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Abstract

The central thesis of this research is that there exists an algorithm that can produce a naturalistic 

visual structure (such as a human face) that represents a multivariate data set that can be utilised 

to discover hidden features in the data.

Research in this thesis lies in the area of Information Visualisation and is concerned with 

techniques for visualising large scale multivariate data sets in order to help in understanding 

and exploration. Examples include hnancial data, business information and results from exper­

iments. A visualisation method maps such data ideally into intuitive visual structures, however, 

in most cases there is no obvious mapping from the data to the visual structure.

This thesis explores the use of naturalistic visual structures (for example, human faces) 

as representations of such multivariate data sets. An automatic mapping from the data to the 

visual structure is constructed through the use of the empathic visualisation algorithm (EVA) 

implemented for this purpose. EVA, is a fundamental extension of the type of data visualisation 

hrst introduced by Chemofl, who exploited the idea that people are hardwired to understand 

faces and therefore can quickly interpret information encoded into facial features. We use faces 

as our paradigmatic example, but the method is not limited to this case only.

Given an n, x k data matrix of n, observations on k variables, the original Chemoff method 

assigns each variable to correspond to a particular facial feature like shape of the nose, or 

shape of the eyes. The mapping from data to visual structure is arbitrary, and the resulting 

faces have no correspondence to the underlying semantics of the data. Such faces are good for 

understanding pattern, but any individual face seen in isolation does not readily convey anything 

about the data without knowledge of the specihc mapping used.

EVA provides an automatic mapping from semantically important features of the data to 

emotionally or perceptually signihcant features of the corresponding visual structure, such as 

a human face. In other words a single glance at the visual structure informs the observer on 

the global state of the data, since the visual structure has an emotional impact on the observer 

that is designed to correspond to the impact that would have been generated had the observer 

been able to analyse the underlying data itself. Finer details concerning interpretation of the
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visual structure are then available through knowledge of the relationships between semantically 

important features of the data and emotionally significant aspects of the visual structure.

EVA uses a Genetic Program (OF) to map the quantitative measurements from the multidi­

mensional data set to the qualitative measurements of the visual structure. The genetic program 

typically converges after about 75 generations. The experimental data supports the main thesis 

of this research.
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Chapter 1

Introduction

The central thesis of this research is that there exists an algorithm that can produce a naturalis­

tic visual structure that represents a multivariate data set that can be utilised to discover hidden 

features in the data. The precise meaning of the terms used here will be set out in the remainder 

of this chapter. Suffice it to say that a naturalistic visual structure is one that needs no special 

knowledge or skill to interpret -  for example, the emotions expressed in a human face. Fol­

lowing this example, the user can understand features of the data by interpreting the emotional 

expressions in the face, and relating these emotions to the user’s own value system or set of 

meanings attributed to aspects of the underlying data.

Advances in science and commerce have often been characterised by inventions that allow 

people to see old things in new ways. Computers allow these inventions to be presented in a 

visual medium, resulting in the emerging field of information visualisation. By taking advan­

tage of the processing speed and graphical capabilities of computers, information visualisation 

enables users to interpret large amounts of information to reveal structure, extract meaning, and 

navigate large and complex information worlds.

Visualisation can be split into a number of stages starting from the collection and storage of 

data itself. This can be followed by the preprocessing step, designed to transform the data into 

something meaningful. Continuing is the display hardware and the graphic algorithms that pro­

duce an image on the screen, to finally, the observer and more specifically, the human perceptual 

and cognitive system. Moreover, visualisation can be approached in many ways [WarOO]. It can 

be studied from the artistic perspective of graphic design, within computer graphics for the cre­

ation of novel algorithms to display data, as part of semiotics and the constructivist approach to 

symbol systems or as a scientific approach based on perception.

Furthermore, there are a number of issues that information visualisation techniques try to 

address [SpeOl], depending on the visualisation stage to which they belong. For example, the 

issue of the selection of data available or the representation of abstract quantities (e.g. colour.
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shape). Also the issue of presentation, since usually the number of elements to be displayed 

from the data naturally takes a larger space than the area of the screen. Moreover, there is the 

issue of the scale and dimensionality, and more importantly, how scale influences the design 

of the visualisation tool and what techniques are available for handling high dimensionality. 

In addition to the above, there is the issue of externalisation, the visual presentation the user 

sees which is crucial to the success of visualisation, the issue of trying to understand and assist 

the creation of the internal model in the mind of the observer, and finally the invention of new 

techniques using experience and skill.

This project describes research that investigates the use of naturalistic visual structures for 

representation of multivariate data sets with the aim of allowing better and faster understanding 

of data sets. It is a new algorithm that is part of the preprocessing stage that transforms the 

data into something users can understand. Additionally, the Empathic Visualisation Algorithm 

(EVA), the visualisation method that is the result of this thesis, addresses the problems of scale 

and dimensionality, as well as the problem of externalisation.

1.1 Thesis Terminology
There are a number of fundamental terms, used throughout this thesis. These terms are defined 

in a number of ways in the data visualisation literature, hence, this section is concerned with 

explaining them. Most of these terms are inherited from the literature, adjusted to serve the 

purposes of this research work.

DATA VISUALISATION

SCIENTIFIC VISUALISATION

Physical-based data e.g. 
water flow in a pipe, nature of 

weather in a mountainous area

Abstract, non-physical-based data e.g. 
football statistics, fluctuating exchange 

rates, prices

Figure 1.1: Information Visualisation vs Scientific Visualisation.
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Figure 1.1, shows the placement of both Information Visualisation and Scientific Visuali­

sation with regards to the broader area of Data Visualisation (the term Visualisation is used in 

this thesis as a synonym to Data Visualisation). Scientific Visualisation tends to represent vi­

sually aspects of the natural world that have a “physical” representation e.g. natural phenomena 

and the flow of water in a pipe, whereas. Information Visualisation tends to deal with ab­

stract quantities such as financial data and baseball scores. These abstract quantities, although 

they are also associated with real physical things, are far more important than their view. For 

example, water flow in a pipe is usually best displayed in the immediate context of the pipe 

itself whereas the view of a football provides little benefit when visualising football statistics 

and therefore does not have a natural spatial mapping. From the same figure, it is obvious 

that the two sub-areas of Data Visualisation overlap. However, this thesis concentrates solely 

on the area of Information "Visualisation. Formal definitions of the above terms are given in the 

background Chapter 2.

Naturalistic
Visual

StructureArbitrary
Mapping

Raw
Data

Data Tables

Automatic
Mapping

Abstract
Visual

Structure

Figure 1.2: Placement of different terms used in this thesis.

Additional terms used throughout this thesis, are shown in Figure 1.2. The Figure shows 

their placement in regard to the visualisation stage each of the term belongs.

To begin with. Raw Data is a collection of abstract quantities. It is usually the product 

of research, but, the representation in this form is not in an adequate form for communication. 

To have informational value it must be organised, transformed and presented in a way that 

gives it informational meaning. It is important here to be able to distinguish between data and 

information. Data are numbers or other methods of recording quantifiable properties in a form 

that can be assessed by a human or (especially) become input to a computer. Information on 

the other hand, is the derivation of understanding or insight from the data that is not apparent, 

and we attempt to facilitate this by means of visualisation tools.

The collection of Raw Data, is then transformed into Data Tables. Data Tables are data 

that can be expressed as an n x A: data matrix of n  observations over k  quantifiable variables. 

For example, n  can be different companies and k can be their “profit and loss account” variables
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like Long Term Liabilities and Profit after Tax.

In Visualisation, Data Tables are then transformed into visual form, a process that is called 

mapping. The mapping can be either abritrary or automatic. Arbitrary mappings, are hand­

crafted transformations constructed manually by a designer or a user using appropriate tools. 

Automatic mappings on the other hand, are transformations composed on the fly by the under­

lying system according to a set of pre-supplied layout rules and components.

These transformations whether arbitrary or automatic, lead to a pictorial medium of rep­

resentation called the visual structure. These visual structures can be seen as graphical marks, 

which are visible things that occur in a space and usually have these four elementary types: 

Points (OD), Lines (ID), Areas (2D) and Volumes (3D). As with the mapping above, the visual 

structures can also be subdivided further into abstract and naturalistic visual structures. Ab­

stract visual structures include colour, position, size, shape and glyphs whereas Naturalistic 

representations are based on entities encountered in everyday life that need no special knowl­

edge for understanding by a normal human observer. An example of such visual structure is the 

human face. Everyone is an expert in interpreting this kind of entity.

The visual structure is the tool for communication in Information Visualisation. It is 

used for understanding compact representations of information. This understanding can un­

fold through View TVansformations, which is the ability to interactively modify and augment 

visual structures, turning them from static presentations into interactive visualisations. These 

transformations can be achieved using viewing controls such as zoom, pan or distortion which 

is commonly known as focus plus context technique in the Information Visualisation literature.

Finally, there is the end user, whether expert or non expert. This is the observer interested 

at interpreting the data and consequently interested in what information the visualisation can 

convey for scientific or business purposes, or whatever the domain of the raw data.

Having defined the thesis terminology, the following section explains what led to research 

in Information Visualisation and more specifically the visualisation of Data Tables in the form 

of multivariate data sets.

1.2 Motivation
The most interesting data are multi-dimensional. How can this be represented on a graph? 

Only a relatively small class of problems are directly amenable to statistical analysis -  those 

where the variables are understood, potential relationships are already suspected, and there are 

hypotheses to be tested. Numerous techniques have been described in the literature that attempt 

to visualise such data with their advantages and disadvantages.
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Here we consider cases of data where even the questions to be posed on the data are not 

fully formulated. A classic example, is that of financial stock exchange data over a number 

of years - the movement of share prices, for example. Here the question might be “What 

determines the changes in share prices?” Such a vague question is not yet ready for statistical 

analysis - there are a huge number of potential variables (economic indicators, social conditions, 

the interrelationships of world stock exchange movement) and the amount of data itself is large 

(over how many years?).

In such situations, information visualisation helps in “understanding” a set of data, which 

may be dynamically unfolding in time, by allowing users to visualise representations of the 

data, thus using vision to build “understanding”, and allowing the formation of hypothesis for 

later statistical analysis.

There are two main problems involved in this. Firstly, it is the choice of a suitable mapping 

from the data to the chosen visual representation, specifically the difference between arbitrary 

and automatic mapping. Investigating the possibilities of automatic mapping that take into ac­

count the impact of the visualisation on users’ emotions, is at the heart of this thesis. Secondly, 

it is the choice of a suitable paradigm for the representation of the data (in the stock exchange 

example: portray shares as wheat, the height of the wheat as the price, the wind as the “eco­

nomic climate”, and so on). In other words, the choice of a suitable paradigm, whether abstract, 

or more realistic. The possibilities of naturalistic (realistic) representations as a standalone 

application and also used together with different representations is also the focus of this thesis.

1.3 The Goals of this Thesis
The investigation of an automatic mapping paradigm leading to a naturalistic visual representa­

tion is the problem tackled in this thesis through the “Empathic Visualisation Algorithm (EVA) ”. 

Figure 1.3 shows the placement of EVA in visualisation terms. The x-axis specifies the interest 

at multivariate data sets, the y-axis the interest at naturalistic visual structures and finally, the 

z-axis specifies interest at automating the mapping from data to the visual presentation.

Instead of processing individual details in the data set and having numbers and text as 

output, we examine the use of the visual system to process visual structures holistically and, 

thus, obtain an overall global view of a data set. Information is gained from an overall view 

of qualitative measurements. It allows the examination of the important features of the visual 

structures and the noticing of abnormalities very quickly. It can be viewed as the process of 

“using vision to think”, or the “mind’s eye” [CMS99] to gain insight into what are often complex 

abstract data systems.
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Figure 1.3: Placem ent o f  EVA in research interest terms.

The method automatically maps data to visual structures using genetic program m ing tech­

niques [Koz92], [Sla99], [LSOl]. It is called, Em pathic Visualisation A lgorithm  (EVA) since 

the impact o f the visual structure on the user’s em otions, is taken into consideration. The ob­

jective of EVA is, given a data set and an observer, to construct a visualisation such that salient 

features o f the data can be intuitively recognised by the observer. In other words, hum ans can 

detect patterns that reveal the underlying structure in the data more readily than a direct analysis 

o f the numbers would. In order to achieve this we use visual structures that are naturalistic  in 

the sense that no special knowledge for interpretation is required, and also the mapping from 

data to the visual structure is automated. The m apping should be such that the “im portant” 

features o f the data set are m apped to features of the visual structure that are “im portant” and 

significant to human perception or human emotions.

EVA, the method introduced here to visualise complex data sets, can be thought o f as the 

initial step in establishing a clearer pictorial representation o f  a problem . It is by no means an 

alternative to statistical analysis, but a com plem entary one. It can be seen as the first step in 

unveiling understanding of the data.

The purpose of the thesis is to construct a system for such a representation, and then test
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this in an experimental setting. The system should be such that it can be used with as many 

different data sets as possible -  i.e. that is a generic rather than tied to a particular type of data.

1.4 Scope of this Thesis
For this thesis we are interested in abstract data that has the following attributes: the amount 

of data is large, multidimensional, of non-physical nature and has hidden information, often in 

the form of complex relationships among the data variables. Msualisations from abstractions 

of physical nature (earth, molecules) can also be derived, but since such data is inherently 

geometrical, appropriate visualisations are ready to hand.

Furthermore, the data must be able to be expressed as Data Tables, and the user is able to 

itemise interesting functions over the data variables. Examples include, financial data, business 

information, results from experiments and other abstract conceptions. Such information has no 

obvious spatial mapping.

On the other hand, the generated visual structure should be naturalistic. A human face was 

chosen as an example of such naturalistic visual structure and is used throughout this thesis. It 

is something encountered in everyday life and something that needs no special knowledge for 

interpretation by a normal human observer. However, it is the only one example and the method 

is not limited to this.

Moreover, meaningful mappings from data to visual structure that are automated, are of 

central importance to this thesis. Arbitrary mappings however, are believed to be the barrier to 

a generalisable system and are not included in the aims of this thesis. Firstly, arbitrary mapping 

widens the gap between experts and non-expert users of the visualisation, due to the learning 

time needed. Secondly and more importantly, we believe that, presentations from such types 

form a barrier to “holistic understanding” of the data set.

EVA, the method used throughout this thesis, requires a search technique to find an appro­

priate mapping from data to visual structure. We have chosen to use genetic programming (GP) 

but we do not carry out research in the GP domain. However, since the validity of the method 

depends upon the validity of this search technique for this problem, an investigation of the GP 

literature will be considered in detail in Chapter 5.

1.5 Contributions
The overall contribution of the thesis can be summarised as follows: that a meaningful, auto­

mated mapping, from multi-dimensional abstract data to naturalistic visual structures is achiev­

able and provides a useful way to visualise abstract data. More specifically, the contributions
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are;

1. A comprehensive survey of information visualisation research to date.

2. The formalisation and implementation of a technique to automate mapping from data to 

visual structures, using genetic programming.

3. The use of naturalistic visual cues as the representation of this data in this automated 

mapping. The emotional expressions presented as part of this visual structure could cor­

respond to the emotions of the users if they analysed the data themselves and knew the 

results.

4. A method to automatically quantify emotional expressions of a specific facial model 

based on movements of a number of “landmarks” on the face and users’ subjective mea­

surements.

5. Proof of concept through experimental data. A series of experiments were carried out 

using EVA upon known simulated data, real data and already statistically analysed data 

providing evidence of the utility of the method.

1.6 Thesis Outline
In Chapter 2 a critical review of previous related work in the field of Information Visualisation 

is presented, focusing on multi-dimensional visualisation. Advantages and disadvantages of 

previous systems are discussed. Discussion leads us to argue that a certain sub-area in multi­

dimensional visualisation is unexplored.

Chapter 3 presents the methodology. It is a formal description of EVA, presenting the 

fundamentals of the algorithm.

Chapter 4 is concerned with human facial expressions. A face is considered as the epitome 

of naturalistic visual structures for the purposes of this thesis. A brief description of the facial 

model used is followed by a user experiment that results in a novel technique to automate the 

quantification of facial expressions.

In Chapter 5 a brief literature survey on genetic programs (GP) is presented, a technique 

that is fundamental to the method used in this research work.

Chapter 6 presents a series of experiments performed on the method. A detail explanation 

of the results achieved is given in this chapter.

Finally, Chapter 7 discusses conclusions arrived from this thesis, together with future work.



Chapter 2

Background

Information Visualisation is all about gaining insight into data by observing a visual presenta­

tion of it. Existing Information Visualisation tools are used for drug discovery by pharmaceuti­

cal researchers and credit card fraud detection by financial analysts [CBWB97]. This visual data 

exploration compliments the algorithmic approaches for exploring worlds of data. Surprising 

patterns that appear in data sets can sometimes be found by algorithms, but visual presentations 

can lead to deeper understanding and novel hypotheses. The more common applications of 

information visualisation are for decision making. These might be for personal tasks such as 

finding a house [WS92] or choosing a film [AS94b], or for business decisions such as finding 

a stock in which to invest [MB93]. Information visualisation also serves to explain processes 

in ways that may lead to better predictions or to more informative insights, which can become 

a basis for action. For example, visualisation of data access patterns on the World Wide Web 

may explain why congestion occurs in the early afternoon at a given server [HDWB95].

It is important to distinguish between information visualisation that represents the core 

of this thesis and data mining which complements this research work. Data mining, is an 

analysis technique based on statistics and machine learning. Researchers in this field, believe 

that statistical algorithms and machine learning can be relied on to find interesting patterns, 

while information visualisation researchers believe in the importance of giving users a visual 

overview and insight into data distributions. "Visual presentations can give users a richer “sense” 

of what is happening in the data and suggest possible directions for further (statistical) analysis 

and exploration.

The focus of this thesis is on information visualisation techniques enabling visualisation of 

abstract multivariate data sets. The visualisation tool used throughout the thesis, is the Empa- 

thetic Visualisation Algorithm (EVA) which is a technique that automatically maps multivariate 

data sets into naturalistic visual structures taking into consideration the impact of the visual 

structure on the emotions of the observer. The reason for this choice will become apparent as
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the existing, different methods are described. It is always important to overview previous work, 

hence work related to Information Visualisation and especially visualisation of multivariate data 

sets will be discussed in detail.

2.1 Information Visualisation
Information Visualisation is a relatively new research area that focuses on the use of visualisa­

tion techniques to help people understand and analyse data. Spence [SpeOl], regards Informa­

tion Visualisation as about the following: “You are the owner of some numerical data you feel 

is hiding some fundamental relation which you can exploit to your advantage. You then glance 

at some visual presentation and exclaim: A ha! Now I understand”. Information Visualisation 

can be defined as the process of transforming data, information and knowledge, into visual form 

making use of the human natural visual capabilities [GEC98]. Research in decision analysis, 

cognitive psychology and computer graphics [HE99], [RPR96] conclude that the human mind 

assimilates information more efficiently in a pictorial form than in raw data form, i.e., in nu­

meric and alphanumeric form. Apparently, the human brain possesses a “narrow bandwidth” for 

processing raw numbers as opposed to a surprisingly “wide bandwidth” for processing visual 

data.

Jern [Jer99] explains the role of visualisation as being the interface between what machines 

are good at (data, information) and what humans are good at (knowledge, experience). Figure 

2.1, provides a graphical description of human versus computer abilities. Visualisation can be 

seen as a powerful link between these two influential information processing systems. Ham­

ming [Ham73] correctly identified that “the purpose of computation is insight, not numbers.” 

Likewise, for visualisation, “the purpose is insight, not pictures” [CMS99].

2.1.1 Overview

In our everyday life external aids are often used to enhance cognitive abilities. These are phys­

ical representations of abstract information in what can be called “external cognition” [SR96]. 

For example, if we want to perform a complicated division, we use notation to store the results 

of each stage of the calculation. This simple example helps to extend working memory. Exter­

nal representations can also be used to allow patterns, clusters, relationships, cluster gaps and 

outliers of the data to become apparent. Alternatively, they can be used for quick searches in 

vast amounts of data for something specific, by giving an overview and powerful navigation. As 

Norman [Nor93] says “The power of the unaided mind is highly rated. The real power comes 

from devising external aids that enhance cognitive abilities. How have we increased memory.
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Figure 2.1: Human versus Computer Abilities [Kei97].

thought and reasoning? By the invention of external aids: It is things that make us smart.” Infor­

mation Visualisation is just about that - exploiting the dynamic, interactive, inexpensive medium 

of graphical computers to devise new external aids enhancing cognitive abilities. These visual 

artifacts have profound effects on peoples’ abilities to gather information, compute it, under­

stand it and create new knowledge.

2.1.2 How Visualisation Amplifies Cognition?

Card, Mackinlay and Schneiderman [CMS99] stress that Information Visualisation has, from 

its definition, three goals: to aid discovery, assist exploration and help with decision making. In 

other words. Information Visualisation aids in Explorative analysis. Confirmative analysis and 

Presentation. Exploratory analysis for which EVA is most suited, begins with no preconceived 

hypotheses about the data, and progresses to the process of searching and analysing the data 

to find implicit, but potentially useful information. Confirmative analysis begins with some 

hypotheses about the underlying data. The process involves examination of the hypotheses, and 

hence, their confirmation or rejection. Finally in Presentation, facts to be presented are fixed in 

advance. The outcome is a high quality visualisation of the data presenting the facts.

So, what are the tools that help humans discover, explore and make decisions? How does 

information visualisation amplify cognition in the users/observers?

Larkin and Simon [LS87] compared solving physics problems using diagrams versus using 

non-diagrammatic representations. They concluded that diagrams helped in three basic ways. 

Firstly, by grouping all the information used, large searches were avoided. Secondly, by using 

a location to group information relating to a single element, the need to match symbolic labels
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is avoided, leading to reductions in search and working memory. Finally, the visual representa­

tion automatically supports a large number of perceptual inferences that are extremely easy for 

humans to comprehend. For example, with a diagram, geometric elements like interior angles 

can be immediately and obviously recognised.

Importantly, in order to understand the effectiveness of information visualisation, we need 

to understand what it does to the cost structure of a task. In addition to Larkin and Simon 

mentioned above. Card, Mackinlay and Schneiderman [CMS99] proposed a number of ways in 

which visualisation can amplify cognition.

To begin with, visualisation can be thought of as increasing the memory and processing 

resources available to the users. This is achieved by offloading cognitive work to the human 

visual perception system. Furthermore, visualisation can help to reduce the search for informa­

tion. The visual representation enhances the detection of patterns. Additionally, visualisation 

can further assist cognition by enabling perceptual inference operations and by using perceptual 

attention mechanisms for monitoring. Finally, they acknowledged that, the encoding of infor­

mation in a manipulable medium helps understanding, usually unfolding through interaction.

It can be concluded that Information Visualisation has a lot of potential to alter the way 

in which we interact with the multitude of information around us. It has already delivered 

important benefits in certain application domains. It is important, however, not to overestimate 

it; instead users should recognise it as an aid. Like numerous software and technological tools, it 

is not a solution to all information overload and complex problems. Rather, it is a new medium, 

which when properly and effectively used can augment our cognitive abilities.

A brief historical perspective in visualisation is presented next, before defining the field in 

a more formal way.

2 .1 3  History

\fisualising data, and especially scientific data, is not a new concept. The idea of representing 

data visually has been around for much longer than computer based visualisation. Legend has it 

that Archimedes was slain while drawing geometrical figures in the sand. Astronomical charts 

were produced in the Middle Ages in which there were arrow plots of prevailing winds over the 

oceans and magnetic charts that included isolines.

In ancient Hellas, distinguished scholars like Euclides and Pythagoras visually presented 

advances in the field of geometry. This area of mathematics not only benefits greatly by visu­

ally communicating its findings, but also its very basis and significance lies in objects naturally 

existing in two and three-dimensional space. In the middle ages (1570) mathematicians used
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paper to construct three dimensional models of these geometries in an attempt to make it easier 

to communicate information [Tuf90]. In the seventeenth century, Galileo used visual reasoning 

to support his conclusions about the solar system. Quoting Tufte (1990, p. 19) “His argument 

[Galileo’s] unfolds the raw data (what the eye of the forehead registers) into a luminous ex­

planation of mechanism (what the eye of the mind envisions)”. What is common in the above 

cases is that the information visualised has the property of naturally existing on spatial axes, so 

its visual mapping is straightforward.

The challenge of Information Visualisation however, is the understanding of non-physical 

information through visualisation. Such data, usually, does not have a natural mapping to spatial 

axes. Ground breaking advances related to this area occurred in the nineteenth century with the 

linking of the spread of cholera to water supply in central London. During the 1853-54 cholera 

outbreak in London, Dr John Snow, a physician, identified a large grouping in the Soho area. 

He went on to plot the homes of the 500 victims who died in the first 10 days of September 

1854 on a map of the area, from abstract data such as name, age and addresses of the victims. 

This simple representation of the data he had collected showed that the grouping of cholera 

sufferers in this area was centered around a particular water pump. Investigation of this water 

pump established that it had been contaminated by a leaking cesspool.

In addition to the above example, there are a number of cases where visualisation was used 

to enhance understanding, well before Information Visualisation was established as a scientific 

field. Namely, Minard’s map of Napoleon’s march to and the subsequent retreat from Moscow 

[Tuf83], Florence Nightingale’s diagram showing dramatic reduction of the death rates in a 

British Army hospital in Grimea, Sir Edward Playfair’s circles showing gross national product 

and tax gathered for certain empires, and Harry Beck’s London Underground map [SpeOI]. 

Through these examples, it is evident that the role of visual perception in data understanding, 

has been long understood.

2.1.4 Definitions and Classification

Computer visualisation has been with us almost since the first digital computers. The 1980s 

however saw fundamental changes, due to the need for more complex visualisation algorithms 

and tools to cope with the large amounts of data that sensors and supercomputers supplied. 

Scientific Visualisation’s birth as a discipline is generally placed with the publication of the 

1987 Report of the National Science Foundation’s (NSF) Advisory Panel on Graphics, Image 

Processing, and Workstations. The report used the term “Visualisation in Scientific Computing” 

(Vise), now generally shortened to “scientific visualisation”. The term scientific visualisation



2 .1 . I n f o r m a t io n  V i s u a l i s a t i o n  15

in this context is preferred to the more general term “data visualisation” (see Figure 1.1), due 

to the fact that the latter has coimotations of statistical methods that were outside the scope 

at that time. Since then, scientific visualisation has experienced vast growth and emerged as a 

recognised discipline. Visualisations from this discipline show abstractions, but the abstractions 

are based on physical space. What is seen primarily relates to and represents something that is 

visually “physical”. The data is scientific and the use of visual images for such information has 

great benefits in enhancing cognition, given that the data maps naturally to the spatial axes.

