E(Vr\vt, vt-i j  • • ■ 7 ^o),

where it can easily be shown that its variance Var(^ )̂ is equal to the conditional 

variance of the forecast V =  Ft conditional on the information at time t, that is,

Var{yt\vt, Vt-i, ■■■ ,vq) =  Var{Vr -  Ft\vt, Vt-i, • • • ,%o) (4.2)

=  Var{Vr\v t ,V t- i , '" ,Vo), (4.3)

which happens to be the conditional mean square error.

The behaviour of the conditional variance of the prediction error is dependent 

on the assumptions of the data generating process and this might imply that the 

conditional variance does not decrease.

However, the variance of the random variable Vt is equal to

Var(Vr) =  Var[E{VT\vt, vt-i ,  • • • , uq)] +  E [Var{VT\vt, Vt-i, • • • , ?;o)]

=  Var[E{VT\vt+i,vt,- " ,Vq)] F E[Var{VT\vt+i,Vtr • • ,%)]

=  Var[Ft]FE[cl>t]

=  Var[Ft+i] +  E[(f)t+i], (4.4)

where (j)t =  Var\YT\vuVt-i, • • • , v q \ .

Generally, the conditional distribution {Vr|uf, Uf_i, • • • , uq} has mean Ft and vari

ance So, at the time 0 the variance of the forecast Var(Fo) is small relative 

to Var(F^) (for any t > 0) and because Var(%) is constant, it is concluded that

E{(j)t} > E{4>t+i} for any t. Now consider the expectation of conditional variance:

=  E  [E{{Ft  -  

=  E{{Ft  -  Ft+iŸ\Ft}

=  E { { F T - F t f  +  { F t - F t + , Y \ F t }

=  *  +  (4.5)
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where E{{Ft -  Ft+,){Ft+, -  Ft)\Tt} =  E{{Ft -  Ft+,)\Ft}{E{Ft+,\Ft) -  Ft} =  0. 

From (4.5), we get

E{(l)t+i\Ft) < (j)t.

Therefore, the conditional variance is a supermartingale process.

In the case where the conditional variance (j)t =  Var[Vr\vt, Vt-i, • • • ,Vq] increases 

as t —>■ T, it implies that the more data here is the greater is the uncertainty. 

One could also calculate the variance of the difference between the predicted 

variable V and the current forecast Ft -  

Note that,

T - t

Vt  — Ft = Ft + {Ft+i — Ft) +  • • • +  {Ft  — -Fr-i) — Ft = — Ft+i-i)
i = l

then,

' T - t

Var{V  — Ft) =  Var — Ft+i-i)

T-t
—  ^ 2  ^ — F t + i - i )  +

+  ^ 2  Cov{Ft+i — Ft+i-i, Ft+j — Ft+j-i)

=  Y , E [ { F T - F t ) %

i = l

T - t

i = l

since E{Ft+i — Ft+i-i) =  0 for every i because of martingale property of Forecasts 

Ft.

By assuming that the E{F^) < oo , Vt.

T - t

Var{Vr -  Ft) =  E(Ft  -  F t f  =  Y ,E [ {F t+ i  -
i = l

For the conditional variance Var{VT — Vt-i, • • • , Uq) =  Var(VT — Fr|I4)

V a r { V - F t \ v t )  =  E{(Ft  -  Ft)' \̂Vt)

=  E{F^ -  -  2Ft(Fr -  Ft)\Vt)

=  E{F}-F^\Vt)
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4.3 Data Generating Processes

For the development of the forecasting system, a process which will generate 

the set of observations needs to be specified. Name this process, “Observation 

process”. This observation process may be a continuous or discrete stochastic 

process. A continuous time model can be represented in terms of a stochastic 

differential equation whereas in a discrete time framework the observations follow 

a stochastic difference equation.

Whether one should have a preference for either a continuous or discrete 

version of the observations process, is not clear, but since the random variable is 

the value of a share which can be measured at any particular point in time and 

not only in some time intervals, a continuous time framework is acceptable.

In this section an account is given of possible models for the dynamics of 

share prices both in continuous and discrete time. Continuous time modeling 

might be more useful for the development of theoretical models, as opposed to the 

forecaster job who receives the data which are sampled at discrete time intervals.

G eom etric Brownian M otion

Black and Scholes (1973) assumed that stock prices S =  {St)t>o follow a Geo

metric Brownian motion (0ksendal, 1995), that is,

dlogSt =  ^  -  (̂7^  ̂ dt 4- crdWt, (4.6)

where W  =  {Wt)t>o is a Brownian motion (the Wiener process), r is some con

stant interest rate and cr > 0 is some volatility coefficient. The solution (Bjork, 

1998 p. 55) of the stochastic differential equation (4.6) is,

(4.7)

The discrete analogue of the process (4.6) can be explained as follows: Divide the 

time horizon of the process [0,T] into a partition {0 =  to < ti < ■ ■ ■ < =  T }

such that for each /i =  1, • • • , 77, the difference =  A t  =  ^ .  Then the

logarithmic increments A ŝ =  log^* — log St-At of the stock price over each of
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these time steps are i.i.d normal, with mean (r — and variance a^At. The

logarithmic process is log St =  log So +  ■ The random variable log St

has Normal distribution,

1
N log So I r — -cr  ̂ ) (T — to), (j‘̂ {T — to) (4.8)

where its mean and variance are not dependent on the intermediate values of 

log^i for z =  1, . . .  , T — 1.

Now, for the forecasting problem, we assume that we observe a stochastic 

process Vt  which follows a Normal distribution with constant mean 6 =  r  — 

and variance that is, log ~  N{ô,a^).

Generally, it could be assumed that Ut+i =  log Vt+i — log Vt are i.i.d and that the 

moment generating function of the underlying distribution U exists and denoted 

by Mu(h) =  E[e^^].

M ean R everting Ornstein-Uhlenbeck Process

Instead of the above version of the discrete type Geometric Brownian motion 

model, where the log process is an arithmetic random walk with i.i.d normal 

increments, one could use a model for the successive logarithms of the observed 

values of log 14 as a mean-reverting process, and also known as an Ornstein- 

Unlenbeck process (Arnold, 1971, p. 134) which is a continuous representation of 

an AR(1) model. In continuous time,

dlog 14 =  —a{\ogVt — i J , ) d t a d W t  (4.9)

log Vo =  X,

where cr > 0 is the speed of reversion, /i is the level to which log 14 tends to 

revert, and x is the known value of the process at its starting point.

Proposition  1 Equation (4.9) has the following solution

log 14 =  xe~°"^fia  f  a  f  dWs (4.10)
Jo Jo

= 2;e +  /i( l — e“ “ )̂ +  cr /  e~'^^^~^^dWs.
Jo
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Proof.

Set Yt =  logVte^^. Then

=  —«(log Vt — ii)e^^dt +  ae^^dWt +  «(log Vt)e^^dt 

=  iiae^^dt +  ae^^dWt-

Integrating

log -  log Vo =  fjLa

Therefore

.< r t

— iUK Kn =  M« -« +  « /  e^^dWs 
0 Jo

logV, =  log7oe““‘ +  m(1 -  e““‘) + a  [  □
Jo

A discrete version of OU process is:

log Yt+At ~  log Vt =  —«(A t) log Vt +  fiAt  +  6t (4.11)

where e ~  A(0, cr^At). The log-price process is the sum of a zero-mean stationary

Gaussian process. The successive logarithm values for At =  1 have conditionals

moments

E[logl4+i -  log % I log =  - « l o g K- h / x ,  (4.12)

y  nr [log 14+1 -  log 141 log 14] =  (7  ̂ (4.13)

The distribution of the sequence of observations log 14, log I4 +1, log I4 +2 , • • • can 

be thought of as a Conditionally Gaussian Model, that is, the moments of the 

Normal distribution are dependent on the past information

{log 14+1 -  log 141 log 14 , . .. , } -  AT (/2t{logl4},«^{log% }) (4.14)

and from (4.11) follows that log 14+A( is distributed as

tv { -« (A t)  lo g l4 +  /i(At),cr^} ,

given 14 , where /Zf{logl4} is the mean and cr^{log I4 } is the variance.
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Trending Ornstein-Uhlenbeck Process

An alternative process is the Trending OU Process (see, Lo & Wang, 1995, p.93) 

as follows

dlogSt =  [~a{\ogSt -  i j i t ) i j ] d t a d W t  (4.15)

log So =  X .

Rewriting equation (4.15) as

d[log S( -  ixt] =  -a { \o g S t  — fit)dt adWt,  (4.16)

and we get the explicit solution:

log St =  + / /  f  sds +  cr f  e~^^^~^ d̂Ws (4.17)
Jo Jo

+  /it +  a [  e-^^^-^^dWs.
Jo

=  xe~^*

4.4 Forecasting Rules

Consider a forecaster who is required to predict the future behaviour of a given 

one dimensional stochastic process V =  {V{ t ) ] t  >  0} at a certain point in time 

T  where t < T. The process has been observed and some values noted. In this 

section we derive the forecasting rules for log Vt and Vt given the information up 

to the present. Examples for different stochastic processes are presented.

Forecasting the value of log Vt

Assume that the observation process is Geometric Brownian motion (see section 

4.3). Denote log 14 by Wt- Now if one wants to forecast IoqVt process then, 

denote its forecast by 0^

=  E{logVT\Wt,Wt-iT. . .  tWq) =  E(WT\Wt,Wt-iT ' ' ’ , W q)

=  E I 144 +  (logVj — logVj-i)\Wt, M4-1, ' ' , Wo 
I j=t+i 

=  W t - ^ { T - t ) 0

=  logVt +  {T — t)& (4.18)
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Consider the conditional mean square error which is defined to be

— logVT)‘̂ \Wt, • • • , Wo] =  ^[{logVt +  (T — t)6 — logVr) ‘̂ \Wt  ̂ • • • , Wq]

=  Vdir[logVT -  logVt\Wt, • • • , Wq]

=  ( T - t ) a \

It is concluded that the conditional mean square error decreases as t —>• T. 

Consider the difference between two successive forecasts =  ^t+i ~

=  logVt-\-i — logVt — 6. (4.19)

It can be seen that

E(A$t+i|Wc, Wt-i,  • • • , Wq) =  E(<hf+i — Wt-i,  • • • , Wq)

=  E(logVt+i — logVt — Wt-i,  • • • , Wq)

=  0.

This is not suprising since the forecasts form a martingale process, and the ex

pected value of a martingale difference is zero.

For the variance of successive forecasts, we have:

E((A$(+i)"|W (,W (_i,...,W o) =  E((/opV^+i-(opV^-6):'|W (,W t_i,...,W o)

-- Var(ZopI/(_i_i — logVt — 6| 14^, M ^_i, • • • , Wq) 

=  Var(/o^I4+i -  logVt\Wt, W t - i ,  - - , Wq)

=  (7̂ .

Similarly, we derive the forecasting rule for the value Vr-

Forecasting the value of Vr

Denote Ut+i =  log^^ .

Let Wt =  logVt ^ V t  =

So, Ut+i =  Wt+i — Wt where independent increments for Wt are assumed to 

be distributed with any arbitrary distribution with moment generating function 

denoted by Mut{h) =  E[e^^ ]̂. We express V =  Wt =  Wt~\- Y^=t+\ if the

forecast Ft takes the form Ft =  F{V\vt, Vt-i, . . .  , Uq), then it becomes

Ft =  e^^F ^^\vt,Vt-i, . . .  ,Uo) (4.20)

=  . (4.21)
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But ^  ) is the moment generating function of a summation of indepen

dent and identically distributed random variables which is equal to

T

j = t + i

The forecast Ft takes the form

Ft =  =  V t{ E (e ^ ‘) Ÿ ^ ~ ' \  (4.22)

Exam ple 1: G eom etric Brownian m otion

If the stock prices follow Geometric Brownian motion, then the moment generat

ing function of the increments is a Normal distributions with mean ô and variance 

(7̂  and the forecast Ft becomes

Ft =  Vt (4.23)

where A =  . The forecast Ft is equal to the value of the process Vt if

A =  1, that is, Ft =  Vt-

To study the behaviour of the successive forecast, one can calculate the condi

tional variance of the successive forecasts. Let denote the difference of

successive forecasts

AFt+i =  -  F, =

=  A(:^-'-^)(%+i-AV^)

= _  X) .  (4.24)
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The conditional expectation E(AT^_|_i|i;() is equal to zero due to martingale prop

erty. The conditional variance of successive forecasts can be calculated as follows

E(A F(+i\vt, v t - i , ■ ■ ■ ■Wo) -  |F()

=  E

=  A2(T-i-i)y^2g _  E{e^‘+^\Tt)Ÿ\Tt]

=  [E{(e^'+')^|F;} -  E^(e[''+'|F()]

=  A2< -̂‘- ‘)Vt'E {(v;+i -

=  (4.25)

The relation between the two forecasts, Ft and 0  ̂ can found as follows:

Take the logarithm of (4.23),

logFt =  logVt +  (T -  () (d  +  i f f ' )  . (4.26)

Compare (4.18) and (4.26)

0 , =  logFt -  -  t ) , (4.27)

where T  > t. Therefore, the forecast of the logVr =  4>t is always smaller in

magnitude than the logarithm of the forecasted value of Vt, denoted by logFt.

This conclusion can also be justified by using Jensen’s inequality, as follows: 

Suppose that g{x) is concave function, and X is a random variable. Jensen’s 

inequality says that E[g{x)] < g{E[x]) provided the expectations exists.

Let the forecast Ft =  x =  E(V\vt,  Vt-i , . . .  , %o) and let g{X) =  logFt.

Therefore,

=  ^t =  F[log^t+i] =  E

< log[E{Ft+i)] =  logFt.

So,

< logFt, V t .

