The Application of Intelligent Systems to
Finance and Business

James Viner

Thesis submitted for the degree of
Doctor of Philosophy
of the University College London

October 1998

Department of Computer Science
University College London

ProQuest Number: 10014314

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10014314
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Intelligent systems have proved very effective in many business applications, however
there is little understanding of the relationships between the techniques and the
application domains. Through applying genetic algorithms and neural networks, two
powerful general purpose techniques to the difficult problems of economic forecasting
and financial trading, this thesis investigates the connections between the nature of the
application and the chosen intelligent technique. Four experiments have been carried
out to investigate this problem:

Residual Value Forecasting with Lex Vehicle Leasing: One method of setting vehicle
hire charges requires accurate forecasts of the second hand value of vehicles in 3 or 4
years time. A synthetic depreciation series was constructed for proof-of-concept
purposes. Neural network forecasting models were compared against linear regression
benchmarks and it was found that they have comparable performance. Developments
to this forecasting scheme are proposed.

Intelligent Trade Filtering with Sabre Fund Management: This project is an attempt to
capture, reproduce and extend expert trading knowledge from a history of pattern
based trading. Genetic algorithms were used to find rules that capture the symbolic
relationships between the observed market state (pattern type, quality etc.) at trade
entry and probable trade outcome. The GA found several rules that are deterministic to
95% confidence.

Continually Adaptive Trading Systems Design: Financial markets are in a constant
state of change. Genetic algorithm-style operators were used on a population of trading
system descriptions to generate new trading strategies on-the-fly which are evaluated
on a rolling basis by their recent trading performance. In conjunction with the over-night
loan market, the system could make super-LIBOR returns, although the impact of this
result on theories of market efficiency is unclear. This system is unable to trade the
FTSE index effectively, an observation consistent with the theory that the information
set of the FTSE is too large for it to be out-performed.

Genetic Algorithm Trading System Induction with the European Bank for
Reconstruction and Development, a bank that speculatively trades government bond
futures markets. Genetic algorithm rule induction was used to automate trading system
innovation and profitability tests were carried out in all relevant markets. The results are
positive but mixed. The system makes higher returns on longer maturity markets, and
the presence of this effect over the US Treasury bond markets is demonstrated to a
confidence of 86%. The system was also tested on copper and gold futures. The
system was then modified to give a new technique for assessing the change in the
character of financial markets.

The principal scientific contributions to come from this thesis are: i) genetic algorithm
rule induction is a powerful and effective technique for finding empirical models. It is
particularly suitable for business problems as the experimenter has control over the
representation and the resulting models are transparent; ii) novel results from the
financial experiments present evidence both for, but primarily against, the Efficient
Market Hypothesis; iii) that the decision to use a specific technology should be taken
after the content of the available data has been investigated; iv) the proposition of a
new technique for tracking changes in nature of financial markets using the trading rule
induction engine; v) the design and operational analysis is given for the first known
continuously adaptive trading engine; vi) the first known comprehensive operational
analysis of a GA rule induction based trading system; vii) the first known public domain
data intensive analysis of the vehicle resale market.

Acknowledgements

The story of this thesis has been an interesting tale, and many people have played
important roles

UCL:

Many thanks to Phil Treleaven for the supervision, advice, guidance and help that he
has given over the years.

Thanks also to Suran Goonatilake for his supervision and direction, and to Peter
Bentley for his vital help in the final stages.

Thanks must go to my past and present colleagues for their friendship and
contributions: Alasdair, Laura, Hugh, Pouneh, Raghbir, Paul, Adil, Sanj, Surayya,
Tony, Jason and Konrad.

Thanks also to the Graduate School for a little extra money, and that busy legal team
at UCLi.

Lex Vehicle Leasing:
Thanks to Nick, Chris, Steve, Martin, and Hemant for getting it all started.

Sabre Fund Management:
Thanks to Spish for the introduction to the financial markets.

European Bank for Reconstruction and Development:

Thanks to Mark Cutis, Asoka Selvarajah and Jaakko Karki for one of the most
character building episodes of my life, and everyone else for the part they played: Olja,
Dave, Benedicte, Serra, Andrey, Daniil, George P., George H. and Bart.

Thanks to my family and friends for their support and companionship: Mum, Dad,
Helen, Grandma, the Islington (& related) lot, innumerable diving people and all my
old pals from Warwick.

And Finally...
Thank you to the directors of Lex Vehicle Leasing for making it all possible.

Table of Contents

1. Chapter One: Introduction

1.1 Introduction

1.2 Five Key Features of Intelligent Systems

1.2.1 Learning

1.2.2 Adaptation

1.2.3 Flexibility

1.2.4 Explanation

1.2.5 Discovery

1.3 Business Problems

1.3.1 Neural Networks for Residual Value Forecasting
1.3.2 Genetic Algorithms for Intelligent Trade Filtering
1.3.3 Continually Adaptive Trading Engine

1.3.4 Bull-Bear Trading Engine

1.4 Prerequisites

1.4.1 Information and Data

1.5 Use of Intelligent Techniques

1.6 Thesis Aims and Contributions

1.6.1 Contributions

1.7 Thesis Structure

2. Chapter Two: A Survey of Intelligent Systems
2.1 Introduction

2.2 Neural Networks

2.2.1 Physiology of Neural Networks
2.2.2 Training

2.2.3 Conjugate Gradient Descent

2.2.4 Simulated Annealing

2.2.5 Hybrid Learning Systems

2.2.6 Business and Financial Applications
2.2.7 Time-series Forecasting

2.2.8 Market Categorisation

2.2.9 Tactical Asset Allocation

2.3 Genetic Algorithms

2.3.1 Evaluation

2.3.2 Selection

2.3.3 Operators

2.3.4 Crossover

23.5 Mutation

2.3.6 Variations on a Theme

2.3.7 Business and Financial Applications
2.3.8 Trading Rule Induction

2.3.9 Portfolio Selection

2.3.10 Credit Evaluation

2.4 Summary

3. Chapter Three: Neural Networks for Residual Value Forecasting
3.1.1 How the Fleet Hire Business Operates

3.1.2 Pricing Mechanisms

3.2 Nature of the Problem

3.3 Data

3.4 Data Preprocessing

11
11
12
12
12
13
14
14
15
15
16
16
16
17
17
17
19
20
21

23
23
23
24
26
27
28
29
30
30
33
34
35
36
37
37
38
38
38
39
40
41
43
45

46
46
47
48
49
51

3.4.1 Constructing the Synthetic Series
3.4.2 Correlation Coefficients

3.43 Combining the Synthetic Series

3.4.4 Year-on-Year Changes

3.45 Secasonality

3.5 Modelling Benchmarks

3.5.1 Linear Regression

3.5.2 Linear Regression Bogeyman

3.5.3 Use of Data

3.5.4 Exponential Decay Curves

3.5.5 Comment on Regression Benchmarks
3.6 Neural Network Experiments

3.6.1 Training

3.6.2 Modelling Experiment 1: Time-series Forecasting
3.6.3 Results

3.64 Comment

3.6.5 Modelling Experiment 2: First Difference Forecasting
3.6.6 Results

3.6.7 Comment

3.7 Discussion

3.8 Further Work

3.8.1 Virtual Key Models

3.9 Summary

4. Chapter Four: Genetic Algorithms for Trade Filtering
4.1 Background

4.2 Nature of the Problem

4.3 Data

43.1 Data Exploration

4.3.2 Comment

43.3 Data Preprocesing

4.4 Genetic Algorithm Rule Induction
4.4.1 Representation

4.4.2 Rule Evaluation

4.4.3 Genetic Algorithm Execution
4.4.4 Results

4.5 Discussion

4.6 Summary

5. Chapter Five: The Continually Adaptive Trading Engine
5.1 Background

5.2 Data

5.3 Technical Trading Strategies

5.3.1 Technical Indicators

5.3.2 Stop Losses

5.3.3 Comment

5.4 Evolutionary Framework

5.5 Strategy Representation

5.5.1 Genetic Trading

5.6 System Testing and Performance Evaluation
5.6.1 Performance Measures

5.6.2 Results

5.7 Discussion

5.8 Summary

51
53
54
55
56
58
58
59
59
60
63
64
64
65
66
66
67
68
69
70
72
72
74

75
75
76
80
81
83
84
84
84
85
86
86
87
90

91
91
93
95
95
98
98
99
100
101
102
102
103
104
110

6. Chapter Six: The Bull-Bear Trading Engine
6.1 Background

6.2 Data

6.2.1 Data Preprocessing

6.2.2 Data Partitioning

6.2.3 Robustness Testing

6.3 Genetic Algorithm Rule Induction
6.3.1 Long and Short Rules

6.3.2 Market Classification with the Adaptive Average
6.3.3 Technical Indicators

6.3.4 Operators

6.3.5 Rule Evaluation

6.4 Fitness Evaluation

6.5 Genetic Algorithm Execution

6.6 Trading the System

6.7 Results

6.8 Maturity

6.9 Commodities

6.9.1 Copper

6.9.2 Gold

6.10 Stationarity

6.10.1 Comment

6.11 Discussion

6.11.1 Information Content of the Rules
6.11.2 Criticisms of the Method

6.12 Summary

7. Chapter Seven: The (D-)Efficient Market Hypothesis
7.1 The Efficient Market Hypothesis

7.2 Expectations, Pricing, Tulip Bulbs, Bubbles and GARCH
7.2.1 Are Expectations really Homogeneous

7.2.2 'Why Homogeneous Expectations lead to Problems with Pricing
7.2.3 Artificial Stock Market with Assumptions of Homogeneity
7.2.4 Artificial Stock Market without Assumptions of Homogeneity

7.3 Bubbles and Tulips

7.4 Hurst Exponents

7.4.1 Hurst Exponents and the Capital Markets
7.4.2 Approximate Entropy

7.5 In Defence of Market Efficiency

7.5.1 Empirical Studies of Market Efficiency
7.5.2 Types of Test

7.6 Summary

8. Chapter Eight: Assessment

8.1 Thesis Objectives

8.2 Neural Networks for Residual Value Forecasting
8.2.1 Project Summary

8.2.2 Assessment

8.2.3 Project Conclusions

8.2.4 Future Work

8.3 Genetic Algorithms for Trade Filtering
8.3.1 Project Summary

8.3.2 Assessment

8.3.3 Project Conclusions

8.3.4 Future Work

111
111
113
115
117
118
119
120
120
121
122
123
124
125
126
128
130
133
134
134
136
138
139
139
141
146