Information visualisation on the other hand, uses graphic images to represent abstract, non­

physical data. Examples of such data include financial data, business information, collections of 

documents, traffic flows through the internet, statements in a computer program, purchasers at 

a grocery store, and other abstract conceptions. In certain cases of the above data, graph theory 

[BM76] has a significant role. The applicability of graph visualisation can be understood better 

when considering the following question: “is there an inherent relation among the data elements 

to be visualised?”. If the answer to the above question is “yes”, then data is “structured” and 

can be represented by the nodes of a graph, with the edges representing relations. Visualisation 

of structured data sets is relatively straight forward. However, this thesis is concerned with “un­

structured” data elements where the goal of information visualisation is to aid in the discovery 

of the relations among data variables through visual means. For such data there is no built-in 

relation between the data elements, and hence, the answer to the above question is negative.

Visually presenting this kind of information poses great challenges, since there is no natu­

ral mapping to the spatial axes and, thus, no right or wrong metaphor for representing it. There 

is a great deal of such abstract information in the contemporary world and its mass and com­

plexity are a problem, motivating attempts to extend visualisation into the realm of the abstract 

[CRM91]. A more detailed description of the difference between scientific and information 

visualisation can be found in a discussion by Gershon and Eick [GE97].

Card, Mackinlay and Schneiderman [CMS99], define information visualisation as: “The 

use o f computer-supported, interactive visual representations o f abstract data to amplify cogni­

tion” Figure 2.2 shows the Information Reference Model presented in their book. The different 

stages and transformations presented in their model, have already been discussed in the context 

of this thesis, in Section 1.1.

Table 2.1 shows a number of definitions, most of which are also adopted from Card’s book, 

that clarify the relationships among concepts related to information visualisation. Some of these 

terms have already been explained, although here are formally defined.

External Cognition is concerned with the interaction of cognitive representations and pro-
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Definitions

External Cognition Use of external world to amplify cognition

Information Design Design of external representations to amplify cognition

Data Graphics Use of abstract, nonrepresentational visual representations 

of data to amplify cognition

Visualisation Use of computer-supported, interactive visual representations 

of data to amplify cognition

Scientific Visualisation Use of interactive visual representations of scientific 

data, typically physically based, to amplify cognition

Information Visualisation Use of interactive visual representations of abstract, 

nonphysically based data to amplify cognition

Data Mining Use of statistical methods and machine learning 

to identify previously unsuspected relationships

Table 2.1: Definitions/Concepts related to information visualisation.

cesses across the internal/external bounder in order to support thinking. Information design is 

the explicit attempt to design external representations to better acquire or use the knowledge. 

Data graphics is the design of visual but abstract representations of data for this purpose. Visu­

alisation uses the computer for data graphics. Scientific Visualisation is visualisation applied 

to scientific data and Information Visualisation is visualisation applied to abstract data. Fi­

nally, Data Mining is concerned with the use of statistical methods and machine learning to 

help in exploration, analysis and decision making.

It is important to note that while emphasising visualisation, the general term is perceptu- 

alisation. It is possible to design systems for information sonification or tactilisation of data 

and there are advantages in doing so [CMS99]. However, the visual system is a pattern seeker 

of enormous power and subtlery. The eye and the visual cortex of the brain form a powerful 

processor with by far the largest bandwidth [WarOO] (in fact half of the neurons in the human 

brain are dedicated to vision). Therefore visualisation is an obvious place to start.

To put Information Visualisation into context, the different types of research that are per­

formed in this area will be classified. Information Visualisation research can be categorised by 

data type and by techniques used. Most classification attempts so far have been data centric. 

This is very useful because implementers can quickly identify various techniques that can be 

applied to their domain of interest. A very common taxonomy is that first proposed by Schnei­

derman [Shn96], called OLIVE, with seven data types: 1-, 2-, 3- dimensional data, temporal
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Figure 2.2: Information Reference Model [used by permission of Ben Shneiderman, HCIL].

and multi-dimensional data, tree and network data and seven tasks: overview, zoom, filter, 

details-on-demand, relate, history and extract. Young [You96] proposed a different taxonomy 

based on visualisation techniques: surface plots, city scapes, fish-eye views, benediktine space, 

perspective walls, cone trees and cam trees, sphere visualisation, rooms, emotional icons, self- 

organising graphs, spatial arrangement of data and the information cube. Card and Mackinlay 

proposed an expanded data-oriented taxonomy [CMS99], which divides the field of visualisa­

tion into the following subcategories: Scientific Visualisation, GIS, Multi-dimensional Plots, 

Multi-dimensional Tables, Information Landscapes and Spaces, Node and Link, Trees and Text 

Transforms. The most comprehensive taxonomy to date, is the one proposed by Ed Chi [ChiOO] 

using the Data State Model [CR98]. Information Visualisation techniques are broken down, not 

only based on their data type, but also by their processing operating steps.

Figure 2.3 shows a taxonomy adjusted for the purposes of this thesis, influenced by the 

above related work. Starting from the actual data, its type, whether physically based or not, 

classifies the visualisation as either Scientific (the left hand branch of the Figure) or Informa­

tion Visualisation (the right hand branch). In the latter case. Information Visualisation can be 

subdivided further according to whether the data is structured or unstructured. This thesis is 

primarily concerned with the visualisation of unstructured, non-physical data, and more specif­

ically with the area of multivariate visualisation. However, a brief description of each of the 

sub-areas of Information Visualisation divided by data type, will be given below. This way, it 

is likely to give a better overview of the whole field.

Linear data types (ID) include sequential lists which are often text based. Interface design 

issues include what fonts, colour, size to use and what overview, scrolling or selection methods 

can be used. Tasks include, traversing long lists with changeable sort orders, filtering out un­

wanted data, viewing summary data about many ordered items, and finding important specific
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Figure 2.3: Classification of Data Visualisation.

elements.

Planar or Map data (2D) include geographic maps, floorplans, or newspaper layouts. The 

users’ tasks include finding adjacent items, containment of one item by another, paths between 

items, and the basic tasks of counting, filtering and obtaining details on-demand.

Real world visualisation (3D) is used to view real world objects such as the human body, 

buildings, or molecules for the purpose of extracting information. Volume visualisation is the 

form most widely used in world Visualisation and has significant impact in medicine.

The use of temporal information visualisation has a fundamental quality that separates 

it from 1-dimensional data. The distinction in temporal data is that items have a start and 

finish time and that items may overlap. Frequent tasks include viewing and creating historical 

overviews of events or data, and viewing events or data in sequence.

Hierarchical and Network visualisations are seen as a promising medium for information 

searching. Using tree structures (hierarchies or custom types of networks), the information in 

digital libraries, documents and the internet can be catalogued and searched quicker and easier, 

compared to the use of conventional techniques.
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Multi-dimensional information visualisation represents data that is not primarily spatial. 

The number of attributes of a given item in the collection is more than three. Tasks include 

understanding, or getting an overview of the whole or a part of the n-dimensional data. For 

example, finding patterns, relationships, clusters, gaps and outliers in the data. Other tasks 

include finding a specific item in the data. For example, zooming, filtering and selecting a 

group or a single item from the data. As Multi-dimensional information visualisation is the 

focus of this thesis a more detailed background review on this area follows.

2.2 Multivariate Information Visualisation
The challenge of visualising multivariate data is ongoing, motivated by many situations in which 

the interrelationships between many variables are of vital interest. For some examples, an exper­

iment is run and feedback for two-three variables is obtained and analysed, using spreadsheets 

and graphs. For such problems, these kind of visualisations are very effective indeed. But, what 

about cases where there are 5,10, 20, 70 variables?

More than three dimensions requires the more difficult problem of multidimensional visu­

alisations, where data tables have so many variables that an orthogonal Visual Structure is not 

sufficient. This is the case for most visualisations and they are the most interesting. They start 

with multivariate data sets that have too many variables to be encoded directly using 1-, 2- or 

3-dimensional visual structures. For data like this, graphs and charts lose their effectiveness.

Variables/attributes of such multivariate data sets can be divided into three basic types as 

shown in Figure 2.4.

Ordinal 
(obey < 
relation)

Quantitative
(perform

arithmetic)

Nominal 
(obey = or 
!= relation)

Data Tables 
(mixture of 

above)

Figure 2.4: Collection of Raw Data.

A nominal variable N is an unordered set, such as car models (BMW, FIAT, HONDA). 

An ordinal variable O is a tuple (ordered set), such as film ratings <  G, P C , P G  — 13, R  >. 

A quantitative variable Q is a numeric range such as weight [35, 210]. These distinctions are 

very important for some of the systems that will be described below, since they can determine
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the type of axis that should be used to represent them, in a visual structure.

The thesis mainly concentrates on quantitative variables of multivariate data sets. Of 

course, simple rules could be provided that would take Nominal and Ordinal variables and quan­

tify them but this is not relevant to this research. For the purposes of this thesis their existence 

is assumed and concentration is drawn on data tables of quantifiable variables, irrespectively of 

the variables’ initial types.

Furthermore, there are a number of techniques in statistics, such as Principal Component 

Analysis (PCA), Factor Analysis, Subsetting, Segmentation, Aggregation etc, that are used prior 

to analysis, as a form of data reduction. Despite the fact that these techniques are sometimes 

very useful, they are beyond the scope of the research area in this thesis and therefore will be 

discussed no further here.

For the purposes of this thesis, research carried out in the visualisation of multivariate data 

sets is divided into classes, according to the mapping that was used, whether arbitrary or au­

tomatic and, according to the visual structure used to represent the data, whether abstract or 

naturalistic. As already mentioned in Section 1.1, arbitrary, handcrafted visualisations are con­

structed manually by a designer or end-user, whereas automatic visualisations are composed on 

the fly by a system according to a set of pre-supplied layout rules and components. Abstract 

visual structures include colour, position, size, shape and glyphs whereas naturalistic represen­

tations are based on entities encountered in everyday life that need no special knowledge for 

understanding by an average human observer.

Both of these decisions, mapping type and visual structure type, lie at the heart of EVA, the 

method proposed for the purposes of this thesis. These distinctions resulted in four subfields of 

multivariate information visualisation, as shown at the bottom of Figure 2.3, and will be looked 

at in more detail.

2.2.1 Abstract Visual Structures - Arbitrary M apping

There are a number of issues that this area attempts to address. How does scale influence the 

design of the visualisation tool? How many features can be incorporated in the abstract visual 

structure? What techniques are available for handling high dimensionality?

Presented below, are numerous techniques and tools that are widely used today, that solve, 

or attempt to solve, some of the problems of visualisating multidimensional data sets.

The very first technique to be described, is that of multiple views. The idea is to give 

each variable its own display. So, if we have n  dimensions, n variables, we could have n  bar 

charts, one for each of the variables. In a way the dimensions are broken down to individual
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components, that can be visualised in 1-dimension. For some data, multiple view analysis may 

be utilised, but for others it has a major drawback. Unfortunately, is easy to get lost in the details 

and hard, if not impossible, to find multivariate trends in the data as well as interrelationships 

such as correlations.

Consider financial information systems which are multivariate and hence multidimen­

sional. The data components are correlated and their values (or range) affect each other with 

respect to the decision analysis process. Smith and Taffler [ST96] define that, for such corre­

lated data: “their assessment depends on the simultaneous effect of several variables in different 

spheres of activity”. As an example, the turnover of a firm is, usually, highly correlated with 

the sales level. When viewing the whole information system and analysing it with respect to 

another variable, capital expenditure, the former figures introduce a new dimension. From the 

above, it can be argued that financial information systems are complex. In fact Lux [Lux97] 

presents the argument that financial information can be, figuratively speaking, described as an 

iceberg. One can see the tip of the iceberg but its sheer mass is hidden under underwater. Fi­

nancial information systems are not the only ones that can be described as an iceberg; there are 

data warehouses, business information, library databases, documents and others that could be 

described in the same way. Therefore, their highly correlated variables makes multiple views 

unsuitable for these kind of data.

Bertin believed in two choices for the ‘problem’ of multiple variables: construction of 

several images and sacrifice of the overall relationship, or construction of a matrix and dis­

covery of relationships through permutations. He developed a direct technique for creating 

multidimensional visual structures from multivariate data tables which he called permutation 

matrices [BerSl]. The technique that was developed before computers were used to support 

visual thinking, involves representing rows of data as bar charts and sorting them. Graphical 

icons of data values were placed on cards and permuted with metal rods. The goal of the per­

mutations is to form patterns, typically to place the large values on the diagonal of the matrix, 

thereby clustering similar cases with their representative variables.

When computers became available, permutation matrices became an example of informa­

tion visualisation. An example is the TableLens [RC95], which is a data analysis application 

intended to give non-experts the ability to visually spot trends and correlations in the data set. 

An example of TableLens can be find in Figure 2.5.

TableLens, a focus and context visualisation tool, starts with a regular data table and dis­

plays the whole table graphically. In essence it is the graphical equivalent of a relational table in 

which the rows represent cases and the columns represent variables. TableLens is best used for
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Figure 2.5: TableLens [used by permission o f R. Rao, Xerox Parc]

numerical and categorical data. For quantitative variables, a graphical bar is used to represent 

the values. The bars are aligned to the left edge, that may represent a minim um  value, zero or a 

lower boundary. The length o f  the bar indicates the relative size o f the represented value. This 

visualisation provides a scale advantage, since bars can be scaled to one pixel wide without 

perturbing relative com parisons, and also an exploration advantage, since large num bers o f  tiny 

bars can be scanned much more quickly than a bunch o f textually represented numbers.

There are a wide range o f  manipulators one can use to discover trends in the data set 

w ithout affecting the underlying data. One can sort any column, break down the display by 

categories, focus on any o f  the rows, or columns, or even spotlight rows i.e. change their colour. 

Moreover, one can filter categories and create a new column com puted using a formula based 

on other columns. Using these manipulators it is possible to search for patterns and outliers 

in a multivariate data set. For example, sorting can be seen as the first step o f  looking for 

correlations am ong variables. After a variable has been sorted, if another variable is correlated 

with it, then its values will also appear sorted.

A sim ilar approach is that taken by Becker and Chambers [BC84J with the S plus system. 

Splus is an interactive statistical analysis environm ent with sim ilarities to TableLens, in that it 

integrates several data m anipulation and viewing techniques as a library of primitive functions
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that can be performed on the data. In particular, after the data is loaded, a user can invoke a 

“brush tool”, com monly known as a scatterplot matrix which displays a matrix o f all pairwise 

scatter plots. Optionally, a histogram  of each variable could be placed at the base o f  each 

colum n o f scatterplots associated with that variable. A series o f other m anipulators is used in 

the tool to help understand more about the data.

There are a number of key problem s associated with this method, that are sim ilar to those 

o f TableLens. First o f all, as the dim ensionality increases, the com plexity o f these systems in­

creases as well, showing a heavy load o f  information on the screen. In addition to the above, 

considerable user learning time is required to understand and enable manipulation o f  these in­

teractive mediums effectively. Also, it is very hard to visualise relationships o f  variables beyond 

second order that involves more than two of them. W hat if the relationship is a m ultidim en­

sional one; one that encom passes many or even all o f the variables in the data set? Finally, as a 

conclusion to the previous problem , there are no means to get a good holistic overview o f such 

a data set.

Dynamic 
HomeFlnder
R#*#t Quit 
%#v* Print

Di»t to A:

Di»t to B;

BodrooTM»:

Cost :

Ttvs v i  low dots sktou* ars homes in the DC erea for sale Vou may yet more information on a home by select iny it.
Vou may dray the 'A* and ' B' distance markers to your office or any other locat ion you want to H u e  near. 
Select distances, bedrooms, and cost ranyes by drayyiny the correspond iny slider boxes on the riyht.
Select specific home types and services by pressIny the labeled tMjttons on the riyht.

Look al:
Hse TH end

Features;
Qry Fpl
CAC New

Figure 2.6: Hom efinder [used by permission of Ben Shneiderm an, HCIL]

Late visualisations like H om eFlnder [WS92] and Film Finder [AS94b] deal with some 

o f these problems. An exam ple of the Homefinder can be found in Figure 2.6. The interface
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representation is a 2-dimensional scatterdiagram  that offers dynam ic queries [Shn93] for inter­

active user-controlled visualisations o f  additional dimensions. Dynamic queries allow users to 

formulate queries by adjusting graphical widgets, such as alphaslider first proposed by Osada 

[OLS93] and described in detail by Ahlberg [AS94a]. By using alphasliders one can see the 

results immediately. For exam ple in the Filmfinder, colour represents the type o f the film, hori­

zontal position the year, vertical position the duration and sliders can be used for other attributes 

such as type, director, actor for the purposes o f filtering.

By providing a graphical visualisation of the database and search results, users can easily 

find trends and exceptions. User testing was carried out with eighteen undergraduate students 

who perform ed significantly faster using a dynam ic queries interface com pared to both a natural 

language system and paper printouts. The interfaces were used to explore a real-estate database 

in search o f finding homes m eeting specific search criteria. However, in these systems we 

believe that only a small num ber o f independent variables must be of significant im portance to 

the user in order for the visualisation to work effectively. Also the nature o f the data must be of 

great importance. Data is disclosed only when it satisfies a query.
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Figure 2.7: Attribute Explorer [used by permission o f Bob Spence, Imperial College]

On the other hand, the A ttribute Explorer [TSW B94], shown in Figure 2.7, uses direct 

m anipulation o f a series o f histograms to tackle situations in which the display o f all data, 

provides contextual inform ation. Hence, there is valuable guidance for exploration. In Attribute 

Explorer, each attribute is assigned to a scale with the population spread running up on one side.
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Initially each item in the total population is displayed. Users can interact with the scales using 

sliders for continuous attributes and buttons for discrete (i.e. type of house). The effect an 

attribute has on other attributes can be explored by selecting values of interest on one scale 

and viewing where these items appear on the other attribute scales. This is a technique called 

“brushing” and is achieved by colouring matching objects.

A different technique for representing multivariate data sets is through iconic displays, 

more commonly known as glyphs. A glyph is a single graphical object that represents a multi­

variate data object. To create a glyph, multiple data attributes are mapped in a systematic way 

to show the different aspects of the appearance of the graphical object. For example, a market­

ing specialist may have data for every person in a particular geographical area, including their 

income, educational level, employment category and location of residence. In this example a 

glyph might be used to represent income to the size of the glyph, educational level to its colour, 

employment category to its shape and geographical location to the (x, y) location where the 

glyph is plotted.

One such display of multivariate data sets, is using stick figure icons [PG88]. This tech­

nique is intended to make use of the user’s low level perceptual processes, such as perception 

of texture, colour, and motion. In this visualisation, two attributes of the data are mapped to the 

display axes and the remaining attributes are mapped to the angle and length of the limbs. An 

example of stick figures can be seen in Figure 2.8. The goal and hope of this technique, is that 

users will try to make sense of the data presented through texture patterns created.

Y Y 
/\ (
/ v \

A stick figure icon A family of stick figures

Figure 2.8: Stick Figures.
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Another technique for solving multidimensional data problems, through iconic displays, 

is that of starplots [Fie79]. Figure 2.9 shows an example of such a technique with five differ­

ent variables. The variables are spaced out at equal angles around a circle where each spoke 

encodes a variables’ value (line size). It can be seen even from this simple diagram that as the 

dimensionality increases (e.g. bigger than 10) the available space will be narrowed making the 

visualisation hard to read. For small sets it is a good method for comparison of the values of 

the variables. Alternatively, a number of objects, each represented by a star plot can be com­

pared, at least qualitatively on the basis of their shape. A whisker plot, is the same as a starplot 

without the ends of the lines connected.

Space out the n 
variables at equal 

angles around a circle

Each “spoke” encodes 
a variable’s value

Figure 2.9: Starplot technique.

A similar technique to starplots is that of Parallel Coordinates [Ins84]. It is a very popular 

technique that involves the parallel placement of axes in 2D. The fact that orthogonality “uses- 

up” the plane very fast and also that parallelism does not require a notion of angle led to the 

inspiration of parallel coordinates. In drawing each axis separately the technique is reminiscent 

of Bertin’s permutation matrices. The axes are scaled to the range (minimum, maximum) of 

the corresponding attribute. Each case in the data set is encoded as a polygonal line, each 

line intersects each of the axes at the point which corresponds to the value for that attribute. 

A line may be colour encoded. Correlated cases often create recognisable patterns between
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adjacent axes. The challenge o f  parallel coordinates is to recognise these patterns. Interactivity

is provided in the system to help people find these relationships. Interaction allows the user

to reduce the com plexity by limiting the range o f an axis or brushing specific lines. Therefore

users can focus on specific data items. Figure 2.10 shows an example o f parallel coordinates.

The data set used, is based on the production o f VLSI chips for 473 batches as described in the

“M ultidimensional Detective” [Ins97]. Each data point is for a specific batch.

 .......
g u n *  V«M I j v t l  w * .  < < « * <  Ü **

' i

Figure 2.10: Parallel Coordinates technique [used by perm ission o f  Alfred Inselberg]

Parallel coordinates can be seen as the method to model relations, or a 2d pattern recogni­

tion problem. However, the m ethod requires long learning time and skill from the user in order 

to gain geom etrical understanding and properly query the picture. Also, due to the narrowness 

o f inform ation the colour encoding being perform ed is unclear, and one does not really see 

colour. Moreover, the overlap o f polygonal lines, can make it difficult to identify structures in 

the data. Additionally, there is the problem o f ordering associated with this technique, since 

different assignments o f the variables to the parallel coordinate axes, m ight lead to different 

patterns in the data to become visible/invisible.

Having said that, case studies show that this visualisation in the hands o f  a skilled user sup­

ports complex visual thinking. This conclusion arises from the following observations [Ins97]. 

The com plexity o f the visualisation increases linearly with the num ber o f variables. If the num ­
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ber of dimensions is N then the complexity is 0(N). In theory it can represent an unlimited 

number of dimensions. Every variable is treated uniformly. A line axis corresponds to each 

variable. This is unlike the many representations mentioned above (if not all), and others that 

will be mentioned below. The data is encoded in the visualisation without any loss of informa­

tion and the display, easily conveys information on the properties of the N-dimensional object it 

represents. Finally, according to the author, the methodology is based on rigorous mathematical 

and algorithmic results.

A different technique is that proposed by Mihalisin, Timlin and Schwegler [MTS91]. They 

developed a technique to visualise a scalar dependent variable that is a function of many “inde­

pendent” variables.

Each variable is plotted within the space delimited by the previous variable, for each dis­

crete value that represents the variables range. More specifically, the working space is divided 

into multiple windows. Following this, a reasonable set of values is selected for the variable 

and the window for these values is subdivided further. The process is done recursively until the 

whole function has been plotted i.e. all the variables have been realised.

It is a hierarchical technique for visualising and visually analysing multivariate functions, 

data and distributions in various ways. The order in which the variables are placed in the 

hierarchy, affects the overall visualisation. It is like sampling the axes of the input variables at 

slow, medium and fast quantities to create a new variable that is a function of the input ones. 

Some visualisations are comparatively easier to understand than others. Therefore, it gets quite 

complicated as the dimensionality of the variables increases and as the range of values of your 

variables increases. A problem that becomes apparent for this method is that of treating the 

variables non-uniformly.

The technique mentioned above, seems to be influenced by an earlier method. Beshers 

and Feiner [FB90] described a technique called “worlds within worlds”, a multidimensional 

visual structure based on overloading. They visualise high-dimensional functions by placing 

3d coordinate systems inside other 3D coordinate systems recursively until all dimensions are 

included. Changing the position of the iimer coordinate system results in changes in the surface 

displayed, since three variables are changed. However, at any one time, the surface displayed 

is constructed out of only 3 variables (the outer coordinate system) and the constant values of 

the rest of the variables. The main idea of the method (worlds within worlds) is a way to gain 

information lost in the process of reducing the complexity of the data in order to be displayed 

in 3-dimensions.

All of the techniques described in this section use abstract visual structures to visualise
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multivariate data sets, and the mapping from data to visual structure is an arbitrary one. In 

fact this category (abstract visual structures, arbitrary mapping) includes the vast majority of 

the tools created nowadays to visualise data of multiple dimensions. Visualisation systems that 

attempt to automate the process of mapping are the focus of the next section.

2.2.2 Abstract Visual Structures - Automatic mapping

The problem addressed here, as already mentioned, is that of automatically mapping data to 

visual structures in a meaningful way. In other words, the problem of automatic design based 

on some pre-supplied rules. Authors of visualisation tools must represent abstract quantities in 

some way. Which methods of encoding are useful? How can they be combined?

A wide range of symbolic representations for encoding are available [Tuf83], [Tuf90]. 

Which is the best? From one point of view the answer is, “it depends on the task”, since the 

task for which the user seeks to form a mental model, the internal model in the mind of the 

user, can take many different forms and the domain for which the data is encoded can also 

vary widely. From a different perspective the answer is “we do not know”. Various attempts 

have been made to identify comparative benefits of separately encoding numerical, ordinal and 

categorical data [Mac86], [CM84] with the view to automate the design of visualisation tools. 

Jacques Bertin [Ber81] attempted to classify all graphic symbols in terms of how they could 

express data. It was mostly based on his own judgement, albeit a highly trained and sensitive 

one.

One of the first attempts for automatic design is Jock Mackinlay's APT (A presentation 

tool) [Mac86] based on a formalisation of Bertin’s scheme, composition algebra and artifi­

cial intelligence techniques. Mackinlays’ goal was to create automatic visualisation from data 

based on generating and testing possible solutions that satisfy rules of expressiveness and ef­

fectiveness. Expressiveness refers to language’s ability to represent the data correctly, whereas, 

effectiveness is about the psychological performance, how good is the visualisation. The effec­

tiveness criterion is used to rank the primitive languages according to accuracy in perceiving 

quantitative, qualitative and nominal characteristics of the data. The effectiveness and expres­

siveness criteria are used in the selection step of APT’s matching procedure.

The significance of this research is that it showed the theoretical analysis of graphical pre­

sentations were an adequate basis for partial mechanisation. Data are composed to data tables 

that are mapped to visual structures that are, in turn, composed into complex presentations. 

For example, two variables from a data table might be mapped to two 1-dimensional visual 

structures and then composed to create a 2-dimensional visual structure.
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Figure 2.11: Ranking of perceptual tasks. The tasks shown in the boxes are not relevant to these 

type of data.