Clearly this result is consistent with (4.27).
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Exam ple 2: Process w ith  Gamma increm ents

Suppose that the increments Ut follow Gamma(a,/5). Then the forecast Ft

F t =  e'^‘ { E { e ^ ‘ ) Ÿ ^ - ‘  ̂ =  V t l - ^ Y  \  (4.28)

Therefore,

Ft /  Vt for any ^ and t > 0 

Denote the difference of successive forecasts with 

A-G+i =  Ft+i — Ft
r /? '1 ( R  ̂ “(^“0

=  H+i \ i / - r  - V t ^  ^/ ? - l J  [ P - l
f 3  1 “ (^-^-1) r Q

(5 - l \  U - 1

where -0 =  The conditional variance is equal to

l/ar{AFf+i|u^,u^_i, • • -uo} =  Var{Ft+i -  F t \v t ,v t - i , - • -Vq}

=  Var {(Vt+i -  -  vt'ifj | Vt,Vt-i, • • - uq}

=  • • • Uo}'

The variance of successive forecasts decreases as the number of steps ahead T  — t 

diminishes.

Exam ple 3: M ean R everting O rnstein-U hlenbeck Process

Recall that if Vt follows a mean reverting OU process its solution is given by

V, =  V ie-“‘ +  /i( l -  e - “‘) + a  [  (4.30)
Jo

Choose 6t =  1 and given the availability of a set of observations up to and 

including time t, the forecast one step ahead is,

E(Vt+x\vt,vt^„ • • - «o) =  +  /x(l -  e -“‘) +  ffE U '  .

78



The expectation of the stochastic integral is zero and therefore the forecast is

E{Vt+i\vt, v t-u ■'■Vo) =  (4.31)

Optimal /c-step-ahead forecasts for A: > 1 can be evaluated in two different 

ways. The first one is to use appropriate forecasts in place of future values of 

the process of Vt. The second approach is to back-substitute from the defin

ing equation of the process (4.30) so as to eliminate future values of Vt. For 

example, in order to get the forecast E(Vt^2 \vt, ■ ' ' '̂ o) with the first method, 

we need an estimate Vt+i for the future value of Vt+i. Let the estimate be 

14+1 =  E(Vt+j\vt,vt-i, ■ ■ 'Vq) =  (vt — which is the optimal forecast.

Applying the first method, we get:

E(Vt+2\vt,vt-i,' • 'Vo) =  E[E{Vt+2\Vt+i,Vt)\vtr "Vo]

=  E  [ E ( 1 4 + 2 | 1 4 + i ) k i 5  • • • '^o ]

+  (%+i —

(4.32)

ô]

(4.33)

— +  {vt — )u)e

Similarly, for the forecast (T — t) steps ahead, we have:

Ft =  E{Vr\vt,vt-i^ ■ ■ ■ Vo) =  E • • • [E(Vr|Vr_i, • • • I4 +1,

=  I I { v t  -

For the second approach, the process at time t =  T  is

Vt =  yT-ie"“ +  M ( l - e - “) +  a e -“^ /  e^^dWs
Jt -1

=  | v r - 2e““ +  //(I -  e"“) +  j

+ / i ( l  -  e - “) +  f
Jt -1

where W{s)  and FF'(s) are independent Wiener processes for every s. We have
n T p T - l

) +  ae~^^ /  e^^dWs +  / e^^dW[.
Jt -1

Vt  — Vt —2^ T  /i(l - 2a

T - 2

Similarly, one can show that 

hr =  +  ^(1 _  ^  g-(^-i)« +  ^(^-0
T - t

k=l

e-a{T-3)^^r \
' T - 1

{ T - t )
't+1

(4.34)
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Taking expectations, we have:

Ft =  EÇVrlvt.Vt-ir ” Vo)
T - t

=  - - "Uo} +  /^(l -  6“"") ^  +  0
k = l

= +  /i( l -

=  (4.35)

since the expectation of the stochastic integrals are zero and Vt =  Vt- Equation

(4.35) is the same as (4.33).

To estimate the conditional variance Ear{Vr|Vr-2}

V a r { V T \V T - i )  =  V a r [ a ( ^ j  e - “<^-“) d w 3  +  a  ( y

=  (T ê- “̂'^[Kar ( y  e“*dVK,) +  Var ( y  e"»dW%)]

=  c rV ^ “^ [ E ( y  e“ dlV ,) + B  ( y  e“ d iv 4  ].

From the properties of the stochastic integrals ((0ksendal, 1995) p. 26) we write,

e { /  =  y  { e - “ ( ^ - “> } ^ d s .

Then the variance Far{VT|^2} is equal to:

yor{k^|V^_2} =
Jt -1 Jt -2

21 -  
^ 2^ ■

and V a r { V T \ V t } -

Consider the difference of successive forecast AF^+i =  Ft+i~ Ft. We calculate 

the conditional variance Var(T^+i|W) where W =  { v t ,  V t - i , . . .  } are the past data.

V a r ( A F , + i | y ' )  =  V a r ( F ( + i - F , | y ' )

=  E { F t + i - F t - E ( F t + i - F t \ V * ) \ V ^ y  

=  E { F t + , - F t \ V ^ y  

=  E{Ft+ i-E{Ft+i \V*) \V*y  

=  V a r { F t + i | V ‘ }  ( 4 . 3 6 )
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The variance is equal to

F ar{A F t+ i|y ‘} =  Var {/j. +  _  y,) \ V*}

=  -  d,) | V ‘}

=  e-2“(^-‘- ‘Var{V;+i | V*}

_  -2 a (T - t - l )  2 1
“  ® ^ 2 a  ■

Therefore the variance of successive forecasts increases as the length of the time 

interval T  — t decreases.

Exam ple 4: Trending O rnstein-Uhlenbeck Process

An alternative process is

dVi =  [—c {̂Vt — fJ't) fji\ dt GdWi (4.37)

Vq — X.

d\Ŷ t — ixi\ =  — — fit^dt +  (Jc/Wf, (4.38)

and get explicit solution:

Vt =  xe~^  ̂+  M /* sds cr [  (4.39)
Jo Jo

=  xe~°‘̂  f i t a  f  e~°‘̂ ^~^^dWs.
Jo

If we compare the data process (4.30) in example 3 with data process (4.39) they

differ only in the deterministic part. As a result their forecast are different but

not their conditional variances. For the forecast (T — t) steps ahead, we have:

F t  =  E { V T \ V t , V t - i ,  - • ’ V q )  =  E ’ • • [ E { V t \ V t - 1 , '  ’ ' ’ '^o]

=  Ute-^̂ ' -̂^̂  +  f i { T - t ) .  (4.40)

4.5 Stochastic Variance Models

An A utoregressive Conditional H eteroskedastic (ARCH ) process

Suppose that a financial agent needs to make a decision based on the distribution

of a random variable at some future point in time. Apart from the mean of
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conditional distribution, the agent finds it useful to know about the variance of 

this conditional distribution. An example would be that he is trying to maximise 

his mean-variance utility function, and therefore needs to model the conditional 

variance as a function of the observed data and past variances and since both 

conditional moments are functions of time, he uses the model to rebalance his 

portfolio.

Suppose that the observation process is governed by the following process

Vt, \ i f  \ < 1 (4.41)

where e={et) is a weak white noise [i.e., sequence of uncorrelated random variables 

with constant mean and variance) satisfying the martingale difference condition:

E[et\et-i) =  0, Vt.

The conditional variance Var[et\et-\, et- 2 -, • • • ) of the process is time dependent 

through an autoregressive equation as follows:

=  c-\- +  Ut (4.42)

where u =  [ut) is a strong white noise [i.e., indepedent random variables with

constant mean and variance). To ensure the existence of the process some con

ditions must be imposed (see Gourieroux, 1997, p. 30) these are:

1. The process (e )̂ must be positive. The sufficient conditions are a  > 0 and 

c +  Ui > 0 for any admissible value of Ut

2. The mean of squared innovations is

m t =  E ( e ^ )  =  c  H- a ru t- i,

where mo is given. When a  < 1, the initial condition can be set up to the 

equilibrium value mo =  c /( l  — a).

The target is to get a forecast for the value of process at time t =  T  given the 

past values =  {yt ,y t- \ , . . .  }. The conditional expectation Ft =  E{Yt \Y^) is 

the best approximation of Yt in the mean square error sense by a function of the
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past values =  {yt, yt-i ,  • • • }• By writing the Yt  in terms of the most recent 

innovations, we get:
1 ( T —f) T —t —1

 H +  V ]  (4.43)

Therefore, the forecast Ft is

Ft =  E{Yt \Y‘) =
I — ip

Similarly, by using (4.43) and if we recall (Gourieroux (1997) p. 31) that,

 1 -  o'* , h j
1 —  cx

then, the conditional variance Var{Yr\Y^) is calculated as follows:

T - t - l

Var{YT\Y^} =  ^  p ‘̂ ^Var{er-j | T')

1 _

j = 0

T - t - l

= '<}
c 1 — (  ca q\  (

— ae
1 — a  1 — \1  — a  J \  a  — p

Now consider the case p  =  0. The forecast is Ft =  p, and therefore there is 

no variability in the forecast. As a consequence of no variability in the forecast,

Var{YT\Y^) =  Et{Var{YT\Y^^^)} +  Vart[E{YT\Y^+^)}

=  E ({yar(}^ |y'+^)}.

Thus the conditional variance process is a martingale (instead of a supermartin

gale). This is not suprising since the conditional variance Var (Ft) =  0.

Also, the conditional variance of forecast can be compared with the unconditional 

variance of the forecast as follows:
T - t

Var{YT\Y*)-Var[YT)  =  cY ^ a > -^  +  â ~*e'̂ t -  Var(Yr)

T - t

=  c ^  — Var(eT)
j = i

1 — a  ^ 1 — CK
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Comparing the conditional and unconditional variances, the conditional variance 

will be greater than the unconditional one every time the squared error term 

is greater than its expected value.

So far, the forecast was considered to be Ft =  E{Yt \Y )̂ which was always 

equal to zero {Ft =  0). Now, redefine the forecast as F  ̂ =  E{Y^\Y*) which is the 

variance of ARCH(l) process and is time dependent. So, the forecast is
T - t

F ’ =  E{Y}\Y^) =  c +  a'^-*Y^.
3=1

We can write the model as a non-Gaussian autoregression

~  ^t) =  c +  aŶ _-̂  +  Ut,

where Ut =  cr̂ (ê  — 1) is a martingale difference.

The simplest linear ARCH model, ARCH(l) is defined as:

Yt =  et(Tt, =  c +  (a Y^_ ,̂ t =  l , . . . T ,

with data Y'  ̂ =  (Ti , . . .  ,Yt ), where Ct ~  N ID{0,1) ,  with constraints on pa

rameters c > 0 and a  > 0, to ensure that the variance remains positive for 

all t. It has a conditional Gaussian representation, that is, Yt\Y^~  ̂ ~  N{0,a^)  

which means that is a martingale difference. Therefore, the mean E{Yt \Y^) =  

0 and the predictive distribution is Yt \Y  ̂ ~  A/"{0, E (y^|y*)}. The forecast 

Ft =  E(1A|^^) is zero. The variance of the predictive distribution is E(Y^|W) 

which is the forecast of at time t and for notational convenience denote this 

with E^(Yÿ). Then, Et(Y^) =  Ft Et+i ■ -  Et ~i {Y: )̂ and note that Et - i {Y^) =  

c +  aY^_i. Repeating this operation yields

T - t

E(Yÿ|y*) =  c (1 a  +  • • • +  =  c ^
j=-i-

Several properties can be noted here. Consider the conditional variance pro

cess Var{YT\Y*) =  E(Y^|W). Also the expected value of the conditional variance 

E t { V a r { Y r \ Y ^ ' ^ ^ ) }  is positive. We also know that:

Et{Var{YT\Y^+^)} =  Var{YT\Y^) -  yun{E(Y^|W +^)}.

Consequently,

y n r % |y * ) > y n n {E % |y * + ^ )}
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since Et{Var{YT\Y^^^)} >  0. It is concluded that the conditional expected value 

of the conditional variance of the value of the process at time T  is equal to the 

difference of two variances, that is, the unconditional variance of the process 

minus the conditional variance of the forecast on the next time  ̂+  1.

Var[YT) =  E{Var{YT\Y^)} +  Var{E{YT\Y^)}

=  E{Var{YT\Y^)}

=  E{Var{YT\Y^+^)}
T

— c^Var{YQ) for a  < 1

It is concluded that the expected value of the conditional variance process is 

constant.
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4.6 Option Pricing: The Martingale approach

4.6.1 M odel Specification for Securities Market

Consider an economy over the time interval [0, T]. There are T + 1 trading dates, 

these are, t =  0,1, • • • ,T.  In this economy, there are only two kind of “assets”. 

Bonds of fixed interest rate r, which will be represented by bank account process 

and stock(s), the value of which fluctuates randomly.

Let (n, .F, P ) be a probability space with a given stochastic process Sn =  

{Sn(t)yt =  0,1,  • • - T} for the security (n =  1, . . .  ,N )  which represents the 

time t value of the security, where points u e  ft represent states of the world, 

given a finite sample space with < oo elements, ft =  {wi, W2 , . . .  ,ujk}- 

The number of risky assets in the Market is denoted by n. For each time t =  

0 , 1 , . . .  ,T,  the investor learns the current state of the world, and therefore the 

true value of the random variable, namely, the value of risky security at time t. 

More specifically, the discrete time financial model needs to be built on:

1. A probability measure P  on Q with P(w) > 0 for all u E ft.

2. A filtration F =  { T t \t =  0 , 1 , . . .  , T}, which is a sub-model describing how 

information is revealed to the investors.

3. A bank account process B =  {Bt; t =  0 , 1 , . . .  , T}, where P  is a stochastic 

process with B q =  1 and Bt{uj) >  0 for all t and to.

4. N  risky security processes Sn =  {Sn(t)]t =  0 , 1 , . . .  , T) ,  where Sn is a 

non-negative stochastic process for each n =  1, 2 , . . .  ,N .

5. The discounted price process S* =  {S*{t);t  =  0 , 1 , . . . T}  is defined by 

S*{t) =  Sn{t)/Bt,  for t =  0 , 1 , . . .  , T and n =  1 , 2 , . . .  ,7V.

4.6.2 The general pricing problem and its solution

C ontingent Claims

D efinition 4.1 A contingent claim or financial derivative is any random-cash 

flow X  of the form X  =  4>(S'i), where St is a stochastic variable representing
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the stock price process and the contract function 0  is some given real valued 

function.

The holder of the contract receives the stochastic amount X  at time t  =  T. 

