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Abstract

Quantitative human mRNA data are derived from post-mortem or biopsied tissue.
Confounding factors, RNA degradation, poor replication and a large variance are often
cited, however, as objections to the data’s reliability. At issue is whether post-mortem
mRNA represents an ordered system and to what degree non-specific factors contribute to
the measurements. I developed statistical methods and validated them by measuring 25
mRNA transcripts in an animal model of ischaemia. In the process I discovered novel
increases for 3 genes in rats with ischaemic damage: leukaemia inhibitory factor, nestin and
galanin mRNA. Additionally, I discovered that reference genes known as “housekeepers” do
not always act as steady-state controls and that the precise value of a test gene response
varies according to the baseline choice of reference gene.

Once optimised, I applied the analytical methods to human post-mortem brains. I used
TaqMan™ real-time RT-PCR to measure 13 mRNAs in 513 cortical samples taken from 90
Alzheimer’s disease and 81 control brains. Despite a high variance and confounding factors
such as brain pH, I found strong geometric relations between the mRNA transcripts up to
and beyond 100 hours autopsy delay. Where a postmortem brain had a high/low level of one
mRNA, the same brain invariably had a high/low level of other mRNAs; correlated order is
present and provides a means of isolating any mRNA change due specifically to disease.

I measured mRNA levels of §-Secretase (BACE), GSK 3 and the isoforms of APP/APRP
in the AD and control brains. After adjustment for age of death, brain pH, and gender,
‘ there was no change in the mRNA levels for either BACE or GSK 3a mRNA (p = 0.354 and
p = 0.054 respectively). There was a change, however, in the ratio of KPI+ to KPI- mRNA

isoforms of APP/APRP. Three separate probes, designed only to recognise KPI+ mRNA,



each gave increases of between 28 and 50% in AD brains relative to controls (p = 0.002).
There was no change in the mRNA levels of KPI- (APP 695) (p = 0.898). Therefore, whilst
KPI- mRNA levels remained level between AD and control brains, the KPI+ species were

- seen to increase specifically in the AD brains.
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- 1.1 Aims of thesis

The primary aim of this thesis is to estimate whether the mRNA levels of 3-secretase (BACE),
glycogen synthase kinase 3 (GSK-3) and amyloid precursor protein (APP) isoforms are
differentially expressed in Alzheimer’s disease (AD) compared to control brain. What started as a
simple question, however, involving one variable in two conditions evolved into a detailed

examination of the complexities of post-mortem data collection. A detour via a rat model of

. ischaemia (chapter 3), confounding factors in human brain mRNA measurements (chapter 4) and

the design of a statistical framework in which to analyse mRNA data yielded three results

" chapters (3, 4 and 5) before the original questions could be reliably addressed in chapters 6 and 7.

The first and most difficult problem was how to handle the high variance of mRNA levels in

- human brain samples (>1000-fold). Secondly, different values were obtained for test gene mRNA

responses dependent upon the baseline choice of reference gene used for normalisation. Reference

. housekeeper genes such as actin or cyclophilin are commonly used as steady-state controls to

adjust for non-specific variation, with the test gene mRNA level usually presented as a ratio of the

| reference mRNA (Spanakis, 1993; Spanakis and Brouty-Boye, 1994). It seemed possible that

these assumptions needed testing.
Several decisions were taken early on about experimental design. The first, and most

important, was to ask for the assistance of a statistician, Brian Bond. A working relationship was

 established whereby all aspects of the work from design of experiments to interpretation of results

_ were discussed in detail. From pilot studies in human tissue we quickly realised that standard

methods for analysing gene expression data were inadequate for our needs and that alternative
methods were required. Chapter 3 details a rat model of cerebral ischaemia (stroke) that was used
to develop new analytical approaches. In the process, we inadvertently discovered novel findings

in stroke, the main one being a dramatic up regulation of leukaemia inhibitory factor (LIF)

16



mRNA following ischaemia. Chapter 4 explored the relationships that may or may not be present
between the pre- and post-mortem factors of the brain samples, whilst chapter 5 is an adaptation
of the analytical methods of chapter 3 to the specific problems of observed data in human post-
mortem brain. Chapters 6 and 7 finally apply the combined experience of chapters 3,4 and 5 to
the original biological questions, an estimation of whether B-secretase, GSK-3 and APP mRNA

isoforms are differentially expressed in AD brain compared to controls.

1.2 Alzheimer’s disease

At the beginning of the twentieth century the average life expectancy in America was about 50

| years of age. At the close of the twentieth century the average life expectancy for males is about

73 years and for females 78 years (Kandel et al., 1991). Accompanying this increase in the

numbers of people living into old age is a widespread prevalence of diseases where age itself is a

' risk factor. AD is one such example. AD is a condition of the human brain characterised by

gradual and unremitting neuronal loss. Symptoms of mild memory loss in the early stages are

followed by a general cognitive decline that results in personality change, loss of memory and

eventual motor dysfunction (Reisberg et al., 1985). Chronic debilitation and loss of awareness are

common outcomes of this insidious and, at present, untreatable disease. Despite almost 100 years

- of research since Dr Alois Alzheimer’s initial paper (Alzheimer, 1907), and a considerable

volume of accumulated literature regarding the neuropathology, biochemistry, clinical course and

genetics of AD, the pharmaceutical companies can offer little more than that available in Dr

" Alzheimer’s time. It is ironic, that in comparison with schizophrenia, where relatively effective

drugs have been developed in the absence of obvious cellular pathology, AD remains a

therapeutic enigma in spite of its well-defined neuropathology.
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1.3 The Baptists and the Taoists