Figure 2.11 [Mac86] shows a ranking of the perceptual tasks. It is an extension of Cleve­

land and McGill’s ranking [CM84]. A wide variety of designs can be systematically generated 

by using composition algebra that composes the small set of primitive graphical languages. The 

matching procedure uses backtracking when some of the choices made at the various stages do 

not allow for a feasible design.

It is a very good early attempt for automatic design but it appears not to be a knowledge- 

based interactive data exploration. There must be a way for users to express their needs even if it 

is only from the point of view of what is important in the data set. It is important that users have 

a say in how they want this data to be visualised. But where is the interaction coming from? 

Moreover, the rankings produced have not been empirically validated, in contrast to Cleveland 

and McGill [CM85], who have empirically validated their ranking of graphical devices for 

quantitative data. A further study [LNH02], empirically measures the relative effectiveness of 

colour, shape and size in conveying both nominal and quantitative data. It is interesting to note 

that the different rankings provided in the literature are conflicting which suggests the need for 

further research.

A much more interactive system is SAGE [RKM+94], a knowledge-based presentation 

system that automatically designs graphics and also interprets a user’s specifications of how 

to present the data. It is similar to APT, but also allows the user to supply none, some or all 

of the specifications of the visualisation. It can visually integrate many forms of information, 

including combination of quantitative data, relational, temporal, hierarchical, geographical, cat­

egorical and other. The system addresses the automatic of “visualisation” and “manipulation”.
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SAGE is the engine that handles the automated creation of images. IDES (Interactive 

Data Exploration System) is used for the data manipulation task. IDES tools include dynamic 

queries with the use of sliders and aggregate manipulator to aggregate and decompose groups. 

The latter makes disjunctions possible. SageBrush assembles graphics from primitive objects 

like bars, lines and axes. It is used to search a portfolio for relevant examples.

The combined environment of SageTools (Sage, SageBrush, SageBook), enhance user- 

directed design by providing automatic presentation capabilities with styles of interaction that 

support data-graphic design. A user uses “directives” to communicate goals to Sage engine 

with SageTools (task, style, aesthetic, data).

There are a few shortcomings in the system. Despite the help of dynamic queries, the 

complexity of the visualisation results in a large learning time. Also the aggregate manipulator 

is too complex to be used effectively and the total flexibility in interaction allows the user to 

break the rules.

The visualisation systems described here allow for automatic mapping from data to ab­

stract visual structures based on some criteria. Earlier attempts ignore the support for user in­

teractions whereas most recent attempts tackle the problem of interactivity as well as improving 

the quality of the visualisation.

However, are we ready to eliminate graphic designers and provide a general purpose, au­

tomatic, visualisation tool? We believe that we are not even close to this and that there are other 

possibilities for exploration in the process for automatic design. One such possibility, is the use 

of naturalistic representations described below.

2 .2 3  Naturalistic Visual Structures - Arbitrary mapping

Some disadvantages of information visualisation systems encountered so far, arise from the 

fact that visualisations are not natural nor easy to understand and therefore require learning 

time from the user. Moreover, in some cases the visualisation does not offer a complete, and 

holistic view of the data set. Effectively, naturalistic visualisations are believed to handle the 

problems mentioned above.

“Naturalistic” visual structures refer to visual representations of things encountered in ev­

eryday life, things that do not require special knowledge for interpretation by a “normal” human 

observer, preferably irrespective of nationality.

The first to use such a technique was Herman Chemoff [Che71] when he recognised the 

potential of using a human face as a representation for data. The vast majority of the techniques 

in this category expand this idea. Chemoff proposed using a mapping of variâtes in data into
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Figure 2.12: An example of a Chemoff face.

features of faces as a method of visualising multi-dimensional data (Figure 2.12). The method 

is most commonly known as Chemoff faces. More examples of Chemoff faces are shown in 

Figure 2.13. The method involves assigning to each column of the data, a facial feature such 

as width of the eye, position of the mouth etc., and for each row of the data constmcting a 

face associated with the assignment. It is believed to be able to represent a total of 20 different 

dimensions as shown in Appendix C.

Figure 2.13: Further examples of Chemoff faces.

There are psychological reasons for choosing such a display object. Faces are probably 

the most important class of objects in the human environment. First of all, is the familiarity 

with human faces and ability to rapidly process even the smallest nuances and changes in a
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human face due to everyday interaction. Secondly, the fact that the human face often evokes an 

emotional response in us and can therefore affect the way in which we behave.

The hope is that one can use this information to group the data into interesting ways, and 

to determine an interesting structure of the data. Since humans are optimised in some sense, for 

face recognition, it was hoped that using faces (as opposed to other object types) would aid in 

the grouping of the data and also to illustrate “trends” in multi-dimensional data.

Wilkinson has shown that, when considering similarity of data sets, faces prove to be a 

better representation than other forms [Wil82]. The use of faces as a means for communication 

has also been shown to lead to fewer mistakes being made and to users becoming more involved 

in what they are doing [JLR94].

Walker has shown that the use of a face does not introduce an extra element that could 

distract a user from the task they are trying to achieve, thereby potentially reducing their effec­

tiveness. Instead, it actually increases the impact of the information, while providing a familiar 

medium for communication.

Another potential advantage that Chemoff does not discuss in great depth is the way in 

which humans perceive faces. Instead of considering each individual variable as we would 

have to if we were to look at a table of numbers, work by Homa has shown that humans process 

facial expression as a whole [HS76]. This means that in addition to the multivariate data being 

encapsulated in one face, it is also processed as one object when we look at it. The face therefore 

provides an excellent abstraction of the data.

Many people have built upon Chemoff’s initial idea. Shane and Moriarity [Mor79] used 

Chemoff’s idea to investigate whether schematic faces were a useful abstraction of communi­

cating financial information. They concluded that persons with a limited knowledge of financial 

analysis, as well as practising accountants, were able to distinguish bankmpt and non-bankmpt 

firms more efficiently than using financial statements or ratios. Smith and Taffler [ST96] showed 

renewed interest in the area and pointed out that previous work such as Moriarity’s failed to 

compare the performance of users of varying levels of sophistication of subject. They also 

argued that since no indication is given in previous studies of the statistical nature of the in­

formation, the results might be partly due to superior information and not superior means of 

visualising it. Their study included considerations from psychology literature which previous 

work had ignored. For example this includes mapping data variables onto the features of the 

face which psychologists have shown to be of more importance when humans consider facial 

expressions. Emphasis is placed on the mouth and eye areas which are considered the more 

important features of the face when conveying information [Lau71]. This is due to the high
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amounts of movement seen in these features relative to other parts of the face such as the ears 

and nose.

Through their own experiments they suggest that users of all levels gave speedier, more ac­

curate results than when using the raw data form, despite the fact that the most specialised group 

were reluctant to accept that their own results using this technique were superior to standardised 

decision processes.

Having said that, there are a number of limitations when using Chemoff faces. To begin 

with, the variables in the representation are treated non-uniformly. In fact it seems obvious that 

an identification and placement of the important features in the area near the mouth and eyes 

would make the visualisation more effective. In addition to that, it is obviously necessary to 

spend some time training test subjects as to which features apply to which variables. Further­

more, the nature of the visualisation implies that one does not see the actual quantitative values 

of the variables being plotted and, finally, visualisation loses its effectiveness when we have 

extreme values, since these might produce unrealistic faces.

The latest attempt to use naturalistic visualisations is by Alexa and Muller [AM99] in a 

technique called Visualisation by Examples. Based on the specification of only a few cor­

respondences between data values and visual representations, complex visualisations are pro­

duced. The foundation of this approach is the introduction of a multidimensional space of 

visual representations. The basis of their method is the “morphing” technique (for more about 

morphing see Alexa and Muller [AM99]). Morphing between two graphical objects results in a 

one dimensional space. Morphing between an element of such space and a third graphical base 

object results in a two dimensional space. By repeating this process they construct a space of 

any given dimension.

This technique is better illustrated by an example. Suppose we want to visualise an overall 

(scalar) ranking of cities in the USA. We might be interested in finding a nice place to live. 

The data for this particular example, contains values from nine different categories. That means 

there is a need to project nine values to one scalar value. To visualise the rankings a Chemoff- 

like approach is used. They take a smile and a frown and produce a 1-dimensional visual 

scale. Thus, the degree of smiling represents the living quality determined by a combination of 

the nine attributes. The way they find the mapping is by allowing the user to supply a ranking 

based on personal experience. A ranking of a subset of all the cities is sufficient. In this example 

they mapped Chicago to a smiling face, Miami to a frown and Washington to a neutral face. 

The result is an image for every city by combining the given example ones.

This method is nice and simple. However, a question to be asked, is that since Visual-
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isation by examples only visualises one dimension what is the point of having a naturalistic 

representation? Techniques like barcharts are very effective at representing such data. If it to 

be used, then a more sophisticated technique is needed to map the data to the visual structure. 

The first principal component might be a good candidate for such case.

2.3 Discussion
The relevant work needed to put EVA in context has been critically reviewed. The techniques 

described in the literature review, capture all kinds of attempts to visualise multiple-dimension 

data sets of variables. From those we can conclude that there are numerous techniques that 

use arbitrary mapping and abstract representations, few techniques that use arbitrary mapping 

and naturalistic representations, few systems that use automatic mapping and abstract repre­

sentations and no techniques that use automatic mapping combined with naturalistic visual 

structures. Figure 2.3 shows that information visualisation systems that produce “automatic” 

mappings from multi-dimensional data to “naturalistic” visual structures have not been ex­

ploited. It is believed that such systems will realise advantages from both automatic mapping 

and naturalistic representations mentioned above to produce visualisations of certain qualities.

Firstly, the visual structure will give a holistic overview of the whole data set, allowing 

the formation of hypotheses about the underlying data. In addition to the above, the nature 

of the visualisation and mapping used, implies that the visual structure will be very simple, 

easy to understand and that the learning time of the users will be minimised. Furthermore, the 

background of users will be irrelevant. Both experts and non-experts will be able to get a quick 

understanding of the underlying data. Moreover, decisions on the fly may be reached for real 

time data and finally, it is hoped that all significant relationships between the data variables will 

be incorporated into the visual structure.

In the next chapter we begin the design of this method in detail.



Chapter 3

EVA Methodology

There are a numbers of problems identified in the previous Chapter that are quite common with 

existing visualisation techniques. Re-iterating a few, the fact that most visualisation tools need 

significant user learning time is important. It is known that users prove slow in adapting to new 

visualisation tools simply because it usually means relearning how to do things. Also, the tools 

presented in the literature, tend not to have a meaningful way of combining the information and 

relationships among the data, into one visual structure.

These problems and others already mentioned in Section 2.3, inspired the development 

of the Empathie Visualisation Algorithm (EVA) [LS02]. The methodology behind this new 

approach is the focus of this Chapter. An introduction to the problem is presented first.

3.1 Statement of the Problem
The problem presented here is that of visualising multi-dimensional data sets. The numerous 

techniques which have been described in the literature that attempt to visualise such data have 

both advantages and disadvantages. However, no method claims to achieve the overall objec­

tive of this approach. The overall objective is to construct a visualisation such that the salient 

features of the data can intuitively be recognised by an observer and where the representation 

gives a holistic view of the data set, embodying the interest of the user.

Complex data in the sense that it is presented here, is data that is relatively large both in 

terms of the amount of data present, and the number of variables (dimensionality) that the data 

encompass. Data tables, have so many variables that an Orthogonal Visual Structure (such as 

a 3D graph) is not sufficient. Also, the variables themselves are usually correlated and hence 

cannot be treated separately.

An example of such multi dimensional data set is that of accounting (financial) data. The 

data shown in Figure 3.1 represent a Balance sheet and profit and loss accounts for a single 

company over a period of 5 years. Apart from the fact that there is a great amount of data.
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the data components are correlated and their values (or range) affect each other with respect to 

the decision analysis process. The assessment depends on the simultaneous effect of several 

of these variables in different spheres of activity. One, must also take into consideration the 

fact that this is data from a single company. Imagine having hundreds of companies. How is 

such data to be visualised and understood? The prospect of visualising and understanding data, 

therefore from multiple companies is, in the least, a daunting task.

a  l a  n e e  S h e e t  
a p i 1 a l &  R e s e r v e s

O R D I N A R Y  S H A R E  C A P I T A L 1 3  1 0  0 0 1 3 1 0 0 0 1 3  2 0 0 0 1 4  1 0  0 0 1 4 1 0 0  0
S H A R E  P R E M I U M  A / C 0 3  6 0  0 0 0 4 0  0 0  0 0 5 6  0 0  0 1 4  4 1 0  0 0 1 4 6 0 0 0 0
O T H E R  R E S E R V E S 3 9 0 0 0 1 0  4 0 0 0 1 6  3 0 0 0 2 3 0 0 0 0 3 0 0 0 0 0
P R O F I T  i  L O S S  A / C 2 3 0  0 0  0 0 2 6  2 9 0 0 0 2 6  9 0  0 0  0 2 3 8 1 0 0 0 2 6 4 4 0 0 0
E Q U I T Y  C A P .  A N D  R E S E R V E S 3 3 0  6 0  0 0 3 7  0 4  0 0 0 3 0 4 1 0  0 0 4 1 9 3 0 0 0 4 5 5 3 0 0 0
P R E F E R E N C E  C A P I T A L 0 0 1 0  0 0 0 0 2 0 0 0 0 0 3 2 5  0 0  0
T O T .  S H A R E  C A P I T A L  & R E S E R V E S 3  3 0  6 0  0 0 3 7  0 4  0 0 0 3 9 4 1 0 0 0 4 3 9 3 0 0 0 4 0 7 0 0 0 0
F i x e d  A s s e t s
I N T A G IB L E
T A N  G I B L E 5 0 9 0 0 0 5 3 4 0 0 0 5 8 5 0 0 0 7 1 5 0 0 0 6 9 0  0 0  0
I N V E S T M E N T S 2 5  3 1 2 0  0 0 3 2 3 7 4 0 0 0 3 5 2  9 0  0 0 0 3 9 7 8 2 0 0 0 4 6 5 5 0 0 0 0
O T H E R 1 4  1 5  0 0 0 1 4  3 3  0 0 0 2 0  7 4  0 0  0 2 0 3 8 0 0 0 2 9 0 0 0 0 0

2 7  2 3  6 0  0 0 3 4 3 4  1 0 0 0 3 7 9 5 7 0 0 0 4 2  5 3  5 0  0 0 5 0 1 6  4 0 0 0
C e r r e n t  A s s e t s
S T O C K S 0 0 0 2 6 0 0 0 1 4 0 0 0
D E B T O R S 5 0  0 5  7 9  9 2 5 3 6 6 8 0 0 0 5 7 5 1 2  9 9 2 7 1 3 6 1 9 9 2 0 6 5 4 0 9 9 2
I N V E S T N E N T S 0 0 0 0 0
O T H E R 1 0 0  0 0  0 0 1 6  2 0  0 0 0 1 7  5 3 0 0 0 1 0 0 0 0 0 0 2 0 2 3 0 0 0
C A S H 7 5  7 0  0 0 5 9 8 0 0 0 3 9 1 0 0 0 3 3 9 0 0 0 1 9 5 7 0 0 0

5 2  6 9  4 9  9 2 5 5 8  8 6  0 0 0 5 9 6  5 6  9 9  2 7 3 6 0 6 9 9 2 9 0 5  4 2  9 9  2
C e r r e n t  L l a  b l i l t  l e  s
P R O V I S I O N  F O R  T A X 4 4  2 0  0 0 4 9  8 0 0 0 4 9 6 0 0 0 2 9 9 0 0 0 2 6 6  0 0  0
P R 0  V I S 10 N F O R  D I V I D E N D S 1 2  9 0  0 0 1 5 8 0 0 0 1 9 1 0 0  0 2 4 5 0 0 0 2 9 0  0 0  0
C R E D I T O R S  < 1  Y E A R 5 5  7 5  7 9  9 2 6 0 5  2 6  0 0 0 6 4 1 2 9 9 9 2 7  2 6 5 9 0 0 0 9 1 4 6 2 9 9  2
O T H E R 1 1 3 7  3 0  0 0 1 1 3  7 2 0 0 0 1 5 3  3 4  0 0  0 2 2  7 9  6 0  0 0 2 5 5  9 4  0 0  0

6 7  7 0  1 9  9 2 7 2 5  5 4  0 0 0 8 0 1 5  0 9 9 2 9 5 9 9 9 0 0 0 1 . 1 8 E , 0 8
N e t  C e r r e n t  A s s e t s 1 5  0 0  7 0  0 0 - 1 6 6 6 8 0 0 0 -2 0 4 9 4 0 0 0 - 2  2 3 9 2 0 0 8 - 2 7 0 7 0 0 0 0
T o t a l A s s e t  L e s s  C e r r e n t  L i a b i l i t i e s 1 2  2 2  9 0  0 0 1 7 6  7 3  0 0 0 1 7 4 6 3 0 0 0 2 0  1 4  2 9  9 2 2 3 0  9 4  0 0  0
L o n g  T e r m  L i a b i l i t i e s
P R 0  V I S 10 N S 2 9  6 0  0 0 3 9 9 0 0 0 6 3 0 0 0 0 9 7 0 0  0 0 1 1 4 4 0 0 0
L O A N  C A P I T A L 0 5 4  7 0  0 0 1 3 5  7 0  0 0 0 1 2 8 9 2 0 0 0 1 4 7 0 0 0 0 0 1 7 0  7 2  0 0  0
O T H E R

0 8 4  3 0  0 0 1 3  9 6 9 0 0 0 1 3 5  2 2  0 0 0 1 5  7 5 0 0 0 0 1 8 2 1 6 0 0 0
3 3 0  6 0  0 0 3 7  0 4  0 0 0 3 9 4 1 0 0 0 4 3 9 2  9 9 2 4 0 7 8 0 0 0

P r o  f I t  & L o s s
O P E R A T I N G  P R 0  F I T - A  D J ■ 4 4 6 0 0 0 - 5 8 4 0 0 0 1 1 6 9 0 0 0 6 1 1 0  0 0 - 3 9 4 0 0 0
T O T A L  N O N  - O P E R A T  I N G I N C O M E T 2 4 7 0 0 0 1 5  1 4  0 0 0 2 3  3 7  0 0  0 2 0 1 9 0 0 0 2 0 1 1 0 0 0
T O T A L  I N T E R E S T  C H A R G E S 6 6 0 0 0 8 0 0 0 0 1 3 4 0 0 0 1 6 7 0 0 0 1 9 3  0 0  0
P R O F I T  B E F O R E  T A X 7 3  5 0  0 0 9 3 0 0 0 0 1 0  3 4 0 0 0 1 2 4 1 0 0 0 1 4 2 4 0 0 0
T A X 3 1 0 0  0 0 3 1 9  0 0 0 3 3 7  0 0  0 4 0 3 0 0 0 4 8 0  0 0  0
P R O M T  A F T E R  T A X 4 2 5 0 0 0 6 1 1 0 0 0 6 9 7  0 0  0 8 3 8 0 0 0 9 4 4  0 0  0
O R D I N A R Y  D I V I D E N D S 1 0  4 0  0 0 2 3 3 0 0 0 2 8 0  0 0  0 3 6 0 0 0 0 4 3 4 0 0 0
T O  S H A R E H O L D E R S  F U N D S 2 4  1 0  0 0 3 7 8 0 0 0 4 0 9  0 0  0 4 7 8 0 0 0 5 1 0 0 0 0

Figure 3.1: Sample of data for a single company.

In situations such as the above, information visualisation helps in “understanding” a set 

of data (which may be dynamically unfolding in time) by allowing users to visualise represen­

tations of the data, thus using vision to build “understanding”, and allowing the formation of 

hypotheses for later statistical analysis.

As already mentioned, there are two main problems involved in this, the first being, the 

choice of a suitable mapping from the data to the chosen visual representation (structure) and the 

second being, disinguishing between arbitrary and automatic mapping. The possibility of taking
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into account the user’s emotions during visualisation in an automatic mapping, is the focal point 

of this method. The second problem highlighted is the choice of a suitable paradigm for the 

representation of the data, whether abstract (e.g. using colour) or more realistic. Different 

representations may lead to quite different understandings. The possibilities of naturalistic 

representations, is also addressed in the present approach.

Figure 3.2 shows the placement of “Empathie Visualisation Algorithm (EVA) ” in the in­

formation visualisation classification presented in the literature.

Mapping

a
V%
t
A

ARBITRARY AUTOMATIC
r

Worlds within worlds 
Parallel Coordinates 
SeeSoft 
TableLens

V

APT
SAGE
VISAGE

Chernoff Faces

Visualisation by 
Examples

V

EVA: Empathie 
Visualisation Algorithm

J

Figure 3.2: Classification of EVA.

The specific aim of this study is the construction of a system for such a representation, and 

then to test this in an experimental setting. The system should be such that it can be used with 

as many different data sets and visual structures - i.e. that is, a generic system rather than one 

tied to a particular form of data or visual structure.

3.2 Fundamentals
Throughout this thesis the representation of multivariate data tables in an n x A: data matrix 

X ,  consisting of n  cases on k “quantifiable” variables æi, ^ 2 ,..., ajfc is assumed. Each row in 

the data matrix typically represents an individual and there are k observations made for each 

individual. As identified above, the objective is to construct a visualisation of the data table 

such that the salient features of the data can intuitively be recognised by an observer and the 

representation gives an overall view of the data set. Within this overall objective there are two 

further fundamental objectives:
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1. Naturalistic visual representation. It should be something encountered in everyday life, 

something that does not require special knowledge for interpretation by a normal human 

observer.

2. Automatic mapping. The mapping should be that semantically “important” features in 

the data are mapped to “important” features of the visual structure that are significant to 

human perception or emotion.

Examples of (1) include faces, buildings, body posture and scenery. No human needs 

to be an expert to recognise the emotional content of another human face - it is recognisably 

“happy”, “sad”, “angry”, “relaxed”, “scared”, “neutral” and in addition various combinations of 

these basic emotions. Frequently used throughout this thesis, is an example of a “face” because 

it is the epitome of a naturalistic visual structure in the sense that is presented here.

Given a set of data and a visual structure, it is trivially easy to construct a mapping from 

the data to a visual structure - for example map variable Xi to the ith facial feature as in Chernoff 

faces described in the literature. However, such a mapping is arbitrary - it does not take into 

account the impact of the face on the emotions of the observer. Now the data is of interest 

to the observer for some reason; associated with the data is some value system reflecting the 

interest, importance or consequences of aspects of the data for the situation of the observer. A 

fundamental goal, reflected in (2 ), is that the perceptually or emotionally significant features of 

the visual structure directly reflect the value system over the data. The term used in this thesis 

to describe this, is visual homomorphism. Hence the mapping from data to visual structure 

cannot be arbitrary, but must be constructed in such a way that this visual homomorphism is 

realised.

What follows is an explanation of how such a mapping can be constructed. Two different 

types of visualisation problem are considered: the first is the representation of the data matrix 

as a whole - one visual structure representing the entire data matrix, i.e. a face. The second, 

is where each row (i.e., individual) in the data is to be represented by a different instance of 

the same type of visual structure - so using faces again, each row is mapped to a different face. 

In the first case, the problem is to capture overall features of the same data set. In the second 

case the problem is to examine the differences in the individuals, or to examine one individual 

changing through time. In fact the method is very similar in both cases and does not affect the 

computation. The difference is on the focus and interpretation. The overall representation is 

first considered.
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3.3 Assumptions and Notation
Let g =  1,2, ...,p be p functions over the data, potentially all, representing “values”

over the data matrix and the interest of the user.

Consider the example where the data table represents a set of customers of a telephone 

company, and the variables are quantities such as age, gender, marital status, income, number 

of years with the company, number of telephone calls made per week, monthly phone bill, and 

so on. One value might be a function of the overall age distribution of the population - such as 

the mean age, the percentage over 65, or the percentage under 20. Another value might be the 

“flatness”of the data - for example the ratio of the variance of the first principal component to 

the total variation in the data. Another value might be the quality of service given by a telephone 

company and so on, and many other quantities that characterise the interests or “value system” 

of the observer.

Consider a visual structure (f2). Similarly there are p important aspects, of ÇÏ, called char­

acteristics, that are measurable and significant to human perception or emotions, Cg(ü), s — 

1,2, ...,p. In the example of the face these might be the degree of anger, happiness, boredom, 

fear - or characteristics such as age, beauty, gender and so on.

The fundamental goal, in terms of any X  and any O, is to produce a mapping p{X)  —  

such that the “value system” of the user over the data matrix, is reflected in characteristics of 

the visual structure. In particular that eg(n) is a monotonically increasing function of Us{X) 

for each s ,s  =  1,2,..., p. For example, an increase in profitability of a company should result 

in an increase of happiness of the corresponding visual structure.

A characteristic is a measurement of some aspect of Q as a whole (such as the emotions 

on a face) rather than some individual feature (such as the shape of the mouth). It is some 

measure representing the totality of the face i.e. the degree of “happiness”. The appearance of 

“happiness” depends on many different individual features of the face - specific configurations 

of muscle tensions, for example. Similarly, the appearance of beauty, age or gender is derived 

from many different features - such as size of the eyes, inter-ocular distance, shape of the mouth, 

symmetry, and so on. In other words, features are the individual components that make up a 

face - such as the specific configuration of muscle tensions for a specific face, or the geometric 

and material properties of the actual features like eyes, colour of the eye, mouth, nose and 

lips. Knowing its features enable us to render or produce a displayable image of a face. Once 

rendered the face will have a set of measurable “characteristics” (qualities).

Suppose that there are r  features of the visual structure: </>t(0), t  =  1,2,..., r. Knowing 

these features Cl can be rendered. Once rendered, we can measure it to determine its character­
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istics 6 g(n), a =  1 , 2 , ...,p.

Finally, we introduce feature functions over the data matrix: t  = 1,2,..., r. These

functions completely determine the features of the visual structure, in fact

=  A W ,  t =  l ,2, . . . , r (3.1)

The values of these functions are interpreted as the values of the features of the visual 

structure. The aim is to choose these functions /  in order to attain the required correspon­

dence between the value system over the data and the characteristics of the visual structure and 

therefore, to attain the visual homomorphism.