The simplest contract is one in which the value of the claim only depends on 

the value St - The alternative is to consider a contract with stochastic payoff 

which depends on a random path (^o, 5 i , . . .  , St ) of stock prices as determined 

by function Jt =  friSo,  S i , . . .  , St ) at time t =  T.

The question under consideration is how much an investor should pay at time 

t =  0 for this contingent claim which yields random reward ^{St ) payable at 

time t =  T.  More generally, the question is, what is a “fair” price at any time 

t <  T for the investor to pay so as to receive a random amount $ (5 t )  at time T. 

Denote this price process by X); t =  0 , . . .  , T}.

Trading S tra tegy  (P ortfo lio  S trategy)

D efin ition  4.2 A trading strategy H i , . . .  , Hj^) is a vector of stochastic

processes =  1 , 2 , . . .  ,T ] ,  îov n =  0 , 1 , . . .  , N  where denotes

the number of shares that the investor owns from time t — 1 to time t. H  is a 

predictable stochastic process, that is Hn{0) is Xq — measurable and for n > 1, 

Hn(t) is JF„_i-measurable.

P ortfo lio  P rocess

D efin ition  4.3 The value process Vt =  {Vn{t);t  =  0 , 1 , . . .  , T} corresponding to 

portfolio H is a stochastic process defined by

f % (!)%  + Z L % ( i K ( o ) ,  t =  o

\  Ho(t)Bt + E L i  finit)Suit), t > l .

The initial value of the portfolio at t =  0 is Vo, and Vt is the t time value portfolio 

just after the “announcement” of new prices at the market is made. Note that 

H{t) =  {Ho(t), H i { t ) , . .. , H^i t))  is already known since H{t) is .7^_i-measurable, 

i.e., H{t)  is only dependent to the prices recorded by the investor up to the time 

t -  1.
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Self-F inancing Trading S trategies  

D efin ition  4 .4  A strategy is called self-financing if

N

Vt =  Hoit +  l)Bt  -f Hn{t 4- l)*S*yi(t), t =  1 , . . .  , T  — 1.
n = l

This represents the time t value of the portfolio just after any t transactions, that 

is just before the portfolio is carried forward to the time t +  1, i.e., after t  time 

prices are observed.

This implies that,

Hn{t)Sn{t) =  Hn+l{t)Sn{t), U =  0, 1, . . . ,N.

To understand this restriction consider the portfolio value Vt at an arbitrary time 

t
N

Vt =  +
n—l

The value of the portfolio at time t — 1 is:

N

n = l

which represents the market value of the portfolio strategy Ht just after it has 

been established at time t — 1. Now, consider the change in the portfolio

N

=  V t -  Vt-i =  ffo(t)[Bt -  Bt - i ]  +  ^  f f„ ( t)AS„( t) ,  (4.44)
n—l

which means no money is added to or withdrawn from the portfolio between 

times t — 1 and t, any change in the value of portfolio process is due to random 

changes of stocks and the change of the bond values ABt  only.

A d m issib le  stra teg ies and A rbitrage

D efin ition  4.5 A strategy H  is said to be admissible if it is self-financing and 

if 14 >  0 for any t G { 0 , 1 , . . .  , T}.

This is a restriction which requires the investor to have positive initial wealth. 

However, a restriction is needed to stop the investor to follow a strategy, if one 

exists, to making any profit at any time t > 0 from zero or negative initial wealth 

and without investing any funds.



D efinition 4.6 An arbitrage strategy is an admissible strategy with zero initial 

value and non-zero final value.

The market is viable if there are no arbitrage opportunities. To ensure that the 

market is viable one uses the following theorem.

Theorem  4.1 (Lam berton and Lapeyre (1996))

The market is viable if and only if there exists a probability measure Q equivalent 

to V  such that the discounted prices of assets are Q martingale.

Pricing Principles

Consider a discrete time stochastic model of a frictionless^ security market as in 

(4.6.1). The market is assumed to be viable and complete. A contingent claim 

defined by X  =  ^{St)  is attainable if there exists an admissible strategy worth 

X  at time T. A market is defined to be complete if every contingent claim is 

attainable. There is a unique probability measure Q under which the discounted 

prices of financial assets are martingales.

Harrison and Kreps (1979) have shown that the absence of arbritrage oppor

tunities implies the existence of a probability measure Q, such that the current 

price of any basic security is equal to the Q-expectation of its discounted future 

payments. This result summarises in the following theorem which relates the 

absence of arbitrage possibilities with the Q-martingale probability measure as 

is presented by Kabanov and Kramkov (1994) (see Harrison & Pliska, 1981):

Theorem  4.2 (Kabanov and Kramkov (1994))

The following conditions are equivalent:

(i) there is no arbitrage;

(ii) there is probability measure Q ^  V  with bounded density d Q / dV  such that 

the price process S  is (a vector-valued) martingale with respect to (F, Q),

i.e., E q ISu] <  oo and Æ?g(A5n|X„_i) =  0 for all n < T .

The idea is that the change in financial value (gain or loss) of the replicating

portfolio during the time period {t — l , t )  as shown by (4.44) is the product 

^This m eans that there is no trading cost.
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H(t )AS( t ) .  So the accumulated gain from time t =  0 up to time t is given by 

the “martingale transform” :

t

Therefore we have the definition of a gain process is:

D efinition 4.7 A Gain process G =  {Gt] t  =  1 , 2 , . . . ,T }  is the stochastic inte

gral of the trading strategy H  with respect to the price, that is

t N  t

Gt  =  H q ( u )  A B u +  Hn {u)ASn (u) , t  > 1.
u=l n=l u=l

Now, returning to the question what is a “fair” price of the contingent claim 

with payment function /^ , its solution is summarized by the following theorem:

Theorem  4.3 (Shiryaev, Kabanov, Kramkov, and M elnikov (1994))

1. Under conditions of a Black-Scholes market (Black & Scholes, 1973), the 

fair price Gt of a contingent claim with expiration time T,  payment func

tion f r  =  f r i S o , . . .  ,St ), and use of self-financing strategies is given by 

Gt =  E* [(1 +  r)~'^Jt ] where E* is the expectation with respect to the 

probability measure Q which makes the discounted price process Q mar

tingale.

2. There exists a self-financing strategy H* =  (i^t*)o<t<r such that evolu

tion of the corresponding capital is given by the formulas X p  =  E*[{1 -f-

4.7 Option pricing and the Forecasting System s

In the previous section, we discussed the fundamental theorem of Asset pricing 

as initiated by Harrisson and Kreps (1979) and Harrisson and Pliska (1981). The 

absence of arbitrage opportunities implies the existence of a probability measure 

Q. The current price of any basic security is equal to the the Q-expectation of 

the discounted future payments. With the restriction that markets are complete, 

Q is unique.
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The reason why the martingale method should be of interest is that the cur

rent price of any derivative asset (European option) is given by the discounted 

expected future pay-off under the “appropriate” probability measure. In other 

words the option price is a sequence of random variables, which are conditional 

expectations.

Alternatively, a forecaster can predict the exact value of payoff X  — 0(6'^), if he 

can produce a series of forecasts about the value of the random variable St given 

the information up to time t, and then use this forecast to estimate X  =  ^(St )- 

For example a European call option has payoff equal to h =  (Xt — K ) ^  where 

h is its fair price at time t =  T  HVt =  X t and K  its exercise price. So if the 

forecaster can predict and knows the payoff function h, then he can give a series 

of predictions about the future price of the contingent claim.

However, a financial Statistician who would like to price an option adopts the 

so-called martingale procedure, where he knows the stochastic process followed 

by share prices. The key issue is that he is looking for the unique probability 

measure Q under which the discounted expected stock price is a martingale. The 

idea of the martingale approach is that the value of the derivative is estimated 

by calculating the expected value of the pay-off with respect to the risk -neutral 

probability measure, that is the unique measure that makes the discounted share 

process martingale.

Having found the risk-neutral probability measure Q, the Statistician can calcu

late the price of his derivative denoted by Yt at time t, as conditional expectation 

of the terminal payoff X

Yt =  BtEa{B^^X\J^t)

where X  is the payoff function of the contingent claim, Q is the martingale 

measure for the discounted stock price, Bt  is the discounted factor at time t and 

Xt is the information structure of the share prices available up to time t. The 

forecaster is able to predict the actual Vt , of the share and then he only needs 

the payoff function of the derivative to do his pricing.
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Chapter 5

Real Options and R&D projects

5.1 Introduction

R&D projects are characterised by long planning horizon, large investments usu

ally in lumpy and sequential outlays, high uncertainty and high rewards when 

they are completed successfully. One can think of two types of uncertainty. The 

first type relates to the effort and time needed to complete an R&D project. The 

second type of uncertainty is due to the dynamic structure of the Market and 

this affects the total development cost and the reward of a project.

The purpose of this chapter is to study the impact of Market uncertainty in 

the value of R&D projects, which is contingent on future market events with 

unknown effect on the value of the project, when the investment initiates. While 

the uncertainty will be resolved, managerial decision might need to be taken with 

regard to its development before its completion that is not in the original plan 

and becomes available to the manager just after Market uncertainty is partially 

resolved. An example is to postpone either temporarily or permanently the de

velopment after phase II for a certain drug, if stopping proved more economically 

viable than the continuation of the drug development.

The methodology used to evaluate the impact of Market uncertainty is the 

application of the theory of Financial option pricing as applied to real investments 

such as to undertake an R&D project. This area is known as Real options. 

Recall that in financial option pricing, the option value is derived by the ability 

to choose in the future whether to exercise the option or not, depending on the
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stock price which will then be observed. One can say that real options arise due 

to uncertainty in costs, benefit, and opportunities to favorably alter the project 

course contingent on future information.

Marketing uncertainty modelling may be crucial, since this decision flexibility 

may be important for the manager and therefore has a value in itself which 

needs to be identified, quantified and added to the already known value of a 

given project as calculated by any Productivity Index evaluation method. One 

example of such index is the Pearson Index, as will be explained later in this 

introduction. This managerial flexibility might give an additional value to the 

project, which is derived by the fact that manager can revise operating decision 

in response to market conditions.

If the manager does not make risky decisions to develop drugs with uncertain 

future payoff and development costs in order to gain competitive advantage in 

different markets, the company might not be able to survive in the long run. The 

importance of evaluating the impact of Market uncertainty and the associated 

decisions is to provide a better aid to the manager who is required to make 

decisions how to build a portfolio of research projects.

Initially a conceptual framework of Real options is given and then an ex

planation of how the theory of option pricing could be applied to a valuation 

of risky R&D projects is presented. Thus, Option pricing models are developed. 

This analysis will be done with connection to the existing valuation tools, namely 

Pearson index.

5.2 R&D Project as a Real Option

A key characteristic of R&D projects is their multistage structure. The implica

tions of the multistage structure make an R&D project a highly risky investment. 

Each stage of an R&D project must be completed successfully and once a Phar

maceutical company makes the decision to start an R&D project, this decision 

is associated with future liability (additional funds for production capacity. Mar

keting research etc.). However, the information that will gradually resolve the 

uncertainty of an R&D project is only available at discrete points in time. The
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development of an R&D project can be thought of as Investment expenditures 

with irreversible cost, that is there is a sunk cost associated with this investment 

(Dixit & Pindyck, 1995).

In real options theory sequential investments are analogous to compound op

tions, that is an option written on another option. The reasoning is that each 

stage completed of the project gives the firm the option to complete the next 

stage. If one had no choice but to complete the project once it had been started, 

investing would involve only a single decision.

Many examples in Dixit and Pindyck (1994) as well as in Smith and Nan 

(1995) are related to the option to defer an R&D investment (timing option), 

with the intention that this investment will start next year or sometime in the 

future, the option pricing technique remains the same for any kind of option such 

as abandon, growth, temporarily shut down etc (see, Trigeorgis, 1996, Chapter 1).

Historically, Kester (1984) and Myers (1984) introduced the theory of real 

options which takes market uncertainty and managerial flexibility of projects into 

account in their evaluation procedure. Managerial flexibility is the future actions 

or decisions management will apply to project management that are contingent 

on future events, these future events become known at the discrete points in time 

where the uncertainty is resolved. For example if a manager realises that the 

actual cost is significantly higher than the anticipated cost so far, he might want 

to abandon the project or put it on hold. The option to abandon the project if 

new information is unfavourable is created due to the multistage structure of an 

R&D project and each stage can be view as an option to the value of the next 

stage.

Pearson Index

The Pearson index evaluation method is dependent on the expected reward and 

expected development cost of a project. These expectations are related to the 

probabilities of success of each stage of the R&D project and not to the uncer

tainty related to the magnitude of the final rewards (and costs). It means that 

there is no variability to final reward. It is a well-established fact in option pricing 

theory that the option value is created due to variability.
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To illustrate better the variability issue, suppose that there are two projects 

where the final rewards have the same distribution with equal mean but different 

variance. Also, available information suggests that their costs, which are random 

variables, have the same distribution with equal means and different variance. 

The Pearson index would give the same value for both projects provided equal 

probabilities of success for each equivalent stage for both projects.

Suppose that a project consists of two stages. We assume that the final reward 

R  is equal to the sum of two independent random variables Ri  and R 2  where Ri  

is observed at the end of the first stage and R 2  is known at the completion of the 

second stage. Ri  and R 2  take the values.

Ri =

Ro =

Ri  +  61 with probability 1/2  

Ri — with probability 1/2

R 2  +  S2  with probability 1 /2  

Ë 2  — Ô2  with probability 1/ 2 ,

where Ri, R 2 ,ôi,Ô2  are constants and (̂ 1 > Ô2 . Thus, the final reward R  is a 

random variable with mean value Ri  +  R 2  and variance 6 f 6 2 . Stage one costs 

Cl  and stage two costs € 2 - One criterion is to say, that we do not accept the 

project when mean reward R  is less than the cost, that is

=  R\  T i?2 C\  T Ĉ2- (5 .1)

This standard cost-benefit criterion is used if R&D is not seen as a sequential 

decision process. For example suppose that it is optimal to pay C\  and proceed,

then if R\  turns out to be R\  +  (5i, we proceed to the second stage and stop

otherwise. In this case the criterion has the form:

—C\  T 1 /2 { —C2 +  l/2 (R i T R 2  +  ~  2̂) T l/2 (R i +  R 2  +  ^1 +  2̂)} ^ 0,

which can be written as

R\  +  R 2  +  (̂ 1 >  2(7i T C*2- (5.2)

For large value of > Ci, it is still optimal to start this R&D project even

though the standard criterion (5.1) does not suggest so. It is the possibility of
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termination at the end of the first stage if random reward Ri  turns out to be in 

its low level which makes the decision to start the project valuable.