147
147
149
149
150
151
152
152
153
155
157
157
158
159
160

161
161
162
162
162
163
163
164
164
164
165
165

8.4 The Continually Adaptive Trading Engine
8.4.1 Project Summary

8.4.2 Assessment

8.4.3 Project Conclusions

8.4.4 Future Work

8.5 The Bull-Bear Trading Engine

8.5.1 Project Summary

8.5.2 Assessment

8.5.3 Project Conclusions

8.5.4 Future Work

8.6 Experiments on the Financial Markets

8.6.1 Financial Anomalies - A Consistent Story
8.6.2 But don* overdo it

8.6.3 Conclusions on the Efficient Market Hypothesis
8.7 Intelligent Systems

8.7.1 What Works Where?

8.7.2 Genetic Algorithm Rule Induction

Appendix A: References

166
166
166
167
167
168
168
168
169
170
170
171
173
174
175
175
176

178

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

List of Figures

Feasibility of computerising records

A Neuron

The Logistic Equation

Structure of a feed-forward neural network
Hypothetical error function

Crossover

Mutation

Tree for Symbolic Expression (x+y)*3
Efficient Frontier for 53 Asset Portfolio:

CAP Blackbook Format

Residual Value Depreciation (Synthetic Series)
Correlation Coefficients

The Serialised Synthetic Series

Year-on-year changes in Residual Values
Seasonality of Residual Values: Mean monthly % changes
The Linear Regression Benchmark
Exponential Regression Benchmark

Decay curve of debatable value

Figure 3.10: Out-sample Residual Value Forecasts (time-series experiment)

Figure 3.11: Forecast of 1st difference of monthly residual values

Figure 3.12: Implied depreciation path

Figure 3.13: No. of samples for given no. of data points and window width

Figure 3.14: Virtual Key Model System

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 6.1:
Figure 6.2:
Figure 6.3:

The Head and Shoulders Chart Formation

US Bond Government Bond Futures’ Market

GA Encoding Scheme

Distribution of Z-scores for rules on out-sample data
P&L curve for typical static trading system

Moving averages - German Bund 10 Year Government Bond Future
Trading Range and Breakout in Gold

Distribution of Returns

Proxy to cumulative profit and loss curve
Backwards rolling of futures prices

Data Partitioning Schematic

Robustness Tests

17
24
25
26
29
38
38
41
43
50
52
54
55
56
57
60
61
62
66
68
68
71
73
77
79
85
87
93
96
97

104

107

116

117

118

Figure 6.4: Fitness Landscape
Figure 6.5: 30 day BB indicator on Eurodollar 3 month (Eurodollar rules)

Figure 6.6: Cumulative Profit and Loss on European, Japanese and US markets:
Eurodollar rules 3 month rules

Figure 6.7: Multi-market Cumulative Profit and Loss: Eurodollar 3 month rules
Figure 6.8: Performance comparison across US Treasury Maturities: US Bond rules
Figure 6.9: P/L gradient vs. Market Maturity: US Treasury Futures

Figure 6.10: Cumulative Profit and Loss for US Treasuries: US Bond rules

Figure 6.11: Cumulative Profit and Loss: Gold

Figure 6.12: Stationarity Methodology

Figure 6.13: Divergence of static and updated rules: US Bond, US Bond rules
Figure 6.14: Divergence of P&Ls

Figure 6.15: Frequency of indicator selection

Figure 8.1: P/L gradient vs. Market Maturity: US Treasury Futures

124
127
129

130
131
132
133
134
136
137
138
140
172

Table 2.1:
Table 2.2:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table 4.8:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 7.1:
Table 7.2:
Table 7.3:
Table 8.1:
Table 8.2:
Table 8.3:

List of Tables

NSME for test data

Comparative performance of credit scoring applications

Regression thought experiment

Linear Regression Benchmarks
Exponential Regression Benchmark
Exponential Regression Benchmark 2
Time Series Forecasting Performance
Augmented Model Performance

Sabre Trading Data

Complete Data Set

Pattern Type

Medium Term Trend

Long Term Trend

Good Example

Data Partitioning

Mean out-sample Z-scores

FTSE data format

Appropriate market conditions for technical indicators
Anatomy of a strategy

Performance measures for a portfolio of 10 stocks
Market information(Lehman Brothers Inc)
Partitioning Dates

Rule Operators

Portfolio orientation

Efficient Market Hypothesis Summary
Hurst Exponent Summary

Hurst exponents and the Capital Markets
Residual value forecasting errors

Market Models

The Application of Intelligent Systems

32
44
59
60
61
62
66
69
80
82
82
82
83
83
84
87
94
99
100
103
113
118
122
128
147
155
156
162
173
175

10

Chapter 1:

Introduction

This chapter presents the motivations for researching intelligent systems,
and once the key features of intelligent systems have been described and
discussed, the four experiments presented in this thesis are introduced. The
prerequisites that exist for the successful deployment of intelligent systems
are also examined. The chapter concludes with the motivations, goals and

contributions of this work and the thesis structure.

1.1 Introduction

This thesis investigates four intelligent system experiments designed to convey
competitive advantage from the analysis of data. There are a range of intelligent
technologies available and a myriad of possible applications within business contexts.
This thesis examines the relationships between the nature of the business problem, the
intelligent system solution and the effectiveness of the resulting implementation, with a
view to discovering the knowledge that enables intelligent system engineers to

construct the most effective systems.

The technologies that will be focussed upon are genetic algorithms and neural
networks. These have been the basis of a great deal of research and have been
demonstrated to be extremely effective and powerful techniques. They will be tested in
economic forecasting and speculative trading applications. These are some of the most

difficult and taxing business problems that exist.

Pitting powerful, non-linear techniques against difficult problems will strain both the
technologies and conventional understanding of markets. It is in these situations where
much can be learned about the applications, the techniques and the relationships that

exist between them.

11

1.2 Five Key Features of Intelligent Systems

The field of intelligent systems is diverse: there are a broad range of techniques that
have been used for addressing thousands of problems, but a number of recurrent
themes emerge: they are often capable of learning and adapting, they are flexible, can
often be attributed with explanatory power and be capable of discovering new
knowledge. As it is these five attributes that make intelligent systems valuable and
worthy of research, a brief overview of each will be presented, before introducing the

actual experiments carried out in the course of this thesis.

1.2.1 Learning

Learning is the process of knowledge acquisition. This is arguably the most important
strength of many intelligent systems deployed in financial and business applications.
Many intelligent systems, but especially those based on neural networks and genetic
algorithms, can learn by example. This involves giving the system examples to learn
from, and then the system makes internal modifications to reflect the new data it has
been exposed to. This can be thought of as building an internal model that is consistent
with the submitted examples. For this reason, is it vital to give the machine
representative samples, or the model that the system constructs will not correspond
strongly to reality. One of the main goals of intelligent systems research is to construct

systems that can generalise well once the learning or training has been completed.

Particular problems exist when trying to automate expert knowledge. Experts are often
unwilling or unable to concisely and consistently express their knowledge. Indeed, their
knowledge may not be complete, consistent, or even correct. However, from records
of expert behaviour, it is often possible to construct intelligent systems that can learn
the knowledge implicit in the decisions the expert has made. Depending on the type of
intelligent system, it may then be possible to decode the machine’s internal state to
analyse the information content of the expert’s knowledge that has been transferred to

the machine.

1.2.2 Adaptation

A further benefit of intelligent systems is that they can adapt to new situations. If the

model the intelligent system has constructed begins to slide out of date, then it is often

12

a simple matter to bring the system back up to date by simply re-training the system
with more up-to-date information. Moreover, it is possible to design intelligent systems
so that they are constantly absorbing new information and modifying their models
accordingly. This is another important benefit of intelligent systems: they have no
loyalty to the models they find, and so they will not retain aspects of models that are
out of date simply because they have been a component of the model for a

considerable period of time.

There can be less drastic reasons for shifting the knowledge base: for instance, in credit
scoring, the risk-adversity of lending institutions and the desires of those seeking credit

are very different in times of prosperity to those in recession.

This adaptability is of particular relevance in the financial markets. For instance,
immediately prior to the end of a primary price trend, there is a buying frenzy where
the price is bid up by those attracted to a security that is rapidly rising in price. When
there are no market participants left who wish to buy, the price drops rapidly as there
are no bids to push the price up, and at the same time, there are lots of dealers who are
trying to sell securities that are (now) dropping rapidly in price. This has the effect of
pushing the price down lower. When this transition from buying to selling occurs, it is
clearly important for an intelligent system to react rapidly and appropriately. In
extreme cases, it need only take a few seconds for the securities’ price to go ‘limit-
down’ and for trading to be suspended in an effort to control the rate of collapse of

price.

1.2.3 Flexibility

The flexibility of intelligent systems shows itself in two ways: many of the techniques
are intrinsically general purpose, and they are robust in the face of incomplete, noisy or

inconsistent data.

In overview, many intelligent techniques are very similar. Once the problem has been
specified, some part of the intelligent system constitutes an optimisation procedure of
either maximising fitness or minimising errors, or a search for good solutions. A
consequence of this is that if a business or financial problem éan be expressed in terms

of the value of solutions or the errors generated by solutions, then intelligent systems

13

can be used to address the problem - hence their general purpose nature. Indeed, this is

one of the few prerequisites for the use of intelligent systems.

The robustness of intelligent systems stems from several sources. Traditionally,
computers have been associated with concepts such as “yes” and “no”, “black” and
“white”, and not with an inability to reason with imprecise data. Fuzzy logic can not
merely cope with concepts such as “fairly tall” or “too fast”, but also reason and infer
from such statements. This is of significant value if, for instance, a potential customer
in a database can be assessed as being “likely” or “very unlikely” to respond to a

directly mailed advert.

1.2.4 Explanation

Some intelligent systems can be accredited with having explanatory power. It is
possible to use genetic algorithms to find rules that can explain business and financial
phenomena. In credit scoring, if a set of intelligently induced rules reject a loan
application, and if the customer demands to know why, then the train of reasoning that
led to the application’s rejection can easily be examined and possibly conveyed to the
applicant. There are also applications in fraud detection. The daily volume of trades in
any single exchange is far greater than could easily be checked by any reasonable sized
watchdog. However, if a series of trades appear suspicious to the intelligent system,
then exchange officials can be alerted, and the line of reasoning that led to the alert

being raised can be examined.

1.2.5 Discovery

One of the strengths of intelligent systems is that they can construct their own models
of business and finance that may be more appropriate to the problem than one designed
by hand. Knowledge discovery is the process of examining data to find non-trivial

relationships that are capable of adding value.

Wal-Mart[Veri94] is a chain of hyper-market stores in the USA. It used parallel
database mining techniques on gigabytes of P.O.S.(point of sale) information to
examine whether there were any particularly strong correlations between the sale of
one good or commodity and the sale of another[Veri94]. There were some obvious

facts to come out of this, such as if someone buys baby-food then they probably buy

14

nappies. However, the machine also made the perhaps not terribly alarming, but
nevertheless interesting and unexploited discovery that if young males bought nappies
then they also bought beer with high probability. This observation led to the placing of
beer in the child-care section of some Wal-Mart stores, and this was soon followed by
a significant increase in beer sales in those stores. After this trial and a second analysis
of the P.O.S. data on the sales of nappies and beer, it was decided to move a rack of
crisps and other condiments into the child-care section next to the beer. Unsurprisingly

perhaps, revenues were increased again.