Let V =  and e — (e i ,6 2 , Cp). Suppose \\v — e\\ is a measure of the

‘distance’ between these two vectors. Then the specific goal is to choose f t{X) ,  t = 1 ,2 ,..., r  

such that ||f/ —e|| is minimised. If this is achieved, then the characteristics of the visual structure 

produced by the feature functions, best represent the “value system” of the data set. Figure 3.3, 

shows the notation diagrammatically. There are a series of transformations taking place bearing 

in mind the minimisation between the quantitative measurements of the data of interest to the 

use V, and the quantifiable qualitative measurements of the visual structure e. More specifically 

e =  C{B{A{X)))  and z/ =  D{X).

Data Tables Feature Functions Visual Structure

Minimise
Value System Characteristics

Figure 3.3: Different stages and transformations of EVA

3.3.1 Assumptions and Notation by Example

This Section explains further the notation presented above, through the illustration by a simple 

example. The data and visual structure chosen for this example, although they do not fall 

in the appropriate categories as described in Section 3.1, serve the purpose of giving a better 

understanding of the concepts involved.
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Suppose there is a collection of data X , in a data table of size n x  k, where n =  50 and 

k = 7. Each row (50 of them) in the data set is represented by 7 quantities, 6  of which are 

known to be input variables x i ,X 2 ,x z ,X 4 ,X5 ,xq, with the final column x j  representing the 

output variable of a function.

Let us assume that what is of interest to the user, is whether the data set originates from the 

dot product function (in this case x j  —  x \ ^  X2 + x ^ ^  x ^ - \ -  x ^ ^  x q ) ,  either regarded as whole, 

or in a row by row basis. Therefore, i>'i(X) =  \ x \  ^ X2 x z  ^ X4, -\- x ^  ^ xq — X'j\ is the “value 

system”, the only function in this example, of interest to the user.

b

Figure 3.4: Examples of triangles

Also consider a triangle to be the visual structure O with sides a, 6 , c and angles a , (3,7 . 

Although a triangle does not have naturalistic characteristics, as they are defined here, there are 

a number of qualities that can easily be observed by a user. How close to an equilateral triangle 

the visualisation is, is the quality aspect chosen (that is significant to human perception), to 

represent how close to the dot product the data is, whether one deals with the whole data set 

or is treating the data as individual rows. It is the only characteristic chosen of the selected 

visual structure, for the purposes of the example. The closer to the dot product the data is the 

closer to an equilateral triangle the visualisation produced by EVA should be. Hence, ei (fi) =  

(60 — o:)  ̂+  (60 — /3)  ̂+  (60 — 7 )  ̂is an obvious candidate for measuring the “closeness to an 

equilateral triangle”.

On the other hand, there are the features of Q, that allow the visual structure to be rendered. 

For this example, degrees for at least two of the angles are needed^. These two quantities are 

given from functions over the data. Hence, 0i(Q) = a  — f i ( X )  and 0(S7) = P = / 2 (X). 

Without any loss of generality it can be further assumed that these functions return results from 

(0to90) degrees, with 0 and 90 excluded. Therefore 7  =  (180 — o; — /3) and the visual structure 

can be constructed.

From the above, in order to attain the visual homomorphism, the right set of functions

^For sim p lic ity  reasons p osition  o f  the vertices o f  the triangle is  not im portant and w ill be ignored
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f i , / 2  need to be selected, so that ||i/i — ei|| is minimised. In other words, the set of functions /  

should be chosen so that the difference between how far the data is from the dot product func­

tion, fits closely with how far the triangle is to an equilateral. In such a case, data closely related 

to the dot product function, either rows or whole data tables, will be mapped to equilateral or 

close to equilateral triangles whereas for any other data, the visualisation will degrade away 

from equilateral triangles appropriately.

In Figure 3.4, the perfect equilateral triangle on the left, represents the visualisation of 

data closely related to the dot product function. The other shapes represent, from left to right, a 

gradual degradation away from this close fit with the dot product function.

3.3.2 Using Genetic Programming (OF)

The minimisation problem introduced above, that attempts to find the best set of functions to 

represent the visual structure Q, can be tackled using Genetic Programming (GP). Let Fi — 

i fi i ,  f 2 i,---,fri) be a specific set of feature functions which, when applied to X ,  produce the 

visual structure features. A large collection of such sets of functions Fi, i = 1,2..., N  is chosen 

at random. This collection defines a population of sets of feature functions. The ith member of 

the population produces a specific visual structure This visual structure has characteristics 

6s(Qi), s =  1,2,. . . ,p. These characteristics can be used to produce the distance measurement 

11 i/j — Cj 11. The distance measurement is directly associated with the “fitness” for the ith member 

of the population. Hence, each member of the population has an associated fitness, which can 

be expressed as a probability. An example might be to set minimum fitness of population to 1, 

maximum fitness to 100 and interpolate for values in between. These probabilities determine 

survival into the next generation and selection for mating - thus producing a second generation. 

The process continues until (possible) convergence. The most fit member of all populations is 

chosen for the required mapping.

It is expected that at each successive generation, the average fitness would increase 

[Koz92], until a generation is reached such that subsequent iterations produce only negligi­

ble increments in fitness. This is interpreted as convergence to a local minimum (solution). 

Different runs of the GP result in different solutions due to randomness of the technique and 

absence of a known optimal solution. The most fit member of each population is chosen for the 

required mapping.

The basic theory of GPs will be described in Chapter 5, to give a better understanding of 

how this optimisation function is realised in this method. Also that Chapter explains the reasons 

for choosing such a search technique as opposed to other existing ones.
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3.3.2.1 Msualising Individuals in a Data Matrix

The method above produces a visualisation for an entire data matrix. Instead the observer 

may be interested in visualising each individual (row) of the data matrix - in order to look for 

“special” individuals (eg. companies to add to an investment portfolio), or where the rows 

represent the changing of one individual through time, representing its evolution.

The method is fundamentally unchanged, and only involves a reconsideration of the do­

main of the feature functions / .  Previously, the domain of these functions was the whole of the 

data matrix X .  Instead, the domain is now over the variables represented by the columns of the 

data matrix. So each individual row of the data produces a set of feature function values, which 

therefore determines (renders) a visual structure for each row.

Similarly, the domain of the value functions u is restricted also to the variables represented 

by the columns. Hence each row now produces a distance measure - that between the char­

acteristics of the visual structure for that row, and the values over the data for the row. The 

overall distance for the ith member of the population of sets of feature functions can therefore 

be taken as a combination (e.g., a sum) of the distances over all rows of the data. The method 

then proceeds as before.

3.4 Overview
A summary of the steps required in order to implement the method is described below, using 

the notation above. Figure 3.5 gives a graphical visualisation of the overview of the method.

1. Decide on Q, the type of visual structure to be used. Determine the number of features O 

has. Assuming there are r, /^(X ), t = 1,2..., r  feature functions are required in order to 

render an individual.

2. The user, identifies the p important values, functions over the data set, f/g(X), g —

1,2, ...,p.

3. Identify ea(Q), s =  1,2, ...,p the p characteristics of the visual structure that measure its 

totality and are significant to human emotions and perception. This can be selected by 

the user or automatically selected by the system.

4. Identify the fitness function i.e. the function we are trying to minimise, which is, for 

example:

P -2 )
d=l s = l

5. Identify the GP parameters and run the GP.
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Figure 3.5: Overview  o f the m ethod.

The steps shown above achieve the visual hom om orphism  described earlier. In other 

words, it can be defined as the ‘extraction and visualisation o f  qualitative data from quanti­

tative o n e ’.

3.5 Discussion
This section has presented a m ethod for autom atic determ ination o f  a m apping from  data to 

visual structure. It requires a user (som eone interested in the data) to construct a set o f  value 

functions o f  interest over the data. The designer o f the visualisation m ust decide on a type o f 

visual structure, and a set o f  perceptually or em otionally significant characteristics o f this visual 

structure that m atches the num ber o f value functions inserted by the user. The visual structure 

must be determ ined by a set o f quantifiable features. G enetic Program m ing is then used to 

construct the m apping that m inim ises som e given m easure o f  distance betw een w hat the user 

inserted as value functions over the data and w hat the designer provided as characteristics o f  

the visual structure. The m inim isation criterion is the only factor that specifies the exact nature 

of the m apping.

For the m ethod to w ork it is assum ed that the GP will converge. In such a case w e can 

hypothesise that the observer will pick up out im portant features o f the data from  this m apping.
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In order for the method to be of any use it will have to be tested. Before presenting results 

of testing the method, a description of a particular visual structure, the human face, how we 

render it as well as how we measure its characteristics will be presented. This will be followed 

by a review of the genetic programming literature.



Chapter 4

Using Human Faces and Measuring Human 

Emotions

This chapter describes the use of faces in EVA. As mentioned before, this study regards human 

faces as the epitome of naturalistic visual structures. In this thesis, based on EVA, multi-variate 

data sets are mapped into, and therefore represented by, facial models.

What follows is a brief description of the available technologies on facial models, suc­

ceeded by a description of the 3D facial model used in this study. It is also, a pre-requisite of 

EVA to be able to generate, but most importantly, measure synthetic facial expressions auto­

matically. Therefore, details of a new technique that quantifies emotional expressions based on 

what people say, will also be presented.

4.1 Parameterised vs Muscle Face Models
The human face is the most complex part of the human body when it comes to the number of 

possible deformations of its surface. For this reason, selecting a suitable surface description was 

vital. Polygon topology is a rapid method commonly used, as the classical graphics pipeline 

uses this representation most efficiently.

It is this representation that Parke [Par72] used for developing his first parameterised 

model, and has been used extensively since then. Although Parke’s work may seem dated 

by todays’ standards, his parameterised models still provide an important template for much 

of the modelling that is carried out today. His technique involves building a set of parameters 

which describe a human face and it’s expression [Par82]. Parke also included conformational 

parameters such as the size of the head and neck, skin colour and jaw width that all vary from 

one individual to another and therefore make each of us different. Using simple topology, face 

images are generated by moving the vertices in line with the parameter sets provided by the user. 

A series of simple geometric transformations produce the features of the face and interpolation
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is used to move between each expression.

M uscle m odels may also be used. Waters [Wat87] introduced a sim ple yet effective tech­

nique for sim ulating the muscles o f the human face. He considered deform ing a polygon mesh 

using a muscle vector function. His technique regards muscles as single directional vectors, 

with a “head” that is connected to the bone o f the skull, and a “ tail” that is connected to the 

flesh o f the face. As a muscle contracts it pulls the skin towards the point at which is connected 

to the skull. Each muscle has a zone of influence and the vertices o f  the polygon mesh describ­

ing the surface o f the face are moved according to the contraction o f the muscles. W aters’ work 

has been extended by many currently working in facial animation and more realistic models are 

being built all the time based on his ideas.

4.2 The Face Model - GEOFACE
The work o f Keith Waters from the Digital Research Labs in Cam bridge resulted in the original 

Geoface program, a face-m uscle model utility, that is based on the theories o f Keith Waters 

and Fred Parke [PW96]. Their model dem onstrates a method o f producing expressions on a 

com puter generated face, by using mathem atically modelled m uscle deformations.

This thesis uses an improved model o f the one produced by Frederik Parke and Keith 

Waters. The muscles used for this improved model can be seen as red lines in Figure 4.3. 

Appendix B, gives a more detail description of Geoface and the extensions to the current version 

being used. Figure 4.1 shows a particular face model in different display models, from left to 

right: Gouroud shading, polygonal, line and point display model.

Figure 4.1: Facial geom etry of a specific human model.

4.2.1 Generating Facial Expressions

Ekman [EF78] developed the Facial Action Coding System (FACS). This system provides a 

notation for recording and describing the expressions of the face by considering the com bina­

tions o f muscles that are used to create them. Ekman [Ekm79] identified six key expressions of
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em otion which can be recognised across most cultures. Some can be seen, in the model being 

used here (Figure 4.2 i.e. “neutral” , “anger”, “sadness” , “happiness”, “fear” , “surprise” and 

“disgust” .

Figure 4.2: From top left, “happy” , “sad”, “fear” , “angry” , “disgust” and “surprise” faces, 

generated using the improved Geoface model used in this study.

The FACS guide, uses an intentionally literal nomenclature to describe its measurem ent 

units, called “action units” (AUs), in order to avoid built-in biases about the possible meanings 

o f facial activity. So, instead o f  “angry” , “sad” , “frown” or “sm ile” the units have nam es such 

as “nose wrinkle” , “cheek puffer”, and “dim pler” (there are 46 such measurem ent units) most 

denoting the activity of a single muscle.

FACS uses numerical formulas that break down every facial expression into its basic units: 

which muscles move, for how long, with what intensity, in what overall pattern. For exam ple the 

sim plest expression is happiness. It can either be broke down to the num ber “ 12” , representing 

the “ lip corner puller” , or the value “6+12” with the value “6” representing the “cheek raiser” .

By using FACS, generating facial expressions becomes a simple task. It simply requires 

assigning contraction values to the muscles o f the facial model, taking into consideration the 

maximum contraction values for producing realistic faces. For example, Ekman describes hap­

piness as a contraction o f the left and right zygomatic major muscles (this is one variation of 

happiness). From inspection, we can set a contraction value for these two m uscles which de­

scribes what would be considered a perfect smiling face. We can then set those values as limits
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of the contraction values for the muscles in question.

Therefore in order to generate a realistic number of random facial expressions, the produc­

tion of random sets of contraction values (one set for each face) is all that is required. In each 

set there will be a contraction value for each of the muscles, taking into consideration the range 

of values each muscle can have.

4.2.2 The Need to Measure Facial Expressions Independently

As mentioned in the previous chapter, EVA requires automatic measurement (quantification) of 

the emotional expressions of interest. An easy way to measure the emotional expressions would 

be using Ekman’s FACS system. As described above, there would be a muscle set associated 

with a “perfect” emotion i.e. a muscle set describing what would be considered a “perfect” 

happy face. This muscle set is then compared with those on a specific generated face and 

produce a mean square error from the ideal.

However, is it the right thing to do? It will be more appropriate to have user subjective 

responses on the matter, since it is real people who will draw conclusions from observing the 

facial models.

Of course having a group of users, during training of the Genetic Program, to evaluate 

every single face produced, for a number of emotions is a very time consuming task. In the 

simplest run, there could be 500 faces per generation, with at least 50 generations in total and 3 

different emotions. Ideally, a number of user responses is required for each emotion, say 3, with 

safely speaking 15 seconds needed on average per response. This accumulates to 3,375,000 

seconds or 937.5 hours of non-stop work, an impossible task especially when one takes into 

account that more than one run of the Genetic Program is usually needed.

Having said that, there is a way round this problem, which still relies on users’ subjective 

responses, indirectly. What follows is an explanation, analysis and results from a technique 

that measures emotional expressions on a specific facial model automatically, based on user’s 

subjective evaluations [LSLOl].

4 .2 3  M easuring Emotional Expressions

An experimental set-up was created to quantify emotional expressions on the face, for the fol­

lowing emotions: scale of happiness-sadness, scale of anger-calmness and scale of fear. This is 

achieved based on movement of a number of points ( “landmarks”) on the face that are signif­

icantly influenced by muscle contractions in relation to a stationary landmark. 25 such points 

are used. These are mainly points near the eyes and the mouth, in addition to a stable point that 

is used as a reference. This reference point was selected to be a point on the surface of the face



4.2. T he Face  M o del  - GEOFACE 51

which is not affected by muscle contractions. The num ber 25, o f landmarks on the face, was 

selected using a trial-error method. M ore than 25 points were found not to improve the results 

further. The main criterion for the selection was that the points chosen are within areas affected 

by m uscle contractions. In fact for any single m uscle a num ber o f landmarks was assigned in 

its area o f influence. Figure 4.3 shows the position o f these points together with the reference 

point highlighted as small squares. In the same figure the vertices in the area o f influence o f  the 

muscles are drawn in white. The 25 points lie in this area hence their squares are white, where 

as the reference point lie outside, hence highlighted in skin colour (bottom right corner o f  the 

image).

ir

Figure 4.3: The 25 landmarks and reference point chosen. M uscles are shown as red lines.

4.2.4 Experiment and Results

Two sets o f data (randomly created facial expressions) were created, the first consisting o f  200 

faces and the second o f 150 faces, and positions of each o f the “landm arks” , for each face, were 

recorded with respect to the reference point. Specifically, the distances o f  the 25 points from 

the reference point were recorded for each face. Users, postgraduate students at the C om puter 

Science Departm ent o f UCL, were asked to assess all o f the em otions on 50 different faces. 

In total, each of the faces was subjectively assessed for em otional state by 3 different people
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for each emotion (from a pool of 30 people) for both data sets. The answers of the subjects 

(the mean for each facial expression) for the first data set only, were used to create symbolic 

regression equations with a response variable yi representing the individual emotional expres­

sion and explanatory variables x i , i  =  1,..., 25 representing each of the landmarks on the face. 

This is a process of fitting, for each expression, the best (or one of the best) possible function 

that best represents the 200 faces^ lying in a 25 dimensional space. This search space problem 

was also implemented using a Genetic Program, resulting in a different equation per emotion. 

These are equations over the distances of the landmark variables influenced by different muscle 

contractions in relation to the stationary point.

The second data set was then used to verify the equations formed. Highly significant 

positive correlations (as shown below) were found, between the results from the equations pro­

duced by the Genetic Program, and the user’s subjective evaluations. This result, allows us 

to conclude that these estimated regression equations are a good approximation to the user’s 

subjective evaluations of the emotional expressions for this particular synthetic face model.

4.2.4.1 Training data - GP configuration

Objective: Find a function of one variable yi and 25 dependent variables, in 

symbolic form, that fits a given sample of 2 0 0  data points (faces).

Terminal set: z =  1,..., 25 where Xi are the landmark points on the face.

Function set: 4-, —, %, *.

Fitness cases: 2 0 0  faces.

Raw fitness: The sum, taken over the 200 fitness cases, of the RMS error between 

value of the dependent variables produced by the S-expression and 

the target value yi.

Standardised fitness: Equals raw fitness.

Hits: Number of fitness cases for which the value of the dependent 

variables produced by the S-expression comes within 0.01 of 

the target value %.

Wrapper: None.

Parameters: Population Size =  750, Generations — 70.

Success predicate: An S-expression scores 20 hits.

Table 4.1: Genetic Programming symbolic regression details

’The 2 0 0  random ly created fac ia l exp ression s from  the first data set w h ich  w as u sed  for training
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Figure 4.4: The corresponding m easurem ents for degree o f happiness (H), degree o f anger (A) 

and degree o f fear (F) for the 2 faces, for the best individual in generation 1, 20, 50 and 70 (last 

generation) are presented.
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Figure 4.5: The evolution of RMS error of best-of-generation individual against the number of 

generations for the Happiness-Sadness scale.

In Figure 4.4, the evolution of the Genetic Program^ for the different expressions is shown: 

degree of happiness, degree of anger and degree of fear. We arbitrarily select the two faces 

shown on top of figure 4.4 for presentation in more detail here. All the other cases show similar 

types of results. The measurements for the three different expressions are shown with degree 

of happiness identified by the letter H, degree of anger identified by the letter A and degree of 

fear by the letter F. Next to each graph there is a wider bar, rendered black, showing the average 

response for the emotional expression encountered, from a pool of at least 3 measurements. This 

is in fact the target result of the symbolic regression of the GP. The rest of the bars in each graph 

show measurements for the different expressions of the best-of-generation individual GP for 

generations 1,20,50 and 70. As can be seen, the difference between target measurements which 

are user evaluations and GP measurements decreases, as the number of generations increases. 

This decrease is also evident in Figures 4.5, 4.6 and 4.7 where for each expression there is a 

plot for the root mean square error (RMS) of best-of-generation individual against the actual 

number of generations.

From these figures it can concluded that the GP is learning over time, and from the two 

examples given in Figure 4.4, the measurements for emotions of best-of-generations GP indi­

vidual appear to be almost identical to the user’s subjective evaluations.

Therefore, the evidence suggests that the estimated regression equations produced by the 

GP are a good approximation to user subjective evaluations for the emotional expressions that

A  description  o f  G en etic  Program s can be found in Chapter 5
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Figure 4.6: The evolution of RMS error of best-of-generation individual against the number of 

generations for the Angry-Calm scale.
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Figure 4.7: The evolution of RMS error of best-of-generation individual against the number of 

generations for the Fear-Relax scale.
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are encountered here.

4.2.4.2 Results

Is there evidence of positive correlation between X  and Y,  with X  being users evaluations of 

the emotional expressions and Y  being the scores for the emotional expressions produced from 

the estimated regression equations?

Emotion observed ti critical t a tp  — 0.01 and 148 d.o.f.

Happy/Sad 0.85 19.7

Angry/Calm 0.75 13.8 2 .6

Fear/Relax 0.67 10.5

Table 4.2: Tabulated t.

For the first emotional expression, as shown in Table 4.2, the happiness-sadness scale

r\ =  0.85 and the test statistic is t\ =  19.7. For anger-calm scale T2 — 0.75 and t\ =  13.8 

whereas for fear-relax we have =  0.67 and ts = 10.5.

The t-test is performed on the evaluation (and not the training) data set of 150 faces. On 

148 degrees of freedom the critical t =  2.6 at 1% significance level.

Hence the correlations are significantly different from 0, for all three cases, and there is 

evidence of high positive correlation between variables X  and Y . Therefore, there is evidence 

that the estimated regression equations will produce similar results to user evaluations of emo­

tional expressions for the facial model we use, and hence we can replace user’s evaluations 

with these equations. The similarity is evident in Figures 4.8,4.9 and 4.10 where scatterplots of 

the two measurements (user evaluations and estimated regression equations) are shown. As can 

be seen from the graph very clearly there is a positive correlation between the two variables.

4.2.5 Using Principal Component Analysis to Improve this M ethod

Although the results from the method above appear satisfactory there might be scope for im­

provement. It is obvious that the data set used to perform the symbolic regression is high 

dimensional and very “noisy” making the search task difficult. Not only is not possible to know 

which of the 25 “landmarks” on the face mostly influence the results, the search method is 

dealing with subjective measurements. Therefore noise comes as a natural consequence. It 

was believed that using Principal Component Analysis (PCA) could improve results or more 

correctly, may prevent results from being more inaccurate. PCA is a statistical analysis tech­

nique that enables us to represent most of the variation (95% - 99%) observed in a set of data, 

which is characterised by a huge number of parameters, using a relatively small set of different
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Figure 4.8: The mean user measurement of happiness-sadness scale plotted against the value 

produced by the symbolic regression for the evaluation data set of 150 faces. The two sets of 

values are highly correlated, =  0.85.
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Figure 4.9: Mean user measurement of angry-calm scale plotted against the value produced by 

the symbolic regression for the evaluation data set of 150 faces. The two sets of values are 

highly correlated, =  0.75.
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Figure 4.10: Mean user measurement of fear-relax scale plotted against the value produced by 

the symbolic regression for the evaluation data set of 150 faces. The two sets of values are 

highly correlated, =  0.67.

parameters. What follows is a step by step description of how PCA was performed in our data 

set. The theory is based on Jackson [Jac96].

To begin with a data vector, x, is constructed, which consists of all the parameters that 

characterise the initial data known as the training data. In this case the data vector x  would 

consist of the 25 control points, which are the distances of each “landmark” on the face from 

the reference point. Therefore:

X  =  { x i , X 2 , (4.1)

where k = 25.

Given this vector representation and m  examples in the training data set, in our case m  = 

2 0 0  (the number of faces in our training set), we compute the mean vector x  as follows:

 ̂ m

1=1
(4.2)

where Xi, is the data vector of the example in the training set.

Next we have to compute the deviations {xi — x), from the mean and construct the scatter 

matrix (also known as the covariance matrix) S, which is given by:

1
S  = — ' ^ { X i  -  x){xi  -  x y  

1 = 1

(4.3)
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and compute its eigen solutions.

It is important to note that the scatter matrix is positive semi-definite and hence all the 

eigenvalues, Aj >  0 .  Now, we order the eigenvalues and number them as A i ,  A 2 , such 

that Ai >  A2 >  ... >  Afc > 0 , where k is the number of elements in a data-vector (in our case 

it is equal to 25). The corresponding unit eigenvectors are then given the same subscripts and 

will be represented here by the symbols Pi ,P2 , Thus we have:

Spk — ^kPk^ Afc > A/g_|_i A P]ç.pk — 1 foT k — 1,2,..., 25 (4.4)

The eigenvectors form an orthogonal set of vectors, which span the n-dimensional space 

of the components of the data vectors. Therefore, by taking the mean and adding linear combi­

nation of the eigenvectors to it, any point in this n-dimensional space may be reached.

The trace of the covariance matrix is equal to the total sum of the squared differences, 

which represent the mean total variation of all elements of the data-vector, x ,  over all the ex­

amples in the training data set, and is equal to the sum of all the eigenvalues. Hence, the 

eigenvalues describe the variance of each component of the data vector. It can be shown that 

the eigenvectors describe the modes of variation in the data vectors across the training set, and 

that the variance explained by each eigenvector is equal to the corresponding eigenvalue. This 

means that the eigenvectors corresponding to the largest eigenvalues describe the most signifi­

cant modes of variation in the variables used to derive the covariance matrix.

This results in a set of rapidly decreasing eigenvalues whose total is bounded above by the 

trace of S. It is also evident that the use of all the eigenvalues would correspond to over-fitting, 

and that by discarding the small eigenvalues the noise and unrepresentative details in the data 

would be minimised. This is illustrated in Figure 4.11 where the first 5 principal components are 

adequate to represent 99% of variation in the data. This means that most of the relevant variation 

can be explained by a relatively small number of dimesions, t. One method for calculating t 

is to choose the smallest number of principal components, such that the sum of their variances 

explains a sufficiently large proportion of Xt , the total variance of all the variables, where:
n

= (4.5)

Therefore, any data-vector in the training data set can be approximated using the mean and 

a weighted sum of the deviations obtained from the first t  modes using the following equation:

X  =  x - \ -  P b  (4.6)

where,

P  =  i p i P 2 - P t )  (4.7)
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Figure 4.11: A plot showing the A, the eigenvalues of our data set. 

is the matrix of the first t eigenvectors, and

b = {bib2...bt)^ (4.8)

is a vector of weights. It’s also necessary to note that, by definition (equation 4.7), P  is an n * t 

matrix and hence is, in general, not square. Thus, in general, P~^ is not defined. However, 

since p^pk = 1 (equation 4.4), it is possible to use in place of to project out the 

weights required to parameterise a new data-vector via equation 4.9, which is given below:

b — P ^  {x — x) (4.9)

Equation 4.6, allows us to generate new examples of the data by varying the parameters, 

bk, within suitable limits, so that the new examples will be similar to those in the training set. 