Define strategic options as opportunities that are made available in the future 

by undertaking a project but are not part of the initial project plan. Uncertainty 

creates these strategic options. The Pearson index averages all possible outcomes 

(success and failures) without gaining any insights into the managerial flexibility. 

It presupposes the two assumptions of discounted cash flow techniques, such 

as, future cash flow are replaced by their expected value and treated as given 

at outset. The second assumption is that how risky a project appears to be, 

is determined by the assumed discounting rate that is constant throughout the 

whole R&D period. This is unrealistic because the level of risk associated with 

projects needs not remain constant over time. A given project does not have the 

same level of riskiness on its first stage as in its last stage.

The valuation procedure of an R&D project is based on the analogy between 

financial option and strategic or operating options. Option valuation procedure is 

considered to be a good choice if the analysis is intended to estimate the market 

value of a project or decision if the underlying asset value known accurately.

Real options investment analysis uses the insights of Black and Scholes (1973) 

formula of pricing a European option. The starting point to the financial option 

pricing is the asset on which the option is contingent, usually called the underlying 

asset (Share). In the real option case, the present value of expected cash flow is 

equivalent to the current value of stock. A consequence of this equivalence of share 

and project is that stock value uncertainty represents project value uncertainty. 

A portfolio of assets is constructed that has exactly the same payoff as the option 

(investment opportunity) in all states of the world. This portfolio consists of 

an underlying asset, that is a perfectly correlated share with the undeveloped 

project or with any other drug that is in market already and it is believed that the 

undeveloped project would behave exactly as the project already in the market.

5.2.1 Option based models

Option based models may be used to value investment opportunities when future 

market conditions are uncertain. The option pricing technique does not predict
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future values of the underlying asset, but future values are assumed to follow a 

well defined stochastic process. For example, the market value of a project at 

time t, V{t)  is assumed to be uncertain, and to evolve over time according to an 

Ito process (Arnold, 1971)

y( )̂}dkF( )̂, y(^)}), B{t, y(t)} e E,

where A{t^V{t ) }  and B { t , V { t ) }  represent the instantaneous rate of return and 

standard deviation of the project value V(t)  process, respectively. W(t)  is one 

dimensional Wiener process.

In financial option pricing, some assumptions should be met, these are: fric- 

tionless markets for stocks, bonds and options which means there is no trans

actions costs, participants can take out long and short positions without any 

constraint and tax can be ignored and that markets are arbitrage-free. We also 

impose these assumptions in the real option valuation method.

One of the early real option models which has an analytic solution is the 

optimal timing problem of undertaking an investment which is also known as the 

option to defer.

O ptim al tim ing of investm ent in an irreversible project

McDonald and Siegel (1986) considered the following problem. They assumed 

that the value of a project follows a Geometric Brownian motion which implies 

that the current value of the project is known, and the futures values are log- 

normally distributed with a instantaneous standard deviation a  and a  as the 

instantaneous expected return on the project. The project value V{t)  process is 

given by:

dy(̂ ) = oy(t)d  ̂+ (ry(̂ )dW(t),

and represents the present value of expected future cash fiow conditional on un

dertaking the project with present value Vt- The firm is allowed to undertake 

such an investment opportunity up to any time t < T ,  where T is the expiration 

time of the opportunity. Given a fixed cost C  necessary to take the project, they 

calculate the values of V̂ * that exceeds C  such that when Vt > Vt* it would be op

timal to make the investment , and otherwise defer. The investment opportunity
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value is defined to be the expected present value of the payoff at the first passage 

time t, that is, the first time at which Vt > Vt first reaches the boundary:

X (T) =  % { e - " % - C ] }

where X ( T)  is the time zero value of an investment opportunity that expires at 

time T  with discount rate /i. They also study the special case of a perpetual 

investment opportunity, i.e., T  =  oo which means that the opportunity to invest 

is infinitely lived. In this case the boundary is not dependent on time. The value 

of the opportunity is given by

X  =  { V ^ - C )

where

V  =  C  f ^  j  , 6 =  (1/2 -  â /a ')  +  -  1/2)2 +

and à  =  r — 8 which is the difference of risk-neutral rate r and 8 which may 

represent the opportunity cost of delaying completion of the project. Based on 

this analysis and a simulation related to this specific valuation, they concluded 

that it may be optimal to wait until benefits are twice the investment cost and 

then invest.

5.2.2 An example

Consider two projects which are alternatives. It is assumed that each project will 

be completed successfully at the end of the time period [0, T], that is, if a project 

is started at time t =  0 will be completed at time t =  T  and reward R{T)  will be 

gained. Denote a sequence of numbers R{t)  for time 0 < t < T where R{t)  is the 

forecast for the reward to be gained at time t =  T  as can be predicted at time 

t. The total development cost of each project is fixed and equal to C.  The only 

difference between the two projects is that for the project 1 the investor pays the 

total cost C  immediately whereas for the project 2 the total cost could be paid 

in any arbitrary number n instalments. The instalments could be paid at any 

time in the time interval [0,T]. The discounting factor could be excluded from 

the analysis only for the cases where the total cost is paid as a series of finite
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instalments. (Otherwise the total cost C  is paid as continuously payable annuity 

for finite time period in such way its present value is equal to C.) The reward 

to be gained is a random variable (unknown yet) and only its expected value 

is known. In the evaluation procedure the expected value of the random gain 

is taken into account. It is also expected that more information with regard to 

reward process will be available to the manager sometime in the future and the 

opportunity for the manager to change its strategy plan will still be accessible.

The project manager should recognize that operating flexibility arises when 

the project is developed in the second way, that is, the development can be 

stopped, so saving the costs that otherwise would be spent to the completion of 

an unsuccessful project, provided this information will be available before the pay

ment of the last instalment. Managers should appreciate the role of uncertainty 

in a random environment, which is due to unknown information, not available yet 

to the manager, with regard to the parameters needed to be known for the eval

uation of a project. These parameters might be the development cost, benefits, 

time needed to complete a project. In such an uncertain environment a manager 

often faces difficulties in assessing a project because of the incomplete knowledge 

of these parameters and the decision whether the project is still worth continuing 

can not be proved to be correct or false before the uncertainty is resolved. When 

the uncertainty is resolved, the already assumed scenario might turn to be more 

(or less) valuable than its initial estimation. To explain this, suppose that the 

expected present value of cash flow from a similar completed project at time t 

is R{t).  It is known that after certain time h the forecast R[t  -f- h) can either 

take value uR{t)  or dR[t)  with probabilitiesp and l —p  respectively in such way 

that dR{t) < R(t) < uR{t),  where u and d are positive constants (d < 1 <  u). 

If the actual forecast for the cash flow at time t +  h is uR{t)  the project is con

sidered as a successful one and continuation of this project would be profitable 

action. Otherwise the project is a failure (not profitable) and its continuation 

is not justified. When a manager uses the expected value at time t, i?(t), as an 

estimate of the future cash flow, the project value will be an underestimate of the 

actual value of a project at the completion time given success. Similarly, when 

the project turns out to be a failing one, R{t) will give a false estimation again.
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Therefore, the expected scenario of cash flow technique is inadequate to value a 

project with the above characteristics.

The Option pricing method could in principle value a project of this form. 

Denote the value of an option (could be any option) at time t by V{R{t ) , t ) .  In 

financial option pricing the current value of the underlying traded asset (share) is 

known in contrast to the case of an undeveloped project where its present value 

is stochastic as it may be related to the estimate of future profits. Otherwise, 

R(t)  can also be thought of as the expected present value of a cash flow from a 

similar completed project at time t  which is the market value of the equivalent 

asset. The value of the option at time t h, V{R{ t  +  h) , t  +  h) will be either 

equal to:

/up =  V{uR{t ) , t  +  h)

or

/down =  V{dR{ t ) , t  +  h)

where the words “up” and “down” indicate whether the market conditions is 

favourable or not respectively. /  denotes the option value or the claim value 

time-process (Baxter & Rennie, 1994, p. 28). In other words the uncertainty of 

the cash flow is resolved and this uncertainty creates the option value which can 

be calculated by constructing a hedge portfolio at time t which is guaranteed to 

have the same value at time t -{- h independently of the value of the underlying 

asset. The assumption that there is no transaction cost and that the pricing is 

done in an arbitrage-free world is necessary (Baxter & Rennie, 1994, Chapter 

1&2). The option pricing theory says that there must be a risk free security, 

which earns the risk free interest rate denoted by r. To replicate the value of the 

option one constructs a portfolio with (/> units of the underlying asset and 'ip units 

in the risk free asset:

(j)uR{t) — 'ipR[t) exp(rh) =  V{uR{t ) , t  h) =  /up 

(f)dR{t) -  ipR{t) exp(rh) =  V{dR{ t ) , t  h) =  /down
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with and 'ip to be unknown. Solving the system of the two equations, gives

+  +  (5.3)

i . R { t )  =  ( +  .fe) -  « Y * +  )̂. exp(-r/ , ) . (5.4)

The value of portfolio at time t is:

V{R, t )  =  (j)uR{t) —'ipdR{t)
1 — ue~^  ̂ — 1

=  ---------— F M ( t ) , t  +  /i) +  — V{dR{ t ) , t  +  h)
u — d u — d

=  Pue~''^V{uR{t),t +  / i )  +  pde~'^^V{dR{t), t-\- h),

where:

e ^ ^ - d  , u -
Pu  =  r  and pd =u — d u — d

are the so called “risk-neutral” probabilities.

In the decision theory approach, the probabilities represents the decision 

maker’s belief about the uncertainties of the project and the future cash flows are 

assessed in terms of the utility function. Let x(s) denote an individual’s wealth 

level as a function of state s. This individual has subjective probability p{s) 

for state s and utility function u{x) for wealth x. Let u'{x) denote individual’s 

marginal utility function evaluated at x which is the derivative of individual’s 

utility function at x. One can multiply the probability density function p{s) by 

the function u'{x) which yields a positive function which can be normalized to 

yield another probability density function. Denote this probability by 7t ( s ) ,  we 

have:

7t ( s ) oc p(s)w'(x(s)). (5.5)

The distribution tt is the individual’s risk neutral probability distribution, because 

the decision maker evaluates small gambles as though he was risk neutral with 

probability distribution tt, when in fact he is risk averse with probability p.

5.2.3 The no-arbitrage condition

We mentioned the term arbitrage in section (4.6.2). In this section, we discuss 

the basic duality theorem from linear algebra which connects the “no-arbitrage”
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principle with the existence of “risk-neutral” distributions. We assume an enviro- 

ment with a set of agents, a set of events (states of nature), money, a contingent 

claim market and an outside observer. An arbitrage opportunity is a collection of 

acceptable contracts that wins money for the observer and loses money for the 

agents in the aggregate in at least one possible outcome of events, with no risk 

or loss for the observer in any outcome.

Consider the following theorem which enables us to explain the use of the risk- 

neutral probabilities in asset pricing. In linear algebra this theorem is known as 

duality theorem (Ostaszewski, 1990):

T heorem  5.1 Let X  be an m x n, let a  be an m-vector, let t t  be an n-vector, 

and let [o'X](s) and 7r(s) denotes the elements of a ' X  and tt,  respectively. 

Then exactly one of the following systems of inequalities has a solution:

1. a  >  0,  o l'X  <  0 ,  [o:'A](s) < 0

2. 7T >  0,X 7r >  0 , 7 t ( s ) > 0.

This theorem says that either the system of equations a ' X  <  0 has non

negative solution or else the system X tt  >  0  has a semi-positive solution. For 

example, a column of the matrix X  corresponds to a state-contingent asset. The 

rows of X  may associated with gambles or trades that agents have offered to 

accept. If a ' X  <  0  has a solution, then one can construct an arbitrage oppor

tunity in state s, by choosing the weighted sum of gambles or trades in X , that 

is, a ' X .  If X t t  >  0  has a solution, then there is a vector tt  of probabilities (or 

prices states) which assigns to all the gambles or trades that have been accepted, 

non-negative expected value or profit, and in which state s has strictly positive 

probability or asset.

Suppose that we have a market for assets that pay off in different states 

of nature. Denote by s =  1 , 2 , . . .  , S  the finite number of available states and 

assume that there are A different assets. Let’s denote the payoff of asset a  in 

state s by Rsa- An asset is described by a vector giving its payoff in each of the
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s  states of the nature. The payoff matrix is

R =

R ia

^Rsi • • ' R sa j

Thus the security is described by the vector {Ru • • • Rsi)- If we hold amount 

Xa of asset a  and we choose a portfolio a; =  ( x i , . . .  , xa) then one receives wealth 

Wg in states s equal to ^aRsa- Let the price of asset a  be denoted by

Pa and let p =  (pi , . . .  ,pa) be a vector of asset prices. The cost of a portfolio 

X =  ( x i , . . .  , Xa) is given by px =

One important kind of assets are Arrow-Debreu securities which promise to 

deliver one unit of purchasing power in the specified state. Thus the payoff 

pattern is of the form (0, . . .  , 1, . .  • ,0), where the 1 occurs in the location s. Let 

TTg be the price of the Arrow-Debreu securities that pays 1 if state s occurs and 

let Rsa be the value of asset a  in state s. Then the equilibrium price of asset a  

must be given by

s
Pa ~  ^   ̂' ŝRsa-

s = l

The no arbitrage condition (Hodges, 1998) can be expressed in terms of struc

turing the portfolio with minimum cost in order to obtain a portfolio with non

negative payment:

Minimize p'x 

such that R x  > 0

X unrestricted,

where the components of x  are unconstrainted in sign. The dual Linear program 

problem is

Maximize O'tt 

such that R'tt =  p 

TT >  0.
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The dual program suggests that the primal problem is equivalent to the existence 

of non-negative pricing vector t t  > 0 which explains the price of each security 

according to its state-contingent cash flow p' =  tt'R. A s a consequence, a pricing 

vector 7T > 0 exists if and only if there is no arbitrage.