1.3 Business Problems

Due to these five factors, intelligent systems have (rightly) been perceived as general
purpose technologies, and as a result of this, their range of application is very broad.
This is confirmed by the range of the applications that have been used as illustrative

examples so far.

The research described in this thesis has been undertaken in conjunction with a number
of industrial partners to gain broad, direct and thorough exposure into intelligent
systems that are developed for use in industry. As a result of this, four separate
intelligent system experiments have been carried out. Each of these will now be

introduced.

1.3.1 Neural Networks for Residual Value Forecasting

This work was carried in association with Lex Vehicle Leasing. The problem was to
forecast the level of depreciation of vehicles over the hire period - in essence, to
forecast its residual value. This is an important company process because the single
largest component of the total hire charge of a vehicle is the recouping of the
(estimated) depreciation of the vehicle over the hire period. The company was keen to
use neural networks for this task, and so neural network software was developed to
utilise the company’s large vehicle pricing data-base for forecasting vehicle’s residual
values. These neural network models were compared and contrasted with linear

regression benchmarks in order to assess them.

15

1.3.2 Genetic Algorithms for Intelligent Trade Filtering

This research was undertaken in conjunction with Sabre Fund Management. The task
was to assess which types of charting trades, if any, work most reliably. Charting is
one method of trading in financial markets that consists of trying to find and exploit
repeating patterns of market movement. Debate exists whether this approach to
trading is worthwhile or not, but this is not an issue here. The data consisted of a
record of the company’s trading performance over recent years, and a comprehensive
record of which patterns the expert trader thought were active at the time of trade
entry. This project involved the use of genetic algorithms to find rules that can connect
sub-sets of expert knowledge to market conditions. In other words, the genetic
algorithm is trying to find rules that describe those parts of the expert’s knowledge that

are validated through their performance in the markets.

1.3.3 Continually Adaptive Trading Engine

This system again uses genetic rule induction for finding trading rules, but unlike the
previous experiment, it does not attempt to find pockets of deterministic behaviour in
the markets. Instead, the system attempts to evolve along with changes in the nature of
the equity markets it faces, by rapidly assembling appropriate models for the current
markets with genetic operations. This is very similar to the situation faced by living
creatures - as the environment changes, whether due to climatic change, predator-prey

arms races or industrial waste, species must evolve in order to survive.

1.3.4 Bull-Bear Trading Engine

This work was funded by the European Bank for Reconstruction and Development. It
used genetic rule induction to find trading rules that describe exploitable pockets of
predictability in the Government bond futures markets. The work later developed into
an autonomous rule based trading system and a new method of assessing the
stationarity of markets. Moreover, results from experiments with the Bull-Bear engine
have proved inexplicable in terms of standard economic theory, but are consistent with

a non-linear view of economics.

16

$%*

8
$%*%$
0
0
$%, 5

8

6

6# 8

$6

%

effective packages for PCs around, such as 4-Thought, but the field of neural networks

is complex and there is a very real danger that lay-people will attempt to use these

tools in a way that is inappropriate without realising it. This exposes the technology to

criticism that is misplaced, due to the user’s unrealistic expectations, or reasonable and

achievable, but unrealised expectations. Examples of inappropriate use are a failure to

specify the model in a sensible manner in the first place, trying to extract information

that simply isn’t there, or simply using data in an inappropriate way. From the author’s

experience, it is common for users of neural network software to have a number of

erroneous beliefs, or simply not be aware of the following important points:

It can be important to represent the problem in a manner that is easy for the system
to find solutions. Two representations of musical tones could be a sequence of
wave samples every 1/10000™ of a second, or a coding of musical notation on a
stave. Which was more appropriate would be dependent on the application.

Pre- and/or post- processing of input information can be important to enhance the
information density of the input data. It is often through this route that domain
knowledge can be incorporated that has no other easy route into the model. For
example, in a fraud detection application, the start and claim dates could be inputs
to a system. However, there is nothing intrinsically fraudulent about individual
dates - it is the intervals that are important. Moreover, this reduces the complexity
of the problem space, reduces the input complexity and prevents the system
making spurious relationships between these and other inputs.

It is important to have reasonable performance expectations, given a certain data
set. It is not uncommon for managers to have wildly optimistic expectations of
what is achievable with a certain data set, both in terms of accuracy and what
information can be extracted from data. It is often difficult to form reliable
judgements of what the likely performance of the system will be when one is
conducting exploratory research.

Specifying an appropriate network size for the amount and stability of the data.
There are simple rules of thumb for estimating the appropriate size of network for
a certain amount of data. Experiments can be conducted to find the optimal

network size and topology - i.e. construct the network that gives the best out-

18

sample performance, but it is simply not possible to use and then re-use out-of-
sample data to find the best network in this way. This leads on to the next point.

* How (rapidly) out-sample data can migrate in-sample data. If one repeatedly uses
out-sample data to assess the progress of the system’s development, then the once
out-sample data becomes an implicit part of the model building process, and can no
longer be considered as genuinely out-of-sample.

* The dangers of over fitting. The more training an intelligent system undergoes, the
better it will know the training set. This is not what is required - what is required
are systems that can act appropriately and generalise in the future, not ones that
work well on training data and then fail to operate thereafter. The usual cause of
over-fitting is the use of a model that is too complicated for the amount of data
available.

* The dangers of over extrapolation. This too is related to the point above - if the
model is applied to areas beyond the boundaries of where it is applicable, then the

results inferred from such modelling will clearly be unreliable.

1.6 Thesis Aims and Contributions
This thesis has a number of goals:

1. The primary research goal is to identify causal links between the nature of the
business problems, individual techniques and the effectiveness of the resulting
implementations. This will take two forms: i) comparing and contrasting various
techniques for specific problems; ii) exploration of individual techniques across a
range of applications. Through the development of new intelligent system
applications, understanding is sought as to what it is that makes certain projects
successful and others unsuccessful. This information can then be used to help
determine in advance which approaches are most likely to work well for any given
business problem. This in turn is part of a greater research goal to contribute to the

understanding of the successful deployment of intelligent systems.

2. Much of the financial intelligent systems application development that takes place
is in-house and is correspondingly not in the public domain. One of the goals of
this thesis is to bring proprietary intelligent systems research to the public domain.

There are two main sections to this: i) analysis of trade/confidential/unusual or rare

19

data; ii) insight into the operational details of bespoke intelligent systems that are
actually commissioned by companies for commercial advantage, as opposed to

systems developed in research institutions for the purpose of research.

Another of the goals of this thesis is to contribute to the development of the field
of intelligent systems through the development of new intelligent methods or the
refining existing techniques. This is part of an on-going drive to build suites of

effective, robust and understood techniques.

Intelligent systems offer a capacity to take a fresh look at old problems, while
making few assumptions about the problem domain. From examining empirically
justifiable models, as opposed to abstract, hypothesised (linear) analytic models,
insight is sought into the nature of (for instance) financial markets. Financial
economics is largely based on the linear paradigm and assumes that prices
converge to their equilibrium level. The amount of evidence that suggests that this
is not the case is increasing and intelligent systems, due to their inherent capability
to cope with non-linear relationships, offer a prospect of contributing to a new

paradigm of non-linear economics.

1.6.1 Contributions

More specifically, the principal contributions of this thesis are as follows:

1.

That genetic algorithm rule induction is extremely useful for business applications
as it is a powerful means of extracting non-linear value from data, the researcher
has control over the representation, and the resulting induced models are

transparent. This has been a constant criticism of neural networks.

This work on trading systems presents new information concerning the debate over
the validity of the Efficient Market Hypothesis. This is a theory that divides the

investment community.

Valuable insight into the value of exploratory data analysis, the necessity of

benchmarking if possible, and matching of the application to the requirements.

Through the research of genetic rule induction systems, a new means of assessing
the stationarity of financial markets has been developed, in a manner that removes

some of the economist’s defence against non-linear analyses.

20

5. The first known public domain design and analysis of a comprehensive genetic rule

induction based trading system.

6. The first known public domain design and analysis of a continually adaptive trading

engine.

7. The first known public domain data-intensive modelling of the depreciation of
vehicles in the UK.

1.7 Thesis Structure

The overall thesis structure is as follows: after the introduction and an intelligent
systems literature survey, one chapter is spent on each of the four projects, the
implications for theories of market efficiency forms chapter seven and the final two
chapters critically assess this work and draw conclusions. Each chapter begins with an
introduction detailing the chapter’s purpose and relevance, and concludes with a bullet-

point summary. In greater depth, the content of each chapter is as follows:

Chapter Two is a survey of the field of intelligent systems. Neural networks and
genetic algorithms are introduced as each of the four projects presented later use one
of these techniques. Given the commercial focus of this thesis, existing applications of

these technologies are reviewed.

Chapter Three presents the residual value forecasting project for Lex Vehicle
Leasing. An overview of the business is given along with a statement of the problem.
The data is reviewed and has some basic analysis performed on it. A synthetic data
series is constructed for proof of concept purposes, and linear regression modelling
benchmarks are established as test controls. Two neural network models are used for
time-series forecasting and their results compared and contrasted against the
benchmarks. The chapter concludes with a method for forecasting individual vehicle

residual values from a general purpose time-series forecasting device.

Chapter Four details the intelligent trade filtering project for Sabre Fund
Management. An overview is given of chart trading and some univariate analysis
conducted on the data-set. Genetic algorithm rule induction is reviewed, and the
representation presented. Experimental details are given of the genetic algorithm

multivariate rule induction and the results are presented and discussed.

21

Chapter Five introduces the Continually Adaptive Trading Engine. The background
and inspiration for this work are given, along with an overview of the ideas behind
basic technical analysis. The genetic algorithm-style adaptive trading scheme is
described in detail and profitability experiments are carried out on UK equities within

the FTSE index. The results are presented and discussed.

Chapter Six documents the trading system induction project for the European Bank
for Reconstruction and Development. It begins by introducing the government bond
futures market and then presents summaries of the markets that are traded in the
course of this experiment. Technical indicators are reviewed and the rule framework
and evaluation scheme used by the genetic algorithm are presented. The presence of
unexpected effects are identified and these are investigated further. The system is also
applied to commodity futures. A new methodology is introduced for tracking the
changes in the character of financial markets. The chapter concludes with a discussion

and summary.