The parameters, bk, are linearly independent, though there maybe some statistical non-linear 

dependencies still present. The limits for the bk are derived by examining the distributions of 

the parameter values required to generate the training set. Since the variance of bk over the 

training set can be shown to be Xk, suitable limits are typically of the order of:

— 3\/Âfc ^bk ^  3\/Âfe (4.10)

since most of the population(99.73%) lies within three standard deviations of the mean.

Equation 4.9 can then be used, to map our original data set in to this new environment 

which is less “noisy”. Having mapped both our training and evaluation sets into this new envi­

ronment we can proceed as before. The training set was used to perform symbolic regression on 

it and the evaluation set was used to measure whether the equations produced by the symbolic 

regression are significantly correlated with users’ subjective evaluations.
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4.2.5.1 Results after PGA

As expected there was a slight improvement in the results if symbolic regression was performed 

in this less “noisy” environment. Table 4.3 underlines this.

Emotion observed U critical t at p=0.01 and 148 d.o.f.

Happy/Sad 0.87 2 0 .6

Angry/Galm 0.77 14.7 2 .6

Fear/Relax 0.75 13.8

Table 4.3: Tabulated t after PGA.

For the first emotional expression, the happiness-sadness scale — 0.87 and the test 

statistic is =  20.6. For anger-calm scale r-2  ̂ =  0.77 and t i  =  14.7 whereas for fear-relax we 

have — 0.75 and (3 =  13.8.

The t-test is performed on the evaluation (and not the training) data set of 150 faces. On 

148 degrees of freedom the critical t =  2.6 at 1% significance level.

Hence the tests are significant for all three cases and thus there is evidence of a high 

positive correlation between the two variables. Therefore, there is evidence that the estimated 

regression equations will produce similar results to user evaluations of emotional expressions 

for the facial model we use and hence we can replace users with these equations.

4.3 Conclusions
In this chapter a synthetic human facial model was presented. Geoface, improved and used in 

EVA to represent multi-dimensional data sets. A technique to randomly generate facial ex­

pressions was described in addition to a technique that enables us to quantify the individual 

emotional expressions based on user assessments. It is a pre-requisite of EVA that such a tech­

nique exists, hence its development. The next Ghapter concentrates on Genetic Programming, 

the search technique used to find a good mapping from the value system of the data table, to the 

significant characteristics of the visual structure, as described in Ghapter 3.



Chapter 5

Genetic Programming Review

Genetic Programming (OF) is a technique pioneered by John Koza [Koz92] which enables 

computers to solve problems without step by step, instructions. It is one of a wide range of 

Evolutionary Computation (EC) techniques and a descendant of John Holland’s genetic algo­

rithms (GA). GP (and GA) is one of several problem solving methods based on computational 

analogy to natural evolution,

GPs automatically generate computer programs. The theory states that there is no need 

to know anything about the problem trying to solve, as long as there is a “black box” which 

evaluates the solutions proposed. However, in practice the use of these methods should not be 

a substitute to thought, since performance of the methods can be considerably enhanced with 

built in problem specific knowledge.

5.1 Why are we Using GP
Koza in a foreword address in the book[BNKF98], identifies future areas for practical applica­

tions of GPs based on a number of characteristics. Some of these characteristics are true for the 

problem tackled in this thesis and are mentioned below.

More specifically, he identifies areas where the interrelationships among the relevant vari­

ables are poorly understood, or where it is suspected that there may be more to the current 

understanding. The complexity of the interrelationships of the variables of the data used in 

this thesis (e.g. in the financial problem described in Section 3.1), and the lack of an existing 

underlying theory, makes our understanding poor by default.

Additionally, Koza mentions the area where an approximate solution is acceptable, or it 

is the only result that is ever likely to be obtained. The subjectiveness of both interpretation 

of our data set and interpretation of the naturalistic visual structure, makes an optimal solution 

non-existent.

Also areas are mentioned, where conventional mathematical analysis does not, or cannot.
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provide analytic solutions. The fact that the solutions cannot be treated independently (e.g. the 

financial ratios in the financial data example), and that solutions are subjectively interpreted 

makes mathematical analysis hard to interpret.

Finally, Koza identifies areas where there is a large amount of data, in computer read­

able form (e.g. data tables), that requires examination, classification, and integration, such as 

financial data. Such data are of main interest to this study.

The above reasons, qualify GP techniques as a good candidate to solve the minimisation 

problem of interest to this study, explained in Chapter 3.

5.2 Introduction
Over the years, biologists have identified many principles which govern the evolution of living 

things, at several levels of detail. At the highest level, the Darwinian theory of natural selection 

or survival of the fittest governs the evolutionary adaptation of the biological world from the 

smallest virus to the most complicated mammal. Entities that are better able to perform tasks 

in their environment (i.e. fitter individuals) survive and reproduce at a higher rate than less 

fit entities. The power of Darwin’s theory lies on its general applicability which is even now 

reshaping many of the sciences [Den95]

Offspring usually result from the growth of a single cell which contains a single specific 

example of the genetic material for that species. Through that genetic material the parent(s) 

influence the inheritable structure and function of the offspring. Different species transfer the 

genetic material for offspring differently, but in all species the parent(s) provide the material 

in some way or other with some random modification to the genetic material to distinguish the 

genetic endowment of the offspring from that of the parent.

In sexual recombination (crossover) we have two parents that merge and some genetic 

material is taken from each one of them. Mutation is the random modification briefly explained 

above.

The evaluation of the individual through its reproductive performance (called fitness) and 

the creation of a genetic plan for the offspring are central themes in the evolutionary adaptation 

of biological organisms.

These themes can be applied to the evolutionary adaptation of computer structures, result­

ing in the field of Evolutionary Computation whose central focus is to apply the concepts of 

selection based on fitness to a population of structures in the memory of a computer.
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5.3 Evolutionary Computation
The natural world abounds with structures of incredible complexity and apparent cleverness. 

Since the time of Darwin, it has been increasingly clear that these structures didn’t just happen, 

but rather evolved. The concept of natural selection or survival of the fittest has been seen to be 

a very powerful paradigm, given the existence proof of the biological world [Koz92].

Any solution of a problem can be conceptualised as a search through the space of all 

potential solutions. However, the search may be radically different. For example it can be 

deterministic or stochastic, complete or incomplete, blind, partially sighted and heuristic.

Evolution can also be seen as a search process. This search process is usually trying a few 

possibilities, deciding how “fit” they are and using the information to decide which others to try 

next. The procedure is repeated until an individual is found that solves the problem, i.e. has a 

high enough “fitness”.

A computer program can be thought of as a particular point within a search space of all 

such programs. The search space is likely to be infinitely large. Evolutionary Computation 

can sometimes be considerably more powerful than alternative search techniques, such as ex­

haustive or random search. Its directed search makes it possible to find solutions to problems 

quickly, on tasks that would take random search considerably longer than the life of the uni­

verse. The search is directed by rules and principles used to guide the algorithm to portions 

of the search space that are likely to contain better solutions. Different search techniques are 

described below, and reasons are given for choosing Genetic Programming techniques to solve 

the optimisation problem, presented in EVA.

5.4 Search Techniques
Generally search techniques can be divided into calculus-based, enumerative and stochastic, 

as shown in Figure 5.1. Typically there are a number of aspects taken into account for each of 

these search techniques. Namely, the representation of the solutions, i.e. the data structure used, 

the search operators that help move from one configuration to the next and finally the search 

mechanism that defines how the search space is explored.

Enumerative Techniques in principle, perform a blind search of every point in the search 

space to find the solution. No knowledge of the search space is used to perform the search. 

The procedure is indeed simple to implement but in the learning domains, the possible points 

are far too large for direct search, with the most interesting problems. In contrast, GP works 

in a combinatorial space suffering from the so-called curse of dimensionality. The volume of 

the solution space is so big that performing an exhaustive search on such space is potentially
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Figure 5.1; Search Techniques [LQ95].

impossible.

Calculus based techniques require the search space to be “smooth”, well structured with 

not many local optima. The search space is treated as a continuous multi-dimensional function 

and search is looking for maxima (or minima). Search is initiated at some point of the search 

space with each step moving to a neighbouring position with better objective function values. 

Hill Climbing techniques belonging to this category, tend to get stuck into local optima, es­

pecially when dealing with complex search spaces. Calculus-based techniques are better used 

upon well behaved problems or problems which can be transformed to become well behaved.

Stochastic search (using pseudo random numbers) uses information from the search to 

guide the probabilistic choice of the next point(s) to try. They are general in their scope, being 

able to solve some very complex problems that are beyond the abilities of either enumerative or 

calculus based techniques.

Simulated Annealing searches for minimum energy states using an analogy based upon the 

physical annealing process where large soft low energy crystals can be formed in some metals 

(e.g. copper) by heating them and then slow cooling. It is a single point to point search and 

therefore can converge to local optima.
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Evolutionary algorithms simulate a collective learning process within a population of 

individuals. Each individual represents a point structure in the search space of potential solu­

tions to a specific problem. After arbitrary initialisation of the population, the set of individu­

als evolves towards better regions of the search space by means of partly stochastic processes. 

Partly stochastic since the environment provides quality or fitness information as feedback about 

the search points.

In Evolutionary Strategies [Rec73], [Bac96] unlike GAs [Hol75] and GPs, encoding of 

individuals in the search space, is through the use of vectors of real values. Each new point 

is created by adding some random noise to the current one. If the new point is better, search 

proceeds from it, otherwise the older point is retained. In contrast a GA represents points in the 

search space by a vector of discrete (typically fix sized) bit values.

GA and GP are a form of beam search due to the fact that they retain a population (rather 

than a point-to-point search) of candidate solutions that is smaller than the set of all possible 

solutions [Ang93] [Tac94] [Alt94]. Beam search is a compromise between exhaustive search 

and hill climbing. In a beam search, some “evaluation metric” (the fitness function in GP) is 

used to select out a certain number of the most promising solutions for further transformation. 

All others are discarded. The solutions that are retained are the “beam” (the “population” in 

GP). A beam search limits the points it can find in search space to all possible transformations 

that result from applying the search operators to the individuals in the beam. GP also regulates 

the contents and ordering of the beam. The contents are regulated by the genetic operators and 

the ordering is, for the most part, regulated by fitness-based selection. Simply put, the more fit 

an individual, the more likely it will be used as a jumping-off point for future exploration of the 

search space.

For the problem Empathie Visualisation Algorithm is trying to address, there are a number 

of important aspects that were taken into account, before selecting GP as the appropriate search 

technique. First of all, the search space of all combinations of sets of feature functions is huge, 

hence enumerative approaches can be safely excluded. Moreover, nothing can be said about 

this spaces’ nature and more importantly whether it is relatively smooth, well behaved, with few 

local optima. In fact, it can be safely assumed from its complexity, that the search space is quite 

rough and high dimensional, making stochastic techniques the only possibility. Additionally, 

the nature of population-based stochastic techniques make them more suitable for the unknown, 

complex search space the method is trying to explore. Furthermore, bearing in mind that a 

combination of muscular functions are collectively evolved, the need for modular programming 

can be assumed. The fact that GP supports modular programming through automatically defined
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functions (ADFs) and hence a different ADF can be used per muscular function, strengthes the 

choice made.

Below there is a brief description of Genetic Algorithms followed by a more detailed one 

for Genetic Programming.

5.5 Genetic Algorithms (GA)
The original work that led to Genetic Programming was Genetic Algorithms. The GA, pio­

neered by Holland [Hol75] his students and colleagues at the University of Michigan, Goldberg 

[Gol89] and others, is a highly parallel mathematical algorithm that transforms a population of 

individual objects each with an associated fitness value, into a new generation of the population. 

It uses the Darwinian principle of reproduction and survival of the fittest and naturally occur­

ring genetic operations such as crossover (sexual recombination which is in fact the principal 

genetic operation) and mutation. Each individual in the population represents a possible solu­

tion to a given problem. The GA attempts to find a very good or best solution to the problem 

by genetically breeding the population of individuals.

Genetic Algorithms frequently operate on fixed length character strings, often binary, as 

the structure undergoing adaptation. Fitness is determined by executing task specific routines 

and algorithms using an interpretation of the character string as the set of parameters.

Crossover is the principal genetic operator employed, with mutation included as an oper­

ator of secondary importance. The three dominant different approaches of crossover are one- 

point crossover, two-point crossover and uniform crossover. With one-point crossover one value 

representing the position in the string is chosen at random, and the values of the bit strings are 

interchanged at that particular point. With two-point crossover two values representing the po­

sitions in the string are chosen at random, and the values of the bit strings in-between the two 

values are interchanged. In uniform crossover individual vector positions between parents are 

swapped with a 50% probability. It must be pointed out that individuals are selected for recom­

bination almost always based on their fitness. Figure 5.2 shows an example of the results that 

each of the operations produce.

Besides crossover, other genetic operations are used to create offspring from parents. Al­

lele mutation, usually called bit-flipping mutation when working on binary vectors modifies a 

single position in the parent vector by assigning it a new random value from the appropriate 

range for the feature.

In preparing to use the conventional GA operating on fixed length character strings to 

solve a problem, the user must determine; the representation scheme, the fitness measure, the
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Individuals: A: A o  A i  A z  

Results:
A s A 4 A s B: B o B i B z B s B 4 B s

One point crossover (at position 2):

C: A o  A i  B z B s B 4 B s D: B o B i A z A s A 4 A s

Two point crossover (at position 2  and 4)

C: A o  A i  B z B s B 4 A s D: B o B i A z A s A 4 B s

Uniform crossover (not unique)

C: B o  B i  A z A s A 4 B s D; A o A i B z B s B 4 A s

Figure 5.2: Example of different crossover mechanisms.

parameters and variables for controlling the algorithm, and finally a way of designating the 

result and a criterion for terminating a run, [Koz94].

Specification of the representation scheme starts with a selection of the string length L  

and the alphabet size K . The fitness measure assigns a fitness value to each possible fixed- 

length character string in the population. The primary parameters for controlling the GA are 

the population size, M, and the maximum number of generations to be run. Each run of the 

GA requires specification of a termination criterion for deciding when to terminate a run and a 

method of result designation.

The GA involves probabilistic steps for at least three points in the algorithm. First of all, 

the creation of the initial population. Secondly, the selections of individuals from the population 

on which to perform each genetic operation (reproduction, crossover), and finally, the choice of 

a point in which to perform the genetic operation.

As a result of this probabilistic nature of GA, it may be necessary to make multiple inde­

pendent runs of the algorithm in order to obtain a satisfactory result for a given problem.

In practice, the GA is surprisingly rapid in effectively searching complex, highly non- lin­

ear, multi-dimensional search spaces [Koz92]. This is all more surprising because the GA does 

not know anything about the problem domain or the internal workings of the fitness measure 

being used.

The power of GA is being demonstrated for an increasing range of applications; financial, 

imaging, VLSI circuit layout, gas pipeline control and production scheduling [Dav91a]. But one 

of the most intriguing uses of GA - driven by Koza [Koz92]- is automating program generation.
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5.6 Genetic Programming (GP)
GP is an offshoot of GA, but in some ways it is more of a generalisation rather than a special­

isation of its parent discipline, since it is more expressive. Expressiveness is achieved, due to 

the nature of the representation of a GP, a computer program as opposed to “fixed” length bit 

strings in conventional GAs.

Existing methods do not seek solutions in the form of computer programs. They include 

specialised structures which are nothing like computer programs (e.g. weight vectors for neural 

networks, chromosome strings in conventional GA). Each of these specialised structures can 

facilitate the solutions to certain problems and many of these facilitate mathematical analysis 

that might not otherwise be possible. However they are an unnatural and constraining way of 

getting computers to solve problems without being explicitly programmed.

GPs on the other hand use the principles that govern nature into computer programs. These 

programs have the flexibility needed to express the solutions to a wide variety of problems, it is 

an executable genetic material. Also, computer programs can take the size, shape and structural 

complexity necessary to solve problems. This is because its non-linear tree structure genetic 

material can vary in length. Finally, computer problems have a way to solve the problem of 

program induction, the actual GP algorithm.

5.6.1 Emergent Intelligence

In contrast to the traditional knowledge based approaches to artificial intelligence (AI), this 

method of problem solving is termed emergent intelligence [Ang94]. At a very high level, 

AI problem solving methods divides into two distinct categories; weak and strong. A strong 

method is one that contains a significant amount of task specific knowledge in order to solve 

it. In contrast, a weak method (best-first search, heuristic search etc.) requires little or no 

knowledge in order to solve it. As the name implies, strong methods are more powerful than 

weak methods. However, they are only narrowly applicable due to their task specific knowledge. 

In AI emphasis is given on expert knowledge.

Emergent intelligence (El) reduces or removes the reliance on explicit knowledge in a 

problem solver by favouring instead the emergence of problem specific constraints as a direct 

consequence of the action of problem solving. Emergent phenomena are defined as local inter­

actions creating global properties [Ban93]. Emphasis is given on learning.

5.6.2 Structures Undergoing Adaptation - Algorithm

Intuitively, if two computer programs are somewhat effective in solving a particular problem, 

then some of their parts probably have some merit. By recombining randomly chosen parts of
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somewhat effective programs, we may produce new computer programs that are even fitter in 

solving the problem. At each stage of this highly parallel, locally controlled, decentralised pro­

cess, the state of the process will consist only of the current population of individual programs.

The structures that undergo adaptation in GP (the actual computer programs) are active. 

They are not passive encoding of the solution to the problem as with simple GA. Instead, given 

a computer on which to run, the structures in GP are active structures that are capable of being 

executed in the current form. The following steps, from Koza’s book, define the algorithm:

1. Generate an initial population of random compositions of the functions and terminals of 

the problem (computer programs).

2. Iteratively perform the following sub-steps until the termination criterion has been satis­

fied:

(a) Execute each program in the population and assign it a fitness value according to 

how well it solves the problem.

(b) Create a new population of computer programs by applying the following two pri­

mary operations. The operations are applied to computer program(s) in the popula­

tion chosen with a probability based on fitness

i. Copy existing computer programs to the new population.

ii. Create new computer programs by genetically recombining randomly chosen 

parts of two existing programs.

3. The best computer program that appeared in any generation (i.e. best so far individual) is 

designated as the result of GP. This result maybe a solution (or an approximate solution) 

to the problem.

5 .6 3  Functions and Terminals

The size, shape and contents of these computer programs can dynamically change during the 

process. The set of all possible structures in GP is the set of all possible compositions of

functions that can be composed recursively from the set of N  functions from F  =  ( / i , / 2 ..., /at)

and the set of N  terminals from T  =  (ai, 0 2 ..., Uiv).

Function and Terminal set should be selected so as to satisfy the requirements of closure 

and sufficiency.

Closure [Koz92] states that any function should be well defined and closed for any combi­

nation of arguments that it may encounter. The boundary conditions for the functions are very
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important. What do the functions do when handed data that are illegal or in some way out of 

range? Typing is one way out of this dilemma, where each node carries its type as well as the 

types it can call, thus forcing function calling it to cast the argument into the appropriate type 

(see section 5.6.10).

Sufficiency [Koz92] property requires that the set of terminals and the set of primitive 

functions are capable of expressing a solution to the problem. There is a balance between 

having a rich enough set of functions and terminals and having too many - a balance that must 

be determined empirically. A large function set enlarges the search space.

In general, numerous extraneous functions in a function set degrade performance to some 

degree; however, a particular additional function in a function set may dramatically improve 

performance for a particular problem. For some problems, where it is not clear in advance what 

set of functions is minimally sufficient to solve the problem, it is generally better to include 

potentially extraneous functions than to miss a solution altogether. Extraneous terminals on the 

other hand, reduce performance.

5.6.4 Initial Structures - First Population

Each program individual can be expressed as a tree. Figure 5.3 shows two examples of such 

programs expressed as trees. There are different methods used to create the randomly chosen 

trees that will constitute the initial population of the GP.

ax^+bx-c (Av-nB) V (AvB)

Figure 5.3: Example of GP programs expressed as trees.

First is the full method. The full method of generating the initial random population in­

volves creating trees (programs), for which the length of every non-backtracking path between 

an endpoint and the root is equal to the specified maximum depth. This is accomplished by 

restricting the selection of the label of points at a depth less than maximum to the function set
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F, and the selection for points at maximum depth to set T.

In addition to the above we have the grow method which, involves growing trees that are 

variably shaped. The length of a path between an endpoint and a root is no greater than the 

maximum depth. This is accomplished by making the random selection of the label for points 

at depth less than the maximum from the combined set C — F \ J T ,  while restricting the 

random selection of the label at maximum depth to terminal set.

Finally, we have the ramped half and /la//hybrid method [Koz92]. This method produces 

a wide variety of trees of various sizes and shapes. It involves creating an equal number of trees 

using a depth parameter that ranges equally between two and the maximum specified depth. 

Then for each value of depth, 50% of the trees are created using the full method and 50% via 

the grow method. This is actually the dominant method. It is preferred because it creates trees 

having a wide variety of size and shapes.

Duplicate individuals in the initial population are considered to be unproductive dead- 

wood. They are a waste of computational resources plus they reduce the genetic diversity of the 

population. Hence there is usually a check for uniqueness in the initial population.

5.6.5 Fitness

Fitness is the driving force of Darwinian natural selection and likewise both GA and GP. GP 

population is the beam; to perform GP operators, GP implements fitness-based selection. Any 

and all boundary conditions in the fitness function will be ruthlessly exploited by the individuals 

in the population.

The fitness function is the only chance of communicating ones intentions to the powerful 

process that genetic programming represents. It is a necessity that it communicates precisely 

what one desires.

A fitness function needs to rate an individual on how well it performs on the problem to 

be solved. It also needs to rate individuals in such a way that they can be compared and more 

successful individuals are distinguished from less successful ones. There are different forms of 

fitness (raw, standardised, adjusted and normalised) all described below.

Raw fitness [Koz92] is a measurement that is stated in the natural terminology of the prob­

lem itself. In most cases but not always it is evaluated over a set of fitness cases representative 

of the domain space, since they form the basis for generalising the results. The most common 

definition of raw fitness is error. If used taking into account the square of distances then it 

increases the influence of the distant points.

Standardised fitness [Koz92], restates the raw fitness so that lower numerical value is al­
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ways a better value. If maximum value for fitness is not known and a bigger value for fitness is 

better we either use adjusted or normalised fitness.

Adjusted fitness [Koz92] is computed from standardised fitness. where

s{i , t )  is the standardised fimess of the individual at any generational time step t  and lies 

between 0 and 1. Adjusted fitness is bigger for better individuals in population. This form of 

fitness shows importance of small differences if the value of standardised fimess approaches

0. Therefore, it distinguishes a good individual from a very good one. It is used in fimess 

proportionate selection.

Normalised Fitness [Koz92], also for fitness proportionate selection methods. It is com­

puted from the adjusted fitness. t) =  - where M  is the population. It has three
Z ^ fc = : l

desirable characteristics; it ranges between 0  and 1 , it is larger for better individuals and the 

sum of normalised fitness is I.

5.6.6 State o f  the System

In GP, the state of the adaptive system at any point during the process consists only of the current 

population of individuals. No additional memory or centralised bookkeeping is necessary.

In a computer implementation of the GP paradigm, it is also necessary to cache the control 

parameters for the run, the terminal set, the function set (if mutation is being used) and the best 

individual so far (if used as part of a process of result designation for the run).

In conventional generational GP the entire new generation is created and replaces the old 

one, in one go. With steady state, developed based on work done by Gilbert Syswerda on steady 

state GA [Sys91], individuals are created one at a time, evaluated immediately for fitness, and 

then merged into the population in place of an existing low fimess individual. A comparison 

of steady state GP to generational GP can be found in [Kin93]. A generational equivalent in 

steady state GP exists when the number of new individuals that have been generated is equal to 

the population size.

5.6.7 Term ination C riterion

A run terminates when either a pre-specified maximum number G of generations have been 

run (the generational predicate) or some additional problem specific success predicate has been 

satisfied.

The method of “best so far individual” is the one that used most often for result designation, 

but the “best-of-generation individual” can be used as well. Note that in most cases the “best so 

far individual” is indeed in the generation that terminated the run therefore in these cases both 

methods will produce the same result.
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5.6.8 Different Representations

The most common form of representation for GP, as stated already, is that of a tree. This 

representation is in fact directly taken from Reverse Polish Notation (RPN). A population of 

computer programs can be represented by a collection of RPN trees.

Another structure is the linear one. A linear structure is simply a chain of instructions 

that are executed from left to right. Unlike trees the linear structure has no obvious way for 

a function, to receive input. What is missing is memory, a place to hold the inputs to the 

functions. A typical way to give memory to the instructions is by using a register machine 

[Nor94] [Hue96]. A register machine uses a linear string of instructions operating on a small 

number of memory registers. The instructions read and write values from and to the registers.

There is another representation for GP, that of minimal Directed Acyclic Graph (DAG). In 

fact it is possible to change from trees to minimal DAG without any change in the functionality 

of a GP system.

The basic difference between these two approaches is the choice of elements. RPN uses the 

pre-defined symbols that make up the basic language, while DAG uses the evolving subtrees as 

primitives. It is shown [Kei96] that the DAG representation is equivalent to RPN with respect 

to the programs it can represent, the execution of programs, and the mechanism of subtree 

crossover. In fact the amount of memory required can be reduced considerably in the expense 

of more complexity.

5.6.9 Different Selection M echanisms

Apart from the fitness proportionate selection [Koz92] mechanism which uses adjusted or nor­

malised fitness values of the individuals to decide which one to choose, there are two further 

mechanisms.

Firstly, rank selection [Koz92], where each individual in the population is assigned a rank, 

hence sorted (from 1 to the size of the population). Selection is then performed so that the 

best individual receives a predetermined multiple of the number of copies that the worst in­

dividual receives (thus equalising selective pressure). Rank selection can prevent premature 

convergence.

Secondly, tournament selection [Koz92], which parallels the competition in nature among 

individuals for the right to mate. Tournament selection is performed each time it is needed, on 

a different random sample drawn from the population which is quite small compared with the 

population. Best individual in the population has probability 1.0 for prevailing in the compe­

tition, the worst individual has probability of 0  for prevailing, and a middle-ranking individual
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has approximately 0.5 probability of prevailing. Tournament selection is in effect a probabilistic 

version of rank selection.

5.6.10 Different GP Systems Based on Syntax

While the assumption of representational closure, discussed above, reduces the size of search 

space by excluding non-viable programs and makes the definition of subtree crossover trivial for 

trees, for some problems it is necessary to include distinct return types for some programmatic 

components.