It is sometimes remarked that the number of AD publications closely parallels the prevalence of
AD worldwide and its exponential increase in recent decades. A vast literature has accumulated
and the hope is that this knowledge will at some point translate into effective therapeutic
intervention. Alongside this accumulation, however, the field has tended towards polarisation: the
Baptists who proclaim the beta-amyloid hypothesis, and the Taoists who believe in tau and the
neurofibrillary lesions. Given that both amyloid and tau lesions are present in AD brain, it might
appear to a neutral observer that the two lesions and their relationship of one to another need
explanation. Numerous papers, however, base their premise on the pathological involvement of
one lesion over the other and often fail to mention, even in passing, the existence of the other.
The dominant hypothesis for many years has been the amyloid cascade hypothesis (Hardy and
Higgins, 1992). The discovery of mutations in the gene coding for APP in familial autosomal
dominant cases of AD (Goate et al., 1991) added considerable support to this hypothesis by
showing that a DNA mutation of APP led inevitably to early-onset and severe AD. The arguments
put forward were that neurofibrillary lesions are secondary events triggered by a variety of
cerebral insults in the brain (Hardy and Allsop, 1991; Selkoe, 1996). In 1998 a mutation on
chromosome 17 for the gene encoding tau was linked to 13 families with fronto-temporal
dementia and Parkinsonism (FTDP-17) (Hutton et al., 1998; Poorkaj et al., 1998; Spillantini et al.,
1998). Although different to AD the challenge to the amyloid camp is that if a human brain can
develop tau pathology without amyloid deposits and exhibit the clinical symptoms of dementia is
it possible that the amyloid deposits are largely irrelevant in AD? Is it possible that neuronal death
in AD is primarily due to dysfunction of tau regardless of amyloid pathology? Biology, of course,
tends more to continuous variables. Such polarised arguments are the symptoms of a competitive

research area with high prizes both for the pharmaceutical companies and the personalities
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involved. Any drug that slows or halts the progress of AD is predicted to be worth several billion
dollars a year to the patent holders (Nash, 2000). Throughout much of the 20" century similar
controversies surrounded the issue of whether the cerebral cortex, and particularly the visual
brain, operated by mass action or by functional specialization based on discrete visual areas
separately processing colour, motion and form (Zeki, 1993). With hindsight the outcome, as with
the mean of continuous variables, is somewhere in-between. The cerebral cortex does have a
basic regionalization where separate functions such as colour vision are processed, but the cortex
is also overwhelmingly integrative with all cortical areas having both projection and feedback
connections to other cortical areas. Whether these polarised and acrimonious debates were healthy
to the advancement of knowledge about the cerebral cortex is an open question. As Zeki has
clearly shown, conceptual forces that are in vogue at the time can have a powerful blinding
influence resulting in scientists attempting to fit new facts to the theory instead of altering the
theory to fit the facts (Zeki, 1990; Zeki, 1993). The AD literature is vast, the complications and
subtleties of the biology many and the number of opinions endless. Time and clinical trials of
interventions targeted at the different lesions will probably be the final deciders in whether the
Baptists, the Taoists, some combination of both or possibly even neither were closer to the root
cause of why neurons die in AD.

The central issue in this thesis is the accurate measurement of mRNA in human brain. For this
deceptively simple question no particular allegiance is pledged to one theory or another. It
happens that most of the mRNA species that were measured in the course of this thesis are related
to the amyloid hypothesis, and the arguments are set out for that. This was primarily for logistical

reasons and as a place to start.
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1.4 Neuropathology of Alzheimer’s disease

A definitive diagnosis of AD, as opposed to dementia resulting from other causes such as stroke,
is made only after post-mortem examination of the brain. A number of classification systems are
in use for assessing post-mortem AD brains. Three of the most widely used protocols are those of
Khatchaturian (Khatchaturian, 1985), CERAD (Mirra et al., 1991) and Tierney (Tierney et al.,
1988). Another more detailed method (Braak and Braak, 1991) is a staging classification rather
than a diagnostic protocol. Whilst none of the classifications are completely satisfactory to cover
all requirements, and updates are made if consensus can be reached, the CERAD criteria have
probably gained the wider acceptance and it is this method by which the brain samples used in
this thesis have been assessed.

The most striking aspect of an AD brain removed at autopsy is its size. When compared to an
age-matched non-demented control brain, the AD specimen is invariably reduced in weight,
sometimes by one third or more, and exhibits gross atrophy in its cortical gyri and ventricles

(Figure 1) (Cruz-Sanchez et al., 1995).
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in varying densities from sparse to heavy depending upon the severity of the pathology and the
anatomical location (Braak and Braak, 1991). Historically there has been much debate and
unresolved controversy about the relative importance and precedence of these lesions. That is,
whether the lesions are causative or symptomatic of the disease, which comes first, and whether
one causes the other. Whilst it is not yet proven that the amyloid deposits and neurofibrillary
inclusions are prerequisite for cell death, most researchers assume they have important roles in the

disease process.

1.4.1 AP deposits

“Uber die ganze Rinde zerstreut, besonders zahlreich in den oberen Schichten, findet man miliare
Herdchen, welche durch Einlagerung eines eigenartigen Stoffes in die Hirnrinde bedingt sind. Er
lapt sich schon ohne Farbung erkennen. ist aber Fdirbungen gegeniiber sehr refractdr.”
(Alzheimer, 1907).

“Dispersed over the entire cortex, and in large numbers especially in the upper layers, miliary
foci could be found which represented the sites of deposition of a peculiar substance in the
cerebral cortex. It was even possible to recognize these without staining, but they were much
more evident once stained.” (Alzheimer, 1907).

The amyloid deposits observed at autopsy can take several different forms. Diffuse deposits

and aggregations of amyloid known as plaques are often present in large numbers throughout the

neo- and allo-cortex (Braak and Braak, 1991) (Figures 2 to 6).
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