Chapter Seven is a discussion of the nature of financial markets. A pair of important
works are presented and related to the results of the financial experiments documented
in chapters 4,5 & 6. An overview is given of empirical studies of market efficiency, and

conclusions are drawn about the validity of the Efficient Market Hypothesis.

Chapter Eight gives an assessment and conclusions of the work presented in this
thesis. The thesis objectives are reviewed, and summaries and conclusions of each
project are given along with an assessment of whether they have individually met their

research goals. Following this is a discussion of broader thesis conclusions.

22

Chapter 2:

A Survey of Intelligent Systems

In this chapter, neural networks and genetic algorithms, the intelligent
technologies relevant to this thesis are introduced. The operation of each
technique is described together with an overview of existing business and

financial applications.

2.1 Introduction

The primary motivation underlying this thesis is to test various existing intelligent
technologies against a range of business problems, and then account for variations in
the effectiveness of the implementations. In order to do this, it is not only necessary to
have an understanding of how the techniques work, but also to examine how other
researchers have tackled their problems. Consequently, this chapter will present an
overview of the intelligent technologies used in this thesis, and critically assess a
number of existing neural network and genetic algorithm applications that are directly

relevant to this research.

As declared previously, the third thesis objective is to develop new techniques or
enhance existing methods, and to do this it is élearly necessary to have some
appreciation for the work that has already been carried out. Finally, the operation of
the systems must be understood if their autonomous behaviour is to be correctly

decoded to yield new information about the nature of the problems they are given.

2.2 Neural Networks

There are a range of entities that come under the banner of neural networks, with
established network models numbering over 100[Lipp87]. These include probabilistic

networks, functional link networks, adalines (adaptive linear elements), auto-

23

P% C7Q
P& %4C=Q

&% &% $

P

%

" / 0 1
8 7 6# -
>
* w
A9Q#
83
Y 7
6Y8B
*
? 1:7?

%

U, XP A9Q

/3

77

P)) A70Q
8
P41 A9Q

'<

$ %

7H#

<7

<'[|7>

&

17

Figure 2.3: Structure of a feed-forward neural network

Input layer Output layer
Hidden layers

Neurons Weighted connections

2.2.2 Training

It is the combination of network topology and the weight set that characterises a
specific network. The topology is usually chosen, or refined through experiment, so for
a network of any specific topology to perform useful processing requires the network’s

weights to have specific values. The usual method is by training.

Multilayer perceptrons are usually trained by example, which proceeds along the
following lines: the network is given a series of training pairs <input vector, output
vector>. The input data from each training example is propagated through the network
to yield an output from the as yet untrained network. An error can then be calculated
from the difference between the actual outputs and the desired outputs for each of the
training examples. The network’s weights are then adjusted to reduce this error. This
training procedure is then repeated to progressively reduce the training errors. This can
be thought of as attempting to find low points in a multidimensional error space
surface, where each weight in the network contributes another dimension to the hyper-
surface. Once the training data, network topology and transfer function have been
selected, the function Error(w) has been implicitly defined. The training process can

then be thought of as a search for a good point in the space.

Training must be stopped at some stage or the network will simply have memorised
the training set, including the noise. This is discussed in greater depth in Section 3.6.1.
Often the objective is to train the network so that it will be able to generalise when

confronted by data that is not in the training set.

26

2.2.3 Conjugate gradient descent

The most common training algorithm is backpropagation. First presented by
Rumelhart et. al.[RuHWS86], this basic algorithm is covered in virtually any
book[Lipp87] on neural networks and so will not be dealt with here. Instead, a more
sophisticated algorithm conjugate gradient descent will be described, as this is the

learning algorithm used later in this thesis.

Most neural network training techniques operate by attempting to find locations in the
weight-space that have a low error. Unfortunately this is not as simple as it sounds as
the surface is highly multidimensional and often characterised by a series of “ravines”
in otherwise nearly flat error surfacesMast93]. Any naive algorithm for finding minima
in such spaces will find that the gradient is an extremely local pointer to a local minima,
and hence will either become trapped in nearly flat areas where the gradients are small,

or will overshoot wildly when the gradients are steep.

Many methods have been proposed for coping with this, such as the use of momentum
[TsUh97] where the new search direction is a combination of the previous search
direction and the current error-surface gradient, in an effort to prevent the network
being ovérly influenced by local perturbations in the error surface. It is common to use
a combination of momentum with a gradual reduction in step size, so that the system
“homes in” on an acceptable minima. If the step size is reduced too rapidly, the
network Will become trapped in a local minima, whereas if it is reduced too slowly the

search vector will simply thrash about over the error surface and never converge.

One method that attempts to use gradient information in a more sophisticated manner
is conjugate gradient descent|Bren73]. Given a weight set Wy and a direction Wy, the
algorithm iteratively finds t such that the error E is minimised along the line through
the weight space Wo+tW,. There are a number of key parts to the conjugate gradient

descent algorithm:

1. Very fast algorithms exist for finding minima in locally quadratic 1 parameter
functions[PFTV88]: i.e. given a section through the space, the algorithm can
rapidly find a good minima.

27

2. The search direction Wy is chosen intelligently[Pola71], a combination of recent
and current search directions, with special provision for the search becoming

caught in saddle points.

This algorithm is similar in many respects to backpropagation with momentum which

was briefly mentioned earlier. However, it differs in two respects:

1. The algorithm has a continuously variable step size and so can both explore the

space rapidly and at fine granularity.

2. Instead of being fixed, the momentum term varies in an optimal manner.

2.2.4 Simulated Annealing

Simulated annealing is a stochastic function optimisation technique that uses no surface
gradient information which can also be used for training networks. The definitive text
on this topic is [AavL87]. It takes its name from the analogous metallurgical process of
annealing: Metals have a crystal microstructure. When this microstructure is random,
the metal is weak as there are no well-defined crystal interfaces (dislocations) to

prevent cracks and fractures spreading.

When metals are heated, the high temperatures make the atoms shake which disrupts
the crystal structure. If a hot metal is quenched then the atoms are frozen into this
random pattern which gives a hard but brittle ingot. If the metal is cooled slowly
(annealed), then crystals form. The size and connections of the crystals and hence the
resulting mechanical properties of the metal, are dependent on the temperature profile

of the cooling process.

This model can be used to optimise functions. Consider a ball thrown into the error
function shown in figure 2.4. When the system is shaken, the ball can end up anywhere.
As the temperature (i.e. violence) of the shaking is reduced, a point is reached where
the ball cannot be shaken out of the global minimum, but can be shaken out of the local
minimum on the left hand side. As the temperature is reduced further, the ball will

settle closer and closer to the global minimum.

28

A
~ rkr W N N~ O
v\/\/

0
N O 8
1 3
&%&%, ! #
Pl) A<! A:Q 0 ' P" @9Q
' P $C@Q
P A9Q #
6
7,
9

| %

simulated annealing is powerful despite the fact that it does not use gradient

information and is a stochastic search process.

2.2.6 Business and financial applications

Neural networks are a powerful, non-linear, general purpose intelligent technology,
and as a result have received much interest from those seeking competitive advantage
in business and finance[Goon94]. However, in addition to whatever worth they may
have, any application that uses leading edge technology will gain more interest and

attention than a solution that doesn’t, all other things being equal.

The discussion of the operation of neural networks has so far been theoretical. Some
financial applications of neural networks will now be presented, to illustrate how they
can be used for tasks such as time-series forecasting, market categorisation and tactical

asset allocation.

2.2.7 Time-series Forecasting

Mozer [Moze93] conducts experiments with a range of neural network models on high
frequency currency data. He explores a taxonomy of neural networks based on a model
of a network as a memory to hold on to relevant past information and an associator

that uses short-term memory to classify or predict.

The taxonomy has the divisions along the orthogonal directions of form, content and
adaptability, giving 36 distinct subclasses of neural networks, some of which have not

been explored by the academic community.
The form of short-term memory is divided into the classes:

1. Tapped Delay-Line memory: This is the simplest form of memory, that is a buffer
that contains the n most recent samples of the time-series. A small extension to this

scheme is the use of non-uniform delays eg {t-1, t-2, t-4, t-8}.

2. Exponential Trace Memory: Consider a binary bit time-series x and a memory
process m; = X, + m;/2. This memory is capable of memorising the series.
However, if the memory has finite resolution, or is noisy, then the less significant

(oldest) information will be lost.

30

3. Gamma Memory: This is a combination of the previous two memory structures: a

tapped delay line of exponential trace memories.

A memory does not have to simply record the input sequence: some processing can be

carried out. This gives rise to various classes of the content of short-term memory.

1. Input memory: This is where no processing takes place before the data is

“committed to memory”.

2. Transformed Input memory: This is generally the standard neural network

activation function - a squashed weighted sum of the inputs.

3. Transformed Input memory + State: This can be implemented in a recurrent
network with 2 hidden layers. Consequently, the effects of the transformation that
is applied to the inputs is in some way dependent on the current state of the

network.

Instead of applying the memory functions to the inputs, they can be applied to the
outputs instead. This gives rise to three more content classes: Output memory,

transformed output memory and transformed output + state memories.
Finally, there is the adaptability of memories:

1. Adaptive Memories: These are memories that are constantly learning from the

Series as it progresses.

2. Static Memories: This is akin to a taught neural network whose weights have been

frozen after training and is performing static processing on the series.

In summary, there are three dimensions that describe types of memory: form (delay
line, exponential trace, gamma trace), content (I, TI, TIS, O, TO, TOS) and
adaptability (static, adaptive). Mozer then conducts a comparative experiment on high
frequency currency data with 3 different types of memories: I-delay, TIS-0 (a recurrent
neural network with hidden units) and a hybrid approach combining these, for the
problem of forecasting currency rates 1, 15 and 60 minutes ahead. 25 networks of each
architecture were trained from random initial weights. The ten that performed best on
a disjoint test set were applied to the out-sample data, where they had their forecasts

averaged to produce a final forecast.

31

Performance is reported in terms of normalised mean squared error. The
normalisation is done with the error involved if the forecasted value is assumed to be
the same as the current value. An NMSE value less than one indicates that the system
is performing some useful forecasting, and the lower the value, the greater the
forecast’s accuracy. Mozer[Moze93] reports an NSME of .859 on the 15 minute
forecast and .964 on the 60 minute prediction, although the out-sample data was
reported not to have a sufficient number of points to ascertain whether the results are
simply an artefact of the data or if the system is actually doing something that adds
value. Mozer found that all non-trivial models performed approximately as well as each

other on the test and out-sample data:

Table 2.1: NSME for test data

Architecture 1-minute prediction nmse
(57773 data points)
I-delay, O hidden 999
I-delay, 5 hidden .985
I-delay, 10 hidden 985
I-delay, 20 hidden .985
TIS-0 .986
hybrid TIS-0 and I-delay .986

It is not disputed by the economic community that structure exists in the financial
markets, but that once trading costs are taken into account, no useful structures will
remain. Mozer does report that the I-delay, 10 hidden network correctly predicts the
direction of market movement in 58.5% of cases, conditional upon a change having
occurred. However, the information as to whether a change will occur is not available
and the impact of trading costs on non-moves of this type is debatable. Also, the mean
win-loss ratio is not reported - this information is required to determine whether the
system is “tradable”. It is simply not inferable from Mozer's paper whether this system
would make profits in the market, which is the ultimate benchmark of whether the

system makes useful forecasts or not.