Strongly typed genetic programs [Mon95] evolve programs that use typed languages. In 

this case crossover must be defined to enforce all syntactic restrictions introduced by the type 

constraints. Note that this has the effect of reducing the size of the search space further for 

some problems by excluding tree organisations that in a single type language using analogous 

primitives might be created. On the other hand, assuming too many restrictions may actually 

impede the progress of the GP especially if the restricted search space becomes fragmented 

with respect to crossover.

Pedestrian GP is a system devised by Banzhaf [Ban93] that uses a traditional GA binary 

string representation. He used this approach to successfully evolve programs that predict simple 

integer sequences.

Minimum Description Length (MDL) is a method devised so that fitness measures, not 

only how well a program performs, but also its size. MDL is calculated by considering how 

many bits are needed to code the program and how many to code a description of its error, i.e. 

those cases where it returns the wrong answer.

5.6.11 Primary Genetic Operations

The are only two primary genetic operations used. The first one, reproduction, is an asexual 

operation. The individual is selected based on fitness and simply copied across to the new 

population.

The second one, crossover, creates new offsprings that consist of parts taken from each 

parent. It is a sexual operation in that there are two parents combining together. Both indi­

viduals are selected using fitness. Then using a uniform probability distribution, one random 

point from each parent is selected to be the crossover point [LPOl]. Two offsprings are then 

produced. Because entire subtrees are swapped and because of the closure property GP assures 

syntactically correct crossover.

In fact in GP the general effectiveness of crossover is an issue of concern [SE91], 

[Dav91b], [Jon95]. This work does not imply that crossover is an inappropriate operator for
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evolving solutions, just that it is not necessarily the most efficient choice for all problems and 

in particular that its range of effectiveness may be significantly smaller than expected [ES93]. 

For the time being it is still the main operator and there are a number of variations of the 

method. The exploration of different crossover techniques rose from the fact that GP crossover 

is very different from biological crossover. Crossover in standard GP is unconstrained and un­

controlled. Crossover points are selected randomly in both parents. There are no predefined 

building blocks (genes). Crossover is expected to find the good building blocks and not to 

disrupt them even while the building blocks grow.

Most of the variations of the crossover techniques described below try to force the 

crossover to a particular point.

Self-Crossover uses a single individual to represent both parents. The single individual can 

be selected using fitness proportionate or tournament selection methods. Kim Harries [HS97] 

concludes that self-crossover is generally a bad hill climber.

Single Crossover: where two individuals are selected based on fitness, and a point is chosen 

inside a copy of each. A single new individual is created by replacing the subtree selected in 

one individual with the subtree from the other individual.

Non-fitness Single Crossover: just like single crossover, except that the two individuals are 

selected using uniform random selection over the entire population instead of based on fitness.

Modular/Cassette-Crossover gets over the limitation of standard crossover operator of not 

being possible to swap blocks in the middle of a tree path. Developed by Kinnear and Altenberg 

Modular or Cassette crossover can be seen as a module swap between individuals [Alt94].

Tackett [TC94] devised a method based on the above, for reducing the destructive effect 

of the crossover operator called Brood Recombination. With this the parents are randomly 

crossed-over N  times, each time creating a pair of children and only the two most fitted ones 

are selected. However, this method, obviously, increases delays in our system due to performing 

more evaluations than normal.

D ’Haeseleer [D’h94] suggested alternative genetic operators called Strong Context Pre­

serving Crossover (SCPC) and Weak Context Preserving Crossover (WCPC). SCPC allows two 

subtrees to be exchanged during crossover between two parents only if the points of crossover 

have the same co-ordinates (also called one-point crossover). WCPC relaxes this rule slightly 

by allowing crossover of any subtree of the equivalent node in the other parent.

Langdon [Lan96] devised a variation he calls Directed Crossover in which he succeeds in 

dynamically redistributing crossover locations to code in need of improvement as the population 

evolves. The location is chosen to avoid disrupting code that is working.
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“Intelligent” Crossover has been attempted by Teller [Tel96] by letting the crossover op­

erator select the crossover points in a way that is less destructive to the offspring. Using this 

method, the percentage of recombination events that resulted in offspring better than the par­

ents, approximately doubled compared to traditional GP crossover. Zannoni used a cultural 

algorithm (a more traditional machine learning algorithm) to select crossover points with simi­

lar results [ZR97].

Iba and De Garis offer an adaptive crossover, termed recombinative guidance that uses 

statistical methods to estimate the relative worth of each subtree in a GP [IG96].

As a conclusion, crossover can be improved substantially in both the quality and efficiency 

of the search it conducts. But there is a cost associated with each improvement. Each of the 

techniques described above, may carry additional digital overhead such as less efficient use of 

memory and CPU time. Therefore, it can be argued that crossover acting as something other 

than a macromutation operator does not come free, in biology or in GP.

5.6.12 Secondary Operations

There are a large number of secondary genetic operations that researchers develop and use in 

order to better solve specific problems in the area of Genetic Programming. A small number of 

them, are briefly described.

Mutation [Koz92]; where an individual is selected based on fitness and then an internal 

point in a copy of the individual is replaced by a randomly created tree. Point mutation is a 

variant of these in that only the internal point selected for mutation is replaced.

Hoist [Koz92]: (a special case of single crossover) where a new individual is created by 

selecting a point inside a copy of an existing individual based on fitness, and elevating it up to 

be the entire new individual.

Create (a special case of mutation) [Koz92]: where an entirely new individual is created 

in the same way as the initial random generation. This locates a random new point of departure 

in the search space.

Encapsulation [Koz92]: where the encapsulation operator is a means for automatically 

identifying a potential useful subtree and giving it a name so that it can be referenced and used 

later. Encapsulated subtrees become single points and hence not affected by crossover.

5.6.13 Improving the Speed o f GP With Parallélisation

A simple way to accelerate the GP and at the same time to keep diversity high, is to use paral­

lélisation. Parallel populations, also known as demes, might possess different parameter settings 

that can be explored simultaneously, or they might cooperate with the same set of parameters.
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but each work on different individuals.

Koza developed one such parallel population system [AK96] by using a different processor 

for each population. There is good speedup in processing a large population. Koza and Andre, 

have reported intriguing results of a more than linear speed-up due to the arrangements. It 

is possible that a large population allows the system to find solution with fewer evaluations 

[KM94].

A different technique to improve speed is by evaluating the programs this time in parallel. 

In [JP96], a system is reported to implement parallel evaluations of programs using a very 

powerful parallel computer.

5.6.14 Induction of Hierarchically Organised Structures

Given that even the most basic programming courses emphasise modular programming, it is a 

small conceptual jump from the evolution of programs to the question of evolving modular pro­

grams. Modular programs bring with them a number of desirable features and some interesting 

research issues. Three distinct methods have been investigated for inducing modular GPs: au­

tomatically defined functions (ADF), [Koz92], adaptive representation [RB94] and the Genetic 

Library Builder [AP92] typically referred to as modules. Each of these methods attempts to 

adaptively elevate the expressivity of the defined language by dividing the solution into smaller 

blocks of code (modules) but with distinct mechanisms.

ADFs are inspired by how functions are defined in LISP during normal manual program­

ming. The program containing ADFs is a tree just like any program in regular tree-based GP. 

However, when using ADFs, a tree is divided into two parts or branches as shown in Figure 5.4.

The first one, the result-producing branch, which is evaluated during fitness calculation, 

and the second one, the function-defining branch, which contains the definition of one or more 

ADFs.

These two branches are similar to any program written in C, C++ for example. The re­

sulting branch is the main function and the function-defining branch (ADFs) corresponds to the 

function definition part of the program. Both of these program components participate in evo­

lution, and the final outcome of GP with ADFs is a modular program with functions. In Figure 

5.5, a very simple example of a GP using a single ADF is being demonstrated.

5.6.15 Effect O f Primary Control Parameters

GPs typically operate with large population sizes. Much work remains to be done to determine 

what makes a problem easy or hard for GP, and what population sizes are best suited to solving 

each type of problem. The size is different for each problem, but it is probably true that each
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Figure 5.4: A typically automatically defined function definition.

problem has a minimum size. It appears to be the case that below this critical minimum size, 

running for more generations will usually not produce a correct solution.

Moreover, using multiple runs is also an effective way to utilise a much larger virtual popu­

lation. It isn’t the same as running one much larger population, but can be effective nonetheless.

As a rule of thumb, because the normal variation on one run is very large, one should never 

generalise from one run.

5.6.16 Conclusion

GP is a robust and efficient paradigm for discovering computer programs using the expressive­

ness of symbolic representation. It is a very powerful method and as Koza identified in his book. 

On the Programming of Computers by Means of Natural Selection [Koz92], it has a number of 

characteristics.

Firstly, GPs do not have any pre-processing requirements, like conventional GAs do for 

representation in a bit string format. Moreover, the internal representation of the problem 

matches the original natural representation of the problem. Furthermore, usually no post­

processing requirements are needed and finally, the results are portable since they are always
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Figure 5.5: An example of an ADF program tree.

computer programs.

Also, GPs have a hierarchical character, which permits problems to be solved even in 

the presence of inaccurate, inconsistent or incomplete information (data). Genetic methods 

have the ability to be modified incrementally, and are robust. They are highly amenable to 

parallélisation, and they are fault tolerant. Genetic methods in general, allocate future trials in 

the search process in a near-optimal way.

As to precision, GP is able to adaptively change the size and shape of the solution dynam­

ically during the run and thus hope on a solution with increasing precision.

5.7 Discussion
We have presented the basis of a GP. It seems logical to expect that a genetic program can be 

implemented so that it searches the problem space to achieve the desired visual homomorphism 

described in Section 3. In other words it will search the space of possible variations of sets of 

feature functions that produce our visual structure, and pick up the one (set of functions) which 

best represents our data set according to the fitness function given. In the case where rows of 

the data set are considered individually (thus an individual fitness case), the GP will search and
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find the best possible set of functions that when applied to every row produces values for every 

feature of the visual structure to create it, and therefore create its characteristics so that it best 

represents the value system of that row. Therefore at the end, if N  rows of data exist, there 

will be N  visual structures to represent them, so that the visual homomorphism is attained. It 

is important to note that each individual genetic program consists of a number of GP trees (the 

set of different functions) that will be evolved in parallel. In fact there should be one GP (one 

function) for each feature of our visual structure. A complete set of them will result in rendering 

the visual structure.

In the case of using ADFs this parallélisation comes free. Each ADF can also be treated as 

a separate entity, without any interaction with the result-producing branch and hence, a separate 

GP program. For example in the case of the visual structure being the human face, the main 

component might correspond to the Left and Right (if symmetry of face is assumed) Zygomatic 

Major contraction value, the first ADF to the Left and Right Frontalis Inner and so on.

In fact, such a system has been implemented for the purpose of this thesis, the experimen­

tation of which will be the subject of the next chapter.



Chapter 6

Experimentation and Results

The development of any new method requires examination of its effectiveness and validity. 

Several tests of the method were performed to assess its effectiveness for certain tasks, in ad­

dition to establishing whether the algorithms used were appropriate. This Chapter will focus 

on describing these experiments and their results, with relevant background information where 

required.

Initially, the procedure described in Chapter 3 will be illustrated by means of an example 

which utilises a set of three circles as the visual structure. It is a pilot study designed to test the 

method under controlled conditions. The data used, is simulated financial data, the properties 

of which are known. Also the visualisation outcome is intuitively obvious. For example, one 

can see that the set of circles in Figure 6.1 is more ordered than the set illustrated in Figure 6.2. 

The results from the user experiment of the method are then reported [LS99].

6.1 First Experiment - Set of Circles
6.1.1 Setting Up of the Experiment

Firstly, the dataset to be visualised must be obtained. Consider a simulated multivariate financial 

data set. Table 6.1 shows an example of such data, with its variable names shown at the top. 

It has 8  variables and 100 cases. Cases are individual companies and variables are different 

measurements for each company in a certain period of time (e.g. year 1999). The data is 

simulated so that it falls into clusters, with each cluster having the same number of companies. 

Details of the clusters are described later on. We chose simulated data because in this way, 

expected results are known and hence it is easier to evaluate user’s responses.

What follows is a description of the steps required to run the GP. Such a run produces the 

automatic mapping from the data to this particular visual structure of three circles.
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Figure 6.1: Picture of a “healthy” company. Figure 6.2: Picture of an “ill” company.

6.1.1.1 Step 1

For this example, there are 12 feature functions, t  = 1 ,2 , .., 12. These 12 functions

will correspond to the 12  features t — 1 , 2 ,..., 12  that determine Q, an individual set of

three circles, allowing this set to be rendered. The twelve features that uniquely determine an 

individual set of three circles are:

• Six values for the three pairs of x ,  y coordinates representing the position of the centre of 

each of the three circles.

•  Three values representing the sizes of the three circles, their radii.

•  Three values representing the grey scale value, from 0 to 1, for the colour of the circles. 

Zero is black one is white.

From the GP point of view, each of these features is a different function (ADF^) over the 

variables of the data set, with all functions evolving in parallel. So when the variables of an 

individual row (company) in the data set are applied to any of these functions, the function 

returns a value that gets assigned to the corresponding feature in the visual structure Cl.

6.1.1.2 Step 2

The three measurements over the data set (value system) that are assumed to be of interest to 

the user, for this example, are the following Us{X), a =  1,2,3:

P r o f i t  =
costs

(6.1)

 ̂R efer to Chapter 5  for details o f  A D F s and m odular program m ing
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c No. of 

shares

Earnings Dividend

payout

Liquid Assets Liabilities Costs Sales Staff

1 0.12 0.25 0.70 0.60 0.61 0.21 0.20 0.11

2 0.34 0.15 0.24 0.82 0.44 0.74 0.31 0.05

N

Table 6.1: Example of the simulated data set.

Dividend% = * 100 =  (6.2)
earm ngs — costs

liquidassets
Liquidity = -  -  --- =  X 3 (6.3)

liabilities

Furthermore, we need a scoring system for these measurements, in other words to be able 

to quantify these. Each of the companies is scored on a scale of 0 to 100 under each category. 

The score is based on what financial experts (financial ratios) consider a reasonable value in 

each case [GU94]. The scoring system was kept simple since it does not affect the operation of 

the method:

Profit(i/i) Ranges from [0,100], so that when earnings are at least five times the costs then

a score of 1 0 0  is given, if it is equal or less than the cost, then a score of 0  is given.

Intermediate values are linearly interpolated.

Dividend(i/2) %: Ranges from [0,100], so that when the ratio is 30% or higher then a score of 

100 is given, if it is 0% then a 0 is given. Intermediate values are linearly interpolated.

Liquidity(1/3) It also ranges from [0,100], so that when the ratio of liquid assets to liabilities is 

1.5 or more then a score of 100 is given, if 1 or below then a score of 0 is given. Again 

the intermediate values are linearly interpolated.

6.1.1.3 Step 3

Aspects of this visual structure that are measurable and significant to human perception 

eg(fl), s — 1 ,2 ,3  need to be identified and scored. For this particular example, the follow­

ing aspects in order of importance are considered.

•  The distance between the centres of the circles - mapped to profit. The closer to concen­

tric the circles are, the more profit is assumed to be indicated.

•  The proportionality of the radii - mapped to dividend payout %. The closer to an arith­

metic progression the radii of the circles are the better the dividend payout % is.
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•  The proportionality of the colour - mapped to liquidity. The closer to an arithmetic pro­

gression the grey scale colours of the circles are, irrespective to which circle they belong, 

the better the company is performing in terms of profitability. For example a white circle, 

a grey circle and a black circle indicate that the company is performing better in terms of 

liquidity, rather than two white circles and a black one.

As with the important aspects of the data set, a scoring system needs to be devised in order 

to quantify these important aspects of the visual structure. All three of them are also given a 

value in the range 0  to 1 0 0 .

1. ei'. The maximum distance between every possible pair of centres of circles. We use a 

(100 X 100) grid.

2. 6 2 : How far the second biggest circle is from the mean of the other two, in terms of their 

radii (i.e. if their radii follow an arithmetic progression). If they coincide then a score of 

100 is given. Intermediate results are linearly interpolated.

3. eg: How far the grey scale colour of the second biggest circle, in terms of grey scale 

colour, is from the other two. In other words whether their grey scale colours follow an 

arithmetic progression. If they coincide then a score of 100 is given. If at maximum 

distance then a 0 score is given. Intermediate results are linearly interpolated.

The characteristics defined above show that a “targeted” set of three circles with symmetry 

for both radii and colour will be more ‘ordered’ or less ‘disordered’, compared to a set of cir­

cles with their centres at maximum distances between them, proportionally meaningless ratio 

of radii and values of colour not changing in a smooth fashion. The former should be mapped 

to a company that is performing really well (relatively) on all aspects that are important to the 

hypothetical user (Profit, Liquidity and Dividend Payout) and the latter to a company perform­

ing relatively badly on all three aspects. In fact given “perfect” examples of the above EVA 

should produce aesthetically extreme cases out of the range of possible visualisations. Figure 

6.1 shows an example of a “healthy” looking company, whereas Figure 6.2 shows an example 

of an “ill” one.

6.1.1.4 Step 4

The minimisation function in this case is:
100 3

~  ^ds)^ (6.4)
d = l  3=1

where s are the three measurements and d the number of cases in the data set.
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6 .1 .1 .5  S tep  5

This final step involves finding the suitable GP parameters for this problem. These parameters, 

as with almost all GP problems, are chosen after empirical testing. There is no set of rules 

defining what are the best parameters for individual cases, just rules of thumb according to the 

complexity of the problem you are dealing with.

A population size of 750 running for 150 generations is the selected choice. The creation 

type is a ramped half-half, with a maximum depth of creation 7. The terminal set consists of the 

8  variables shown in Table 6.1, and the function set consists of the four arithmetic operations 

(4 - ,  —, %, *) where % represents protected division. Protected division takes care of division by 

zero case. Tournament selection is used for mating with a tournament size of 6 . In generating 

subsequent populations 90% of the times crossover was used, 5% of the times swap mutation 

and 5% of the times shrink mutation. The best of the previous population was always added to 

the next population thus making sure the GP ends up with the best of all populations individual. 

Finally generational state GP was used for this experiment.

During the process of implementing the method, it was noted that the initial population was 

not equally distributed in the entire search space. Specifically, the results of the first population 

indicated that circles had a tendency to lie in the middle of the graphical area, with similar 

radii and similar colour, with few exceptions. It appeared, therefore, that the standard crossover 

technique was not performing optimally, as only small steps were being taken, in addition to 

taking a long time to move to different areas of the search space, with some of the space possibly 

left unutilised.

Two possible solutions were considered for the problem highlighted above. The first in­

volved forcing a greater spread of the initial population in the search space and the second 

applied a more aggressive crossover for the first generations, in order to generate bigger steps 

in the space, thus exploring more of it. The second solution was implemented, to address a 

rapid crossover from generation to generation. In the first 20 generations a crossover to four out 

of the twelve trees constituting an individual (one tree for each feature) was performed, in the 

next 30 generations a crossover of two trees, and in the remainder a crossover of one tree was 

performed.

Illustrated here are results from the GP. Figure 6.3 shows, by generation, the standard­

ised fitness of the best-of-generation individual, the average-of-generation and the worst-of- 

generation individual in the population for all generations 0  to 150 of one run of this problem. 

This run of the GP was chosen as the best one, out of a pool of 15 different runs. The value 

for fitness is calculated using equation (6.4). As can be seen, the error measurement of the
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best-of-generation individual generally improves (i.e. decreases). The results shown in Figure 

6.3 are from the same run of the program that produced the visual structures for the experiments 

described below. Appendix D shows an example of a tree evolved from the best run of the GP.
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Figure 6.3: Fitness curves for one run of the GP.

6.1.2 Details of the Experiment

Three classification tests were run with the 10 subjects for each one of them. The subjects were 

postgraduate students of the University College London with no knowledge of the method prior 

to running the experiments. Moreover, they had limited knowledge of finance and financial 

data.

In the first test, the subjects were asked to classify 60 visual structures into 3 clusters 

without any knowledge of how the visual structures were produced. The three clusters are:

1. Companies that are performing relatively well in terms of profitability, dividend payout 

and liquidity.

2. Companies with average performance in terms of profitability, dividend payout and liq­

uidity.
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3. Companies that are performing relatively badly in terms of all three above importance 

functions over the variables.

As mentioned above, the visual structure is a set of three circles on a (100 x 100) grid, 

each circle having arbitrary radius and a grey scale colour.

The motivation behind this test was whether the subjects would identify the qualitative 

measurements of the set of three circles without being told about what they were. Success in 

such an experiment strengthens our case that the characteristics we have chosen resonate with 

human perception, for this particular case (a set of three circles). Furthemore, success in this 

experiment, will give support to the hypothesis that the method can be used to generate visual 

structures that can convey meaning intuitively. Inherited from the above, the test was used 

to test the accuracy with which the test subjects could extract information from a set of three 

circles.

The second test involved performing the same classification all over again for the same 

data set and the same people. However, this time the subjects were actually told what the im­

portant characteristics of the visual structure were and a brief summary of how the mapping was 

produced, but they were not told of the outcome of the previous test. The 60 visual structures 

used for the purpose of this test were the same as in the first test, but in a different order to the 

one given for the first test. This detail was not given to the users, and in fact no one realised that 

it was the same visual structures in a different order.

We wished to investigate, whether knowledge of the user of the characteristics of the visual 

structure that are significant, would have significant advantage on the results. Moreover, we 

wished to assess the effectiveness of the method in conveying information for this particular 

example.

In the third and final test 100 visual structures were used from a larger data set. Here, two 

more clusters were added, making the total five.

4. Companies that are performing relatively well in two out of three ‘value system’ variables 

(profitability, liquidity and dividend payout) and moderately on the third.

5. Companies that are performing relatively well in one of the three important features of 

the data set and moderately on the other two.

Clearly, there is a only a slight difference and big overlap between some of the clusters 

(1 — 4 and 2 — 5 for example). The main reason of this experiment was to investigate if the 

subjects would recognise these subtle differences.
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The simulated data was produced bearing in mind the five clusters above, with an equal 

number of companies in each cluster. Since there is an equal number of companies in each 

cluster there is an equal probability for a visual structure to belong to any of the three clusters. 

However, this information was not given to the subjects for obvious reasons. Times were also 

recorded for all three experiments.

Before moving on to the results of the experiment, by just looking at the selected 10 sets 

of circles of Figure 6.4, can the reader cluster each of the sets into the 5 different categories 

mentioned above? Moreover, is it possible to rank the sets from 1 to 10?

s..

Figure 6.4: Ten Examples of sets of circles produced by the method.

6.1.3 Results

The performance of this method was compared to what a random classification would produce. 

In the first two tests a |  probability of guessing the right cluster from a random technique would 

be expected and, therefore, 20 ‘hits’ (since there are 60 visual structures). A ‘hit’ represents a 

correct response from the subject. For the final test a probability of ^ ‘hits’ could be expected, 

as there are 5 clusters with an equal probability of occurrence. So, there should be 20 hits once 

again since the number of visual structures for this test is 1 0 0 .

For the first test a hypothesis test was performed on the number of successes the subjects 

had against the expected number of successes that would have been randomly produced. It can 

be confidently concluded (at p = 0.005) that the important aspects of the visual structures used, 

can perform significantly better than a random technique, even when the users are not being
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informed of those aspects. On average, the 10 subjects responded correctly 34 times out of 60 

with a standard deviation of 3.39. Therefore the success sample mean is 0.57 against 0.33 with 

the random technique.

The same hypothesis testing was performed for the second experiment. The results were 

improved further and from the new hypothesis testing it can confidently concluded (at p =

0.005) that the method performs significantly better than a random technique. This time subjects 

had, on average, 41 right responses out of 60 with a standard deviation of 3.46, and therefore the 

success sample mean increased to 0.69. A random example of the differences in the values for 

a particular user is shown in Figure 6.5. Figure 6 .6 , illustrates results from the same user. The 

values on the x — axis are the actual versus expected clusters and the y — axis represents the 

number of occurrences for this particular subject. For example “3 — 3” is the set where the user 

got it right, the company belonged to the third cluster and it was classified accordingly, whereas 

“ 1 — 2 ” is the set where the expected cluster for the company was 1 and the user classified it as 

type 2 , and vice versa.

1 — I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— r
actual values □

expected values x
error indicator :

3 -

2 -

1 -s

Q  1 1 1 1 1 1 1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------1-------L

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
Companies

Figure 6.5: An example of actual data vs user responses from second test.

For the final test the same hypothesis testing was performed. In this experiment the success 

rate was lower than before with a mean of 0.46, or an average of 46 right guesses out of a 100 

with 4.3 the standard deviation. The diminished mean value is a direct consequence of the fact
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Figure 6 .6 : An example of actual data vs user responses as a histogram.

that it is hard to distinguish between clusters 1 and 4, or clusters 2 and 5. In fact Figures 6.7 

and 6 .8  show that for almost all cases the misjudgement from the user occurred for the pairs 

from these sets. Figure 6 .8  clearly shows that the number of times this particular user confused 

clusters 1 and 4 or clusters 2 and 5, is very high indeed. However, one can still confidently 

conclude (at p = 0.005) that the method is performing much better than a random technique, 

which would be expected to have a success sample mean of 0 .2 .

Going back to the question posed at the last paragraph of the previous Section 6.1.2, a 

detailed analysis of the answer can now be given. Referring back to Figure 6.4, the extreme 

cases can easily be spotted. These are companies that are performing generally well or generally 

badly for the measurements of interest in the data described at Step 2, Section 6.1.1. By looking 

at the same sets of circles from left to right, top to bottom, the fourth set first row (4) and 

the second set of circles second row (7), can be spotted as the “best performing individuals”. 

Or by looking at the third set first row (3) and the first set of circles in the second row (6 ), 

we can label them as the “worst performing individuals”. Both sets under this category have 

relatively big maximum distance between every pair of circles, their radii proportionality do not 

follow an arithmetic progression and neither do their grey scale colour. In fact the former set of 

circles were produced by EVA as a mapping from data of relatively well performing companies.
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whereas the latter set of circles, were produced by EVA as a mapping from data of relatively 

badly performing companies.

A less obvious point to be made out of the selected images of Figure 6.4 is that of the 

small difference between clusters 1 and 4, or clusters 2 and 5 already mentioned above. The 

third set of circles in the second row (8 ) at a first glance show little differences with the fourth 

set of circles first row (4) that was already classified as generally performing well individual in 

all aspects of the measurements of interest. Both sets have nearly concentric circles and their 

proportionality of their radii seems to be almost perfect. However, by looking more carefully 

at the third set of circles second row one can see that the grey scale colour of the three circles 

clearly does not lie on an arithmetic progression as described at Step 3 of Section 6.1.1 whereas 

for the fourth set, first row performs better under this aspect.