So far, we have shown that the concept of risk-neutral probabilities is used in 

option pricing process. In the next section, we study an option pricing example 

and we calculate the expected value of different investment opportunities using 

both option pricing “tools” and decision analysis method.

5.3 R&D funding as a sequential decision

O ption to contract the scale of an R&D project

In this section, we consider the decision problem to change the scale of produc

tion of an R&D project. Suppose that the market conditions are less favorable 

than originally expected. In this case, it may be possible and desirable for the 

company to reduce the scale of operation by x%,  and as result part of the initially 

planned investment outlays will not be spent and presumably the investment will 

become less unprofitable. This flexibility to mitigate loss is an analogous to an 

American put option on x% part of the base-scale project. The exercise price 

equals the potential cost savings Ic- Because the contraction option gives the 

project manager the right to reduce the operating scale, if market conditions 

turn out to be unfavorable, a project that can be contracted is worth more than 

the same project without the flexibility to contract. Thus we can say that the 

expected profit is equal to the sum of expected profit without the option value 

plus the option value:

Exp. Profit =  Exp. Profit without Flexibility -P Value of Flexibility. (5.6)

Consider the following investment problem where there are two states of the 

world, these are “favorable” and “unfavorable”. The project manager has an 

opportunity to invest in an R&D project in a new plant whose future cash flow 

depends on an uncertain state of the world. The decision maker assess that 

the favorable state occurs with probability p, and the unfavorable state with
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probability 1 — p. Once a project is undertaken, the project manager may have 

the flexibility to alter it in a various ways at different times during its life. Let 

us suppose the decision maker wants to have right to contract the scale of the 

project’s operation by factor x%. Let x% =  50%. This means that they reduce 

the scale production to the half and they pay a cost which is less than the 50% 

of the original cost. Thus the reduction in cost is l[ =  Ii —l'î- Let the gross value 

of the project be denoted by V.  Then one can compare the net reward V  — Ii 

of the decision without the option with the reward received given the option to 

contract has been exercised as follows:

m ax(y — /i ,  0.5F — ï^) =  (V — Ii) +  max(0, l[  — 0.5F). (5.7)

Consider the capital budgeting problem which is represented by the decision 

tree below

=  180

Invest now

Invest

Defer

DeclineDecline o.5K+ -  
. ,  0.5V-  -  I\Invest

l - p

Decline

V -  -  l.OS/i

Figure 5.1: Decision tree with an option to contract

The firm can pay P  for the first year and get return 180 in the favorable state 

or 60 in the unfavorable state. Alternatively, the firm can pay Q for a license 

which allows them to defer their decision to reduce the scale of production until 

the state of nature becomes known. If the firm chooses this option, it can invest 

1.08P and receive the known reward, where the factor of 1.08 reflects a risk-free 

interest rate of 8%.
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In decision analysis based on stochastic dynamic programming, the discount 

rate accounts for the time value of money and a premium for risk. The difficulty 

is to choose the appropriate discount rate and usually is adapted by the policy 

of the company. Otherwise it can be chosen by using the capital asset pricing 

model (CAMP) (Trigeorgis, 1996, Chapter 2). The other option is not to invest 

and reject the opportunity to develop the R&D project which yields zero cash 

flow.

The O ption approach

To apply the technique of contingent claim analysis, we assume that there is 

an asset which is usually called the “twin” security whose returns are believed

to be perfectly correlated with the returns of the project under consideration.

More specifically, there must be some linear combination of traded assets that 

has proportional cash flow in all states of the world to the hypothetical state 

dependent cash flow of the investment opportunity under evaluation.

Suppose that one share of the security of the correlated asset worth 36 in

the good state and 12 in the bad state. If p is the probability of the good

state, then the market rate of return on this security is r, which is equal to 

r =  (36(p) +  12(1  — p ) ) /S  where S  is the current price of share. If the current 

price 5  =  20 and p =  0.5, the return is equal to 1.2, meaning that the project with 

this level of risk should earn a 20% return. The option of investing immediately 

yields expected net present value of (180(p)+60(l—p ))/r  —P  =  5 5 —P  =  100—P. 

If P  =  104 then the expected net present value is equal to —4.

For the option to contract scenario, the total cost P  is split up into an initial 

installment Q and another installment with present value equal to / i ,  i.e., =

P.  We continue to assume that p =  0.5, 5  =  20 and P  =  104. The question is 

for what value of Q the option to contract will be preferred to the no option 

situation. Given the favorable state the decision maker will invest at the same 

level of production with return — I.O8/1  =  180 — 1.08 • 54 =  121.68 and

thus he will not exercise the option to contract . In the bad state, the optimal 

decision is to exercise the option for a return 0.51/" — l'î =  0.5(60) — 25 =  5 

which is greater than the value of the decision not to contract. If we discount
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these values back to the present at 20% yields an expected net present value of 

((121.68(0.5) +  5(0.5))/1.2) — Q =  52.78 — Q. The option to contract should be 

chosen if Q < 52.78.

The contingent claim analysis approach would discount cash flow at the risk

free rate and taking expectations with respect to risk-neutral probabilities that 

can be estimated from market prices. For our example, the risk neutral probabil

ities are tti for favorable state and 7T2 for non-favorable state. These probabilities 

can be found if we equate the price of twin security with its expected return 

discounted at the risk free discount rate:

=  20, (5.8)
1.08 ’  ̂ ^

7Ti +  7T2 =  1. (5.9)

Therefore, tti =  0.4 and 7T2 =  0.6. If we use the risk-neutral probability to value 

the opportunity to invest without the option to contract we get its expected net 

present value

1 8 0 ( 0 . 4 ) ^ 0 ( 0 . 6 )

1.08  ̂ ^

which is equal to —4 if P  is chosen to be 104. The opportunity to invest with 

the option to contract and initial cost Q has expected net present value:

- e -  4 7 . 8 4 - e .  ( o . n )
l . U o

The value of the option is positive ïî Q <  47.84. Set Q =  50 as the initial outlay. 

Then the value of the option to contract is

Option value =  Exp. Profit — Exp. Profit without Flexibility 

=  —2.16 — (—4) =  1.84.

The option pricing approach proceeds to solve the problem by creating a portfo

lio of observable securities whose prices and required rates of return are known 

and whose payouts exactly mimic the payouts of the decision tree. Using a no

arbitrage argument we can construct a replicating portfolio of n shares of the

twin security and selling bonds of value B.  We have the following two equations

Good state: 36n — { 1 r ) B =  121.68 (5.12)

Bad state: 12n — (1 +  r)B  =  5, (5.13)
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where r =  0.08. The solution to the system of equations is n =  4.86 and B =

49.39 i.e., the replicating portfolio consists of borrowing 49.39 and buying 4.86 

shares of the twin security. If we buy 4.86 shares of the twin security and sell

49.39 worth of risk-free 8% bonds will exactly replicate the payoffs of the contract 

option in the last period and the cost of this transaction is 4.86(20)—49.38 % 47.81 

which is less than the value 47.84 given by simple decision analysis. In order to 

get the answer 47.81 using decision analysis we should have used r* as a discount 

rate given by

121.68(0.5) +  5(0.5)
1 -h  r *

which is equal to 32% and 20% for the invest without the option to contract 

alternative.

To apply decision analysis, the decision maker’s utility can be considered as

function of the terminal wealth at the end of the second year. Suppose that it

is of the exponential negative form i.e., u(x) oc 1 — exp(—x/200). This utility

function has the constant absolute risk aversion property, and thus the optimal

investment decision is independent of the initial wealth level. To determine the

number of shares s we use (5.5) and the data as follows and we solve:

7T ^  p u%(36 -  1.08(20)s))
1 - 7T 1 - p  u'((12 -  1.08(20)5))  ̂ ^

where u'{x) oc exp(—a;/200) is the marginal utility of money at wealth level 

X .  Using the values tt =  0.4 and p =  0.5, we get 2/3 =  exp(—24s/200), s =  

— (200/24) ln(2/3) =  3.38 shares.

Now, consider an option to contract the scale of a project for an initial pay

ment Q,  assuming that P  =  104. The payments for this option is either 121.68 

or 5 which can be replicated by buying 4.86 shares of twin security and selling

49.39 worth of risk free bonds paying 8%, for a year outlay 47.81. If Q > 47.81 

the option to contract is less attractive and the decision maker will prefer the 

investment decision without the option to contract. If Q < 47.81 an arbitrage 

opportunity exists for the decision maker by choosing the option to contract and 

divesting 4.86 shares of the twin securing, ending up with 3.38 — 4.86 =  —1.48 

shares and as result keeping the same terminal wealth while the initial wealth 

increases.
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5.4 Discussion

The previous analysis allow us to compare the dynamic programming approach 

and the option pricing approach. Dynamic programming makes use of the sub

jective probability of state to occur as the individual assess it whereas the option 

pricing is based on the risk-neutral probabilities.

In option pricing method, one seeks market-based valuations methods and 

policies that maximise market values. This does not mean that the personal 

probabilities of each agent do not matter. A consequence of the no-arbitrage 

condition is that the market requires all the agents to have unique price for 

each investment opportunity or security. Also, every asset must yield the same 

expected return r per pound invested, that is known as the riskless rate of return. 

The expected rate of return depends on the initial price which is given and since 

the condition of no-arbitrage is imposed the expected discounted value of the 

security must be a martingale process. Expectations are taken with respect to 

risk-neutral probabilities which should be understood as state prices, that is the 

price of the contract which pays one pound only when the specific state occurs. 

Each state has unique price as was suggested by the linear dual program.

It has been claimed that decision tree analysis using discounted cash fiows is 

not appropriate technique to value managerial fiexibility and as an alternative 

method the option pricing technique has been suggested. We can claim that this 

statement has probably been originated by misuse of decision analysis, since every 

agent in the market can adapt his or her own subjective probability and utility 

function as required by the market and then apply the decision analysis and derive 

the exact value for his or her investments opportunities as would be yielded in 

option pricing analysis. In decision analysis, the decision maker’s risk preferences 

are confounded with time preferences and the future decision opportunities are 

mis valued. This is reason why it is required to use two different interest rates 

(20% and 35%) in order to get the correct option values using decision analysis.

The assumption of perfectly correlated twin securities may not be met in 

the case where there is no market with traded assets with the same uncertainty 

as the investment opportunity. In this case, it may be feasible to use option 

pricing method to create lower and upper bounds on the market valuation of the
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decision options. Since the market is not complete, there exist a set of probability 

measures, which are considered to be risk-neutral and one can use them to get 

the expected discounted cash flow. Thus the decision maker has upper and lower 

bounds for the project or investment opportunity value.
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Chapter 6

M ulti-Arm ed Bandit Problem

6.1 Introduction

In chapter 2, we studied various sequential decision processes. One of them was 

the discrete time version of the multi-armed bandit problem. We also mentioned 

that the Gittins index (see section 2.5.2) is the solution to the bandit problem. 

The optimality of the Gittins index is based on the principle of the forward 

induction policy, that is, projects are scheduled in the decreasing order of the 

expected reward per unit time which they yield. Recall the following version of 

the bandit problem:

Consider a situation in which several projects are candidates simultaneously 

for the attention of a single investigator. Suppose we have N  independent 

projects, indexed i =  1 , 2 , . . .  , A . Project i can be in one of a finite number 

of states Xi  G N i .  We are allowed to choose only one project at each instant of 

discrete time t =  0,1,  2 , . . . .  If project z, which is in state Xi{t) at time t is cho

sen, i.e., i =  i{t), then an immediate reward of Ri( t̂){ î{t){t)} is earned. Rewards 

are additive and are discounted in time by a discount factor 0 < a  < 1. The 

state j  =  Xi{t) changes to k =  Xi{t +  1) according to a homogeneous Markov 

transition rule, with transition matrix =  {p)k)j,keNi, the distribution of k 

to occuring conditional on all previous state values of all project values is in fact 

dependent only on the current state j .  It is also assumed that the current state 

of each project is known. The states of the projects that have not been chosen 

remain unchanged. The problem is to find a scheduling policy tt that determines
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which project to choose at each time in order to maximize the total discounted 

reward earned over an infinite horizon as follows;

t=0
%(0), 2:2(0 ) , . . .  , x n {0)

The above problem is known as the Multi-Armed Bandit problem and it was 

first solved by Gittins and Jones (1974) as follows:

Optimal strategies for such problems are known to be determined by a col

lection of dynamic allocation indices (DAI), This is an index associated to each 

project involved in the problem, and it depends on characteristics of that project 

(states, rewards and transition probabilities), and not of those of the other 

projects. A formula for this index was presented in section (2.5.2) to be:

E

iyi{xi) =  max
T > 1

T — 1

t=o
2:% (0) — Xi

E
T — 1

E
i= 0

a 2:% (0) — Xi

(6 .1)

where the maximization is over the set of all stopping times r  > 1.

They established by the DAI theorem that the optimal action at each time is 

to work on a project with the largest current index. Such a policy is referred to 

as an Index policy.

Gittins (1979) defined a bandit process as a Markov decision process on state 

space, 0 , which is a subset of some space, together with a — algebra X  of sub

sets of 0  which includes every subset consisting of just one element of 0 , and 

with set of controls r2(a;) =  {0,1},  \/x. Application of control u G n(a;) at 

time t with the process in state x yields a reward R{x, u) which has discounted 

value a^R{x,u)  (0 < a  < 1). When control 0 is applied the bandit process re

mains in the same state with probability one and this yields no reward, that is, 

P({a;}|T, 0) =  1 and R{x,0) =  0, \/x. The alternative action is control 1 which 

is the continuation control, where no restriction is placed on the transition prob

abilities and the rewards. Also, the number of times control 1 has been applied 

to a bandit process is termed the process time. The state of the process at time 

t is denoted by x{t). If control 1 has been applied to all decision times up to 

now, then the process time coincides with real time, because the bandit process
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changed state at each decision time t and thus yields reward a^R{x{t),  1). Also, 

Gittins introduced the concept of a standard bandit process which yield constant 

reward A, every time the control 1 is applied, that is, R{x,  1) =  A, Vx.