32

2.2.8 Market Categorisation

Much of the research and development into the application of intelligent technologies
for speculative trading is carried out in-house by banks and investment institutions that
are in a position to benefit (or otherwise) from such research. However, it is interesting
to attempt to assess the motives for disseminating information that appears to confer

some competitive advantage.

This section will be concerned with just such an example: ABN Amro investigated the
use of neural networks for characterising market behaviour[Eman96]. The starting
premise is that there are a number of market price behaviours that are products of
different market moods, and each of these requires the use of different market

indicators to be traded successfully. The 3 stages identified were:

1. Trading: the price oscillates within a limited range;

2. Trending: the price makes progressively higher highs or lower lows;
3. Changing: the transition between trading and trending, or vice-versa.

The neural network is then used to assess which of these market characters is currently

occurring, and hence select the set of predefined indicators that should be used.

Emanuels|[Eman96] experiments with a range of feed-forward neural network
architectures for forecasting prices of 5 stocks over various time-horizons using 1 and
2 hidden layers and between 2 and 12 hidden units. The inputs are price, quarterly
price, monthly returns, and trend, volatility and trading volume indicators. After testing
1440 networks, it is concluded that the network’s precise topology is unimportant,
provided there are at least 5 hidden units for these inputs and data. Experiments are
also conducted to find the best ratio of training set size to validation set size, and this is

“much larger than expected” at 9:1.

Interestingly, a number of null results are reported: there is little correlation between
the in- and out-sample root mean square error(RMSE), nor between the number of
training epochs and out-sample RMSE. Also, it is reported that in-sample RMSE has
little bearing on whether the network correctly forecasts the direction of the next

market movement on the relevant time-frame, although this is to be expected - the

33

RMSE error will be small if the forecasted value is simply equal to the current price.

According to financial economists, this is the best that it is possible to do.

Nevertheless, after approximately 6 months of live trading, Emanuels reports average
returns of 24%, although it is not clear how or which of the 1440 tested networks
were selected for trading, or if any risk adjustment has taken place. It is important to
acknowledge that 6 months is not a sufficient period of time to assess a system of this

nature[Debo94].

2.2.9 Tactical Asset Allocation

Tactical asset allocation is concerned with the allocation of funds between different
types of assets, such as stock, bonds and cash. The objective of this is to obtain a
portfolio that has the required properties: this might be maximum return for minimum
risk or immunity to exchange or interest rate shifts. Neural networks are used to
forecast the expected difference in returns between equities and cash and bonds and

cash, so that appropriate modifications to the current portfolio can be made.

Refenes et. al.[RZCB95] document a comprehensive series of experiments into the
application of neural networks for tactical asset allocation. Arbitrage pricing theory
states that an assets’ return is a linear function of its exposure to economic (and other)
factors. Refenes et. al. have chosen variables such as expected returns, market
valuation and state of the business cycle as potential inputs for the model. As many of
these are highly correlated the most independent are extracted: multiple linear
regression techniques are used to discover which of the inputs (factors) have the
greatest explanatory power, and hence iteratively find the least useful input and remove
it. From this method of “backwards stepwise regression”, the initial 17 data series are
pruned down to fewer, more independent inputs. 5 experiments are carried out with
results that range from the “disappointing” for an all factor (unpruned) model to 4 and
1 factor models that “did much better, explaining what in financial engineering terms is
a satisfactory 14.5%-17.5% of the variability (correlation squared) in [the differential

returns between equities and cash]”.

The 5 multiple linear regression models are then compared to a range of simple feed-

forward neural networks trained with the backpropagation algorithm presented earlier.

34

The main parameters that were varied were the topology, and the training time. The

networks are kept small as monthly data is used and hence little is available.

After conducting a series of training time experiments|[RZCB95], it is concluded that
the networks “exhibit a surprisingly consistent relationship between training time and
training period, irrespective of the topology and [inputs]". In addition, one interesting
point is made concerning the duration of training data. Networks trained on short
periods with few inputs explained much of the variability - in the range 28.5 - 39.5%!
This out-performed the linear models to a significant degree, and so the authors
conclude that few inputs should be used so that the network can be thoroughly trained
with little data. However, the authors also acknowledge that the performance of the
models is clearly related to the period that is chosen for training. The group also found
that although the networks failed to predict large deviations from the cash-equity
differential returns series, they predicted the direction much more accurately than any

of the regression models. However, the tradability of this signal is never assessed.

2.3 Genetic Algorithms

Genetic algorithms are a class of stochastic, evolutionary techniques to problem
solving, developed by Holland[Holl75] to model adaptive biological processes. They
work with a number of solutions to the problem simultaneously. Each candidate
solution is an individual, and all the individuals in the GA constitute a population.
Genetic algorithms operate by repeatedly combining the coded information from
different individual solutions (genotypes) in new ways, to give rise to new sets of
actual solutions (phenotypes) that are better answers to the problem. This is known as

the evolutionary cycle, and consists of a number of phases[Gold89]:

1. Build the starting population, usually by generating a random set of individuals: this
is effectively making a number of uniformed guesses about what the solutions to the

problem are.

2. Evaluate the fitness of the current solutions: It must be possible to work out how
good each candidate solution is, often by examining data and seeing how well it

"works".

35

3. Preferentially select current good solutions: The better a solution is, the more likely
we are to want it to survive, reproduce and influence the subsequent behaviour of

the GA.

4. Combine good existing individuals to generate a new set of solutions: Generational
replacement is the process of building a new population from the existing solutions.
This is usually done with crossover, a process where new individuals are created by
splicing information from multiple existing solutions to create new solutions, or

mutation, where small random changes are made to current individuals.

5. Goto step 2 until some condition is met, such as a suitably low level of error, high

enough fitness or a maximum number of cycles have passed.

There are a number of points to note about how the operation of a genetic algorithm

differs from many other optimisation techniques[Gold89]:

1. GAs use payoff (fitness) functions, not derivatives or other additional knowledge.
2. GAs work with a number of solutions simultaneously.

3. GAs work with an encoding of the parameters, not the parameters themselves.

4. GAs use probabilistic transition rules.

In summary, the GA works by generating a (usually) random set of individuals, and
this has the effect of manufacturing by chance, the fragments of a good, final solution
to the problem. With repeated application of the evolutionary cycle, the GA then

assembles these fragments into a good final solution.

Each of these stages will now be covered in greater depth.

2.3.1 Evaluation

For it to be possible to apply genetic algorithms, it must be possible to qualitatively
assess the fitness/value/worth of any possible solution that the GA finds. This is clearly
dependent on what the problem actually is. One important detail of the evaluation of
individuals, is that the fitness is a property of the phenotype(the decoded solution), not
the genotype (the encoding of the solution).

If the objective is to find a structure that has certain physical properties then this will

require a very different fitness function to that used by a GA whose function is to find

36

rules for forecasting volatility or optimise time-tables. Nevertheless, for any of these
problems, it must be possible to make an assessment of how good any individual

solution is.

Interestingly, once the representation(encoding) has been designed, the space of all
possible solutions is defined, and the task of the GA can then be thought of as
navigating in this space to find good solutions. This is very similar in many respects to
the space searching that is done in neural network training. GAs search for high points
in the fitness space whereas neural networks training algorithms search for low points

in the error space.

2.3.2 Selection

There are a number of means of “preferentially selecting fit individuals”[Gold89] for

parenting new candidate solutions.

1. Roulette Wheel Selection: an individual’s probability of selection is the fraction of

its fitness to the sum of the fitnesses of the total population.

p(i) = I Equation 2.3

E?-l f J

2. Tournament Selection: This selection method involves pairing off existing

individuals (usually randomly) and then eliminating the less fit of the two.

3. Ranking: The individuals are ranked by fitness and then roulette wheel selection is

performed on the rankings, rather than the individual’s fitness.

Each of these schemes can be carried out either with or without replacement, although
making such a change is unlikely to transform the operation of the GA. Many GA
implementations use elitism. This is where the best individual(s) in the current

generation automatically survive through to the subsequent generation.

2.3.3 Operators

Once individuals have been selected for reproduction, genetic operators are used to
generate new individuals from the existing genetic stock of the selected "parents".

There are two main operators crossover and mutation.

37

& % (% *

0 P/ AB6Q 0 *

6 6

dB U7B eBe! 3
ddd! ~ 3 Beef 9 (3

7 7
" > Pl CAQ ©
/ Il P/ A6Q !
&% (%, <
P/ A6Q O
| 0 8 7 =#
8 7 =#
? @5?A7?B:
? @@ AB>
4
>
&% (%6
! W >
P" ACQ *

1&

converges to a local fitness maximum, and coping with deceptive or noisy
functions[Deb93]. In addition, research is conducted into the technical issues such as

the efficient implementation of GAs on paralle] computers.

1. Parallel GAs: multiple processors are either used to perform fitness evaluations
concurrently, or Distributed GAs where practically separate population pools are

evolved with few interactions between populations| AdCh94].

2. Niching/Speciation/Crowding: These promote the growth of stable sub-
populations, in an attempt to focus effort on useful sections of the genotype space

[Mahf95,TCRR94], or evolve multiple solutions with a single population.

3. Messy GAs: These focus on the use of “exotic” techniques, such as variable length

encodings and two-stage evolution processes[Deb91].

4. Multi-objective GAs: Quite simply the evolution of solutions to problems that have

multiple objectives.[SrDe95].
Two other important research drives related to genetic algorithms are:

1. Alife: This is the study, through simulation, of the basic phenomena observable in
living systems. These include self-replication, evolution, adaptation, self-

organisation, parasitism, competition and co-operation [Tesf96].

2. Genetic Programming: This is the construction of symbolic expression trees with
genetic algorithms. These expression trees are usually LISP expressions, and hence
are executable computer programs[Koza92]. The motive behind this work is to get

the GA to evolve programs, instead of having human programmers write them.

2.3.7 Business and financial applications

To better illustrate the application of genetic algorithms to business problems, a
number of case studies are presented from existing intelligent systems literature. It
should be stressed that the application domain is in fact far greater than might be
inferred from the selection of applications presented here[Koza98] - genetic algorithms
are an extremely general purpose optimisation technique, and financial applications

have been chosen simply for reasons of relevance.