Moreover, there also seems to be little difference between the set of circles second first 

row (2) and fourth second row (9). Both sets seem to be on the average side in terms of max­

imum distance between every pair of circles and proportionality of their radii. However, the 

fourth set of circles second row seems to be performing better in terms of proportionality of 

grey scale colour. In fact this set was created by EVA as part of mapping from data of a com­

pany “belonging” to cluster 5 whereas the other set was created as part of mapping data of a 

company “belonging” to cluster 2 and hence a company performing relatively moderate in all 

three measures of interest.

Finally, by looking at the same Figure 6.4 labelling each set from 1 to 10 from right to left, 

top to bottom, the following ranking can be given to them based on how well they performed: 

7 ,4 ,8 ,1 ,5 ,9 ,1 0 ,2 ,3 ,6 . Small changes are indeed debatable. As a matter of fact 7 and 4 were 

produced from companies in cluster 1, 8  and 1 from companies in cluster 4, 5 and 9 out of 

cluster 5,10 and 2 out of cluster 2 and finally 3 and 6  from companies “belonging” to cluster 3.

6.1.4 Discussion

Presented above are results from performing an initial user experiment of the method. Questions 

such as, “can subjects extract information from the visual representations of the data set?”, or 

“can the visualisation act as an aid to the decision making process?”, can be answered positively, 

at least for such a small number of variables. The results also indicate that the method can be 

used, prior to statistical analysis, perhaps as the first step of a classification process. If one 

considers, for example, the cases of an undergraduate admissions office or a bank offering 

loans to customers, this method could be adopted to produce a visual structure for each of 

the applicants and then trivial acceptances and trivial rejections could be identified rapidly and
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Figure 6.7: An example of actual data vs user responses from the third test.

with confidence. There will be applicants, however, requiring further investigation. As can be 

seen, for example, in Figure 6 .6  or Figure 6 .8 , some particular users always recognised the “ill” 

performing companies (the values for the set “3 — 3” is 20 in both cases as it should be) which, 

in the case of financial data and investors for example, is of critical importance to avoid bad 

investments.

In addition, the results of the first two tests in this experiment showed a rational decision 

based on the characteristics of the set of three circles that are significant to human perception. 

In fact, apart from one test subject, who had a totally different understanding of what is good 

or bad (thinking the more screen space the circles were occupying, the better), the subjects’ 

understanding corresponded well to our choices. So empathetic visualisation appeared to be 

successful on the whole.

A final note to be made, concerns the time taken for the users to make decisions during the 

first experiment. The test subjects used, although being of limited financial knowledge, took 

very little time to decide on the clustering of each of the companies. Although time was not 

a prime measurement in this experiment, it was easily recognised as a clear advantage of this 

particular method.

Although circles have been used in this first pilot study, the main goal was to use and inves-
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Figure 6 .8 : An example of actual data vs user responses as a histogram.

tigate the potential naturalistic visual structures. Despite the fact that qualitative measurements 

were utilised over the set of circles in a meaningful way, this particular visual structure is still 

very much abstract.

Therefore, the next step is to test the method with a more natural representation, the face, 

which is considered to be the epitome of such structures, as well as with real financial data. The 

familiarity of people with faces, the fact that it is fast and relatively easy to recognise salient 

features and abnormalities and the fact that a face evokes an emotional response in us, creates 

potential for further improvement of the method. Returning to the example of the bank offering 

loans, each applicant may be considered as being represented by a human face. In addition, 

each face may represent the emotional state of the banker after having analysed the applicants 

credentials. A “happy” face of course could mean that the loan will be granted, whereas “sad” 

or “angry” faces should lead to rejection of the applicant. Mixed emotions encapsulated in a 

single face (applicant) should lead to further investigation.

6.2 Second Experiment - Faces
This second experiment has two main targets. Firstly, to see if EVA can be used with real data 

and secondly whether using a more naturalistic visual structure such as a face improves the
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results even further.

Figure 6.9; Sam ple faces produced by the method.

6.2.1 Setting Up of the Experim ent

Description of the real data gathered for the purposes of this experim ent is given below. An 

application of real data to F  VA should give good feedback to effectiveness o f  the method. 

However, the basics o f accounting and finance are needed to understand the details o f the data 

gathered better [GU94].

The data for 150 com panies were collected from “DATASTRFAM ADVANCE” . They in­

clude variables from a Profit and Loss Account and the Balance Sheet items. The data collected 

concerned organisations that were public com panies and excluded partnerships, sole-traders as 

well as non-profit and governm ental organisations whose motives, policies and charters might 

have shown significantly different results.

The 10 variables upon which the analysis is focused are the following:

1. Ordinary Share Capital: Share in the issued capital o f a com pany which are held on terms 

that make the holder a “m em ber” o f the com pany entitled to vote at annual meetings and 

elect directors, as well as participate through dividends in the profits o f the company.

2. Equity Capital and Reserves: The sum of equity capital and other pools o f capital gener­
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ated through the sale of shares at a premium (Share Premium), revaluation (Revaluation 

reserve), etc.

3. Fixed Assets: Any non-financial capital asset of the company which is relatively long- 

lived and specific to particular productive processes, and the cost of which is normally 

recoverable only over an operating period of some duration, e.g. plant and buildings.

4. Current Assets: These are main components of current assets: stock, accounts receivable 

or short term debtors, cash and other liquid resources. The size of current assets is, 

particularly in relation to other financial indicators, a main indicator of the liquidity of 

the company.

5. Current Liabilities: Sum of company’s debts that have to be settled within the subsequent 

year. Measure of the company’s short term (immediate) obligations.

6 . Long Term Liabilities: Obligations of the company that are not immediate in the subse­

quent year.

7. Preference Share Capital: Shares in a company which rank before the Equities for a 

payment of a dividend, which is usually a fixed percentage on the nominal value of the 

share. Most have no voting rights attached.

8 . Earnings Before Interest and 7a%(EBIT)

9. Profit after Tax

10. Ordinary Dividends: Payments to shareholders in a company in the form of cash.

Potential users of financial statements are: shareholders, banks and other capital providers, 

potential investors (with or without much knowledge of financial information), employees, 

creditors, and the government. Each user has different needs and has different yardsticks to 

perform analysis and assessment of the financial data.

6.2.2 Details o f the GP

6.2.2.1 Step 1

A face based on an underlying muscle model, was developed by Waters [WatS?]. This allows 

a variety of facial expressions to be produced by controlling the underlying musculature of the 

face as described in Section 4.1.

Waters work has been the basis used to construct the face for this experiment. In the 

existing implementation there are 18 muscles. However, by assuming symmetry of the face
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for the left and right side of it, the number of facial features becomes 9. So, for this particular 

example, 9 feature functions f =  1,2, ..,9 are needed. These correspond to the 9 facial

features, the muscle contractions, (H), t = 1,2,..., 9 that determine Q, an individual face.

The 9 muscles that determine an individual face are (for each one of them there is a left and 

right muscle):

•  Zygomatic Major

•  Angular Depressor

•  Frontalis Inner

• Frontalis Major

• Frontalis Outer

• Labi Nasi

• Inner Labi Nasi

• Lateral Corigator

• Secondary Frontalis 

Ô.2.2.2 Step 2

The three measurements over this data, are the following:

E B I T
P ro fitoverT o ta lA sse ts  =  ^p i^^^A sse ts  + C urrentA ssets)

C urrentR atio  =  (6 .6)
C urrent Liabilities

_ . „  ,. (LoanCapital +  PreferenceC apital) _
GearingRatio =  ----- -— ——— — ----—----------------   (6.7)

E quity C apitalandReserves

The three variables that are of interest to us are based on Financial Ratios. The ratios cho­

sen cover a big enough area to represent important aspects of the financial state of a company. 

Financial ratios have their limitations and these limitations should be considered by users who 

base their decisions upon these figures. Ratios are not definitive; they are only a guide. Inter­

pretation needs careful analysis and ratios should not be considered in isolation of the financial 

data or the relationships with other ratios. Therefore, they make a good candidate for EVA.

The financial ratios (calculated from the above data) upon which the financial situation of 

a company will be assessed are:
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Profit over Total Assets(i/i) This ratio measures profitability and of how effectively assets are 

used in the aim of maximising profits. A high figure is preferable to a lower figure and as 

a rule of thumb, positive results of the ratio are preferred to negative results.

Current Ratio(z/2) The current ratio assesses short-term liquidity. It gives an indication of the 

levels of liquid resources available in an organisation to cover its immediate liabilities. 

As a rule of thumb, figures above unity (1) are preferred with 1.5 being the normal, and 

any figures above 2  usually indicate that a more than necessary amount of resources is 

tied up in liquid assets.

Gearing Ratio(i/3) The gearing ratio measures risk and long term solvency. It is an indication 

of the amount of long term finances that the company has taken up relative to its capital 

base. For companies less is preferred to more.

Each company in the data set is given a score 0 —100 for each ratio. The convergence from 

the ratio to such a number was kept simple and the decision was affected by the data themselves. 

Maximum and minimum values were recorded for each ratio as well as the spread of the data 

itself before the scoring system was devised.

6.2.2.3 Step 3

The aspects of the visual structure es{fl), s = 1 ,2,3 that are measurable and significant to 

human perception are based on the argument that facial expressions of emotion (such as fear, 

happiness, surprise, anger, sadness and disgust) are universal although the rules for display can 

vary from culture to culture.

Therefore, the following scales of expressions are taken into account:

•  ei Degree of Happiness.

•  62 Degree of Fear

•  63 Degree of Anger.

As mentioned in Section 4.2.3, a method has been developed that enables automatic mea­

surement of emotional expressions using user’s subjective evaluations. The functions produced 

by these methods are used here as a substitute a user, to quantify the emotional expressions.

Ô.2.2.4 Step 4

The minimisation function is similar to before:
150 3

' ^ { ^ d s  -  ^ dsŸ  (6.8)
d~l s = l
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6 .2 .2 .5  Step 5

The GP was run with sim ilar param eters to the first experim ent. A  population size o f 750 

running for 150 generations w as chosen. A gain the creation type is ram ped half-half w ith a 

m axim um  depth o f creation 7. The term inal set w ere the 10 variables described in section 6.2.1 

and the function set consists o f  the four arithm etic operations ( + , —,% ,* )  w here % represents 

protected division. Tournam ent selection is used for m ating with a tournam ent size o f  6. In 

generating subsequent populations, 90% o f the tim es crossover w as used, 5% o f the tim es sw ap 

m utation and 5% o f the tim es shrink m utation. The best o f the previous population w as always 

added to the next population (called elitism ) thus ensuring the best o f all populations individual 

remains.

Figure 6.10 shows by generation, the standardised fitness o f the best-of-generation, the 

average-of generation and the w orse-of-generation individuals in the population for all 0 — 150 

generations for a single run o f  the GP. O nce again this run w as chosen as the best one out o f 

15 different runs o f the GP, and the value for fitness is calculated by equation (6.8). It is clear 

from the diagram  that the fitness o f the best-of-generation individual generally  im proves (i.e., 

decreases) by generation.
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À .
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Figure 6.10: F itness curves for one run o f the GP.

Figures 6.9 and 6.12 show  faces produced by the m ethod in this experim ent. There are
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a number of emotions encapsulated in each face/company some of which are very obvious 

indeed. The bottom right face in Figure 6.9 shows a “healthy” looking company, whereas the 

fourth face in rows 2 and 3 of Figure 6.12 show “ill” looking companies, probably for different 

reasons. Mixed emotions are represented in other faces, namely the third face in row 2 of the 

same Figure.

6 .23  Details o f the Second Experiment

The same 3 classification experiments were run for this data but with different subjects. The 

subjects were postgraduate students at University College London with no knowledge of the 

method prior to running the experiment. The only difference to this experiment was having 

to classify each company (solely based on figures) to the 3 and then 5 categories described in 

Section 6.1.2. Since we are dealing with data rather than simulated data, in order to be able to 

measure the effectiveness of the method, we need to classify each company ourselves based on 

the data which involves subjective judgement. Details of the analysis performed on the data can 

be found in Appendix A.

However, for both the targets set this was a minor issue. It was still possible to get an 

indication of effectiveness of the method on real data as well as improvement on “natural” 

visual structures.

In the first test users were asked to classify 30 faces into the following three clusters:

1. Companies that are performing relatively well in terms of the financial ratios described 

in Step 2 of Section 6.2.2.

2. Companies that are performing moderately on the above financial ratios.

3. Companies that are performing relatively badly on all three of them.

This time a simple description on the effect each of these ratios has on every company was 

given. Subjects were told they are practically assessing profitability, short-term liquidity and 

riskiness of each company. They were then given a face for each company and they were asked 

to classify them accordingly.

Again the motivation was to test whether the right facial emotion was chosen to map our 

results, as well as accuracy of the subjects to extract information with very little knowledge.

The second test involved performing the same classification all over again for the same 

data set. However, this time the subjects were told of the facial emotions used and were given 

a brief summary of how the mapping was produced. The same 30 faces were used for this face 

in although in a different order.
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As with the first set o f experim ents, we wished to assess whether knowledge of the char­

acteristics in the visual structure improved our results.

In the third and final test users were asked to classify 50 visual structures in 5 clusters. We 

added two extra clusters in order to test the effectiveness o f  the method in finer classification. 

The added clusters were:

4. Com panies that are perform ing relatively well in any two out o f the three financial ratios 

and moderate on the third.

5. Com panies that are perform ing relatively well in any one o f the three important features 

o f the data and m oderate on the other two.

There is still the problem o f little differences between some o f the clusters, nam ely (1-4 

and 2-5). The aim of this experim ent was to test whether subjects would recognize these subtle 

differences. Figure 6.11 shows a num ber o f such mixed em otions nam ely anger and fear for top 

left face, small happiness and anger for bottom face and so on.

Figure 6.11: Faces with mixed em otions produced by the method.

6.2.4 Results

For each experim ent an equal num ber of com panies for each cluster (10) was selected, as given 

by the analysis o f the data, as described in Appendix A.

Perform ance o f FVA was com pared to what a random classification technique would pro­

duce. In the first two tests a ^ probability o f guessing the right cluster was expected from a 

random technique and therefore 10 ‘h its’ (since there are 30 visual structures). A ‘hit’ repre­

sents the times the subject got it right. For the final test the probability o f hits was expected to
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Figure 6.12: Faces produced by the method during the 2nd experiment. The last two faces in 

the last row are shown, the first in a toggle-m uscle (see A ppendix B) mode and the second in a 

line display model.

be since we have 5 clusters with an equal probability of occurring. So, there are 10 hits again 

since the num ber of visual structures for this test is 50.

For the first test a hypothesis test was perform ed on the num ber o f successes the subjects 

had against the expected num ber o f successes that would have been random ly produced. We 

can confidently conclude (at p  =  0.005) that the important aspects o f  the visual structures used 

can perform significantly better than a random technique, even when the users are not being 

told o f those aspects. On average the 10 subjects got it right 20 times out o f 30 with a standard 

deviation o f 2.58, resulting in a success sample mean o f 0.67 against the 0.33 with the random 

technique.

The same hypothesis testing was perform ed for the second experiment. The results im ­

proved and from the new hypothesis testing we can confidently conclude (at p  =  0.005) that 

the method perform s significantly better than a random technique. This time subjects had on av-
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Figure 6.13: An example of actual data vs user responses from second test.

erage 23 correct responses out of 30 with a standard deviation of 1.89 and therefore the sample 

mean has increased to 0.77. A random example of the differences in the values for a particular 

user is given in Figure 6.13. It is obvious from the graph that the difference in responses oc­

curred between clusters 1, 2 and clusters 3, 4. It is pleasing that no users classified a “healthy” 

looking company as “ill” and vice versa despite the few “errors” in the responses. Figure 6.14 

shows results from the same user. The values in the horizontal axis are the actual versus ex­

pected clusters and for the vertical axis the number of occurrences for this particular subject. 

For example “3 — 3” is the set where the user got it right, the company belonged to the third 

cluster and it was classified accordingly whereas “ 1 — 2 ” is the set where the expected cluster 

for the company was 1 and the user classified it as of type 2 and vice versa. There were 4 such 

occurrences.

For the final test the same hypothesis testing was performed. In this experiment the success 

rate is a bit lower than before at a mean of 0.62, or an average of 31 correct guesses out of a 

possible 50 and a standard deviation of 4.32. Again it is obvious that the small decrease to 

the success rate is a consequence of the fact that it is hard to distinguish between clusters 1 

and 4, or clusters 2 and 5. In fact Figures 6.15 and 6.16 show that almost all of the times the 

misjudgement from the user occurred between the pairs from these sets. Figure 6.16, clearly
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Figure 6.14: An example of actual data vs user responses as a histogram.

shows that the number of times this particular user confused the clusters 1 and 4, or clusters 2 

and 5 is very high indeed. However, it can still be confidently concluded (atp =  0.005) that the 

method is performing much better than a random technique expected to have a success sample 

mean of 0 .2 .

6.2.5 Discussion

The results from this experiment indicated that the method can be applied to larger realistic 

data sets. Moreover, a quick look at the means from the first test of the first and second exper­

iment (0.57 vs 0.67), gives evidence that naturalistic visual structures such as facial emotions 

as opposed to the more abstract set of circles, further improve the method. This evidence is 

strengthened when taking into consideration the complexity of this data set as opposed to the 

one used in the first experiment.

6.3 Third Experiment - Fear of Public Speaking
What follows is the analysis and results of a third experiment performed on the method. The 

data was gathered from a Virtual Reality (VR) experiment on Fear of Public Speaking (FOPS). 

Users were asked to give a talk while in a VR environment, in two different settings. During
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Figure 6.15: An example of actual data vs user responses from the third test.

the experiment, data was gathered based on physiological state (for example heart rate) and 

questionnaire responses. EVA was used on this particular data, with the aim of expressing the 

overall (known) emotions of each of the users during their talk.

This third experiment also uses faces as the medium of visualisation of our data set [LS03]. 

Therefore, each human face represents the facial emotions a specific user had when giving a talk 

to either a virtual audience or to an empty room.

However, this particular experiment involves no subjects and is used to test validity of EVA 

when compared to statistical analysis. Another objective is to test the method in a different 

context to that of the financial world.

6.3.1 Setting Up of the Experiment

The data set as mentioned already was gathered from a VR experiment on Fear of Public Speak­

ing (FOPS) [DPPOla], [DPPOlbj. The subjects were initially distinguished as male/female, 

phobic/confident and whether they gave their VR talk to an empty audience or to an audience 

of virtual people as shown in Table 6.2. Figure 6.17 shows one environment with virtual audi­

ence. There were a total of 40 subjects.

Here what is of interest to us is the difference in responses, of phobic and confident speak-
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Figure 6.16: An example of actual data vs user responses as a histogram.

Condition: Empty People

M F M F

Phobic 5 5 6  5

Confident 5 5 5 5

Table 6.2: Division of subjects into categories

ers, to both audience conditions. In particular a relatively large difference is expected in anxiety 

for phobic users giving talks to a virtual audience rather than an empty room, whereas, the 

difference in anxiety for confident users should be relatively small with regards to the same 

two conditions. In general, it is also expected that the phobic users are more anxious than the 

confident ones, regardless of the condition the speech was given.

The 13 variables used in this analysis are the following:

1. Gender: Male or Female subjects.

2. Anxiety Level: Phobic or Confident subjects.

3. Fear o f Negative Evaluation (FNE): A questionnaire driven measurement of social eval­

uative anxiety [DW69]. It is measured out of 30, where 30 is a perfectly phobic response.
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Figure 6.17: An environm ent with an audience o f virtual people (avatars).

4. State Trait Anxiety Inventory (STAl): A questionnaire driven measure o f  trait anxiety 

[Spi83]. Anxiety scores are in the range o f 20, minim um  anxiety, to 80 representing 

maximum anxiety.

5. Personal Report o f  Confidence as a Speaker (PRCS): A questionnaire driven m easure­

ment used to screen subjects for the experim ent [Pau66]. The PRCS is scored out o f  30, 

where 30 represents the response o f a “pure” phobic user. Subjects were accepted if  they 

scored 8 or less (confident group) and if they scored 20 or more (phobic group).

6. Audience Type: Either em pty or with a virtual audience.

7. Presentations: Zero or one indicating whether users do not give presentations at all or 

they sometim es give presentations.

8. Subject: A 1 — 7 scale indicating subjects’ com fort with the topic o f  their talk. A score 

o f 1 indicates not at all comfortable.

9. Prepared: A 1 - 7  scale indicating how prepared subjects felt for this talk, with 1 denoting 

not at all.
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10. Emotions before: A 0 — 100 score of confidence drawn out of 6  scales for adjectives 

(anxious, happy, confident, relaxed, sad, angry). Zero represents anxious, 100 confident.

11. Emotions after: Same as above but this time after the talk was given.

12. Self rate: A self assigned score out of 100 of their own performance.

13. Somatic: A questionnaire driven measurement for subjectively assessed the feeling of so­

matic responses. The list of somatic responses includes sweating, discomfort in stomach, 

heart palpitations, tremors, nerves/feelings of being scared, tightness in chest, tenseness 

and loss of balance.

6.3.2 Details o f the GP

6.3.2.1 Step 1

The same nine feature functions (nine muscles) were used, as described in Section 6.2.2. Again 

symmetry of the visual structure is assumed hence there is a left and right muscle for each one 

of the muscles.

6.3.2.2 Step 2

The three measurements over the data that are of interest to us, are the following;

Somatic(^'i) This measures subjectively the somatic responses of the user when giving the talk.

Modified Report of Confidence as a Speaker (MPRCS)(^'2) This measures the degree of 

confidence of users after giving the talk.

Somatic xMPRCS(i/3) This is a combination of the two measurements above, to allow for an 

interaction affect.

Each subject (row in the data set) was given a score 0 — 100 for each of these three mea­

surements.

6.3.2.3 Step 3

The same facial emotions and scoring system were used to represent our data set. Namely:

•  ei Degree of Happiness.

•  6 2  Degree of Fear

•  63 Degree of Anger.
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6.3.2.4 Step 4

The minimisation function is similar to before:

40 3

-  edsŸ (6.9)
d = l  3—1

6.3.2.5 Step 5

The GP was run with similar parameters to the previous two experiments. A population size of 

750 running for 150 generations was chosen. Again the creation type is ramped half-half with a 

maximum depth of creation 7. The terminal set were the 13 variables described in Section 6.3.1 

and the function set consists of the four arithmetic operations ( + , —,%,*) where % represents 

protected division. We used tournament selection for mating with a tournament size of 6 . In 

generating subsequent populations, 90% of the times crossover was used, 5% of the times swap 

mutation and 5% of the times shrink mutation. The best one of the previous population was 

added to the next population thus making sure the best of all populations individual resulted. A 

generational state GP was used.

Figure 6.18 shows by generation, the standardised fitness of the best-of-generation, the 

average-of generation and the worse-of-generation individuals in the population for all 150 

generations for a single run of the GP. This run of the GP was chosen as the best one, out of 

a pool of 15 different runs. The value for fitness is calculated by equation (6.9). It is clear 

from the diagram that the fitness of the best-of-generation individual generally improves (i.e., 

decreases) by generation.

6 .3 3  Statistical Analysis

What follows is statistical analysis over the following response variables: Modified Personal 

Report o f Confidence as a Speaker (MPRCS), Self Rating and Somatic, where MPRCS is a 

modified PRCS (Section 6.3.1) with total maximum count of 13 questions modified to refer to 

the talk just given by the subjects. Self rating is a score out of 100 with 100 being complete 

satisfaction of users with their talk. Somatic is measured out of 300 where a score of 300 

indicates that the user was extremely aware/bothered by all the items in the list of somatic 

responses.

Table 6.3 shows the mean and standard deviation for the Modified Personal Response of 

Confidence of a Public Speaker variable. From a quick look at the data there is an indication 

of more anxiety for phobic subjects giving their talk to a virtual audience rather than an empty 

room, whereas this change of “audience” seems less significant for confident students. The data 

are analysed using logistic regression which is equivalent to Analysis of Variance (ANOVA)
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Figure 6.18: Fitness curves for one run o f  the GP.

except w ith the binom ial distribution ‘num ber o f negative responses out o f 13 questions of 

M P R C S ’ and logistic link function. N um ber 13 com es from the M odified Personal R eport o f 

Confidence as a Speaker (M PR CS) questionnaire. Table 6.4, show s the param eter estim ates and 

the standard errors for this logistic ANOVA model.

The sam e conclusions w ould be reached treating the M PRCS as a norm al variate and using 

standard ANOVA, in fact the overall fit has R-Squared =  0.67. We only present the logistic 

regression results here, in Table 6.7, w here one can see the effect o f  the variable (M PR CS) on 

all com binations.

No variable can be deleted from  the m odel w ithout significantly reducing the fit (m easured 

by the deviance w hich is a log-likelihood ratio) at least at the 5% level (m ostly the p-value is 

much lower than this). This is clearly shown in Table 6.7. Exam ining coefficients o f the m odel 

(Table 6.4), w e conclude:

•  The presence o f  an audience significantly increases the M PRCS score for the phobic 

subjects.

Being confident rather than phobic significantly decreases the M PR C S score. There is an 

interaction effect, the phobic g roup’s M PRCS is significantly higher in the presence o f  an
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Condition: Empty People

Phobic 6.7 10.5

(3.0) (1.4)

Confident 2.4 2.7

(2.8) (2.5)

Table 6.3: Mean (SD) for MPRCS

Condition: Empty People

Phobic 0 .1 1.4

(0.18) (0.2)

Confident -1 .5 -1 .4

(0.2) (0.2)

Table 6.4: Parameter Estimates and Stan­

dard Errors for the logistic ANOVA model 

with MPRCS the dependent variable

Condition: Empty People

Phobic 39 31

(24) (15)

Confident 57 57

(16) (19)

Condition: Empty People

Phobic 97 165

(43) (38)

Confident 42 43

(39) (31)

Table 6.5: Mean (SD) for Self Rating Table 6 .6 : Mean (SD) for Somatic

Variate Deviance for deletion Df Chi-Squared tabulated

Audience 16.96 1 3.841

Condition 125.5 1 3.841

Audience.Condition 7.851 1 3.841

Table 6.7: Logistic Regression Results
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audience.

An ANOVA, in Table 6.5, shows that there is a significant difference between the self 

rating of phobic and confident groups (self rating is clearly higher for the confident group). 