The DAI theorem refers to a simple family of alternative bandit process. A 

family of alternative bandit processes is a collection of n bandit processes, with 

the constraint that the control 1 is applied to only one bandit process and the 

control 0 to the other n — 1 available bandit process. The reward gained at time 

t comes from the bandit process which the control 1 applied at time t.

Whittle (1980) provided a proof of the DAI result based on dynamic program

ming. He introduced the concept of the “retirement” reward (or option) in the 

following sense:

Consider the situation in which we have just project i and two alternative 

actions, these are, either to operate project i or to stop operation and receive 

a ‘retirement’ reward of M.  If the operation of the project is terminated, its 

state will not change and it is assumed that the operation will not start again 

in the future. The reward at time t will be Ri{{xi{t))}  if i{t) is the project 

engaged at time t  and for simplicity can be denoted by R{t).  In this case the 

total discounted reward is equal to CK̂ .R(t). He also supposed that rewards 

are uniformly bounded:

—oo < A(1 — a) < Ri (x)  < B(1 — a) < oo

where A  and B  are lower and upper bounds on the total discounted reward 

respectively. Denote by V{xi ,M)  the value function of this optimal stopping 

problem which is dependent on the retirement reward M  and on the project 

state Xi as explicitly,

V(x i ,M)  =  max[M, i?i(xi) oE {V{xi+i ,  M ) \ x i } ] . (6.2)

The continuation option yields a total reward which consists of the sum of im

mediate reward Ri{xi) and present value of the expected future reward denoted 

by aE[V(xi+i ,  M)\xi]j  that is the reward that will be gained if one proceeds 

optimally after the gain of Ri{xi) and the option of retirement is still available. 

The other option yields reward M.
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The dynamic allocation index Mi{xi) of project i in state Xi is the infimum 

value of M which makes the decision maker indifferent between retirement option 

and the policy to continue operation for the project i because the M  is just large 

enough that the options of continuing or terminating are equally attractive; or 

alternatively it is the supreme value over all terminal rewards, such that the 

decision maker still prefers to continue with the random stream of rewards i.e.,

M^{xi) =  m î { M  e R \ V { x i , M )  =  M } ,  (6.3)

=  sup{M  G M. \ V{xi , M)  > M } .  (6.4)

However, what Gittins characterizes as a dynamic index is not the Mi (xi )  but 

a multiple of it, that is,

iŷ {xi) =  (1 -  a)Mi{xi).  (6.5)

This difference arises because Gittins initially used the concept of a standard 

project with fixed reward rate R =  v whereas Whittle introduced the concept of 

a retirement reward M.

In this chapter we present the classical Multi-Armed Bandit problem. In 

section (6.2) we prove that it is optimal to add two Gittins Indices and the 

resulting number is an index for choosing two projects simultaneously only when 

the two projects have identical operating times. We also give an example to 

show that this rule is not optimal for projects with different operating times. 

Modified Bandit problems are presented in section (6.3). Option pricing and 

Bandit process are reconciled in section (6.4).

6 . 2  M ulti -Armed Bandits with Two Servers

A determ inistic two-arm ed bandit problem

Gonsider two bandit machines, X  and Y.  Their rewards are known sequences 

of non-negative numbers. If machine X  is operated continuously, it yields re

wards X( l ) ,  A(2) ,  • • • respectively to the 2®̂ , • • • operation of X .  Similarly 

the machine Y  yields rewards T( l ) ,  T(2), • • • in its 2®\ • • • operation respec

tively. Suppose that the rewards are discounted with discount factor a  where
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0 < ü; < 1. The problem is to carry out a series of trials on X  and Y  in such a 

way that only one bandit is selected each time and the total reward received is 

maximized.

The Gittins index for X  is defined to be:

A =  max -------- , (6.6)
T > 1  r - 1  ’  ̂ ^

£ = 1

where the maximization is over all the integers r  larger than 1. The interpretation 

is that it gives the maximum discounted reward per unit discounted time that 

can be obtained from the period which starts dXt =  1 and ends at t =  r — 1. The 

maximization is over the time t  and the maximum value is realized for t =  r — 1, 

meaning that a decision maker would be indifferent to choose between the bandit 

with sequence of rewards and the one which yields constant reward

A at any time t (0 <  ̂ < r).

Suppose that we are looking for a criterion for making a decision whether it 

is best to work on project X  first, with the option of switching later to a project 

with constant reward A, or to start with the project A. Then one would start 

with X  if and only if
(  r —1 oo 'j  oo

sup \  r ^ (6 7)

i.e., for some r
( = 1  t = T  J  t —Q

r —1 oo oo

+  (6 .8)

which yields
£=1 t=T £=0

T — 1

A < ^ -------  (6.9)£=1
T — 1

£=0

and therefore
r —1

A < sup ‘  ̂_ -------  (6.10)
r — 1

E ^ ‘
£=0
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which means it is best to start work on project X  if and only if (6.7) holds for 

some r, i.e., if and only if (6.10) is valid.

6.2.1 Identical operating tim es of both projects in a given  

pair

Consider two pairs of projects with deterministic rewards:

Pair 1: X*(s), s =  1 , 2 , . . .  for i= l,2 .

Pair 2: F*(t), t =  1, 2 , . . .  for i= l,2 .

By the term pair, we mean that if the X  pair is operated for time, an immediate 

reward X^(t) +X ^ (t) is earned. Alternatively, one can choose to operate Y  pair 

for time and gain an immediate reward F^(g) +  Y^{s). We denote by the 

Gittins index for project with reward sequence {X^{t)}lZT- The sum of Gittins 

indices for the pair of projects for z =  1, 2 is denoted by The

Gittins index for Y  ̂ is denoted by z/y. and their sum is z/y =  X lL i ■

In this section we shall show that, in the case where the Gittins indices for 

projects which belong to the same pair are always maximized for the same t (t 

may differ for different groups), and if we add the Gittins indices for one pair of 

projects, let’s say z/ ,̂ and compare their sum with the sum of Gittins indices of 

the other pair of projects, that is z/y and then select the pair of projects having 

greatest sum equal to max[z/x, z/̂ ], then we end up with an index policy i.e., it 

is optimal to choose the pair of X  projects instead of Y  pair, if and only if,

i>x >  f/y. (6.11)

In order to prove (6.11), we define two policies for choosing projects and then we 

use an interchange argument to find the policy which yields the highest reward.

Proof: Suppose that z/̂  > z/y and that Ux is realised at r. Define two policies 

TT and /i as follows:

Policy t t :  first operate the Y  pair machines for k i  times, then play X  pair ma

chines for one time, then play Y  pair for {k2  — ki) times, etc where kt denotes the
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number of times V pair projects used preceding the use of X  pair projects.

Policy 7T has rewards

2 2 2 2 2 2

^ F ' ( i ) , y ^ y ’(2), • • +  i )> ■ ■
i = l  i = l  i = \  z= l i= l  i = \

2 2 2 2 2

E  -^'(2). • ■ E  - 1 ) ,  E  - 1 ) .  E ^ M -  E  +1) .  ■ ■ ■ ■
i = \  i = l  i= l  i—\  i= l

Policy fi : first operates the X  pair projects for ( r  — 1) times, Y  pair projects for 

k r - \  times and then follows policy t t .

Policy /i has rewards

2 2 2 2 2

E  ^ ‘(1). E  • • • > E  - i ) , E ^ ' W ' E  ^ ’(2). • • ■.
i = l  z= l i—1 î= l  i = l

2

• as policy tt.

i = l

The present values of these policies are

^w = E È “‘̂ ’W E E
i = l  ( = 1  i = l  t —k T - 2 + l

2 T - 1  2 oo

+EE“'‘’'‘̂ ’w+E E
2 =  1 t = l  2=1 t = T + l

2 T—1 2 &T—1 2 cx)

= EE«'-̂ 'w + «""'EE"': '̂w+E E
2 =  1 t = l  2=1 (=1 2 =  1 t = T + l

Denote V{(ji) — V{7t) =  A x  — A y. Now, we need to calculate A%. Before we 

attempt to calculate A%, we note the following inequality:

E « " E v w  > ( E 4 J  E « " -  (6.12)
n = t  2=1 \  2=1 /  n = t

To verify (6.12) by definition of the Gittins index we assume that the Gittins 

indices and for projects X^ and are always maximised for same t and 

let the best t be r.

For the best r, and z =  1, 2,

- x E « '  =  E « ‘^ ‘(̂ )
t=i t—i

(7 — 1 T — 1

=  where (cr <  r — 1). (6.13)
t = l  t= a
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Also,

(7—1 a —1

t = l  t = l

Subtracting (6.13) — (6.14), we get

T — l  T  — 1

(6.14)

lyX < J ^ c > ‘X ' { t ) .  (6,15)
t=a  t=a

Writing (6.15) for i  =  1 , 2  and adding them we get (6.12).

Now, we need to calculate A% as follows:

2  T - 1  2  r - 1

A x =  ^  ̂  «'%'(() -  E  Z
i—1 t= l i—1 t=l

=  ^ 2 ( l - a * ‘)« ‘A ‘(«)
i—1 t= l

=  2 ( 1 E a '(<)
t= l z=l

t= l n=t z=l

> by (6.12)
t= l n=t i=l

)a
\  i = l  /  i—1

Similarly, we calculate Ay as follows:

Ay =  - a " - ' E E « ‘^ ‘W + E E “ '‘'^ ’W + ---+ “ " " ' E  E
i = l  t = l  i = l  t = l  i = l  t=k-r -2+ l

=  ( i - a " - ‘) È “ ‘ E ^ ' w +  É  « ‘ E ^ ' w  +  ---
t = l  i = l  t = f c i + l  i = l

. . .  +  ( « - '  -  a - ' )  E  « ' E ^ ' W
t = k i + l  i = l

=  E ( “ * ~ ' ( E ^ ‘(” ) )  • (6 16)
t = l  n —1 V i = l  /
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From (6.16), and using (6.12) and that CK\ we have:

Ay
T — 1 kt

-  a ‘) E
. t=l n=l

2  \  T - 1

a E
1= 1

' X

=  l E " H E ( i - « ‘‘)
i—1 /  t = l

a

(6.17)

(6.18)

So,

T  — 1

A y < ^ ( 1  -  <  A x,
,z=l /  i=l

and,

!/(//) -  v{x) =  A x -  Ay 

^  ẑ (/i) >  p{x).

Now, we have proved that it is better to use the rule Y^i=i ^  S i= i  until 

the time t  — 1 .  This argument can be repeated starting at time r. This prove 

the optimality of the following rule:

Optimal rule is based on

2 2

E 4 > E 4 .  ( 6 . 1 9 )
i=l i=l

To derive this result we assumed that both X  pair project have indices which 

are maximised for the same best r. If we relax this assumption there is no optimal 

rule as shown in the following example:

Exam ple

Consider the following two pairs of projects; Let

X i ( s )  =  { 3 , 0 , 3 , 0 , 3 , . . . }  

^ 2(5) =  {0 ,3 ,0 ,3 ,0  . . . }

The Y pair is:

Yi(s) =  { 1 , 2 , 1 , 2 , 1 , . . . }

}^(s) =  { 2 , 1 , 2 , 1 , 2 . . . }
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The Gittins index is equal to

T — 1

7 t = n% =  max
^  T > n T  — 1

E / ) '
t —n

Set the discounting factor /3 =  O.b. One can calculate the sequence of Gittins in

dices of each project as follows: Gonsider the sequence of rewards { 3 , 0 , 3 , 0 , 3 , . . . }  

then

7 o =  max < 3,
3 +  0(0.5) 3 +  0(0.5) 3 +  0(0.5)+3(0.5)'

=  max < 0,

1 +  0.5 ’ 1 +  0. 5 +  0 .5 2 ’ 1 +  0.5 + 0. 52 + 0 .5 3 ’ " ■

Similarly, one can show that

0(0.5)+3(0.5)" )
0.5 +  0.52 ’ J

One can easily show that the index sequence for project { X j { s ) }  and {l^ (s)} for 

j  =  1,2 are

Sequence of Gittins index values

Project 7o 7i 72 73 74 7»

3 1 3  1 3

1 3  1 3  1

Yi 1 2 -  2 - 3 3 3

1̂ 2 2 1 2 1 2

Table 6.1: Gittins Index values

For any given time t, if you add the Gittins indices for pair X ,  we get the 

value 4. For the pair of Y  projects, the sum of indices is equal to 10/3. Although, 

the sum of indices for the two pairs of projects are not equal, the rewards of the 

two pairs are the same. This is a contradiction, and therefore the index rule is 

not valid.

When the problem is formulated in a finite horizon time T, for example T  =  2, 

the Gittins index may yield suboptimal results as follows:
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Let the problem be to maximise the expected discounted reward received up 

to time T, with respect to a policy tt, that is

Maximize +  7rfy(t) +7rfZ(t)}
=̂0

subject to 'ïïf +  7rf +  7rf < 1,

where the set of all policies is determined by the values of tt =  ( tt^ ,  -zrf ) and 

7r^",7rf,7rf G {0,1} Vt, meaning that, for example, 'nf =  1 if the project X  is 

chosen at time t and irf  =  0 otherwise. Let the projects X^Y  give identical 

rewards (2,0) and project Z  has reward (2,1). The Gittins index for the projects 

are equal to 2. The optimal policy is to choose project Z  and one of X  or F  

project which yields total discounted profit 4 +  /?, whereas if projects X  and Y  

are chosen the profit is 4.

6.3 Modified Bandit Problems

In this section, we point out that the Gittins Index policy is not an optimal 

solution for the following modified Bandit problems:

1. When an strategic option such as switching cost or switching delay is in

corporated in the allocation process,

2. When more than one machine operates simultaneously,

3. When the time horizon is finite.

The nature of optimal strategies for the general multi-armed bandit problem 

when some strategic options are incorporated is not generally easy to discover. 

The Gittins index will not give the optimum allocation strategy and therefore a 

different index must be derived for each case. It is difficult to know in advance 

what the optimum allocation strategy is, but it can be derived in the same way 

as in the classical multi-armed bandit problem

All three above cases are interesting problems because of their importance in 

practice. It is not unrealistic for the project manager to have to pay a switching

121



cost or penalty for each switch made from one project to another or to delay the 

development of a specific project. However this changes the problem drastically.