39

2.3.8 Trading Rule Induction

Oussaidene et. al.[OCPT97] used a genetic programming approach to inducing rules
for trading exchange rates. The main thrust of their paper is concerned with the
efficient parallelisation of genetic programming on a distributed system, and then this

tool is applied to trading rule inference.
The trading rules that the system finds are all of the form:
IF |EXPR |> K THEN S=SIGN (EXPR) ELSE S=0

where if the modulus expression EXPR, evaluates to greater than a activation
threshold K, then the system generates a trading signal. If EXPR is positive, a buy
signal is generated, if EXPR is negative, a sell signal is generated. The value K is
chosen to reflect the aggression of the system: the lower its value, the more frequently
the system will trade. The expressions are constructed from a grammar that consists of
a function set with basic logical and arithmetic operators {AND, OR, NOT, IF, *, /, +,
-<, >, Min, Max, Abs} and a set of terminals that contain some preoptimised
momentum based indicators, a 16 day volatility indicator, a random number generator

and the values +1 and -1. Consequently an example of a currency trading rule might

be:
IF M;*V > Min(+1,M;) > K THEN ...
where M,; is preoptimised momentum indicator i, and V is the volatility indicator.

Programs evolved by genetic programming (GP) techniques are usually represented by
trees (see figure 2.7) and since this approach uses GP for rule induction, the
expressions formed can potentially be arbitrarily complex. The justification of this is
trivial, as any sub-clause of the expression (sub-tree) can be replaced with a more
complex expression (a larger sub-tree). The crossover operator must be modified for
genetic programming: instead of splicing bit strings as before, it exchanges sub-trees of
the symbolic expressions being “crossed-over”, to produce two new S-expressions.
The value of a genetic programming approach to rule induction is that the GA then has

great flexibility in the complexity of the solutions that are found.

40

Figure 2.7: Tree for Symbolic Expression (x+y)*3

*
/ +/\ \3
X y
It was found that the best of the trading rules found by the system averaged an annual
return of approximately 5% on out-sample data, but the authors acknowledge that

further work is required to enhance the robustness of the solutions. There are two

problems with this result:

1. Tt is unclear what a pre-optimised indicator is - and it is never revealed which data
this preoptimisation takes place on. If the out-sample data was used in their
construction, even in a separate experiment, then the integrity of any test must be

questioned.

2. Also, the results are grouped according to the out-sample performance. The
information required to select the best trading rules does not exist until after the
experiment had finished, and so a trader would not be in a position to only trade

the best performing rules.

It is interesting to acknowledge that one of the authors works for a firm whose core

business is vending market information and hi-tech market analysis and trading tools.

Oussaidene et. al. [OCPT97] also found that simpler rules operated in a more reliable
manner than more complex rules - this is an interesting result as it is consistent with
Refenes’[RZCB95] results presented in section 2.1.10, and with results of experiments

presented in this thesis.

2.3.9 Portfolio selection

Loraschi et al. [LTTV96] have applied genetic algorithms to portfolio selection: the
problem is to select the weighting of assets in a portfolio such that the risk exposure of
the portfolio is minimised for any given level of expected return. As the risk associated
with a portfolio increases, the required return increases, carving out a non-decreasing

curve in risk/return space called the Efficient Frontier. Much of portfolio theory uses

41

the notion of variance of returns as a measure of risk, and while this has given some
very elegant theoretical results, it has not always worked so well in practice. Instead,
to attempt to capture the idea of risk as the chance of incurring a loss, this study

examines the distribution of losses.
This problem then can be expressed as the two-objective optimisation problem:
min{Risk(p)}
max{Return(p)}
where p is a portfolio of assets.

Genetic algorithms are often effective in these selection problems, which is one reason
why this experiment is interesting, given that there are 10> ways of selecting (say) 20
different assets from 100 candidates. The authors use a number of coarse-grained
islands, each of which has its own unique sub-population on a separate virtual
machine. Small random exchanges of individuals occur between islands once during
each evolutionary cycle. Apart from the exchange of individuals, each island operates
as a separate GA in its own right. It is due to this segregation of sub-populations, each
exploring a different region of the searchspace that the GA can be slowed in its race
for population convergence and in the process discover better solutions. This
distributed GA is compared to a single, unsegregated population of equal size and the
results contrasted[LTTV96]. The results are shown in Figure 2.8. The representation
that is used is not discussed, although it is probably simply a list of variable length, of

assets.

The distributed GA finds a consistently higher return portfolios for equivalent risk than
the sequential reference GA, although part of this result is due to the extra
computational power that can be applied to coarse grained genetic algorithms, and

indeed this is one conclusion that the authors draw.

42

&% (%3 A +

P4 %!1A<Q !

OP4 %B!'A<Q

77 C O
OBBBB

31

up to 60 variables per entry. The credit manager using the system can select which
variables from the system are likely to be the most relevant, and which variable is to be
predicted. The user then specifies what constitutes an acceptable model in terms of
robustness and reliability. The system then offers various linear analysis capabilities, or
the data can be fed direct to the modelling engine, where the GA attempts to evolve
sets of rules that have the explanatory requirements the credit manager requires. This is
done using cross-validation techniques, where the error is monitored on data sets
disjoint from the training set, in an attempt to prevent ill-conditioned solutions. The
system also automatically switches to alternative evolutionary strategies such as

simulated annealing when genetic diversity deteriorates.

The results of the system’s use at a bank is reported, but the GA system only
outperforms the loan application rating benchmark by 2.31% (65.15%, up from
63.68%). However this seemingly meagre increase actually represents a significant

saving in costs and consequent profit gain.

The author also carries out a comparative study of credit scoring techniques on
another (standard) data set that has been used before for comparative analysis. This
consists of 1000 loan applications (700 good, 300 bad), each with 20 predictors such
as age, current account status and location. Noting that the default accuracy for this
task is 70% (700 good cases of 1000), the results of the various applications are
presented in Table 2.2[WaHG95].

Table 2.2: Comparative performance of credit scoring applications

Algorithm Method Accuracy
OMEGA Genetic algorithm 77.4%
CN2 Rule Induction 72.0%
NEWID Rule Induction 65.1%
C4.5 Rule Induction 72.7%
AD Neural Network 72.7%
MAD Neural Network 70.9%
COUNTER PROPAGATION | Neural Network 68.7%

44

2.4 Summary

In this chapter, an overview of the operation of neural networks was presented. This
consisted of an overview of the operation and training of neural networks. The papers
concerned with applications of neural networks in the financial domain examined in

depth were:
* ataxonomy of networks for time-series forecasting (specifically currencies);
* market classification for trading equities;

* an investigation into the use of neural networks for forecasting differential returns

between equities and cash for tacit asset allocation purposes.

It is important to acknowledge that there is an enormous amount of neural network
research, literature and case studies, and that it is impossible to. give more than a

flavour of the work that has been done in any sensible amount of space.

Genetic algorithms are not quite in the same situation - they do not have a rigorous
theoretical background as yet, and so much of the research that takes place is
somewhat applied. The section on genetic algorithms began with an overview of how
they operate, and then looks at some financial or business applications to observe how

these technologies are being developed and deployed. The applications were:
* Trading rule induction with genetic programming;
e Portfolio optimisation;

* Credit evaluation rule induction from databases.

45

Chapter 3:

Neural Networks for Residual Value

Forecasting

This chapter investigates data-intensive techniques for forecasting the
residual value of used vehicles after a 3 or 4 year hire period. A database is
available of monthly samples of used vehicle prices for all current models in
a range of ages and conditions. Linear regression models and neural
network time-series models are developed to address this problem and are

compared.

3.1.1 How the Fleet Hire Business Operates

The fleet hire industry exists because there is a market for medium term (3-4 years)
rented vehicles and it is this industry that accounts for more than half of the annual
new UK vehicle salesfCAP97]. In addition, individuals are now starting to demand
similar services from the fleet hire companies, but vthe majority of hire contracts are
signed with companies who wish to offer car ownership as part of their employees’

remuneration.

To supply a vehicle to a customer, the fleet hire firm must first buy it from the vehicle
manufacturer. The hire firm then loans the vehicle to the customer for an agreed
period, in return for a fixed monthly rental. At the end of the contract period, the
vehicle is either purchased by the customer, or returned to the fleet hire firm where it is
then sold, often direct to garages or through auction. Most vehicles will depreciate
over the hire period, and so the hire firm has to recoup this loss and any other cost by
charging rental. The bulk of the hire charges that the customers pay goes directly into
financing the depreciation of the fleet.

46

The reason that this industry can exist is largely due to the economies of scale
associated with the fleet hire firm’s operations, and hence be in a position to offer
customers better products at lower prices than the customers could achieve
themselves. A large contract hire company should have a significant bargaining tool
when negotiating the vehicle prices with manufacturers due to their volume of
business. If a manufacturer refuses to offer highly competitive prices to the hire firm,
then the hire firm will simply be in a position to offer better value with a rival

manufacturer’s vehicles.

3.1.2 Pricing Mechanisms

From discussions with analysts at Lex Vehicle Leasing, it appears that there are two
main ways in which the level of hire charges can be set for a vehicle. The first is a
forecast led approach, where the hire charges are the sum of the expected depreciation
over the hire period and other costs such as maintenance agreements, commissions and
profit margin. To estimate the depreciation over a 3 or 4 year period, it is clearly
necessary to forecast the mean residual value of the vehicle at the end of the hire
period. The publication CAP Monitor] CAP97] is probably the most respected and
widely used source of such forecasts, and almost forms an industry yardstick for the
expected future value of vehicles. The problem with in-house forecasting is that as
CAP Monitor is widely used, there is a certain similarity between each company’s
forecasts. If an individual company thinks that a vehicle will depreciate less than its
competitors forecast, then this means its hire charges will be lower and the firm will
consequently write lots of business on that vehicle as customers shop around.
However, when the vehicle is sold at the end of the hire period, there is a chance that
the rental has been set too low and that the vehicle’s depreciation over the hire period
will not have been recouped. Conversely, if the in-house residual value forecast is too

low, then the hire charges will be too great and customers will simply go elsewhere.