However, there is no significant difference related to the presence of an audience.

The somatic response for phobic subjects, as presented in Table 6 .6 , is significantly higher 

with the audience. There is a strong interaction effect.

6.3.3.1 Conclusion

The hypothesis for the experiment was that there would be a difference in response to a virtual 

audience as between the confidence speakers and the phobic speakers. This is bom out on both 

subjective response variables (MPRCS, Somatic). The only variable for which this is not found 

is ‘self rating’ which is not based on a standard questionnaire unlike all the others.

The results of this experiment provide further evidence for the conclusion that virtual au­

diences do have an appropriate impact on speakers: the observed anxiety responses are similar 

to what would be expected for speaking in front of real audiences.

6.3.4 Results from Using EVA on this Data Set

The same data, used for the statistical analysis, was used as input to EVA as described in Section 

6.3.1.

Figures 6.19, 6.20, 6.21 and 6.22 show a sample of the faces produced by our method for 

this particular data set. The faces are presented in groups of 4 according to Anxiety Condition 

and Audience Type.

It is clearly evident from the resulting visualisation, that there is no, or little, visual differ­

ence between confident users with no audience (Figure 6.19) and with the presence of a virtual 

audience (Figure 6.20). The faces are generally in the range from neutral to happy. On the other 

hand with phobic users there is a considerable difference. Faces in Figure 6.22 (with audience)

are significantly more anxious, sad and angry than faces in Figure 6.21 (no audience). In gen­

eral, the generated facial visualisation of confident subjects look much happier, less anxious, 

and less angry than the generating faces corresponding to phobic subjects. This provides an 

illustration of our expected results, set prior to the analysis of the data, and thus validating the 

mapping produced by EVA.

6.4 Conclusions from Experimental Data
The experimental data supports the main thesis of this research. Namely, in this Chapter we 

have shown that naturalistic visualisations (such as a human face) of multivariate data sets.
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Figure 6.19: Sample o f confident subjects without audience.

together with a meaningful autom atic mapping can be achieved and it works.

Experim ents using sim ulated and real financial data sets have shown that even non-expert 

users can use the constructed visualisation to quickly interpret the significance o f  the data. Sub­

jects were able to cluster faces according to com pany perform ance, each being represented by 

a visual structure, in little tim e with a high success rate and w ithout being told of the signifi­

cance in the visual structure. This can easily be com pared to a tim e consum ing procedure of 

going through raw spreadsheet data. An exam ple o f such analysis is presented in Appendix A. 

M oreover, an experim ent on Fear o f Public Speaking data, has shown that EVA perform s an 

accurate m apping from this data, to the em otions the subjects had while giving their talk. The 

faces produced by the method clearly corresponds to the subject’s em otional state as shown in 

the statistical analysis o f the data set.
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Figure 6.20: Sample of confident subjects with audience.
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Figure 6.21: Sample of phobic subjects without audience.
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f i

Figure 6.22; Sample of phobic subjects with audience.



Chapter 7

Conclusions and Future Work

EVA, uses a fundamentally different approach compared to the vast majority of Information 

Visualisation techniques to date. Existing techniques and visualisation tools are mainly con­

centrated in the area of semiotics. Research in this area is concerned with the invention of a 

new “axis” to display data, for example in the form of new shapes, colour, and/or the dynamic 

manipulation of data with the aim of achieving the Information Visualisation Seeking Mantra 

“Overview, zoom, filter details on demand”, as proposed by Prof. Ben Shneiderman. Although 

the target is always the same, better understanding of the underlying data, the approach taken 

in this thesis is different.

The aim of this research has been to explore the possibilities of visualisation of highly 

correlated multivariate data sets holistically, in the form of naturalistic visual structures, and 

for automatic performance of the mapping, in such a way that the impact on the emotions of 

the users of the visualisation are taken into consideration. EVA enforces a homomorphism be­

tween important characteristics of the data and the emotional or perceptual impact of the visual 

structure. Salient global aspects of the data (the utility or value functions) are mapped to emo­

tional or perceptually significant aspects of a visual structure. The features that allow rendering 

of the visual structure are determined by a genetic program that breeds generations of visual 

structures, such that in each successive generation there is a greater match between the utility 

functions and the visual structure characteristics. The type of visual structures produced by this 

method are meant to be informative “at a glance”, and can also reveal important detailed infor­

mation or unusual characteristics present in the data (e.g., a happy face with a hint of anxiety). 

The method is not put forward as an alternative to other types of visualisation, but rather it pro­

vides a first-pass visualisation that may, in particular applications, raise interesting features that 

subsequently may be explored in detail through traditional visualisation techniques, or indeed 

statistical analysis.
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7.1 Review of Contributions
The contributions of this thesis have included a critical literature review of Information \^suali- 

sation to date, the formalisation and implementation of EVA as an algorithm that automatically 

maps multivariate data sets to visual representations, the use of naturalistic visual cues so that 

they represent the emotions the observers of the data would have if they analysed the data, the 

invention and implementation of a technique that quantifies emotional expressions of a human 

face, and finally results from the experiments of this novel approach.

In Chapter 2, we critically reviewed the background work on Information Visualisation, 

focusing mainly on the use of multivariate data sets, hence achieving the first target. The liter­

ature review presented in that Chapter, revealed that the area of mapping multivariate data sets 

to naturalistic visual structures in an automatic, but meaningful, mapping has been unexplored. 

Not only has it not been investigated until now, but, it shows great promise when considering 

the separate advantages outlined in the research of naturalistic visual structures and in automat­

ing the mapping from data to visual representations. Therefore, a further investigation of the 

above areas of research looked reasonable.

Chapter 3, achieved the second target. Namely, the methodology behind EVA, was for­

mally presented. Formalisation of the algorithm introduced a number of problems. Firstly, an 

optimisation problem arose between the quantitative measurements of the data which are sig­

nificant to the user and the qualitative measurements of the visual structure that are significant 

to human perception. Secondly, there was a need for a technique to automatically quantify emo­

tional expressions in order to achieve the above. The Genetic Program that was implemented, 

was derived as part of this Chapter with the purpose of solving the optimisation problem men­

tioned above.

Completion of EVA through the method to automatically quantify emotional expressions 

and hence realisation of contributions 3 and 4 were presented in Chapter 4. In this Chapter, 

the visualisation tool, “Geoface 2” was introduced. This was followed by a detailed descrip­

tion, implementation and results of the technique, that automatically quantifies the emotional 

expressions of a specific facial structure, based on the movement of certain landmarks on its 

skin (points affected by a number of muscle contractions). There are 25 such points and these 

were “randomly” selected through trial and error as long as they satisfied the prerequisite that 

they were directly affected by at least one muscle contraction. This technique is very important 

to EVA, since it replaces the user input in the evolvement/training of the GP from having to 

assess every face produced. Having said that, the results produced by this technique are still 

based on user’s subjective evaluations for each emotion.



7 .2 . C r i t i c a l  R e v ie w  OF E V A  119

The final target was met through results from experiments on this approach, and was pre­

sented in Chapter 6. A pilot user experiment that utilised a set of three circles as the visual 

structure, together with simulated financial data was initially undertaken. This simple example 

was implemented in order to test the feasibility of EVA as an information visualisation tech­

nique. Results were very encouraging, leading to the repetition of the experiment replacing, 

however, the visual structure with a human face and the simulated data with real financial data. 

The data was gathered from balance sheets and profit and loss accounts of certain companies 

belonging to similar sectors and hence similar interpretation of the variables. Despite the use of 

a more complicated data set, results improved further giving us confidence in the efficiency of 

faces as a good visual representation.

A final experiment was performed to further test the validity of EVA in presenting the 

correct qualitative visual cues from quantitative information. Real data was gathered based on 

a Virtual Reality experiment on Fear of Public Speaking. The multivariate data set collected, 

one row per speaker, distinguished the speakers as confident and phobic and, also, those who 

gave their talk in an empty room and those who gave their speech in front of a virtual audience. 

Results from EVA, a human face per speaker, were illustrative. One can clearly distinguish, 

in general, a phobic user from a confident one, especially in the presence of virtual audiences. 

There is a clear match between the faces produced by EVA and the statistical analysis of data 

collected from the experiment.

The above contributions give support to the main thesis of this research work. In the 

remainder of this Chapter, we perform a critical review of EVA followed by guidance for future 

work.

7.2 Critical Review of EVA
It can be safely concluded from the above that EVA shows promise and can become an important 

visualisation tool when used correctly. We propose the use of EVA, especially for the purposes 

of Exploratory Analysis as a first pictorial representation of a highly correlated multivariate data 

set. As already mentioned, before this Exploratory Analysis is performed there are cases where 

we know very little about the data and such visualisation of the data should provide the means 

for the user to formulate hypotheses. These hypotheses, when needed, can later be tested using 

conventional statistical analysis or more traditional information visualisation techniques.

It must be said that analysis of data heavily depends on levels of expertise. The use of 

naturalistic visual structures and the consideration of the emotions of the user in the mapping 

performed by EVA minimises the gap between expert and non expert users. Correct hypotheses
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can be formulated by both with the same minimal effort.

Further applications of EVA include data changing in real time. For example stock brokers 

can have one face representing each stock of their portfolio. Generally positive feedback should 

indicate “hold” of that stock, and negative feedback should give an indication to “sell”, with 

mixed feedback indicating the need for further investigation. Similarly, for a project manager 

with several projects, EVA could be used to visually represent each of the projects. In this 

case, generally speaking, positive feedback should give confidence that the project is running 

smoothly, whereas the need for action can be taken in all other cases.

However, visual data exploration usually follows 3 steps as already mentioned in this the­

sis: Overview, zoom filter details on demand - Ben Shneidermans’ “mantra” of Information 

Msualisation. With EVA we achieved the first step in a very natural way, examining human 

faces, taking into consideration the whole data set. No data reduction techniques were included 

and variables were not treated independently but rather holistically. Exploring ways of achiev­

ing the other two steps of the mantra, zoom and filter details on demand should further improve 

the method. This remains to be done.

Moreover, validity of EVA also depends upon the proof of convergence of the GP. Such 

proof of Genetic Programs is not possible with today’s theoretical knowledge of them and is 

highly unlikely it will ever be feasible. Each tree in each population of Genetic Programs is 

different, being constructed from parent trees through the use of crossover. Although, experi­

mentally it is obvious that the steps made in the search space become smaller and smaller with 

results becoming at least as good as previous generations, the search space produced by the huge 

amount of crossover possibilities becomes vast and impossible to be handled theoretically. If a 

tree consists of n  nodes, then the number of possibilities for crossover becomes of order O(n^). 

Considering that one usually has 500 such trees and approximately 50 generations, the numbers 

become impractical.

7.3 Guidance for Future Work
Computational tools for discovery, such as data mining and information visualisation have ad­

vanced dramatically in recent years. Unfortunately these tools have been developed by largely 

separate communities with different philosophies. Future work should involve the tight integra­

tion of EVA with traditional techniques from disciplines such as statistics, operational research 

or even with other information visualisation techniques. Integration of EVA and these estab­

lished methods would quickly combine advantages from all, improving the quality and speed 

of the visual data mining process.
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For information visualisation to be effective, it is important to include the human in the data 

exploration process and combine the flexibility, creativity and general knowledge of the human 

with the enormous storage and computational capabilities of today’s computers. This can be 

achieved in EVA through “backtracking”. Users will be able to query the visualisation tool, 

for example verbally, and the system should respond appropriately by backtracking through the 

evolvement history of the GP, back to the original data set. Being able to backtrack through 

the data is effectively achieving zoom and filter details on demand, therefore completing the 

Information Visualisation mantra.

Having shown that the basic idea works, it will be interesting to identify possible bound­

aries for particular parameters that define the operation of the method. For example, through 

further study we can define a reasonable range, in terms of the number of variables in the data 

set (dimensionality) and also in terms of the number of aspects in the data set of importance to 

the user (value system). The latter is strongly related to the visual structure, and more specifi­

cally to the maximum number of characteristics a user can easily distinguish.

Moreover, looking at EVA from a different perspective we can examine the power of EVA 

through the discipline of psychology. More specifically, the confidence a human face provides 

in the decision making process at different levels of seriousness, in terms of consequences, is 

very interesting. Results from the above can be used to distinguish further areas where EVA 

should not be applied or is safely applicable. Another area in psychology of great interest, is 

that of asymmetrical studies with human faces.

It is indisputable that Information Visualisation has opened many horizons for data discov­

ery. The last 10 — 15 years have seen the development of the first computer-based prototypes, 

which have been welcomed with enthusiasm and their academic and business potential has been 

recognised. Quoting the Economist, June 19th 2003, “Information Visualisation is about to go 

mainstream. While it may not be the killer application some expect. Information Visualisation 

is going to help users to manipulate data in wholly new ways”.

EVA, the approach presented here, is still in its early days. Further research in this area 

will, unquestionably, improve EVA further as a visualisation tool. We are hoping that EVA will 

expand the possibilities of Information Visualisation in allowing people to see and manipulate 

data in new ways, efficiently and effectively.



Appendix A

Spreadsheet Analysis for Financial Data Set

An analysis of the data used for the second experiment described in Section 6.2 is presented 

here. This analysis was performed in order to categorise the data into the 5 clusters, described 

in Section 6.2.3, in order to be able to evaluate user responses for this experiment.

Table A.1 shows a sample of the data used and tables A.2, A.3, A.4, A.5, A.6 show the 10 

companies in each cluster used for the experiment.

Figures A.1, A.2, A.3, A.4, A.5, A.6 and A.7 show all possible combinations of the ratios 

per company plotted as separate graphs.
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Figure A.1: Current Ratio for Each Company.
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97000 811100 0 1057800 1078100 528200 617900 796600 185100 185100 38800

106900 950100 0 1188500 1386000 761100 543700 863300 212800 212800 47100

107100 966200 0 1210800 1351800 842300 446300 754100 266000 266000 51900

107200 1062300 0 1423700 1478900 880300 631400 960000 322900 322900 57200

118400 1016600 0 1532400 1578700 1009600 698000 1084900 411900 411900 73400

9230 61882 10120 50040 312109 275270 233 14877 36671 36535 6696

11374 135312 10120 125261 448056 385110 6605 42775 34657 45529 8304

11536 117007 10104 202898 481473 443294 50375 113966 68195 75762 13649

13574 197243 9980 262933 678034 602337 50904 131407 49696 59066 16106

14200 240000 5800 319900 755600 622600 91500 207100 76805 86826 21719

220000 2373000 9000 3990000 2165000 1670000 1617000 2103000 731000 507000 175000

222000 2322000 9000 4109000 2070000 1685000 1705000 2163000 648000 450000 185000

258000 2281000 9000 3849000 2459000 2063000 1345000 1955000 754000 551000 197000

259000 2134000 9000 3182000 2203000 1871000 1090000 1371000 1081000 801000 406000

260000 2127000 9000 3137000 1978000 1687000 1065000 1292000 729000 548000 245000

724600 1567700 0 2036200 833000 724100 408800 577400 187700 86100 46800

724700 1376400 0 1922600 722300 717000 392700 551500 213300 139600 43000

726200 1493200 0 2020100 821500 868700 328400 479700 219200 181700 51000

731800 1657700 0 2536600 741200 974100 515100 646000 278200 243500 63900

753500 2061500 0 2944200 806700 1125700 474600 563700 350900 308400 75500

508900 2047100 0 3047000 461600 405300 791200 824700 358400 285200 81400

510900 2543000 0 3616200 390000 486500 755800 781700 378000 322400 92000

1028200 2845200 0 4113700 281200 664600 715300 744500 405800 366100 103900

Table A.1: Data sample
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Cluster l:Good Overall Performance
Company Current Ratio Profit/Total Assets Gearing Ratio
90 2.77 10.54% 0.76%
106 4.95 11.13% 0.37%
107 5.19 11.29% 0.17%
108 4.83 12.29% 0.16%
109 5.23 12.09% 0.16%
168 2.29 19.45% 0.21%
164 2.38 14.07% 0.00%
165 2.04 18.45% 0.00%
167 2.10 12.26% 0.50%
170 2.08 24.35% 0.00%

Table A.2: Good Overall Performance

Cluster 2:Medium Overall Performance
Company Current Ratio Profit/Total Assets Gearing Ratio
110 3.79 12.35% 15.91%
43 2.16 17.78% 17.65%
138 2.19 6.43% 0.94%
162 2.37 5.20% 0.00%
42 2.66 17.65% 25.06%
163 2.60 8.84% 0.00%
44 2.24 17.11% 12.62%
137 2.13 7.23% 1.77%
139 2.04 7.74% 1.36%
45 2.15 15.67% 9.08%

Table A.3: Moderate Overall Performance

Cluster 3:Bad Overall Performance
Company C urrent Ratio Profit/Total Assets Gearing Ratio
181 0.57 -92.44% 55.13%
129 0.99 -12.61% 60.70%
56 0.85 2.91% 72.34%
104 0.64 5.13% 81.41%
130 1.06 1.09% 56.46%
113 0.85 -6.65% 36.97%
156 0.84 4.42% 49.92%
51 0.89 0.36% 42.32%
128 1.00 -7.42% 44.58%
58 1.03 3.62% 68.47%

Table A.4: Bad Overall Performance



126

Cluster 4: 2 Good -1  Moderate Performance
Company Current Ratio Profit/Total Assets Gearing Ratio
182 6.50 -32.07% 4.96%
88 5.97 -17.39% 3.84%
184 3.74 -75.36% 10.10%
93 0.29 10.21% 15.50%
116 0.47 10.96% 4.85%
119 0.56 11.67% 13.06%
147 0.65 14.45% 0.00%
65 0.68 13.02% 19.50%
140 1.15 -19.90% 0.71%
87 1.19 -35.65% 0.00%

Table A.5: Slightly worse than good overall performance

Cluster 5: 1 Good - 2 Moderate Performance
Company Current Ratio Profit/Total Assets Gearing Ratio
105 0.53 6.80% 72.84%
60 0.65 6.15% 57.66%
89 0.71 -19.22% 10.36%
101 0.76 7.78% 60.55%
120 0.76 8.58% 64.77%
157 0.78 -8.22% 39.08%
127 0.87 -8.71% 35.87%
59 0.92 5.84% 64.60%
185 0.99 -96.51% 22.08%
183 1.06 -136.88% 18.58%

Table A.6: Slightly better than moderate overall performace
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Current Ratio vs Profit over Total Assets per Company
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Figure A.4: Current Ratio against Profit over Total Assets for Each Company.
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Appendix B

GEOFACE and GEOFACE 2

The original Geoface model [PW96], together with extensions programmed to the model, is 

presented here. Some of the extensions were first implemented in [DriOO]. As described in 

Section 4.2, Geoface forms the backbone of our visualisation tool.

B.l The original Geoface
As already mentioned in Section 4.1, the original program demonstrates a muscle model ap­

proach for animating facial expressions. The program can be subdivided into three conceptual 

levels of abstraction; the geometric model, the emotional model and the muscle model.

The geometric model is a human face that is represented by a set of three dimensional 

vertices and polygons that represent the topography of the face. To display the surface of the 

face, it is necessary to transform these points into a polygonal mesh. In Waters’ model, just the 

front view of the head is defined as a facemask as shown in Figure B.l.

For the original emotional model, there are six sets of muscle configurations stored in an 

expression vector file. These are, happiness, anger, surprise, sadness, fear and disgust, and are 

lists of floating point values corresponding to a contraction value for each muscle. Upon the 

appropriate input, the model selects the appropriate expression vector and applies them to the 

muscle set, resulting in deformations that simulate the facial configuration of an exception. The 

expressions above are based on a system called Facial Action Coding System (FACS), described 

in Section 4.2.1.

The muscle model, which is the most interesting one, animates the face by deforming the 

polygonal mesh using a muscle vector function. There are eighteen muscles on the original 

model, nine on each side of the face. The muscles represent real muscles found in the face, 

such as the Right Zygomatic Major and Left Angular Depressor. The former is used to pull the 

outer parts of the mouth area hence it is the primary muscle used to smile whereas the latter 

performs the opposite operation (pulling down the middle and outer region of the mouth and 

often forms part of a frowning face. Figure B.2 shows a frontal view of facial muscles.
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Figure B .l: The original Geoface model.

W aters’ technique [Wat87], considers muscles as single direction vectors, with a “head” 

that is connected to the bone o f the skull, and a “tail” that is connected to the flesh of the face. 

As a muscle contracts it pulls the skin towards the point at which it is connected to the skull. 

Each muscle has a zone o f influence and the vertices o f the polygon mesh describing the surface 

o f the face are moved according to the contraction o f the muscles.

Typically facial m uscles are grouped depending on their orientation and shape. There 

are three such groups; Linear, Circular or Sphincter and Sheet muscles. The muscles in the 

original Geoface model, model the deform ations o f the skin that result from a linear contracting. 

Theories were developed by Parke and Waters [PW 96], to model the other two m uscle types, 

namely sheet and sphnicter muscles.

Linear muscles are the most com mon, an example o f which is the zygom atic major shown
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Figure B.2: Frontal view of facial muscles [PW96].

in Figure B.2. As the muscles contract they pull the point at which they are attached to the 

skin towards the point of attachment on the skull. The circular or sphincter muscles such as the 

obicularis oris are found around spherical regions such as the mouth and the eyes. These pull 

inwards towards their center producing expressions such as pursed lips. A sheet muscle such 

as the frontalis is found in the forehead and can be considered as a large collection of linear 

muscles all placed next to one another.

B.1.1 L inear M uscles

As already mentioned, the model for linear muscle vectors developed by Waters assumes that 

the muscle is connected to skin at one end and to the bone of the skull at the other. The muscle 

contracts in a direction along a line from the skin connection point towards the bone connection 

point. As the muscle contracts each vertex of the mesh is warped in accordance with a number 

of relationships that represent the movement of skin under muscular forces. Figure B.3 and 

Figure B.4 show samples of deformations of a polygon mesh for contraction and expansion.
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Figure 8.3: A linear muscle with a contraction Figure 8 .4 : A linear m uscle with an expansion 
value of 1.0 [PW 96]. value o f 1.0 [PW 96].

B.2 Extensions to Geoface
A number o f  extensions have been implemented on top of the original G FOFACF model, re­

sulting in the refined version used as a visualisation toolkit for the purposes o f this thesis.

Work at M IT has shown the importance of many characteristics when considering the 

relationship that a user can form with a synthetic character model [Cas94]. As a result o f 

this, eyeballs and hair have been added to the model to improve the overall effect o f the facial 

representation. Adding eyes is easily achieved by placing spheres in the em pty eye sockets o f 

the facial mask. Texture maps o f pupils and hair are then added to improve realism.

M oreover, the m uscle model which is com posed of geom etric distortion functions that 

influence particular sets o f vertices in a 3D space, is independent o f the geom etric model. This 

means that the muscle model can be applied to any 3D object and hence to any face. In fact the 

program can display any 3D object provided that is defined in a certain way: using two source 

data files; one containing a vertex list and one containing an index list, and these lists must 

describe a polygonal object com posed o f  triangles.

In addition to the above, a facility has been added to the program  that allows interactive 

viewing o f  m uscle zones o f influence. This functionality was very im portant during the selec­

tion of the 25 landmark positions on the face, movements o f  which determ ine the degree of 

individual em otional expressions as described in Section 4.2.3. The colour scheme used to pro­

duce this is analogous to a therm ograph, with blue areas being influenced by only one muscle, 

through the colours o f the rainbow to white.

Furthem ore, a variety o f manipulation methods to the m uscle model are provided by the
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system (scaling, rotating and translating) enabling the user to create a m uscle model suitable for 

the current facial model and their needs. These functions can be applied to individual, groups 

or all o f  the muscles.

New muscles can also be created at run time and added to the muscle set. In order for 

this muscles to be fully functional, the user must enter a few configuration param eters nam ely 

zone-depth, zone-angle and group id (if they belong to a particular group o f muscles). The new 

m uscle is then created at origin of the viewing space and can be placed to the target position 

using the functions described above.

Finally a menu system is provided with the click o f  a mouse button for user input, com ­

plemented with keyboard shortcuts for the execution o f standard tasks. Figure B.5, shows the 

menu system and more specifically how you can select an individual muscle.

D;\ u se r*  . a n d rea s \a ft< lrea «  w ind ow * D eh u u  .v iew er .

M u s c le  n # ) d e

Fac# draw  mode 
Mouse mode 
Show expression 
Expression add 
Expression change 
Muscle add 
Toggle muscle zones 
Select Axis 
Save 
R eset
Prmt m usde vats 
Print Help 
Qu*

Individual ► O; L Zygomatic Maior 
1 : R Zygomatic Major 
2; L Angular Depressor 
3: R Angular Depressor 
4; Lett Frontalis Inner 
5: Rigtit Frontahs Inner 
6; Left Frontahs Major 
7: Rigfit Frontalis Major 
8: Left Frontahs O uter 
9: R igft Frontahs O uter 
10: Left Labi Mae 
11: Right Labi Nasi 
12: Left Inner Labi Nasi 
13: Right Inner Labi Nasi 
14: Left Lateral Corigator 
15: R ight Lateral Corigator 
16: Left Secondary Frontahs 
17: Right Secondary Frontalis

H

Figure B.5; Selecting an individual muscle from the menu.
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Chernoff Facial Features

Dim Facial Feature Dim Facial Feature
1 Face width 2 Ear level
3 Half face height 4 Eccentricity of upper ellipse of face
5 Eccentricity of lower ellipse of face 6 Length of the nose
7 Position of centre of mouth 8 Curvature of mouth
9 Length of mouth 10 Height of centre of eyes
11 Separation of eyes 12 Slant of eyes
13 Eccentricity of eyes 14 Half length of the eye
15 Position of pupil 16 Height of eyebrow
17 Angle of brow 18 Length of brow
19 Radius of ear 20 Nose width

Table C.l: Description of facial features of Chernoff faces.



Appendix D

Example of a GP Tree Evolved by EVA

What follows is a set of functions (12), produced by EVA, belonging to the best-of-generation 

50 individual in the best run of the GP as part of the first experiment. These functions determine 

the features of the visual structure, such as radius and colour, and hence allow for its rendering. 

One can clearly see that although certain variables are not involved in the “value system”, as 

defined in Section 6.1.1, they are still part of the trees produced.

In these formulae a represents Number o f shares, b represents Earnings, c represents Divi­

dend, d represents Liquidity, e represents Liabilities, b represents Earnings, f  represents Costs, 

g represents Sales and h represents Staff.
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