This is so because the objective is to find the optimal allocation strategy 

which maximises the sum of discounted net reward where its value reduces every 

time a switching cost is paid. For example, suppose that, there are two projects 

with deterministic sequences of rewards and whenever the manager switches to 

the other project, a cost of amount C  is incurred. During the switching period, 

no project is operated and therefore no reward is gained and this cost can be 

understood as a switching cost. Denote by m{t) the project chosen at time t. 

A switching cost is paid every time t for which m{t) ^  m{t  — 1). Let I  denote 

the indicator function. The task is to determine the order of operation of the 

projects, one at each time, such that
oo

Maximize [R{t) ~  F{m(t) ^  m{t — 1)}C] (6.20)

The solution to the optimization problem (6.20) is given by the following index 

(see, Asawa & Teneketzis, 1996)

T  — 1

- C a *

m a % — ----------------------------:----------
r > l  T -1

i= 0

and represents the maximum discounted reward rate given project j which has 

been operated from time period t =  0 to r — 1 and switching cost C is incurred 

at the next time interval at instant t.

More generally, one can associate with each project a switching cost Cj de

pendent of the current project. The index becomes

T — 1

-  C ja ^

max — --------:------------- .
T > 1  T - 1

E
i=0

a'

6.3.1 Bandits with switching delay

Assume the set up scenario of Multi-Armed Bandits with switching penalty. Sup

pose that instead of the project manager paying a penalty, a switching delay D
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occurs when the operator changes projects.An appropriate index is:

T  — 1^  {t)

max l= t
->t  t + D - 1

E
l=t

a

where the maximization is over all stopping times t  <  t  <  oo.

6.3.2 Allocation in finite horizon case

The issue of a finite horizon time is of great importance since allocation of effort 

or resources will not be done forever because of its limited nature. The question 

is how the Gittins index can give us a solution to the finite horizon allocation 

problem.

A Bandit problem with finite horizon T  seems to be an interesting case since 

in practice allocation problems may have a deadline. The problem is to maximise 

the expected discounted reward received up to time T, with respect to a policy 

7T, that is

V j  (a;) =  sup
t=Q

x(0) =  X

It is known that the Gittins index policy does not maximize the expected dis

counted reward obtained by finite time T. For example, set T =  2 and consider 

project X  with rewards (0,4,0) and project Y  with rewards (0,0,9).  Set the 

discount factor a  =  0.5. The sequence of the Gittins index for the these projects 

are: The Index rule says to choose projects in the sequence X, X, Y  since |  > f

Gittins index

Project 7o 7i 72

■ X  ■ 1 4 0

Y 1 3 9

Table 6.2: Sequential choice of projects based on the Gittins index

then we compare 4 > |  and choose project X  and the third choice is the project
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Y  because |  > 0. The index rule choice yields a return of 2. It is easy to see 

that the optimal choice is to select the project Y  which yields discounted profit 

0 +  0 +  (|)^7 =  2.25. Therefore the index rule gives us a suboptimal solution.

In practice, sometimes it is not so obvious what is the value of T.  However, 

we know that the allocation will be terminated in finite time as in the case of a 

clinical trial. Consider N  patients who are in a clinical trial. Assume also two 

treatments, A and B, each treatment is allocated to a patient, one at each time 

and the result of each treatment may classified as a success or failure. One can 

denote the response of patient i by Ri which is a Bernoulli variable with unknown 

parameter 6. The random variable R  takes value 1 for successful treatment and 

0 otherwise. We also need to discount reward received, this indicates that it is 

important how early a success is observed and that without discounting the order 

would not matter. The objective will be to maximize the expected number of 

discounted successes in the trial, that is E{(Y'Y^Ri).

When one decides to terminate the allocation of treatment a reasonably large 

value of T is needed to get a realistic value of the index since the value of T  

affects its value. However, one can specify a target level which may represent a 

significant level of potential therapeutic activity in screening trial.

In this case we can think in terms of the bandit sampling process  ̂ that is, a 

sequence of independent random variables A"i, %2 , - - - , which have an unknown 

probability distribution from a parametric distribution V  (Gittins, 1989, Chap

ters 6 and 7). A sampling process is a reward process if the observations them

selves constitute a sequence of rewards.

The Gittins index L/(H) for a bandit process in state H is defined to be the 

maximum expected reward per unit of discounted time up to stopping time. 

Denote by Br(H) the total expected discounted reward up to time r, where r is 

a stopping time defined in terms of the filtration { T t  : t >  1}, where T t  denotes 

the ( 7  —fields ( 7 {Xi : i < t }  and the total expected discounted time up to time r  

is denoted by HA(H). Then, we have

One can look at the supremum which is over the class of stopping times for which
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P (r  < T) =  1, that is,

i/^(n) =  sup 1/^(0 )
t < T

Gittins and Wang (1992) defined the difference of z/(If) — z/^ff) to be learning 

component of index, that is the difference between the index and the expected 

immediate reward. So, when one has two bandits with same expected immediate 

reward, the learning component should be larger for the bandit with the more 

uncertain reward rate.

Now consider a bandit sampling process in which a unit of reward occurs only 

when the observations is greater than some target value L for first time, and 0 for 

all other %/s. Also, there is an additional state C, which is the completion state, 

and the process reaches this state when the target level L is achieved and then 

no further reward is possible. An important characteristic of an index policy for 

a set of target processes is that it minimizes the expected flow time to complete 

all of them and also minimizes the expected time to minimize just one of them 

(Gittins, 1989, page 131).

For a Bernoulli reward process, one can set P(Xi  =  1) =  1 — P(W  =  0) =  

9. We assume that 6 has prior density of the conjugate form Beta(a, /3) with 

probability density function of the form

where a; > 0 and p > 0. The state of the bandit process can be represented 

by parameters a  and p  and is denoted by (a, n) where n =  a  p  is number of 

patients have been allocated to a treatment and a  is the number of success out of 

n. The Gittins index is defined as z/(cK, n) =  supy^o Tt). The state of bandit 

process changes every time a new observation is taken and n becomes n +  1 and 

Q. increases by 1 when a “success” has been observed and by 0 otherwise. The 

expected value of the next observation is given by

a  a
a-\- P n

which is the expected value of 6. This is equal to the expected immediate reward.

A related sequential decision optimization problem is the decision a financial 

analyst faces when his financial option must be exercised by specific time t. He
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has to decide when it is optimum to do so. This must only happen if the current 

price of share exceeds a threshold level (as in the target process) which is a 

function of the number of days to go before its expiry of the option. In the next 

section, we study option pricing and bandit processes together.

6.4 Option Pricing and Bandit process

The purpose of this section is to integrate the Multi-armed bandit problem with 

the financial option pricing method. The reconciliation of these two problems can 

be made through consideration of the two questions addressed by each problem 

and their link with the methodology used to get a solution to them. We present 

the theorems which justify the optimality of Gittins Index, and the pricing rules 

in Option Pricing method. The reasons why they hold are discussed and they 

are used to provide the common ground of both theories. Then a comparison of 

the solutions can be made.

In financial markets, an option holder observes how Option values vary from 

time to time in relationship to the price of the underlying stock. A fundamental 

problem in investment theory is how to determine the value of an option. Also 

the holder of the option is concerned to find out what it is the best time for 

him to exercise his option. At every decision time the choice of actions is to 

exercise the option i.e., stop, to get involved in the trading procedure, or not to 

exercise the option i.e., continue to observe the market. At the expiry time t 

the holder receives a payoff ft =  ft(So,Si, '  • • ,St) which is determined by the 

“history” of the underlying asset price St up to time t. The problem in making 

his decision is he does not know what state the underlying asset price process is in 

at the future times and therefore has no information of the future profit he may 

gain if he postpones the exercise action now. However, he knows the probability 

distribution of the “future”. After the expiry date the option has no value.

In the bandit problem, the decision maker’s objective is to choose a project 

selection sequence to maximize some function of the expected total reward over 

the planning horizon. He has the policy to engage the project which gives the 

highest current reward rate and he needs to know for how long the already en
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gaged project will continue to give the highest reward rate. Alternatively, one 

can suppose that, every time the decision maker uses the project j, he pays a 

fixed charge 7  ̂ which is dependent on the project and its state only. When this 

charge is set up to such a value that it is neither a profitable nor a loss-making 

action to use the project j  for a specified period, we say that this is the fair value. 

If the charge is greater than its fair value the project will yield some loss for the 

use of the specified period (see also, Weber, 1992).

One can start by comparing the two frameworks the models are built on. We 

only consider options with payoff functions which are path type dependent that 

is, its payoff ft =  ft{So, Si, - • - , St) is determined by what have been observed so 

far. If the option is not of this type, it can not be related to the Multi-armed 

bandit problem for reasons which will be obvious later.

In the next section we discuss the classical optimal stopping problem and 

introduce the concept of the Snell envelope. The Multi-armed bandit problem 

is presented as a control problem as was reformulated for its first time by Man- 

delbaum (1986). The problem of pricing of an American option is analyzed and 

connected with Multi-armed bandit problem.

6.4.1 Optimal Stopping

Suppose that we can observe a sequence of random variables 3 7 , 2 2 , . . .  , which are 

defined on a Probability space (Q, T ,  V). We assume an increasing sequence {J^n) 

of sub-cr-algebras of JF and that the element of the sequence is measurable 

with respect to Tn, n =  1 ,2 , . . .  ,. A pair of sequences {x n ,T n )T  is called a 

stochastic sequence.

A stopping time is a random variable r from VL into { 1 , 2 , . . . } ,  such that 

P ( r  < 0 0 ) =  1 and for all n, the event (r  =  n}  is in Pn-

If we stop the observation process at some point n, we receive a reward yn, 

which is dependent only on the already observed values 2 1 , . . .  , 2 „. To define the 

actual reward received, think about the stochastic sequence {2/n,^n}î° and t any
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stopping variable then the random variable yt defined by

^  \yn on { t  =  n}  forn =  1, 2, . . .
yt =  ^  ynl{t=n} =  <

=̂1 I 0 on {  ̂— go}

is the reward, where is the indicator of the set { t  =  n}.  The value V  of the

stochastic sequence { yn ,^n }T  is defined to be sup^ Eyt, where the supremum 

is over all the stopping times t such that Eyt  exists. We assume that E\yn\ <  

oo (n > 1).

Let D  be any class of stopping times t such that Eyt exists, we define V =  

supteD ^yt ■ The problem of the optimal stopping is to find an optimal stopping 

t e  D,  such that

V =  sup Eyt.
t e D

V  should be understood as the optimal average gain.

O ptim al Stopping w ith a F inite Horizon

In the finite case we observe an integrable stochastic sequence {yn, we

are looking for a stopping time t <  N  where is a fixed integer number. Denote 

by the class of stopping times n < t  < N,  then we define

Vn =  sup Eyt,

that is, the supreme average gain Eyt  when one is allowed to stop observations 

at time t, such that n < t < N.  One can solve this problem with the dynamic 

programming approach based on the principle of backward induction as follows: 

Suppose that n =  N  then the only stopping rule in is t =  n and we have 

=  Ey^.  If we go one step back in time, then n =  N  — I we need to compare 

yN-i  with E{yN\EN-i)  and determine the rule

_ — 1 if yN-i  >  E{yN\EN-i) ,
t =

N  if 2/at-i <  E{yN\y^N-i)-

The solution to this optimal stopping problem is given by the following the

orem:
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Theorem  6.1 (Chow, Robbins, and Siegmund (1971), p. 50)

Let N be a fixed positive integer. Define successively 7jv-iJ • • • 7^  by setting

7 n  =  Vn , (6.21)

7^  =  m ax[^^,E (y^Jjr^)], n =  -  1, . . .  , 1. (6.22)

For each n =  1, 2, . . .  Â , let

=  first i > n  such that yi =  .

Then G and

E { y s s \ y ^ n )  =  7 „ "  >  E { y t \ y ^ „ ) ,  t  e  C „ " ;

SO t h a t

E vsN =  > Eyu t e  C ,  and =  E'f^.

This theorem implies that

7 ^ =  ess supF;(?/t|.Fn), n =  l , 2 , . . . , N .

The sequence 7  =  (7 )̂o<n<TV is called the Snell envelope of yt which is defined 

as follows.

D efinition 6.1 Let y  =  { y n ) o < n < N  be an adapted sequence of real valued inte

grable variable. The Snell envelope of y  is the sequence U  =  { U n ) o < n < N  defined 

by

C/„ =  ess supF;(yt|:F„), 0 < n < N
Tn,N

where T n , N  is the set of all stopping times with values in {n, n +  1, . . .  , N }.  

O ptim al Stopping w ith  an Infinite Horizon

In the optimal stopping problem with an infinite horizon, an infinite sequence of 

random variable y i , y 2 , . . .  is observed which is an integrable stochastic sequence 

and the set of possible stopping times is extended to the set t >  1 . It can be 

shown that the same result of theorem (6 .1) can be extended in the infinite time 

horizon.
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Theorem  6.2 (Chow et al. (1971), p. 66)

Define 7  ̂ by

7n =  ess su p E (2/(|.Fn), (n =  l , 2 , . . . )
Cn

where J^n}T is an integrable stochastic sequence and is the set of stopping 

time t such that t >  n. Then

7 „ =  maix[yn,E{jri+i\^n)], n =  l , 2 , (6.23) 

î n =  Ejn- (6.24)

where =  sup^^ Ey^

From the above theorem one can conclude that the Snell envelope 7 „ is the 

minimal supermartingale which dominates yn- This conclusion can be derived 

if one notices that the inequalities 7 » > F̂ (7 n+i|.^n) and 7 „ > yn imply (6.23). 

Also, if y  is a supermartingale majorant of y then Vn > yn- This property of the 

Snell envelope enable us to price options when their expiry time is not fixed. We 

consider the case of the American option.

6.4.2 Valuation of an American option

Recall that an option is a contract between two parties and the holder has the 

right to sell (buy) the underlying asset (e.g share or currency) under the contract

ing conditions. The options providing the right to buy are known as call options. 

If the option gives the right to sell, it is called a put option.

Options are also classified in terms of the expiration time. A European option 

is the one which has fixed expiration date. In contrast to the European option, 

the American type option can be exercised at any time up to expiration date.