The second approach to setting hire charges is a market-led approach, where the
company attempts to out-value the competition in some manner. This can either be
through reducing prices, offering superior levels of service and support, or indeed any
means of making the company and its products more attractive to the customer. This

approach is most easily used by very large hire firms, as they should be able to

47

negotiate very good rates from manufacturers, streamline their business and exploit
economies of scale. With a market led approach, it is important to assess what the
market rates actually are. Sometimes this is done through ‘normal’ channels, such as
agreements between companies, while other fleet hire firms go to great lengths to find
out empirically (i.e. by posing as customers) what rates their competitors are charging,
and how easy it is to persuade the competitors’ sales-force into giving discounts to
clinch the deal. There is a serious drawback with a market led pricing scheme: if a
vehicle is popular, then firms will tend to reduce their rates to take advantage of the
demand for that vehicle. The rental on the popular vehicle will be low, so by
implication, the vehicle’s residual value at the end of the hire period must be high for
the hire company to recoup the costs of the vehicle’s depreciation. However, if the hire
charges for a popular vehicle are driven too low across the industry, then the hire firms
will write lots of hire contracts for that vehicle, as it will then also be perceived by the
customers as better value than vehicles from rival manufacturers. This poses no
immediate problems, but when the contracts expire 3 years later, the market is
suddenly flooded with 3 year old once popular ex-fleet hire vehicles, and as supply
out-strips demand, the bottom falls out of the resale market. This increases further the

losses incurred by the contract hire companies.

Many companies operate a blend of these two pricing strategies, with each component
acting as a reality check on the other. If the hire charges derived from these two
approaches differ by a wide margin, then this is an indication that the hire charges for
the vehicle in question should be examined. Errors do arise periodically, and potentially
they can be very expensive, either in terms of lost business or a failure to recoup asset
depreciation. At the very least, an intelligent forecasting system could act as a valuable

safety mechanism.

3.2 Nature of the Problem

It is straightforward to express the exact nature of this problem: to use intelligent
systems to assist with the forecasting of vehicle residual values. The industrial partner
who commissioned this work, Lex Vehicle Leasing, was keen to use neural networks
to sift through huge amounts of data and discover knowledge that would assist with

running their business. At the time, residual values were set by what the Lex's

48

management deemed to be “a rather unsatisfactory blend of discussion, intuition and a
possibly excessive reliance on CAP Monitor”. One of the principal aims of this project
was to introduce some consistency into the residual value forecasting process, and try
to make it more systematic and scientific. In addition, at the time the work was
commissioned, the UK was beginning to climb out of a recession and Lex wanted
assistance with assessing the likely future behaviour of the market. Neural network
modelling has been attempted, along with a comparison of this approach with some
other modelling and forecasting techniques. Prior to any feasibility study being carried

out, Lex had an agenda that consisted of a number of goals:
1. To try to forecast the movement of the vehicle market as a whole.

2. To try to forecast how the vehicles of a specific manufacturer would depreciate

relative to the whole.
3. To try to forecast residual values for individual vehicles.

Once the software was completed, the intention was for the company to distribute it

freely to competitors. There were two main motives behind this:
1. To try to introduce some stability into an otherwise fairly volatile marketplace

2. To try to influence Lex’s competitors to take a view of residuals that were closer
to Lex’s than they otherwise would be. This would then enable Lex’s economies of
scale to result in highly competitive pricing that smaller companies would find

difficult to match.

3.3 Data

Fleet contract hire is primarily concerned with cars, although it is possible to hire
trucks, vans, forklifts and other industrial durables from many contract hire firms. This
study has been conducted exclusively with car residual value data, as this is by far the
largest section of the market, the data is likely to be more stable than in other sectors
as the sample sizes are much larger and this is where the bulk of Lex’s contract hire
business is. This data was disseminated throughout the company in book form, but in
the previous three-and-a-half years, it had been available on disk as well. This is the

data-set that this investigation was conducted with.

49

8 9 6# |, " 8
0 / , D E
! 0 - " [>
['<F1 ? $4 69 A: 6=79B $%%3" 6B C6<B @<@<
; -7 CA6@ +G4/7 9B @<<B4&/7
<B ==<B 7T%/7
6@BBB $%%7 + < AABB 8
, 6@6@ < 6< A6BB 8
* (L
5 (I "
2
! 2/0(
* (
| (&
D E mn (+)
? #
+ * (* ,
! (! H
5 * 7

considered clean if the rest of the vehicle is up to standard. Average vehicles may
require a little mechanical or cosmetic work, but could be brought up to CAP clean
condition for reasonable cost. Below average vehicles are unsaleable without

mechanical or cosmetic work. They often look scruffy.

The resulting data set is made of thousands of vehicles (there are in excess of 10000
unique vehicle id numbers), each in a range of variants, and each variant in a range of
ages and conditions, but there are at most only 44 monthly samples of how the value of

this vehicle has changed over the last three-and-a-half years.

3.4 Data Preprocessing

This data-set is in excess of SOMB in size, which at the time was too large for it to be
easily manipulated on the available hardware. In order to make it more manageable
while the system was being developed, a cut down version of the data-set was

constructed that would:
1. Display similar characteristics to the path of depreciation of a single vehicle.
2. Demonstrate the feasibility or otherwise of the chosen approaches.

3. Be of a sufficiently small size such that it could easily be manipulated on the

available computers.

4. Rapidly demonstrate to management the value of data-intensive analysis, in an

industry where such approaches are uncommon.

3.4.1 Constructing the Synthetic Series

To construct this data-set, it was decided simply to take the mean value of all the
vehicles mentioned in CAP Blackbook each month. This would clearly be perturbed to
a small degree by the issuance of new and large ranges of budget or luxury vehicles,
but the effects of this would be dwarfed by the rest of the data. In order to retain some
information as to how vehicles depreciate, as opposed to how the aggregate value of
the vehicle market progresses, a number of distinct series were constructed from the
raw data, each documenting the time-evolution of the market value of vehicles with a
particular registration letter. This retains the smallest information set that is needed to

trace the ageing of a specific, though admittedly large, group of vehicles. These

51

8 9 7# &

6778

71

the second letter entries have been removed, the decay of value of CAP clean vehicles

is shown in Figure 3.2:

At this stage it was judged that it was not a terribly sensible proposition to attempt to
forecast individual vehicle’s residual values in a manner similar to the way in which one
might attempt to forecast the depreciation of a specific manufacturer or vehicles of a

specific registration. There are three main reason for this:

1. Time/space constraints on inducing 10000 bespoke models for residual value

forecasting.

2. 10000 separate forecasts are not usable unless integrated seamlessly into other

automated systems.
3. The data will be less stable as fewer samples will exist.

A method for attempting the forecasting of individual vehicles is proposed in the

concluding sections of this chapter.

3.4.2 Correlation Coefficients

It is clear from figure 3.1 that all the different plate registrations progress in step with
each other. This is particularly clearly exposed if a chart is plotted of the correlation
coefficients between the series for the different plate registrations. The correlation
coefficient between a pair of series x,y is defined as[Hays81]:

i(x;-m)(y.--#,) .
Pry =5 Equation 3.1

where -1=p<1 and w; and o; are the mean and standard deviation of series i
respectively. p near 1 indicates that the series move in step, p = 0 indicates that there is
no correspondence between the series at all, and p near -1 indicates that the two series
are perfectly out of step - when one moves up, the other moves down. Some of these
coefficients will be undefined as their time-series do not overlap - the series for plates
A,B and C do not exist at the same time as the series for plates K, L and M so there is

no meaningful value to calculate.

53

P m

kM
0

9

(t’/o*%(

1'1(

73

$7<<<
$3<<x<
$1<<< C
67BBB
66BBB
6BBBB
0p< <<
&<<<
6<<<
4<<<
7<<<
3<<<
1<<<
/<<<
6BBB

(%*%* C

>

2

2

77

.3 6 6B

6 BB
<'%7

(%*%,

1'7(D

8

8

74

1'<K
|9r3/'<1<
0. OBK
< <K
86 B S
8l <
+ 81'<K
g 83'<K
T 87'<K

84 <k

M | , n P, A@Q

+)

76

3.5 Modelling Benchmarks

Before neural networks are used for modelling the time-series, a benchmark is needed
to compare the results against. Without this, no principled method exists of deciding
whether or not the neural network approach is working well. The two benchmarks that
will be used to assess the effectiveness of neural networks on this problem are linear

regression and an exponential decay curve.

3.5.1 Linear Regression

Linear regression is the process of fitting a straight line to a number of points, such
that the line passes as close as possible to every point. More formally, it is the
forecasting of dependent variable y, from a linear combination of independent variables

x[Hays81]:
YX) =fo+fixr + ... + foxa Equation 3.2

The factors f; can be found such that some error metric is minimised. For linear
regression, this error metric is often chosen to be the root mean square error, i.e. it is
the square root of the average of the squares of the errors that is minimised. For data
sets that have specific properties or for applications that are sensitive to particular
types of errors, alternative error measures can be chosen. Using the absolute error, for
example, will place less emphasis on outliers, points far from the regression
line[Mast93]. This may be more appropriate than the mean square error if the data set

has a significant number of samples that are anomalous to the bulk of the data.

The optimal values for the factors f; can be found analytically[Hays81]. n samples of m
independent variables can be arranged in a n*(m+1) matrix, A, where each row is a
sample and each column contains the values for each independent variable. One
column is set entirely to 1 (which is why an (m+1) column matrix is needed). The
dependent variable is expressed as an n row column vector, Y. These two matrices

then are connected through a column vector of to-be-estimated coefficients, B:
AB=Y Equation 3.3

If there are more samples than independent variables, then in the likely event that Y

does not lie in the sub-space spanned by A, B can be constructed:

58

B=(AA'A'Y Equation 3.4

The derivation of this is not given here, but will be in almost any intermediate level
statistics text. This equation will minimise the mean square error in the predicted
values of Y. This solution for B need not be unique, and this leads on to a potentially

serious problem with linear regression - that of points being near-singularity.

3.5.2 Linear Regression Bogeyman

Consider a regression experiment Y = aX; + bX; + ¢ with the following values:

Table 3.1: Regression thought experiment

Sample | X;| X;| Y
1 2 1 3
2 4 2 6
3 6 3 9
4 8 41 12

It is obvious that (a=1; b=1; c=0) is a solution, but so is (a=2; b=-1; c= 0), and even
(a= 1,000,000,000; b=-1,999,999,997; c=0). The problem lies in the fact that there is
an exact linear relationship between X; and X,, and so the system is said to be
singular. In this situation, multiple regression should not be attempted as it can clearly
lead to very ill-conditioned solutions. The real problem comes when the data are
marginally singular - the data will pass any test of absolute singularity, but the
program will attempt to minimise the mean square error as far as is possible. This will
often result in huge weights as in the third example above, good (low) training errors
and appalling out-sample performance. However, in a well designed experiment, the
data will not be near singular, and considerations of singularity are irrelevant.
However, it is good to be aware of the potential pitfalls associated with any particular

technique!

3.5.3 Use of Data

In order to be able to compare the intelligent systems in a useful way with the chosen
linear methods, the same approach to data usage will be taken as with the intelligent
systems later. Informally, this consists of forming a model from one sub-set of the

available data and then testing the resulting model on a disjoint data-set.