In this section, valuation of an American option is assumed to be done in a 

viable complete market as was introduced in section (4.6). We consider a market 

at times n =  0 , 1 , . . .  , N  with a stock process S =  (5„) and bank account process 

B  =  {Bn). We denote such a market by {B,S).

Given a (B ,S)  financial market, we examine an American type option with 

expiration time N  < 0 0  and a collection of non-negative payment functions /  =  

ifn)o<n<N- We assume that fn =  fn{So,S i, . . .  ,Sn) are given and represents
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non-negative payments if the option is exercised at any time n[n < N). fn can 

be understood as the payment to the option buyer if the option is exercised at 

time n given the realization of stock prices (5o, 5 i , . . .  , Sn).

The holder of the American option has to make a decision when to exercise his 

option depending on the history of (B,S)-market, that is if r  denotes the exercise 

time, his decision to exercise its option at time t  =  n o r  not (r > n) is determined 

only by the available information up to time n. Therefore it is natural to assume 

that T is a stopping time.

Consider the problem of pricing an American option. An investor faces the 

problem of replicating the value of an American option by constructing an ad

missible strategy, which gives the “fair” value of the American option.

Passing to the problem of valuing an American option, we have assumed that 

we operate in a viable complete market (see def. 4.6). This implies that, the 

absence of arbitrage possibilities is equivalent to the existence of a probability 

measure P* which is absolutely continuous with respect to the basic probabil

ity measure P with strictly positive and bounded density and such that all the 

security prices are martingales with respect to P*.

Assume that there exists a self-financing strategy tt =  (7r„)o<n<iv with initial 

capital X q =  x which will provide , at time n the capital X^{uj) for cu e

D efinition 6.2 ((Shiryaev et al., 1994), p. 21) A fair or rational price of an 

American option with last expiration time N  and a system of payment functions 

/  =  ifn)o<n<N is defined to be the minimal initial amount Xq =  x  =  required 

for any t t  self financing investment strategy having the property for all 0 <  n < A",

— fn  (*5*05 *5*1 ( w ) ,  . . . , Sn{uj)) , LÜ ^  Q,.

In a pricing procedure one wonders what is the best strategy of the holder of 

the option with regard to his right to exercise it or not. Again, this is a situation 

of two possible actions as in Bandit problem. More importantly, this choice is 

reflected through the mathematics of the optimal stopping problem. It can be 

proved that the investor is perfectly hedged and the best strategy of the holder 

is to price the option as follow:

Let Y  =  {yn)o<n<N be a positive sequence adapted to (Tn) which represents
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the value of the option at any arbitrary time n, where G N, the maturity 

time. If we assume that r =  t [üü) is an expiration time for a given American 

option, the contract requires the seller to be ready to make a payment fr =

/r(o;) ‘S'l (cj), . . . j>Sr(a;))-

D efin ition  6.3 ((Sh iryaev  et a l., 1994), p. 21) A stopping time r* =  T * ( w )  

is said to be rational or reasonable expiration time (withdrawal, repayment) of 

American option, if for initial capital C^, for any self-financing strategy t t  having 

the property

(^) — /r*(cj)(*̂ Oj (^) ) • • • 5 »̂ T(w)) ; ^ ^

the equality

Â T*(w) (^) /r*(a;) (*5*0 5 5*i(cj), , ^ G

is valid.

According to the contract

Before he exercises his option at time r  =  n he compares the following two 

amounts:

f n1. The discounted value of profit, if the option is exercised at time t =  n,

2. The expected discounted value of the contract at the next point in time n+1, 

E*(F„+i|.Fn), if the option is not exercised at time at n and the option to 

proceed optimally remains open at all future times r  =  tt, +  1, . . .  ,N .

Since an American option can be exercised at any time between 0 and A , we 

define the value process Yn =  {Yn)o<n<N of an American option described by a 

sequence (/„) such that.

I n

and, forn =  0 < 7 T , < A  — 1,

r„ =  m a x |A ,E * (F „ + i|;P „ )

Thus, the sequence Y  =  (F„,.F„,P*) is a supermartingale dominating the se

quence (fn/Bn).
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Theorem  6.3 ((Shiryaev et al., 1994), p. 41)

1. Under the conditions of a {B, S)-market, the rational price of American 

option with last expiration time N  and a system of non-negative payment 

functions /  =  {fn)o<n<N is given by

Q  =  supE*aVr,

where a  =  {1 r)~^ and sup is taken over all Markov times r  =  t {lo) such

that 0 <  t (uj) <  N, uj E Q, and is achieved for some r*.

2. At time r* is rational if and only if

= su p E *oV r.
T

The above theorem establishes the basic principles in the theory of American 

options that the pricing problem is essentially an optimal stopping problem in 

the sense that if we manage to solve the optimal stopping problem “ sup^ E*a'^fr ,̂ 

the result is the option price (rational cost) and at the same time the rational 

stopping time r* is known. Therefore one can characterize the arbitrage-free price 

process Y  =  (T„) as:

Y(n) =  ess sup E* \ ^n]
reTn,N

where Tn,N denotes the set of all stopping times r, n < r  < N  with respect to the 

current information field Ĵ n of the price process and the conditional expectation 

is with respect to the equivalent martingale measure P*.

6.4.3 Bandit problem as a control problem

Suppose that there is a collection of d independent projects in the sense that 

each project yields a sequence of random rewards, and these are considered to be 

d independent stochastic processes on a given probability space (O, .F, P ). The 

reward process for the project i is denoted by Zi =  =  1 , 2 . . . }  which is

a bounded real value stochastic process on {Q, P)  : t =  0,1, • • • , oo},

that is, the information process for the project i which is a non-decreasing family 

of sub a -fields of T . More precisely is the information accumulated during 

the first t uses of project i.
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For the option pricing model, =  {T\^ t =  0,1, • • • , 00} should be thought 

of as the time t price of the risky asset z, this may be the price of one share 

of stock in a given market. The filtration T  describes how the information is 

revealed to the investors. The investors know past and present information but 

nothing about the future.

In the same way, the decision maker in the bandit problem knows all the 

past and present rewards gained for each project worked out so far. The reward 

process Zi — {Zi{ t ) , t  =  1 , 2 . . . }  is adapted to the information process for the 

given project. It is assumed that:

1. E  <  00 , where E  is the conditional expectation given for

a given discount rate 0 < a  <  1 and all z =  1, 2, . . .  d,

2. Reward processes are statistically independent, i.e., are independent 

(7 — fields, for z =  1, . . .  d ,

3. Zi{t) G El_i for t =  1,2 . . .  cxD.

One needs to have a definition of an allocation strategy.

D efinition 6.4 (M andelbaum , 1987)

An allocation strategy T  =  {T(t), t =  0 , 1 , . . . }  is a d-dimensional discrete 

stochastic process T{t) =  (Ti(t),T^(t),. . .  7k(t)) where Ti{t) G {0 , 1 , . . .  } is the

total time allocated to the z*̂  project by the calendar time t, with T(0) =  0 such

that for alH =  0, 1, . . .  ,

1. T(t +  1) is a direct successor of T{t),

2. T(t) is a stopping time with respect to F  =  { E{ s ) , s  G 5 } ,

where the filtration F  is given by

F{s) =  Fi{si)  V " • V Fd(sd), s =  ( s i , . . .  , Sd) G

and N  denotes the set of non-negative integers.

One should note that =  t- Given an allocation strategy T, it yields

future rewards with present value R{T):
00 d

iî(T ) =  £ ; ^ a ‘ ^ Z i( T i( t  +  l))[Ti(t +  l) -T i(< )]  fort =  0 , 1 , . . .  (6.25)
t —0 i = l
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The reward obtained at time t  +  1 comes from the project i for which Ti{t +  1) — 

Ti{t) —  1 .

The decision maker’s objective is to schedule how to choose projects sequen

tially in time, i.e., to find an allocation strategy T{t)  so as to attain the maximal 

total expected discounted reward
oo d

s u p E T a ' T  Zi{T,{t +  l))(Ti(« +  1) -  Ti(t)]. (6.26)
t=0 i=l

The solution to the problem described by (6.26) is in terms of an Index process. 

Index process

We are looking for the strategy T =  T  which achieves the optimal value V =  

supj  ̂R{T).  The strategy T is described in terms of adapted index processes as 

follows:

The index process P  =  (P( t ) ,  t =  0 , 1 , . . . }  is a stochastic sequence associ

ated with project i given by:
r —1

t —n
T — 1

P( n)  =  ess su p ---------------—j-------, n G N, (6.27)
T>n+1 „ . . ,

a
t —n

where r is a stopping time with respect to and is the conditional

expectation given We also denote by P(t) ,  the lower envelope of F*(t), that 

is,

P ( t ) =  inf P(n) .
~  0 < t < n  ^

The following theorem explains how these indices are used to identify the optimal 

policy and expresses the optimal value V  in terms of the lower envelopes of the 

indices.

Theorem  6.4 (Kaspi &: M andelbaum, 1998)

The class of optimal strategies coincides with the class of index strategy T, which 

chooses projects with the highest index. Formally, an index strategy is a strategy 

T  for which

T ( t  +  1) =  f \ t )  +  1 only when P { r  (t)} =  sup F^{f^(t)},
j  —  ! ) • • •
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for al l t  G A/" and i G {1, 2, . . .  ,d}. Furthermore, the optimal value is given by

o o

=  sup
(= 0

The interpretation of this theorem, is that the index process (or rule) selects 

the project i with the largest current index (6.27). For example, suppose that 

the project i is engaged at the stage n. Starting from state n, then the maximum 

attainable expected average reward rate between state n and any arbitrary future 

state r(r  > n), is achieved if the project is worked out up to the stopping time 

T — 1 than any other time t, and is equal to F^(n).

6.4.4 Discussion

Starting from the Option pricing problem, an option can be thought of as a game 

where the reward is the payoff of the option and the option holder pays a fee, that 

is, the option price for playing this game. For example, in the American option 

case, the option fee was the rational cost which was the result of optimal 

stopping problem, that is,

CjV = supE*aVr
r

with discounting factor a  and a system of payments /  =  {fn)o<n<N- The value 

of the game at time n is given by

Y(n) =  ess supE* Tn]
reTn,N

where Tn,N denotes the set of all stopping times r, n < t  < N  with respect to the 

current information field of the price process and the conditional expectation 

is with respect to the equivalent martingale measure P*.

In the bandit problem, the gambler pays a fixed charge 7  to play a bandit 

after time n until stopping where the total wealth gained up to stopping time 

r — 1 is given by

r — 1

U n { j )  — CSS sup E
T > n + 1
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In both cases, each game has some rules. In the option pricing case, the 

investor wants to solve the “investment problem” to reproduce wealth of at least 

size fr  at time r, that is the (random) time the option buyer decides to exercise 

his option and the investor must be able to pay the amount fr as the game 

(option) requires him to do so.

For the bandit problem, the charge 7  can also be understood as a rent per 

unit time the gambler is asked to pay to have the right to use the bandit j  for a 

given period. If the decision maker decides to use project j  for period (n, r — 1), 

the use of this project, it comes to a point which is not profitable. A fair charge 

would be the charge which if the project is chosen optimally the decision maker 

will experience no profit or loss. The fair charge is given by:

T — 1

j { x j )  =  sup { 7  : sup > 0

where the policy t t  determines a stopping time r  > n +  1 .

In the case that there are more than one fair charge, the decision maker 

chooses the smallest one that is mmQ<s<t{'yj{^j{s))}.

It is remarkable to note that both problems have the concept of the “fair 

value” and that in both cases its value is unique. The trading strategy followed 

to replicate the value of an option is a martingale transform since there is no 

arbitrage opportunities as stated in the theorem (4.2). The problem of valuing 

the American option becomes an Optimal Stopping problem since the trading 

strategy process should be stopped sometime, that is, the time the option holder 

decides to exercise his option or the expiry time.
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Chapter 7 

Conclusions and Further 

Research

In this thesis, we focused on the Pearson and the Gittins indices. The Pearson 

index can be viewed as the right decision rule when a set of projects needs to 

be divided into two groups; the projects which are going to be implemented and 

the projects which will never be considered. The Pearson index indicates how 

many projects one should prioritize in order to maximize profitability in an opti

misation problem of the Neyman-Pearson Lemma type. The Gittins Index gives 

the solution to the problem of allocating one’s effort over projects sequentially in 

time so as to maximize expected total discounted reward. Gonsequently, one can 

combine the methods by selecting a subset of projects using the Pearson index 

and then prioritize them sequentially by using the Gittins index.

It would be interesting to develop prioritization indices for parallel-series sys

tem and series-parallel system. A prioritisation rule for a sequential decision 

processes which its each stage is regarded as a successful one if at least k out of 

n of its sub-stages are successful may be of interest.

In Chapter 3, we studied the problem of maximizing the expected utility of 

the terminal profit of the chosen projects, in a one period model, subject to linear 

inequality budget constraint. We showed that when the random profit follows a 

Normal distribution and the utility function is negative exponential, the problem 

is equivalent to Quadratic Knapsack problem. We suggested a prioritisation index 

for selecting projects in a similar fashion to the Pearson index. We also pointed
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out that it is not always optimal to spend as much as we can, in an optimisation 

problem with budget constraint when we try to maximise the expected value of 

exponential utility function.

In Chapter 4, we presented forecasting systems. Probabilities and forecasts 

are essential to calculate parameters for ranking indices. We showed that the 

sequence of forecasts is a martingale process. The conditional variance is a su

permartingale process. We also noted the similarity of a forecasting system with 

the pricing process of a European option in complete market due to the martin

gale property.

In Chapter 5, we introduced the real option approach to capital budgeting 

problems. We explained why the decision tree approach seemed to give different 

results than the option pricing approach. We concluded that the option value 

created from the operating flexibility and strategy flexibility has significant value. 

Indices studied in Chapter 2 solved problems without taken into account the value 

associated with flexibility which may arise from operating options. Adjustments 

should be made in these problems to derive indices which will capture options 

which may be found in any R&D portfolios problem.

In Chapter 6, we showed that the Multi-Armed bandit problem can be recon

ciled with the problem of pricing an American option. The common point is that 

both problems can be thought of as one game with some rules and a strategy 

which is dependent on the experience of the decision maker. Equivalently, the 

concepts of the fair value of a project with that of the fair price of the option 

represent a kind of “fair” charge for both games.
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