59

$3<<<
$/<<<
6BBBB
<: &<<<
M 4<<<
3<<<

[<<<

< 7 $< $7 /<]7 1< 17 3< 37 7< 77 4< 47 6< 67 &< &7 %<

9 7
9 7# % & "
+ N +
33/1% O/%$<
[1&[<< 036&
9 7 *
1l@7 ? = 3

(%,%* +)

<:

M

8

$3<<<
67BBB
6BBBB
&<<<
4<<<
3<<<

/<< <

<

#

Y 69=<BW "Y >B B67

9 C# ;* & "

> >
8 8
8 P

7 $< $7 /< /7 1< 17 3< 37 7< 77 4< 47 6< 67 &< &7

9 9
9 9# ;* & "
+ N +
6BCA76 199B
9<69<7 O7%1

4%

% <

8 9 A# |/

$4<<<
$3<<< 8
$/<<<

6BBBB > bR

B3

&<<<
4<<< PQ
3<<<

/<< <

< 7 $< $7 /< /7 1< 17 3<

$17<7&
76A67

%

37 7< 77 4< 47 6< 67 &< &7

$14&
16:C

4/

% <

some understanding of the mechanism that generates the data, and while it is debatable
science to use out-sample data to improve the model, it is not difficult to imagine such
tweaks being used in a business context. The result of this is likely to be an excessive
confidence in the stability of the system. This will not be done here as what is wanted

are benchmarks that can be compared directly with the learning systems.

3.5.5 Comment on Regression Benchmarks

From this initial exploration of the data set, it appears that these linear models do a
reasonable job of modelling the decay of residual values of vehicles, and it may be the
case that neural networks will not be the most appropriate solution available. In

addition, these simpler modelling techniques have other benefits:

1. The number of free parameters in these simple linear models are very low. In this
instance, there is less danger of over-fitting and consequently the forecasts could
be expected to generalise better into the future than an approach that has many free
parameters. If data is limited (it is) and attempts are made to use a technique with
many degrees of freedom, then it will not be possible to either build or test the
model as thoroughly. In general, an inverse, monotonic decreasing relationship
exists between the complexity of the model and the thoroughness of any applied
test procedure for any fixed amount of data, although the precise shape of this

trade-off will depend on the specifics of the problem.

2. A simple linear model will also be much moré easily understood and interpreted
than a non-linear solution that has many free parameters. This can be of
considerable importance when the technology is unproven and a case has to be
made to management that the system should be deployed. If the system is a black
box, then it will only be “trusted” once a (successful) track-record has been
established. Obtaining a track-record requires the system to be in operation for
some time, and this leaves the system in a chicken-and-egg situation. If the system
is easily understood then it can be easier for management to have confidence in it.
However, it is not impossible for management to seek a complex solution to their
problem because their perception of the problem is one that requires a complex

solution. This is not always the case.

63

3.6 Neural Network Experiments

Once the benchmarks are defined, experiments can be carried out with neural
networks. So that the results of the neural network experiments can be compared
directly to the benchmarks, the same division of data into training and testing sets will
be followed: the system will be trained on the first half of the available data and tested
on the second half as before. Two experiments have been conducted: one is a pure
time-series approach, with only the raw series used as inputs, while the other is given
extra information and transformations of the price series in an attempt to enhance the

network’s performance.

In both cases, the network topology is the same - it is a straightforward feed-forward
network with 5 inputs, 3 hidden units, and a single output. The activation function
used is the logistic function[Mast93]:

1
l+e™”*

flx)= Equation 3.6

Each price sample is scaled so that the range of prices fed to the network spans the
range 0.1 — 0.9, and hence makes the most use of the range of the input layers’
activation range while not severely distorting the most extreme values. The non-linear

processing of the input data is left to the hidden layer and the output neuron.

The speed of convergence is not an issue with such small networks and so little data.

The objective here is to find networks that can genuinely do what is required of them.

3.6.1 Training

The simulated annealing and conjugate gradient descent techniques[Mast93]
mentioned here have been covered in section 2.1.6. In this section however, these
techniques are used together to speed network learning[Mast93]. In both the

experiments presented here the network was trained with the following algorithm:
1. Randomise weights.
2. Simulated annealing is used to find a reasonable set of starting weights.

3. The conjugate gradient method is used to minimise mean squared output error.

64

4. Then go to step 2 until termination criteria have been met.

A natural question would be “Why return to step 2 after training with conjugate
gradient descent? Training should be complete by now, shouldn’t it?” The answer is
that because the system started with a random set of weights it will probably be drawn
into a local minima, so simulated annealing can be used to hop into another area of the
space where the network can be trained further. If a lower point in the error space can
be found through the use of simulated annealing, then conjugate gradient descent can
be used to efficiently take the network to the base of that local minima. This cycle
continues until a pre-specified number of cycles have elapsed, a network is found that
has a suitably low forecast error, or the system is unable to find better points in the

space with simulated annealing.

In addition, the network's errors on the training and test sets are continuously
monitored. It is expected that the training error will drop as the network is trained so
that it progressively accounts for more and more of the training data. If the network
were trained indefinitely, it would ultimately have just learnt the training set "by rote"
and consequently have lost the ability to generalise. One of the termination criteria
applied here, suggested by [Smit93], is that the error on the testing set begins to
increase. This is a little on the naive side and can represent little more than direct
training on the validation set[King96]. However, it can indicate approximately where
the training should be arrested, and that any further training simply captures the
idiosyncrasies of the training data. Consequently, the error on the test set begins to
increase as the model is then progressively built from noise or other non-transferable
structure inherent in the training set. This is not an infallible approach but gives a basis

for reasonable performance expectations, for what is a proof of concept system.

3.6.2 Modelling Experiment 1: Time-series Forecasting

The data presented to the network are a series of samples of the recent behaviour of
the price series. The inputs are the current price, and the price 1, 2, 3, 6 and 12 months
previously. The network forecasts next months residual value, and then by using this

forecasted value as an input, forecasts further into the future can be created.

Figure 3.10 shows the decay path produced by the network, and Table 3.5 shows the

model's error statistics.

65

(%6 % (

8 9 6B# . > & 5 8

&<<<

6<<<

4<<<

7<<<
R/ 3<<<
<

1<<<

[<<<

6BBB

36 71/ 76 4/ 46 6/ 66 &/

9 <# 8
1 + b
; 7<&'/]/
& ; I=7@ 7B
(%6%*
.
0
>
.
>

&6

% /

44

3.6.5 Modelling Experiment 2: First Difference Forecasting

The network in this experiment is trained with the same algorithm as before: repeated

applications of simulated annealing and conjugate gradient descent.

In this experiment, the network is given transformations of the input series to assist

with its construction of an internal model. The new inputs to the network are:

1.

2.

Current price:

Sine & cosine of (2n*month number/12): This is to allow the network to take
some account of the seasonality that is present in the decay curves. It was noted
earlier in the chapter that seasonality is present, but not sufficiently reliable for it to
be extracted with simple linear techniques. The network may be able to do a better
job. Presenting the time of year in this way is continuous and preserves adjacency

between December and January.

First difference of the price with the price six months ago: This gives the network
more precise information than in the previous experiment about how residual
values are changing in the short term, as changes in the price series are mapped

onto much larger ranges of the neuron’s range.

First difference of the price twelve months ago: Similarly, this gives more precise

information about the slightly longer term rate of depreciation.

Target activation: First difference of current price to next months price: As the
network is attempting to forecast the change in price rather than the absolute price

level, the network will be much more sensitive to training errors.

67

(%6 %6
8 9

8

M

66

8/<<

8

8

&<<<
4<<<
3<<< 88

/| <<<

8/<<<

83<<< 88

84<<x<

9 67#

9 67# 0

4&

Table 3.6: Augmented Model Performance

Error Measure Error
Mean Absolute Error | £3639.46
RMS Error £4471.71

3.6.7 Comment

A systematic error exists in the networks forecasts of the first difference series.

This is probably due to a structural change taking place between the training and

testing sets: in general, the depreciation rate of vehicles in the training set is greater

than that for the testing set. A consequence of this failure of the training set to

adequately represent the problem domain is that the then network over-estimates

the rate of depreciation. Alternatives to partitioning the data in this way would be

jack-knifing or a probabilistic partitioning of the entire data set into training and

testing sets, but both of these raise problems:

1)

In its most extreme form jack-knifing[LeBa91] is the process of training
multiple networks on all data except one point (the individual point unique to
each network), and then testing the network on that point. For n data points,
there are n ways of selecting the odd-one-out, so n networks are trained - one
for each of the n training set/test set configurations. This then allows the use of
the maximal amount of data in the training phase. Jack-knifing would probably
give the best results, but would require many times more time to execute, and
is unlikely to transform the system from a non-viable one to one that worked

well.

Probabilistically partitioning the data into training and testing sets runs the risk
of building training and test sets that are very similar. Given that a time-series
forecasting approach requires the individual samples to be “windows” of the
series that span periods of time, one of two situations will arise: either the
training and test sets will “overlap” to some extent, or very few samples will be
available. The latter is unacceptable as little data is available to start with, while
if the data sets overlap, the test set could probably be nearly entirely

reconstructed from the training set. This will then not constitute independent

69

testing, and simply be a measure of whether the network has learnt the training

set or not.

« Small systematic errors in the first difference forecasts become cumulative when
the implied depreciation forecast series is reconstructed from the first difference
forecasts. As a result the RMS errors between the target and the implied

depreciation series rapidly grow to levels where the forecasts are not useful.

» The network has done a reasonable job of modelling the seasonality of the vehicle
market. This is a non-trivial exercise but unfortunately the systematic errors in the

forecasts make this model unacceptable.

3.7 Discussion

The goal of this project was to make residual value forecasts of sufficient accuracy for
the system to be of use in the setting of hire charges, and if possible to make residual

value forecasts to within £50 of the eventual value of the vehicle.

As these experiments have shown, time-series analysis is probably not the best way to
use neural networks for this forecasting problem. It is debatable whether the
information required to make forecasts to within £50 of the eventual residual value is
actually in the data that was used. While this error target has not been met, simple
systems have been described that generate reasonable forecasts from the available data.
While an RMS forecast error of approximately 7% gives an error of nearly £500 in the
residual value forecast, this error could be viewed as being spread over 36 payments
during the 3 year hire period. To use Figure 3.2, over the 3 years from February 92 to
February 95, an average E-plate vehicle would have depreciated from £11200 to
£7000. This depreciation rate is approximately £117 per month. The actual hire
charges are usually of the order of 50% greater than the cost of the anticipated
depreciation due to maintenance agreements, profit margins etc., so the monthly
payments on this vehicle would be approximately £175. A 7% RMS error in the
residual forecast result in errors in the depreciation rate of £8.17, which result in a final

error in the monthly hire charge that is both under 5%, and £10.

A forecast of next month’s residual value is not of mission critical importance, and the

use of longer forecast horizons would make the longer term forecasts much more

70

